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Preface

Software systems are pervasive in all walks of life and have become an essential
part of our daily life. Information technology is one major area which provides
powerful and adaptable opportunities for innovation, and it seems boundless. How-
ever, systems developed using computer-based logic have produced disappointing
results. According to stakeholders, they are unreliable, at times dangerous, and fail
to provide the desired outcomes. Most significant reasons of system failures are
the poor development practices for system designs. This is due to the complex na-
ture of modern software and lack of adequate and proper understanding. Software
development provides a framework for simplifying a complex system to get a bet-
ter understanding and to develop the higher fidelity quality systems at lower cost.
Highly embedded critical systems, in areas such as automation, medical surveil-
lance, avionics, etc., are susceptible to errors, which can lead to grave consequences
in case of failures.

Formal methods have emerged as an alternative approach to ensuring the quality
and correctness of the high confidence critical systems, overcoming limitations of
the traditional validation techniques such as simulation and testing. The purpose of
this book is to provide the use of formal techniques for the development of comput-
ing systems with high integrity. Specifically, it addresses the issue that formal meth-
ods are not well integrated into established critical systems development processes
by defining a new development life-cycle, and a set of associated techniques and
tools to develop highly critical systems using formal techniques from requirements
analysis to automatic source code generation using several intermediate layers with
a rigorous safety assessment approach. The verification and validation tasks are car-
ried out in intermediate layers for providing a correct formal model with desired
system behaviour according to stakeholder needs. This methodology combines the
refinement approach with various tools including verification tool, model checker
tool, real-time animator and finally, produces the source code into multiple lan-
guages using automatic code generation tool. The approach has been realised using
Event-B formalism. This book presents a set of tools that helps to verify desired
properties, which are undiscovered during the system development. Moreover, this
approach helps to identify the potential problems at an early stage of the system
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development. This book also critically evaluates the proposed life-cycle methodol-
ogy, and associated techniques and tools through a case study in the medical domain,
the cardiac pacemaker.

In addition, the book addresses the formal representation of medical protocols,
which is useful for improving the existing medical protocols. We formalise a real-
world medical protocol (ECG interpretation) to analyse whether the formalisation
complies with certain medically relevant protocol properties. The formal verifica-
tion process discovers several anomalies in the existing protocols, and provides a
hierarchical structure for efficient ECG interpretation that helps to find a set of con-
ditions that can help to diagnose particular diseases at an early stage. The main
objective of the developed formalism is to test correctness and consistency of the
medical protocol.

Outline

This book proposes an advanced development technique for modelling the critical
medical systems using stepwise refinement and introduces the rigorous techniques
to analyse the complex behaviour. It covers basic and advanced notions of critical
systems, real-time animator to find hidden requirements with the help of domain
experts, refinement chart to analyse the refinement structure, automatic code gen-
eration, heart-model to provide the biological environment for closed-loop mod-
elling and application scenarios for medical systems verification. Moreover, this
book presents advanced notion of critical system development from requirement
analysis to implementation. The chapters of this book are organised in a coherent
way that will help the reader to understand the development of complex medical
systems. The book is structured in 11 chapters. Chapters 2 to 7 cover methodol-
ogy, and techniques and tools for developing any complex critical system related
to medical, automotive or avionic domains. The rest of the chapters have particular
emphasis in the medical domain. Chapter 2 presents a basic background and devel-
opment life-cycle related to the safety critical systems. Chapter 3 describes mod-
elling techniques using the Event-B modelling language. In Chap. 4, we propose
a development life-cycle methodology for developing the highly critical software
systems using formal methods from requirements analysis to code implementation
using rigorous safety assessments. In Chap. 5, we propose a novel architecture to
validate the formal model with real-time data set in the early stage of development
without generating the source code. This architecture can be used for requirement
traceability. In Chap. 6, the refinement chart is proposed to handle the complexity
and for designing the critical systems. In Chap. 7, we present a tool that automati-
cally generates efficient target programming language code (C, C++, Java and C#)
from Event-B formal specification related to the analysis of complex problems. In
this chapter, the basic functionality as well as the design-flow is described, stress-
ing the advantages when designing this automatic code generation tool; EB2ALL.
In Chap. 8, we present a methodology to model a biological system, like the heart.
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The heart model is mainly based on electrocardiography analysis, which models
the heart system at the cellular level. The main objective of this methodology is to
model the heart system and integrate it with the medical device model like the car-
diac pacemaker to specify a closed-loop system. Chapter 9 shows a complete formal
development of a cardiac pacemaker using proposed techniques and tools from re-
quirements analysis to automatic code generation. The methodology and techniques
are presented in previous chapters. All the essential properties are proven according
to the domain experts. In Chap. 10, we present a new application of formal meth-
ods to evaluate real-life medical protocols for quality improvement. In this study,
we consider a real-life reference protocol (ECG Interpretation) which covers a wide
variety of protocol characteristics related to several heart diseases. Chapter 11 sum-
marises this book. The formal development of industrial size case studies, illustra-
tions, and formalisation throughout the text will help the reader to understand the
complexity of medical systems and master the intricacies of the more subtle aspects
in critical systems analysis.
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Further Sources

This book is based on several sources, particularly chronicles three years of work-
ing towards the author’s Ph.D. thesis [10]. Chapter 4 covers some material from an
article in the Innovations in Systems and Software Engineering [3] and also covers
some material from previous work at SoICT [6]. Chapter 5 is an extended version of
a previous paper at CSDM [1] and ISoLA [2]. Chapter 6 is a derived version of an
article in the ACM Transactions on Embedded Computing Systems [9]. Chapter 7
is a substantially extended version of a previous paper at SoICT [4] that presents
the basic framework and development of plug-ins for automatic code generation.
In Chap. 8, we extend a previous paper at FHIES [7]. Chapter 9 is a significantly
improved and detailed case study on the cardiac pacemaker in the International Jour-
nal of Discrete Event Control Systems [5]. Chapter 10 is also detailed version of an
article at FHIES [8].
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Chapter 1
Introduction

Abstract The primary goal of this book is to advance the use of formal techniques
for the development of computing systems with high integrity. Specifically, the
book makes an analysis of critical system software that the formal methods are not
well integrated into established critical systems development processes. This book
presents formalism for a new development life-cycle, and a set of associated tech-
niques and tools to develop the highly critical systems using formal techniques from
requirements analysis to automatic source code generation using several intermedi-
ate layers with rigorous safety assessment approach. The approach has been verified
using the Event-B formalism. The efficacy of formalism has been evaluated through
a “Grand Challenge” case study, relative to the development of a cardiac pacemaker.

In this chapter, we present the motivation of this work and main concepts of our
proposed approach for developing a new methodology for system development, and
associated techniques and tools.

1.1 Motivation

Nowadays, software systems have penetrated into our daily life in many ways.
Information technology is one major area, which provides powerful, and adapt-
able opportunities for innovation. However, sometimes computer-based developed
systems are producing disappointed results and fail to produce the desired re-
sults according to work requirements and stakeholder needs. They are unreliable,
and eventually dangerous. As a cause of system failure, poor developments prac-
tices [10, 16, 32, 38, 39] are one of the most significant. This is due to the complex
nature of modern software and lack of understanding. Software development pro-
vides a framework for simplifying a complex system to get a better understanding
and to develop the higher-fidelity system at a lower cost. Highly embedded crit-
ical systems, such as automotive, medical, and avionic, are susceptible to errors,
which are not sustainable in case of failure. Any failure in these systems may be
two types of consequences: direct consequences and indirect consequences. Direct
consequences lead to finance, property losses, and personal injuries, while indirect
consequences lead to income lost, medical expenses, time to retain another person,
and decrease employee moral, etc. Additionally, and most significantly potential
loss is customer trust for a product failure. In this context, a high degree of safety
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and security is required to make amenable to the critical systems. A system is con-
sidered to accomplish the current task safely in case of a system failure. A formal
rigorous reasoning about algorithms and mechanisms beneath such a system is re-
quired to precisely understand the behaviour of systems at the design level. How-
ever, to develop a reliable system is a significantly complicated task, which affects
the reliability of a system.

Formal methods-based development [9, 14, 37] is a standard and popular ap-
proach to deal with the increasing complexity of a system with assurance of cor-
rectness in the modern software engineering practices. Formal methods-based tech-
niques increasingly control safety-critical functionality in the development of the
highly critical systems. These techniques are also considered as a way to meet the
requirements of the standard certificates [6, 8, 12, 13] to evaluate a critical system
before use in practice. Furthermore, critical systems can be effectively analysed at
early stages of the development, which allows to explore conceptual errors, ambigu-
ities, requirements correctness, and design flaws before implementation of an actual
system. This approach helps to correct errors more easily and with less cost. We
formulate the following objectives related to a critical system development:

• Establishing a unified theory for the critical systems development.
• Building a comprehensive and integrated suite of tools for the critical systems

that can support verification activities, including formal specification, model val-
idation, real-time animation and automatic code generation.

• Environment modelling for the development of a closed-loop system for verifica-
tion purposes.

• Refinement-based formal development to achieve less error-prone models, easier
specification for the critical systems and reuse of such specification for further
designs.

• Model-based development and component-based design frameworks.
• System integration of critical infrastructure. Possibility of annotating models for

different purposes, (e.g., directing the synthesis or hooking to verification tools).
• Evidence-based certification through animation.
• Requirements and metrics for certifiable assurance and safety.

The enumerated objectives are covered in this book through developing a new
development life-cycle methodology and a set of associated techniques and tools
for developing the critical systems. The development life-cycle methodology is a
development process for the systems to capture the essential features precisely in
an intuitive manner. A development methodology including a set of techniques and
tools is developed for handling the stakeholders requirements, refinement-based sys-
tem specification, verification, model animation using real-time data set through a
real-time animator, and finally automatic source code generation from the verified
formal specification to implement a system.

The formal verification and model validation offers to meet the challenge of
complying with FDA’s QSR, ISO, IEEE, CC [6, 8, 12, 13] quality system direc-
tives. According to the FDA QSR, validation is the “confirmation by examination
and provision of objective evidence that the particular requirements for a specific
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intended use can be consistently fulfilled”. Verification is “confirmation by exam-
ination and provision of objective evidence that specified requirements have been
fulfilled” [11, 21]. All the proposed approaches may also help to obtain the certifi-
cation standards [6, 8, 12, 13] in the area of critical system development.

1.2 Approach

In this book, we present a development life-cycle methodology, a framework for
real-time animator [19], refinement chart [31], a set of automatic code genera-
tion tools [7, 18, 22] and formal logic based heart model for closed-loop mod-
elling [25, 29]. The development methodology and associated tools are used for
developing a critical system from requirements analysis to code implementation,
where verification and validation tasks are used as intermediate layers for provid-
ing a correct formal model with desired system behaviour at the concrete level. Our
approach of specification and verification is based on the techniques of abstraction
and refinement. Introducing a new set of tools helps to verify the desired proper-
ties, which are hidden at the early stage of the system development. For example,
a real-time animator provides a new way to discover hidden requirements accord-
ing to the stakeholders. It is an efficient technique to use the real-time data set, in
a formal model without generating the source code in any target programming lan-
guage [19], which also provides a way for domain experts (i.e. medical experts) to
participate in the system development process (medical device development). A ba-
sic description about development methodology and all associated techniques and
tools are provided in the following paragraphs:

We propose a new methodology, which is an extension of the waterfall model [3,
5, 34, 35] and utilises rigorous approaches based on formal techniques to produce a
reliable critical system. This methodology combines the refinement approach with
a verification tool, model checker tool, real-time animator and finally generates the
source code using automatic code generation tools. The system development process
is concurrently assessed by the safety assessment approaches [15, 33, 36] to comply
with certification standards [6, 8, 12, 13]. This life-cycle methodology consists of
seven main phases: first, informal requirements, resulting in a structured version of
the requirements, where each fragment is classified according to a fixed taxonomy.
In the second phase, informal requirements are formalised using a formal modelling
language, with a precise semantics, and enriched with invariants and temporal con-
straints. The third phase consists of refinement-based formal verification to test the
internal consistency and correctness of the specifications. The fourth phase is the
process of determining the degree to which a formal model is an accurate represen-
tation of the real world from the perspective of the intended uses of the model using
a model-checker. The fifth phase is used to animate the formal model with real-time
data set instead of toy-data, and offers a simple way for specifiers to build a domain-
specific visualisation that can be used by domain experts to check whether a formal
specification corresponds to their expectations. The six phase generates the source
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code from the verified system specifications and final phase is used for acceptance
testing of the developed system. This approach is useful to verify complex proper-
ties of a system and to discover the potential problems like deadlock and liveness at
an early stage of the system development.

According to the development life cycle of a critical system, we emphasise the
requirements traceability using a real-time animator [19]. Formal modelling of re-
quirements is a challenging task, which is used to reasoning in earlier phases of the
system development to make sure completeness, consistency, and automated veri-
fication of the requirements. The real-time animation of a formal model has been
recognised to be a promising approach to support the process of validation of re-
quirement’s specification. The principle is to simulate the desired behaviours of a
given system using formal models in the real-time environment and to visualise
the simulation in some form which appeals to stakeholders. The real-time environ-
ment assists in the construction, clarification, validation and visualisation of a formal
specification. Such an approach is also useful for evidence-based certification.

Refinement techniques [1, 2, 4] serve a key role for modelling a complex system
in an incremental way. A refinement chart is a graphical representation of a complex
system using a layering approach, where functional blocks are divided into multiple
simpler blocks in a new refinement level, without changing the original behaviour
of the system. The final goal of using this refinement chart is to obtain a specifi-
cation that is detailed enough to be effectively implemented, but also to correctly
describe the system behaviours. The purpose of the refinement chart is to provide
an easily manageable representation for different refinements of the systems. The
refinement chart offers a clear view of assistance in “system” integration. This ap-
proach also gives a clear view about the system assembly based on operating modes
and different kinds of features. This is an important issue not only for being able to
derive system-level performance and correctness guarantees, but also for being able
to assemble components in a cost-effective manner.

Another important step in the software-development life cycle is the code im-
plementation. In this context, we have developed an automatic code generation
tool [7, 18, 22, 23] for generating an efficient target programming language code
(C, C++, Java and C#) from Event-B formal specifications related to the analysis of
complex problems. This tool is a collection of plug-ins, which are used for translat-
ing Event-B formal specifications into different kinds of programming languages.
The translation tool is rigorously developed with safety properties preservation. We
present an architecture of the translation process, to generate a target language code
from Event-B models using Event-B grammar through syntax-directed translation,
code scheduling architecture, and verification of an automatic generated code.

A closed-loop model of a system is considered as a de facto standard for crit-
ical systems in the medical, avionic, and automotive domains for validating the
system model at the early stages of system development, which is an open prob-
lem in the area of modelling. The cardiac pacemaker and implantable cardioverter-
defibrillators (ICDs) are key critical medical devices, which require closed-loop
modelling (integration of system and environment modelling) for verification pur-
pose to obtain a certificate from the certification bodies. In this context, we propose
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a methodology to model a biological system related to the heart system, which pro-
vides a biological environment for building the close loop system for the cardiac
pacemaker [27]. The heart model is mainly based on electrocardiography analy-
sis, which models the heart system at the cellular level. The main objective of this
methodology is to model the heart system and integrate with a medical device model
like the cardiac pacemaker to specify a closed-loop model. Industries have been
striving for such a kind of approach for a long time in order to validate a system
model under the virtual biological environment [27].

Assessment of the proposed framework, and techniques and tools are scrutinised
through the development of a cardiac pacemaker. The cardiac pacemaker is a pilot
project of the international “Grand Challenge”. This book covers a complete devel-
opment process of a cardiac pacemaker using the proposed life-cycle framework and
developed tools [17, 20, 24] from requirements analysis to code implementation.

Formal techniques are useful not only for critical-systems, but it can be used
to verify required safety properties in other domains, for example, in the clinical
domain to verify the correctness of protocols and guidelines [26, 27, 30]. Clinical
guidelines systematically assist practitioners with providing appropriate health care
for specific clinical circumstances. Today, a significant number of guidelines and
protocols are lacking in quality. Indeed, ambiguity, and incompleteness are com-
mon anomalies in the medical practices. Our main objective is to find anomalies
and to improve the quality of medical protocols using well-known mathematical
formal techniques, such as Event-B. In this study, we use the Event-B modelling
language to capture guidelines for their validation for improving the protocols. An
appropriateness of the formalism is given through a case study, relative to a real-
life reference protocol (ECG Interpretation) that covers a wide variety of protocol
characteristics related to several heart diseases.

1.2.1 Outline

The book is structured in 11 chapters. Chapter 2 presents a basic background and de-
velopment life-cycle related to the safety critical systems. Chapter 3 describes mod-
elling techniques using the Event-B modelling language. In Chap. 4, we propose
a development life-cycle methodology for developing the highly critical software
systems using formal methods from requirements analysis to code implementation
using rigorous safety assessments. In Chap. 5, we propose a novel architecture to
validate the formal model with real-time data set in the early stage of develop-
ment without generating the source code [19]. This architecture can be used for
requirement traceability. In Chap. 6, the refinement chart is proposed to handle the
complexity and for designing the critical systems. In Chap. 7, we present a tool
that automatically generates efficient target programming language code (C, C++,
Java and C#) from Event-B formal specification related to the analysis of complex
problems. In this chapter, the basic functionality as well as the design-flow is de-
scribed, stressing the advantages when designing this automatic code generation
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tool; EB2ALL [7, 18, 22, 23, 28]. In Chap. 8, we present a methodology to model
a biological system, like the heart. The heart model is mainly based on electrocar-
diography analysis, which models the heart system at the cellular level. The main
objective of this methodology is to model the heart system and integrate it with the
medical device model like the cardiac pacemaker to specify a closed-loop system.
Chapter 9 presents a complete formal development of a cardiac pacemaker using
proposed techniques and tools from requirements analysis to automatic code gen-
eration. In Chap. 10, we present a new application of formal methods to evaluate
real-life medical protocols for quality improvement. An assessment of the proposed
approach is given through a case study, relative to a real-life reference protocol
(ECG Interpretation) which covers a wide variety of protocol characteristics related
to several heart diseases. We formalise the given reference protocol, verify a set of
interesting properties of the protocol and finally determine anomalies. Chapter 11
summarises this book.
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Chapter 2
Background

Abstract Formal methods based system development is considered as a promising
approach to develop the safe critical systems. This chapter discusses the standard
safety life-cycle, traditional safety analysis techniques, traditional system engineer-
ing approach, standard design methodologies and safety standards that are used for
developing the critical systems. Furthermore, we have given a list of successful in-
dustrial case studies based on formal techniques. Moreover, we discuss the role of
medical device regulations. Finally, this chapter shows the usability of formal tech-
niques for developing the critical systems and to motivate for developing a new
methodology, and associated techniques and tool in the context of medical device
development, which are covered in the remaining chapters.

2.1 Introduction

Critical systems are tremendously grown in functionality in both software and hard-
ware, and due to increasingly the complexity of critical systems it is very hard to pre-
dict the absence of failure. Moreover, some of these failures may cause catastrophic
financial loss, time or even human life. One of the main objectives of software engi-
neering is to provide a framework to develop a critical system that operates reliably
despite this complexity. It has been shown in [97, 113] that the promising results
are achievable only through the use of formal methods in the development process.
More than a decade, several formal methods based techniques and tools are used by
industries and academic research projects [62, 111]. The backbone of formal meth-
ods is considered to be mathematics, which often supports related techniques and
tools based on logico-mathematical theory for specifying and verifying the complex
systems. The techniques and tools based on formal methods provide a certain level
of reliability under some constraints. Formal verification is considered as a bench-
mark technique, particularly in the area of safety critical systems, where important
safety properties are required to prove rigorously before implementing a system.
However, the use of formal methods helps to speculate the hidden peculiarity of a
system like inconsistencies, ambiguities, and incompleteness.

In the past, formal methods based technique was not into practice in the soft-
ware development life-cycle due to the use of complex mathematical notations; in-
adequate tools support and too hard to apply. Special training was required to use
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formal methods to apply in the system development process. Increasingly, number
of successful development of techniques and tools related to the formal methods,
the industries have started to adopt it for verifying the safety properties of complex
systems [13, 14, 23, 97]. For verifying a critical system, industries prefer to use for-
mal methods-based techniques such as model checking or theorem proving in place
of the traditional simulation techniques. In both areas related to the model check-
ing and theorem proving, the researchers and practitioners are performing more and
more industrial-sized case studies [9, 11, 13, 24, 38, 61, 62, 78], and thereby gaining
the benefits of using formal methods.

This chapter briefly discusses safety critical systems, examines the use of for-
mal techniques to provide safety and reliability, analysis the use of traditional safety
techniques for software, surveys on regulations for medical devices, and gives a
list of successful industrial case studies based on formal techniques. Reliability and
safety are the most important attributes of critical systems. The main objective of
this chapter is to provide information about current safety issues in medical do-
main particularly for the safety critical software systems. It should be noted that the
formal methods are the most important techniques that are applicable for a safety
related software development for medical devices using several classical safety anal-
ysis techniques.

2.1.1 Structure of This Chapter

This chapter contains a concise survey that reviews the existing literatures relating
to the development and analysis of a software for safety critical systems, which
identifies current valuable approaches for developing the safety critical software,
and reviews the methods and analysis techniques available to the system develop-
ers. Section 2.2 gives an overview about reliability and safety. Section 2.3 presents a
role of a software in safety-critical systems and Sect. 2.4 describes safety life-cycle
for critical systems. Section 2.5 presents traditional safety analysis techniques. Sec-
tion 2.6 explores the traditional system engineering approach, and Sect. 2.7 gives
a list of standard design methodologies for the system development process. Sec-
tion 2.8 depicts about safety standards, and Sect. 2.9 presents medical device stan-
dards and discusses the current issues of regulations. Section 2.10 presents a list of
industrial projects related to the formal methods, and finally, Sect. 2.11 discusses
the use of formal methods for the safety critical software systems.

2.2 Reliability and Safety

2.2.1 Reliability

Reliability is a fundamental attribute for the safe operation of any critical system.
According to the Institute of Electrical and Electronic Engineers (IEEE), “Reliabil-
ity is the ability of a system or component to perform its required functions under
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stated conditions for a specified period of time” [54]. Reliability can be used for
prediction, analysing, preventing and mitigating failure over time of a complex crit-
ical system. In the context of safety, there are several elements of reliability. These
elements are operational reliability and performance reliability. Operational reliabil-
ity can estimate the probability of failure of a system, while performance reliability
measures the adequacy of features to successfully perform under the specific condi-
tions. Reliability analysis aims to protect a system from failures of its components,
software and hardware [67].

A fundamental challenge in reliability analysis is the uncertainty for failure
occurrences and consequences. To protect a system, a quantitative approach has
been pushed forward for the design, regulation and management of the safety
of hazardous systems. The reliability assurance is a process that is considered
by manufacturers during product development according to the regulating stan-
dards [18, 22, 33, 54, 58]. The reliability is quantified in terms of probability. Re-
liability has a time oriented characteristic that can be expressed as the Mean Time
Between Failures (MTBF) [95]. When we use probability or characteristics of the
underlying life distribution to measure reliability, it must be emphasised that re-
liability is a relative measure of the performance of a system. It is relative to the
user requirements, system failures, expected lifetime of the device, operating envi-
ronment conditions, system functionality and behaviour of the system changes with
time.

Reliability engineering is a function to calculate the expected reliability of a sys-
tem, process and behaviour in advance. The main objective of reliability engineering
is to deliver reliable product in order to satisfy behaviour requirements, safe oper-
ation, lower cost, and to maintain company reputation [95]. Nowadays, reliability
engineering is a well established discipline that can provide an integration of for-
mal methods to investigate the system requirements, correctness of the system by
addressing the following questions: (1) why a system fails? (2) how to develop a
reliable system? (3) how to measure the reliability of design, process and operation
of a system? and (4) how to maintain system reliability during system operation
through fault diagnosis and prediction [17, 116].

2.2.2 Safety

Safety can be defined as “freedom from those conditions that can cause death, in-
jury, occupational illness, or damage to or loss of equipment or property, or damage
to the environment” [83]. Safety can provide some standards to ensure quality and
functionality of a system. The safety standards eliminate all potential risks that can
cause loss of life, injuries or property damage. Critical systems that meet certifica-
tion standards, are safe to use in practice. It provides confidence to the user to use
for their purpose in daily life.

Safety is like reliability that concentrate on the designing phase of a system.
A system must be designed for safety. System safety is an engineering and manage-
ment discipline that encapsulates human, machine, environment, designing, testing,
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operating and maintaining system to achieve acceptable risk within the timing and
cost constraints in the system life-cycle [56]. Hazard analysis can improve the safety
that defines real or potential conditions that can cause injuries, illness, loss of sys-
tem, property or damage environment.

2.2.3 Safety vs. Reliability

As a conventional approach, it is assumed that a reliable system is safer and vice
versa. However, it is not always true and it can lead to a lot of confusion to analysis
a system failure. Actually, it is often true that the safer system can be less reliable.
For example, an inoperative elevator can provide maximum level of safety. The
inoperative elevator cannot do any functionality like opening or closing the door,
moving up or down, after pressing any button. To use the elevator, in this state is
always safe, but the reliability of the elevator is zero. The inoperative elevator has
not any functionality, it is absolutely unreliable and ineffective to use for moving
up or down to different floors. To improve the safety of a reliable system, system
designer introduces some elements to add the functionalities. Such as, designers can
introduce elements and controls for moving up or down of the elevator. These new
elements can reduce the reliability of the elevator. Such that, a sensor can provide a
proper opening or closing door operation. If the sensor is out-of-order, then the ele-
vator will not move. Here, the sensor behaviour reduces the reliability and increases
the safety of the system.1

Reliability and safety are the main attributes to determine effectiveness of a sys-
tem, where effectiveness is influenced by the life-cycle activities related to the de-
sign, manufacturing, use and disposal of the product [22]. IEC 60513 [50], fun-
damental aspects of safety standards for medical electrical equipment, provides a
safety standard for developing the medical systems that assures the basic safety and
essential performance. IEC 60601 [52] address reliability stating that “reliability of
functioning is regarded as a safety issue (for life-supporting equipment) and where
interruption of an examination or treatment is considered as a hazard for the pa-
tient.”

According to the FDA [33] regulation safety is defined as: “There is a reasonable
assurance that a device is safe when it can be determined, based upon valid scien-
tific evidence, that the probable benefits to health from the use of the device for its
intended use and conditions of use, when accompanied by adequate directions and
warnings against unsafe use, outweigh any probable risks.” Effectiveness is defined
thus: “There is a reasonable assurance that a device is effective when it can be de-
termined, based upon valid scientific evidence, that is a significant portion of the
target population, the use of the device for its intended uses and conditions of use,
when accompanied by adequate directions to use and warnings against unsafe use,
will provide clinically significant results” [94].

1http://www.aldservice.com/en/safety/what-is-safety.html.

http://www.aldservice.com/en/safety/what-is-safety.html
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2.3 Software in Safety-Critical Systems

Software is a vital part of any system, especially in embedded systems, where it
is used to control the whole functionality of the systems. The embedded systems
have major role to control the behaviour of the safety critical systems. When we
use these systems, we consider that their risk has been minimised and uses of the
systems are effectively safe. The system is not only safe, but we also expect other at-
tributes like reliable and cost effective. Main safety-critical systems are commercial
aircraft, medical care, train signalling systems, air traffic control, nuclear power, and
weapons, where any kind of failure can quickly lead to human life in danger, loss of
equipment, and so on. The industries are responsible for designing and delivering
the safety-critical systems according to the standards authorities [18, 33, 54, 58],
which satisfy the requirements.

To address the problem of system’s failure related to the software errors for ex-
ample, overdoses from Therac-25 for treating cancer through radiation [74], the
overshooting of the runway at Warsaw airport by an Airbus A320 [79], Intel Pen-
tium floating point divide [91], 5000 adverse events for Insulin Infusion Pump (IIP)
reported by FDA [114, 115] and Ariane 5 flight 501 going off [76]. All these prob-
lems and many more are considered as a part of the “software crisis”. The term
“software crisis” has been introduced in late 1960s to describe the failures of the
systems in which software-development problems cause the entire system [36]. In
1968, a meeting is organised by NATO related to the software crisis. This crisis had
as its root cause the problem of complexity brought about in many cases by sheer
length of programs combined with a poor control over how each line of code af-
fects the overall system. Almost three decades later, this problem still remains as
indicated in [36].

Software crisis is a well-known problem for other engineering disciplines, and
over the years of experience has been accumulated to provide effective solutions:
the technology has been available, and it has been shown to work with a very high
degree of confidence. Software are using frequently in the system development,
which is also classified as an engineering discipline, so it would seem natural that
one can apply the insights and quickly surmount any hurdles. However, it is true that
the engineering insights are applicable to modern the critical-system development
to come over the traditional approaches of the system development.

2.3.1 Software Safety and Reliability

Increasing size and complexity of software in critical systems, the software has a
primary threat for the reliability. Most of the reliability engineering techniques ad-
dress failures in hardware components. Software architecture analysis methods con-
centrate to analyse the quality and behaviour of a system at the early stage of the
system development. Several useful reliability engineering techniques are available
in literature to analyse and design a reliable system. A comprehensive survey of
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these techniques is given in [70, 77]. Software quality has been promoted in the
software architecture analysis domain. The software architecture is an important
process that helps to predict important qualities of a system and to identify the po-
tential risks [29]. To provide an early reliability analysis that covers software com-
ponents, it is advantageous to utilise both results from software architecture analysis
and conventional reliability analysis approaches [101].

According to the IEEE, software safety can be defined as “freedom from software
hazard,” where software hazard is defined as “a software condition that is a prereq-
uisite to an accident,” and an accident is defined as “an unplanned event or series
of events that results in death, injury, illness, environmental damage, or damage
to or loss of equipment or property” [54]. The use of formal methods in software
development process provides safety assurance that the software does not show any
failure cases. There are several techniques that are used to identify the software bugs
at the early stage of the system development. Each phase of the software develop-
ment is verified and validated using several techniques from requirements analysis
to code generation [54, 55].

International regulatory standards provide guidelines for designing, operating
and maintaining the critical systems [48]. To analyse the reliability, the hardware
and software barriers must take into account. However, hardware barriers are more
reliable than the software barriers according to the past history of the system func-
tionality in terms of performance, proof-checking, and regress testing of the hard-
ware components [32]. In a complex system, self-test are not sufficient to identify
potential failures. Therefore, proof-checks are used to perform at regular intervals
to cope with undetected hardware failures.

The hardware systems are subject to ageing and wear. Ageing and wear char-
acteristics of the hardware systems provide a way to calculate the reliability using
MTBF. However, the software systems are not applicable to use statistical technique
like MTBF for reliability calculation, because software systems are not subject to
ageing and wear. Tools and techniques related to the software failures are not similar
to the hardware failures due to different characteristics of both software and hard-
ware systems. The software systems do not follow the physical laws of degradation
or failure as per the hardware systems [116].

The software reliability is an important challenge in the area of safety critical
systems, where software may be used to control the hardware components. The soft-
ware failures can be identified using software-centric approach and system-centric
viewpoint. The software-centric approach looks for failure modes and to evaluate
their probabilities, and the system-centric viewpoint is based on practical obser-
vation related to the specifications and requirements, which encapsulate software
design failures.

The fault injection method is a technique for quantitative analysis of the software
failure that deliberately inject faults in the software and count the number of times
that the software maintains its function in spite of the injected fault [1, 46, 105].
However, this approach is not effective to discover all hidden failures. Hence, an-
other feasible approach to building the reliable software is to use the systematic
software development process. The main objective is to evaluate different fault tol-
erant approaches throughout the software development process [116].
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Fig. 2.1 Safety life-cycle
(adapted from [53])

2.4 The Safety Life-Cycle for Critical Systems

Safety is a most important system property, that should be methodically analysed
along the system life-cycle. A number of standards and recommended practices de-
fine the processes and the objectives of the safety life-cycle, such as IEC 61598 [53],
MODEF [30]. Figure 2.1 depicts a stepwise implementation of the system develop-
ment safety life-cycle. The main objective of this development cycle is to guide
system designers and developers in what they need to do in order to claim that their
systems are acceptably safe for their intended uses. The purpose of the overall safety
life-cycle is to force safety to be addressed independently of functional issues, thus
overcoming the assumption that functional reliability will automatically produce
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safety [53, 92]. This development cycle is accepted by all industry sectors in devel-
oping the advanced safe critical systems. The life-cycle phases are briefly described
as follows:

• The initial concept phase is used to identify the functional requirements of the
system, related environment where the system will be operated, and possible de-
sign approaches for developing the system.

• The second phase is used to set the goal for management and technical activities
to consider the safety implications of the developing system through assessing the
required safety level to ensure that the system achieves and maintains the required
level of functional safety. The goal should be produced at the beginning of system
life-cycle and it must be reviewed at regular interval.

• In Phase 3, hazard identification process is applied to identify the possible
hazards, which might arise during construction, installation, operation, mainte-
nance and disposal of the system. This hazard identification process is applicable
throughout the system life-cycle. The main formal techniques for hazard analysis
are FHA, FTA, FMEA and HAZOP.

• Risk assessment process is used to identify a set of possible risks through
analysing the identified hazards, and check against tolerability criteria. A set of
actions must be taken to reduce the overall risks. The action can be decided under
consideration of possible consequences of hazards to a tolerable level. The risk
assessment process helps to discover possible requirements for the safety integrity
level for the system.

• The safety requirements are separately assessed for different parts of the system
and the whole system is reviewed to ensure that the risk will be reduced to an
acceptable level and system is safe in use. Any critical system is too complex in
functionality. To implement the safety functions, a simple technology should be
used to avoid the overall complexity of the system.

• This phase of the safety life-cycle is related to system implementation, where
safety related parts or components are implemented to satisfy the safety require-
ments.

• Assessment of the specific components or parts of the system must comply with
the safety requirements to ensure that the component of the system meets the
given safety requirements. The assessment process is based on analysis and au-
diting techniques.

• Safety validation phase is used to verify the system against the claimed safety
properties. This process assures that the system have been achieved a set of goals
and system is safe to use in practice. Moreover, during the verification process
arising problems are also resolved.

• This phase of safety life-cycle related to the system operation and maintenance,
which ensures that the system will be safe during the maintenance process. Vari-
ous safety related system problems arise due to a poor maintenance process. Thus
the system must be designed for maintainability. The use of the system in differ-
ent environment should also be analysed to evaluate the system behaviour and
must ensure the safety of the system.
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• Finally, safety considerations that may apply during decommissioning should also
be taken into account. Thus an assessment of the impact of the decommissioning
should be made on both the components and the process of the system. This pro-
cess will use hazard and risk assessment approaches to determine the level of
safety-related work. The safety related work must be satisfied during the decom-
missioning activity of the critical system.

2.5 Traditional Safety Analysis Techniques

Safety provides protection from hazard to human life, the environment or property.
There are not such a magical thing that can guarantee for absolute safety. However,
a system can be enough safe that can accept any risk related to the life, environ-
ment or property. The risk can be measured through probability and the complex
calculations of a system, while a system can be failed due to use of any harmful
substances in the process. However, software is not a harmful substance. Software
can be used to control the system behaviour using a set of processes. Moreover,
the software can contribute to safety, e.g. through control over hazardous physical
processes [72]. Software hazard and safety analysis refer to the process of assess-
ing and to make contribution to design a safety software. According to [81], four
safety-relevant elements of a system development process are defined as follows:

1. Identifying hazards and associated safety requirements.
2. Designing the system to meet its safety requirements.
3. Analysing the system to show that it meets its safety requirements.
4. Demonstrating the safety of the system by producing a safety case.

2.5.1 Hazard Analysis

Software development life-cycle and engineering techniques are used to design and
develop a system to meet all the functional requirements. These techniques place a
little effort to examine failure cases of a system. However, a highly critical system
like aviation, medical or automotive needs to consider all possible failure scenarios
to avoid from any hazard. Different kinds of techniques may be employed for safety
assessment from hazard analysis. When a system has many components, then take
a modular approach for analysing a system using System Hazard Analysis (SHA)
and Subsystem Hazard Analysis (SSHA). The SHA discovers all associated hazards
of a system, while the SSHA discovers how an operation of a particular component
affects on the whole system.

The SHA and SSHA analyses are performed by several techniques, which are
provided by the standard authorities. Traditional safety analysis techniques such
as Hazard and Operability study (HAZOP) [92], Functional Hazard Assessment
(FHA) [109], Fault Tree Analysis (FTA) [73], and Failure Mode Effects Analysis
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Fig. 2.2 FTA—Evaluating back from consequence to cause

(FMEA) [31] are standards to apply for hardware intensive systems that are also
applicable for the software systems. Traditional safety analysis therefore begins by
defining the hazards associated with a system, determines their severity, and then
attempts to identify the factors that can initiate the hazards. These safety analysis
techniques provide a rigorous way to examine the causes and their consequences of
the identified hazards.

Functional Hazard Assessment (FHA)

Hazard are unfavourable conditions that a system should avoid to occur or must be
identified in advance. Once the hazards are known that it becomes possible to trace
backwards from the hazards to the particular events that can cause them. Functional
Hazard Assessment (FHA) is used to identify such type of hazards that can be oc-
curred because of functional failure. The safety analysis techniques concentrate on
defining the required functionality and analysing the consequences of failures. The
FHA is an informal process that is used to document hazards and determine their
severity. The FHA produces a list hazards in tabular form with different degree of
severity [109].

Fault Tree Analysis (FTA)

Where a system is self-contained, having its boundaries well defined, one focuses on
the hazards that are internal to the system, which may be termed faults. Thus, a fault
is always a hazard, but not conversely. At this level, we have another technique to
analyse the systems using Fault Tree Analysis (FTA) [73]. The FTA is a safety anal-
ysis technique that is deductive and top-down method of analysing system design
and performance to identify all the possible failures or errors. It is based on a feed-
back process that can start with a system level hazard and try to discover backward
for identifying all the possible causes of hazards (see Fig. 2.2). The FTA shows a
list of hazards according to the hazard level. Although, the FTA has limited use for
identifying the faults of a system using a visual technique that can trace higher level
events down to their contributing events in form of failures, errors or faults. The
FTA is represented in a tree structure that shows various factors to contribute a high
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Fig. 2.3 FTA tree

level event. The fault trees can also be used in a confirmatory role where they are
particularly useful in showing that a probability requirement for a hazardous fail-
ure mode has been met by the system. Figure 2.3 depicts a basic architecture of the
FTA. In this figure, highest level event (hazard) is traced backward to identify the
source of errors or faults. Events and gates in fault tree analysis are represented by
symbols. The source of errors or faults are known as the base events (errors) [73].

Failure Mode Effects Analysis (FMEA)

Failure modes and effects analysis (FMEA) is a step-by-step approach [31] to iden-
tify the possible hazards in a complex system that facilitates the identification of
potential problems in the design or process by examining the effects of lower level
failures. The FTA safety analysis technique is based on top-down approach, while
the FMEA is used a bottom-up approach. In this bottom-up analysis, the technique
determines possible failures of a system and produces a list of probable failures ac-
cording to the degree of severity. The feed-forward technique of the FMEA is used
to discover possible failures or errors through forward tracing (see Fig. 2.4). FMEA
is useful for evaluating a new process prior to implementation, and for assessing the
impact of proposed changes on the existing processes. The output of FMEA presents
in a tabular form that describes the failure modes, in which something might fail,
and the consequences of those failures.



20 2 Background

Fig. 2.4 FMEA—Evaluating forward from cause to consequences

Fig. 2.5 HAZOP—Evaluating from the fault in both directions for causes and consequences

Hazard and Operability Analysis (HAZOP)

Hazard and operability studies (HAZOP) are more commonly used at the broadest
level for analysing process plants like chemical and nuclear industries [57]. The
HAZOP supports the chemical process industry, takes a representation of a system
and analyses how its operation may lead to an unsafe deviation from the intent of the
system [57] with special attention to the environment of operation. This technique
is very popular in industries because it aims to predict possible failures, and identify
their impact.

HAZOP [92] is a most prominent formal technique for identification of the haz-
ards. This technique examines all the essential components and their interconnec-
tions of a system to explore the possible causes of errors and their consequences.
Particularly, HAZOP is a powerful technique for exploring the interaction between
parts of a system. HAZOP is based on a theory that assumes risk events are caused
by deviations from design or operating intentions. Identification of such deviations
is assessment and generally facilitated by using a set of “guide words” as a system-
atic list that includes process, and deviation perspectives. HAZOP starts to analyse
in both directions, backwards to explore its possible causes, and forwards to exam-
ine its consequences (see Fig. 2.5).

