
Chapter 2
Background

Abstract Formal methods based system development is considered as a promising
approach to develop the safe critical systems. This chapter discusses the standard
safety life-cycle, traditional safety analysis techniques, traditional system engineer-
ing approach, standard design methodologies and safety standards that are used for
developing the critical systems. Furthermore, we have given a list of successful in-
dustrial case studies based on formal techniques. Moreover, we discuss the role of
medical device regulations. Finally, this chapter shows the usability of formal tech-
niques for developing the critical systems and to motivate for developing a new
methodology, and associated techniques and tool in the context of medical device
development, which are covered in the remaining chapters.

2.1 Introduction

Critical systems are tremendously grown in functionality in both software and hard-
ware, and due to increasingly the complexity of critical systems it is very hard to pre-
dict the absence of failure. Moreover, some of these failures may cause catastrophic
financial loss, time or even human life. One of the main objectives of software engi-
neering is to provide a framework to develop a critical system that operates reliably
despite this complexity. It has been shown in [97, 113] that the promising results
are achievable only through the use of formal methods in the development process.
More than a decade, several formal methods based techniques and tools are used by
industries and academic research projects [62, 111]. The backbone of formal meth-
ods is considered to be mathematics, which often supports related techniques and
tools based on logico-mathematical theory for specifying and verifying the complex
systems. The techniques and tools based on formal methods provide a certain level
of reliability under some constraints. Formal verification is considered as a bench-
mark technique, particularly in the area of safety critical systems, where important
safety properties are required to prove rigorously before implementing a system.
However, the use of formal methods helps to speculate the hidden peculiarity of a
system like inconsistencies, ambiguities, and incompleteness.

In the past, formal methods based technique was not into practice in the soft-
ware development life-cycle due to the use of complex mathematical notations; in-
adequate tools support and too hard to apply. Special training was required to use
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formal methods to apply in the system development process. Increasingly, number
of successful development of techniques and tools related to the formal methods,
the industries have started to adopt it for verifying the safety properties of complex
systems [13, 14, 23, 97]. For verifying a critical system, industries prefer to use for-
mal methods-based techniques such as model checking or theorem proving in place
of the traditional simulation techniques. In both areas related to the model check-
ing and theorem proving, the researchers and practitioners are performing more and
more industrial-sized case studies [9, 11, 13, 24, 38, 61, 62, 78], and thereby gaining
the benefits of using formal methods.

This chapter briefly discusses safety critical systems, examines the use of for-
mal techniques to provide safety and reliability, analysis the use of traditional safety
techniques for software, surveys on regulations for medical devices, and gives a
list of successful industrial case studies based on formal techniques. Reliability and
safety are the most important attributes of critical systems. The main objective of
this chapter is to provide information about current safety issues in medical do-
main particularly for the safety critical software systems. It should be noted that the
formal methods are the most important techniques that are applicable for a safety
related software development for medical devices using several classical safety anal-
ysis techniques.

2.1.1 Structure of This Chapter

This chapter contains a concise survey that reviews the existing literatures relating
to the development and analysis of a software for safety critical systems, which
identifies current valuable approaches for developing the safety critical software,
and reviews the methods and analysis techniques available to the system develop-
ers. Section 2.2 gives an overview about reliability and safety. Section 2.3 presents a
role of a software in safety-critical systems and Sect. 2.4 describes safety life-cycle
for critical systems. Section 2.5 presents traditional safety analysis techniques. Sec-
tion 2.6 explores the traditional system engineering approach, and Sect. 2.7 gives
a list of standard design methodologies for the system development process. Sec-
tion 2.8 depicts about safety standards, and Sect. 2.9 presents medical device stan-
dards and discusses the current issues of regulations. Section 2.10 presents a list of
industrial projects related to the formal methods, and finally, Sect. 2.11 discusses
the use of formal methods for the safety critical software systems.

2.2 Reliability and Safety

2.2.1 Reliability

Reliability is a fundamental attribute for the safe operation of any critical system.
According to the Institute of Electrical and Electronic Engineers (IEEE), “Reliabil-
ity is the ability of a system or component to perform its required functions under
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stated conditions for a specified period of time” [54]. Reliability can be used for
prediction, analysing, preventing and mitigating failure over time of a complex crit-
ical system. In the context of safety, there are several elements of reliability. These
elements are operational reliability and performance reliability. Operational reliabil-
ity can estimate the probability of failure of a system, while performance reliability
measures the adequacy of features to successfully perform under the specific condi-
tions. Reliability analysis aims to protect a system from failures of its components,
software and hardware [67].

A fundamental challenge in reliability analysis is the uncertainty for failure
occurrences and consequences. To protect a system, a quantitative approach has
been pushed forward for the design, regulation and management of the safety
of hazardous systems. The reliability assurance is a process that is considered
by manufacturers during product development according to the regulating stan-
dards [18, 22, 33, 54, 58]. The reliability is quantified in terms of probability. Re-
liability has a time oriented characteristic that can be expressed as the Mean Time
Between Failures (MTBF) [95]. When we use probability or characteristics of the
underlying life distribution to measure reliability, it must be emphasised that re-
liability is a relative measure of the performance of a system. It is relative to the
user requirements, system failures, expected lifetime of the device, operating envi-
ronment conditions, system functionality and behaviour of the system changes with
time.

Reliability engineering is a function to calculate the expected reliability of a sys-
tem, process and behaviour in advance. The main objective of reliability engineering
is to deliver reliable product in order to satisfy behaviour requirements, safe oper-
ation, lower cost, and to maintain company reputation [95]. Nowadays, reliability
engineering is a well established discipline that can provide an integration of for-
mal methods to investigate the system requirements, correctness of the system by
addressing the following questions: (1) why a system fails? (2) how to develop a
reliable system? (3) how to measure the reliability of design, process and operation
of a system? and (4) how to maintain system reliability during system operation
through fault diagnosis and prediction [17, 116].

2.2.2 Safety

Safety can be defined as “freedom from those conditions that can cause death, in-
jury, occupational illness, or damage to or loss of equipment or property, or damage
to the environment” [83]. Safety can provide some standards to ensure quality and
functionality of a system. The safety standards eliminate all potential risks that can
cause loss of life, injuries or property damage. Critical systems that meet certifica-
tion standards, are safe to use in practice. It provides confidence to the user to use
for their purpose in daily life.

Safety is like reliability that concentrate on the designing phase of a system.
A system must be designed for safety. System safety is an engineering and manage-
ment discipline that encapsulates human, machine, environment, designing, testing,
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operating and maintaining system to achieve acceptable risk within the timing and
cost constraints in the system life-cycle [56]. Hazard analysis can improve the safety
that defines real or potential conditions that can cause injuries, illness, loss of sys-
tem, property or damage environment.

2.2.3 Safety vs. Reliability

As a conventional approach, it is assumed that a reliable system is safer and vice
versa. However, it is not always true and it can lead to a lot of confusion to analysis
a system failure. Actually, it is often true that the safer system can be less reliable.
For example, an inoperative elevator can provide maximum level of safety. The
inoperative elevator cannot do any functionality like opening or closing the door,
moving up or down, after pressing any button. To use the elevator, in this state is
always safe, but the reliability of the elevator is zero. The inoperative elevator has
not any functionality, it is absolutely unreliable and ineffective to use for moving
up or down to different floors. To improve the safety of a reliable system, system
designer introduces some elements to add the functionalities. Such as, designers can
introduce elements and controls for moving up or down of the elevator. These new
elements can reduce the reliability of the elevator. Such that, a sensor can provide a
proper opening or closing door operation. If the sensor is out-of-order, then the ele-
vator will not move. Here, the sensor behaviour reduces the reliability and increases
the safety of the system.1

Reliability and safety are the main attributes to determine effectiveness of a sys-
tem, where effectiveness is influenced by the life-cycle activities related to the de-
sign, manufacturing, use and disposal of the product [22]. IEC 60513 [50], fun-
damental aspects of safety standards for medical electrical equipment, provides a
safety standard for developing the medical systems that assures the basic safety and
essential performance. IEC 60601 [52] address reliability stating that “reliability of
functioning is regarded as a safety issue (for life-supporting equipment) and where
interruption of an examination or treatment is considered as a hazard for the pa-
tient.”

According to the FDA [33] regulation safety is defined as: “There is a reasonable
assurance that a device is safe when it can be determined, based upon valid scien-
tific evidence, that the probable benefits to health from the use of the device for its
intended use and conditions of use, when accompanied by adequate directions and
warnings against unsafe use, outweigh any probable risks.” Effectiveness is defined
thus: “There is a reasonable assurance that a device is effective when it can be de-
termined, based upon valid scientific evidence, that is a significant portion of the
target population, the use of the device for its intended uses and conditions of use,
when accompanied by adequate directions to use and warnings against unsafe use,
will provide clinically significant results” [94].

1http://www.aldservice.com/en/safety/what-is-safety.html.
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2.3 Software in Safety-Critical Systems

Software is a vital part of any system, especially in embedded systems, where it
is used to control the whole functionality of the systems. The embedded systems
have major role to control the behaviour of the safety critical systems. When we
use these systems, we consider that their risk has been minimised and uses of the
systems are effectively safe. The system is not only safe, but we also expect other at-
tributes like reliable and cost effective. Main safety-critical systems are commercial
aircraft, medical care, train signalling systems, air traffic control, nuclear power, and
weapons, where any kind of failure can quickly lead to human life in danger, loss of
equipment, and so on. The industries are responsible for designing and delivering
the safety-critical systems according to the standards authorities [18, 33, 54, 58],
which satisfy the requirements.

To address the problem of system’s failure related to the software errors for ex-
ample, overdoses from Therac-25 for treating cancer through radiation [74], the
overshooting of the runway at Warsaw airport by an Airbus A320 [79], Intel Pen-
tium floating point divide [91], 5000 adverse events for Insulin Infusion Pump (IIP)
reported by FDA [114, 115] and Ariane 5 flight 501 going off [76]. All these prob-
lems and many more are considered as a part of the “software crisis”. The term
“software crisis” has been introduced in late 1960s to describe the failures of the
systems in which software-development problems cause the entire system [36]. In
1968, a meeting is organised by NATO related to the software crisis. This crisis had
as its root cause the problem of complexity brought about in many cases by sheer
length of programs combined with a poor control over how each line of code af-
fects the overall system. Almost three decades later, this problem still remains as
indicated in [36].

Software crisis is a well-known problem for other engineering disciplines, and
over the years of experience has been accumulated to provide effective solutions:
the technology has been available, and it has been shown to work with a very high
degree of confidence. Software are using frequently in the system development,
which is also classified as an engineering discipline, so it would seem natural that
one can apply the insights and quickly surmount any hurdles. However, it is true that
the engineering insights are applicable to modern the critical-system development
to come over the traditional approaches of the system development.

2.3.1 Software Safety and Reliability

Increasing size and complexity of software in critical systems, the software has a
primary threat for the reliability. Most of the reliability engineering techniques ad-
dress failures in hardware components. Software architecture analysis methods con-
centrate to analyse the quality and behaviour of a system at the early stage of the
system development. Several useful reliability engineering techniques are available
in literature to analyse and design a reliable system. A comprehensive survey of
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these techniques is given in [70, 77]. Software quality has been promoted in the
software architecture analysis domain. The software architecture is an important
process that helps to predict important qualities of a system and to identify the po-
tential risks [29]. To provide an early reliability analysis that covers software com-
ponents, it is advantageous to utilise both results from software architecture analysis
and conventional reliability analysis approaches [101].

According to the IEEE, software safety can be defined as “freedom from software
hazard,” where software hazard is defined as “a software condition that is a prereq-
uisite to an accident,” and an accident is defined as “an unplanned event or series
of events that results in death, injury, illness, environmental damage, or damage
to or loss of equipment or property” [54]. The use of formal methods in software
development process provides safety assurance that the software does not show any
failure cases. There are several techniques that are used to identify the software bugs
at the early stage of the system development. Each phase of the software develop-
ment is verified and validated using several techniques from requirements analysis
to code generation [54, 55].

International regulatory standards provide guidelines for designing, operating
and maintaining the critical systems [48]. To analyse the reliability, the hardware
and software barriers must take into account. However, hardware barriers are more
reliable than the software barriers according to the past history of the system func-
tionality in terms of performance, proof-checking, and regress testing of the hard-
ware components [32]. In a complex system, self-test are not sufficient to identify
potential failures. Therefore, proof-checks are used to perform at regular intervals
to cope with undetected hardware failures.

The hardware systems are subject to ageing and wear. Ageing and wear char-
acteristics of the hardware systems provide a way to calculate the reliability using
MTBF. However, the software systems are not applicable to use statistical technique
like MTBF for reliability calculation, because software systems are not subject to
ageing and wear. Tools and techniques related to the software failures are not similar
to the hardware failures due to different characteristics of both software and hard-
ware systems. The software systems do not follow the physical laws of degradation
or failure as per the hardware systems [116].

The software reliability is an important challenge in the area of safety critical
systems, where software may be used to control the hardware components. The soft-
ware failures can be identified using software-centric approach and system-centric
viewpoint. The software-centric approach looks for failure modes and to evaluate
their probabilities, and the system-centric viewpoint is based on practical obser-
vation related to the specifications and requirements, which encapsulate software
design failures.

The fault injection method is a technique for quantitative analysis of the software
failure that deliberately inject faults in the software and count the number of times
that the software maintains its function in spite of the injected fault [1, 46, 105].
However, this approach is not effective to discover all hidden failures. Hence, an-
other feasible approach to building the reliable software is to use the systematic
software development process. The main objective is to evaluate different fault tol-
erant approaches throughout the software development process [116].
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Fig. 2.1 Safety life-cycle
(adapted from [53])

2.4 The Safety Life-Cycle for Critical Systems

Safety is a most important system property, that should be methodically analysed
along the system life-cycle. A number of standards and recommended practices de-
fine the processes and the objectives of the safety life-cycle, such as IEC 61598 [53],
MODEF [30]. Figure 2.1 depicts a stepwise implementation of the system develop-
ment safety life-cycle. The main objective of this development cycle is to guide
system designers and developers in what they need to do in order to claim that their
systems are acceptably safe for their intended uses. The purpose of the overall safety
life-cycle is to force safety to be addressed independently of functional issues, thus
overcoming the assumption that functional reliability will automatically produce
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safety [53, 92]. This development cycle is accepted by all industry sectors in devel-
oping the advanced safe critical systems. The life-cycle phases are briefly described
as follows:

• The initial concept phase is used to identify the functional requirements of the
system, related environment where the system will be operated, and possible de-
sign approaches for developing the system.

• The second phase is used to set the goal for management and technical activities
to consider the safety implications of the developing system through assessing the
required safety level to ensure that the system achieves and maintains the required
level of functional safety. The goal should be produced at the beginning of system
life-cycle and it must be reviewed at regular interval.

• In Phase 3, hazard identification process is applied to identify the possible
hazards, which might arise during construction, installation, operation, mainte-
nance and disposal of the system. This hazard identification process is applicable
throughout the system life-cycle. The main formal techniques for hazard analysis
are FHA, FTA, FMEA and HAZOP.

• Risk assessment process is used to identify a set of possible risks through
analysing the identified hazards, and check against tolerability criteria. A set of
actions must be taken to reduce the overall risks. The action can be decided under
consideration of possible consequences of hazards to a tolerable level. The risk
assessment process helps to discover possible requirements for the safety integrity
level for the system.

• The safety requirements are separately assessed for different parts of the system
and the whole system is reviewed to ensure that the risk will be reduced to an
acceptable level and system is safe in use. Any critical system is too complex in
functionality. To implement the safety functions, a simple technology should be
used to avoid the overall complexity of the system.

• This phase of the safety life-cycle is related to system implementation, where
safety related parts or components are implemented to satisfy the safety require-
ments.

• Assessment of the specific components or parts of the system must comply with
the safety requirements to ensure that the component of the system meets the
given safety requirements. The assessment process is based on analysis and au-
diting techniques.