A set of safety analysis techniques like FHA, FTA, FMEA, and HAZOP, is used
to identify a list of base events that can contribute to hazardous conditions. A list of
events gives the general categories of safety properties required to the requirement
model of a system. A more detailed discussion of the system hazard analyses (SHA)
with the software perspective is provided in [57, 72].
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2.5.2 Risk Assessment and Safety Integrity

A risk assessment is simply a careful examination of the past data related to the
hazard’s analysis for the similar systems; from the reliability assessments of com-
ponents of the system being developed; and other sources. The outcome of the risk
assessment presents some kind of gradation and may be expressed in terms of what
constitutes a tolerable and intolerable risk. This outcome results help for regulat-
ing industrial risk, and to determine whether a risk is unacceptable, acceptable or
somewhere in between. Lots of factors are used for determining the risk based on
quantitative and qualitative analyses [8]. Using a risk classification of accidents ac-
cording to the frequency and severity usefully serves as a relatively simple basis for
its determination.

Assessment of a risk can decide a necessary level of safety that can be achieved
from various functions of a system. This is an issue of safety integrity, which is de-
fined as, “Safety integrity is the likelihood of a safety-related system achieving the
required safety functions under all the stated conditions within a stated period of
time” [108]. The system activities are contributing to the integrity may be charac-
terised by two kinds of requirements:

1. Generation of the new safety requirements of a system is resulting from the de-
sign and development.

2. Ensuring that what is being built meets the requirements that have already been
specified.

Here, the first requirement is related to the requirement analysis and hazard anal-
yses of a system. The second requirement is related to the reliability engineering
techniques, whose consideration may have to be sustained throughout the develop-
ment as the design evolves with modification to interfaces, rearrangement of compo-
nents or other kinds of changes. To apply the several techniques like FHA, HAZOP,
FMEA and FTA for the fault prediction, fault removal, fault avoidance and fault tol-
erance, and to achieve the system integrity require together with methods and design
of the system, are the main resources for measuring the system reliability [103].

A safety of a system may be simply characterised by a process of reducing risks
to appropriate effect. The main objective of a qualitative or quantitative risk assess-
ment is to establish the level of tolerability for any identified risk. If a risk falls in
between the states of ‘intolerable’ and ‘acceptable’ then any risk must be reduced to
‘as low as reasonably practicable’. This is known as the ALARP principle as illus-
trated in Fig. 2.6. The width of the triangle is proportionate to the level of risk and
thus also to the amount of resources that can be justified to reduce it. A comprehen-
sive survey of risks and safety integrity is provided in [8].

2.5.3 Safety Integrity and Assurance

Finally, there is always a question in the development of critical system, “What is
the assurance level according to the certain level of integrity of the system?”. In
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Fig. 2.6 ALARP model of risk level

order to safety assurance of the developed system may be certified as safe, there
must be a set of documents, which provides detail justification of the safety. This
document contains a list of all hazard’s cases with log details and various arguments
for indicating that how the system has reached at the required safety levels. The
safety case brings in all the aforementioned risk analyses, risk reductions and other
integrity and reliability measures, often presenting various statistical evidence. It is
a considerable huge amount of a task involves lots of documentation. A software
SAM (Safety Arguments Manager) is recognised to support this process and allows
to manage all the developing safety cases [82].

2.6 Traditional System Engineering Approach

A critical system uses a standard life-cycle to achieve a certificate from the standard
authorities [18, 33, 54, 58]. A system can be considered safe if all the hazards have
been eliminated, or the risk associated hazards have been reduced to an acceptable
level. Software is a part of a system, which is used within the system to operate the
system safely. The integrated software within a system does not show any kind of
misbehaviour. However, if the same software is used by multiple systems then the
software must have similar behaviour in each system. However, sometimes it is not
true. It is believed that each system is different, with different requirements, different
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risk level with different hazard’s characteristics, it is impossible to know if software
is safe without considering the behaviour of the software as a part of the system
which it is controlling. Therefore, when considering the process for developing a
safe software, it is crucial that the whole system of which the software is a part is
considered, as well as the software itself [12].

2.6.1 The Software Safety Life-Cycle

In the past several years, different types of software development life-cycle have
been identified. All of them have their own merits and limitations according to the
problem complexity, size and type of the system. This book will not enter into a
discussion about different life-cycle process models. A detailed description about
each life-cycle process model is available in [4, 80, 90, 99]. Here, we only discuss
about life-cycle process model related to the safety critical software system.

In recognition of the distinctive nature of safety-related systems, there is a stan-
dard development process known as V-model, which is widely accepted by large
companies and defence. It is an extension of the standard Waterfall model [4, 8, 98,
108]. The V-model represents a software-development process, where the process
steps are bent upwards after the coding phase to form the typical V shape. The V-
model presents the relationships between each phase of the development life-cycle
and its associated phase of testing. V-model is also called verification and validation
model (V & V). This process uses a very intensive testing for removing bugs or
errors, which may appear during any stage of the system development.

The typical process of developing a safety-critical software system is generally
time-consuming. Most of the development processes are based on the V-model,
which is illustrated diagrammatically in Fig. 2.7. This model identifies the major
elements of the development process and indicates the structured, and typically se-
quential, nature of the development process. The sequential nature of development
is generally considered essential for reasons of managing communication and scale,
for scheduling different phases and disciplines, for managing traceability (which is
mandated by relevant safety standards) and for the certification purposes.

In order to produce a safety-related software according to this framework, various
techniques are recommended. These include the application of structured analysis
techniques to generate a visible modular construction (the principles of modularity
are expounded in [89]), and diversity in design, implementation and maintenance to
avoid faults due to common mode failures. Many such techniques are very widely
applicable, and although they are usefully brought into the safety-critical context,
there is not so much literature devoted solely to their use in this specific area. Never-
theless, material is available: for instance, there have been reviews such as [28, 103]
to help designers and managers as to the suitability of mainstream programming
languages for the safety-critical systems.

Safety requires a lot of integrity, and this is recognised in the safety life-cycle
model which separates the specification of safety requirements into purely func-
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Fig. 2.7 The V model of safety-critical system development

tional requirements and safety-integrity requirements. The safety integrity require-
ments are calculated individually for each of the functions previously identified.
Having done this, one may concentrate on providing the high levels of assurance
on the safety-critical aspects. We intend using the safety life-cycle model as a basis,
with a view to ascertaining its suitability to support the production of formal mod-
els with high integrity. Our contention is that we treat carefully the non-functional
requirements and to put forward a selection of viewpoints and methods highlighting
further the safety concepts, which are often subtle, then the life-cycle model can
be effective [103]. A safe system can be characterised as one in which risks from
hazards have been minimised throughout a system life. The process of providing
hazard analyses and risk assessments are thus crucial activities to ensure the safety
of a system.

In Fig. 2.7, Preliminary System Safety Analysis (PSSA) and System Safety Anal-
ysis (SSA) are the collection of various techniques like FTA, HAZOP, FMEA, etc.
The aim of all these techniques is to identify failures and derive the safety require-
ments, which prevent from the occurrence of the hazard. FTA focuses on the dif-
ferent components of a system, while HAZOP focus on the flow between compo-
nents. There are also a number of other techniques, which are used in the PSSA for
analysing failures, an overview can be found in [87].

2.7 Standard Design Methodologies

A design is a meaningful engineering representation of a higher-level interpretation
of a system, which is actually a part of an implementation in a source code. Design
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process is traceable using reverse engineering technique to the actual stakeholders
requirements. The quality of a system can be assessed through predefined criteria
for a good design. Analysis and design methods for software have been evolving
over the years, each with its approach for modelling needs a world-view into soft-
ware [86]. The following methodologies are common, which are used in current
practices.

• Structured Analysis and Structured Design (SA/SD)
• Object Oriented Analysis and Object Oriented Design (OOA/OOD)
• Formal Methods (FM) and Model-based Development

SA/SD techniques provide means to create and evaluate a good design of the
systems. This technique covers functional decomposition, data flow and informa-
tion modelling. OOA/OOD considers the whole system into abstract entities called
objects, which can contain information (data) and have associated behaviour. It is
in practice from last 30 years, which is used in several big projects. It contains
Object-Oriented Analysis and Design (OOA/OOD) method, Object modelling Tech-
nique (OMT) Object-Oriented Analysis and Design with Applications (OOADA),
Object-Oriented Software Engineering (OOSE) and UML. Formal Methods (FM)
and Model-based development are a set of techniques and tools based on mathe-
matical modelling and formal logic that are used to specify and verify requirements
and designs for the systems and software [86]. Formal method is also a process that
allows the logical properties of a computer system to be predicted from a mathe-
matical model of a system by means of a logical calculation. Formal methods can
be used for formal specification, formal verification and software models (with au-
tomatic code generation) [86].

2.7.1 Design for Reliability

Reliability is an attribute of a system that is derived from research, concept and
design through analysing the capacity and performance under the working environ-
ment. The reliability level can be established during design phase of the system
development. However, a subsequent testing and production cannot improve the re-
liability without any modification in the basic design. Design reliability techniques
integrating with the development process for assuring the safety of a system. Reli-
ability becomes a difficult design parameter due to the increasing complexity and
limited knowledge of the system requirements. If reliability is an important attribute
of a system then it is quantified during specification of the design requirements.

Reliability is essential for a healthcare and medical devices, which need to be
safe and effective. Medical device manufacturers and regulating bodies like the
Food and Drug Administration (FDA) [33] and Center for Devices and Radiological
Health (CDRH) [22] have a responsibility for assuring the safety and effectiveness
of medical devices. The CDRH has standards to analyse system specification, de-
sign requirements, and usability of a system. The CDRH [22] requires a complete
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and accurate requirements of any medical system for designing and manufacturing
a safe system. The CDRH allows premarket review to identify relevant informa-
tion for processing, manufacturing, assembly handling, maintenance and disposal
of the system. Moreover, the CDRH also seeks to determine if the manufacturer
has captured the important aspects of the development life-cycle for producing a
product [59, 66]. However, the CDRH is also concerned with potential users like
patient or clinician, who will use the device. FDA requires product performance to
be verified [59, 60, 66] and validated [59, 66]. The FDA supports the performance
and safety assessment of a system through providing the evidence that the system
is adequate to use in practice. The FDA regulatory oversight of the manufacturing
process through the Quality System Regulation [59, 66].

Increasing complexity and safety recalls in the medical systems advocate a new
approach for a good design for reliability (DFR) in the medical industries [42].
DFR describes the tools and techniques that can support product and process design
to ensure the system reliability. The DFR is a process that spans the entire product
development cycle from concept to release of a product. The DFR [42] indicates the
following paradigms that are essential to design a complex medical system:

1. Spend significant effort on requirement analysis
2. Critical failure is not an option for medical devices
3. Measure reliability in terms of total Life-cycle cost
4. Don’t just design for reliability, design for durability
5. Design for prognostics to minimise surprise failures

2.8 Safety Standards

It is perhaps best to start by considering the various standards that exist for indus-
tries, which develop the safety critical systems. Standards are documented agree-
ments containing technical specifications, which produce precise criteria, consistent
rules, procedures to ensure reliability, software processes, methods, products, ser-
vices and use of products, are fit for their purpose in this world. Standards include a
set of issues corresponding to the product functionality and compatibility, facilitate
interoperability including designing, developing, enhancing, and maintaining. A set
of protocols and guidelines, which are produced by the standards, are consistent and
universally acceptable for the product development. The standards allow to under-
stand the quality of different products for competing with them, and provide a way
to verify the credibility of a new product [22, 54, 58].

Verification and validation (V & V) are part of the certification process for any
critical system. There are several reasons, why certification is required for any crit-
ical system. For example, medical device like a cardiac pacemaker must obtain a
certificate before to use in practices. Certification of the product not only assures
about the safety, but also helps to a customer to gain confidence to buy and to use
the product, which is also important for commercial reasons like having a sales
advantage to industry. Certifications are usually carried out by some national and
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international authorities. Certification can be applicable to an organisation, tools or
methods, or systems or products. The main objective of the certification bodies is to
provide assurance that an organisation can achieve a certain level of proficiency, and
that they agree to the certain standards or criteria. In the case of product certification,
there are always issues for the certification, whether a methodology or development
process is certified or not.

There are many international standards bodies. More than 300 software stan-
dards and 50 organisations are developing software standards [34]. Standards come
in many different flavours, for example, de-facto standards, local, national and inter-
national standards. Some of the standards are more specific related to the defence,
financial, medical, nuclear, transportation, etc. (see the Appendix).

There are number of standards addressing safety and security of a system related
to the software development. For example, avionics RTCA-Do-178B [96] or the
IEC 61508 [35, 53] as the fundamental standard for the functional safety of E/E/EP
systems [35, 53]. The IEC 62304 [51] standard is for the software life-cycles of
medical device development that addresses to achieve more specific goals through
standard process activity, and helps to design the safe systems. All the necessary
requirements for each life-cycle process are provided by the IEC 62304. The process
standard IEC 62304 [51] is a collection of two other standards ISO 14791 and ISO
13485, where the ISO 14791 standard is for quality, and the ISO 13485 is for risk
management.

Institute of Electrical and Electronics Engineers (IEEE) standards [54] provides
a safety assurance level for industries, including: power and energy, biomedical and
health care, information technology, transportation, nanotechnology, telecommuni-
cation, information assurance, and many more. The IEEE standard is approved by
authority and considers the users recommendations before apply into the develop-
ment process. All these standards are reviewed at least every five years to qualify
the new amendments in the systems.

Food and Drug Administration (FDA) [68] is established by US Department of
Health and Human Services (HHS) in 1930 for regulating the various kinds of prod-
uct like food, cosmetics, medical devices, etc. The FDA is now using standards in
the regulatory review process to provide a safety to the public before using any prod-
uct. The FDA provides some guidelines on the recognition to use of and consensus
standards. The FDA is interested in the standards because they can help to serve as
a common yardstick to assist with mutual recognition, based on the signed Mutual
Recognition Agreement between the European Union and United States. The FDA
standard classifies the medical devices based on risk and the use of medical devices.
The FDA provides some standard guidelines for the medical devices, and the med-
ical devices require to meet these standards. Time to time lots of amendments have
been done in the FDA standards [33, 68] according to the use of medical devices to
provide a safety.

Common Criteria (CC) [18] is an international standard that allows an evaluation
of security for the IT products and technology. The CC is an international stan-
dard (ISO/IEC 15408) [58] for computer security certification. CC is a collection
of existing criteria: European (Information Technology Security Evaluation Criteria
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(ITSEC)), US (Trusted Computer Security Evaluation Criteria (TCSEC)) and Cana-
dian (Canadian Trusted Computer Product Evaluation Criteria (CTCPEC)) [19–21].
The CC enables an objective evaluation to validate that a particular product or sys-
tem satisfies a defined set of security requirements. The CC provides a framework
for the computer users, vendors and testing organisations for fulfil their require-
ments and assures that the process of specification, implementation and testing of a
product has been conducted in a rigorous and standard manner.

There are several ways to tackle the complexity issues of software, which major
the software at industrial scales and usability of the software. The Software Engi-
neering Institute, funded by the military, has produced a Capability Maturity Model
(CMM) [90] by which may be assessed the quality of management in a software en-
gineering team. The CMM broadly refers to a process improvement approach that
is based on a process model. A process model is a structured collection of prac-
tices that describe the characteristics of effective processes; the practices included
are those proven by experience to be effective. The CMM can be used to assess
an organisation against a scale of five process maturity levels. Each level ranks the
organisation according to its standardisation of processes in the subject area being
assessed.

2.9 Regulations for Medical Devices

All kinds of medical products have to comply with national or international reg-
ulatory bodies that can provide safety assurance to use the medical products. The
pathway from product design to the final product is often unclear and number of
challenges and questions increase as medical device become more complex. The
regulating bodies cover the essential requirements to regulate the standards of safety
and performance of the medical devices. Medical device manufacturers agree to fol-
low medical device development standards to provide the life-saving technologies
to patient without compromising in safety with low cost.

The past decades shows several recalls related to the safety issues in the medical
devices [63]. Everyday lots of defects are reported by consumers that are a seri-
ous consequence due to medical device failures. Faults in medical devices, such as
pacemakers, defibrillators, artificial hip, and stents, have caused severe patient in-
juries and deaths. In 2006, FDA reported 116,086 device related injuries, 96,485
malfunctions, and 2,830 deaths; a more recent independent analysis claims there
were 4,556 device-related deaths in 2009 [45, 63]. These recalls have raised many
questions related to the device development process, designing and testing tools,
and resources are adequate to ensure that the developed device are safe and secure
to use in practice. However, the adoption of medical regulations has increased the
rates of infant mortality, life expectancy, and premature and preventable deaths all
over the world.
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2.9.1 Device Classification

The Food and Drug Administration (FDA) has classified all the medical devices
into three classes based-on the safety and effectiveness level [93]. The safety and
effectiveness levels are categorised in the low, medium and high risks, respectively.
Device classification determines different types of regulatory requirements that must
be followed by the medical device manufacturers.

Class I

Class I devices are sufficient to provide reasonable assurance of the safety and ef-
fectiveness of the device with minimal potential for harm. The devices of this class
are simpler than the Class II and Class III. These devices are subject to only general
controls. Manufacturer registration with the FDA, good manufacturing techniques,
branding and marking of the products are the main issues that are covered under
the general controls [93]. These general controls are sufficient to provide safety and
effectiveness of the devices. Class I devices are exempt from the premarket notifi-
cation and the FDA determines low risk of illness or injuries to patient [93]. Class I
devices include tongue depressors, bedpans, elastic bandages, examination gloves,
and hand held surgical instruments and other similar types of common equipment.

Class II

Class II devices more complex than Class I devices, and the general controls of
the Class II are insufficient to assure safety and effectiveness. To provide such as-
surances, additional methods are required [93]. Class II devices are also subject to
special control in addition to the general controls of Class I. Special controls may in-
clude standard performance, labelling requirements and premarket review to reduce
or mitigate risk. Class II assures that the used devices will not because of injuries
or harm to patients. X-ray machines, powered wheelchairs, infusion pump, surgi-
cal drapes, surgical needles, suture material and acupuncture needles are the main
devices of this class.

Class III

Class III devices have insufficient information to assure safety and effectiveness
solely through the general and special controls that are sufficient for Class I and
Class II devices [93]. In addition of the general controls of Class I, premarket ap-
proval and a scientific review are needed to ensure the safety and effectiveness of
the Class III devices. Class III devices are described as those for which “insufficient
information exists to determine that general controls are sufficient to provide reason-
able assurance of its safety and effectiveness or that application of special controls
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that can provide such assurance and if, in addition, the device is life-supporting or
life-sustaining, or for the use of substantial importance for preventing impairment
of human health, or if the device presents a potential unreasonable risk of illness or
injury” [93]. Class III includes devices which are life-supporting or life-sustaining,
and devices which present a high or potentially unreasonable risk of illness or in-
jury to a patient. Class III includes complex devices like heart valve, breast implants,
implanted cerebral stimulator and cardiac pacemaker.

2.9.2 Regulation Issues

Development in the area of medical devices is rapidly changing. Over the last 25
years, medical devices have evolved from analog to digital systems. In the current
development, microprocessor, software, smart sensor and actuator are the main com-
ponents of medical systems. Most of the medical devices are based-on embedded
real-time system. The functionality of these complex systems is mainly based on
software to provide robustness, safety and effectiveness. An embedded system may
be used for special-purpose computer system to perform any particular task due
to resource limitation. The life of medical devices has decreased due to more rapid
innovation in enabling technology and demand for the more robust systems. Increas-
ing complexity of the medical systems has raised many recalls. Regulating bodies
are used to control the quality of medical devices and to provide safety in use. The
current development techniques and existing tools are not sufficient to provide as-
surance to use any medical device. Due to failure cases and constraints in exiting
approach, the regulating bodies have offered several research challenges in the area
of medical device development. The following challenges provide a framework for
thinking about the main issues of current medical regulations [22, 33, 110]:

• A new platform and implementation technologies is required to support science-
and engineering-based design, development, and certification to analysis the qual-
ity of advanced medical devices and new emerging technologies.

• Software based on medical devices must be validated according to the state of the
art taking into account the principles of development life-cycle, risk management,
validation and verification.

• Simulation based closed-loop modelling is required to evaluate the medical de-
vices.

• Use quantitative analysis to evaluate a risk and to identify the safety issues of
medical devices.

• Preventing from a malicious malfunction of software of the medical devices, and
handling the emerging issues for information security and privacy.

• To provide a protection against emerging infectious diseases and terrorism.
• To use a formal methods-based design techniques to develop the medical devices.
• Developing a new approach to use clinical data in evaluating medical devices.
• Development of the robust, safe and sustainable medical devices with low manu-

facturing cost with increasing quality and performances.
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2.10 Industrial Application of Formal Methods

This section surveys previous works related to the critical system development.
A common theme in much of this work is to use formal methods. Formal methods
provide numerous tools and techniques for solving the different kinds of problems.
Mainly formal methods are applicable for verification and validation of a system.
Formal methods are used to verifying the specification of a system. Although the
safety-critical systems have got the confidence in the development due to use of for-
mal methods, such techniques are applicable in a wide variety of application areas
in industry. Formal methods have been used to improve the quality of the system as
well as verifying the correctness of a system at an early stage of the system develop-
ment. A set of examples that pioneered the application of formal methods, to more
recent examples that illustrate the current state of the art. Here, we have given a
list of industrial applications, where formal methods have been used in the projects.
A detail survey of all these projects is presented in [13, 14, 23, 97].

2.10.1 IBM’s Customer Information Control System

A successful application of formal methods was the verification of the Customer In-
formation Control System (CICS) in 1980, which was collaborated between Oxford
University and IBM Hursley Laboratories [49]. The overall system contains more
than 750,000 lines of code. Some part of the code was produced from Z specifica-
tions, or partially specified in Z, and the resulting specifications were verified using a
rigorous approach. Some tools, related to the type checking and parsing were devel-
oped during the project, which were used to assist the specifier and code inspector.
More than 2000 pages of formal specifications were developed for verifying the sys-
tem. Measurements taken by IBM throughout the development process indicated an
overall improvement in the quality of the product, a reduction in the number of errors
discovered, and earlier detection of errors found in the process [23]. Furthermore, it
was estimated that the use of formal methods reduced 9 % of the development cost
for the new release of the software.

2.10.2 The Central Control Function Display Information System
(CDIS)

The Center Control Function Display (CDIS) System was delivered from Praxis to
the UK Civil Aviation Authority in 1992 for London’s airspace as a new air traffic
management system [39]. The CDIS system consists of fault tolerant architecture of
a distributed network, where more than 100 computers are linked together. Formal
methods were used at various levels of the system development. The requirements
analysis phase was represented by formal descriptions using structured notations.
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The VDM [10] tool was used for specifying the whole system, which specified con-
current system behaviours. At the product design level, the VDM code was refined
into more concrete specifications, and a lower level code was formally specified and
developed using CCS [85]. The productivity of the system was better than the tra-
ditional system development and the quality of the system was improved through
finding some faults.

2.10.3 The Paris Métro Signalling System (SACEM)

The SACEM system [44] was developed by several industrial partners GEC Al-
sthom, MATRA Transport and CSEE (Compagnie des Signaux et d’Entreprises
Électriques) in 1989. The system was responsible for controlling the RER commuter
train system Paris. The existing system was made of embedded software and hard-
ware, where software had 21000 lines of code. Some parts of the SACEM software
were formally specified in the B modelling language [2] for the proving purpose.
The SACEM project is an example of “reverse engineering” process, where formal
specification and verification were conducted after developing the code. Finally, the
system was certified by the French railway authority.

ClearSy has developed the screen door controllers for Paris metro line using B
formal methods [71]. The models are developed using correct by construction ap-
proach and to prove the absence of failure in the system behaviour. A constructive
process was used during system specification and design leads to a high-quality
system.

2.10.4 The Traffic Collision Avoidance System (TCAS)

Formal specification of the Traffic Collision Avoidance System (TCAS) [15] is
another interesting example of the application of formal methods in the air-traffic
transport domain. The TCAS system is used by all commercial aircraft for reducing
the chance of a mid-air collision. In early 1990s, a safety critical system research
group at the University of California, produced a formal requirements specifica-
tion for the TCAS due to occurring some flaws in the original TCAS specification.
The formal specification was developed into Requirements State Machine Language
(RSML) [75], which is based on a variant of Statecharts [40]. The original specifi-
cation was not supported by existing formal methods tools, but nevertheless, it was
very useful for the project reviewers, in the sense of improving the original specifi-
cation. Heimdahl et al. [43] successfully checked the consistency and completeness
of the TCAS specification and provably-correct code generated from the RSML
specification.
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2.10.5 The Rockwell AAMP5 Microprocessor

The microcode of AAMP5 microprocessor was formally specified and verified,
which was produced by Rockwell [84]. This project was undertaken by Collins
Commercial Avionics (CCA) and SRI. The AAMP5 microprocessor has a complex
architecture, designed for Ada language and implements floating-point arithmetic in
the microcode. PVS theorem prover [26] was used for specifying and verifying the
microcode of the AAMP5 instructions.

2.10.6 The VIPER Microprocessor

VIPER microprocessor was developed with a simple architecture, specifically for
the safety critical applications [27]. Formal methods were used throughout the de-
velopment cycle of VIPER, at the different level using different techniques. This
work was conducted by the Royal Signals and Radar Establishment (RSRE). Some
parts of the system were specified by the HOL theorem prover and LCF-LSM lan-
guage [37]. Mainly top level specification and abstract level view for register trans-
fer level were carried out in the HOL. There was not any significant result through
this formal verification except finding some minor flaws in the system, which had
no concerns for the fabricators of the chip.

2.10.7 INMOS Transputer

In 1985, a microprocessor manufacturing company INMOS starts to use the formal
program specification, transformation and proof techniques for designing a micro-
processor. Formal methods based techniques were used for designing or developing
the components of the INMOS Transputer. Different types of formal techniques
like, Z, Occam and CSP were the main tools for specifying system requirements.
For example, the Z specification language was used to specify the IEEE Floating
Point Standard, and the combined approach of Z and Occam was used to design the
scheduler, for the microprocessor. Later, the CSP with other formal techniques were
used in design and verification of new features on the third generation Transputer
(T9000), Virtual Channel Processor (VCP). The VCP is a device that allows several
logical connections between two processors that was implemented by a single phys-
ical connection. This successful application of formal methods offers to apply into
a hardware engineering environment [25].

2.10.8 The Mondex Electronic Purse

In this section, we have mentioned the Mondex Electronic Purse as a significant ex-
ample of the use of formal methods in an industrial-scale application. The Mondex
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Electronic Purse [16, 100, 112] is an electronic system for e-commerce, based on
smart card, produced by NatWest Development Team. Electronic purse must ensure
the security of each transaction. Formal methods were used by a several group of
researchers for verifying the protocol of money transfer over an insecure and lossy
medium. The whole formal specification of the Mondex system was developed and
proved from an abstract model to concrete model using refinement approach. The
abstract model was focused specially on the safety properties of the system.

2.10.9 Darlington: Trip Computer Software

This case study describes the computerised shutdown system of Darlington Nuclear
Generating Station (DNGS). The shutdown application contains two independent
systems, Shutdown System One (SDS1) and Shutdown System Two (SDS2). The
SDS1 is operated by dropping neutron-absorbing rods into the core; the SDS2 is
operated by liquid poison injection into the moderator [25, 107]. The Trip comput-
ers are connected with plant sensor to shutdown the system, whenever shutdown is
required. This Trip computers are used alone to concern the safety issues. The shut-
down systems were required a high level of confidence to obtain the certification
standard. The regulatory bodies were not sure to check the validity of the software.
Thus, the formal techniques were used to identify the discrepancies in the shutdown
systems. The verification process was conducted on the complete system. The entire
process is reported in [5]. The final system was redesigned or modified according to
the regulators and concludes that the new develop system is safe for use.

2.10.10 The BOS Control System

The BOS Software is an automatic system, which is used to protect the harbour
of Rotterdam from flooding, while concurrently also controls the ship traffic [104].
BOS controls a movable barrier, taking decisions of when and how the barrier has to
move, based on chaotic behaviour of water level, tidal info, and weather precondi-
tions. BOS is a highly critical system, which is characterised by IEC 61508 [53]. The
design and implementation of the BOS were undertaken by CMG Den Haag B.V., in
collaboration with a formal methods team at University of Twente. Different kinds
of methodologies were applied during development of the system. Mainly formal
methods were used to specify the crucial part of the system for validating the system
specification. The control part of the system was formally specified in PROMELA
and the data part into Z specification language. The formal validation of the design
focused on the communication protocol between BOS and an environment. The fi-
nal implementation of the system was done in C++ which was generated from Z
specification. At the initial level of the system development, formal methods helped
to uncover several issues in the existing system. Overall use of the formal methods
improves the quality of the system.
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2.10.11 NIST Token-Based Access Control System (TBACS)

Token-Based Access Control System (TBACS) is a smart card access control sys-
tem that is based on cryptographic technique. This system was developed by US
National Institute for Standard and Technology (NIST) [25], where they used for-
mal techniques in order to verify all the essential safety properties. A set of permit-
ted and prohibited actions were the main safety properties that were mainly focused
on information access and transmission. These safety properties were formally ex-
pressed in mathematical logic using a set of invariants. In this development process,
a theorem prover tool FDM was used for verification purpose. The FDM tool was
very useful to identify a significant flaw related to the smart token that was eas-
ily removed without any excessive cost of the system development. The TBACS
experiment provides a proper guidelines to satisfy related standards.

2.10.12 The Intel® Core™ i7 Processor Execution Cluster

Intel Core i7 processor [65] is used to verify using formal methods. The Intel Core i7
processor is a multi-core processor, where formal methods were used for pre-silicon
validation of the execution cluster EXE, a component that is responsible for carry-
ing out data computations for all microinstructions. The EXE cluster implements
more than 2,700 microinstructions and supports multi-threading. The formal meth-
ods were used here to verify the data-path, control logic, and the state of the com-
ponents. Formal methods based on symbolic simulation, and inductive invariants
were used in the validation process of the processor. The significant contribution
was of this project that the formal verification completely replaced traditional cov-
erage driven testing and proved that the formal verification was a viable alternative
approach for traditional testing techniques in terms of time and costs with respect to
quality of the system.

Here, we have presented a list of projects related the critical system development
using formal methods. All these projects have used different kinds of formal tech-
niques for discovering the bugs at the early stage of the system development and
have shown that formal methods could be a significant approach for verifying the
systems. Formal method techniques are very expensive and hard to apply in the sys-
tem development process due to complexity of mathematics and the limitations of
existing tools [26, 64, 88]. Main limitations are, each tool based on formal method
can be used for only specific purpose, and a formal model developer requires good
experience to use formal methods and knowledge of related mathematics. To know
the significant use of formal methods [13, 14, 23, 97] as well as handling its com-
plexity, in this book, we propose a new development life-cycle methodology, where
each step is based on formal techniques. In this context, we develop a chain of
techniques and tools for supporting the system development life-cycle using formal
techniques from requirement analysis to code generation.



36 2 Background

2.11 Formal Methods for Safety-Critical Systems

This section presents the use of formal methods in the critical device system soft-
ware development through providing some informal definitions of the main con-
cepts.

2.11.1 Why Formal Methods?

Providing a high integrity system with the embedded software requires a careful ar-
gument for its justification. Demonstrating the requirements through sufficient sta-
tistical evidence based on testing, and other general reliability measures has been
shown to be doubtful. Thus, some other kinds of arguments have to be written,
which must be precise—in language that is well-defined, whose meaning is clear,
and with the ability to prove statements without doubt. Since natural language is
unable to fulfil such demands, the only possible solution is to use a mathematical
approach—formal methods [103].

A formal approach is an ideal for verification, the activity guaranteeing correct-
ness, that we are building the system right and particularly, that successive refine-
ments of a specification are consistent with each other. More than that, the discipline
which they encourage often leads to a more careful analysis of the most basic as-
sumptions and definitions in the design, a benefit which is often understated [103].
In particular, they may point to ambiguities in the requirements’ definition. Formal
methods are thus effective for validation—making sure that we are building the right
system [13, 47, 102].

The main objective of formal methods is to help developers to build the reliable
systems. Formal methods is a cutting-edge technology for developing the critical
systems, where high safety and security are required. Mathematics is a basic foun-
dation for formal logic that provides some ways to discover potential errors at the
early stage of the development. Figure 2.8 presents modified V-model after intro-
ducing formal methods in a development process. This figure shows that module
testing and integration testing are not required due to formally verified system at
the specification and design level. Formal methods help to reduce the burden of ex-
haustive testing, which are used by the traditional development. Formal techniques
verify the whole system at the early stage of the system development during speci-
fication and design, and to prove the correctness of the system. We cannot say that
formal method is a silver bullet, but it is more reliable than the other traditional de-
velopment approaches. Now formal methods’ techniques are feasible to apply for
any larger and complex problems.

2.11.2 Motivation for Their Use

The use of formal methods is very limited in current industrial practice. It is mainly
used for verification and validation of any specific part of the system. Specifically,
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Fig. 2.8 The V-model of safety-critical system development using formal methods

it addresses that the formal methods are not well integrated into established critical
system development processes. There are a number of reasons for this. First, the
application of formal methods requires high abstraction and mathematical skills to
write specifications and conduct proofs, and to read and understand formal specifi-
cations and proofs, especially when they are very complex. Second, existing formal
methods do not offer usable and effective methods to use in the well-established
industrial software process. There are lots of effective tools are available, which are
crucial for formal methods application, but existing tools are not able to support a
complete formal software-development process, although tools supporting the use
of formal methods in limited areas are available in [26, 64, 88]. To make formal
methods more practical and acceptable in industry, some substantial changes must
be made.

This book proposes a development life-cycle and a set of associated techniques
and tools to develop the highly critical systems using formal techniques from re-
quirements analysis to automatic source code generation. In this context, we have
developed a set of techniques and tools related to the Event-B modelling lan-
guage [3]. Event-B modelling language is only used for verifying the part of a
system. There is not a set of supporting tools, which can be used for the formal
software development. The proposed techniques and tools have filled all missing
tools and provide a rigorous framework for the system development process. The
proposed approach is evaluated through a “Grand Challenge” case study, relative to
the development of the cardiac pacemaker. This case study is related to the medical
domain. Our main objective is to use this case study to show the effectiveness of our
proposed approach and give the evidence that developed techniques and tools are
applicable for any critical systems.

In this book, we have provided some possible solutions for the emerging prob-
lems in the area of software engineering related to the development of the critical
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systems. We have captured some missing things in the existing tools related to the
formal methods that are essentially required for developing any highly critical sys-
tem. We have proposed a set of new techniques and tools to model the critical sys-
tems, which cover some set of weakness in the existing approach. No one method or
tool can serve all purposes. From the experience, we have learnt what kinds of tech-
niques can have the most impact. To be attractive to the practitioners, methods and
tools should satisfy the following criteria, where we realise that some of these crite-
ria are ideals, but it is still good to strive for them and some of the basic criteria [23]
are required in the development of methods and tools:

1. Methods and tools should provide significant benefits for developing a system,
when starting to use them.

2. Helps for writing clear, consistent and unambiguous specifications.
3. It should be possible to amortise the cost of a method or tool over many uses.

For example, it should be possible to derive benefits from a single specification
at several points in a programme life-cycle: in design analysis, code optimisa-
tion, test case generation, and regression testing. Moreover existing developed
specification can be reused for other development processes.

4. Methods and tools should work in conjunction with each other and with com-
mon programming languages and techniques. Developers should not have to
“buy into” a new methodology completely to begin receiving benefits. The use
of tools for formal methods should be integrated with that of tools for traditional
software development, for example, compilers and simulators.

5. Notations and tools should provide a starting point for writing formal specifi-
cations for developers who would not otherwise write them. The knowledge of
formal specifications needed to start realising benefits should be minimal.

6. Methods and tools should support evolutionary system development by allowing
partial specification and analysis of selected aspects of a system.

A new method or tool should have precise strengths and weakness, limitations,
modelling assumptions and to support for ease integration with other technique’s,
etc. Clear selection criteria helps the potential users to decide what method or tool
is most appropriate for the particular problem. Given that no formal methods tech-
nique is likely to be suitable for describing and analysing every aspect of a complex
system, a practical approach is to use different methods in combination. Based on
the results of the survey performed in this chapter it is possible to identify the con-
tribution that this book makes. We have given our motivation for developing new
techniques and tools as follows:

• Development life-cycle methodology: This is the heart of the book, which presents
a methodology for the critical system development from requirement analysis to
automatic code generation with standard safety assessment approach. It is an ex-
tension of the waterfall model [8, 108] with some rigorous approaches to produce
a reliable critical system. This methodology combines the refinement approach
with a verification tool, model checker tool, real-time animator and finally gener-
ates the source code using automatic code generation tools. This kind of approach
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is very useful to develop the whole system using formal techniques and to verify
the complex properties of a system and to discover the potential problems.

• Environment modelling: The most challenging problem is an environment mod-
elling, for instance, to validate and verify the correct behaviour of a system model,
requires an interactive formal model (an environment formal model). For exam-
ple, a cardiac pacemaker or cardioverter-defibrillators (ICDs) formal models re-
quire a heart model to verify the correctness of the developed system. No any
tools and techniques are available to provide an environment modelling to verify
the developed system model. The main objective is to use formal approach for
modelling the medical device and biological environment to verify the correct-
ness of the medical systems.

To model a biological environment (the heart) for a cardiac pacemaker or
cardioverter-defibrillators (ICDs), we propose a method for modelling a math-
ematical heart model based on logico-mathematical theory. The heart model is
based on electrocardiography analysis [7, 41, 69], which models the heart sys-
tem at cellular level [106]. The main key feature of this heart model is the
representation of all the possible morphological states of the electrocardiogram
(ECG) [6, 7]. The morphological states represent the normal and abnormal states
of the electrocardiogram (ECG). The morphological representation generates any
kind of heart model (patients model or normal heart model using ECG). This
model can observe a failure of impulse generation and failure of impulse propa-
gation.

• Refinement chart: There are several ways to handle the design complexity of a
system. Refinement technique is the most common approach, which facilitates to
build a system gradually. We have discovered a very simple way to present the
whole system based on operational behavioural using a refinement chart. The re-
finement chart is a graphical representation of a complex system using layering
approach, where functional blocks are divided into multiple simpler blocks in a
new refinement level, without changing the original behaviour of the system. The
final goal to use this refinement chart is to obtain a specification that is detailed
enough to be effectively implemented, but also to correctly describe the require-
ments of a system. The purpose of the refinement chart is to provide an easily
manageable representation for different refinements of a system. The refinement
chart offers a clear view of assistance in “system” integration. This approach also
gives a clear view about the system assembling based on the operating modes and
different kinds of features. For example, if a developer does not want to provide
any particular feature in any system, then using the refinement chart, it is possible
to find that removable feature easily and not to include in the final development
system. However, it can also provide the information that, which other parts will
be affect-able, when we remove the particular operating modes.

• Real-time animator: Lots of formal methods based animator are available for dif-
ferent formal languages. But all kinds of animator use only toy-data sets. No any
tool is available for real-time data testing without generating the source code of
the system. We have provided an architecture to use a set of real-time data for
animation using formal specification. Here, we have discovered that the medical
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experts are unable to understand the complex formal specifications, so that we
have proposed a new technique to apply a real-time data set to animate the for-
mal specification and a domain expert can anticipate in the system development.
Another objective is to develop this technique also for requirement traceability
according to the domain experts. For example, through the animation of the for-
mal model using real-time data set, domain experts can help to find the missing
behaviour of a system.

• Automatic source code generation form formal models: Different kinds of code
generation tools are available, and can generate source code into any program-
ming languages but the main constraint is that all those tools are not applicable
to generating the codes from Event-B modelling language. The main objective is
to develop a set of code generation tools, which can support automatic code gen-
eration into several programming languages from Event-B modelling language
and supports in the development life-cycle of a critical system from requirement
analysis to code generation.