• Safety validation phase is used to verify the system against the claimed safety
properties. This process assures that the system have been achieved a set of goals
and system is safe to use in practice. Moreover, during the verification process
arising problems are also resolved.

• This phase of safety life-cycle related to the system operation and maintenance,
which ensures that the system will be safe during the maintenance process. Vari-
ous safety related system problems arise due to a poor maintenance process. Thus
the system must be designed for maintainability. The use of the system in differ-
ent environment should also be analysed to evaluate the system behaviour and
must ensure the safety of the system.
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• Finally, safety considerations that may apply during decommissioning should also
be taken into account. Thus an assessment of the impact of the decommissioning
should be made on both the components and the process of the system. This pro-
cess will use hazard and risk assessment approaches to determine the level of
safety-related work. The safety related work must be satisfied during the decom-
missioning activity of the critical system.

2.5 Traditional Safety Analysis Techniques

Safety provides protection from hazard to human life, the environment or property.
There are not such a magical thing that can guarantee for absolute safety. However,
a system can be enough safe that can accept any risk related to the life, environ-
ment or property. The risk can be measured through probability and the complex
calculations of a system, while a system can be failed due to use of any harmful
substances in the process. However, software is not a harmful substance. Software
can be used to control the system behaviour using a set of processes. Moreover,
the software can contribute to safety, e.g. through control over hazardous physical
processes [72]. Software hazard and safety analysis refer to the process of assess-
ing and to make contribution to design a safety software. According to [81], four
safety-relevant elements of a system development process are defined as follows:

1. Identifying hazards and associated safety requirements.
2. Designing the system to meet its safety requirements.
3. Analysing the system to show that it meets its safety requirements.
4. Demonstrating the safety of the system by producing a safety case.

2.5.1 Hazard Analysis

Software development life-cycle and engineering techniques are used to design and
develop a system to meet all the functional requirements. These techniques place a
little effort to examine failure cases of a system. However, a highly critical system
like aviation, medical or automotive needs to consider all possible failure scenarios
to avoid from any hazard. Different kinds of techniques may be employed for safety
assessment from hazard analysis. When a system has many components, then take
a modular approach for analysing a system using System Hazard Analysis (SHA)
and Subsystem Hazard Analysis (SSHA). The SHA discovers all associated hazards
of a system, while the SSHA discovers how an operation of a particular component
affects on the whole system.

The SHA and SSHA analyses are performed by several techniques, which are
provided by the standard authorities. Traditional safety analysis techniques such
as Hazard and Operability study (HAZOP) [92], Functional Hazard Assessment
(FHA) [109], Fault Tree Analysis (FTA) [73], and Failure Mode Effects Analysis
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Fig. 2.2 FTA—Evaluating back from consequence to cause

(FMEA) [31] are standards to apply for hardware intensive systems that are also
applicable for the software systems. Traditional safety analysis therefore begins by
defining the hazards associated with a system, determines their severity, and then
attempts to identify the factors that can initiate the hazards. These safety analysis
techniques provide a rigorous way to examine the causes and their consequences of
the identified hazards.

Functional Hazard Assessment (FHA)

Hazard are unfavourable conditions that a system should avoid to occur or must be
identified in advance. Once the hazards are known that it becomes possible to trace
backwards from the hazards to the particular events that can cause them. Functional
Hazard Assessment (FHA) is used to identify such type of hazards that can be oc-
curred because of functional failure. The safety analysis techniques concentrate on
defining the required functionality and analysing the consequences of failures. The
FHA is an informal process that is used to document hazards and determine their
severity. The FHA produces a list hazards in tabular form with different degree of
severity [109].

Fault Tree Analysis (FTA)

Where a system is self-contained, having its boundaries well defined, one focuses on
the hazards that are internal to the system, which may be termed faults. Thus, a fault
is always a hazard, but not conversely. At this level, we have another technique to
analyse the systems using Fault Tree Analysis (FTA) [73]. The FTA is a safety anal-
ysis technique that is deductive and top-down method of analysing system design
and performance to identify all the possible failures or errors. It is based on a feed-
back process that can start with a system level hazard and try to discover backward
for identifying all the possible causes of hazards (see Fig. 2.2). The FTA shows a
list of hazards according to the hazard level. Although, the FTA has limited use for
identifying the faults of a system using a visual technique that can trace higher level
events down to their contributing events in form of failures, errors or faults. The
FTA is represented in a tree structure that shows various factors to contribute a high
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Fig. 2.3 FTA tree

level event. The fault trees can also be used in a confirmatory role where they are
particularly useful in showing that a probability requirement for a hazardous fail-
ure mode has been met by the system. Figure 2.3 depicts a basic architecture of the
FTA. In this figure, highest level event (hazard) is traced backward to identify the
source of errors or faults. Events and gates in fault tree analysis are represented by
symbols. The source of errors or faults are known as the base events (errors) [73].

Failure Mode Effects Analysis (FMEA)

Failure modes and effects analysis (FMEA) is a step-by-step approach [31] to iden-
tify the possible hazards in a complex system that facilitates the identification of
potential problems in the design or process by examining the effects of lower level
failures. The FTA safety analysis technique is based on top-down approach, while
the FMEA is used a bottom-up approach. In this bottom-up analysis, the technique
determines possible failures of a system and produces a list of probable failures ac-
cording to the degree of severity. The feed-forward technique of the FMEA is used
to discover possible failures or errors through forward tracing (see Fig. 2.4). FMEA
is useful for evaluating a new process prior to implementation, and for assessing the
impact of proposed changes on the existing processes. The output of FMEA presents
in a tabular form that describes the failure modes, in which something might fail,
and the consequences of those failures.
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Fig. 2.4 FMEA—Evaluating forward from cause to consequences

Fig. 2.5 HAZOP—Evaluating from the fault in both directions for causes and consequences

Hazard and Operability Analysis (HAZOP)

Hazard and operability studies (HAZOP) are more commonly used at the broadest
level for analysing process plants like chemical and nuclear industries [57]. The
HAZOP supports the chemical process industry, takes a representation of a system
and analyses how its operation may lead to an unsafe deviation from the intent of the
system [57] with special attention to the environment of operation. This technique
is very popular in industries because it aims to predict possible failures, and identify
their impact.

HAZOP [92] is a most prominent formal technique for identification of the haz-
ards. This technique examines all the essential components and their interconnec-
tions of a system to explore the possible causes of errors and their consequences.
Particularly, HAZOP is a powerful technique for exploring the interaction between
parts of a system. HAZOP is based on a theory that assumes risk events are caused
by deviations from design or operating intentions. Identification of such deviations
is assessment and generally facilitated by using a set of “guide words” as a system-
atic list that includes process, and deviation perspectives. HAZOP starts to analyse
in both directions, backwards to explore its possible causes, and forwards to exam-
ine its consequences (see Fig. 2.5).

A set of safety analysis techniques like FHA, FTA, FMEA, and HAZOP, is used
to identify a list of base events that can contribute to hazardous conditions. A list of
events gives the general categories of safety properties required to the requirement
model of a system. A more detailed discussion of the system hazard analyses (SHA)
with the software perspective is provided in [57, 72].
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2.5.2 Risk Assessment and Safety Integrity

A risk assessment is simply a careful examination of the past data related to the
hazard’s analysis for the similar systems; from the reliability assessments of com-
ponents of the system being developed; and other sources. The outcome of the risk
assessment presents some kind of gradation and may be expressed in terms of what
constitutes a tolerable and intolerable risk. This outcome results help for regulat-
ing industrial risk, and to determine whether a risk is unacceptable, acceptable or
somewhere in between. Lots of factors are used for determining the risk based on
quantitative and qualitative analyses [8]. Using a risk classification of accidents ac-
cording to the frequency and severity usefully serves as a relatively simple basis for
its determination.