• Integration of different approaches: We proposed a new framework to compose
different kinds of formal techniques to model a critical system to overcome the
existing problems. An integration of formal techniques in the development pro-
cess of a critical system provides the modelling concepts with formal semantics
that captures at a high-level of abstraction. Modelling concepts should not be re-
stricted due to apply the verification techniques for checking the correctness of a
system. However, the system specifier should have the freedom to use the intu-
itive modelling concepts neglecting the complexity they impose on verification.
The integration framework should bridge the gap between modelling concepts
and input that is required for verification tools. For instance, integration of theo-
rem prover and model checker can be used for verifying the essential properties.
The compositional reasoning strategies using theorem prover and model check-
ing can reduce the verification effort and to verify the required safety properties.
The model checker helps to discover lots of errors and strengthening the safety
properties through careful cross analysis of the model animation. System specifi-
cations are verified by both the model checker and theorem prover tools to prove
the absence of any error.
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Chapter 3
The Modelling Framework: Event-B

Abstract This chapter presents an overview of the Event-B notations that are
used to formalise the cardiac pacemaker case study. Event-B has evolved from the
Classical B for specifying and reasoning about reactive systems. Main motivation
to select Event-B is targeted at an incremental modelling style where a system is
defined abstractly, and later interesting properties are introduced in an incremental
fashion using a stepwise refinement. The use of refinement represents a system at
different levels of abstraction and the use of mathematical proof verifies consistency
between the refinement levels. Event-B is an event-based approach which is defined
in terms of a few simple concepts describing a discrete event system and proof
obligations that permit verification of properties of an event system. This chapter
explains the fundamental concepts and formal notations of Event-B modelling lan-
guage. Event-B is provided with tool support in the form of an open and extensible
Eclipse-based IDE called Rodin, which is a platform for the Event-B specification
and verification.

3.1 Introduction

3.1.1 Overview of B

Classical B is a state-based method developed by Abrial for specifying, design-
ing and coding software systems. It is based on Zermelo-Fraenkel set theory with
the axiom of choice. Sets are used for data modelling, Generalised Substitutions
are used to describe state modifications, the refinement calculus is used to relate
models at varying levels of abstraction, and there are a number of structuring mech-
anisms (machine, refinement, implementation), which are used in the organisation
of a development. The first version of the B method is extensively described in The
B-book [2]. It is supported by the Atelier B tool [21] and by the B Toolkit [10].

Central to the classical B approach is the idea of a software operation which will
perform according to a given specification if called within a given pre-condition.
Subsequent to the formulation of the classical approach, Abrial and others have
developed a more general approach in which the notion of event is fundamental. An
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event has a firing condition (a guard) as opposed to a pre-condition. It may fire when
its guard is true. Event based models have proved useful in requirement analysis,
modelling distributed systems and in the discovery/design of both distributed and
sequential programming algorithms.

After an extensive experience with B, current work by Abrial is proposing the for-
mulation of a second version of the method [3]. This distills experience gained with
the event-based approach and provides a general framework for the development of
discrete systems. Although this widens the scope of the method, the mathematical
foundations of both versions of the method are the same.

3.1.2 Proof-Based Development

Proof-based development methods [2, 7, 34] integrate formal proof techniques in
the development of software systems. The main idea is to start with a very abstract
model of the system under development. Details are gradually added to this first
model by building a sequence of more concrete ones. The relationship between two
successive models in this sequence is that of refinement [2, 7, 9, 19]. The essence
of the refinement relationship is that it preserves already proved system properties
including safety properties and termination.

A development gives rise to a number of, so-called, proof obligations, which
guarantee its correctness. Such proof obligations are discharged by the proof tool
using automatic and interactive proof procedures supported by a proof engine [21,
22].

At the most abstract level it is obligatory to describe the static properties of a
model’s data by means of an invariant predicate. This gives rise to proof obligations
relating to the consistency of the model. They are required to ensure that data prop-
erties which are claimed to be invariant are preserved by the events or operations of
the model. Each refinement step is associated with a further invariant which relates
the data of the more concrete model to that of the abstract model and states any
additional invariant properties of the (possibly richer) concrete data model. These
invariants, so-called gluing invariants are used in the formulation of the refinement
proof obligations.

The goal of a B development is to obtain a proved model. Since the development
process leads to numerous proof obligations, the mastering of proof complexity is a
crucial issue. Even if a proof tool is available, its effective power is limited by clas-
sical results over logical theories and we must distribute the complexity of proofs
over the components of the current development, e.g. by refinement. Refinement
has the potential to decrease the complexity of the proof process whilst allowing for
traceability of requirements.

B models rarely need to make assumptions about the size of a system being mod-
elled, e.g. the number of nodes in a network. This is in contrast to model checking
approaches [20]. The price to pay is to face possibly complex mathematical theories
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and difficult proofs. The re-use of developed models and the structuring mecha-
nisms available in B help in decreasing the complexity. Where B has been exercised
on known difficult problems, the result has often been a simpler proof development
than has been achieved by users of other more monolithic techniques [33].

3.1.3 Scope of the B Modelling

The scope of the B method concerns the complete process of software and system
development. Initially, the B method was mainly restricted to the development of
software systems [11, 26, 30] but a wider scope for the method has emerged with
the incorporation of the event based approach [1, 3, 5, 14, 15] and is related to the
systematic derivation of reactive distributed systems. Events are simply expressed in
the rich syntax of the B language. Abrial and Mussat [5] introduce elements to han-
dle liveness properties. The refinement of the event-based B method does not deal
with fairness constraints but introduces explicit counters to ensure the happening of
abstract events, while new events are introduced in a refined model. Among case
studies developed in B, we can mention the METEOR project [11] for controlling
train traffic, the PCI protocol [18], the IEEE 1394 Tree Identify Protocol [6]. Finally,
B has been combined with CSP for handling communications systems [13, 14] and
with action systems [15]. The proposal can be compared to the action systems [8],
UNITY programs [19] and TLA+ [28] specifications but there is no notion of ab-
stract fairness like in TLA+ or in UNITY.

3.1.4 Structure of This Chapter

This chapter presents basic information about Event-B modelling language. Sec-
tion 3.2 explores the related techniques and Sect. 3.3 presents the Event-B modelling
notation. Section 3.4 gives an idea about modelling actions over states, and Sect. 3.5
represents the proof obligations. Section 3.6 gives detail about model refinement,
and finally, Sect. 3.7 discusses about the decomposition approach in modelling.

3.2 Related Techniques

The B method is a state-based method integrating set theory, predicate calculus and
generalised substitution language. We briefly compare it to related notations.

Like Z [25, 37], B is based on the ZF set theory; both notations share the same
roots, but we can point to a number of interesting differences. Z expresses state
change by use of before and after predicates, whereas the predicate transformer se-
mantics of B allows a notation which is closer to programming. Invariants in Z are
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incorporated into operation descriptions and alter their meaning, whereas the invari-
ant in B is checked against the state changes described by operations and events
to ensure consistency. Finally, B makes a careful distinction between the logical
properties of pre-conditions and guards, which are not clearly distinguished in Z.

The refinement calculus used in B for defining the refinement between models in
the event-based B approach is very close to Back’s action systems, but tool support
for action systems appears to be less mechanised than B.

TLA+ [29, 32] can be compared to B, since it includes set theory with the ε

operator of Hilbert. The semantics of TLA+ temporal operator is expressed over
traces of states whereas the semantics of B actions is expressed in the weakest pre-
condition calculus. Both semantics are equivalent with respect to safety properties,
but the trace semantics of TLA+ allows an expression of fairness and eventuality
properties that is not directly available in B.

VDM [23, 27] is a method with similar objectives to classical B. Like B it uses
partial functions to model data, which can lead to meaningless terms and predicates,
e.g. when a function is an applied outside its domain. VDM uses a special three val-
ued logic to deal with indefiniteness. B retains classical two valued logic, which
simplifies proof at the expense of requiring more care with indefiniteness. Recent
approaches to this problem will be mentioned later. ASM [12, 24, 35] and B share
common objectives related to the design and the analysis of (software/hardware)
systems. Both methods bridge the gap between human understanding and formula-
tion of real-world problems and the deployment of their computer-based solutions.
Each has a simple scientific foundation: B is based on set theory, and ASM is based
on the algebraic framework with an abstract state change mechanism. An Abstract
State Machine is defined by a signature, an abstract state, a finite collection of rules
and a specific rule; rules provide an operational style very useful for modelling spec-
ification and programming mechanisms. Like B, ASM includes a refinement relation
for the incremental design of systems; the tool support of ASM is under develop-
ment, but it allows one to verify and to analyse ASMs. In applications, B seems to
be more mature than ASM, even if ASM has several real successes like the valida-
tion [38] of Java and the Java Virtual Machine.

3.3 The Event-B Modelling Notation

Event-B [4], unlike Classical B [2], does not have a fixed syntax. We summarise
the concepts of the Event-B modelling language [4, 17] developed by Abrial and
indicate the links with the tool called Rodin [36]. Here, we present the basic notation
for Event-B using some syntax. We proceed like this to improve legibility and help
the reader remembering the different constructs of Event-B. The syntax should be
understood as a convention for presenting Event-B models in a textual form rather
than defining a language.

Event-B [4] modelling language has mainly two main constructs contexts and
machines, which are used to model a system. Contexts is used to formalise the static
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Fig. 3.1 Relationship
between constructs: Machine
and Contexts

parts of the system, while Machines is used to specify dynamic behaviour of the
system. Context can be extended by other contexts and referenced by machines.
A dynamic part of the system, machines can be refined by machines. Figure 3.1
depicts basic constructs and their relationship.

3.3.1 Contexts

Contexts express the axiomatic static properties of the models. Contexts may con-
tain carrier sets (s), constants (c), axioms, and theorems. The carrier sets are just
represented by their name. The different carrier sets of a context are completely in-
dependent, and that are supposed to be non-empty. The constants are defined using
a set of predicates. The predicates of a system require to satisfy properties P(s, c).
A set of axioms can describe properties of the carrier sets and the constants. Theo-
rems are derived properties that can be proved from the axioms. Proof obligations
associated with contexts are straightforward: the stated theorems must be proved,
which follow from the predefined axioms and theorems. Additionally, a context may
be indirectly seen by machines. Namely, a context C can be seen by a machine M

indirectly if the machine M explicitly sees a context which is an extension of the
context C.

3.3.2 Machines

A machine is a known as a formal discrete model that expresses dynamic be-
havioural properties of a system. The machine model contains a set of state variables
(x), invariants I (x), theorems, events (e), and variants. A variable x represents the
state of the machine. The variables, like constants, correspond to simple mathemat-
ical objects: sets, binary relations, functions, numbers, etc. They are constrained by
invariants I (x). Invariants I (x) are supposed to hold whenever the value of vari-
ables changes.

A machine is organising events modifying state variables, and it uses static in-
formations defined in a context. These basic structure mechanisms are extended
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Table 3.1 Set-theoretical notation

Name Syntax Definition

Binary relation s ↔ t (P)(s × t)

Composition of relations r1; r2 {x, y | x ∈ a ∧ y ∈ b ∧ ∃z.(z ∈ c ∧ x, z ∈ r1 ∧ z, y ∈ r2)}
Inverse relation r−1 {x, y | x ∈ P(a) ∧ y ∈ D(b) ∧ a �→ b ∈ r}
Domain dom(r) {a | a ∈ s ∧ ∃b.(b ∈ t ∧ a �→ b ∈ r)}
Range ran(r) dom(r−1)

Identity id(s) {x, y | x ∈ s ∧ y ∈ s ∧ x = y}
Restriction s � r id(s); r
Co-restriction r � s r; id(s)

Anti-restriction s � r (dom(r) − s) � r

Anti-co-restriction r �− s r � (ran(r) − s)

Image r[w] ran(w � r)

Overriding q �− r (dom(r) � q) ∪ r

Partial function s �→ t {r | r ∈ s ↔ t ∧ (r−1; r) ⊆ id(t)}

by the refinement mechanism which provides a mechanism for relating an abstract
model and a concrete model by adding new events or by adding new variables. This
mechanism allows us to develop gradually Event-B models and to validate each de-
cision step using the proof tools. The refinement relationship should be expressed
as follows: a model M is refined by a model P , when P is simulating M . The final
concrete model is close to the behaviour of the real system that is executing events
using real source code. We give details now on the definition of events, refinement
and guidelines for developing the complex system models.

3.4 Modelling Actions over States

The event-driven approach [4, 17] is based on the Classical B notation [2]. It ex-
tends the methodological scope of basic concepts to take into account the idea of
formal reactive models. Briefly, a formal reactive model is characterised by a (fi-
nite) list x of state variables possibly modified by a (finite) list of events, where an
invariant I (x) states properties that must always be satisfied by the variables x and
maintained by the activation of the events. Table 3.1 presents some set-theoretical
notations of Event-B [4] and Classical B [2], which are used to formalise a system.
We summarise the definitions and principles of formal models and explain how they
can be managed by tools [36].

Each event is composed of a guard G(t, x) and an action R(t, x), where t are lo-
cal variables the event may contain. The guard states the necessary condition under
which an event may occur, and the action describes how the state variables evolve
when the event occurs. The first general form for an event is as follows:

ANY t WHERE G(x, t) THEN x : |R(x, x′, t) END
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Table 3.2 List of generalised
substitutions Type Generalised substitution

Empty skip

Deterministic x := E(x, t)

Non-deterministic x :∈ E(x, t)

x : |P (x, x′)

Second form of an event (e), when event (e) has not any local variable (t), then
an event is represented as follows:

WHEN G(x) THEN x : |R(x, x′) END

Third form of an event (e), when event (e) has not any guard (G) and local
variable (t), then an event is represented as follows:

BEGIN x : |R(x, x′) END

The first form for an event means that it is guarded by a guard that states the
necessary condition for this event to occur. The guard is represented by ∃t · G(t, x).
It defines a possibly non-deterministic event where t represents a vector of distinct
local variables. It is also semantically equivalent to ∃t ·(G(t, x) ∧ R(x, x′, t)). In
the first, second and third forms, before-after predicate BA(e)(x, x′), associated
with each event e, describes the event as a logical predicate expressing the relation-
ship linking the values of the state variables just before (x) and just after (x′) the
execution of event e. The third form of the event (e) is used for initialisation.

Generalised substitutions (see Table 3.2) are also borrowed from the B nota-
tion [2]. They provide a means to express changes to state variable values. The ac-
tion of an event is composed of mainly three kinds of assignments: skip (do nothing),
deterministic assignment and non-deterministic assignment. Where x is a variable,
E is an expression and P is a predicate. The value of x in each case depends on its
corresponding expression/predicate. For example, x :∈ E(x, t), x will be assigned
as an element of E(x, t). In the case of x : |P(x, x′), x will be assigned as a value
satisfying the predicate P . x : |P(x, x′) is a more general substitution form of an as-
signment predicate. This should be read as x is modified in such a way that the value
of x afterwards, denoted by x′, satisfies the predicate P(x, x′), where x′ denotes the
new value of the vector and x denotes its old value.

3.5 Proof Obligations

Proof obligations are generated by Rodin tool [36]. Different kinds of proof obli-
gations are produced by Rodin tool that are as follows: WD (well-definedness), INV
(Invariant Preservation), GRD (Guard Strengthening), SIM (Action Simulation), FIS
(Feasibility), etc. The WD proof obligations are generated to ensure that formal pred-
icates and expressions are well defined, which covers generally axioms, invariants,
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event guards/actions. The Rodin tool supports well-definedness to aid the activities
of modelling and proving [2]. The INV proof obligations are generated to guarantee
that the invariants are always preserved whenever the machine state changes. Proof
obligations (INV 1 and INV 2) are produced by the Rodin tool [36] from events to
state that an invariant condition I (x) is preserved. Their general form follows imme-
diately from the definition of the before-after predicate BA(e)(x, x′) of each event
e and grd(e)(x) is safety of the guard G(t, x) of the event e:

(INV1) Init(x) ⇒ I (x)

(INV2) I (x) ∧ BA(e)(x, x′) ⇒ I (x′)

The generated GRD proof obligation ensures that the guard of a concrete event
is a correct refinement of the corresponding guard of the abstract event. Finally, the
generated SIM proof obligations aim to ensure that the abstract actions are refined
correctly by the action of the corresponding concrete event as specified by any glu-
ing invariants. Note that it follows from the two guarded forms of the events that
this obligation is trivially discharged when the guard of an event is false. Whenever
this is the case, the event is said to be disabled.

The proof obligation FIS expresses the feasibility of the event e with respect to
the invariant I . By proving feasibility we achieve that BA(e)(x, y) provides an after
state whenever grd(e)(x) holds. This means that the guard indeed represents the en-
abling condition of the event. The intention of specifying a guard of an event is that
the event may always occur when the guard is true. There is, however, some interac-
tion between guards and non-deterministic assignments, namely x : |BA(e)(x, x′).
The predicate BA(e)(x, x′) of an action x : |BA(e)(x, x′) is not satisfiable or the set
S of an action v :∈ S is empty. Both cases show violations of the event feasibility
proof obligation.

(FIS) I (x) ∧ grd(e)(x) ⇒ ∃y.BA(e)(x, y)

We say that an assignment is feasible if there is an after-state satisfying the corre-
sponding before-after predicate. For each event its feasibility must be proved. Note,
that for deterministic assignments, the proof of feasibility is trivial. Furthermore,
note that feasibility of the initialisation of a machine yields the existence of an ini-
tial state of the machine. It is not necessary to require an extra initialisation.

It is sometimes useful to state that the model which has been defined is deadlock
free, that it can run for ever. This is very simply done by stating that the disjunction
of the event guards always hold under the properties of the constant and the invari-
ant. This is shown as follows, where G1(e)(x), . . . ,Gn(e)(x) denotes the guards of
events.

(DKLF) I (x) ⇒ G1(e)(x) ∨ G2(e)(x), . . . ,Gn(e)(x)

3.6 Model Refinement

The refinement of a formal model allows us to enrich the model via a step-by-step
approach and is the foundation of our correct-by-construction approach [31]. Re-
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finement provides a way to strengthen invariants and to add details to a model. It is
also used to transform an abstract model to a more concrete version by modifying
the state description. This is done by extending the list of state variables (possibly
suppressing some of them), by refining each abstract event to a set of possible con-
crete version, and by adding new events. The abstract (x) and concrete (y) state
variables are linked by means of a gluing invariant J (x, y). A number of proof
obligations ensures that,

• each abstract event is correctly refined by its corresponding concrete version;
• each new event refines skip;
• no new event takes control for ever;
• relative deadlock freedom is preserved.

Details of the formulation of these proofs follow. We suppose that an abstract
model AM with variables x and invariant I (x) is refined by a concrete model CM

with variables y and gluing invariant J (x, y). Event e is in abstract model AM

and event f is in concrete model CM . Event f refines event e. BA(e)(x, x′) and
BA(f )(y, y′) are predicates of events e and f , respectively. We have to prove the
following statement, corresponding to proof obligation (1):

I (x) ∧ J (x, y) ∧ BA(f )(y, y′) ⇒ ∃x′ · (BA(e)(x, x′) ∧ J (x′, y′))

A set of new introduced events in a refinement step can be viewed as hidden
events not visible to the environment of a system and are thus outside the control
of the environment. In Event-B, requiring a new event to refine skip means that
the effect of the new event is not observable in the abstract model. Any number of
executions of an internal action may occur in between each execution of a visible
action. Now, proof obligation (2) states that BA(f )(y, y′) must refine skip (x′ = x),
generating the following simple statement to prove (2):

I (x) ∧ J (x, y) ∧ BA(f )(y, y′) ⇒ J (x, y′)

The third kind of proof obligation is related to the progress of its execution,
where a standard technique is to introduce a variant V (y) that is decreased by each
new event (to guarantee that an abstract step may occur). This leads to the following
simple statement to prove (3):

I (x) ∧ J (x, y) ∧ BA(f )(y, y′) ⇒ V (y′) < V (y)

The relative deadlock freeness [16] is the property to prove that the concrete
model does not introduce additional deadlocks. We give formalisms for reasoning
about the guards of an event in the concrete and abstract models: grds(AM) repre-
sents the disjunction of the guards of events of the abstract model, and grds(CM)

represents the disjunction of the guards of events of the concrete model. Relative
deadlock freeness is now easily formalised as the following proof obligation (4):

I (x) ∧ J (x, y) ∧ grds(AM) ⇒ grds(CM)

In refining a model, an existing event can be refined by strengthening the
guard and/or the before-after predicate (effectively reducing the degree of non-
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determinism), or a new event can be added to refine the skip event. The feasi-
bility condition is crucial to avoiding possible states that have no successor, such
as division by zero. Furthermore, this refinement guarantees that the set of traces
of the refined model contains (up to stuttering) the traces of the resulting model.
The refinement of an event e by an event f means that the event f simulates the
event e.

The Event-B modelling language is supported by the Rodin platform [36] and
has been introduced in publications [2, 4, 17], where there are many case studies and
discussions about the language itself and the foundations of the Event-B approach.
The language of generalised substitutions is very rich, enabling the expression of
any relation between states in a set-theoretical context. The expressive power of the
language leads to a requirement for help in writing relational specifications, which is
why we should provide guidelines for assisting the development of Event-B models.

3.7 Decomposition

A large system needs several refinement steps to model the whole system from an
abstract to the concrete level. Increasing refinement steps introduces many state
variables to specify the desired behaviour of a system. Increasing number of state
variables makes the system too complex that becomes impossible to manage. De-
composition is a process that can split the whole system into several independent
subsystems. The decomposition process reduces the overall complexity of the sys-
tem that helps to apply the refinement technique on each subsystem. All the inde-
pendent subsystems are put together to form a single model that can guaranteed to
be a refinement of the original one [4].

For developing a large complex model, it is necessary to decompose a model M
into sub-models. Suppose the model M can be decomposed into two sub-models
P and Q. The decomposition process divides a set of events and variables of the
model M into two groups related to the sub-models P and Q. However, there are
always some variables those are shared by both sub-models. The shared variables
are known as external variables, and to handle these shared variables we need to
introduce some external events.

Figure 3.2 presents the decomposition process of the model M into the sub-
models P and Q. A variable v2 is an external variable and ex3 and ex2 are external
events of the sub-models P and Q, respectively. Other variables v1 and v3 are the
internal variables, and e1, e2, e3 and e4 are internal events of the sub-models P
and Q.

Each subsystem can be refined independently after successful decomposition of
the system. Such as, subsystems P and Q can be refined into PR and QR (see
Fig. 3.2). The refined model PR contains the internal variables u1 and external
variables u2. Similarly, the refined model QR contains internal variables u2 and
external variables u3. The shared external variables v2 are common in both decom-
posed models that must be refined in a same way. The desired properties must be
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Fig. 3.2 Decomposition

preserved at the concrete level using the gluing invariants v2 = h(u2). The final
system can be achieved through re-compositioning (see Fig. 3.3) of the refined sub-
systems PR and QR. It can be achieved through conjoining the invariants of both
models and removing the external events. Finally, we need to prove that the final
re-composed model MR is indeed a refinement of the original model M. In order
to prove that it is sufficient to prove the following:

External events ex3 in P and ex2 in Q are refined to event e3 and e2 in M

3.8 Tools Environments for Event-B

The Event-B modelling language is supported by the Atelier B [21] environment
and by the Rodin platform [36]. Both environments provide facilities for editing
machines, refinements, contexts and projects, for generating proof obligations cor-
responding to the given properties, for proving proof obligations in an automatic
or/and interactive process and for animating models. The internal prover is shared
by the two environments and there are hints generated by the prover interface for
helping the interactive proofs. However, the refinement process of machines should
be progressive when adding new elements to a given current model and the goal
is to distribute the complexity of proofs through the proof-based refinement. These
tools are based on logical and semantical concepts of Event-B models (machines,
contexts, refinement) and our methodology for modelling the medical devices can
be built from them.
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Fig. 3.3 Re-composition
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Chapter 4
Critical System Development Methodology

Abstract Formal methods have emerged as an alternative approach to ensuring the
quality and correctness of the high confidence critical systems, overcoming limi-
tations of the traditional validation techniques such as simulation and testing. This
chapter presents a methodology for developing critical systems from requirement
analysis to automatic code generation with standard safety assessment approach.
This methodology combines the refinement approach with various tools including
verification tool, model checker tool, real-time animator and finally, produces the
source code into many languages using automatic code generation tools. This ap-
proach is intended to contribute to further the use of formal techniques for devel-
oping the critical systems with high integrity and to verify the complex properties,
which help to discover potential problems.

4.1 Introduction

Software quality assurance for critical systems is an emerging market. New tools
and techniques are developed to provide an assurance that systems will never show
any failure. These tools and techniques are used for designing critical systems like
avionics, medical devices and automotive. New developed tools and techniques are
varied according to the diversity in critical systems. For example, in the medi-
cal domain, small systems like a pacemaker, requires different kinds of tools and

Sections of this chapter are adapted from the original publication: Méry, D., & Singh, N. K.
(2012). Critical systems development methodology using formal techniques. In Proceedings
of the third symposium on information and communication technology, SoICT’12, Ha Long
(pp. 3–12). New York: ACM.

ACM COPYRIGHT NOTICE. Copyright © 2012 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

N.K. Singh, Using Event-B for Critical Device Software Systems,
DOI 10.1007/978-1-4471-5260-6_4, © Springer-Verlag London 2013

61

mailto:permissions@acm.org
http://dx.doi.org/10.1007/978-1-4471-5260-6_4


62 4 Critical System Development Methodology

techniques than the other large systems like imaging for diagnostics or surgery nav-
igation, patient monitoring system, etc.

Software is an essential part of any critical system, which realises system’s func-
tionality and software reliability for gaining confidence. From the last few years,
the use of critical systems has been increased [69]. These devices may sometimes
malfunction. Device-related problems are responsible for many accidents. A lot of
deaths and injuries have been reported by the US Food and Drug Administration’s
(FDA) caused by failure of medical devices [51], which advocate safety and secu-
rity issues for using it. Certification standards have found that many accidents due
to system failure, are caused by product design and engineering flaws, which are
considered as the firmware problems [16, 28].

Manufacturers have the freedom to tailor the process and to select appropriate
methodology according to their specific needs. A lack of information about pro-
cess and product qualities leads to uncertainness about the appropriateness of the
methodology. Software development measures both processes in the quality man-
agement plan and associated safety cases related to the approval of the products.
Formal methods are usually applied for analysing assumptions, relationships, and
requirements of the system.

Software certification is performed by certification standards, like FDA, IEC/ISO,
IEEE [35, 36, 43], which do not prove the correctness of a system. If a product re-
ceives certification, it simply means that it has met all the requirements needed for
certification. It does not mean that the product is bug-free. Therefore, the manu-
facturer cannot use certification to avoid assuming its legal or moral obligations.
Many standards consist of functional requirements on the particular medical prod-
ucts; there are also a number of standards, which address system safety and software
development. For example, IEC-62304 [34] process standard for the quality and risk
management of medical devices.

The scope of formal methods is limited in the current industrial practices, which
address that the formal methods are not well integrated into established critical sys-
tem development processes. Formal methods need high abstraction and mathemat-
ical skills to write specifications and conduct proofs, and to read and understand
formal specifications and proofs, especially when they are complex, are the main
reasons for not using in practices. Another important cause is that existing formal
methods do not offer usable and effective methods to employ in the well-established
industrial software process. None of the existing tools are able to support the formal
techniques based software-development, although tools are supporting the use of
formal methods in limited areas are available in [41, 45, 59]. To make formal meth-
ods more practicable and acceptable in industry, some substantial changes must be
made.

Although formal methods are part of the standard recommendations [28] for de-
veloping and certifying the critical systems, how to integrate formal methods into
the certification process is, in large part, unclear. Especially, it is challenging that
how to demonstrate the final developed system that behaves safely. This chapter
describes formal methods based development process that we have applied to pro-
duce evidence for the certification, based on the certification standards [15, 23, 36],
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of a software based critical system. It also describes the most effective aspects of
our methodology for certification and research that could significantly increase the
utility of formal methods in software certification.

The main contribution of this chapter is to propose a development life-cycle
methodology for developing the highly critical software systems using formal tech-
niques from requirements analysis to code implementation using rigorous safety
assessment approach [55]. This new development life-cycle is an extension of the
waterfall model [60], which can support formal methods based development using
various tools. In this new development life-cycle, we introduce some new steps,
which are essential for improving the quality of the system. For example, the real-
time animation [53] helps in requirement traceability and to bridge among various
stakeholders. There are lacks of supporting tools, which can support for developing
critical systems. To realise this new development life-cycle, we use different tech-
niques from the past research related to the field of formal methods and software
engineering. For implementation purpose, we use different tools at various level of
development.

Some new tools, we have developed according to the requirement of this method-
ology like real-time animator [53], automatic code generation [54]. There are not
exiting a set of supporting tools, which can be used for developing a system using
formal methods. Our proposed methodology provide a rigorous framework for de-
veloping critical systems, which may give an evidence to obtain certificate from the
international standards [15, 23, 36]. We have applied our proposed approach on an
industrial-scale case study related to the cardiac pacemaker to show the effective-
ness of this new development life-cycle methodology.

4.1.1 Structure of This Chapter

This chapter is organised as follows. Section 4.2 presents related work and Sect. 4.3
describes the heart of the methodology for critical software system development.
Section 4.4 presents benefits of proposed approach. Section 4.5 evaluates this de-
velopment methodology with other existing tools. Finally, Sect. 4.6 summarises this
chapter.

4.2 Related Work

During the 1950’s and 1960’s [31, 60], the main purpose of the software life-cycle
was to provide a conceptual idea for managing the development of software systems.
The conceptual idea was related to the planning, organising, coordinating, staffing,
budgeting and directing the software-development activities. Since the 1960’s, dif-
ferent kinds of descriptions and characterisations of the software-development life-
cycle have emerged [10, 21, 31, 60, 62, 65].
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Mainly, four traditional models of software evolution are very popular from the
earliest days of software engineering. These four models are waterfall model, step-
wise refinement model, incremental release model and military standards based
model. The most familiar software-development model is the waterfall model,
which was originated by Royce [60]. This model presents a way for develop-
ing a large complex software system using an iterative process. Stepwise refine-
ment model develops the software system through the progressive refinement and
helps in enhancement of the high-level system specifications into source code
components [56, 68]. The refinement process is undefined, while it is used dur-
ing the development process, and formalisation is expected to apply heuristically
according to the expertise and acquired skills. These two models are effective
and widely applied in the current practices of the software engineering [52]. The
incremental release model is mostly applied into industrial practices. Develop-
ing systems through incremental release provides a foundation level for essen-
tial operating functions, then enriching the system functionalities at the regular
intervals [5]. This model combines the classic software life-cycle with an iter-
ative enhancement at the level of system development organisation. Periodical
software maintenance and services are also supported by this incremental release
model.

Military standards based models are the refined form of the classical life-cycle
models, which eliminate complications that emerge during large software develop-
ment. Since 1970’s many government contractors use military standards for devel-
oping the large software systems [20]. Military software system is not commonly
used in the industrial and academic practices. Mainly, it is used for: (1) meeting
required military standards; (2) developing complex embedded systems (e.g., air-
planes, submarines, missiles, command and control systems), which are mission-
critical; and (3) developing under contract to private firms through cumbersome
procurement and acquisition procedures that can be subject to public scrutiny and
legislative intervention [20].

All these four models are used for coarse-grain characterisations of the software
evolution. The primary progressive steps of software evolution are requirements
specification, design, and implementation. Moreover, these models are independent
of any organisational development setting, software application domain, choice of
programming language, etc. However, all of these life-cycle models have been in
use for some time, we refer to them as the traditional models, which are used for
software evolution [52].

There have been several efforts involving the use of formal methods to verify
safety-critical systems. Formal methods have been used to handle complex safety-
critical systems, for instance, steam boiler control [2], Siemens Transportation Sys-
tems [4], space and avionic system [13, 18, 25, 42, 57] and so on. Various for-
malisms and rigorous techniques (VDM [9], Z [66], ASTRÉE [18], SCADE [7],
Event-B [1], Alloy [37], CSP [29], PVS [19], SPIN [30], etc.) have been used for
developing the safety-critical systems. These approaches provide a given level of
reliability and confidence to develop an error-free system. Few case studies show
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that the formal methods have been used to check correctness of operating modes,
functions and desired behaviours of the medical devices [12, 24, 39, 40, 48, 49].

C.L. Heitmeyer et al. [26, 27] have presented an approach for software certifica-
tion using formal methods. They describe how formal methods are used to produce
evidence in a certification, based on facts of a safety-critical software system. The
evidence includes a top-level specification (TLS) of the safety-relevant software be-
haviour, a formal statement of required safety properties, proofs that the specifica-
tion satisfied properties, and a demonstration that the source code, which has been
annotated with preconditions and post-conditions, is a refinement of the top-level
specification (TLS) [27]. A research report [61] is presented by John Rushby, which
is based on certification issues for advanced technology. Its purpose is to explain the
use of formal methods in the specification and verification of software and hardware
requirements, designs, and implementations, to identify benefits, weaknesses, and
difficulties in applying these methods to digital systems used in critical applications,
and to suggest factors for consideration when formal methods are offered in support
of certification.

Maibaum and Wassyng [50] have proposed that the assessment procedure should
focus on activities and as well as a product should be reviewed according to the do-
main requirements based on profound engineering expertise. Assessment procedure
should consider all relevant risks, including suitable activities in the development
plan, selected techniques should be appropriate for activities and safety classifica-
tion, and acquired evidence of software development supports validity of the argu-
ments.

Intermediate steps during the development of the final product require several
kinds of methodologies and approaches, which are also useful for providing certain
facts that help for certifying the final product. For example, a requirement specifica-
tion, a design specification, a document describing validation of the design against
the requirements, documents relating to testing, and documents proving correct-
ness [28, 33].

Existing development life-cycles are not well integrated with formal methods,
which can support domain specific requirements and certification standards. Ac-
cording to the literature survey, different kinds of arguments insist to design a new
methodology, which may be able to design a consistent formal model based on
domain-specific requirements, and helps to certify the system. In this context, we
propose a development life-cycle methodology for developing critical systems us-
ing formal techniques. This approach provides certain evidence of correctness at
each level of system development from requirement analysis to code implemen-
tation. This development approach assists to design a system using correct-by-
construction [14] and helps to verify all the essential safety properties according
to the system requirements. We believe that our methodology adds value with its
comprehensiveness; it focuses on correctness by establishing the standards to per-
form software certification. It uniformly establishes what to check and how to check,
and it provides evidence to support the correctness.
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4.3 Overview of the Methodology

In recent years, the critical systems have grown more complex and providing cer-
tification assurance, is a common crucial issue for certification bodies [23, 28, 35,
36, 43]. Under consideration of all kinds of requirements of certification bodies,
we propose a novel development methodology that addresses the issue of certi-
fication for all kinds of critical systems, which is an extension of the waterfall
model [3, 6, 63, 67] for developing a critical software system using formal methods
and standard safety assessment approaches [47] from requirement analysis to final
system implementation.

This development process is based on refinement approach, where we have intro-
duced some new steps for designing the complete system using formal verification,
validation and real-time animation [53]. All these steps are not only used in the de-
velopment life-cycle, but they are also validating the correctness of a system, and
all these processes are moreover verified by safety assessment techniques, which
comply with software standards. Basic architecture of the methodology is depicted
in Fig. 4.1, which may be used in the development process of a critical system [55].

In this development methodology, we have considered mainly two types of devel-
opment: static development and dynamic development. Each phase includes captur-
ing of requirements. The static development refers to the straight-forward process,
which produces a program, and dynamic development refers to the activities that
improve the quality of the program using refinement approach until it satisfies user
requirements. In order to reach the required safety level and gain reliability, we
have used standard safety assessment approaches in the development process, and
also ensuring traceability between the different stages of the system development in
order to reduce the validation effort. Different phases of the methodology are shown
in Fig. 4.1 which is used in the development process of a critical system. Seven main
phases of proposed methodology are described as follows:

4.3.1 Informal Requirements

The first activity of static development captures user requirements as completely
as possible, which is an initial phase of the proposed methodology, presents an in-
formal requirements of a given system. Software requirements specifications are
widely used in a restricted form of natural language. Natural language is convenient
because it allows non-technical users to understand systems requirements. On the
other hand, the lack of precise semantics increases the possibility of errors being
introduced due to interpretation mistakes and inherent ambiguities. Under or over
specification are also common problems when using a natural language. Software
requirements specification consists of the categorisation and structuring of the in-
formal requirements fragment described in the requirements document to produce
categorised requirements fragments. The main objective of informal requirements is
to provide a precise, yet understandable description of the safety-relevant behaviour
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Fig. 4.1 Formal methods based development methodology of critical system

of a system and to make explicit assumptions on which the safety of a system is
based. Once the developer reaches a general understanding of the problem, static
development proceeds to the formal requirements specification.

4.3.2 Formal Specification

The required security requirements are formally expressed as properties of the state-
based model that underlies the informal requirements. The categorised requirements
fragments describe through the set of formal notations in any specific modelling lan-
guage like Event-B [1], Z [66], ASM [11], VDM [9], RAISE [58], TLA+ [44], etc.
Formal specification languages have a mathematical (usually formal logic) basis and
employ a formal notation to express the system requirements. The formal specifi-
cation is typically a mathematical based description of the system behaviour, using
state tables or mathematical logic. In this stage, more detailed requirements analysis
is carried out by building a formal specification. Using the formal notation, preci-
sion and conciseness of specifications can be achieved. Formal specification will
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not normally describe lowest level software, such as mathematical subroutine pack-
ages or data structure manipulation, but will describe the response of the system
to events and inputs, to a degree, necessary to establish the critical properties. For
instance, in a cardiac pacemaker the sensor and actuator are functioning correctly.
This specification reflects the primary user requirements derived through successive
evolutions, each of which transforms an abstract specification to become more con-
crete. Evolution steps may involve the usual notion of formal refinement, and may
also involve introducing additional constraints required in the final solution. Hence,
a specification during the evolution process is considered to provide the functional
constraints on the final concrete specification rather than a complete description.

4.3.3 Formal Verification

This phase has a very important role in the formal development. To demonstrate
that the informal requirements satisfy the safety properties of interest, the infor-
mal requirements and the properties are passed to a theorem prover and then prover
is applied to prove formally that the informal requirements satisfy the properties.
A formal notation can be analysed and manipulated using mathematical operators,
mathematical proof procedures can be used to test (and prove) the internal consis-
tency (including data conservation) and syntactic correctness of the specifications.
Furthermore, the completeness of the specification can be checked in the sense that
all enumerated options and elements have been specified. However, no specifica-
tion language can ensure completeness in the sense that all the user’s requirements
have been met, because of the informal human-intention nature of the requirements
specifications [38]. Finally, the implementation of the system will be in a formal
language (i.e., the programming language), it is easier to avoid misconceptions and
ambiguities in crossing the divide from formal specifications to formal implemen-
tations. A formal verification phase is done to ensure that,

• The model is designed correctly
• The algorithms have been implemented properly
• The model does not contain errors, oversights, or bugs

In summary, we can say that verification ensures that the specification is complete
and that mistakes have not been made in implementing the model. But verification
does not ensure the model,

• Solves an important problem
• Meets a specified set of model requirements
• Correctly reflects the working of a real world process

In Fig. 4.1, this phase provides a feedback to the formalisation phase in case of
not satisfying given properties of the system. The feedback approach is allowed to
modify the formal model and verify again it through the formal verification phase.
The verification process is applied to continue until not to find the correct formal
model according to the expected behaviour of the system.
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4.3.4 Formal Validation

Formal validation phase is the process of determining the degree to which a model
is an accurate representation of the real world from the perspective of the intended
uses of the model that is not covered by the formal verification. It consists of the
identification of a subset of the formalised requirements fragments for an automatic
validation analysis:

• Validation ensures that the model meets its intended requirements in terms of the
methods employed and the results obtained.

• The ultimate goal of model validation is to make the model useful in the sense
that the model addresses the right problem, provides accurate information about
the system being modelled, and to make the model actually used.

Model checking [17] is a complementary technique for validation and verifica-
tion of a formal specification. Model checkers attempt to make formal techniques
easier to use by providing a high degree of automation at the expense of generality.
Inputs to a model checker are typically a finite state model of a system, along with
a set of properties that are expected to be preserved by the system. Properties to be
verified can be usually categorised as one of the following:

1. Correct sequences of events
2. Proper consequences of activities
3. Simultaneous occurrences of particular events
4. Mutual exclusion of particular events
5. Required precedence of activities

The model checker explores all the possible event sequences of a model to de-
termine that system is always holding required safety properties. If properties hold,
the model checker confirms the correctness of a system. If a property fails to hold
for some possible event sequences, the tool produces counter-examples, i.e., traces
of event sequences that lead to failure of the property [46].

In Fig. 4.1, this phase also presents that it provides a feedback information to
the formalisation phase when a model is not satisfying expected behaviour of a
system. This feedback information helps to modify the developed formal model
and verify it through the formal verification phase and validation through a model
checker tool [17, 46]. This cyclic process for finding a correct model is applied to
continue until not to find the correct formal model according to the expected system
behaviour.