Assessment of a risk can decide a necessary level of safety that can be achieved
from various functions of a system. This is an issue of safety integrity, which is de-
fined as, “Safety integrity is the likelihood of a safety-related system achieving the
required safety functions under all the stated conditions within a stated period of
time” [108]. The system activities are contributing to the integrity may be charac-
terised by two kinds of requirements:

1. Generation of the new safety requirements of a system is resulting from the de-
sign and development.

2. Ensuring that what is being built meets the requirements that have already been
specified.

Here, the first requirement is related to the requirement analysis and hazard anal-
yses of a system. The second requirement is related to the reliability engineering
techniques, whose consideration may have to be sustained throughout the develop-
ment as the design evolves with modification to interfaces, rearrangement of compo-
nents or other kinds of changes. To apply the several techniques like FHA, HAZOP,
FMEA and FTA for the fault prediction, fault removal, fault avoidance and fault tol-
erance, and to achieve the system integrity require together with methods and design
of the system, are the main resources for measuring the system reliability [103].

A safety of a system may be simply characterised by a process of reducing risks
to appropriate effect. The main objective of a qualitative or quantitative risk assess-
ment is to establish the level of tolerability for any identified risk. If a risk falls in
between the states of ‘intolerable’ and ‘acceptable’ then any risk must be reduced to
‘as low as reasonably practicable’. This is known as the ALARP principle as illus-
trated in Fig. 2.6. The width of the triangle is proportionate to the level of risk and
thus also to the amount of resources that can be justified to reduce it. A comprehen-
sive survey of risks and safety integrity is provided in [8].

2.5.3 Safety Integrity and Assurance

Finally, there is always a question in the development of critical system, “What is
the assurance level according to the certain level of integrity of the system?”. In
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Fig. 2.6 ALARP model of risk level

order to safety assurance of the developed system may be certified as safe, there
must be a set of documents, which provides detail justification of the safety. This
document contains a list of all hazard’s cases with log details and various arguments
for indicating that how the system has reached at the required safety levels. The
safety case brings in all the aforementioned risk analyses, risk reductions and other
integrity and reliability measures, often presenting various statistical evidence. It is
a considerable huge amount of a task involves lots of documentation. A software
SAM (Safety Arguments Manager) is recognised to support this process and allows
to manage all the developing safety cases [82].

2.6 Traditional System Engineering Approach

A critical system uses a standard life-cycle to achieve a certificate from the standard
authorities [18, 33, 54, 58]. A system can be considered safe if all the hazards have
been eliminated, or the risk associated hazards have been reduced to an acceptable
level. Software is a part of a system, which is used within the system to operate the
system safely. The integrated software within a system does not show any kind of
misbehaviour. However, if the same software is used by multiple systems then the
software must have similar behaviour in each system. However, sometimes it is not
true. It is believed that each system is different, with different requirements, different
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risk level with different hazard’s characteristics, it is impossible to know if software
is safe without considering the behaviour of the software as a part of the system
which it is controlling. Therefore, when considering the process for developing a
safe software, it is crucial that the whole system of which the software is a part is
considered, as well as the software itself [12].

2.6.1 The Software Safety Life-Cycle

In the past several years, different types of software development life-cycle have
been identified. All of them have their own merits and limitations according to the
problem complexity, size and type of the system. This book will not enter into a
discussion about different life-cycle process models. A detailed description about
each life-cycle process model is available in [4, 80, 90, 99]. Here, we only discuss
about life-cycle process model related to the safety critical software system.

In recognition of the distinctive nature of safety-related systems, there is a stan-
dard development process known as V-model, which is widely accepted by large
companies and defence. It is an extension of the standard Waterfall model [4, 8, 98,
108]. The V-model represents a software-development process, where the process
steps are bent upwards after the coding phase to form the typical V shape. The V-
model presents the relationships between each phase of the development life-cycle
and its associated phase of testing. V-model is also called verification and validation
model (V & V). This process uses a very intensive testing for removing bugs or
errors, which may appear during any stage of the system development.

The typical process of developing a safety-critical software system is generally
time-consuming. Most of the development processes are based on the V-model,
which is illustrated diagrammatically in Fig. 2.7. This model identifies the major
elements of the development process and indicates the structured, and typically se-
quential, nature of the development process. The sequential nature of development
is generally considered essential for reasons of managing communication and scale,
for scheduling different phases and disciplines, for managing traceability (which is
mandated by relevant safety standards) and for the certification purposes.

In order to produce a safety-related software according to this framework, various
techniques are recommended. These include the application of structured analysis
techniques to generate a visible modular construction (the principles of modularity
are expounded in [89]), and diversity in design, implementation and maintenance to
avoid faults due to common mode failures. Many such techniques are very widely
applicable, and although they are usefully brought into the safety-critical context,
there is not so much literature devoted solely to their use in this specific area. Never-
theless, material is available: for instance, there have been reviews such as [28, 103]
to help designers and managers as to the suitability of mainstream programming
languages for the safety-critical systems.

Safety requires a lot of integrity, and this is recognised in the safety life-cycle
model which separates the specification of safety requirements into purely func-
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Fig. 2.7 The V model of safety-critical system development

tional requirements and safety-integrity requirements. The safety integrity require-
ments are calculated individually for each of the functions previously identified.
Having done this, one may concentrate on providing the high levels of assurance
on the safety-critical aspects. We intend using the safety life-cycle model as a basis,
with a view to ascertaining its suitability to support the production of formal mod-
els with high integrity. Our contention is that we treat carefully the non-functional
requirements and to put forward a selection of viewpoints and methods highlighting
further the safety concepts, which are often subtle, then the life-cycle model can
be effective [103]. A safe system can be characterised as one in which risks from
hazards have been minimised throughout a system life. The process of providing
hazard analyses and risk assessments are thus crucial activities to ensure the safety
of a system.

In Fig. 2.7, Preliminary System Safety Analysis (PSSA) and System Safety Anal-
ysis (SSA) are the collection of various techniques like FTA, HAZOP, FMEA, etc.
The aim of all these techniques is to identify failures and derive the safety require-
ments, which prevent from the occurrence of the hazard. FTA focuses on the dif-
ferent components of a system, while HAZOP focus on the flow between compo-
nents. There are also a number of other techniques, which are used in the PSSA for
analysing failures, an overview can be found in [87].

2.7 Standard Design Methodologies

A design is a meaningful engineering representation of a higher-level interpretation
of a system, which is actually a part of an implementation in a source code. Design
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process is traceable using reverse engineering technique to the actual stakeholders
requirements. The quality of a system can be assessed through predefined criteria
for a good design. Analysis and design methods for software have been evolving
over the years, each with its approach for modelling needs a world-view into soft-
ware [86]. The following methodologies are common, which are used in current
practices.

• Structured Analysis and Structured Design (SA/SD)
• Object Oriented Analysis and Object Oriented Design (OOA/OOD)
• Formal Methods (FM) and Model-based Development

SA/SD techniques provide means to create and evaluate a good design of the
systems. This technique covers functional decomposition, data flow and informa-
tion modelling. OOA/OOD considers the whole system into abstract entities called
objects, which can contain information (data) and have associated behaviour. It is
in practice from last 30 years, which is used in several big projects. It contains
Object-Oriented Analysis and Design (OOA/OOD) method, Object modelling Tech-
nique (OMT) Object-Oriented Analysis and Design with Applications (OOADA),
Object-Oriented Software Engineering (OOSE) and UML. Formal Methods (FM)
and Model-based development are a set of techniques and tools based on mathe-
matical modelling and formal logic that are used to specify and verify requirements
and designs for the systems and software [86]. Formal method is also a process that
allows the logical properties of a computer system to be predicted from a mathe-
matical model of a system by means of a logical calculation. Formal methods can
be used for formal specification, formal verification and software models (with au-
tomatic code generation) [86].

2.7.1 Design for Reliability

Reliability is an attribute of a system that is derived from research, concept and
design through analysing the capacity and performance under the working environ-
ment. The reliability level can be established during design phase of the system
development. However, a subsequent testing and production cannot improve the re-
liability without any modification in the basic design. Design reliability techniques
integrating with the development process for assuring the safety of a system. Reli-
ability becomes a difficult design parameter due to the increasing complexity and
limited knowledge of the system requirements. If reliability is an important attribute
of a system then it is quantified during specification of the design requirements.