4.3.5 Real-Time Animation Phase

This phase is a new validation technique to verify the formal model in the real-
time environment using real-time data set instead of using a toy-data set. A detailed
description about the architecture of the real-time animator is available in Chap. 7
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[53]. This phase is applied for rigorous testing of the formal model under domain
expert’s reviews. Real-time animation shows the behaviours of the system using real
environment in early phase of the development without generating the source code.
Such kind of techniques are very useful when domain experts are also involved in
the system development [53]. Formal models are used to animate with the real-time
animator [53], in order to verify on given scenarios according to the real system.
This model animator is not part of the validation process, as this can be required to
qualify as software requirements, but it helps us to check models against reality and
to internally verify their suitability.

In Fig. 4.1, this step also presents feedback loop into the formalisation phase
to correct an unexpected error of the system. The feedback approach is allowed to
modify the formal model and verify it using any theorem prover tool and finally
validate it using a model checker tool. In this phase of the formal development,
most of the errors are discovered by the domain experts. The verification, validation
and real-time animation processes are applied to continue until not find the correct
formal model according to the domain experts.

Most simulation researchers agree that animation may be dangerous too, as the
analysts and users tend to concentrate on a very short simulation runs so the prob-
lems that occur only in long runs go unnoticed. Of course, good analysts, who are
aware of this danger, will continue run long enough to create a rare event until not
cover all possible events, which is then displayed to the users. Each phase of the
methodology is supported by a specific tool.

4.3.6 Code Generation

The final stage of static development is an implementation, in which a program
is constructed to realise the design. This involves the realisation of the major ex-
ecutable components, definition of the concrete data structures, and an implemen-
tation of any minor auxiliary structures or functions that may be assumed in the
design. It is important to verify the design and program against the requirements
specification and design through rigorous reviews. Automatic code generation [7] is
well known process to get highly verified codes according to the requirements anal-
ysis. It is an important part of the software-development process, for implementing
the final system. There are several reasons for using an automatic code generator
in the development of the safety-critical systems. Automatic code generation tech-
niques produce the executable specification with fewer numbers of implementation
errors than a human programmer. Manual translation process can be error prone and
time consuming. An iterative process for successive changes in the specification and
manual code translation can introduce errors by various ways. The consistency be-
tween the specification and code translation is often lost. This is not the case when
an automatic code generator is used to obtain a source code from the verified speci-
fication. The code generator translates a proved formal model directly into a desired
programming language. It ensures that the generated code is always consistent with
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the formal model. Code generation from the verified formal model is our final ob-
jective of this methodology.

4.3.7 Acceptance Testing

In the system development process, acceptance testing are used to determine if the
requirements of a specification are met. Acceptance tests represent the customer’s
interests. The acceptance tests give the customer confidence that the application has
the required features and that they behave correctly. In theory when all the accep-
tance tests pass the project is done [32]. Acceptance testing in software engineering
generally involves execution of number of test cases which constitute to a particular
functionality based on the requirements specified by the user. In system engineering
process it may involve black-box testing performed on a system. It is also known
as functional testing, black-box testing, QA testing, application testing, confidence
testing, final testing, validation testing, or factory acceptance testing [8].

The dynamic development is the process to discover hidden features of the sys-
tem through applying several types of tools like formal verification, model checker
and real-time animator in the development process. This is an iterative way for ac-
quiring more requirements according to the stakeholders and to verify the correct-
ness of the system. The real-time animator based on formal methods is used here
as a prototype model in the early stage of the system development. Prototyping can
also be used for risk analysis, but the use of formal methods can improve the quality
of prototypes. After code generation, the final system can be used to verify the sys-
tem against both the informal user requirements (system testing) and the end-user
(acceptance testing).

In this proposed methodology, we have used combined approach of formal proofs
and rigorous reviews for a system development. The purpose of formal proof and
rigorous reviews is to ensure the internal consistency of the specifications at dif-
ferent levels of development, to validate the specification against user requirements
and certification standards, and to ensure that the designs and programs satisfy their
requirements specifications.

4.4 Benefits of Proposed Approach

In this methodology, we have provided an architecture to develop a critical system
(see Fig. 4.1). Our methodology has the potential for improving quality and increas-
ing safety for certifying the highly critical systems. Specific benefits include improv-
ing requirements, reducing error introduction, improving error detection, and reduc-
ing cost. Secondly, the proposed architecture of methodology allows us to carry out
rigorous analyses. Such analyses can verify the useful properties such as consis-
tency, deadlock-freedom, satisfaction of high level requirements, correctness of a
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proposed system design and expected system behaviour according to the domain
experts using real-time environment in early phase of the development without gen-
erating the source code.

4.4.1 Improving Requirements

Using our methodology to capture requirements provides a simple validation check
in early stage of critical-system development. Requirements expressed in a formal
notation can also be analysed early to detect inconsistency and incompleteness for
removing errors that are normally found later in the development process.

4.4.2 Reducing Error Introduction

Formalised requirements prevent misunderstandings due to ambiguities that lead
to an error introduction. As development proceeds, compliance can be continually
checked using a formal analysis to ensure that errors have not been introduced.
A further advantage of using our methodology at the requirements level is the ability
to derive or refine from these requirements the code itself, thus ensuring that no error
is introduced at this stage. Alternatively their use at the requirements level allows
formal analysis to establish correctness between requirements and final generated
source code of the complex systems.

4.4.3 Improving Error Detection

Out methodology can provide exhaustive verification at whatever levels it is applied:
high level requirements or low level requirements. Exhaustive verification means
that the whole structure is verified over all the possible inputs and states. This can
detect errors that would be difficult or impossible to find using only a test based
approach.

4.4.4 Reducing Development Cost

Our proposed methodology is based on formal techniques. In general, software er-
rors are less expensive to correct the earlier in the development life-cycle they are
detected in the critical systems. The effort required to generate formal models is
generally more than offset by the early identification of errors. That is, when for-
mal methods are used early in the life-cycle, they can reduce the overall cost of the
project development. When requirements have been formalised, the costs of down-
stream activities are reduced. Formal notations also reduce cost by enabling the
automation of verification activities.
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4.5 Evaluation with Existing Tools

As far as we know, some commercial tools like Rational Rhapsody,1 helps to realise
the goal of Model Driven Architecture (MDA) by facilitating the creation of mod-
els of software systems. The models have varying levels of abstraction from very
high-level views of the design to very specific, implementation-level views of the
code. The ideal MDA tool would allow a model at a given level of abstraction to
be transformed into a model at a different level. This tool is used by industries for
developing the critical systems. But, this tool is not supporting any formal verifica-
tion, validation and real-time animation approaches in an iterative way to verify the
correctness as well as to discover hidden elements of the systems. Therefore, there
are no such a tool, which can support this new methodology. As for our purpose,
we have integrated the various existing tools for implementing the prototype [64].
Some new tools, we have developed according to the requirement of this methodol-
ogy like real-time animator [53] and automatic code generation [54]. The proposed
methodology is much superior to other exiting approaches, because they are not able
to provide formal techniques based development approaches in the current industrial
practices.

4.6 Summary

One valuable by-product of applying formal methods in software certification is that
the process produces a formal specification of the required software behaviour. De-
veloping this specification has at least two benefits. First, a formal specification can
be valuable when a new version of the software is developed. Second, the process
of developing a formal specification by itself may expose errors.

A new methodology for developing a critical system using formal methods,
which is an extension of waterfall model [3, 6, 63, 67] has been described to apply-
ing formal methods in critical software development process from requirement anal-
ysis to automatic source code generation under rigorous analysis of the development
process using standard safety assessment techniques. This development methodol-
ogy combines the refinement approach with a verification tool, model checker tool,
real-time animator and finally generates the source code using automatic code gen-
eration tool. System development process is concurrently assessed by safety assess-
ment approach [47] to comply with certificate standards. This life-cycle method-
ology consists of seven main phases: informal requirements, formal specification,
formal verification, formal validation, real-time animation, automatic code genera-
tion and acceptance testing. This kind of approach is very useful to verify complex
properties of a system and to discover the potential problems like deadlock and
liveness at early stage of the system development.

1http://www.ibm.com/software/awdtools/rhapsody/.

http://www.ibm.com/software/awdtools/rhapsody/
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Building on existing software certification standards, such as IEC-62304 and the
Common Criteria [15, 22, 34], more and improved approaches which use formal
methods in software certification are needed. Applying these new approaches for
highly critical systems should have many benefits; the exposure of errors which
might have not been detected without formal methods. That guidance, as proposed
by NITRD, IEEE, and IEC/ISO [28, 35, 36], allows adoption of formal methods into
an established set of processes for the development and verification of a critical sys-
tem to be an evolutionary refinement rather than an abrupt change of methodology.
Formal methods might be used in a very selective manner to partially address a small
set of objectives, or might be the primary source of evidence for the satisfaction of
many of the objectives concerned with development and verification.

Two reliable facts of formal methods have demonstrated by last decades of re-
search and experience—they are not the “silver bullet” to eliminate all software
failures, but neither are they beyond the budget constraints of software develop-
ers. In critical system, formal methods are commonly demonstrating the absence
of undesired behaviours and preserving essential properties. Model checkers, theo-
rem provers, real-time animation and automatic code generation make it possible to
analyse the complexity of the system and produce the final implemented system. On
the other hand, the ability to generate complete test cases from formal specifications
can result in overall savings, despite the cost of developing the specification. The
process of developing a specification is often the most valuable phase of a formal
verification, and “lightweight formal methods” approaches make it possible to for-
mally analyse partial specifications and early requirements definitions. Experience
with mandated use of formal techniques and other standards provides empirical ev-
idence that these methods can be successfully incorporated into the development
process for the critical systems. Remaining chapters include detailed descriptions
of the new associated techniques and tools, which are used in this development
methodology for critical system development.
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Chapter 5
Real-Time Animator and Requirements
Traceability

Abstract According to the development life-cycle of a critical system, first of all
we emphasise on requirements traceability using a real-time animator. Formal mod-
elling of requirements is a challenging task, which is used to reasoning in earlier
phases of the system development and to make sure that the completeness, consis-
tency, and automated verification of the requirements. This is an initial step in the
proposed development methodology of the critical system development. The real-
time animation of a formal model has been recognised to be a promising approach
to support the process of validation of requirements specification. It is crucial to
get an approval and feedback when domain experts have a lack of knowledge of any
specification language, to avoid the cost of changing a specification at the later stage
of development. This chapter introduces a new architecture, together with a direct
and an efficient method of using real-time data set, in a formal model without gener-
ating the source code in any target language. This is a phase for validating a system
through domain experts in our development life-cycle methodology. The principle
is to simulate the desired behaviours of a given system using formal models in the
real-time environment and to visualise the simulation in some form appealing to
stakeholders. The real-time environment assists in the construction, clarification,
validation and visualisation of a formal specification.

5.1 Introduction

Formal methods aim to improve software quality and to produce zero-defect soft-
ware, by controlling the whole software-development process, from specifications
to implementations. In formal model development, they use top-down approaches
and start from high-level and abstract specifications, by describing the fundamental
properties of the final system. Requirements Engineering (RE) provides a frame-
work for simplifying a complex system to get a better understanding and to develop
the quality systems. The role of verification and validation is very important in the
development of safety critical systems. Verification starts from the requirements
analysis stage where design reviews and checklists are used for validation where
functional testing and environmental modelling are done.
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There are several ways to validate a specification: to model a prototype of a sys-
tem, structured walk-through, transformation into a graphical language, animation,
and others. Each technique has a common goal, to validate a system according to
the operational requirements. Animation focuses on the observable behaviour of the
system [51]. The principle is to simulate an executable version of the requirements
model and to visualise exact behaviours of the actual system. Animators use finite
state machines to generate a simulation process which can be then observed with the
help of UML diagrams, textual interfaces, or graphical animations [42]. Animation
can be used in the early stage of development during the elaboration of the specifi-
cation. As a relatively low cost activity, animation can be frequently used during the
process to validate important refinement steps.

The final code generation process consists of two stages: final level formal spec-
ifications are translated into programs in a given programming language, and then
these programs are compiled. Nevertheless, all approaches which support a formal
development from specification to code must manage several constraining require-
ments, particularly in the domain of embedded software where specific properties
on the code are expected likes timeliness, concurrency, liveness, reactivity, and het-
erogeneity [36]. All these properties can be represented abstractly. Finally, it is im-
possible to use the real-time data in the early stage of formal development without
compiling the source code in any target language.

Based on our various research experience using formal tools in industrial require-
ments (verification and validation) and our desire to disseminate formal methods,
we have imagined a new approach to present an animated model of specification
using real-time data set, in the early stage of formal development [41]. Animation
of formal specification is not a new idea, but capture the real-time data and perform
animation of formal methods in the real environment is a new idea. In this work,
we present an architecture which allows to easily develop the visualisations for a
given specification with support of existing tool Brama [48]. Here, we describe an
approach to extend an animator tool which will be useful to use the real-time data
set. Now, present time all the animation tools use a toy data set to test the model
while we are proposing a key idea to use the real-time data set with the model with-
out generating the source code in any target language (C, C++, VHDL, etc.). It can
help a specifier to gain confidence that the model that is being specified, refined and
implemented, does meet the domain requirements.

This architecture supports state-based animations, using simple pictures to rep-
resent a specific state of Event-B [1] specification, and transition-based animations
consisting of picture sequences by using real-time data set. A sequence of pictures
is controlled by the real-time data set, and it presents an actual view of a system.
Before moving on we should also mention that there are scientific and legal appli-
cations as well, where the formal model based animation can be used to simulate
(or emulate) certain scenarios to glean more information or better understandings
of the system requirements. Moreover, this real-time animation technique is very
helpful to assist in the certification process to analyse an evidence-based validation
in a critical system.
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5.1.1 Structure of This Chapter

This chapter is organised as follows. Section 5.2 presents motivations behind this
work. Section 5.3 presents basic definition of traceability and Sect. 5.4 presents
related work. Section 5.5 presents basic details about animation and their benefits
and limitations. Section 5.6 presents the functional architecture which enables the
animation of a proved specification with a real-time data set. The functional archi-
tecture is then illustrated in Sect. 5.7 for applications and case studies. Section 5.8
presents limitations of this tool and finally Sect. 5.8 summarises the chapter.

5.2 Motivation

To discover the real requirements, discover errors in the early stage of the system
development and design a quality system, we need to look beyond the system itself,
and into the human activities that it will support. For example, medical systems are
mainly used by doctors, physicians, medical practitioners and patients in a more
convenient ways for their own purpose. The medical device manufacturing compa-
nies are providing safe, secure and profitable services to stakeholders. Such human
activities may be complex due to several involvements of many people with different
types of conflicts of interests. In this situation, it is hard to handle any problem and
to reach final agreement among the stakeholders. Requirements engineering tech-
niques offer ways to handle complex problems by decomposing into simple ones,
so that we can understand them better. Complexity of a system classifies it into a spe-
cific class of problems known as wicked problems [45]. This term was introduced
by Rittel and Webber [45] for problems that have the following characteristics:

• There is no proper definition of the problem—such as each stakeholders have
their own definition of the same problem.

• Wicked problems have no stopping rule—each solution is likely to extend into a
new set of problems, and the problem is never likely to be solved entirely.

• Solutions are not exactly in the form of right or wrong, but it provides for better
or worse solutions.

• There is no any fixed standard for a particular solution. Solution results are de-
pended on the judgement of various stakeholders according to their needs.

• For wicked problems, there is no any fixed enumerable solutions. The solutions
are discovered during problem analysis.

• Every wicked problem is unique and considered as sufficiently complex and dif-
ferent from others.

• Every wicked problem is a symptom of another problem, which makes difficult
to choose an appropriate level of abstraction for describing the problem.

• The designer has no ‘right’ to be wrong. In other words, designers are liable for
the consequences of the actions they generate.
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Requirement Engineering (RE) techniques are used at the early stages of the
system development life-cycle, which are crucial for successful development of a
system. As the computer systems play increasingly important roles in organisations,
it seems to pay more attention towards the early stages of Requirement Engineering
(e.g., [9]). The cost of the system development increases more when errors are dis-
covered later phases of the system development [8]. The basic beginning objective
of stakeholders and the initial requirements statement of requirement engineering
are “what the system should do?”. Incompleteness, ambiguity, inconsistencies, and
vagueness, are the most common problems encountered when eliciting and speci-
fying requirements and to find these common problems are the main goals of any
requirement engineering tool [9].

A model captures a view of a physical system. It is an abstraction of the physical
system, with a certain purpose. Thus the model completely describes those aspects
of the physical system that are relevant to the purpose of the model, at an appropriate
level of detail. Not only a system developer is required to view a system from several
angles but stakeholders want the same view of the system from different angles
according to the requirements. Requirements traceability is a branch of requirements
management within software development. Requirements traceability is concerned
with documenting the life of a requirement and to provide bi-directional traceability
between various associated requirements. It enables users to find the origin of each
requirement and track every change, which was made to this requirement.

Validation of the requirements specification is an integral and indispensable part
of the Requirements Engineering (RE). Validation is the process of checking, to-
gether with the stakeholders, whether the requirements specification meets the stake-
holders’ intentions and expectations [39]. Animation of a formal specification is one
of the well-known approaches in the area of verification and validation, which pro-
vides visual animation of the formal models. An architecture of the real-time anima-
tion tool is presented in [41], that allows to check the presence of desired function-
ality and to inspect the behaviour of a specification according to the stakeholders in
the real-time environment.

The contribution of this chapter is to propose a new functional architecture, to-
gether with a direct and an efficient method of using real-time data set, in a formal
model without generating the source code in any target programming language [41].
Real-time animation helps to design a critical system, which helps a specifier to gain
confidence that the model is being specified, refined and implemented, does meet
the domain expert’s requirements. Main objective of this proposed real-time anima-
tion framework bridges the gap among different domain experts. For example, in the
development of a medical system [34], a formal model that is designed by a software
engineer is not understandable by the medical experts like doctors or medical prac-
titioners due to lack of mathematical knowledge. If a software engineer presents a
formal specification into animated graphics, based on actual behaviour of the formal
specification, then the animated graphics can be simpler and easily understandable
by the doctors, physicians and medical practitioners.
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5.2.1 Traceability

Gotel et al. [23] have given basic definition of the requirements traceability as fol-
lows:

The requirements traceability is the ability to describe and follow the life of a requirement,
in both a forward and backward direction, i.e. from its origins, through its development
and specification, to its subsequent deployment and use, and through periods of ongoing
refinement and iteration in any of these phases.

Requirements traceability has provided twofold value. First of all, using require-
ments traceability, changes in the context of an application can easily be analysed
for their impact on the code and test cases, and vice versa, which heavily shortens
the time required for software maintenance. On the other hand, increased account-
ability simplifies the verification of a system to its requirements and allows better
monitoring of the processes. Requirement traceability is also used as to advocate
desirable properties of the software development processes [37]. Lots of problems
are identified during a system development process. Traceability is used as an op-
tional activity during system development due to limited available resources related
to the traceability [6].

A project team always determines the way in which project development process
should be performed at the initial phase of the project development. Various kinds
of decisions realised for acceptance or rejection about a project plan are made by
a project board, whereas all other technical details are determined by others [6]. In
this chapter, we have introduced a new technique to use for traceability that helps
to find bugs at the early stage of the system development through visual animations
of a formal specification. All these approaches, methods, techniques and tools pro-
posed for the requirements traceability are useful as long as its adoption decision
is present preferably at the early stages of the projects, and we need to understand
how a decision on requirements traceability is made and which factors influence an
adoption of the traceability. Here, we present the conceptual treatment of these ques-
tions, which eventually provide us with a theoretical lens to examine this adoption
in a systematic manner.

The traceability needs of different stakeholders according to the different kinds
of goals. The requirements traceability presents a connection between requirements
and related artifacts, which are created during the system development using re-
quirements. A set of tools [2, 21, 25, 31] is used for requirement traceability for the
different purpose during the software life-cycle. However, we have used real-time
animator based on the formal model to trace the hidden requirements of a complex
system. In requirements engineering and elicitation phase it is important that the
rationales and sources to the requirements are captured in order to understand re-
quirements evolution and verification. During design phase, the requirements trace-
ability allows to keep track of what happens when change request is implemented
before a system is redesigned. Traceability can also give information about the jus-
tifications, important decisions and assumptions behind requirements [43]. Most
important advantage of the requirements traceability is to support validation of the
system functionality according to the stakeholder requirements.
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5.3 Related Work

Traceability is a necessary system characteristic as it supports software manage-
ment, software evolution, and validation [21]. Traceability approaches help for un-
derstanding the complexity of the problems and assist for capturing, tracking and
verification of the actual requirements during the software life-cycle. We believe
that the established use of animation approaches should explicitly include trace-
ability support to provide more benefits on developing software for medical and
automotive domains. An interesting related work for the traceability is presented
in [2, 21], where the authors review the most-recent advances techniques for trace-
ability and also survey on tracing approaches in traditional software engineering.

Prototype refers to an incomplete version of the system development, which
simulates only few aspects of the final system when requirements are indefinite
and system behaviour is unclear [14]. The prototype is only used to be clarified
and validated requirements. The experiences gain from prototypes are helping to
produce a quality system and the requirements specification document. The proto-
types work very well for only small parts of the complex problems. Various kinds
of traditional techniques are used to build a rapid throwaway prototype; these in-
clude functional and logic programming languages, simulation techniques, object-
oriented languages, and visual programming languages.

A prototype of executable formal specifications is used to bridge the gap between
a traditional software prototyping and formal methods. An executable formal spec-
ification is considered as an abstract program which enables abstract requirements,
designs formulation, explored and validated at an early stage of the system develop-
ment [20]. Such kinds of prototyping techniques help to discover behaviour of the
system interacting with its environment that can be observed before it exists in the
actual system. Validation of a system assists to design formal documentation using
the specification descriptions of system. In few cases, an executable specification
forms only relevant document for all phases of the system development, such as in
the use of executable specifications with transformational approaches [4].

Goguen and Meseguer [22] have proposed a novel approach for constructing a
prototype using formal specification. They advocated the use of an algebraic specifi-
cation language named OBJ, which can be executed by interpreting the equations of
the OBJ specification as a left-to-right term rewriting system. Since several, attempts
have been made to execute formal notations for rapid prototyping. Siddiqi et al. [49]
have divided these attempts into three categories. First category belongs to the use
of functional and logical programming languages for the construction of the proto-
types [27, 35, 38, 50]. Second category is distinguished by “specially designed and
specific purpose” executable specification languages that are usually embedded in
an existing programming language which provides the execution mechanism [28].
Last category can be characterised as the development of an environment for the
automatic prototyping of specifications. Siddiqi et al. [49] have proposed distinct
approach for supporting environment, which combines the benefits of a formal sys-
tem specification and its subsequent execution via rapid prototype model.

Animation is a simulation technique which is used to execute a model and shows
the animation in the visual form using a formal model of a given specification. Lots
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of works have been done over the last few decades in this area while the idea was
originally proposed by Balzer et al. [3]. The contributions mainly differ by (a) how
far the model is from the underlying requirements, (b) how far the visualisation
is from phenomena within the software environment, (c) how the simulation works
(through direct execution of the model or preliminary translation to some executable
form), and (d) how interactive and controlled the simulation can be [51]. Bloomfield
et al. [7] had presented a case study in which a simple prototype for nuclear reac-
tor protection was modelled in VDM [5], whereas a part of the safety assessment
process was presented using Prolog [13] animation. Another interesting study of the
industrial use of animation in the analysis of a formal model of information flow in
dynamic virtual organisations (VOs) is presented by John et al. [19]. VDM tool is
used for developing the formal model of virtual organisation (VO) structure. This
development also supports interaction with the model without requiring exposure
to the formalism. All kinds of simulation tools for Requirements Engineering (RE)
with compressive comparison study have been presented by Schmid et al. [47].

A reference model for requirements and specifications is given by Gunter et
al. [24]. This model is based on mainly five artifacts W, R, S, P, and M for ap-
plying formal methods to the development of user requirements and their reduction
to a behavioural system specification. This paper presents the shared phenomena
that defines an interface between system and environment.

Run-time technique for monitoring requirements satisfaction is presented in [17,
18], where requirements are monitored for violations, and system behaviour dynam-
ically adapted the new behaviours. New introduced behaviours change the system
requirements, which should meet the higher-level goal. Our proposed approach is
based on monitoring of the animation, which is controlled by the proved formal
specifications and real-time data sets. According to our literature survey, none of
the existing approaches discuss to construct a formal specification based prototype,
which can use a real-time data set to test the validation of the formal specifications
for developing any critical systems like avionic and medical systems. Most of the
existing tools are used a toy-data set for validating the formal specifications. Limita-
tions of existing tools are that they cannot support real-time environment to capture
the data set for testing. We have proposed an architecture for real-time animation
using formal specification [41], which can be used for real-time animation for any
existing animation tool and formal language. We have given the prototype model
of this framework for Event-B specification. This tool is very helpful to show the
real-time system behaviour from a formal specification and meets stakeholders re-
quirements. Moreover, it bridges the gap between different kinds of domain experts.
It can help a formal model designer to gain confidence that the formal model that is
being designed, refined in an incremental way and finally implemented, does meet
the domain requirements. The real-time animation tool is very helpful for evidence-
based validation as well as in the certification process. This technique uniformly
establishes what to check and how to check it and gives certain evidence of correct-
ness.
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5.4 Animation

Animation is a well-established technique that is used to check for compilation of
the actual requirements of stakeholders with the given software specifications. It
shows an actual behaviour of a system through execution of a formal model in the
form of animation. An executable model is based on the software specifications;
the software behaviour is simulated by executing that model; the simulation is vi-
sualised on a textual or graphical model representation by highlighting the current
model element being executed. Animation thus allows a software engineer to dis-
cover the presence of problems, not their absence. Several kinds of benefits and
limitations of animation [26, 47] are given as follows:

5.4.1 Benefits of Animation

• Animation has major benefits of validating a system model through earlier de-
tection and correcting the problems for improving the quality of requirements
specification.

• Animation provides behaviour of a system model, which can be used to vali-
date the internal mechanism of the system model by inspection, and it helps to
clarify requirements using animated interaction with the specification when re-
quirements are unclear.

• In this prototyping technique, all kinds of tools have their own automatic transla-
tion tools, which is used for making formal specifications executable.

• Execution of the formal model in the form of animation helps inspection and
formal reasoning as a means of validation for better understanding of the given
system. Quite often the stakeholders are not sure about what they exactly want or
how to describe their ideas. This technique helps to them to discover real require-
ments.

5.4.2 Limitations of Animation

• Animation techniques are not for exhaustive testing. In a complex system, there
are numerous states, which is impossible to test due to the problem of “states
explosion”.

• Animation tools are not always stakeholder-friendly due to specific notations of
the supported modelling languages, which are not easily understandable by non-
technical stakeholders and might be difficult to read and interpret such anima-
tions.

• As long as the requirements engineering process is in progress, the requirements
engineers have to handle ambiguous and incomplete requirements. Nevertheless,
in that case requirements engineers are obliged to define a semantically correct
and formal system model in order to run animation.
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Fig. 5.1 A functional architecture to animate a formal specification using real time data set without
generating source code

• Animation always focuses on the behavioural aspects of a system. However, non-
functional requirements, such as reliability, cannot be animated from require-
ments. The mean life function, such as the mean time to failure (MTTF), is widely
used as the measurement of a product’s reliability and performance. This value
is often calculated by dividing the total operating time of the units tested by the
total number of failures encountered. Hence, reliability is usually measured by a
rate. For example, the reliability of a system is 95 %, then how it is possible to
measure that the reliability of that system is 95 % through animation.

5.5 Proposed Architecture

Figure 5.1 depicts a functional architecture that can use the real-time data set to
animate a formal model without generating a source code in any target language
(C, C++, VHDL, etc.). This architecture has six components: Data acquisition and
preprocessing unit; Feature extraction unit; Database; Graphical animations tools;
Interfacing plug-in; and formal specification model. All these six components can
use any particular tool for building a prototype for realising the concepts of a real-
time animator.

We have used some existing tools to build a prototype model of this proposed ar-
chitecture. Figure 5.2 presents prototype implementations in order to understand the
different development phases of the real-time animator. This architecture is applica-
ble to building an animation tool for any formal modelling languages like VDM, Z,
TLA+, etc. Here, we present an equivalent architecture of the real-time animator in
the context of Event-B formal modelling language. The prototype architecture has
six components: Data acquisition and preprocessing unit; Feature extraction unit;
Database; Graphical animations dedicated tool: Macromedia Flash; a Formal model
animation tool Brama plug-in to interface between Flash animation and Event-B
model; and formal specification system Event-B.
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Fig. 5.2 A prototype model of the functional architecture to animate a formal specification

5.5.1 Data Acquisition & Preprocessing

Data acquisition and preprocessing begin with the physical phenomenon or physi-
cal property to be measured. Examples of this include temperature, light intensity,
heart activities and blood pressure [15] and so on. Data acquisition is the process of
sampling of real-world physical conditions and conversion of the resulting samples
into digital numeric values. The data-acquisition hardware can vary from environ-
ment to environment (i.e. camera, sensor, etc.). The components of data-acquisition
systems include sensors that convert physical properties. A sensor, which is a type
of transducer, that measures a physical quantity and converts it into a signal which
can be read by an observer or by an instrument.

Data preprocessing is a next step to perform on the raw data to prepare it for
another processing procedure. Data preprocessing transforms the data into a format
that will be more easily and effectively processed for the purpose of the user. There
are a number of different tools and methods used for preprocessing on different
types of raw data, including: sampling, which selects a representative subset from
a large population of data; transformation, which manipulates raw data to produce
a single input; de-noising, which removes noise from data; normalisation, which
organises data for more efficient access.

5.5.2 Feature Extraction

The features extraction unit is a set of algorithms that is used to extract the param-
eters or features from the collected data set. A set of algorithms is implemented in
any particular language (Matlab, C, C++, etc.). All these algorithms are different
for each system. For example, during prototype implementation of this architecture,
we have used a set of algorithms for extracting the ECG features or parameters.
These parameters or features are numerical values that are used by animated model
at the time of animation. The feature extraction relies on a thorough understanding
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of the entire system mechanics, the failure mechanisms, and their manifestation in
the signatures. The accuracy of the system is fully dependent on the feature or pa-
rameter values being used. Feature extraction involves simplifying the amount of
resources required to describe a large set of data accurately. When performing anal-
ysis of a complex data one of the major problems stems from the number of vari-
ables involved. Analysis with numerous variables generally requires a large amount
of memory and computation power or a classification algorithm which overfits the
training sample and generalises poorly to new samples. Feature extraction is a gen-
eral term for methods of constructing combinations of the variables to get around
these problems while still describing the data with sufficient accuracy. Collecting
measured data and processing these data to accurately determine model parameter
values is an essential task for the complete characterisation of a formal model.

5.5.3 Database

The database unit is optional. It stores the feature or parameter values in a database
file in any specific format. This database file of parameters or features can be used
in future to execute the model. Sometimes, feature extraction algorithms take more
time to calculate the parameters or the features. In such a situation, modeller can
store the parameters or the features in a database file to test the model in the future.
A modeller can also use the extracted parameters or features directly in the formal
model, without using the database.

5.5.4 Graphical Animations Tool: Macromedia Flash

The animated graphics are designed in the Macromedia Flash tool [44]. Macrome-
dia Flash, a popular authoring software developed by Macromedia, is used to create
vector graphics-based animation programs with high graphic illustrations and sim-
ple interactivity. Here, we use this tool to create an animated model of the physical
environment and to use the Brama plug-in to connect the Flash animation and the
Event-B model. This tool also helps to connect the real-time data set to a formal
model specification using some intermediate steps and finally makes the animated
model closer to the domain expert expectations.

5.5.5 Animator: Brama Plug-in

Brama [48] is an animator for Event-B specification, which is designed by ClearSy.
Brama is an Eclipse plug-in suit and Macromedia Flash extension that can be used
with Windows, Linux and MacOS for Rodin platform [46]. Brama can be used to
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create animations at different stages of development of a simulated system. To do
so, a modeller may need to create an animation using the Macromedia Flash plug-in
for Brama. The use of this plug-in is established through a communication between
the animation and the simulation.

Brama is a tool allowing to animate Event-B models on the Rodin platform. It
allows animating and inspecting a model using Flash animations. Brama has two ob-
jectives: to allow the formal model’s designer to ensure that his model is executed
in accordance with the system it is supposed to represent; to provide this model
with a graphic representation and animate this representation in accordance with
the state of the formal model. A modeller can represent the system manually within
Rodin [46] or represent the system with the Macromedia Flash tool that allows for
communication with the Brama animation engine through a communication server.
The graphic representation must be in Macromedia Flash format and requires the
use of a separate tool for its elaboration (Flash MX, for example). Once the Event-B
model is satisfactory (it has been fully proven, and its animation has demonstrated
that the model behaves like its related system), you can create a graphic representa-
tion of this system and animate it synchronously with the underlying Event-B Rodin
model. Brama does not create this animation. It is up to the modeller to create the
representation of the model depending on the part of the model he wants to display.
However, Brama provides the elements required to connect your Flash animation
and Event-B model [48].

5.5.6 Formal Modelling Language: Event-B

Event-B is a proof-based formal methods [1, 10] for system-level modelling and
analysis of large reactive and distributed systems. In order to model a system, Event-
B represents in terms of contexts and machines. The set theory and first-order logic
are used to define contexts and machines of a given system. Contexts [1, 10] contain
the static parts of a model. Each context may consist of carrier sets and constants
as well as axioms, which are used to describe the properties of those sets and con-
stants. Machines [1, 10] contain the dynamic parts of an Event-B model. This part is
used to provide the behavioural properties of a model. A machine model is a state,
which is defined by means of variables, invariants, events and theorems. The use of
refinement represents systems at different levels of abstraction and the use of math-
ematical proof verifies consistency between refinement levels. Event-B is provided
with tool support in the form of an open and extensible Eclipse-based IDE called
Rodin [46] which is a platform for Event-B specification and verification.

5.6 Applications and Case Studies

We have applied our proposed approach of the real-time animator [41] in the de-
velopment of cardiac pacemaker [40] (see Chap. 9). A cardiac pacemaker is a high
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confidence medical device [29, 30, 52] that is implemented to provide proper heart
rhythm when the body’s natural pacemaker does not function properly. In the devel-
opment of the cardiac pacemaker, real-time animator of formal specification helps
to animate the formal model with a real-time data set instead of toy-data, and offers
a simple way for specifiers to build a domain-specific visualisation that can be used
by domain experts to check whether a formal specification corresponds to their ex-
pectations. The pacemaker models are validated to make sure that they meet all the
functional requirements of the cardiac pacemaker. The validation process is carried
out by both logic experts and medical experts.

5.7 Limitations

The proposed architecture of the real-time animator is sufficient to validate
refinement-based formal specifications using real-time data set instead of toy-data
set. The major limitation of this tool is real-time data collection and features extrac-
tion for testing the validation of formal specifications of a system, where feature
extraction algorithms are not able to calculate required features under real-time (i.e.
ECG features extraction). Due to limitation of this algorithm, we proposed off-line
validation technique using database. Database is used to store the extracted features
in a specific file format for validating the formal models.

Another limitation we have discovered through our experiments that every re-
finement step is not animatable, specially early development of the formal model
(or abstract model), where concrete functional behaviours of the system are not
specified yet. Incremental refinement approach builds the system gradually and pro-
vides the concrete system behaviour, which may be animatable. Refinement based
modelling helps for obtaining stepwise validation for modelling a system [38]. This
is consistent with using animation as a kind of quality-assurance activity during de-
velopment. Early stages of system models are too abstract and not able to present
parametric based desired behaviour of the system. So that, this real-time anima-
tion is useful to validate later refinement stages of a system or concrete models,
when some parametric behaviours are introduced in the system. These parameters
are used as features in the formal specifications for real-time validation. We believe
that one animation per abstraction level is sufficient. In fact, the first refinement of
a level may often have a non-determinism too wide to allow for meaningful ani-
mation (concept introduction), but subsequent refinements get the definitions of the
new concept precise enough to allow animation.

5.8 Summary

The objective of this proposed architecture is to validate the formal model with real-
time data set in the early stage of development without generating the source code
in any target language. Here, we focused the attention on the techniques introduced
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in the architecture for using the real-time data set to achieve the adaptability and
confidence on a formal model. Moreover, this architecture may provide validation
for the formal model with respect to the high level specifications according to the
domain experts (i.e. medical experts). At last, this proposed architecture should be
adaptable to various target platforms and formal models techniques (Event-B, Z,
Alloy, TLA+, etc.).

Our approach has involved for designing and using of the real-time animator for
executing a formal specification to validate actual requirements. The main objectives
of our work are to promote the use of such kind of real-time animator [41] to bridge
the gap between software engineers and stakeholders to build a quality system, and
to discover all ambiguous informations from the requirements. Moreover, this tool
helps to verify the correctness of behaviour of a system according to the stakeholders
requirements. The formal verification and evidence based testing using an animation
offer to obtain that challenge of complying with FDA’s QSR, ISO/IEC and IEEE
standards quality system directives [11, 12, 16, 32, 33] and help to get certification
for highly complex critical systems.

A key feature of this validation as it is full automation and animation of spec-
ification in the early stage of formal development. The case study (see Chap. 9)
has shown that requirements specifications could be used directly in the real-time
environment without modifications for automatic test result evaluation using our
approach. Moreover, there are scientific and legal applications as well, where the
formal model based animation can be used to simulate (or emulate) certain sce-
narios to glean more information or better understandings of the system and assist
to improve the final given system. Main contributions of proposing this real-time
animator tool are,

• to reduce the gap between software engineers and stakeholders requirements us-
ing real-time animator and easy to explain model behaviour to the domain experts
as well stakeholders;

• a real-time animation of a specification supplements inspection and reasoning
as means for validation. This is especially important for the validation of non-
functional behaviour;

• a real-time animation technique is available in early phase of the system devel-
opment life-cycle, which can be used to correct validation errors immediately,
without incurring costly redevelopment;

• ambiguous and incomplete requirements can be clarified and completed by hands-
on experience with the specifications using our approach;

• the goal-oriented animation for evidence based expectation to verify particular
portions of a behaviour model;

• animation can be helpful for incremental model building and analysis of a com-
plex system;

• helps to domain experts to analyse work process guidelines;
• animator assists to regulatory agencies and helps to meet ISO/IEC and IEEE stan-

dards;
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• ability to monitor a real-time environment using animator at animation time and
analyse the requirements, violations of goals, expectations on the environments,
and domain properties.

This work has been influenced by guiding principles and technical benefits of
the formal system engineering, which offers participation of both software engi-
neers and user stakeholders that helps to move closer towards a quality requirements
specification and to develop an error-free system.
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Chapter 6
Refinement Chart

Abstract Refinement techniques serve as a key role for modelling a complex sys-
tem in an incremental way. This chapter also presents a required technique namely
refinement chart for handling the complexity of a system. Refinement chart is a
graphical representation of a complex system using layering approach, where func-
tional blocks are divided into multiple simpler blocks in a new refinement level,
without changing the original behaviour of the system. The main objective of this
refinement chart is to model the whole system using graphical notations and to ob-
tain a concrete specification. The refinement chart offers a clear view of assistance
in “system” integration. This approach also gives a clear view about the system as-
sembling based on operating modes and different kinds of features. To show the
effectiveness of this approach, we have used this graphical modelling technique to
simplifying the complexity of a system in the development of our selected case
study: cardiac pacemaker.

6.1 Introduction

High-confidence medical devices (ICD, pacemaker, infusion pump, etc.), automo-
tive and avionic systems are too much error prone in operating due to the complex-
ity of the systems [3, 5, 12]. New methodologies are needed to make critical viable
in the future marketplace by simplifying the various design stages. This chapter

Sections of this chapter are adapted from the original publication: Méry, D., & Singh, N. K.
(2013). Formal specification of medical systems by proof-based refinement. ACM Transactions
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proposes a refinement-based graphical technique for designing the complex criti-
cal systems. The refinement chart provides an easily manageable representation for
different refinement subsystems and offers a clear view of assistance in system inte-
gration. This methodology simplifies specification, synthesis, and validation of the
systems and enables an efficient creation/customisation of the critical systems at
low-cost and development time.

Despite all the efforts of the community, critical system designers still need a new
way for modelling the systems and analyse the complexity of the systems. This is
mainly because of a set of requirements that is mandatory for an efficient modelling
solution, but is still not provided by a single existing environment:

• Infrastructure for critical system integration and inter-operation.
• Introspection features for easier debugging and analysis of complex specifica-

tions.
• Model-based development and component-based design frameworks.
• System integration of critical infrastructure.
• Possibility of annotating models for different purposes (e.g., directing the synthe-

sis or hooking to verification tools).
• Decomposition of the complex system into different independent subsystems.

The contribution of this chapter is to propose a new graphical notation based re-
finement chart for a complex critical system design. This technique provides the so-
lutions for all the requirements enumerated above. The refinement chart is proposed
in this methodology for designing a critical system like medical device, automotive
and avionic systems.

6.1.1 Structure of This Chapter

This chapter is organised as follows. Section 6.2 presents related work. Section 6.3
depicts a refinement chart and describes basic rules for presenting any system using
the refinement chart. Section 6.4 presents assessment of the refinement chart using
applications and case study and finally, Sect. 6.5 summarises this chapter.

6.2 Related Work

A modal system is a system characterised by operation modes, which coordinates
system operations. Many systems are modal systems, for instance, space and avionic
systems [5, 12], steam boiler control [3], transportation and space system and so on.
Operation modes explore the actual system behaviour through observation of a sys-
tem functioning under multiple situations. In this approach, a system is considered
as a set of operating modes, where each operating mode is categorised according to
the system functionality over different operating conditions.
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Modecharts [9] is a graphical technique, which is used to handle mode and mode
switching of a system. The authors have given the detailed information about the
state space partition, various working conditions of the system and to define the
control information in the large state machines. However, modecharts lack adequate
support to specifying and reasoning about functional properties. Some papers [7, 13]
have also addressed the problem of mode changing in a real-time system. Dotti et
al. [6] have proposed both formalisation and a refinement notion for a modal system,
using existing support for the construction of modal system.

According to our literature survey, none of the existing approaches discuss a
refinement-based technique for handling the complexity of a system. We have given
a technique of the refinement chart for presenting different operating modes under
various subsystems. Each subsystem represents an independent function according
to the operating modes. This refinement chart technique helps to design complex
system structure and relationship between two subsystems using operating modes
that helps in system integration using code structuring of the different subsystems.

6.3 Refinement Chart

The purpose of this refinement chart is to specify the modal system requirements in
a form that is easily and effectively implementable. During the modelling of modal
system, several styles of specification are usually adopted for handling the com-
plex operating modes. Functional blocks are divided into multiple simpler blocks in
a new refinement level, without changing the original behaviour of a system. The
final goal is to obtain a specification that is detailed enough to be effectively imple-
mented, but also to correctly describe the requirements of a system.

The development of embedded software for the critical system requires signifi-
cant lower level manual interaction for organising and assembling a complete sys-
tem. This is inherently error-prone, time-consuming and platform-dependent. To
detect the failure cases in a software is not an easy task. Manually reviewing the
source code is the only way to trace the cause of a failure. Due to the technologi-
cal advancement and modern complexity of the critical system software, this is an
impossible task for any third party investigator without prior knowledge of the soft-
ware. Consequently, we have proposed the synthesis of a system using incremental
refinements, to synchronise and integrate the different subsystems of a system. This
approach also helps in code integration and to test the different subsystems of a
system independently.

As the nature of critical systems is often characterisable as modal systems, we
follow a state-based approach to propose suitable abstractions. We consider that the
state of a model is detailed enough to allow one to distinguish its different operating
conditions and also to characterise required mode functionality and possible mode
switching in terms of state transitions.

Each subsystem that forms the specification is represented into a block diagram
as a refinement chart. Figure 6.1 presents the diagrams of the most abstract modal
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(A) M1 
 (M2 ‖ M3)

(B) M1 
 (M2 � M3)

(C) (M1 
 M2, M2 
 M3)

Fig. 6.1 Refinement charts

system. The diagrams use a visual notation loosely based on Statechart [8]. A mode
is represented by a box with a mode name; a mode transition is an arrow connecting
two modes. The direction of an arrow indicates the previous and next modes in a
transition. Refinement is expressed by nesting boxes. A refined diagram with an
outgoing arrow from an abstract mode is equivalent to outgoing arrows from each
of the concrete modes. It is also similar to ingoing arrow. In a refinement, nesting
box can be arranged hierarchically and can be represented by basic rules of our
refinement chart (see Fig. 6.2). Basic rules of refinements are a parallel refinement
[M1 
 (M2 ‖ M3 ‖ . . . ‖ Mn−1 ‖ Mn)], sequential refinement [M1 
 (M2 � M3 �
· · · � Mn−1 � Mn)] and nested refinement [(M1 
 M2, M2 
 M3, . . . , Mn−1 

Mn)]. Furthermore, refinement charts, which appears in the hierarchical form can
be represented in the sequential or parallel or nesting, or in all sequential, parallel
and nesting ways. A complete system can be represented by using mixing of all
refinement chart notations, means each subsystem can be refined by any rule that is
given in Fig. 6.2.

Figure 6.1 presents for only three modes (M1, M2 and M3) with different kinds
of refinements. The parallel relationship among several refinement boxes states that
a system operates simultaneously in all the subsystems. For instance, Fig. 6.1(A)
represents the abstract mode M1 and two parallel refinements are represented by
nesting mode boxes M2 and M3. Transition between these two refinements M2
and M3 are not allowed. Entry into a parallel refined subsystem requires entry into
all of its immediate child refinement. A transition out of one refinement requires an
exit out of all the refined subsystems in parallel to it. The sequential relationship
among several refinement boxes states that the system operates in at most one of
these subsystems at any time. For example, Fig. 6.1(B) represents an abstract mode
M1 and two sequential refinements are presented by the nesting mode boxes M2
and M3 in two levels of hierarchy, where M2 and M3 are embedded in M1. The
transitions between M2 and M3 allows the system to go from one refinement to an-
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Fig. 6.2 Basic rules of
refinement chart

M1 
 (M2 ‖ M3 ‖ . . . ‖ Mn−1 ‖ Mn)

M1 
 (M2 � M3 � · · · � Mn−1 � Mn)

(M1 
 M2, M2 
 M3, . . . , Mn−1 
 Mn)

other refinement according to the operating modes. The nesting relationship among
several refinement boxes states that the system operates in any subsystems. For ex-
ample, Fig. 6.1(C) represents an abstract mode M1 and the subsystems refinement
by a nesting box M2 and the subsystem M2 is refined by a nesting box M3 in three
levels of hierarchy, where M2 is embedded in M1 and M3 is embedded in M2.
A transition is allowed to next level of refined subsystem. A transition out of one
refinement requires an exit out of all the refined sub level of refined subsystems.

As an example, Fig. 6.3 presents the diagrams of the most abstract modal system
for the one electrode pacemaker system (A) and the resulting models of three suc-
cessive refinement steps (B to D). The diagrams use a visual notation to represent
the bradycardia operating modes of the pacemaker under the functional and para-
metric requirements. An operating mode is represented by a box with a mode name;
an operating mode transition is an arrow connecting two operating modes. The di-
rection of an arrow indicates the previous and next operating modes in a transition.
Refinement is expressed by nesting boxes. A detailed description about these refine-
ment blocks related to the one-electrode cardiac pacemaker is given in case study
(see Chap. 9).

Refinement based representation is used during the decomposition and synthesis
phases of a system. The purpose of the refinement chart is to provide an easily man-
ageable representation for different refinements of a system. The refinement chart
offers a clear view of assistance in system integration. This is an important issue not
only for being able to derive system-level performance and correctness guarantees,
but also for being able to assemble components in a cost-effective manner.

Refinement is a modelling technique that is used to introduce more concrete be-
haviour of a system in the next level of refinement, where it preserves the safety
properties and system behaviour between two refinement levels. This preservation
property allows us to model the whole system from initial specification to a con-
crete level in a form of executable specification using incremental development.
The concrete model is considered as that it preserves a system behaviour, thereby
establishing that the generated code satisfies the initial specification [15]. Proof of
consistency between source and target of a refinement is an intrinsic capability of a
refinement process, which can be composed in a similar fashion [14].

A refinement-based system development has a different cost structure than the
traditional development life-cycle. The cost of building models and related other
required design knowledge may be higher for producing the first system. How-
ever, these costs are amortised when reuse these models and designs for developing
the other future systems. Thus, the cost of producing first program may be higher,
but the cost of development for reproducing advanced version of the products and
reuse same codes in other products should be less than the conventional program-
ming [14, 15]. The cost of handling of proof obligations of specifications and refine-
ments should be less than the cost of analysing the final product. It can also help to
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Fig. 6.3 Refinements of one-electrode pacemaker using the refinement chart

a code designer to improve the code structures, code optimisation, and code genera-
tion techniques. Every incremental refinement represents additional functionalities.
This refinement-based structure may greatly improve the safety, hardware integra-
tion and guidelines to develop the critical systems. We, therefore, propose a simple
methodology of system integration using the refinement chart, that seeks to min-
imise the effort and overhead.

6.4 Applications and Case Studies

We have applied the refinement chart [11] in the system development of a cardiac
pacemaker for handling the complexity of the system model (see Chap. 9). Refine-
ment chart helps to model the system integration, which also complies with refine-
ment based formal development. The block diagrams of the refinement chart help to
build the complete system and used to handle the complexity of the whole system
through decomposing in multiple independent parts. Here, refinement chart models
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different kinds of operating modes, and decompose the whole system based on oper-
ational modes. Decomposing using the refinement chart helps to analyse individual
component and interaction or switching from one operating mode to other operating
modes. Formal verification and validation are carried out by both formal modelling
experts and domain experts (medical experts and control engineers), while refine-
ment chart based system integration approach and system development are carried
out by industrial people.

6.5 Summary

Today, in order to respect the certifiable assurance and safety, time to market and
strict cost constraints, critical system designers need some new modelling and sim-
ulation solutions. The solutions must also permit software component modelling,
component integration in a distributed environment, easier debugging of complex
specifications, and mitigated connection with other, existing or new systems [10].

In this chapter, we would like to stress the original contribution of our work. At
each refinement step, some functional blocks are divided into simpler blocks, with-
out changing the behaviour of a system is represented by the refinement chart. We
have proposed a technique to synthesis, integrate, and synchronise the subsystems
of a system using incremental refinements. This approach helps in code integration
and to test the different subsystems independently. The purpose of the refinement
chart is to provide an easily manageable representation for different refinement sub-
systems. The refinement chart offers a clear view of assistance in the system in-
tegration. This is an important issue not only for being able to derive system-level
performance and correctness guarantees, but also for being able to assemble compo-
nents in a cost-effective manner. Moreover, the refinement chart represents a block
diagram for each subsystems and provides a structure in various refinements to build
the complete system. Concrete refinement charts provide system integration infor-
mation in the form of compose and decompose of software codes according to the
blocks diagrams. Composition and decomposition help to improve the code struc-
ture and code optimisation. To find a minimum set of events for each independent
subsystem is known as code optimisation, and synthesising and synchronising of
a set of events are known as code structuring. The refinement chart specially cov-
ers component-based design frameworks and decomposition, integration of critical
infrastructure and device integration. The complexity of design is reduced by struc-
turing systems using modes and by detailing this design using refinement.
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Chapter 7
EB2ALL: An Automatic Code Generation Tool

Abstract The most important step in the software-development life-cycle is the
code implementation. This chapter presents a design architecture of an automatic
code generation tool, which can generate code into several programming languages
(C, C++, Java and C#). This tool is a collection of plug-ins, which are used for
translating the Event-B formal specifications into multiple programming languages.
The translation tool is rigorously developed with safety properties preservation. This
is an essential tool, which supports code implementation phase of our proposed
development life-cycle methodology for developing the critical systems.

7.1 Introduction

Formal methods provide a sound mathematical basis for system requirements
descriptions and aim to produce zero-defect software, by controlling the whole
software-development process, from specification to implementation. The capability
of formal and automated verification of safety properties in formal models, before
transformation into code, has added real value to industrial systems, including hard-
ware systems and software systems. Several constraining requirements are existing
particularly in the embedded domain due to limited size of memory for translat-
ing from formal specifications to a given target programming language (C [22, 29],

Sections of this chapter are adapted from the original publication: Méry, D., & Singh, N. K.
(2011). Automatic code generation from Event-B models. In Proceedings of the second
symposium on information and communication technology, SoICT’11, Hanoi (pp. 179–188).
New York: ACM.
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C++ [37], Java [3, 21] and C# [31]). To overcome such kinds of problems, first,
a compromise must be found between the expressiveness of the formal implementa-
tion language and the simplicity of the translation process. Another compromise is
also necessary between formal models, which generally favour the readability and
the simplicity of the verification process, over the code efficiency.

The code generation process consists in several stages: formal implementations
are translated into programs in a given programming language using a tool chain
of a translator, and then these programs are compiled. This approach offers several
advantages: the translation process is as simple as possible, and it can be validated in
an easy way; secondly having a formal specification of a system suggests as a next
step to use it during the testing phase. Software testing tries to check the correctness
of a system with respect to its specification in program states that are chosen for
the test. The simplicity of the translation ensures the traceability between formal
specification and executed code.

This chapter describes a tool translating Event-B specification into any given tar-
get programming language. The structure of Event-B and the nature of tool has
been developed to support for direct-translation from Event-B formal specifica-
tion into any target programming language. We provide a rigorous translation tool
EB2ALL [17, 25] for Event-B specification to target programming language that
can easily be adapted in any domain and gives freedom for developers to adjust at
best their integer representation for overcoming memory-related problems.

The EB2ALL code generator supports automatic generation of C, C++, Java and
C# code from Event-B [2] formal specifications. The tool EB2ALL is a collection
of plug-ins, which are named as EB2C, EB2C++, EB2J and EB2C# [17, 25]. All
these tools are used as plug-in features for the Rodin development tool [32]. Rodin
development tool is an open and extensible Eclipse-based IDE, which is a platform
for Event-B specification and verification.

We present a multi-phased translation process from the Event-B [2] models.
The Event-B models support set-theoretical notations that are impossible to di-
rectly translate into any target programming language. The translator automatically
rewrites partially formal notations of Event-B [2], that can be easily translatable into
a programming language. Any target programming language source code is then au-
tomatically generated from the model via using an appropriate translation phase of
the tool. The final translated code is applicable to compile into an executable code
using the conventional compilation tools.

A developer can also use translated code to extend the functionality of a sys-
tem by inserting extra code or some new functionalities that are not included in
the Event-B formal development. Some parts of the implementation code are not
supported by the code generator, and a user wants to implement some existing com-
ponents more efficiently are main reasons for inserting extra code into the automat-
ically generated code. Moreover, it offers a flexible way for Event-B designer to
generate C, C++, Java and C# codes. Due to manual intervention in the generated
source code, we propose a code verification technique using the meta-proof and
software model checking tools like BLAST [10] for verifying desired behaviours of
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the developed system. This tool is freely available for download.1 The use of this
tool is exemplified through the generation of C, C++, Java and C# codes from the
specification of a cardiac pacemaker (see Chap. 9).

A code translation from Event-B was relatively easy, but its subsequent use pre-
sented more problems. The most important challenging task in the code generation
is the code verification. The reason is that the preservation at the code level of the
properties proved at the architectural level is guaranteed only if—the underlying
platform is correct and—correctness of the final system when filling in the stubs
for internal actions into the automatic generated code. Another important challenge
is to support all formal notations of Event-B. Few formal notations are used at the
abstract level for a system development, those symbols are not directly translatable.
We have also faced a specific challenge related to the non-deterministic behaviour
of a system. Most of the formal specifications are non-deterministic, which are not
safe for an automatic code generation. To make a formal specification determin-
istic before code generation and to verify that the system behaviours are correct
according to the developer, and also comply with non-deterministic system speci-
fications, are challenging tasks in this code generation process. Invariants are used
for defining type definition and safety properties of a system. How to use invariants
corresponding to the safety properties for verifying generated codes is also one kind
of challenge.

7.1.1 Structure of This Chapter

This chapter is organised as follows. Section 7.2 presents related work and Sect. 7.3
depicts an architecture of the translator in a form of a tool chain and describes vari-
ous parts of the translation process. Section 7.4 presents use of code generator plug-
ins. Section 7.5 discusses limitations of the tool and finally, Sect. 7.6 summarises
the chapter.

7.2 Related Work

Automatic code generation is a standard technique in the area of Software Engi-
neering. Several tools are developed by research community for generating source
code from graphical modelling tool like UML [20, 33, 36] to any target program-
ming language like C++ or Java. But automatic source code generation from for-
mal specification to a high-level programming language is supported by few formal

1Download: http://eb2all.loria.fr/.

http://eb2all.loria.fr/
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techniques like Classic B [2] and Vienna Development Method (VDM) [11, 28].
The VDM [11, 28] is a set of techniques and tools based on formal specifica-
tion language—the VDM Specification Language (VDM-SL). Extended version of
VDM tool (VDM++) supports modelling of object-oriented and concurrent systems.
VDM tools attract both industrial and academic people in the area of formal based
development. VDM tools provide features for analysing models, testing and prov-
ing properties of models, and generating program codes from the validated VDM
models.

A tool vMAGIC [30] is based on Java library that is used for automatic code gen-
eration for VHDL. According to the paper, this tool is very usable and reliable, but
a lot of useful features are not implemented yet. This tool is continued under devel-
opment for adding new features that will be able to do semantic operations as well.
In the area of model-driven software engineering, a tool PADL2Java [13] has been
developed that translates PADL models into Java code. PADL is a process algebraic
architectural description language equipped with a rigorous semantics and transfor-
mation rules into multi-threaded object-oriented software, which is employed in the
verification tool TwoTowers [8]. This tool provides the code generation approach
and code synthesising techniques.

SPARK [5] is a formally-defined programming language based on a restricted
subset of the Ada language [23], intended to be secure and to support the develop-
ment of high integrity software related to the critical systems. It describes desired
behaviour of the system components and to verify the expected runtime require-
ments. Main features of this language are to support strong static typing, static and
run-time checking, object-oriented programming, exception handling, parallel tasks,
etc. Static verification tools allow to check the absence of general run-time errors
like numerical overflow or division by zero and that the user-specified properties
hold. The proofs will either be generated automatically or developed with the pro-
grammer’s assistance for the more complex cases.

From Classic-B [1] notation to ‘C’, C++ and ADA language translation tool has
been developed by D. Bert et al. [9]. This paper presents a methodology for trans-
lating a formal specification based-on Classic-B modelling language. Before gen-
erating the ‘C’ code, the specification model must be restated into an intermediate
language ‘B0’. The intermediate language ‘B0’ is restricted set of Classic-B formal
notations. This tool is particularly designed for generating a ‘C’ code for an embed-
ded system. This tool is not able to handle any complex expressions in the specifica-
tion, so, this tool has very limited use. In the area of code generation from Event-B
model to ‘C’ code is proposed by Stephen Wright [38]. But this tool is particularly
designed for MIDAS [38] project. This tool also supports a subset of Event-B for-
mal notations with a very simple expression form. This tool is no more usable for
any Event-B formal specification. Edmunds et al. [18, 19] have presented a way
for generating code, for concurrent programs, from Event-B specifications. Authors
aim to integrate their code generation approach with existing Event-B methodology
and tools.

As for as we know that there is no any mature translation tool existing, which
can translate directly from Event-B formal specification into any target language
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(C, C++, Java and C#). We have developed a tool that supports automatic trans-
lation into several target languages (C, C++, Java and C#) from Event-B formal
specifications. This tool also supports the only subset of Event-B [2] formal nota-
tions, but it is much richer than previously developed tools [9, 38]. This chapter dis-
cusses the code generation approach underlying EB2C, EB2C++, EB2J and EB2C#
tools [17, 25]. This is our first step toward in the direction of code generation from
the Event-B formal specification, and our aim is to improve this tool to meet the
industrial requirements.

7.3 A Basic Framework of Translator

A translator tool is developed as a set of plug-ins for the Rodin Tool [32], which can
generate the source codes from a formal specification into many programming lan-
guages (C, C++, Java and C#). The translation tool is named as EB2ALL, which is a
group of four kinds of different plug-ins, called EB2C, EB2C++, EB2J and EB2C#.
All these tools have common architecture and a set of protocols for generating a
source code. The translation process consists in transforming the concrete part of
Event-B project into a semantically equivalent text written in any target program-
ming language. This section proposes an architecture for the Event-B translator;
different parts of the translator have been shown in Fig. 7.1 and this architecture sup-
ports translation for several target programming languages like C, C++, Java and C#.
The translator tool is customised for each new target programming language to gen-
erate an efficient code, which can support various types of execution platforms. The
proposed architecture is able to generate a verified code, which also comply with
the behaviour of formal specifications. The translation tool is implemented in the
Eclipse framework as a set of plug-ins for Event-B. The basic description of trans-
lation process is given as follows:

7.3.1 Selection of a Rodin Project

Formal development of a system in Event-B modelling language is provided by an
open and extensible Eclipse-based IDE called Rodin [32], which supports system
specifications and verification. A visual interface and a set of plug-ins help to spec-
ify and to prove a system under logico-mathematical theory. A proof manager is
integrated in Rodin tool. Event-B models and all proof-related informations of a
system project are always stored in the Rodin database. The translator tool is im-
plemented as a set of plug-ins under the Eclipse development framework, using the
recommended interfaces to traverse the statically checked internal database, thus
decoupling the tool from the syntax of the Event-B notation by accessing its un-
derlying meaning. The syntax of the mathematical notation, that is, expressions,
predicates, and assignments, are maintained in the form of an abstract syntax tree.



110 7 EB2ALL: An Automatic Code Generation Tool

Fig. 7.1 A general
architecture of a translation
tool

This is the first phase of the translation process, which presents an explicit selec-
tion of a Rodin [32] project from all the loaded projects into the workspace. The
selected project is passed to the next phase of the translation process for generating
the source code.

7.3.2 Introduction of a Context File

Motivation

Failure of a critical system can be a cause of loss of life, financial loss, environ-
mental damage and injury, where the cost of failure is not tolerable or affordable.
For a critical system run-time error may be just as hazardous as any other logical
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error. For instance, overflow and underflow of bounded integer are run-time errors
that should be addressed in the proof process. For developing a critical system, an
automated technique based on formal methods have been matured to provide a high
degree of confidence. Introduction of a context file is a very important phase of the
code generation process, which provides one more level of refinement to make a
system specification deterministic. The deterministic model is known as concrete
well formed specification, which shows correct system behaviour before generating
the source code. New context file consists of all primary data types corresponding
to the programming languages (C, C++, Java and C#).

The papers [15, 16, 35] address a solution for the proof of clean termination
that provides the facts that a program is totally correct. Clean termination means
that a program terminates normally without any execution-time semantic errors like
integer overflow, use of undefined variables, subscript out of range, etc. [16, 35].
We propose a pre-processing stage for obtaining a deterministic model using one
more level of refinement through introduction of a new context that is similar to
the clean termination approach [15, 35]. This refinement phase provides the de-
terministic definitions of constants and variables. This new refinement generates a
lot of proof obligations. Types of generated proof obligations and proof details are
similar to the papers [15, 16, 35]. This level of refinement complies system speci-
fication abstractly. The generated proof obligations are discharged by automatic as
well as manual, and all proofs that are necessary to verify the specification in order
to guarantee the consistency and correctness of the system. Therefore, this phase
is very important to maintain all safety properties in the automatic code generation
process.

Selection of a Context File

This phase provides many context files, to add into a current project according to
a target programming language choice (C, C++, Java and C#). Table 7.1 shows
bounded integer data types for all target programming languages. In the Event-B
language, there are two kinds of constants and variables (data): abstract data and
concrete data. Abstract data consists in all the elements and sets that can be used
in set theory, as defined in Event-B (integers, enumerated sets, Cartesian products,
power sets, relations, and so on). They are mainly used at the higher levels of spec-
ification (machines and in top level refinements) [2].

Concrete data are those which may be used in the final translation process, each
time the data thus introduced will not be further refined in the development. It is
the case for constants and variables at the implementation level but also for param-
eters and results of operations, which cannot be refined in Event-B [2]. Concrete
data must match ordinary data types in a usual programming language because they
should be “implemented” directly in the target programming language. So, the cor-
respondence between concrete data and data types must be obvious. In standard
Event-B, they are the following ones:
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Table 7.1 Integer bounded data type declaration in different context files

Event-B type Formal range C & C++ type Java type C# type

tl_int16 −215..215 − 1 int short short

tl_uint16 0..216 − 1 unsigned int – ushort

tl_int32 −231..231 − 1 long int int int

tl_uint32 0..232 − 1 unsigned long int – uint

tl_int64 −263..263 − 1 – long long

tl_uint64 0..264 − 1 – – ulong

• enumerated types (including the boolean type)
• bounded integer type (from MININT to MAXINT)
• arrays on finite index intervals where the type of elements is a concrete type (in

set theory, they are similar for total functions)

Refinement Using a New Context File

A new context file consists of a new data type definition equivalent to the primary
data type (see Table 7.1). This new context file helps to model a system more de-
terministic through transforming abstract data types into concrete data types. Here,
we consider the Event-B data types as the abstract data types, and the programming
language data type as the concrete data types. A refinement technique is used to in-
troduce a set of new concrete data types in the formal model. In this new refinement
process, a developer can replace all the Event-B abstract data types of the contexts
and the last concrete machine models, corresponding to the concrete data types ac-
cording to the selected target programming language. The following figure presents
an example for transforming an abstract data type into concrete data type.

var1 ∈ Z

var2 ∈ N

var1 ∈ tl_int16
var1 ∈ tl_int32
var1 ∈ tl_int64

var2 ∈ tl_uint16
var2 ∈ tl_uint32
var2 ∈ tl_uint64

A developer can skip this refinement level. In case of skipping of this refinement
level in the translation process, the translator generates default maximum bounded
integer primitive data type for all the variables and constants. New redefined deter-
ministic ranges using refinement generates a lot of proof obligations.
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7.3.3 Generated Proof Obligations

Introduction of a new context file is used as a data refinement of the system through
removing all the abstract data types into a selected target programming language us-
ing concrete data types. The refinement is supported by the Rodin [4, 32] platform
guarantees the preservation of safety properties. Thus, the behaviour of the final
system is preserved by an abstract model as well as in the correctly refined models.
A lot of proof obligations are generated, which can prove automatically as well as
through manual intervention using interactive proof procedures [2, 4]. A model de-
veloper can discharge all the generated proof obligations with the help of the Rodin
proof tool [32]. For example, when a set of constants and variables based on ab-
stract data types changes into the concrete data types in a new refinement level, then
some proof obligations are generated due to restrictive set of data ranges according
to the predefined system behaviours. All these new generated proof obligations are
required to discharge before continue the process. There is no guarantee to preserve
all the safety properties (related to overflow or underflow) of the proved system
unless all proof obligations are discharged.

Refinement using a context file provides proof of absence of run time errors into
the generated code. Such kind of approach is also known as formal code verifica-
tion [14]. Formal code verification techniques are used to demonstrate that at every
point in the code where a run time error may occur like numeric overflow or under-
flow. A set of required conditions as in the form of predicates guarantees that the
run time error will not occur. One more level of refinement approach is a very valu-
able step in the translation process to save from run time error, which demonstrates
that especially in systems where the occurrence of an undesired run time error is
unrecoverable.

7.3.4 Filter Context and Concrete Machine Modules

Refinement is a key feature of a formal development that supports incremental de-
velopment for specifying a complex system. Event-B modelling language supports
refinement based incremental development of a system, where a formal model is a
series of development starting with a very abstract model of the system under de-
velopment. Details are gradually added to this first model by building a sequence
of more concrete events and ending with the implementation of machine as a final
concrete system. The relationship between two successive models in this sequence
is refinement [2, 4]. Relations between modules are only relations sees and refines.

This stage of the automatic translation process is used to filter all context and
concrete machine files from the selected project. The context files consist of static
properties as sets, constants, functions and enumerated sets of a system, while the
machine files contain dynamic properties as variables, functions and events of a sys-
tem. A set of filtered context and concrete files contains concrete sets, concrete con-
stants, concrete variables, concrete functions and concrete events, which are used
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for implementation of a system. A selected project always contains some concrete
models, which are refinements of the abstract models. The translation tool automat-
ically filters a set of context and concrete files. If the translation tool is not able
to filter all context and concrete files from the selected project, then immediately
the translation process terminates with an error message, else all the filtered context
and concrete files are passed to the next translation phase for continuing translation
process.

7.3.5 Basic Principles of Code Generation

This phase is the heart of the translation tool. Before this level, all phases are used
as preprocessing steps for obtaining the run-time errors free codes through data re-
finement of the formal specification. Main objective of this phase is to translate
statically checked and proved formal specifications of Event-B model into observa-
tionally equivalent standard programming languages (C, C++, Java and C#). A set
of rules has been generated for producing a source code, which is applicable to all
context and concrete machine modules (i.e. those found to have no further refine-
ment).

The translation tool generates source files as equivalent to the number of concrete
machine files [2]. Source code generated file has a similar name corresponding to
the concrete machine file, and a file extension generates according to the choice
of a programming language. Source code generated files are saved in the folder
of a particular language (C, C++, Java and C#) in the workspace of the selected
Rodin project. Source code generated file begins with insertion of header comments
containing a time-stamp and the name of selected Rodin project. Some required
header informations are also inserted in the header of the source file according to
the target programming language requirements. For instance, in C++ and C# source
files contain all required header files related to the standard template library (STL)
and Collection class of .NET Framework [12, 37], respectively. A Java source file
contains sets definition of the set operations for handling the sets based notations of
Event-B using standard class of Java utilities.

Main cause of failure of this translation tool is unable to parse any predicate. For
example, the current tool is not able to handle relational operator (↔) and quan-
tifiers (∃ and ∀). If any predicate expression contains any quantifiers or relational
operators, then the translation process is unable to translate it into a selected pro-
gramming language, and the translation process fails. In case of translation failure,
the tool immediately proceeds with translation of the next module. For avoiding the
errors in the translation process, we have considered mainly two approaches:

• To model a system specification using a set of symbols (see Table 7.2 and Ta-
ble 7.3), which is supported by the translation tool.

• Transformation of the final concrete models into a supported symbol list (see
Table 7.2 and Table 7.3) through the refinement process.



7.3 A Basic Framework of Translator 115

Table 7.2 Event-B to C & C++ translation syntax

Event-B ‘C’ & ‘C++’ language Comment

n..m int Integer type

x ∈ Y Y x; Scalar declaration

x ∈ tl_int16 int x; ‘C’ & ‘C++’ contexts

x ∈ n..m → Y Y x [m + 1]; Array declaration

x :∈ Y /* No action */ Indeterminate init.

x : | Y /* No action */ Indeterminate init.

x = y if(x == y) { Conditional

x �= y if(x! = y) { Conditional

x < y if(x < y) { Conditional

x ≤ y if(x <= y) { Conditional

x > y if(x > y) { Conditional

x ≥ y if(x >= y) { Conditional

(x > y) ∧ (x ≥ z) if ((x > y) && (x >= z)) { Conditional

(x > y) ∨ (x ≥ z) if ((x > y) ‖ (x >= z)) { Conditional

x := y + z x = y + z; Arithmetic assignment

x := y − z x = y − z; Arithmetic assignment

x := y ∗ z x = y ∗ z; Arithmetic assignment

x := y ÷ z x = y / z; Arithmetic assignment

x := F(y) x = F(y); Function assignment

a := F(x�→y) a = F(x, y); Function assignment

x := a(y) x = a[y]; Array assignment

x := y x = y; Scalar action

a := a �− {x�→y} a[x] = y; Array action

a := a �− {x�→y} �− {i �→j} a[x] = y; a[i] = j; Array action

X⇒Y if(!X ‖ Y){ Logical implication

X⇔Y if((!X ‖ Y) && (!Y ‖ X)){ Logical equivalence

¬x<y if(!(x < y)){ Logical not

x ∈ N unsigned long int x Natural numbers

x ∈ Z signed long int x Integer numbers

∀ /* No action */ Quantifier

∃ /* No action */ Quantifier

fun ∈ N×N→N unsigned long int fun(
unsigned long int arg1,
unsigned long int arg2)
{
//TODO: Add your Code
return;
}

Function definition
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Table 7.3 Event-B to Java & C# translation syntax

Event-B ‘Java’ & ‘C#’ Comment

n..m short Integer type

x ∈ Y Y x; Scalar declaration

x ∈ tl_int16 short x; (Java) &
ushort x; (C#)

‘Java’ & ‘C#’ contexts

x ∈ n..m → Y Y [ ]x = new Y[m + 1]; Array declaration

x :∈ Y /* No action */ Indeterminate init.

x : | Y /* No action */ Indeterminate init.

x = y if(x == y) { Conditional

x �= y if(x! = y) { Conditional

x < y if(x<y) { Conditional

x ≤ y if(x <= y) { Conditional

x > y if(x > y) { Conditional

x ≥ y if(x >= y) { Conditional

(x>y) ∧ (x ≥ z) if ((x > y) && (x >= z)) { Conditional

(x>y) ∨ (x ≥ z) if ((x > y) ‖ (x >= z)) { Conditional

x := y + z x = y + z; Arithmetic assignment

x := y − z x = y − z; Arithmetic assignment

x := y ∗ z x = y ∗ z; Arithmetic assignment

x := y ÷ z x = y / z; Arithmetic assignment

x := F(y) x = F(y); Function assignment

a := F(x�→y) a = F(x, y); Function assignment

x := a(y) x = a[y]; Array assignment

x := y x = y; Scalar action

a := a �− {x�→y} a[x] = y; Array action

a := a �− {x�→y} �− {i �→j} a[x] = y; a[i] = j; Array action

X⇒Y if(!X ‖ Y){ Logical implication

X⇔Y if((!X ‖ Y) && (!Y ‖ X)){ Logical equivalence

¬x < y if(!(x < y)){ Logical not

x ∈ N unsigned long int x Natural numbers

x ∈ Z signed long int x Integer numbers

∀ /* No Action */ Quantifier

∃ /* No Action */ Quantifier

fun ∈ N×N→N public long fun(long arg1,
long arg2)
{
//TODO: Add your Code
return;
}

Function definition
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Table 7.4 Event-B to Java & C# Sets translation syntax

Event-B ‘C++’ Comment

set_var set <data type> set_var STL library

∪ set_union(...) STL library

∩ set_intersection(...) STL library

\ set_difference(...) STL library

⊆ includes(...) STL library

⊂ includes(...) && !(equal(...)) STL library

�⊆ !(includes(...)) STL library

�⊂ !(includes(...)) && !(equal(...)) STL library

Event-B ‘Java’ Comment

set_var Set <data type> set_var =
new HashSet<data type>()

Java Utilities

∪ unionSet(...) Java Utilities

∩ intersectionSet(...) Java Utilities

\ differenceSet(...) Java Utilities

⊆ isSubset(...) Java Utilities

⊂ isSubset(...) && !(isEqualSet(...)) { Java Utilities

�⊆ !(isSubset(...)) Java Utilities

�⊂ !(isSubset(...)) && !(isEqualSet(...)) Java Utilities

Event-B ‘C#’ Comment

set_var HashSet <data type> set_var =
new HashSet<data type>()

.NET Framework 4

∪ UnionWith(...) .NET Framework 4

∩ IntersectWith(...) .NET Framework 4

\ ExceptWith(...) .NET Framework 4

⊆ IsSubsetOf(...) .NET Framework 4

⊂ IsProperSubsetOf(...) .NET Framework 4

�⊆ !(IsSubsetOf(...)) .NET Framework 4

�⊂ !(IsProperSubsetOf(...)) .NET Framework 4

Before generating a source code from a model, a user is required to refine a sys-
tem using a subset of Event-B symbols (see Tables 7.2, 7.3 and 7.4), which can
restate the model in a more translatable form. Supported symbols are available in
Tables 7.2, 7.3 and 7.4. These tables show a set of Event-B syntax to the equivalent
C, C++, Java and C# programming languages. All constants defined in a model’s
context must be replaced with their literal values. This translation tool supports Sets
theory notations (not in ‘C’), conditional, arithmetical and logical expressions of a
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formal specification. The formal notations and expressions are translated into equiv-
alent programming language code. A detailed translation process of the context and
concrete machine files are given in the following sections.

Process Context and Machine Files Using Lexical and Syntax Analysis

Context and machine files consist of static and dynamic properties of a system in the
form of modular architecture, which represents a system behaviour using formal no-
tations. To generate a source code into any programming language, it is required to
process the context and machine files separately using lexical and syntactic analysis.
Usually, the parsing of a formal model is divided into two stages: lexical analysis
and syntactic analysis. In real-world problem like code generation, lexical analysis
and syntactic analysis stages may be intertwined with each other [34]. We are very
thankful to the Rodin development team for providing source code of Rodin tool.
Source code of the Rodin tool is well-written and developed as in the form of a set
of plug-ins to design a complete tool. The Rodin tool has a set of library files of an
Abstract Syntax Tree (AST) which is mainly used for lexical and syntactic analysis
for Event-B notations at the time of modelling. We have used same library for lex-
ical and syntactic analysis of Event-B model for generating a source code into any
programming language (C, C++, Java and C#). To generate a source code into any
target programming language, input source (Event-B formal model) is always same.
Therefore, we have similar kinds of procedures to process context and machine files
using existing AST library of the Rodin tool.

Process Context Files

The context of Event-B model consists of sets, enumerated sets, constants, arrays
and constant functions, associated with their respective type. The translation tool
supports all kinds of context components to generate a constant type with respect
to a programming language. An instance of the context consists in associating to
each name a value consistent with its declared type. The observational equivalence
is based on equivalence between Event-B values and target programming language
values. This equivalence on values is naturally extended on instances of context. The
observational equivalence between Event-B sets and target programming language
types is given in Table 7.5.

Mapping Event-B Constant Types to Programming Language

• Enumerated Sets
Event-B enumerated sets is semantically equivalent to a target programming lan-
guage enumerated type. It is very easy to translate into a target programming
language equivalent form due to equivalent semantical structure.
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Table 7.5 Equivalence between Event-B and programming language

Event-B types Target language types

Enumerated sets Enumerated types

Basic integer sets Predefined integer types

Event-B array types Target programming language array type

Function Target programming language function structure

Sets theory Set theory implementation using advanced library
function in target language (not in ‘C’)

Event-B
partition(ESet, {On}, {Off })

C and C++
enum ESet{On,Off };

Java and C#
public enum ESet{On,Off };

• The Numeric Types
The links between Event-B and target programming languages for integer values
have been considered as crucial for the efficiency of a generated code and for the
correctness of the translation process. So, the solution is provided in the second
phase by introducing target programming language context, and it is able to in-
terface very tightly between Event-B types and a target programming language
type. The Event-B numeric types (N, N1 and Z) are either all mapped to the pre-
defined context files (see second phase of the translation process) or defined the
maximum integer range according to a programming language. For translating
constant data type in C, C++ and C# programming languages use const keyword,
while Java uses static final keyword for defining a constant.

Event-B
Lnum ∈ N

C, and C++
const long int Lnum;

C#
const long Lnum;

Java
static final long Lnum;

• The Array Type
The links between Event-B arrays and target programming language arrays are
not straightforward. In Event-B, an array corresponds to a total function whereas
in the target programming language, an array corresponds to a contiguous zone
of memory (coded as the beginning address of the array and its size). However,
it is easy to do a semantical correspondence between an array element arr(i) in
Event-B and a value at the location arr[i] in target programming languages (see
Tables 7.2, 7.3).
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Event-B
ARR ∈ 1..10 →N

C, and C++
const long int ARR[11];

C#
const [ ]long = new long[11];

Java
static final [ ]long = new long[11];

• The Function Type
The links between Event-B function and target programming language function is
also very ambiguous. The Event-B functions are generated explicitly into a target
language code, and function definitions are placed in the corresponding source
file. The translation tools only supports total function of Event-B into equiva-
lent corresponding target programming language function. However, it is an easy
way to do a semantical correspondence between function passing parameters in a
target programming language is equivalent to the elements of left side of the to-
tal functions symbol (→) and output of a target programming language function
corresponds to the right-hand side of the total functions symbol (→) in Event-B.
So, this step of function translation generates a function structure into a target
programming language (see Tables 7.2, 7.3).