Reliability is essential for a healthcare and medical devices, which need to be
safe and effective. Medical device manufacturers and regulating bodies like the
Food and Drug Administration (FDA) [33] and Center for Devices and Radiological
Health (CDRH) [22] have a responsibility for assuring the safety and effectiveness
of medical devices. The CDRH has standards to analyse system specification, de-
sign requirements, and usability of a system. The CDRH [22] requires a complete
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and accurate requirements of any medical system for designing and manufacturing
a safe system. The CDRH allows premarket review to identify relevant informa-
tion for processing, manufacturing, assembly handling, maintenance and disposal
of the system. Moreover, the CDRH also seeks to determine if the manufacturer
has captured the important aspects of the development life-cycle for producing a
product [59, 66]. However, the CDRH is also concerned with potential users like
patient or clinician, who will use the device. FDA requires product performance to
be verified [59, 60, 66] and validated [59, 66]. The FDA supports the performance
and safety assessment of a system through providing the evidence that the system
is adequate to use in practice. The FDA regulatory oversight of the manufacturing
process through the Quality System Regulation [59, 66].

Increasing complexity and safety recalls in the medical systems advocate a new
approach for a good design for reliability (DFR) in the medical industries [42].
DFR describes the tools and techniques that can support product and process design
to ensure the system reliability. The DFR is a process that spans the entire product
development cycle from concept to release of a product. The DFR [42] indicates the
following paradigms that are essential to design a complex medical system:

1. Spend significant effort on requirement analysis
2. Critical failure is not an option for medical devices
3. Measure reliability in terms of total Life-cycle cost
4. Don’t just design for reliability, design for durability
5. Design for prognostics to minimise surprise failures

2.8 Safety Standards

It is perhaps best to start by considering the various standards that exist for indus-
tries, which develop the safety critical systems. Standards are documented agree-
ments containing technical specifications, which produce precise criteria, consistent
rules, procedures to ensure reliability, software processes, methods, products, ser-
vices and use of products, are fit for their purpose in this world. Standards include a
set of issues corresponding to the product functionality and compatibility, facilitate
interoperability including designing, developing, enhancing, and maintaining. A set
of protocols and guidelines, which are produced by the standards, are consistent and
universally acceptable for the product development. The standards allow to under-
stand the quality of different products for competing with them, and provide a way
to verify the credibility of a new product [22, 54, 58].

Verification and validation (V & V) are part of the certification process for any
critical system. There are several reasons, why certification is required for any crit-
ical system. For example, medical device like a cardiac pacemaker must obtain a
certificate before to use in practices. Certification of the product not only assures
about the safety, but also helps to a customer to gain confidence to buy and to use
the product, which is also important for commercial reasons like having a sales
advantage to industry. Certifications are usually carried out by some national and
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international authorities. Certification can be applicable to an organisation, tools or
methods, or systems or products. The main objective of the certification bodies is to
provide assurance that an organisation can achieve a certain level of proficiency, and
that they agree to the certain standards or criteria. In the case of product certification,
there are always issues for the certification, whether a methodology or development
process is certified or not.

There are many international standards bodies. More than 300 software stan-
dards and 50 organisations are developing software standards [34]. Standards come
in many different flavours, for example, de-facto standards, local, national and inter-
national standards. Some of the standards are more specific related to the defence,
financial, medical, nuclear, transportation, etc. (see the Appendix).

There are number of standards addressing safety and security of a system related
to the software development. For example, avionics RTCA-Do-178B [96] or the
IEC 61508 [35, 53] as the fundamental standard for the functional safety of E/E/EP
systems [35, 53]. The IEC 62304 [51] standard is for the software life-cycles of
medical device development that addresses to achieve more specific goals through
standard process activity, and helps to design the safe systems. All the necessary
requirements for each life-cycle process are provided by the IEC 62304. The process
standard IEC 62304 [51] is a collection of two other standards ISO 14791 and ISO
13485, where the ISO 14791 standard is for quality, and the ISO 13485 is for risk
management.

Institute of Electrical and Electronics Engineers (IEEE) standards [54] provides
a safety assurance level for industries, including: power and energy, biomedical and
health care, information technology, transportation, nanotechnology, telecommuni-
cation, information assurance, and many more. The IEEE standard is approved by
authority and considers the users recommendations before apply into the develop-
ment process. All these standards are reviewed at least every five years to qualify
the new amendments in the systems.

Food and Drug Administration (FDA) [68] is established by US Department of
Health and Human Services (HHS) in 1930 for regulating the various kinds of prod-
uct like food, cosmetics, medical devices, etc. The FDA is now using standards in
the regulatory review process to provide a safety to the public before using any prod-
uct. The FDA provides some guidelines on the recognition to use of and consensus
standards. The FDA is interested in the standards because they can help to serve as
a common yardstick to assist with mutual recognition, based on the signed Mutual
Recognition Agreement between the European Union and United States. The FDA
standard classifies the medical devices based on risk and the use of medical devices.
The FDA provides some standard guidelines for the medical devices, and the med-
ical devices require to meet these standards. Time to time lots of amendments have
been done in the FDA standards [33, 68] according to the use of medical devices to
provide a safety.

Common Criteria (CC) [18] is an international standard that allows an evaluation
of security for the IT products and technology. The CC is an international stan-
dard (ISO/IEC 15408) [58] for computer security certification. CC is a collection
of existing criteria: European (Information Technology Security Evaluation Criteria
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(ITSEC)), US (Trusted Computer Security Evaluation Criteria (TCSEC)) and Cana-
dian (Canadian Trusted Computer Product Evaluation Criteria (CTCPEC)) [19–21].
The CC enables an objective evaluation to validate that a particular product or sys-
tem satisfies a defined set of security requirements. The CC provides a framework
for the computer users, vendors and testing organisations for fulfil their require-
ments and assures that the process of specification, implementation and testing of a
product has been conducted in a rigorous and standard manner.

There are several ways to tackle the complexity issues of software, which major
the software at industrial scales and usability of the software. The Software Engi-
neering Institute, funded by the military, has produced a Capability Maturity Model
(CMM) [90] by which may be assessed the quality of management in a software en-
gineering team. The CMM broadly refers to a process improvement approach that
is based on a process model. A process model is a structured collection of prac-
tices that describe the characteristics of effective processes; the practices included
are those proven by experience to be effective. The CMM can be used to assess
an organisation against a scale of five process maturity levels. Each level ranks the
organisation according to its standardisation of processes in the subject area being
assessed.

2.9 Regulations for Medical Devices

All kinds of medical products have to comply with national or international reg-
ulatory bodies that can provide safety assurance to use the medical products. The
pathway from product design to the final product is often unclear and number of
challenges and questions increase as medical device become more complex. The
regulating bodies cover the essential requirements to regulate the standards of safety
and performance of the medical devices. Medical device manufacturers agree to fol-
low medical device development standards to provide the life-saving technologies
to patient without compromising in safety with low cost.

The past decades shows several recalls related to the safety issues in the medical
devices [63]. Everyday lots of defects are reported by consumers that are a seri-
ous consequence due to medical device failures. Faults in medical devices, such as
pacemakers, defibrillators, artificial hip, and stents, have caused severe patient in-
juries and deaths. In 2006, FDA reported 116,086 device related injuries, 96,485
malfunctions, and 2,830 deaths; a more recent independent analysis claims there
were 4,556 device-related deaths in 2009 [45, 63]. These recalls have raised many
questions related to the device development process, designing and testing tools,
and resources are adequate to ensure that the developed device are safe and secure
to use in practice. However, the adoption of medical regulations has increased the
rates of infant mortality, life expectancy, and premature and preventable deaths all
over the world.
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2.9.1 Device Classification

The Food and Drug Administration (FDA) has classified all the medical devices
into three classes based-on the safety and effectiveness level [93]. The safety and
effectiveness levels are categorised in the low, medium and high risks, respectively.
Device classification determines different types of regulatory requirements that must
be followed by the medical device manufacturers.