Event-B
fun ∈ N×N→N

C, and C++
unsigned long int (unsigned long int arg1,

unsigned long int arg2)

{
//TODO : Add your Code
return;

}

Java
public long (long arg1, long arg2)

{
//TODO : Add your Code
return;

}

• The Set Type
The translation tool is a set of plug-ins, in which C++, Java and C# languages
plug-ins can support Sets formal notation for translation. The Event-B sets type
is translated into a programming language using the standard template library
(STL) in C++, advanced Java class utilities in Java and Generic Collection of
.NET Framework in C#. We have developed some functions with the help of
existing library functions in C++, Java and C#, which are equivalent to Event-B
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sets operations (see Tables 7.2, 7.3 and 7.4). We have given the following snap
shot of sets operations, which are by default generated in every source code of
Java file.

p u b l i c s t a t i c <T> Set <T>
u n i o n S e t ( Set <T> setA , Set <T> s e t B )
{
Set <T> tmp = new HashSet <T>( se tA ) ;
tmp . a d d A l l ( s e t B ) ;
r e t u r n tmp ;
}

p u b l i c s t a t i c <T> Set <T>
i n t e r s e c t i o n S e t ( Set <T> setA , Set <T> s e t B )
{
Set <T> tmp = new HashSet <T>( se tA ) ;
tmp . r e t a i n A l l ( s e t B ) ;
r e t u r n tmp ;
}

p u b l i c s t a t i c <T> Set <T>
d i f f e r e n c e S e t ( Set <T> setA , Set <T> s e t B )
{
Set <T> tmp = new HashSet <T>( se tA ) ;
tmp . removeAl l ( s e t B ) ;
r e t u r n tmp ;
}

p u b l i c s t a t i c <T> b o o l e a n
i s S u b s e t ( Set <T> setA , Set <T> s e t B )
{
r e t u r n s e t B . c o n t a i n s A l l ( se tA ) ;
}

p u b l i c s t a t i c <T> b o o l e a n
i s E q u a l S e t ( Set <T> setA , Set <T> s e t B )
{
r e t u r n ( s e t B . c o n t a i n s A l l ( se tA)&& setA . c o n t a i n s A l l ( s e t B ) ) ;
}
. . .

• Set Definition: To define a set type into C++, Java and C#, the translation tool
uses some fixed code structures to define a sets type with the help of STL library,
Java utilities and .NET Framework (when set type is unknown). The following
structures are excerpted from a translated code to understand the set definition of
a context model:

In the C++ language. . .

c l a s s DATASet{
p r i v a t e :

s t r i n g e l e m e n t ;
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p u b l i c :
DATASet ( ) { e l e m e n t = " " ; }
DATASet ( s t r i n g elem ) { e l e m e n t = elem ; }
s t r i n g o u t E l e m e n t ( ) c o n s t { r e t u r n e l e m e n t ; }
boo l o p e r a t o r <(DATASet temp ) c o n s t {

r e t u r n ( e lement <temp . ou t E l e m e n t ( ) ) ;
}
boo l o p e r a t o r ==(DATASet temp ) c o n s t {

r e t u r n ( e l e m e n t ==temp . ou t E l e m e n t ( ) ) ;
}

} ;
/∗ S e t s d e f i n i t i o n ∗ /
s e t <DATASet> DATA;

In the Java language. . .

p u b l i c s t a t i c c l a s s DATASet{
p r i v a t e S t r i n g e l e m e n t ;
p u b l i c DATASet ( ) { e l e m e n t = " " ; }
p u b l i c DATASet ( S t r i n g elem ) { e l e m e n t = elem ; }
p u b l i c S t r i n g o u t E l e m e n t ( ) { r e t u r n e l e m e n t ; }

} ;

/∗ S e t s d e f i n i t i o n ∗ /
S e t <DATASet> DATA = new HashSet <DATASet > ( ) ;

In the C# language. . .

p u b l i c s t a t i c c l a s s DATASet{
p r i v a t e s t r i n g e l e m e n t ;
p u b l i c DATASet ( ) { e l e m e n t = " " ; }
p u b l i c DATASet ( s t r i n g elem ) { e l e m e n t = elem ; }
p u b l i c s t r i n g o u t E l e m e n t ( ) { r e t u r n e l e m e n t ; }

} ;
/∗ S e t s d e f i n i t i o n ∗ /
HashSet <DATASet> DATA = new HashSet <DATASet > ( ) ;

To define a set of numbers are very simple, which can be defined as follows:
In C++ language. . .

s e t < i n t > A; /∗ S e t s d e f i n i t i o n ∗ /

In the Java language. . .

S e t <Long> A= new HashSet <Long > ( ) ; /∗ S e t s d e f i n i t i o n ∗ /

In the Java language. . .

HashSet < i n t > A= new HashSet < i n t > ( ) ; /∗ S e t s d e f i n i t i o n ∗ /
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A set of context files is used as an input to declare all kinds of data-types in form
of global constants on top of the source code file. All elements of the context files
are declared as global. Context element type information is derived from the type-
defining AXIOM statement within the context, which may express as integer ranges,
specially supported bit-map types or arrays of these defined by mapping functions.

Process Machine Files

Machine file contains dynamic behaviour of a system, which is denoted by gener-
ally variables, arrays, functions and events. All these components of a machine file
model a system. In the following section, we present automatic transformation of a
machine model into any programming language (C, C++, Java and C#).

Mapping Event-B Variable Types to Programming Language

A machine file contains functions, arrays and variables for representing a system
state. All these elements are declared as global. Global element’s type information is
derived from the type-defining INVARIANT statements within the machine, which
may be expressed as integer ranges, function structure, or arrays. Event-B to target
language code generator generates target language function definitions correspond-
ing to the invariants. Event-B functions are generated explicitly into the target lan-
guage code and function definitions are placed in the corresponding source file. The
translation tool translates all those into target programming language code accord-
ing to the same rules, which are defined in the last section for defining a constant
type. Static and dynamic type definitions have only difference between context and
machine modules data types. For instance, constants and variables have the same
definition using primitive data types but C, C++ and C# language constants use
const keyword and Java uses static final keyword with a constant data type declara-
tion, and variables are defined in all languages without using const and static final
keywords.

More than one invariants or axioms may be defined in a single invariant or axiom
using and (∧) logical operator. This translation tool automatically parses an invari-
ant or axioms at the time of constant or variable data type declaration during the
translation process.

Event-B
var ∈ tl_int16

C, and C++
int var;

C#
short var;

Java
short var;
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Table 7.6 Event B events
Event e Before-after predicate BA(e)(x, x′)

BEGIN
x : |(P (x, x′))

END

P (x, x′)

WHEN
G(x)

THEN
x : |(Q(x, x′))

END

G(x) ∧ Q(x,x′)

ANY WHEN
t

WHERE
G(t, x)

THEN
x : |(R(x, x′, t))

END

∃t ·(G(t, x) ∧ R(x, x′, t))

Mapping Event-B Events to Programming Language

The translation tool provides a recursive process to generate a source code for each
event of the Event-B specification into a target programming language. The trans-
lation tool always checks for null event (i.e. guard of a false condition), never gen-
erates a source code for that event, and inserts suitable comment into the source
code for the traceability purpose. This automatic reduction is performed to avoid
generation of an unreachable run-time code.

• To Process Event’s Variable
In Event-B specification, there are two kinds of variables: global variables and lo-
cal variables. Global variables are derived directly from VARIABLES statements
of a concrete machine, and all these variables have global scope. Local variables
are derived from the ANY statement of the particular event, and these are entirely
local to the corresponding event function (see Table 7.6). The type of this local
variable is declared into the event’s guards. Once the guards of an event have
been classified, and that conferring local variable type information are used for
variable declaration in a function. Remaining guards are used to generate local
assignment and conditional statements in the guard section. Local variable type
information is derived in a similar fashion as the global variables from the guard
predicates instead of using INVARIANTS. A recursive process is used to find a
type of Event-B local variable corresponding to the programming language. Each
event of Event-B is generated in equivalent to the programming language func-
tion. After generation of a function header, all local variables, array declarations
are inserted at the beginning of the function, giving them scope across the whole
function body.
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EVENT Sum
ANY a

WHEN
grd1 : a ∈ N

.

.

.

/ ∗ In the ‘C’ Language ∗ /

BOOL Sum() {
long int a;
.
.
.

/ ∗ In the Java language ∗ /

private boolean Sum() {
long a;
.
.
.

• To Process Event’s Guard
In the Event-B, guard handling is very ambiguous due to contain several kinds of
modelling notations, such that local variable type definition, conditions and use
of different kinds of logical operators (∧, ∨, ¬, ⇒, ⇔). Therefore, for handling
so many complex situations, we have designed a recursive algorithm for parsing a
complex guard and to separate different kinds of predicates in the form of formal
notations for generating a programming language code using guards. Thus, each
guard must be automatically analysed to resolve this ambiguity from the context
information. In a formal model, the guards are known as pre-conditions and ac-
tion predicates are known as post-conditions. In an event, all pre-conditions must
be true for executing the post-conditions or action predicates. For translating an
event of a formal model into a programming language, we translate it into corre-
sponding target language function (C, C++, Java and C#).

Pre-conditions of a guard are translated into equivalent if condition statement.
A group of guards is translated in the form of nested-if conditions, and are placed
into an event function as a set of nested conditional statements, using directly
translated conditional and local variables declared within nested scope ranges.
A suitable comment is also inserted with each guard condition to understand the
different elements of the guards like local variables and pre-conditions.

EVENT Sum
. . .

WHEN
. . .

grd3 : a < n

grd4 : a > m

.

.

.

/ ∗ In the ‘C’ Language ∗ /

BOOL Sum() {
. . .

if (a < n){
if (b > m){
.
.
.

/ ∗ In the Java language ∗ /

private boolean Sum() {
. . .

if (a < n){
if (b > m){
.
.
.
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A set of guards can be represented through logical operators, which are simply
in the form of propositions calculus. In the account of code generation, we want
to explore the possibility of logical operators in the translation process. An impor-
tant goal is to handle the various kinds of logical operators in terms of providing
a large class of a set of symbols supported for the code generation and to support
various kinds of modelling structures. A key part of a structuralist approach is to
define the various logical operators as special functions defined on implication
structures. It will be helpful in what follows to use Conjunction, Negation, and
Disjunction as examples of the way these characterisations work. Universal and
existential quantifications are also part of the guards but these are not defined or
discussed here due to restricted in the current version of translation tools.

Conjunction (∧): The conjunction operator (∧) in a guard predicate is a func-
tion of two arguments, such that for any two predicates connected with a conjunc-
tion operator (∧) is translated as follows:

EVENT Sum
. . .
WHEN

. . .

grd3 : a < b ∧ P _State = FALSE
.
.
.

/ ∗ In the ‘C’ Language ∗ /

BOOL Sum() {
. . .

if ((a < b) && (P _State == FALSE)){
.
.
.

/ ∗ In the Java language ∗ /

private boolean Sum() {
. . .

if ((a < b) && (P _State == FALSE)){
.
.
.

Disjunction (∨): The disjunction operator (∨) in a guard predicate is a function
of two arguments. Any two predicates connected with a disjunction operator (∨)
is translated as follows:

EVENT Sum
. . .

WHEN
. . .

grd3 : a < b ∨ P _State = FALSE
.
.
.

/ ∗ In the ‘C’ Language ∗ /

BOOL Sum() {
. . .

if ((a < b) || (P _State == FALSE)){
.
.
.

/ ∗ In the Java language ∗ /

private boolean Sum() {
. . .

if ((a < b) || (P _State == FALSE)){
.
.
.
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Negation (¬): The negation operator (¬) in a guard predicate is a function of
single argument, such that for any predicate with a negation operator (¬) in a
guard is translated as follows:

EVENT Sum
. . .

WHEN
. . .

grd3 : ¬a < b

.

.

.

/ ∗ In the ‘C’ Language ∗ /

BOOL Sum() {
. . .

if (! (a < b)){
.
.
.

/ ∗ In the Java language ∗ /

private boolean Sum() {
. . .

if (! (a < b)){
.
.
.

Some more logical operators are like implication (⇒) and equivalence (⇔),
which can be easily rewritten using logical conjunction (∧), disjunction (∨) and
negation (¬) operators. For example, the implication (⇒) and equivalence (⇔)
operators, the translator tool automatically rewrite a predicate in an equivalent
form using conjunction (∧), disjunction (∨) and negation (¬) operators, an equal
relation may signify an assignment or equality comparison, and the precise mean-
ing (and hence the resulting translation) deduced from the type and scope of its
operands.

Implication (⇒): The implication operator (⇒) in a guard predicate is a func-
tion of two arguments, such that for any predicate connected with an implication
operator (⇒) is translated as follows:

EVENT Sum
. . .

WHEN
. . .

grd3 : a < b ⇒ P _State = FALSE
.
.
.

/ ∗ In the ‘C’ Language ∗ /

BOOL Sum() {
. . .

if (! (a < b) || (P _State == FALSE)){
.
.
.

/ ∗ In the Java language ∗ /

private boolean Sum() {
. . .

if (! (a < b) || (P _State == FALSE)){
.
.
.
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Equivalence (⇔): The equivalence operator (⇔) in a guard predicate is a func-
tion of two arguments, such that for any predicate connected with an equivalence
operator (⇔) is translated as follows:

EVENT Sum
. . .

WHEN
. . .

grd3 : a < b ⇔ P_State = FALSE
.
.
.

/ ∗ In the ‘C’ Language ∗ /

BOOL Sum() {
. . .

if ((! (a < b) || (P _State == FALSE)) ||
(! (P _State == FALSE) || (a < b))){
.
.
.

/ ∗ In the Java language ∗ /

private boolean Sum() {
. . .

if ((! (a < b) || (P _State == FALSE)) ||
(! (P _State == FALSE) || (a < b))){
.
.
.

Arithmetical expressions, calling functions and set operations (see Tables 7.2,
7.3) are also supported by Event-B formal notations in the guards, which are
all translatable into any target programming language. Event-B expressions and
statements are code generated, such that the generated code behaves like it is
expected from the specification. A set of translation rules with a basic syntactic
architecture is defined in Table 7.2 and Table 7.3. Translation tool follows the
similar set of rules for generating a source code. A special kind of ambiguity of
a functional-image relation is resolved during the translation process, which may
be used to model a data array or an external function. The meaning of functional-
image statements within a model is automatically resolved to an array if the map-
ping is a global variable, otherwise to call an uninterpreted function. A complete
set of guards of an event is translated into equivalent programming language code
in the form of pre-conditions in an event. During the code translation process,
a run-time exception function is generated if an undefined expression or an error
statement is occurred. This call of exception function terminates the code trans-
lation and reports that an undefined expression into a code generation log file.

The translation tool can support a very complex predicate, where more than
one predicate are defined in a single guard. The translation tool is able to automat-
ically parse the whole predicate into a set of predicates, separately for translation
purpose.

Set operations: The set operators (∪, ∩, \) in a guard predicate is a function
of two arguments, which uses some intermediate steps according to the C++,
Java and C# programming languages. The translation of set based expression is
translated as follows:
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EVENT SetFun
. . .

WHEN
. . .

grd3 : A ∪ B ⊆ C

.

.

.

/ ∗ In the ‘C++’ Language ∗ /

BOOL SetFun() {
. . .

set < int > tset2;
set_union(A.begin(),A.end(),B.begin(),B.end(),

inserter(tset2, tset2.begin()));

if ((includes(C.begin(),C.end(), tset2.begin(),

tset2.end()))){
.
.
.

/ ∗ In the Java language ∗ /

private boolean SetFun() {
. . .

if (isSubset(unionSet(A,B),C)){
.
.
.

/ ∗ In the C# language ∗ /

private boolean SetFun() {
. . .

A.UnionWith(B);
if (A.IsSubsetOf (C)){

.

.

.

• To Process Event’s Action
The next sub-stage of an event translation presents the action translation. In
EVENT-B, all action predicates of an event are considered as in the form of con-
current execution. The set of action predicates are post-conditions in the Event-B
events, which state that all action predicates only valid when all pre-conditions or
guards are satisfied [1, 2]. Event-B modelling approach supports that any state
variable is not allowed to be modified by different action expressions, means
Event-B ensures that any state variable used as an action assignee is not modified
by any prior post conditions or action predicate. In the code translation process,
all action predicates are generated into equivalent programming expression. In a
programming language, all action expressions are executed in a sequential order
of what they have defined in a formal specification. But all action expressions are
executed only when all if conditions become true. Event-B supports three kinds
of assignment operators becomes equal to (:=), becomes in (:∈) and becomes
such that (: |), where becomes in (:∈) and become such that (: |) are used basi-
cally in an abstract model, and through the refinement process, it is represented
in a concrete form as becomes equal to (:=). The translation tools only supports
becomes equal to (:=). If a concrete model uses any becomes such that (: |) and
becomes in (:∈) assignment operators, then the translation tool does not gener-
ate action predicates into programming expressions and move to the next action
predicate to continue processing. A similar way of parsing is applied on Event-B
action statement like a guard statement. The translation tool translates all Event-B
actions into an equivalent target programming language source code.
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EVENT Sum
. . .

WHEN
. . .

THEN
act1 : Ans := a + 10 − 6 ∗ 8

.

.

.

/ ∗ In the ‘C’ Language ∗ /

BOOL Sum() {
. . .

Ans = a + 10 − 6 ∗ 8;
.
.
.

/ ∗ In the Java language ∗ /

private boolean Sum() {
. . .

Ans = a + 10 − 6 ∗ 8;
.
.
.

An action translation supports assignments to scalar variables, override state-
ments acting on array-type variables, arithmetic complex expressions and set op-
erations. The Event-B supports a special form of the action predicates, which
shows that a state variable can be used in the right side of the assignment opera-
tor (:=). To handle such kinds of action predicates, the translation tool automati-
cally modifies the action predicates through a re-write phase and store the value
in an intermediate local variable, and finally translate into programming language
expression with an assignee in the action expression.

EVENT Sum
. . .

WHEN
. . .

THEN
act1 : OvrVar := OvrVar�−

{3 �→ 67,4 �→ 88, t �→ 56}
act1 : Arr(i) := 5

.

.

.

/ ∗ In the ‘C’ Language ∗ /

BOOL Sum() {
. . .

OvrVar[3] = 67;
OvrVar[4] = 88;
OvrVar[t] = 56;
Arr[i] = 5;

.

.

.

/ ∗ In the Java language ∗ /

private boolean Sum() {
. . .

OvrVar[3] = 67;
OvrVar[4] = 88;
OvrVar[t] = 56;
Arr[i] = 5;

.

.

.

After insertion of all kinds of action predicates through the translation process
into a generated code event function, adds an extra statement returning a boolean
true, which express run-time traceability and states that an event function is trig-
gered successfully. After insertion of returning boolean statement, inserts all curly
braces (}) according to the total number of guards except those guards, who repre-
sents local variable data types. Finally, a returning boolean false statement again
inserts before closing the final braces of an event function. The main objective
of this false boolean returning statement at a time of execution is that, when this
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event function executes and any guard of this event is false, then this function
returns false to indicate that this event function is not executed.

/ ∗ In the ‘C’ Language ∗ /

BOOL EventFun() {
if (Cond1){

if (Cond2){
. . .

Assignment Expr.
. . .

return TRUE;
}

}
return FALSE;

}

/ ∗ In the Java language ∗ /

private boolean EventFun() {
if (Cond1){

if (Cond2){
. . .

Assignment Expr.
. . .

return true;
}

}
return false;

}

Set expression: The set operators (∪, ∩, \) in the action predicate is also func-
tion of two arguments similar to the guards predicates, which use some inter-
mediate steps according to the C++, Java and C# programming languages. The
translation of set based expression is translated as follows in the action’s part:

EVENT SetFun
. . .

WHEN
. . .

THEN
act1 : C := A ∪ B

.

.

.

/ ∗ In the ‘C++’ Language ∗ /

BOOL SetFun() {
. . .

set < int > tset4;
set_union(A.begin(),A.end(),B.begin(),B.end(),

inserter(tset4, tset4.begin()));

C.clear();/ ∗ clear data of assignee set C ∗ /

C = tset4;/ ∗ Transfer all sets elements into C ∗ /

.

.

.

/ ∗ In the Java language ∗ /

private boolean SetFun() {
. . .

C.clear();//clear data of assignee set C

//Transfer all sets elements into C

C = unionSet(A,B);
.
.
.

/ ∗ In the C# language ∗ /

private boolean SetFun() {
. . .

C.clear();//clear data of assignee set C

//Transfer all sets elements into C

C = A.UnionWith(B);
.
.
.
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The translation tool uses a similar kind of fashion to translate each event of the
Event-B model. Event-B is a very rich modelling language for representing for-
mal notation of a specification, but translation tool supports only subset of formal
notations of Event-B. Event-B expressions and statements are code generated,
such that the generated code behaves like it is expected from the specification.
A set of translation rules and basic syntactic architecture is defined in Tables 7.2,
7.3 and 7.4. During the code translation process, a run-time exception function
is generated if an undefined expression or an error statement is occurred. A gen-
erated error invokes an exception function, which terminates the code translation
process and reports that an undefined expression into a code generation log file.
The next level of the translation tool presents the scheduling techniques to pro-
duce an executable code.

7.3.6 Events Scheduling

This phase is not producing any translation part of the translation tool. This section
introduces to generate a function for organising all event functions. There are two
ways to organise all the event functions:

1. Optimise: An optimised code is used to make a group of calling event functions
into a new function. An incremental refinement-based structure of events within
an Event-B model provides grouping information about the events. A recursive
algorithm is used in the translation tool to discover structuring information from
current Rodin project, and could exploit it to recursively generate nesting call-
ing a set of functions corresponding to the abstract events. Merging of common
event guards is currently avoided in order to preserve direct mapping between
Event-B statements and translated code, at the cost of possible performance opti-
misations. However, if translatable guards are already placed in an abstract level,
then guards are forming a group of concrete events. An event group is inserted for
execution in place of multiple events for improving the run-time performance.

Figure 7.2 shows a basic architecture of event scheduling using optimisa-
tion approach. This figure represents a tree structure of the refinement develop-
ment, where an abstract model is represented as AM and refinement models are
represented through RM1,RM2 . . . , and finally concrete models are represented
by CM. All refinement models (RMi ) are parts of the single abstract refinement
(AM). This figure has two groups G1 and G2. G1 makes a group of a set of
events at first refinement level and G2 makes a group of events at the second
refinement level. A user can select the refinement level for making a group of
events before code generation. Each group has a set of events, which are only
executable when abstract guards are true. If a user select higher number of re-
finement level for optimisation then the number of groups may be increased. For
instance, in Fig. 7.2 group G1 has refinement level 1, therefore there are three
possible number of groups, while in the group G2 has refinement level 2 and
possible number of maximum groups are five corresponding to the number of
blocks in each refinement level.
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Fig. 7.2 Event scheduling

2. Sequential: A sequential organisation of the event functions is used to call event
functions into a new function, in the same order, defined by their position in
the Event-B model. It is not providing any kind of optimisation in the calling
function.

Event scheduling phase is used to synthesise all target language functions. All
these target language functions are equivalent to Event-B events. We propose two
techniques to trigger all the translated events. First is calling a function “Iterate”
that implements a continuous iteration of translated target programming language
functions of the Event-B model, in the same order, defined by their position in the
Event-B model. Second technique is to optimise the calling order of the events. Op-
timisation approach schedules calling target language functions using a refinement
approach. An incremental refinement-based structure of events within the Event-B
models exploits to recursively generate nesting calling functions corresponding to
the abstract events. Abstract level guards are forming a group of concrete events.
Each group of events are triggered by a main “Iterate” function. This technique is
used to improve run-time performance wherever at the concrete level has several
events. In the sequential order of calling event functions in the “Iterate” function
invokes every calling function in a sequential order. Whenever guards are satisfied
by invoked event function, then the function executes and when guards are not true,
then the next calling function invokes in a sequential way. Main disadvantage of
this technique is that, when a translated code has a lot of calling functions (> 50),
then the every function consumes some memory as well as time for invoking a
function. While in an optimised way, to make a group of calling functions, which
automatically reduces time and memory consumption during invocation of the “It-
erate” function. A scheduling structure (see Fig. 7.3) shows a calling order of event
functions in the “Iterate” function.

Finally, top-level main function of a target programming language is generated
to call the generated functions “INITIALISATION” and “Iterate”. The only proce-
dural requirement is the calling of “INITIALISATION” prior to “Iterate”. All other
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BOOL Iterate(void)

{
if (Event1() == TRUE)

return TRUE;
if (Event2() == TRUE)

return TRUE;
.
.
.

.

.

.

if (Eventn() == TRUE)

return TRUE;

/ ∗ Signal deadlock ∗ /

return FALSE;
}

BOOL Iterate(void)

{
if (Condition1 . . .){
if (Event1() == TRUE) return TRUE;
if (Event2() == TRUE) return TRUE;
. . .

}

if (Condition2 . . .){
if (Event4() == TRUE) return TRUE;
if (Event5() == TRUE) return TRUE;
. . .

}
.
.
.

if (Conditionm . . .){
if (Eventn−1() == TRUE) return TRUE;
if (Eventn() == TRUE) return TRUE;
. . .

}
/ ∗ Signal deadlock ∗ /

return FALSE;
}

Fig. 7.3 Scheduling architecture

behaviour regarding iteration control may be selected. The INITIALISATION func-
tion is exposed to allow later calls to it by the execution environment, providing a
mechanism for run-time reset of the Event-B machine if required. In the particular
example, the machine is invoked only once and, after initialisation, is iterated contin-
uously without any scheduling constraints until either implicit or explicit deadlock
(i.e. an event having no actions) is detected. Implicit deadlock is flagged as an error
condition, explicit deadlock is treated as normal execution.

In the C and C++ languages. . .

v o i d main ( v o i d )
{

i f ( INITIALISATION ()==TRUE ) {
do {
I t e r a t e ( ) ;
} w h i l e ( ! k b h i t ( ) ) ;
}

}

In the C# language. . .

p u b l i c s t a t i c vo i d Main ( )
{

M1_VOOR objM1_VOOR = new M1_VOOR ( ) ;
i f ( objM1_VOOR . INITIALISATION ()== t r u e ) {
f o r ( i n t n =0; n <=1000; n ++){
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objM1_VOOR . I t e r a t e ( ) ;
}
}

}

In the Java language. . .

p u b l i c s t a t i c vo i d main ( S t r i n g [ ] a r g s )
{

M1_VOOR objM1_VOOR = new M1_VOOR ( ) ;
i f ( objM1_VOOR . INITIALISATION ()== t r u e ) {
t r y {
f o r ( i n t n =0; n <=1000; n ++){
objM1_VOOR . I t e r a t e ( ) ;
}
} c a t c h ( E x c e p t i o n e ) {
e . p r i n t S t a c k T r a c e ( ) ;
}
}

}

7.3.7 External Code Injection and Code Verification

This is also an important phase of the code generating process, where the source
code files have been generated from Event-B specification. This phase provides a
way to introduce some handwritten code or introduction of implicit functions in the
form of an interface in order to compile and run the application in target languages
(C, C++, Java, C#). For example, when a function is defined abstractly and function
returns output value using a set of calculation or algorithms. In that case, a user
requires to write a function body, which is generated by the translator. Thus, the
user has to write a target language function definition for the operation and add it to
the function body of the generated file. To provide some code interface through user
intervention, we have introduced code verification step. The code verification is a
very important step to verify the correctness of an automatic generated code. This
step is required due to manual insertion of an external code. We have considered
following two main objectives for adding external codes in the generated codes:

• If some part of the implementation code is not supported by the code generator;
• The user wants to implement some existing components more efficiently.

Due to the complex architecture of the software-development process, it is im-
possible that any modelling tool can generate directly an executable application.
In large software, different kinds of languages are used for designing final soft-
ware. So, we have provided a facility of code injection. For instance, addition of
hardware specific code (i.e. assembly code) into Event-B generated code. For ex-
ample, in pacemaker case study, Sensor and Actuator are specific hardware units,
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Fig. 7.4 Generated code
verification

which control by specific hardware codes. The hardware code is provided by the
third-party and pacemaker manufacturing company assumes that this hardware de-
pendent codes are already corrected and verified. So, simple they inject this code
directly into the generated code.

Due to injection of the external code and code addition into a complex function
body, we have proposed a generated code verification technique, which provides
certification of the generated code using this tool. Figure 7.4 shows an approach to
verify a source code of the final developed system. Our idea is to verify the correct-
ness of generated code with respect to Event-B formal specification to give a meta-
proof that for all Event-B models, and target language translation, the execution
of the target language program satisfies the execution (abstractly) of the Event-B
model.

In fact, as can be expected, the translation of Event-B descriptions into a target
language software cannot be complete, and hence will require an intervention of
a software developer in specific positions of the generated code, e.g. for inserting
the target language statements corresponding to the internal actions. Hence, next
level of code verification injects hand-written code corresponding to the internal
actions. Further, we have used software model checking tools according to the dif-
ferent target languages. The software model checking tools are complemented of the
analysis conducted on Event-B specification by making it possible the verification
of property preservation at the code level. In fact, although property preservation
is guaranteed under certain constraints [6, 7, 10], an inappropriate intervention of
software developer on the generated code may lead to the violation of properties
proved at an architectural level.
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7.3.8 Compiling and Running the Code

Once automatic translation and verification of the Event-B model is completed, all
additional requirements are added, an execution environment must be provided and
compiled by a suitable target programming language compiler. This final step of
the translation tool is to produce generated files for compiling on-target platform
(Windows, Linux and Mac).

7.4 How to Use Code Generator Plug-ins

To get started using the code generator you should require an Event-B specification.
The code generator requires that all files of the Event-B specifications are syntax
checked in order to generate correct code. Before generating a source code, it has
to ensure that specification is proved and one more level of refinement has been
done to make a deterministic model. The code generator tool box will automatically
type checked for data types and generates a code according to the programming
language.

Figure 7.5 represents a screen shot of translator tools (EB2C, EB2C++, EB2J and
EB2C#)2 under the Rodin environment [17, 24–26]. All these tools are developed
as a set of plug-ins under the Eclipse framework. After installation of the EB2C,
EB2C++, EB2J and EB2C# plug-ins, menus Translator/EB2C, /EB2C++, /EB2J,
/EB2C# and tool buttons on the toolbar, will appear. To generate a source code in
any target language of any formal model, a user can click on any menu (EB2C,
EB2C++, EB2J and EB2C#) or a tool button, then a dialog box will appear (see
Fig. 7.5). This dialog box presents a list of active projects. A user can select any
project for generating a source code. These tools generate a target language code
for all concrete models of the selected project and also generate a log file for the
code generating process.

7.4.1 Assessment of the Translation Tool

Assessment of this translation tool is given through the code generation of verified
formal specifications of a cardiac pacemaker (see Chap. 9). We have illustrated the
use of EB2C, EB2C++, EB2J and EB2C# tools [17, 24–26] by means of the auto-
matic generation of C, C++, Java and C# codes for the cardiac pacemaker. These
codes are automatically generated in C, C++, Java and C# codes from the verified
specification in less than five seconds. To find a detail process of code generation
from formal specifications in [27].

2Download: http://eb2all.loria.fr/.

http://eb2all.loria.fr/
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Fig. 7.5 Screen shots of code generation tool

7.5 Limitations

This is our primary version of the code generator from Event-B formal specifica-
tions to any programming language (C, C++, Java and C#). In this version of the
code generator can support only that symbols, which are given in Tables 7.2, 7.3 and
7.4. Event-B language is very rich in the area of modelling, and it supports different
kinds of formal notations [2]. All formal notations are not translatable directly into a
programming language. A lot of formal notations are applicable at the abstract level
of modelling, which may be transformed into another formal notation at the con-
crete level and that can be easily translatable into any programming language. For
instance, relational predicates are usually used for abstract representation, which
can be transformed into array or total function representation, and array and to-
tal function both are translatable into current version of this tool. Present time the
translation tools only supports a subset of formal notations, on behalf of modelling
expertise, we believe that these set of Event-B notations are sufficient for modelling
any kind of problems and using these symbols any formal specification can be easily
translatable into any programming language. In this version of the code generator,
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the Event-B constructs are not supported except formal notations of Tables 7.2, 7.3
and 7.4. This is our first step toward in the direction of code translation, and it is
our ongoing research work. So in future we will provide more and more Event-B
symbols, that will be supported by this translation tool.

7.6 Summary

This chapter has introduced the main principles, rules and implementation solutions
for the translation tools and code verification techniques for generating the target
programming languages (C, C++, Java and C#) code from the Event-B specifica-
tions [17, 24–27]. The syntax adopted is restrictive, but it already covers most nu-
meric applications, supports powerful static-analysis methods and generates fast and
safe source code in a target programming language. This chapter is to demonstrate
an architecture of the translators and their formal verification. Many algorithms (e.g.
embedded system, distributed system) are subject to further refinement. The trans-
lator provides useful assistance to human programmers by automatically adding
comments, generating code for each process, optimising expressions and partition-
ing event as well as data structures. The translator generates a separate code for all
events of concrete modules. Systematic studies on partitioning methods using a re-
finement structure in target programming languages (C, C++, Java and C#) style is
an interesting area of future research. This approach may be applicable to massively
parallel processing.

The benefits of developing and enhancing the translation tool presented stem
primarily from their increased support for automated translation between the two
components of a formal model and a target programming language [17, 24–26].
It has been shown that the Event-B models have been transformed into a deter-
ministic model [35] for automatically translated to the source code using one more
level of data refinement. The final concrete model provides sufficient refinement
for introducing full determinism and use an easily translatable subset of the nota-
tions [9]. The Rodin tool supports the development of the translation tool under the
Eclipse framework using all required model information via supported interfaces.
The Rodin tool uses an internal database to handle model information, which al-
lows model generation is based on underlying meaning of a model and reduces the
syntax dependency.
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Chapter 8
Formal Logic Based Heart-Model

Abstract A closed-loop model of a system is considered as a de facto standard in
the area of system engineering for validating a system model. Cardiac pacemak-
ers and implantable cardioverter-defibrillators (ICDs) are the most critical of these
medical devices, requiring closed-loop modelling (integrated system and environ-
ment modelling) for verification purposes before obtaining a certificate from the
certification bodies. This chapter presents a methodology for modelling a biological
system, such as the heart, to enable modelling in a biological environment. The heart
model is based mainly on electrocardiography analysis, which models the heart sys-
tem at the cellular level. This heart model will be used for modelling the closed-loop
system of a cardiac pacemaker.

8.1 Introduction

The human heart is well known as a mechanical device of amazing efficiency that
pumps blood via the circulatory system continuously throughout the person’s life-
time. It is one of the most complex and important biological systems, providing oxy-
gen and nutrients to the body to sustain life [30]. The regular impulses generated by
the heart result in rhythmic contractions through a sequence of muscles in the heart,
beginning at the natural pacemaker known as the sinoatrial (SA) node, which pro-
duces an action potential that travels across the atrioventricular (AV) node, the bun-
dle of His and the Purkinje fibres distributed throughout the ventricles. The pattern
and the timing of these impulses determine the heart rhythm. Variable time inter-
vals and conduction speeds during the heartbeat generate abnormal heart rhythms,
which are also known as heart rhythm impairments. Heart rhythm impairment is the
principal source of several diseases. Electrocardiography analysis is frequently used
to diagnose various types of heart disease [24] by presenting the timing properties
of the electrical system of the heart. These are the most fundamental properties of
the heart.

Cardiac pacemakers and ICDs are the two main types among the remarkable
range of medical and technological devices recommended by doctors in cases of
abnormal heart rhythm. These devices are used to maintain the heart rhythm, and
are life-saving in many instances. In the last few years, the use of cardiac pace-
makers and cardioverter-defibrillators has increased. However, these devices may

N.K. Singh, Using Event-B for Critical Device Software Systems,
DOI 10.1007/978-1-4471-5260-6_8, © Springer-Verlag London 2013
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sometimes malfunction. Device related problems have been responsible for a large
number of serious injuries. Many deaths and injuries caused by device failure have
been reported by the FDA [28], which advocates safety and security guidelines for
using these devices. FDA officials have found that many deaths and injuries related
to the devices are caused by product design and engineering flaws, which can be
considered as firmware problems [10, 17].

Providing assurance guarantees for medical devices makes formal approaches
appealing. Formal model based methods have been successful in targeted applica-
tions of medical devices [9, 20, 21, 25, 31, 32]. Over the past decade, there has
been considerable progress in the development of formal methods for improving
confidence in complex software-based systems [1, 13, 14]. Although formal meth-
ods are part of the standard recommendations for developing and certifying medical
systems, the integration of formal methods into the certification process is, in large
part, unclear. In particular, it is a very challenging task to ensure that the end product
of the software-development system behaves securely.

8.1.1 Motivation

The most challenging problem is environment modelling. That is, to validate and to
verify the correct behaviour of a system model requires an interactive formal model
of the environment. For example, a formal model of a cardiac pacemaker or ICD re-
quires a heart model to verify the correctness of the developed system (see Fig. 8.1).
No tools and techniques are available to provide environment modelling that would
enable verification of the developed system model. Medical devices are tightly cou-
pled with their biological environment (i.e., the heart) and use actuators and sensors
to interact with the biological environment. Because of this strong relationship be-
tween the medical device (e.g., a pacemaker) and the related biological environment
(i.e., the heart), it is necessary to model the functioning of the medical device within
the biological environment.

The environment model will be independent of the device model, which is helpful
in creating an environment for medical devices that simulates the actual behaviour
of the system. The medical device model will be dependent on the biological en-
vironment. Whenever an undesired state occurs in the biological environment, the
device model must act according to the requirements. The main objective is to use
a formal approach to modelling the medical device and the biological environment
to verify the correctness of the medical system.

To model the biological environment (the heart) for a cardiac pacemaker or ICD,
we propose a method for modelling the heart using logico-mathematical theory [33–
35]. The heart model is based on electrocardiography analysis [6, 15, 24], which
models the heart system at the cellular level [40]. In this investigation, we present a
methodology for modelling a heart that involves extracting a set of biological nodes
(SA node, AV node, etc.), impulse propagation speeds between nodes, impulse prop-
agation times between nodes and cellular automata (CA) for propagating impulses
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Fig. 8.1 Cardiac pacemaker and heart interaction

at the cellular level. This model is developed through incremental refinement, which
introduces several properties in an incremental way and verifies the correctness of
the heart model. A key feature of this heart model is the representation of all possible
morphological states of the (ECG) [3, 6]. These morphological states represent both
the normal and the abnormal states of the ECG. The morphological representation
can generate any kind of heart model (a patient’s model or a normal heart model)
using the ECG. This model can observe both the failure of impulse generation and
the failure of impulse propagation. The mathematical heart model, based on logico-
mathematical theory, is verified using the RODIN [38] proof tool and the model
checker ProB [26]. The model is also verified by electro-physiology and cardiac ex-
perts. The main objective of this heart model is to provide a biological environment
(the heart) for formalising a closed-loop system (a combined model of a cardiac
pacemaker and the heart).

8.1.2 Structure of This Chapter

The outline of the remaining chapter is as follows. Section 8.2 presents related work.
A brief outline of the heart system is introduced in Sect. 8.3. Section 8.4 explains the
proposed approach. Section 8.5 gives an outline of the formal development of the
heart model. Section 8.6 discusses the results of lessons learnt from this experience,
and Sect. 8.7 summarises the chapter.

8.2 Related Work

Heart modelling is a challenging problem in the area of real-time simulation for
clinical purposes. It is handled by the research community using a variety of differ-
ent methods. The ECG is an important diagnostic method for measuring the heart’s
electrical activities, and was invented by Willem Einthoven in 1903 [36]. In this
study, the ECG is used in modelling the heart [36]. At the present time, technolog-
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ical advances have enabled the production of a high-quality cellular model of an
entire heart.

K.R. Jun et al. [37] have produced a CA model of the activation process in ven-
tricular muscle tissue. They presented a two-dimensional (2D) CA model that ac-
counts for the local orientation of the myocardial fibres and their distributed ve-
locity and refractory period. A three-dimensional (3D) finite-volume-based com-
puter mesh model of human atrial activation and current flow has been presented
by Harrild et al. [15]. This cellular-level-based model included both the left and
right atria and the major muscle bundles of the atria. The results of using this model
demonstrate a normal sinus rhythm and can extract the patterns of the septum’s
activation. Because of memory and time complexity in the computation of a 3D
model, an empirical approach is used in modelling the whole heart. The empirical
approach implies a simpler representation of the complex process at a cellular level.
In this new approach, researchers have adopted some approximations in modelling
the whole heart without compromising the actual behaviour of the heart. Berenfeld
et al. [8] have developed a model that can give insight into the local and global
complex dynamics of the heart in the transition from normal to abnormal myocar-
dial activity, which helps to estimate myocardial properties. Adam [2] has analysed
wave activities during depolarisation in his cardiac model, which is represented by
a simplification of the heart tissue.

Recently, a real-time Virtual Heart Model (VHM) has been developed by Jiang
et al. [22] to model the electro-physiological operation of proper functioning and
malfunctioning. They used a time-automaton model to define the timing properties
of the heart. Simulink Design Verifier1 was used as the main tool for designing the
VHM. A heart model based on Uppaal Model checker [7] is developed by Jee et
al. [19] for developing the cardiac pacemaker model. This is a very simple heart
model, which provides an environment to simulate and verify the pacemaker soft-
ware in modelling phase.

Our approach is based purely on formal techniques for modelling the heart using
electrocardiography analysis. To model the heart for a cardiac pacemaker or ICD, we
propose a method based on logico-mathematical theory, which can be implemented
using any formal-methods-based tools (Z, TLA+, VDM, etc.). In this chapter, the
model is developed using a maximal refinement approach at the cellular level. The
incremental refinement approach helps both to introduce several properties in an
incremental way and to verify the correctness of the heart model [33–35]. The key
feature of this heart model is the representation of all possible morphological states
of the ECG, which is used to represent both normal and abnormal states through ob-
servation of the failure of impulse generation and the failure of impulse propagation
in the heart [3, 6, 24, 30].

1http://www.mathworks.com/products/sldesignverifier/.

http://www.mathworks.com/products/sldesignverifier/
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8.3 Background

8.3.1 The Heart System

The human heart is wondrous in its ability to pump blood to the circulatory sys-
tem continuously throughout a lifetime. The heart comprises four chambers: right
atrium, right ventricle, left atrium and left ventricle, each of which contract and
relax periodically. The atria form one unit and the ventricles another. The heart’s
mechanical system (the pump) requires impulses from its electrical system to func-
tion. An electrical stimulus is generated by the sinus node (see Fig. 8.2), which is a
small mass of specialised tissue located in the right atrium of the heart. The electri-
cal stimulus travels down through the conduction pathways and causes the heart’s
lower chambers to contract and pump out the blood. The right and left atria are stim-
ulated first and contract for a short period of time before the right and left ventricles.
Each contraction of the ventricles represents one heartbeat. The atria contract for a
fraction of a second before the ventricles, so their blood empties into the ventricles
before the ventricles contract.

Arrhythmias are caused by cardiac problems that produce abnormal heart
rhythms. In general, arrhythmias reduce haemodynamic performance, including
situations where the heart develops an abnormal rate or rhythm or when normal
conduction pathways are interrupted, and a different part of the heart takes over
control of the rhythm. An arrhythmia can involve an abnormal rhythm increase
(tachycardia: > 100 bpm) or decrease (bradycardia: < 60 bpm), or it may be char-
acterised by an irregular cardiac rhythm, such as that caused by asynchrony of
the cardiac chambers. Irregularities in the heartbeat are called bradycardia and
tachycardia. Bradycardia indicates that the heart rate falls below the expected level
whereas tachycardia indicates that the heart rate goes above the expected heart rate.
An artificial pacemaker can restore synchrony between the atria and the ventri-
cles [5, 12, 16, 25, 27, 30]. Beats per minute (bpm) is the basic unit used to measure
the rate of heart activity.

8.3.2 Basic Overview of Electrocardiogram (ECG)

The ECG (or EKG) [16, 24] is a diagnostic tool that measures and records precisely
the electrical activity of the heart in the form of signals. Clinicians can evaluate the
conditions of a patient’s heart from the ECG and perform further diagnosis. Analysis
of these signals can be used to diagnose a wide range of heart conditions and to
predict the related diseases. ECG records are obtained by sampling the bioelectric
currents sensed by several electrodes, known as leads. A normal ECG is depicted
in Fig. 8.3. Electrocardiogram term is introduced by Willem Einthoven in 1893 at a
meeting of the Dutch Medical Society. In 1924, Einthoven received the Nobel Prize
for his life’s work in developing the ECG [5, 24, 27, 30].
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Fig. 8.2 Heart or natural
pacemaker

All the segments and intervals used by clinicians are represented in this ECG di-
agram. Depolarisation and repolarisation of the ventricular and atrial chambers are
presented by deflection in the ECG signal. These deflections are labelled in alpha-
betic order: P-QRS-T. Letter P indicates atrial depolarisation, and the ventricular
depolarisation is represented by the QRS complex. The ventricular repolarisation is
represented by T-wave. Atrial repolarisation appears during the QRS complex and
generates a very low amplitude signal which cannot be uncovered from the normal
ECG signal.

8.3.3 ECG Morphology

Sequential activation, depolarisation, and repolarisation are distinct deflections in
the ECG, caused by anatomical differences between the atria and the ventricles.
The sequences are even distinguishable when they are not in the correct sequence
(P-QRS-T). Each beat of the heart can be observed as a series of deflections, which
reflects the time evolution of electrical activity in the heart [3, 6, 24]. A single cy-
cle of the ECG is considered as one heartbeat. The ECG may be divided into the
following sections.

• P-wave: A small low-voltage deflection caused by the depolarisation of the atria
prior to atrial contraction as the activation (depolarisation) wave front propagates
from the SA node through the atria.

• PQ-interval: The time between the beginning of atrial depolarisation and the be-
ginning of ventricular depolarisation.

• QRS-complex: The QRS-complex is easily identifiable between the P- and T-
waves because it has a characteristic waveform and dominating amplitude. The
dominating amplitude is caused by currents generated when the ventricles depo-
larise prior to their contraction. Although atrial repolarisation occurs before ven-
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Fig. 8.3 A typical one-cycle ECG tracing

tricular depolarisation, the latter waveform (i.e., the QRS-complex) is of much
greater amplitude, and atrial repolarisation is therefore not seen on the ECG.

• QT-interval: The time between the onset of ventricular depolarisation and the end
of ventricular repolarisation. Clinical studies have demonstrated that the QT in-
terval increases linearly as the RR-interval increases. A prolonged QT-interval
may be associated with delayed ventricular repolarisation, which may cause ven-
tricular tachyarrhythmias leading to sudden cardiac death.

• ST-interval: The time between the end of the S-wave and the beginning of the
T-wave. Significantly elevated or depressed amplitudes away from the baseline
are often associated with cardiac illness.

• T-wave: Ventricular repolarisation, whereby the cardiac muscle is prepared for
the next cycle of the ECG.

8.4 Proposed Idea

Our proposed method exploits a heart model based on logico-mathematics to help
the formal methods community to verify the correctness of a developed model of
medical devices such as cardiac pacemakers. The heart model is based mainly on
the impulse propagation time and conduction speed at a cellular level [33–35]. This
method uses the advanced capabilities of a combined approach of formal verification
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Fig. 8.4 The electrical conduction and landmarks of the heart system

and model validation using a model checker to achieve considerable advantages in
heart system modelling.

Figure 8.4(a) shows the more significant components and the impulse conduc-
tion path in the entire heart system. The heart is a muscle with a special electrical
conduction system. The system comprises two nodes (special conduction cells) and
a series of conduction fibres or bundles (pathways). For modelling the heart sys-
tem, we have assumed eight landmark nodes (A, B, C, D, E, F, G, H) in the whole
conduction network, as shown in Fig. 8.4(b), which control the whole heart system.
These landmarks were identified via a literature survey [24, 30] and extensive dis-
cussions with a cardiologist and a physiologist. Centimetres per second (cm/sec) is
a basic unit to measure the conduction speed and milliseconds (ms) is a basic unit
to measure the conduction time.

We now introduce the necessary elements we use to define the heart system for-
mally.

Definition 1 (The heart system) Given a set of nodes N , a transition (conduction) t

is a pair (i, j), with i, j ∈ N . A transition is denoted by i � j . The heart system is
a tuple HSys = (N,T ,N0,TWtime,CWspeed) where:

• N = {A,B,C,D,E,F,G,H} is a finite set of landmark nodes in the conduction
pathways of the heart system;

• T ⊆ N ×N = {A �→ B,A �→ C,B �→ D,D �→ E,D �→ F,E �→ G,F �→ H} is a set
of transitions to represent electrical impulse propagation between two landmark
nodes;

• N0 = A is the initial landmark node (SA node);
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• TWtime ∈ N → TIME is a weight function for the time delay of each node, where
TIME is a range of time delays;

• CWspeed ∈ T → SPEED is a weight function for the impulse propagation speed
of each transition, where SPEED is a range of propagation speeds.

Property 1 (Impulse propagation time) In the heart system, the electrical im-
pulse originates from SA node (node A), travels through the entire conduction
network and terminates at the atrial muscle fibres (node C) and at the end of
Purkinje fibres in both sides of the ventricular chambers (node G and node H).
The impulse propagation time delay differs for each landmark node (N). The
impulse propagation time is represented as the total function TWtime ∈ N →
P(0..230). The impulse propagation time delay for each node (N) is represented
as: TWtime(A) = 0..10, TWtime(B) = 50..70, TWtime(C) = 70..90, TWtime(D) =
125..160, TWtime(E) = 145..180, TWtime(F) = 145..180, TWtime(G) = 150..210
and TWtime(H) = 150..230.

Property 2 (Impulse propagation speed) The impulse propagation speed also dif-
fers for each transition (i � j , where i, j ∈ N ). The impulse propagation speed
is represented as the total function CWspeed ∈ T → P(5..400). The impulse prop-
agation speed for each transition is represented as: CWspeed(A �→ B) = 30..50,
CWspeed(A �→ C) = 30..50, CWspeed(B �→ D) = 100..200, CWspeed(D �→ E) =
100..200, CWspeed(E �→ G) = 300..400 and CWspeed(F �→ H) = 300..400.

Electrical activity is spontaneously generated by the SA node, located high in
the right atrium, shown as node A in Fig. 8.5(a). The SA node is the physiologi-
cal pacemaker of the normal heart, responsible for setting its rate and rhythm. The
electrical impulse spreads through the walls of the atria, causing them to contract.
The conduction of the electrical impulse throughout the left and right atria is seen
on the ECG as the P-wave (see Fig. 8.3). From the sinus node, the electrical impulse
propagates throughout the atria and reaches nodes B and C, but cannot propagate
directly across the boundary between the atria and ventricles. The electrical impulse
travels outward into the atrial muscle fibres and reaches the end of the fibres, shown
as node C in the conduction network (see Fig. 8.5(b)).

Normally, the only pathway available for the electrical impulse is to enter the
ventricles through a specialised region of cells called the AV node. The AV node
is located at the boundary between the atria and ventricles, shown as node B in
Fig. 8.4(b). The AV node provides the only conducting path from the atria to the
ventricles. The AV node functions as a critical delay in the conduction system. With-
out this delay, the atria and ventricles would contract at the same time, and blood
would not flow effectively from the atria to the ventricles. The delay in the AV node
forms much of the PR segment on the ECG. Part of the atrial repolarisation can be
represented by the PR segment (see Fig. 8.3).

Propagation from the AV node (A) to the ventricles is provided by a specialised
conduction system. The distal portion of the AV node is composed of a common
bundle called the Bundle of His, shown as landmark node D in Fig. 8.4(b). The
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Fig. 8.5 Impulse propagation through landmarks of the heart system

Bundle of His splits into two branches in the inter-ventricular septum, namely the
left bundle branch and the right bundle branch. The electrical impulses then enter
the base of the ventricle at the Bundle of His (node D) and follow the left and right
bundle branches along the inter-ventricular septum (see Fig. 8.5(c)).

The two separate bundle branches propagating along each side of the septum
constitute the left and right bundle branches.We have identified two landmark nodes
E and F (see Fig. 8.4(b)) in the lower part of the heart for the left and right bundle
branches. These specialised fibres conduct the impulses at a very rapid velocity (see
Tables 8.1 and 8.2). The left bundle branch activates the left ventricle, whereas the
right bundle branch activates the right ventricle (see Fig. 8.5(d)).

The bundle branches then divide into an extensive system of Purkinje fibres that
conduct the impulses at high velocity (see Tables 8.1 and 8.2) throughout the ventri-
cles. The Purkinje fibres stimulate individual groups of myocardial cells to contract.
We have identified two final landmark nodes G and H (see Fig. 8.4(b)) at the end of
the Purkinje fibres in both sides of the ventricles. These two nodes represent the end
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Table 8.1 Cardiac activation
time in the heart Location in the heart Cardiac activation time (ms)

SA node (A) 0..10

Left atria muscle fibres (C) 70..90

AV node (B) 50..70

Bundle of His (D) 125..160

Right bundle branch (E) 145..180

Left bundle branch (F) 145..180

Right Purkinje fibres (G) 150..210

Left Purkinje fibres (H) 150..230

Table 8.2 Cardiac activation
velocity in the heart Location in the heart Conduction velocity (cm/sec)

A �→ B 30..50

A �→ C 30..50

B �→ D 100..200

D �→ E 100..200

D �→ F 100..200

E �→ G 300..400

F �→ H 300..400

of the conduction network in the heart system. The bundles branch into the Purkinje
fibres that diverge across the inner sides of the ventricular walls (see Fig. 8.5(e)). On
reaching the end of the Purkinje fibres, the electrical impulse is transmitted through
the ventricular muscle mass by the ventricular muscle fibres themselves. Propaga-
tion along the conduction system takes place at a relatively high speed once it is
within the ventricular region, but prior to this (through the AV node), the velocity is
extremely slow [24, 30].

The electrical system provides a synchronised system from atria to ventricles,
which aids the contraction of the heart muscle and optimises the haemodynamics.
Changed time intervals or conducting speeds between landmarks (see Fig. 8.4(b)
and Fig. 8.6) are a major cause of abnormalities in the heart system. Abnormal-
ities in electrical signals in the heart can generate various kinds of arrhythmias.
A slow conduction speed generates bradycardia and a fast conduction speed gen-
erates tachycardia. In this model, we consider the ranges of all possible values for
conduction speeds and conduction times for each landmark node and conduction
path. This model represents the morphological structure of the ECG signal through
the conduction network (see Fig. 8.6).
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Fig. 8.6 Time intervals and impulse propagation in the ECG signal (adapted from [30])

8.4.1 Heart Block

In this section, we explain the basic heart blocks in the heart conduction system.
We have formalised these basic heart blocks in the proposed methodology. Heart
block is the term given to a disorder of conduction of the impulse that stimulates
heart muscle contraction. The normal cardiac impulse arises in the SA node (A),
situated in the right atrium, and spreads to the AV node (B), whence it is con-
ducted by specialised tissue known as the Bundle of His (D), which divides into
the left and right bundle branches in the ventricles (see Fig. 8.4(a)). Disturbances in
conduction may appear as slow conduction, intermittent conduction failure or com-
plete conduction failure. These three kinds of conduction failure are also known
as 1st, 2nd and 3rd degree blocks. We can show these different kinds of heart
block throughout the conduction network in terms of our set of landmark nodes
(see Fig. 8.7).
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SA Block

This block occurs within the SA node (A) and is described as an SA nodal block
or sick sinus syndrome. The SA node fails to originate an impulse, and the heart
misses one or two beats at regular or irregular intervals (see Fig. 8.7(a)).

AV Block

For an AV block, the sinus rhythm is normal, but there is a conduction defect be-
tween the atria and the ventricles. The main cause of this block may be in the AV
node (B) or the Bundle of His (D), or both (see Fig. 8.7(b)).

Infra-Hisian Block

Blocks that occur below the AV node (B) are known as Infra-Hisian blocks (see
Fig. 8.7(c)). This block describes block of the distal conduction system and it in-
cludes Type 2 second degree heart block.

Left Bundle Branch Block

In the normal heart, activation of both ventricles takes place simultaneously. A left
bundle branch block occurs when conduction into the left branch of the Bundle of
His is interrupted. Blocks that occur within the fascicles of the left bundle branch
are known as hemiblocks (see Fig. 8.7(d)).

Right Bundle Branch Block

A right bundle branch block occurs when conduction into the right branch of the
Bundle of His is interrupted (see Fig. 8.7(e)).

8.4.2 Cellular Automata Model

A set of spatially distributed cells form a CA model, which contains a uniform
connection pattern among neighbouring cells and local computation laws. CA were
originally proposed by Ulam and von Neumann [40] in the 1940s to provide a formal
framework for investigating the behaviour of complex, spatially distributed systems.
CA are discrete dynamic systems corresponding to space and time. CA modelling
involves uniform properties for state transitions and interconnection patterns. The
model components are specified by a single property caused by the same patterns
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Fig. 8.7 Impairments in impulse propagation due to the heart blocks

instead of specifying each component separately. CA models help to visualise a
system’s dynamics [15, 29, 30, 39]. A CA model can have an infinite number of cells
along any dimension. Here, we consider a finite number of cells in two dimensions,
as shown in Fig. 8.8. A 2D CA model is defined as:

Definition 2 (The CA model)

(CA) = 〈S,N,T 〉: discrete time system

S: the set of states

N : the neighbouring patterns at (0,0)

T : the transition function
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Fig. 8.8 A two-dimensional
cellular automata model

In the usual case of CA realised on a D-dimensional grid, N consists of D-tuples
of indices from a coordinate set:

I : N ⊆ ID

The 2D cellular model therefore becomes

N ⊆ I 2

T : S|N | → S

To consider an automaton specified as a CA, let λ and α be the global state and
the global transition function of the CA, respectively. Then, λ = {τ |τ : I 2 → S} and
α(λ(i, j)) = T (τ |N + (i, j)) for all τ in λ and (i, j) in I 2.

Definition 3 (State transition of a cell) The heart muscle system is composed of
heterogeneous cells, the CA model of the muscle system, CAMCA, is characterised
by having no dependency on the type of cells. CAMCA is defined as follows:

CAMCA = 〈S,N,T 〉
S = {Active,Passive,Refractory}
N = {(0,0), (1,0), (−1,0), (0,1), (0,−1)}
s′
m,n = sm,n(t + 1)

s′
m,n = T (sm,n, sm+1,n, sm−1,n, sm,n+1, sm,n−1)

where, sm,n denotes the state of the cell located at (m,n) and T is a transition func-
tion for CAMCA that specifies the next state, as shown in Fig. 8.9.

Each cell in the heart muscle should be in one of the states Active, Passive or
Refractory. Initially, all cells are Passive. In this state, the cell is discharged elec-
trically and has no influence on its neighbouring cells. When an electrical impulse
propagates, the cell becomes charged and eventually activated (Active state). The
cell then transmits an electrical impulse to its neighbour cells. The electrical im-
pulse is propagated to all the cells in the heart muscle. After activation, the cell
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Fig. 8.9 State transition of
a cell

becomes discharged and enters the Refractory state within which the cell cannot be
reactivated. After a time, the cell changes its state to the Passive state to await the
next impulse.

8.5 Functional Formal Modelling of the Heart

To formalise the heart model, we have used the Event-B modelling language [1, 38],
although the proposed idea can be formalised using any kind of formal-methods
tool such as Z, ASM, TLA+ or VDM. Event-B modelling language supports the
refinement approach [4] that helps to verify the correctness of the system in an
incremental way.

The heart model development is expressed in an abstract and general way. The
initial model formalises the system requirements and environmental assumptions,
whereas the subsequent models introduce design decisions for the resulting system.
Following summary informations present global view of the heart system develop-
ment, which help to understand the whole modelling approach.

Initial model: This is an observation model, which specifies a heart state in the form
of true and false, where true represents a normal rhythm and false represents an
abnormal rhythm of the heart.

Refinement 1: This is a conduction model of the heart, which specifies beginning
of the impulse propagation at SA node and ending of the impulse propagation at
Purkinje fibres in both left and right ventricles.

Refinement 2: This model specifies impulse propagation between landmark nodes
with global clock counter to model a real-time system to satisfy the temporal
properties of impulse propagation.

Refinement 3: This is a perturbation model of the heart, which specifies perturbation
in the heart conduction system and helps to discover exact block into the heart
conduction system.

Refinement 4: This is a simulation model of the heart, which introduces impulse
propagation at the cellular level using cellular automata.

8.5.1 The Context and Initial Model

Event-B models are described in terms of two major components: context and ma-
chine. The context contains the static part of the model, whereas the machine con-
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tains the dynamic part. The context uses sets and constants to define axioms and
theorems. Axioms and theorems represent the logical theory of the elements of a
system. The logical theory lists the static properties of constants related to the sys-
tem and provides an axiomatisation of the system environment. The context can be
extended by other contexts and referenced by a set of machines, while a machine
can be refined by other machines.

We need to choose electrical features for modelling the heart system. To model
the heart system, we identify a set of electrical impulse propagation nodes Conduc-
tionNode of the heart conduction network (see Fig. 8.4(a)). These nodes are basic
landmarks, which enable expression of the normal and abnormal behaviour of the
heart system. These landmarks were identified through a literature survey [24, 30]
and fruitful discussions with a cardiologist and a physiologist. Three constants de-
fine the impulse propagation time, namely ConductionTime, impulse propagation
path ConductionPath and impulse propagation velocity ConductionSpeed. Static
properties are defined in the context model to specify the electrical impulse propa-
gation network of the heart system, the impulse propagation time for each landmark
node and the impulse propagation speed for every path. Paths are represented by a
set of pairs of landmark nodes (see Definition 1, Properties 1 and 2 and Tables 8.1
and 8.2).

axm1 : partition(ConductionNode, {A}, {B}, {C}, {D}, {E}, {F }, {G}, {H })
axm2 : ConductionTime ∈ ConductionNode → P(0 .. 230)

axm3 : ConductionPath ⊆ ConductionNode × ConductionNode
axm4 : ConductionSpeed ∈ ConductionPath → P(5 .. 400)

As you see axioms are extracted from the definitions and are validated by cardi-
ologist and physiologist.

8.5.2 Abstract Model

We define an abstract model for indicating the heart state according to the observa-
tion impulse propagation on the conduction nodes. The machine model represents a
dynamic behaviour of the heart system through the step-wise impulse propagation
into the atria and ventricular chambers. To define the dynamic properties, we have
introduced four variables ConductionNodeState, CConductionTime, CConduction-
Speed and HeartState in invariants. The variable ConductionNodeState is defined as
a function, which shows boolean states of the landmark nodes. When the electrical
impulse passes through the landmark nodes (see Fig. 8.4(b)), then the visited nodes
become TRUE and the unvisited landmark nodes are represented by FALSE. The
variables CConductionTime and CConductionSpeed represent current impulse prop-
agation time and velocity in the conduction network. The last variable HeartState
represents a boolean state TRUE or FALSE. TRUE represents the normal condition
of the heart while FALSE represents an abnormal condition of the heart.
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inv1 : ConductionNodeState ∈ ConductionNode → BOOL
inv2 : CConductionTime ∈ ConductionNode → 0 .. 300
inv3 : CConductionSpeed ∈ ConductionPath → 0 .. 500
inv4 : HeartState ∈ BOOL

In the abstract specification of the heart model, there are three events, namely
HeartOK to represent a normal state of the heart, HeartKO to express abnormal state
of the heart and HeartConduction to update the value of each landmark node of the
conduction network in terms of visited landmark nodes (ConductionNodeState), im-
pulse propagation intervals (CConductionTime) and impulse propagation velocities
(CConductionSpeed).

The event HeartOK specifies a set of required conditions for a normal state of the
heart system. The first guard grd1 states that all landmark nodes should be visited
in a single cycle of impulse propagation. The second guard states that the current
impulse propagation time of each landmark node should lie within the pre-specified
range of the impulse propagation times. The final guard states that the current im-
pulse propagation velocity of each path should lie between pre-defined impulse
propagation velocities. If all guards are satisfied then the heart state indicates the
normal condition as being TRUE.

EVENT HeartOK
WHEN

grd1 : ∀i · i ∈ ConductionNode ⇒ ConductionNodeState(i) = TRUE
grd2 : ∀i · i ∈ ConductionNode ⇒

CConductionTime(i) ∈ ConductionTime(i)
grd3 : ∀i, j · i �→ j ∈ ConductionPath ⇒

CConductionSpeed(i �→ j) ∈ ConductionSpeed(i �→ j)

THEN
act1 : HeartState := TRUE

END

The event HeartKO specifies as an opposite set of guards to those for the normal
state of the heart system to specify abnormal conditions of the heart. These guards
state that if any landmark node is not visited in a single cycle of the impulse propa-
gation, or if any the current impulse propagation time of any landmark node does not
lie within the pre-specified range of the impulse propagation times, or if the current
impulse propagation velocity of any path does not lie within the pre-defined range
of impulse propagation velocities, then the heart system is in an abnormal state rep-
resents by its normal condition being FALSE. Different kinds of heart diseases affect
the electrical impulse propagation time and velocity in the heart system [24]. These
changes affect the actual heart rhythm and help to identify the possible abnormal
behaviours of the heart.
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EVENT HeartKO
WHEN

grd1 : ∃i · i ∈ ConductionNode ∧ ConductionNodeState(i) = FALSE)

∨
(∃j · j ∈ ConductionNode ∧
CConductionTime(j) /∈ ConductionTime(j))

∨
(∃m,n · m �→ n ∈ ConductionPath ∧ CConductionSpeed(m �→ n)

/∈ ConductionSpeed(m �→ n))

THEN
act1 : HeartState := FALSE

END

The event HeartConduction formalises the heart behaviour in an abstract manner
by updating the values for impulse propagation time, impulse propagation velocity
and visited state of the landmark nodes non-deterministically. This event is used to
model more concrete behaviour of the heart system at the next level of refinement.

EVENT HeartConduction
BEGIN

act1 : ConductionNodeState :∈ ConductionNode → BOOL
act2 : CConductionTime :∈ ConductionNode → 0 .. 300
act3 : CConductionSpeed :∈ ConductionPath → 0 .. 500
act4 : HeartState :∈ BOOL

END

8.5.3 Refinement 1: Introducing Steps in the Propagation

In the abstract model, we have presented that the impulse propagation time, veloc-
ity and visited landmark nodes have been updated in an atomic step when electrical
impulse fire from the sinus (SA) node and moves towards the Purkinje fibres into
ventricles (G, H nodes) and in the left atria muscle fibres (C node). Our main ob-
jective is to model step by step impulse propagation through all landmark nodes,
where the electrical impulse must pass through a number of intermediate land-
mark nodes before reaching to the terminal nodes (C, G, H). This refinement is
a very simple refinement, where we introduce two extra events SinusNodeFire and
HeartConductionEnd as the refinement of the event HeartConduction. The event
SinusNodeFire models the behaviour of a sinoatrial (SA) node, which originates
electrical impulse for traversing throughout the heart system using the conduction
network (see Fig. 8.4). The guards of this event state that if all landmark nodes are
unvisited (means FALSE state) and current impulse propagation time of each node
is 0, and impulse propagation velocity of each path is 0, then the conduction node
state ConductionNodeState of a landmark node A (SA node) sets TRUE and current
impulse propagation time of SA node (A) sets to 0.
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EVENT SinusNodeFire Refines HeartConduction
WHEN

grd1 : ∀n · n ∈ ConductionNode ⇒ ConductionNodeState(n) = FALSE
grd2 : ∀n · n ∈ ConductionNode ⇒ CConductionTime(n) = 0
grd3 : ∀n,m · n ∈ ConductionNode ∧ m ∈ ConductionNode ∧

n �→ m ∈ ConductionPath ⇒ CConductionSpeed(n �→ m) = 0
THEN

act1 : ConductionNodeState(A) := TRUE
act2 : CConductionTime(A) := 0

END

The next event HeartConductionEnd represents end state of the impulse propa-
gation into Purkinje fibres of ventricles (G, H nodes) and left atria muscle (node C).
This event resets all variables for generating next impulse at the SA node. The ac-
tions of this event reset all conduction node state as FALSE, current impulse prop-
agation time of all landmark nodes reset to 0, current impulse propagation velocity
of all landmark nodes reset to 0, and the heart state sets as FALSE. All these actions
are required before originating the next electrical impulse from the SA node (A).

EVENT HeartConductionEnd Refines HeartConduction
BEGIN

act1 : ConductionNodeState := {A �→ FALSE,B �→ FALSE,

C �→ FALSE,D �→ FALSE,E �→ FALSE,F �→ FALSE,

G �→ FALSE,H �→ FALSE}
act2 : CConductionTime := {A �→ 0,B �→ 0,C �→ 0,D �→ 0,

E �→ 0,F �→ 0,G �→ 0,H �→ 0}
act3 : CConductionSpeed := {A �→ B �→ 0,A �→ C �→ 0,B �→ D �→ 0,

D �→ E �→ 0,D �→ F �→ 0,E �→ G �→ 0,F �→ H �→ 0}
act4 : HeartState := FALSE

END

8.5.4 Refinement 2: Impulse Propagation

In the second refinement, we introduce several events as a refinement of the event
HeartConduction to model the impulse propagation into the heart conduction net-
work. New events formalise impulse flow between two landmark nodes separately;
for instance, electrical impulse moves from SA node (A) to AV node (B). This
level of refinement introduces seven events for modelling the whole conduction
path from originating nodes (A) to the ending nodes (C, G, H). A variable CC-
Speed_CCTime_Flag is introduced as a boolean type to capture the value of current
impulse propagation time and current impulse propagation velocity. A new variable
Cycle_Length declares a time interval for the single heart beat, which may change
in every cycle of an electrocardiogram (ECG). This refinement also introduces a
logical clock to synchronise all states of the heart system and checks the heart states
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under a required time length in the conduction network. A new variable tic is defined
as current clock counter. Invariants (inv4–inv10) are introduced as safety properties,
which define that if the heart state is TRUE then the impulse propagation time and
the impulse propagation velocity be within the standard range of time and velocity
during the impulse conduction throughout the conduction network (see Fig. 8.4(b)).

inv1 : CCSpeed_CCTime_Flag ∈ BOOL
inv2 : Cycle_Length ∈ 500..2000
inv3 : tic ∈ N

inv4 : HeartState = TRUE ⇒ CConductionTime(B) ∈ ConductionTime(B)

∧ CConductionSpeed(A �→ B) ∈ ConductionSpeed(A �→ B)

inv5 : HeartState = TRUE ⇒ CConductionTime(C) ∈ ConductionTime(C)

∧ CConductionSpeed(A �→ C) ∈ ConductionSpeed(A �→ C)

inv6 : HeartState = TRUE ⇒ CConductionTime(D) ∈ ConductionTime(D)

∧ CConductionSpeed(B �→ D) ∈ ConductionSpeed(B �→ D)

inv7 : HeartState = TRUE ⇒ CConductionTime(E) ∈ ConductionTime(E)

∧ CConductionSpeed(D �→ E) ∈ ConductionSpeed(D �→ E)

inv8 : HeartState = TRUE ⇒ CConductionT ime(F ) ∈ ConductionTime(F )

∧ CConductionSpeed(D �→ F) ∈ ConductionSpeed(D �→ F)

inv9 : HeartState = TRUE ⇒ CConductionTime(G) ∈ ConductionTime(G)

∧ CConductionSpeed(E �→ G) ∈ ConductionSpeed(E �→ G)

inv10 : HeartState = TRUE ⇒ CConductionTime(H) ∈ ConductionTime(H)

∧ CConductionSpeed(F �→ H) ∈ ConductionSpeed(F �→ H)

Events are introduced in this refinement to model the impulse propagation
from SA node towards the Purkinje fibres landmark nodes (G, H) and atria fi-
bres nodes (C). Each event is synchronised through progressive electrical impulse
propagation in the conduction network. We have given formalisation of only one
event HeartConduction_A_B to understand the basic formalisation steps of all other
events. All other events of impulse propagation in the conduction network among
landmark nodes have been modelled in a similar fashion.

EVENT HeartConduction_A_B Refines HeartConduction
WHEN

grd1 : ConductionNodeState(A) = TRUE
grd2 : ConductionNodeState(B) = FALSE
grd3 : CConductionTime(B) ∈ ConductionTime(B)

grd4 : CConductionSpeed(A �→ B) ∈ ConductionSpeed(A �→ B)

grd5 : CCSpeed_CCTime_Flag = FALSE
THEN

act1 : ConductionNodeState(B) := TRUE
act2 : CCSpeed_CCTime_Flag := TRUE

END

A new event Update_CCSpeed_CCtime is a refinement of the event HeartCon-
duction. This event is used to capture the current electrical impulse propagation
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time CConductionTime and the current electrical impulse propagation speed CC-
conductionSpeed during a progressive conduction flow into the heart system in the
conduction network.

EVENT Update_CCSpeed_CCtime Refines HeartConduction
ANY i, j,CSpeed,CTime
WHERE

grd1 : i ∈ ConductionNode
grd2 : j ∈ ConductionNode
grd3 : i �→ j ∈ ConductionPath
grd4 : CSpeed ∈ 0 .. 500
grd5 : CTime ∈ 0 .. 300
grd6 : CCSpeed_CCTime_Flag = TRUE
grd7 : HeartState = FALSE
grd8 : tic = CTime

THEN
act1 : CConductionTime(j) := CTime
act2 : CConductionSpeed(i �→ j) := CSpeed
act3 : CCSpeed_CCTime_Flag := FALSE

END

The electrical impulse propagates at every millisecond. But the impulse propaga-
tion time and velocity are different for each landmark node. The progressive incre-
ment of the independent logical clock is modelled through event tic, that increments
time in 1 ms. The event Clock_Counter progressively increases the current clock
counter tic under pre-defined cycle length Cycle_Length. The predicate in guard
(grd1) of event Clock_Counter represents an upper bound time limit. The current
clock counter tic is reset to 0 by the event HeartConductionEnd. An extra guard
is added in the event HeartConductionEnd as tic = Cycle_Length to reset all the
parametric values of the heart system for starting a fresh new impulse propagation
cycle.

EVENT Clock_Counter
WHEN

grd1 : tic < Cycle_Length
THEN

act1 : tic := tic + 1
END

We have defined the event Clock_Counter as a type of Convergent and the sys-
tem variant is defined as Cycle_length − tic, which generates the convergence proof
obligations to verify that the time is progressing with the electrical impulse propa-
gation. It means that the electrical impulse is propagating in the conduction network
corresponding to the clock counter.
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8.5.5 Refinement 3: Perturbation in the Conduction

It introduces a set of possible blocks in the heart conducting system. These blocks
can occur in the conduction network and give trouble in electrical impulse propa-
gation. A set of landmark nodes partition the different regions for all possible heart
blocks. For introducing the heart blocks, we introduce an enumerated set Heart-
BlockSets in a new context model as a static property of the heart system.

axm1 : partition(HeartBlockSets, {SA_nodal_blocks}, {AV_nodal_blocks},
{Infra_Hisian_blocks}, {LBBB_blocks}, {RBBB_blocks}, {None})

To model the heart block system, we define a variable HeartBlocks as Heart-
Blocks ∈ HeartBlockSets. New events are introduced to show different kinds of heart
blocks during impulse propagation into the conduction network. Events are Heart-
Conduction_Block_A_B_C to formalise the sinoatrial (SA) nodal block, Heart-
Conduction_Block_B to represent atrioventricular (AV) nodal block, HeartConduc-
tion_Block_B_D to specify Infra-Hisian block, HeartConduction_Block_D_E_G to
present Left bundle branch block, and HeartConduction_Block_D_F_H to specify
the Right bundle branch block.

Conduction disturbance in the heart during which an impulse formed within the
sinus node (A) is blocked or delayed from depolarising the atria. There are different
kinds of SA blocks [24, 30]. To model SA block, we introduce an event HeartCon-
duction_Block_A_B_C, which formalises the SA block. In this event, guard (grd1)
represents that the landmark nodes (A or C) are not visited means FALSE state,
or the current impulse propagation time of B and C nodes are not lain within the
standard range, or the current impulse propagation velocity of the pairs A �→ B

and A �→ C are not lain within the standard range. When a guard is triggered, then
actions of this event state that the heart state is FALSE, and the heart block is a
sinoatrial (SA) nodal block.

EVENT HeartConduction_Block_A_B_C Refines HeartKO
WHEN

grd1 : (ConductionNodeState(A) = FALSE) ∨
(ConductionNodeState(C) = FALSE) ∨
(CConductionTime(B) /∈ ConductionTime(B)) ∨
(CConductionTime(C) /∈ ConductionTime(C)) ∨
(CConductionSpeed(A �→ B) /∈ ConductionSpeed(A �→ B)) ∨
(CConductionSpeed(A �→ C) /∈ ConductionSpeed(A �→ C))

THEN
act1 : HeartState := FALSE
act2 : HeartBlocks := SA_nodal_blocks

END
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Any interruption in the conduction of electrical impulses from the atria to the
ventricles; it can occur at the level of atria, atrioventricular node, bundle of His, or
Purkinje system. It is a type of heart block in which a blocking is at the atrioventric-
ular (AV) junction. It is known as first degree when atrioventricular (AV) conduction
time is prolonged; it is called second degree or partial when some but not all atrial
impulses reach at the ventricle; and it is called third degree or complete when no
atrial impulses at all reach the ventricle, so that the atria and ventricles act indepen-
dently of each other. There are different kinds of AV blocks [24, 30]. To model the
AV block, we introduce an event HeartConduction_Block_B, which formalises the
AV block. The conduction node state ConductionNodeState of a landmark node (B)
is FALSE, which represents a condition for the AV block using guard (grd1) and
actions state that the heart state is FALSE and such kind of heart block is known as
the atrioventricular (AV) nodal block.

EVENT HeartConduction_Block_B Refines HeartKO
WHEN

grd1 : (ConductionNodeState(B) = FALSE)

THEN
act1 : HeartState := FALSE
act2 : HeartBlocks := AV_nodal_blocks

END

Infra-Hisian block describes a block of the distal conduction system (node D).
There are different kinds of Infra-Hisian blocks [24, 30]. To model Infra-Hisian
block, an event HeartConduction_Block_B_D is used to formalise the desired con-
ditions for a such kind of blocks through landmark nodes (B, D). Guard (grd1) rep-
resents that the landmark node (D) is FALSE, means it is not visited, or the current
impulse propagation time of a node D is not lain within the standard range, or the
current propagation velocity of a pair B �→ D is not lain within the standard range.
The actions of this event state that the heart state is FALSE, and the heart block is
the Infra-Hisian block.

EVENT HeartConduction_Block_B_D Refines HeartKO
WHEN

grd1 : (ConductionNodeState(D) = FALSE) ∨
(CConductionTime(D) /∈ ConductionTime(D)) ∨
(CConductionSpeed(B �→ D) /∈ ConductionSpeed(B �→ D))

THEN
act1 : HeartState := FALSE
act2 : HeartBlocks := Infra_Hisian_blocks

END
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The bundle of His divides into a right bundle branch and a left bundle branch,
which lead to the heart’s lower chambers (the ventricles). For the left and right
ventricles to contract at the same time, an electrical impulse must travel down the
right and left bundle branches at the same speed. If there is a block in one of these
branches, the electrical impulse must travel to the ventricle by a different route.
When this happens, the rate and rhythm of your heartbeat are not affected, but the
impulse is slowed. Even ventricle will still contract, but it will take longer because of
the slowed impulse. This slowed impulse causes one ventricle to contract a fraction
of a second slower than the other [24, 30]. The medical terms for bundle branch
block are derived from which branch is affected. If the block is located in the right
bundle branch, it is called Right bundle branch block. If the block is located in the
left bundle branch, it is called Left bundle branch block.

To model the Right bundle branch block, we introduce an event in a similar
fashion like past events. A new event HeartConduction_Block_D_E_G formalises
the Right bundle branch; guard of this event states that the landmark nodes (E or G)
are not visited means FALSE state, or the current impulse propagation time of E and
G nodes are not lain within the standard ranges, or the current impulse propagation
velocity of the pairs D �→ E and E �→ G are not lain within the standard range; then
the actions of this event state that the heart state is FALSE and the heart block is the
Right bundle branch block.