Class I

Class I devices are sufficient to provide reasonable assurance of the safety and ef-
fectiveness of the device with minimal potential for harm. The devices of this class
are simpler than the Class II and Class III. These devices are subject to only general
controls. Manufacturer registration with the FDA, good manufacturing techniques,
branding and marking of the products are the main issues that are covered under
the general controls [93]. These general controls are sufficient to provide safety and
effectiveness of the devices. Class I devices are exempt from the premarket notifi-
cation and the FDA determines low risk of illness or injuries to patient [93]. Class I
devices include tongue depressors, bedpans, elastic bandages, examination gloves,
and hand held surgical instruments and other similar types of common equipment.

Class II

Class II devices more complex than Class I devices, and the general controls of
the Class II are insufficient to assure safety and effectiveness. To provide such as-
surances, additional methods are required [93]. Class II devices are also subject to
special control in addition to the general controls of Class I. Special controls may in-
clude standard performance, labelling requirements and premarket review to reduce
or mitigate risk. Class II assures that the used devices will not because of injuries
or harm to patients. X-ray machines, powered wheelchairs, infusion pump, surgi-
cal drapes, surgical needles, suture material and acupuncture needles are the main
devices of this class.

Class III

Class III devices have insufficient information to assure safety and effectiveness
solely through the general and special controls that are sufficient for Class I and
Class II devices [93]. In addition of the general controls of Class I, premarket ap-
proval and a scientific review are needed to ensure the safety and effectiveness of
the Class III devices. Class III devices are described as those for which “insufficient
information exists to determine that general controls are sufficient to provide reason-
able assurance of its safety and effectiveness or that application of special controls
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that can provide such assurance and if, in addition, the device is life-supporting or
life-sustaining, or for the use of substantial importance for preventing impairment
of human health, or if the device presents a potential unreasonable risk of illness or
injury” [93]. Class III includes devices which are life-supporting or life-sustaining,
and devices which present a high or potentially unreasonable risk of illness or in-
jury to a patient. Class III includes complex devices like heart valve, breast implants,
implanted cerebral stimulator and cardiac pacemaker.

2.9.2 Regulation Issues

Development in the area of medical devices is rapidly changing. Over the last 25
years, medical devices have evolved from analog to digital systems. In the current
development, microprocessor, software, smart sensor and actuator are the main com-
ponents of medical systems. Most of the medical devices are based-on embedded
real-time system. The functionality of these complex systems is mainly based on
software to provide robustness, safety and effectiveness. An embedded system may
be used for special-purpose computer system to perform any particular task due
to resource limitation. The life of medical devices has decreased due to more rapid
innovation in enabling technology and demand for the more robust systems. Increas-
ing complexity of the medical systems has raised many recalls. Regulating bodies
are used to control the quality of medical devices and to provide safety in use. The
current development techniques and existing tools are not sufficient to provide as-
surance to use any medical device. Due to failure cases and constraints in exiting
approach, the regulating bodies have offered several research challenges in the area
of medical device development. The following challenges provide a framework for
thinking about the main issues of current medical regulations [22, 33, 110]:

• A new platform and implementation technologies is required to support science-
and engineering-based design, development, and certification to analysis the qual-
ity of advanced medical devices and new emerging technologies.

• Software based on medical devices must be validated according to the state of the
art taking into account the principles of development life-cycle, risk management,
validation and verification.

• Simulation based closed-loop modelling is required to evaluate the medical de-
vices.

• Use quantitative analysis to evaluate a risk and to identify the safety issues of
medical devices.

• Preventing from a malicious malfunction of software of the medical devices, and
handling the emerging issues for information security and privacy.

• To provide a protection against emerging infectious diseases and terrorism.
• To use a formal methods-based design techniques to develop the medical devices.
• Developing a new approach to use clinical data in evaluating medical devices.
• Development of the robust, safe and sustainable medical devices with low manu-

facturing cost with increasing quality and performances.
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2.10 Industrial Application of Formal Methods

This section surveys previous works related to the critical system development.
A common theme in much of this work is to use formal methods. Formal methods
provide numerous tools and techniques for solving the different kinds of problems.
Mainly formal methods are applicable for verification and validation of a system.
Formal methods are used to verifying the specification of a system. Although the
safety-critical systems have got the confidence in the development due to use of for-
mal methods, such techniques are applicable in a wide variety of application areas
in industry. Formal methods have been used to improve the quality of the system as
well as verifying the correctness of a system at an early stage of the system develop-
ment. A set of examples that pioneered the application of formal methods, to more
recent examples that illustrate the current state of the art. Here, we have given a
list of industrial applications, where formal methods have been used in the projects.
A detail survey of all these projects is presented in [13, 14, 23, 97].

2.10.1 IBM’s Customer Information Control System

A successful application of formal methods was the verification of the Customer In-
formation Control System (CICS) in 1980, which was collaborated between Oxford
University and IBM Hursley Laboratories [49]. The overall system contains more
than 750,000 lines of code. Some part of the code was produced from Z specifica-
tions, or partially specified in Z, and the resulting specifications were verified using a
rigorous approach. Some tools, related to the type checking and parsing were devel-
oped during the project, which were used to assist the specifier and code inspector.
More than 2000 pages of formal specifications were developed for verifying the sys-
tem. Measurements taken by IBM throughout the development process indicated an
overall improvement in the quality of the product, a reduction in the number of errors
discovered, and earlier detection of errors found in the process [23]. Furthermore, it
was estimated that the use of formal methods reduced 9 % of the development cost
for the new release of the software.

2.10.2 The Central Control Function Display Information System
(CDIS)

The Center Control Function Display (CDIS) System was delivered from Praxis to
the UK Civil Aviation Authority in 1992 for London’s airspace as a new air traffic
management system [39]. The CDIS system consists of fault tolerant architecture of
a distributed network, where more than 100 computers are linked together. Formal
methods were used at various levels of the system development. The requirements
analysis phase was represented by formal descriptions using structured notations.
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The VDM [10] tool was used for specifying the whole system, which specified con-
current system behaviours. At the product design level, the VDM code was refined
into more concrete specifications, and a lower level code was formally specified and
developed using CCS [85]. The productivity of the system was better than the tra-
ditional system development and the quality of the system was improved through
finding some faults.

2.10.3 The Paris Métro Signalling System (SACEM)

The SACEM system [44] was developed by several industrial partners GEC Al-
sthom, MATRA Transport and CSEE (Compagnie des Signaux et d’Entreprises
Électriques) in 1989. The system was responsible for controlling the RER commuter
train system Paris. The existing system was made of embedded software and hard-
ware, where software had 21000 lines of code. Some parts of the SACEM software
were formally specified in the B modelling language [2] for the proving purpose.
The SACEM project is an example of “reverse engineering” process, where formal
specification and verification were conducted after developing the code. Finally, the
system was certified by the French railway authority.

ClearSy has developed the screen door controllers for Paris metro line using B
formal methods [71]. The models are developed using correct by construction ap-
proach and to prove the absence of failure in the system behaviour. A constructive
process was used during system specification and design leads to a high-quality
system.

2.10.4 The Traffic Collision Avoidance System (TCAS)

Formal specification of the Traffic Collision Avoidance System (TCAS) [15] is
another interesting example of the application of formal methods in the air-traffic
transport domain. The TCAS system is used by all commercial aircraft for reducing
the chance of a mid-air collision. In early 1990s, a safety critical system research
group at the University of California, produced a formal requirements specifica-
tion for the TCAS due to occurring some flaws in the original TCAS specification.
The formal specification was developed into Requirements State Machine Language
(RSML) [75], which is based on a variant of Statecharts [40]. The original specifi-
cation was not supported by existing formal methods tools, but nevertheless, it was
very useful for the project reviewers, in the sense of improving the original specifi-
cation. Heimdahl et al. [43] successfully checked the consistency and completeness
of the TCAS specification and provably-correct code generated from the RSML
specification.
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2.10.5 The Rockwell AAMP5 Microprocessor

The microcode of AAMP5 microprocessor was formally specified and verified,
which was produced by Rockwell [84]. This project was undertaken by Collins
Commercial Avionics (CCA) and SRI. The AAMP5 microprocessor has a complex
architecture, designed for Ada language and implements floating-point arithmetic in
the microcode. PVS theorem prover [26] was used for specifying and verifying the
microcode of the AAMP5 instructions.

2.10.6 The VIPER Microprocessor

VIPER microprocessor was developed with a simple architecture, specifically for
the safety critical applications [27]. Formal methods were used throughout the de-
velopment cycle of VIPER, at the different level using different techniques. This
work was conducted by the Royal Signals and Radar Establishment (RSRE). Some
parts of the system were specified by the HOL theorem prover and LCF-LSM lan-
guage [37]. Mainly top level specification and abstract level view for register trans-
fer level were carried out in the HOL. There was not any significant result through
this formal verification except finding some minor flaws in the system, which had
no concerns for the fabricators of the chip.

2.10.7 INMOS Transputer

In 1985, a microprocessor manufacturing company INMOS starts to use the formal
program specification, transformation and proof techniques for designing a micro-
processor. Formal methods based techniques were used for designing or developing
the components of the INMOS Transputer. Different types of formal techniques
like, Z, Occam and CSP were the main tools for specifying system requirements.
For example, the Z specification language was used to specify the IEEE Floating
Point Standard, and the combined approach of Z and Occam was used to design the
scheduler, for the microprocessor. Later, the CSP with other formal techniques were
used in design and verification of new features on the third generation Transputer
(T9000), Virtual Channel Processor (VCP). The VCP is a device that allows several
logical connections between two processors that was implemented by a single phys-
ical connection. This successful application of formal methods offers to apply into
a hardware engineering environment [25].

2.10.8 The Mondex Electronic Purse

In this section, we have mentioned the Mondex Electronic Purse as a significant ex-
ample of the use of formal methods in an industrial-scale application. The Mondex
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Electronic Purse [16, 100, 112] is an electronic system for e-commerce, based on
smart card, produced by NatWest Development Team. Electronic purse must ensure
the security of each transaction. Formal methods were used by a several group of
researchers for verifying the protocol of money transfer over an insecure and lossy
medium. The whole formal specification of the Mondex system was developed and
proved from an abstract model to concrete model using refinement approach. The
abstract model was focused specially on the safety properties of the system.

2.10.9 Darlington: Trip Computer Software

This case study describes the computerised shutdown system of Darlington Nuclear
Generating Station (DNGS). The shutdown application contains two independent
systems, Shutdown System One (SDS1) and Shutdown System Two (SDS2). The
SDS1 is operated by dropping neutron-absorbing rods into the core; the SDS2 is
operated by liquid poison injection into the moderator [25, 107]. The Trip comput-
ers are connected with plant sensor to shutdown the system, whenever shutdown is
required. This Trip computers are used alone to concern the safety issues. The shut-
down systems were required a high level of confidence to obtain the certification
standard. The regulatory bodies were not sure to check the validity of the software.
Thus, the formal techniques were used to identify the discrepancies in the shutdown
systems. The verification process was conducted on the complete system. The entire
process is reported in [5]. The final system was redesigned or modified according to
the regulators and concludes that the new develop system is safe for use.

2.10.10 The BOS Control System

The BOS Software is an automatic system, which is used to protect the harbour
of Rotterdam from flooding, while concurrently also controls the ship traffic [104].
BOS controls a movable barrier, taking decisions of when and how the barrier has to
move, based on chaotic behaviour of water level, tidal info, and weather precondi-
tions. BOS is a highly critical system, which is characterised by IEC 61508 [53]. The
design and implementation of the BOS were undertaken by CMG Den Haag B.V., in
collaboration with a formal methods team at University of Twente. Different kinds
of methodologies were applied during development of the system. Mainly formal
methods were used to specify the crucial part of the system for validating the system
specification. The control part of the system was formally specified in PROMELA
and the data part into Z specification language. The formal validation of the design
focused on the communication protocol between BOS and an environment. The fi-
nal implementation of the system was done in C++ which was generated from Z
specification. At the initial level of the system development, formal methods helped
to uncover several issues in the existing system. Overall use of the formal methods
improves the quality of the system.
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2.10.11 NIST Token-Based Access Control System (TBACS)

Token-Based Access Control System (TBACS) is a smart card access control sys-
tem that is based on cryptographic technique. This system was developed by US
National Institute for Standard and Technology (NIST) [25], where they used for-
mal techniques in order to verify all the essential safety properties. A set of permit-
ted and prohibited actions were the main safety properties that were mainly focused
on information access and transmission. These safety properties were formally ex-
pressed in mathematical logic using a set of invariants. In this development process,
a theorem prover tool FDM was used for verification purpose. The FDM tool was
very useful to identify a significant flaw related to the smart token that was eas-
ily removed without any excessive cost of the system development. The TBACS
experiment provides a proper guidelines to satisfy related standards.

2.10.12 The Intel® Core™ i7 Processor Execution Cluster

Intel Core i7 processor [65] is used to verify using formal methods. The Intel Core i7
processor is a multi-core processor, where formal methods were used for pre-silicon
validation of the execution cluster EXE, a component that is responsible for carry-
ing out data computations for all microinstructions. The EXE cluster implements
more than 2,700 microinstructions and supports multi-threading. The formal meth-
ods were used here to verify the data-path, control logic, and the state of the com-
ponents. Formal methods based on symbolic simulation, and inductive invariants
were used in the validation process of the processor. The significant contribution
was of this project that the formal verification completely replaced traditional cov-
erage driven testing and proved that the formal verification was a viable alternative
approach for traditional testing techniques in terms of time and costs with respect to
quality of the system.

Here, we have presented a list of projects related the critical system development
using formal methods. All these projects have used different kinds of formal tech-
niques for discovering the bugs at the early stage of the system development and
have shown that formal methods could be a significant approach for verifying the
systems. Formal method techniques are very expensive and hard to apply in the sys-
tem development process due to complexity of mathematics and the limitations of
existing tools [26, 64, 88]. Main limitations are, each tool based on formal method
can be used for only specific purpose, and a formal model developer requires good
experience to use formal methods and knowledge of related mathematics. To know
the significant use of formal methods [13, 14, 23, 97] as well as handling its com-
plexity, in this book, we propose a new development life-cycle methodology, where
each step is based on formal techniques. In this context, we develop a chain of
techniques and tools for supporting the system development life-cycle using formal
techniques from requirement analysis to code generation.



36 2 Background

2.11 Formal Methods for Safety-Critical Systems

This section presents the use of formal methods in the critical device system soft-
ware development through providing some informal definitions of the main con-
cepts.

2.11.1 Why Formal Methods?

Providing a high integrity system with the embedded software requires a careful ar-
gument for its justification. Demonstrating the requirements through sufficient sta-
tistical evidence based on testing, and other general reliability measures has been
shown to be doubtful. Thus, some other kinds of arguments have to be written,
which must be precise—in language that is well-defined, whose meaning is clear,
and with the ability to prove statements without doubt. Since natural language is
unable to fulfil such demands, the only possible solution is to use a mathematical
approach—formal methods [103].

A formal approach is an ideal for verification, the activity guaranteeing correct-
ness, that we are building the system right and particularly, that successive refine-
ments of a specification are consistent with each other. More than that, the discipline
which they encourage often leads to a more careful analysis of the most basic as-
sumptions and definitions in the design, a benefit which is often understated [103].
In particular, they may point to ambiguities in the requirements’ definition. Formal
methods are thus effective for validation—making sure that we are building the right
system [13, 47, 102].

The main objective of formal methods is to help developers to build the reliable
systems. Formal methods is a cutting-edge technology for developing the critical
systems, where high safety and security are required. Mathematics is a basic foun-
dation for formal logic that provides some ways to discover potential errors at the
early stage of the development. Figure 2.8 presents modified V-model after intro-
ducing formal methods in a development process. This figure shows that module
testing and integration testing are not required due to formally verified system at
the specification and design level. Formal methods help to reduce the burden of ex-
haustive testing, which are used by the traditional development. Formal techniques
verify the whole system at the early stage of the system development during speci-
fication and design, and to prove the correctness of the system. We cannot say that
formal method is a silver bullet, but it is more reliable than the other traditional de-
velopment approaches. Now formal methods’ techniques are feasible to apply for
any larger and complex problems.

2.11.2 Motivation for Their Use

The use of formal methods is very limited in current industrial practice. It is mainly
used for verification and validation of any specific part of the system. Specifically,
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Fig. 2.8 The V-model of safety-critical system development using formal methods

it addresses that the formal methods are not well integrated into established critical
system development processes. There are a number of reasons for this. First, the
application of formal methods requires high abstraction and mathematical skills to
write specifications and conduct proofs, and to read and understand formal specifi-
cations and proofs, especially when they are very complex. Second, existing formal
methods do not offer usable and effective methods to use in the well-established
industrial software process. There are lots of effective tools are available, which are
crucial for formal methods application, but existing tools are not able to support a
complete formal software-development process, although tools supporting the use
of formal methods in limited areas are available in [26, 64, 88]. To make formal
methods more practical and acceptable in industry, some substantial changes must
be made.

This book proposes a development life-cycle and a set of associated techniques
and tools to develop the highly critical systems using formal techniques from re-
quirements analysis to automatic source code generation. In this context, we have
developed a set of techniques and tools related to the Event-B modelling lan-
guage [3]. Event-B modelling language is only used for verifying the part of a
system. There is not a set of supporting tools, which can be used for the formal
software development. The proposed techniques and tools have filled all missing
tools and provide a rigorous framework for the system development process. The
proposed approach is evaluated through a “Grand Challenge” case study, relative to
the development of the cardiac pacemaker. This case study is related to the medical
domain. Our main objective is to use this case study to show the effectiveness of our
proposed approach and give the evidence that developed techniques and tools are
applicable for any critical systems.

In this book, we have provided some possible solutions for the emerging prob-
lems in the area of software engineering related to the development of the critical
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systems. We have captured some missing things in the existing tools related to the
formal methods that are essentially required for developing any highly critical sys-
tem. We have proposed a set of new techniques and tools to model the critical sys-
tems, which cover some set of weakness in the existing approach. No one method or
tool can serve all purposes. From the experience, we have learnt what kinds of tech-
niques can have the most impact. To be attractive to the practitioners, methods and
tools should satisfy the following criteria, where we realise that some of these crite-
ria are ideals, but it is still good to strive for them and some of the basic criteria [23]
are required in the development of methods and tools:

1. Methods and tools should provide significant benefits for developing a system,
when starting to use them.

2. Helps for writing clear, consistent and unambiguous specifications.
3. It should be possible to amortise the cost of a method or tool over many uses.

For example, it should be possible to derive benefits from a single specification
at several points in a programme life-cycle: in design analysis, code optimisa-
tion, test case generation, and regression testing. Moreover existing developed
specification can be reused for other development processes.

4. Methods and tools should work in conjunction with each other and with com-
mon programming languages and techniques. Developers should not have to
“buy into” a new methodology completely to begin receiving benefits. The use
of tools for formal methods should be integrated with that of tools for traditional
software development, for example, compilers and simulators.

5. Notations and tools should provide a starting point for writing formal specifi-
cations for developers who would not otherwise write them. The knowledge of
formal specifications needed to start realising benefits should be minimal.

6. Methods and tools should support evolutionary system development by allowing
partial specification and analysis of selected aspects of a system.

A new method or tool should have precise strengths and weakness, limitations,
modelling assumptions and to support for ease integration with other technique’s,
etc. Clear selection criteria helps the potential users to decide what method or tool
is most appropriate for the particular problem. Given that no formal methods tech-
nique is likely to be suitable for describing and analysing every aspect of a complex
system, a practical approach is to use different methods in combination. Based on
the results of the survey performed in this chapter it is possible to identify the con-
tribution that this book makes. We have given our motivation for developing new
techniques and tools as follows:

• Development life-cycle methodology: This is the heart of the book, which presents
a methodology for the critical system development from requirement analysis to
automatic code generation with standard safety assessment approach. It is an ex-
tension of the waterfall model [8, 108] with some rigorous approaches to produce
a reliable critical system. This methodology combines the refinement approach
with a verification tool, model checker tool, real-time animator and finally gener-
ates the source code using automatic code generation tools. This kind of approach
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is very useful to develop the whole system using formal techniques and to verify
the complex properties of a system and to discover the potential problems.

• Environment modelling: The most challenging problem is an environment mod-
elling, for instance, to validate and verify the correct behaviour of a system model,
requires an interactive formal model (an environment formal model). For exam-
ple, a cardiac pacemaker or cardioverter-defibrillators (ICDs) formal models re-
quire a heart model to verify the correctness of the developed system. No any
tools and techniques are available to provide an environment modelling to verify
the developed system model. The main objective is to use formal approach for
modelling the medical device and biological environment to verify the correct-
ness of the medical systems.

To model a biological environment (the heart) for a cardiac pacemaker or
cardioverter-defibrillators (ICDs), we propose a method for modelling a math-
ematical heart model based on logico-mathematical theory. The heart model is
based on electrocardiography analysis [7, 41, 69], which models the heart sys-
tem at cellular level [106]. The main key feature of this heart model is the
representation of all the possible morphological states of the electrocardiogram
(ECG) [6, 7]. The morphological states represent the normal and abnormal states
of the electrocardiogram (ECG). The morphological representation generates any
kind of heart model (patients model or normal heart model using ECG). This
model can observe a failure of impulse generation and failure of impulse propa-
gation.

• Refinement chart: There are several ways to handle the design complexity of a
system. Refinement technique is the most common approach, which facilitates to
build a system gradually. We have discovered a very simple way to present the
whole system based on operational behavioural using a refinement chart. The re-
finement chart is a graphical representation of a complex system using layering
approach, where functional blocks are divided into multiple simpler blocks in a
new refinement level, without changing the original behaviour of the system. The
final goal to use this refinement chart is to obtain a specification that is detailed
enough to be effectively implemented, but also to correctly describe the require-
ments of a system. The purpose of the refinement chart is to provide an easily
manageable representation for different refinements of a system. The refinement
chart offers a clear view of assistance in “system” integration. This approach also
gives a clear view about the system assembling based on the operating modes and
different kinds of features. For example, if a developer does not want to provide
any particular feature in any system, then using the refinement chart, it is possible
to find that removable feature easily and not to include in the final development
system. However, it can also provide the information that, which other parts will
be affect-able, when we remove the particular operating modes.

• Real-time animator: Lots of formal methods based animator are available for dif-
ferent formal languages. But all kinds of animator use only toy-data sets. No any
tool is available for real-time data testing without generating the source code of
the system. We have provided an architecture to use a set of real-time data for
animation using formal specification. Here, we have discovered that the medical



40 2 Background

experts are unable to understand the complex formal specifications, so that we
have proposed a new technique to apply a real-time data set to animate the for-
mal specification and a domain expert can anticipate in the system development.
Another objective is to develop this technique also for requirement traceability
according to the domain experts. For example, through the animation of the for-
mal model using real-time data set, domain experts can help to find the missing
behaviour of a system.

• Automatic source code generation form formal models: Different kinds of code
generation tools are available, and can generate source code into any program-
ming languages but the main constraint is that all those tools are not applicable
to generating the codes from Event-B modelling language. The main objective is
to develop a set of code generation tools, which can support automatic code gen-
eration into several programming languages from Event-B modelling language
and supports in the development life-cycle of a critical system from requirement
analysis to code generation.

• Integration of different approaches: We proposed a new framework to compose
different kinds of formal techniques to model a critical system to overcome the
existing problems. An integration of formal techniques in the development pro-
cess of a critical system provides the modelling concepts with formal semantics
that captures at a high-level of abstraction. Modelling concepts should not be re-
stricted due to apply the verification techniques for checking the correctness of a
system. However, the system specifier should have the freedom to use the intu-
itive modelling concepts neglecting the complexity they impose on verification.
The integration framework should bridge the gap between modelling concepts
and input that is required for verification tools. For instance, integration of theo-
rem prover and model checker can be used for verifying the essential properties.
The compositional reasoning strategies using theorem prover and model check-
ing can reduce the verification effort and to verify the required safety properties.
The model checker helps to discover lots of errors and strengthening the safety
properties through careful cross analysis of the model animation. System specifi-
cations are verified by both the model checker and theorem prover tools to prove
the absence of any error.
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