EVENT HeartConduction_Block_D_E_G Refines HeartKO
WHEN

grd1 : (ConductionNodeState(E) = FALSE) ∨
(ConductionNodeState(G) = FALSE) ∨
(CConductionTime(E) /∈ ConductionTime(E)) ∨
(CConductionTime(C) /∈ ConductionTime(C)) ∨
(CConductionSpeed(D �→ E) /∈ ConductionSpeed(D �→ E)) ∨
(CConductionSpeed(E �→ G) /∈ ConductionSpeed(E �→ G))

THEN
act1 : HeartState := FALSE
act2 : HeartBlocks := RBBB_blocks

END

To model the Left bundle branch block, we introduce an event like Right bundle
branch event. This new event HeartConduction_Block_D_F_H formalises the Left
bundle branch. Guard of this event states that the landmark nodes (F or H) are not
visited means FALSE state, or the current impulse propagation time of F and H
nodes are not lain within the standard range, or the current impulse propagation
velocity of the pairs D �→ F and F �→ H are not lain within the standard range.
Then the actions of this event state that the heart state is FALSE, and the heart block
is the Left bundle branch block.
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EVENT HeartConduction_Block_D_F_H Refines HeartKO
WHEN

grd1 : (ConductionNodeState(F ) = FALSE) ∨
(ConductionNodeState(H) = FALSE) ∨
(CConductionTime(F ) /∈ ConductionTime(F )) ∨
(CConductionTime(H) /∈ ConductionTime(H)) ∨
(CConductionSpeed(D �→ F) /∈ ConductionSpeed(D �→ F)) ∨
(CConductionSpeed(F �→ H) /∈ ConductionSpeed(F �→ H))

THEN
act1 : HeartState := FALSE
act2 : HeartBlocks := LBBB_blocks

END

8.5.6 Refinement 4: Getting a Cellular Model

This last refinement introduces cellular level modelling into the heart model. The
cellular level modelling is used to model the electrical impulse propagation at the
cell level. The formalisation uses cellular automata theory to model the micro-
structure based cell model. To formalise the cellular automata, we introduce math-
ematical properties (see Definitions 2 and 3) in a context model. In a biological
system, each cell has one of the following states: Active, Passive or Refractory.
To define cell states, we declare an enumerated set CellStates. We have assumed
grid of cells in a square format. Due to square geometry of the cells, we define a
constant NeighbouringCells to represent a set of coordinated positions of the neigh-
bouring cells. A new function NEXT is used to define neighbouring cell’s state. This
function maps from the power-set of NeighbouringCells to a cell’s state CellStates.
A new function CellS is defined as to map from NeighbouringCells to CellStates.
This function maps various states like Active, Passive and Refractory to the neigh-
bouring cells.

axm1 : partition(CellStates, {PASSIVE}, {ACTIVE}, {REFRACTORY})
axm2 : x ∈ Z

axm3 : y ∈ Z

axm4 : NeighbouringCells =
{{x, y}, {x + 1, y}, {x − 1, y}, {x, y + 1}, {x, y − 1}}

axm5 : NEXT ∈ P(NeighbouringCells) → CellStates
axm6 : CellS ∈ NeighbouringCells → CellStates

A set of properties (axm7–axm10) is introduced to specify the desired behaviour
of the biological cell automata in two-dimensions. All these properties implement
the state transition of a cell and formalise the transitions automaton (see Fig. 8.9).
The first property (axm1) states that if the neighbouring cells are in Active state,
then the NEXT state of the cell must be Refractory. The second property (axm8)
represents that if the neighbouring cells are in the Refractory state, then the NEXT
state of the cell must be Passive. Third property (axm9) states that if a cell at (x, y) is
Passive, then if all the neighbouring cells in 2D is Active, then a set of neighbouring
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cells must be in Active. Similarly, the last property (axm10) presents that if a cell at
(x, y) is Passive, then and if all the neighbouring cells in 2D is not Active, then a set
of neighbouring cells must be in Passive.

axm7 : ∀ param · param ∈ P(NeighbouringCells) ∧ CellS({x, y}) = ACTIVE
⇒ NEXT(param) = REFRACTORY

axm8 : ∀ param · param ∈ P(NeighbouringCells) ∧ CellS({x, y}) =
REFRACTORY ⇒ NEXT(param) = PASSIVE

axm9 : ∀ param · param ∈ P(NeighbouringCells) ∧ {x, y} ∈ param ∧
CellS({x, y}) = PASSIVE ⇒ ((CellS({x + 1, y}) = ACTIVE ∨
CellS({x − 1, y}) = ACTIVE ∨ CellS({x, y + 1}) = ACTIVE ∨
CellS({x, y − 1}) = ACTIVE) ⇒ NEXT(param) = ACTIVE)

axm10 : ∀ param · param ∈ P(NeighbouringCells) ∧ {x, y} ∈ param ∧
CellS({x, y}) = PASSIVE ⇒ ((CellS({x + 1, y}) �= ACTIVE ∧
CellS({x − 1, y}) �= ACTIVE ∧ CellS({x, y + 1}) �= ACTIVE ∧
CellS({x, y − 1}) �= ACTIVE ⇒ NEXT(param) = PASSIVE)

Each cell in the heart muscle must have one of the states: Active, Passive or
Refractory. Initially, all cells have Passive state. In this state, a cell is discharged
electrically and has no influences on its neighbouring cells. When electrical impulse
propagates, then the cell would be charged and eventually activated (Active state).
Now, the cell transmits the electrical impulse to its neighbour cells. The electrical
impulse is propagated to all cells in the heart muscle. After an activation, the cell
would be discharged and enter into the Refractory state in which a cell cannot be
reactivated after a moment, a cell changes its state to the Passive state, in which the
cell awaits next impulse (see Fig. 8.9).

To model the dynamic behaviour of the cell automata, we declare four variables
m, n, Transition and NextCellState. Two variables m and n represent current position
of the active cell during impulse propagation. The variable Transition is defined as
boolean to set the transition state TRUE or FALSE to model the behaviour of a tissue.
Last variable NextCellState is used to store the values of next neighbouring positions
after every transition.

inv1 : m ∈ Z

inv2 : n ∈ Z

inv3 : Transition ∈ BOOL
inv4 : NextCellState ∈ CellStates

To implement the dynamic behaviour of a cell in two-dimensions, we introduce
two events HeartConduction_Cellular to make transition TRUE for the electrical
conduction at the cell level and HeartConduction_Next_UpdateCell to calculate sta-
tus of the neighbouring cells and update the current position (m,n) of the cell. The
event HeartConduction_Cellular is used to set the boolean states of the variable
Transition. The first guard of this event states that any path (p �→ q) is one of the
pair from a set of pairs of the conduction network. The next guard (grd2) states that
the current impulse propagation speed and velocity flag CCSpeed_CCTime_Flag is
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TRUE and a set of coordinate positions (param) of neighbouring cells is represented
in third guard. Fourth guard states that the current cell position (m,n) is Passive and
last guard represents that the cell transition state Transition is FALSE. If all guards
satisfy, then the transition state of a cell becomes TRUE.

EVENT HeartConduction_Cellular
ANY p,q,param
WHERE

grd1 : p �→ q ∈ ConductionPath
grd2 : CCSpeed_CCTime_Flag = TRUE
grd3 : param = {{m,n}, {m + 1, n}, {m − 1, n}, {m,n + 1}, {m,n − 1}}
grd4 : {m,n} ∈ dom(CellS) ∧ CellS({m,n}) = PASSIVE
grd5 : NextCellState = CellS({m,n})
grd6 : Transition = FALSE

THEN
act1 : Transition := TRUE

END

The event HeartConduction_Next_UpdateCell is used to calculate the state of
neighbouring cells and to update the position of the current cell (m,n). The first
guard of this event represents a set of coordinate positions (param) of neighbouring
cells and the next guard (grd2) states that the selected neighbouring cells are a set of
cells (dom(NEXT)). The last guard presents a transition state Transition is TRUE.
Action of this event calculates a set of the next neighbouring cells in act1. The next
action (act2) sets FALSE of a transition state. The last two actions update the value
of the current cell (m,n) to continuously impulse propagating in the heart using the
conduction network.

EVENT HeartConduction_Next_UpdateCell
ANY param
WHERE

grd1 : param = {{m,n}, {m + 1, n}, {m − 1, n}, {m,n + 1}, {m,n − 1}}
grd2 : param ∈ dom(NEXT)

grd3 : Transition = TRUE
THEN

act1 : NextCellState := NEXT(param)

act2 : Transition := FALSE
act3 : m :∈ {m − 1,m,m + 1}
act4 : n :∈ {n − 1, n,n + 1}

END

Finally, we have completed the formal specifications of the heart modelling. In
the next section, we present model validation of the heart model using Event-B
model checker ProB tool.
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Table 8.3 Proof statistics

Model Total number of POs Automatic proof Interactive proof

Abstract model 29 22 (76 %) 7 (24 %)

First refinement 9 6 (67 %) 3 (33 %)

Second refinement 159 155 (97 %) 4 (3 %)

Third refinement 10 1 (10 %) 9 (90 %)

Fourth refinement 11 10 (91 %) 1 (9 %)

Total 218 194 (89 %) 24 (11 %)

8.5.7 Model Validation and Analysis

There are two main validation activities in Event-B, and both are complementary
for designing a consistent system in the medical domain; consistency checking and
model analysis. This section validates the model by using ProB tool [26] and proof
statistics. “Validation” refers to the activity of gaining confidence that the devel-
oped formal models are consistent with the requirements. We have used the ProB
tool that supports automated consistency checking of Event-B machines via model
checking [11] and constraint-based checking [18]. This tool assists us to validate
the heart model according to the conduction network and a set of landmark nodes.
It is the complementary use of both techniques to develop formal models of critical
systems, where high safety and security are required. The heart model is carefully
verified through animations and under supervision of physiologist and cardiologist.
We have validated various scenario cases of normal and abnormal heart conditions,
and we have also tested morphological behaviour [3, 6] of the ECG during impulse
propagation from the SA node (A) to the Purkinje fibres (F, H) in the ventricles. The
logic-based mathematical model of the heart can generate all possible scenarios of
normal and abnormal heart conditions in the ECG caused by changes in time and
velocity among landmark nodes. ProB was very useful in animating all models and
in verifying the absence of error (no counter-examples exist) and deadlock.

Table 8.3 expresses the proof statistics of the development using the Rodin tool.
These statistics measure the size of the model, the proof obligations generated and
discharged by the Rodin prover and those are interactively proved. The complete
development of the heart model results in 218 (100 %) proof obligations, within
which 194 (89 %) are proved automatically by the Rodin tool. The remaining 24
(11 %) proof obligations are proved interactively using Rodin tool. For the heart
model, many proof obligations are generated because of the introduction of the new
functional behaviours. To guarantee the correctness of these functional behaviours,
we have established various invariants in the incremental refinements. Most of the
proofs are interactively discharged in the third refinement of the heart model. These
proofs are quite simple, and have been discharged with the help of simplifying pred-
icates. Few proof obligations are proved interactively in other refinements. The in-
cremental refinement of the heart system helps to achieve a high degree of automatic
proof.
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8.6 Discussion

This chapter presents a methodology for modelling a biological system, such as the
heart, by modelling a biological environment. The main objective of this methodol-
ogy is to model the heart system and integrate it with the model of a medical device
such as a cardiac pacemaker, thereby modelling the closed-loop system to enable
certification of the medical system via the certification bodies [17, 23] for safe op-
eration. To build a closed-loop model using both environment and device modelling
is considered as a standard approach in the area validation, given that designing an
environment model is a challenging problem in the real world. Industry has long
sought such an approach to validating system models in a biological environment.
We have discovered much information via a literature survey and long discussions
with experts in cardiology and physiology, and have concluded how best to model
the heart system as a cellular-level architecture in an efficient and optimum way.
Because of the complexity of the cellular-level calculations (see Sect. 8.2), previous
models have failed to model the heart system.

We have proposed modelling the heart in an abstract way to simulate the desired
behaviour of the heart system while avoiding the complexity. More importantly, the
heart model is based on logico-mathematical theory. Our primary objective was to
model the heart system using only simple logico-mathematical methods. The heart
model is an environmental model for medical devices that may improve their de-
velopment in the early phases. As such, it will contribute only one element of the
verification process. Other verification steps will also be required. Medical experts
have elaborated every minor detail in an effort to understand the complexity of the
biological system, particularly because the heart system is the most complex organ
in the body. The proposed approach contains only a main part of the specification of
the system behaviour, with the remaining information being hidden. We have spent
much time identifying an exact abstract model of the heart system that satisfies med-
ical experts. We have used the EVENT B modelling language to model and verify
the system. The ProB model checker was used to verify the correctness of the heart
model via animation. Any other formal specification language and model checker
could be used to model the heart system based on our proposed methodology.

8.7 Summary

This chapter has presented a methodology for producing a mathematical model of
the heart based on logico-mathematical theory [33–35]. This model is the first com-
putational model that considers the heart as an electrical conduction system. Given
that a cardiac pacemaker interacts with the heart exactly at this level (i.e., electrical
impulses), this model is a very promising “environmental model” to be used in par-
allel with a pacemaker model to form a closed-loop system. This model therefore
has an immediate use in “the grand challenges in formal methods” where an in-
dustrial pacemaker specification has been elected as a benchmark. To formalise the
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heart system, we have used the Event-B modelling language [1, 38] to develop the
proof-based formal model. Our approach involves formalising and reasoning about
impulse propagation in the whole heart system through the conduction network (see
Fig. 8.4(a)). More precisely, we would like to stress the original contribution of our
work. We have proposed a method for modelling a human heart based on logico-
mathematical theory. The main objectives of this proposed idea are as follows:

• To obtain a certification procedure for providing a higher safety integrity level.
• To verify the system in a patient model (in a formal representation).
• To analyse the biological environment (the heart) in a mathematical way.
• To analyse the interaction between the heart model and a cardiac pacemaker or

ICD.

In summary, we have formalised the known characteristics and physiological be-
haviour of the heart. The formalisation highlights various aspects of the problem,
making different assumptions about impulse propagation and establishing different
properties related to the CA. We have outlined how an incremental refinement ap-
proach to the heart system enables a high degree of automatic proof using the Rodin
tool. Our various developments reflect not only many facets of the problem, but also
the learning process involved in understanding the problem and its ultimate possible
solutions.

The consistency of our specification has been checked through reasoning, and
validation experiments were performed using the ProB model checker with respect
to safety conditions. As part of our reasoning, we have proved that the initialisa-
tion of the system is valid, and we have calculated the preconditions for operations.
These have been executed to guarantee that our intention to have total operations has
been fulfilled. At each stage of the refinement, we have introduced a new behaviour
for the system and proved its consistency and refinement checking. We have intro-
duced more general invariants at the refinement level, showing that the initialisation
of the whole system is valid. Finally, we have validated the heart system using the
ProB model checker as a validation tool and have verified the correctness of the
exact behaviour of our heart system with the help of physiology and cardiology
experts.
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Chapter 9
The Cardiac Pacemaker

Abstract Building high quality and zero defects medical software-based devices is
a critical task, and formal modelling techniques can effectively help to achieve this
target at the certain level. Formal modelling of a high-confidence medical device,
such as that is too much error prone in operating, is an international Grand Challenge
in the area of Verified Software. Modelling a cardiac pacemaker is one of the pro-
posed challenges, and we consider the complete description of pacemaker’s func-
tionalities using an incremental proof-based approach. To assess the effectiveness
of our proposed development methodology and associated techniques and tools, we
select this case study. This chapter presents the development of a cardiac pacemaker
using our proposed development life-cycle methodology from requirement analy-
sis to automatic code generation. In this development, we use formal verification
to verify the correctness of the requirements for a simple and closed-loop model,
model checking to verify the correctness of the system behaviours, real-time ani-
mator to check the system behaviours according to the domain experts (i.e. medical
experts), and finally the code generation tool EB2ALL for generating the codes into
several programming languages. The refinement charts are used to handle the com-
plexity of the system, where it helps to organise the code structure according to the
different operating modes. Formal models are expressed in the Event-B modelling
language, which integrates conditions (called proof obligations) for checking their
internal consistency with respect to the invariants and safety properties. The gener-
ated proof obligations of models are proved by the Rodin tool and desired behaviour
of the system is validated by the ProB tool and real-time animator according to the
medical experts.

9.1 Introduction

Development and production of medical device software and systems are common
crucial issues [59] for ensuring safe advances in healthcare. The lack of uniform
standard and formalism in the engineering of medical-device software leads many
deficiencies in developing relatively low cost trustworthy software under a limit time
frame. For decades, software failures have cost billions of dollars a year [60]. During
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this period, software have been delivered with restricted warranties of failures and
errors, resulting in the well-known software crisis. Due to software crisis, various
formalisms and rigorous techniques (VDM, Z, Event-B, Alloy, etc.) have been used
in the development process of safety-critical systems. These approaches provide a
given level of reliability and confidence to develop the error-free systems. Formal
methods and their tools have achieved some usability that could be applied even in
industrial-scale applications allowing software developers to provide more mean-
ingful guarantees to their projects.

Tony Hoare suggested Grand challenge for Computing Research [24] to inte-
grate the research community to work together towards a common goal, agreed to
be valuable and achievable by a team effort within a predicted time-scale. Verifi-
cation Grand Challenge is one of them. From the Verification, Grand Challenges,
many application areas were proposed by the Verified Software Initiative [25]. The
pacemaker specification [7, 18] has been proposed by the software quality research
laboratory at McMaster University as a pilot project for the Verified Software Initia-
tive [38, 59]. The challenge is characterised by system aspects including hardware
requirements and safety issues. Such a system demands high integrity to achieve
safety requirements. The pacemaker device is highly sensitive, and lots of operating
defects are coming day by day.

The contribution of this chapter is to give a complete idea of formal develop-
ment of the cardiac pacemaker using our proposed framework and a set of tech-
niques and tools. The cardiac pacemaker is a critical system, which is used here
to show the usefulness of proposed approaches. Our approach is based on the
Event-B modelling language which is supported by the Rodin platform integrat-
ing tools for proving models and refinements of models. Here, we present an in-
cremental proof-based development to model and verify such interdisciplinary re-
quirements in Event-B [1, 8]. Validation of the system is done by model checker as
well as the real-time animator. The model checker, ProB tool [36] is used for val-
idating and analysing the developed formal specifications. The cardiac pacemaker
models must be validated to ensure that they meet requirements of the pacemaker.
Hence, validation must be carried out by both formal modelling and domain ex-
perts. The real-time animator helps to the medical experts to verify the functional
behaviour of the system. If medical experts are not agreed on the system behaviour,
then the system specification is modified and again verify it. In addition, we have
proposed the system integration approach using refinements charts to help a code
designer to improve the code structure and code optimisation, and the code gen-
eration for synthesising and synchronising the software codes of the cardiac pace-
maker. We have also used our proposed environment model of the heart to specify
a closed-loop system of the heart and cardiac pacemaker. Finally, we have used
our translator (EB2ALL) [13, 41, 45–47, 51] to generate the source code in mul-
tiple languages (C, C++, Java, C#). In the rest of the sections of this chapter, we
describe step by step a development of the one- and two-electrode cardiac pace-
maker.
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9.1.1 Why Model-Checker?

Model checking [3] and theorem proving are both applicable in medical device de-
velopment. This approach requires a model of the system under consideration to-
gether with a desired property and systematically checks whether the given model
satisfies this property. The basic technique of model checking is a systematic, usu-
ally exhaustive, state-space search to check whether the property is satisfied in each
state of the model, thereby using effective methods to combat the infamous state-
space explosion problem. Using model checking with formal verification for medi-
cal device has several benefits:

• To understand the formal verification of any system is not an easy task. A group
of non-formal people (doctors, engineering, coder and so on) cannot understand
it due to lack of knowledge of formal mathematics. Non-formal people can un-
derstand the desirable system behaviour through model checker and can give the
proper feedback.

• A model-checker is also useful for a model designer to improve the system.
A model-checker may provide a counter-example showing under which circum-
stance the error can be generated. The counter-example provides evidence that
the system is faulty and needs to be revised. This allows the user to locate the
error and to repair the system before continuing. If no error is found, the user can
refine the model description and can restart the verification process.

9.1.2 Related Work for the Cardiac Pacemaker

Macedo et al. [38] have developed a distributed real-time model of a cardiac pace-
maker using a formal tool VDM [6], where they have modelled the subset of pace-
maker functionalities. In another pacemaker case study, Manna et al. [34] have
shown a simple pacemaker implementation. Gomes et al. [19] have presented a for-
mal specification of a cardiac pacemaker using Z modelling language, and they have
modelled the sequential model similar to Macedo et al. work [38]. A detailed formal-
isation of the one- and two electrode pacemaker is represented in [40, 43, 48]. The
model has been developed in an incremental way using refinements in the Event-B
modelling language. Tuan et al. [58] have proposed a formal model of the pacemaker
based on its behaviour including the communication with the external environment.
They have designed a real-time model of the pacemaker using timed extensions of
CSP and used the model checker Process Analysis Toolkit (PAT) in order to ver-
ify the critical properties, such as deadlock freeness and heart rate limits. Recently,
Gomes et al. [20] have presented the pacemaker case study by providing a means to
execute the model using a translation of Z model into Perfect Developer [12]. They
have used the existing tool Perfect Developer [12] to generate an executable code
of Z model. In [30], authors have used dual chamber implantable pacemaker as a
case study for modelling and verification of control algorithms for medical devices
in UPPAAL.
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Our models are superior to the sequential model of H.D. Macedo et al. [38] and
Gomes et al. [19]. We have added the threshold, hysteresis and rate adaptive brady-
cardia operating modes in our formal specification. We have developed the para-
metric and functional incremental development of bradycardia operating modes.
Incremental development is based on refinement approach and at every level of the
development, we have proved all the required safety properties (refinement and con-
sistency checking). Other specifications [19, 38] of the pacemaker developed as a
one-shot model, means those are not based on the refinement and the correctness
of a model is not checked by any model checker, for safely desired behaviour of
the pacemaker system. We use the formal verification for consistency checking,
and a model checker tool ProB is used to check the desired behaviour of the car-
diac pacemaker. ProB animator helps to validate system behaviour according to the
medical experts at each refinement level of the formal development. In this chapter,
we present a complete system development of a cardiac pacemaker [48] from re-
quirement analysis to source code generation in Event-B modelling language with
several other techniques [13, 41, 46, 47].

9.1.3 Structure of This Chapter

The outline of the remaining chapter is as follows. We give a brief outline of the
pacemaker and the heart system in Sect. 9.2. Section 9.3 presents patterns for mod-
elling the cardiac pacemaker. Refinement structure of the cardiac pacemaker is given
in Sect. 9.4. Section 9.5 presents development of the cardiac pacemaker using re-
finement charts, and the control requirements of a cardiac pacemaker is given in
Sect. 9.6. Sections 9.7 and 9.8 explore stepwise formal development of the one- and
two-electrode cardiac pacemakers. Section 9.9 presents model validation using the
ProB model checker. Section 9.10 presents a closed-loop formal model for the heart
and cardiac pacemaker. Section 9.11 explores the requirements of the closed-loop
modelling. Section 9.12 presents use of the real-time animator for validating the
pacemaker models according to the domain experts. Section 9.13 presents code gen-
eration process from formal specifications of the cardiac pacemaker using EB2ALL
tool, and finally, Sects. 9.14 and 9.15 summarise this chapter with some discussions.

9.2 Basic Overview of Pacemaker System

The conventional pacemakers serve two major functions, namely pacing and
sensing. The pacemaker actuator is pacing by the delivery of a short, intense elec-
trical pulse into the heart. However, the pacemaker sensor uses the same electrode
to detect the intrinsic activity of the heart. So, the pacemaker function of pacing
and sensing activities are dependent on the behaviour of the heart. The sensing and
pacing functions regulate the heart rhythm.
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Fig. 9.1 Heart or natural
pacemaker

The pacemaker system is a small electronic device that helps the heart to maintain
the regular heart beat. In this study, the pacemaker is treated as an embedded system
operating in an environment containing the heart. We first review the heart system
that interact with the pacemaker (Sect. 9.2.1) and then consider elements of the
pacemaker system itself (Sect. 9.2.2).

9.2.1 The Heart System

The human heart is wondrous in its ability to pump blood to the circulatory system
continuously throughout a lifetime. The heart consists of four chambers: right atrial,
right ventricle, left atrial and left ventricle, which contract and relax periodically.
Atria form one unit and ventricles form another. The heart’s mechanical system (the
pump) requires at the very least impulses from the electrical system. An electrical
stimulus is generated by the sinus node (see Fig. 9.11), which is a small mass of
specialised tissue located in the right atrium of the heart. This electrical stimulus
travels down through the conduction pathways and causes the heart’s lower cham-
bers to contract and pump out blood. The right and left atrial are stimulated first and
contract for a short period of time before the right and left ventricles. Each contrac-
tion of the ventricles represents one heartbeat. The atria contract for a fraction of
a second before the ventricles, so their blood empties into the ventricles before the
ventricles contract.

An artificial pacemaker is implanted to assist the heart in case of an arrhythmias
condition to control the heart rate [39]. Arrhythmias are due to the cardiac problems
producing abnormal heart rhythms. In general, arrhythmias reduce hemodynamic
performance, including situations where the heart’s natural pacemaker develops an

1Heart image is taken from http://media.summitmedicalgroup.com/media/db/relayhealth-images/
nodes.jpg.

http://media.summitmedicalgroup.com/media/db/relayhealth-images/nodes.jpg
http://media.summitmedicalgroup.com/media/db/relayhealth-images/nodes.jpg
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abnormal rate or rhythm or when normal conduction pathways are interrupted, and
a different part of the heart takes over control of the rhythm. An arrhythmia can
involve an abnormal rhythm increase (tachycardia; > 100 bpm) or decrease (brady-
cardia; < 60 bpm), or may be characterised by an irregular cardiac rhythm, e.g.
due to asynchrony of the cardiac chambers. The irregularity of the heartbeat, called
bradycardia and tachycardia. The bradycardia indicates that the heart rate falls be-
low the expected level while in tachycardia indicates that the heart rate goes above
the expected level of the heart rate. An artificial pacemaker can restore synchrony
between the atrial and ventricles. In an artificial pacemaker system, the firmware
controls the hardware such that an adequate heart rate is maintained, which is nec-
essary either because the heart’s natural pacemaker is insufficiently fast or slow or
there is a block in the heart’s electrical conduction system [4, 14, 22, 35, 37, 39].
Beats per minute (bpm) is a basic unit to measure the rate of heart activity.

9.2.2 The Pacemaker System

The basic elements of the pacemaker system [4, 14] are:

1. Leads: One or more flexible coiled metal wires, normally two, that transmit elec-
trical signals between the heart and the pacemaker. The same lead incorporate
sensors, which are able to detect the intrinsic heart activity.

2. The Pacemaker Generator: This is both the power source and the brain of the
artificial pacing and sensing systems. It contains an implanted battery and a con-
troller.

3. Device Controller-Monitor (DCM) or Programmer: An external unit that inter-
acts with the pacemaker device using a wireless connection. It consists of a hard-
ware platform and the pacemaker application software.

4. Accelerometer (Rate Modulation Sensor): An electromechanical device inside
the pacemaker that measures the body motion and acceleration of a body in or-
der to allow modulated pacing. In the rate adaptive mode, a cardiac pacemaker
automatically calculates the desire rate of the heart through the physical activities
of the patient [31]. The rate modulation sensor is used to capture these physical
activities and adjust the timing requirements for pacing.

The specification document [7] of our case study describes all possible operating
modes that are controlled by the different programmable parameters of the pace-
maker. All the programmable parameters are related to the real-time and action-
reaction constraints that are used to regulate the heart rate.

Figure 9.2 depicts a basic block diagram of the cardiac pacemaker and shows the
sensors and actuators that will be monitored and controlled in the design presented
in the remainder of this chapter.
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Fig. 9.2 Cardiac pacemaker sensors and actuators

Table 9.1 Bradycardia operating modes of pacemaker system

Category Chambers paced Chambers sensed Response to sensing Rate modulation

Letters O—None O—None O—None R—Rate modulation

A—Atrium A—Atrium T—Triggered

V—Ventricle V—Ventricle I—Inhibited

D—Dual (A + V) D—Dual (A + V) D—Dual (T + I)

9.2.3 Bradycardia Operating Modes

In order to understand the language of pacing, it is necessary to comprehend the
coding system that produced by a combined working party of the North American
Society of Pacing and Electrophysiology (NASPE) and the British Pacing and Elec-
trophysiology Group (BPEG) known as NASPE/BPEG generic (NBG) pacemaker
code [15]. This is a code of five letters of which the first three are most often used.
The code provides a description of the pacemaker pacing and sensing functions. The
sequence is referred to as bradycardia operating modes (see Table 9.1). In practice,
only the first three or four-letter positions are commonly used to describe brady-
cardia pacing functions. The first letter of the code indicates which chambers are
being paced; the second letter indicates which chambers are being sensed; the third
letter of the code indicates the response to sensing and the final letter, which is
optional indicates the presence of rate modulation in response to the physical ac-
tivity measured by the accelerometer. An accelerometer is an additional sensor in
the pacemaker system that detects a physiological result of exercise or emotion, and
increases the pacemaker rate on the basis of a programmable algorithm. “X” is a
wildcard used to denote any letter (i.e. “O”, “A”, “V” or “D”). Triggered (T ) refers
to deliver a pacing stimulus and Inhibited (I ) refers to an inhibition from further
pacing after sensing of an intrinsic activity from the heart chambers.
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Fig. 9.3 Action-reaction patterns

9.3 Event-B Patterns for Modelling the Cardiac Pacemaker

Considering design patterns [17], the purpose is to capture structures and to make
decisions within a design that are common to similar modelling and analysis tasks.
They can be re-applied when undertaking similar tasks in order to reduce the du-
plication of effort. The design pattern approach is the possibility to reuse solutions
from earlier developments in the current project. This will lead to a correct refine-
ment in the chain of models, without producing proof obligations. Since the cor-
rectness (i.e. proof obligations are proved) of the pattern has been proved during its
development, nothing is to be proved again when using this pattern.

Pacemaker systems are characterised by their functions, which can be expressed
by analysing action-reaction and real-time patterns. Sequences of inputs are recog-
nised, and outputs can be emitted in response within a fixed time interval. So, the
most common elements in the pacemaker system are bounded time interval for ev-
ery action, reaction and action-reaction pair. The action-reaction within a time limit
can be viewed as an abstraction of the pacemaker system. We recognise the fol-
lowing two design patterns when modelling this kind of system according to the
relationship between the action and corresponding reaction.

9.3.1 Action-Reaction Pattern

Under action-reaction chapter [1] two basic types of design patterns (see Fig. 9.3)
are,

Action and Weak Reaction: Once an action emits, a reaction should start in re-
sponse. For a quick instance, if an action stops, the reaction should follow. Some-
times reaction does not change immediately according to the action because the
action moves too quickly (the continuance of an action is too short, or the interval
between actions is too short). This is known as a pattern of action and weak reaction.

Action and Strong Reaction: When every reaction follows every action and there
is proper synchronisation between action and corresponding reaction then this pat-
tern is known as action and strong reaction.

9.3.2 Time-Based Pattern

The action-reaction events of a pacemaker system are based on the time constraint
pattern in IEEE 1394 proposed by Cansell et al. and on the 2-Slots Simpson Al-
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Fig. 9.4 Refinement structure of bradycardia operating modes of the pacemaker

gorithm case studies [9, 55]. This time pattern is fully based on a timed automaton.
The timed automaton is a finite state machine that is useful to model the components
of real-time systems. In a model, timed automata interacts with each other and de-
fines a timed transition system. Besides ordinary action transitions that can represent
input, output and internal actions. A timed transition system has time progress tran-
sitions. Such time progress transitions result in synchronous progress of all clock
variables in the model. Here, we apply the time pattern in modelling to synchro-
nise the sensing and pacing stimulus functions of the pacemaker system in con-
tinuous progressive time constraint. In the model, events are controlled under time
constraints, which means action of any event activates only when time constraint
satisfies on a specific time. The time progress is also an event, so there is no modifi-
cation of the underlying Event-B language. It is only a modelling technique instead
of a specialised formal system. The timed variable is in N (natural numbers), but
time constraint can be written in terms involving unknown constants or expressions
between different times. Finally, the timed event observations can be constrained by
other events, which determine future activations.

9.4 Refinement Structure of a Cardiac Pacemaker

We present a block diagram (see Fig. 9.4) of a hierarchical tree structure of the pos-
sible bradycardia operating modes for a pacemaker. The hierarchical tree structure
depicts a stepwise refinement from abstract to concrete models of the formal de-
velopment for a pacemaker. Each level of refinement introduces new features of a
pacemaker as functional and parametric requirements.

The root node indicates a cardiac pacemaker system. The next two branches show
two classes of pacemaker: one-electrode pacemaker and two-electrode pacemaker.
The one-electrode pacemaker branch is divided into two parts to indicate different
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chambers of the heart: atrium and ventricular. Atrium and ventricular are the right
atrium and the right ventricular. The atrium chamber uses the three operating modes;
AOO, AAI and AAT (see Table 9.1). Similarly, the ventricular chamber uses three
operating modes: VOO, VVI and VVT (see Table 9.1). In the part of two-electrode
pacemaker, there is only one branch for both chambers. Both chambers of the heart
use the five operating modes: DOO, DVI, DDI, VDD and DDD. In the abstract
model, we introduce the bradycardia operating modes of the pacemaker abstractly
with required properties. From first refinement to the last refinement, there is only
one branch in every operating mode of the pacemaker. In one and two-electrode
pacemaker, there are three refinements: first threshold refinement; second hysteresis
refinement; and third rate adaptive or rate modulation refinement. The subsequent
refinement models introduce new features or functional requirements for the result-
ing system. The triple dots (. . .) in the hierarchical tree represents that there is no
refinement at that level, in particular, operating modes (AOO, VOO, DOO, etc.). In
the last refinement level, we have achieved the additional rate adaptive operating
modes (i.e. AOOR, AAIR, VVTR, DOOR, DDDR, etc.). These operating modes
are different from the previous levels of operating modes. This refinement structure
is very helpful to model the functional requirements of the cardiac pacemaker.

9.5 Development of the Cardiac Pacemaker Using Refinement
Chart

A formal specification serves as the central role of the development and evolu-
tion process. A refinement typically embodies a well-defined unit of programming
knowledge. Figures 9.5 and 9.6 present the diagrams of the most abstract modal sys-
tem for the one and two-electrode pacemaker system (A) and the resulting models
of three successive refinement steps (B to D). The diagrams use a visual notation to
represent the bradycardia operating modes of the pacemaker under functional and
parametric requirements. An operating mode is represented by a box with a mode
name; an operating mode transition is an arrow connecting two operating modes.
The direction of an arrow indicates the previous and next operating modes in a tran-
sition. Refinement is expressed by nesting boxes [53].

A refined diagram of an abstract mode is equivalent to a concrete mode. These
block wise refinements are similar to the hierarchical tree structure (see Fig. 9.4)
of the bradycardia operating modes of the pacemaker. The nesting boxes in one-
and two-electrode pacemakers (Figs. 9.5 and 9.6) represent equivalent to every re-
finement level of the hierarchical tree structure (see Fig. 9.4). Special initiating and
terminating modes are on and off respectively of the pacemaker, which are omitted
here in the refinement chart block diagram. At the most abstract level, we introduce
pacing activity into single and both heart chambers. In Figs. 9.5(A) and 9.6(A), pac-
ing is represented by transitions Pace ON and Pace OFF for single chamber or both
chambers. It is the basic transitions for all bradycardia operating modes. During a
pacing cycle, it is ensured that no other pacing activity has occurred. The model in-
cludes: the state of pacing (on/off) modelled by a boolean flag Pacemaker_Actuator;
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Fig. 9.5 Refinements of one-electrode pacemaker using the refinement chart

the current time control of the pacemaker, is stored in variable tic; a safe pacing in-
terval is Pace_Int in which the pacemaker should not be paced.

In the next refinement (Figs. 9.5(B), 9.6(B)) step pacing is refined by sensing,
corresponding to the activity of the heart, when sensing period is not under refrac-
tory period (RF2). In the first refinement of two-electrode pacemaker, sensors are
introduced in both chambers. In Fig. 9.5(B) of one-electrode, sensing is represented
by transitions Sensor ON and Sensor OFF, while in Fig. 9.6(B) of two-electrode,
sensing is represented by transitions Sensor ON Atria, Sensor ON Ventricle, Sen-
sor OFF Atria and Sensor OFF ventricle. This refinement introduces: the state of
pacemaker sensor (on/off), is modelled by a boolean flag Pacemaker_Sensor. The
pacemaker’s actuator and sensor are synchronising to each other under the real-time
constraints. The block diagrams (Figs. 9.5(B), 9.6(B)) represent the threshold refine-
ment, that is a measuring unit which measures a stimulation threshold voltage value
of the heart and a pulse generator for delivering stimulation pulses to the heart. The

2RF: Atria Refractory Period (ARP) or Ventricular Refractory Period (VRP).
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Fig. 9.6 Refinements of two-electrode pacemaker using the refinement chart

pacemaker’s sensor starts sensing after the refractory period (RF) but pacemaker’s
actuator delivers a pacing stimulus when sensing value is greater than an equal to the
standard threshold constant. Sensor-related transitions are available in all operating
modes except AOO, VOO and DOO modes.

Third refinement step (Figs. 9.5(C), 9.6(C)) introduces different operating strate-
gies under hysteresis interval: if the hysteresis mode is TRUE, then the pacemaker
paces at a faster rate than the sensing rate to provide consistent pacing in one cham-
ber (atrial or ventricle) or both chambers (atrial and ventricle), or prevents constant
pacing in one chamber (atrial or ventricle) or both chambers (atrial and ventricle).
In case of FALSE state of hysteresis mode of the pacemaker’s sensor and actuator
are working in normal state or does not try to maintain the consistent pacing. Hys-
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teresis mode is represented by transitions Hysteresis Mode TRUE and Hysteresis
Mode FALSE. The main objective of hysteresis is to allow the patient to have his or
her own underlying rhythm as much as possible. The hysteresis operating mode is
available in AAI, AAT, VVI, VVT and DDD modes.

According to the last refinement step (Figs. 9.5(D), 9.6(D)), it introduces the
rate adapting pacing technique in the bradycardia operating modes of the pace-
maker. The rate modulation mode is represented by transitions Accel. ON and Accel.
OFF. The rate modulation operating modes are available in all pacemaker operating
modes which are given under multiple refinements. The pacemaker uses the ac-
celerometer sensors to sense the physiologic need of the heart and increase and de-
crease the pacing rate. The amount of rate increases is determined by the pacemaker
based on maximum exertion is performed by the patient. This increased pacing rate
is sometimes referred to as the “sensor indicated rate”. When exertion has stopped
the pacemaker will progressively decrease the pacing rate down to the lower rate.

The next section presents only selected parts of our formalisation and omit proof
details. For instance, we have omitted the specification of refinement of every event
from all operating modes. Only newly introduced event specifications are given in
all refinements. To find more detailed information see the published papers and
research reports [40, 43, 48].

9.6 Cardiac Pacemaker Control Requirements

There are several operating modes in the cardiac pacemaker, and DDD operating
mode is one of the complex operating mode that contains the features of other op-
erating modes. The data flow and pacing algorithm of DDD cover the functionality
of the other operating modes. Therefore, this section presents only the control re-
quirement of the DDD operating mode. As explained above, the DDD operating
mode of the pacemaker is used, where the sensors sense intrinsic activities from
both chambers and the actuators discharge electrical pulse in both chambers.

Figure 9.7 depicts the scenarios for sensing and pacing activities [4]. In Fig. 9.7,
time goes left to right, and a flat line indicates no heart activity. A spike above the
lines indicates intrinsic activity and a spike below the line indicates activity as a
result of the action of the pacemaker. A rounded spike indicates activity in the atrial
and a sharp spike indicates activity in the ventricle. The Ventriculoatrial Interval
(VAI) is the maximum time the pacemaker should wait after sensing ventricle activ-
ity (either intrinsic or paced) for some indication of intrinsic activity in the atrium.
If none is present, the pacemaker should pace in the atrial chamber. The Atrioven-
tricular Interval (AVI) is the maximum time the pacemaker should wait after sens-
ing atrial activity (either intrinsic or paced) for some indication of intrinsic activity
in the ventricles. If none is present then the pacemaker should pace in the ventricle
chamber. After every pace in the ventricle, there is some sensed activity in the atrial,
but this is not true intrinsic heart activity and should be ignored. The Postventricu-
lar atrial refractory period (PVARP) indicates the length of time that such activity



190 9 The Cardiac Pacemaker

Fig. 9.7 The DDDR pacing scenarios

should be ignored. Sensed atrial activity is called a P wave, and sensed ventricular
activity is called a QRS complex. A T wave follows a QRS complex and represents
the recovery of the ventricles [57]. There are four possible scenarios for pacing and
sensing activities, which are given in Fig. 9.7.

• Scenario A—shows a situation in which the pacemaker paces after a standard
time interval in both chambers. This is the reaction when no intrinsic heart activity
is detected.

• Scenario B—shows a situation in which the pacemaker paces in the atrial cham-
ber after a standard interval, while the ventricular pacing is inhibited due to a
sensing of intrinsic activity from the ventricle.

• Scenario C—shows a situation in which intrinsic atria activity is sensed, pacing
inhibited in the atrial chamber but occurs in the ventricular chamber after AVI
(due to a lack of intrinsic ventricular activity).
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Fig. 9.8 The required DDDR pacing cycle

• Scenario D—represents the case where both pacing activities are inhibited due to
a sensing of intrinsic activities in both chambers.

Figure 9.8 gives a flow chart for the basic required operations of the DDD mode.
This gives an informal description of the requirements for the pacemaker operat-
ing in the DDDR mode. If a ventricle pulse has just been delivered, the pacemaker
watches the atrial channel for a spontaneous P wave (intrinsic activity in the atrium).
If the VAI times out, the pacer delivers a pacing pulse to the atrium; otherwise,
the atrial output is inhibited. The pacemaker now watches the ventricle for a spon-
taneous QRS complex wave (indicating intrinsic activity in the ventricle). If it is
detected, the ventricular pace is inhibited, otherwise the pacemaker delivers a pac-
ing pulse. If the accelerometer detects a change in the patient’s activity level, it
changes the VAI timeout to compensate—thus speeding up or slowing down the
heart beat [57].

9.7 Formal Development of the One-Electrode Cardiac
Pacemaker

9.7.1 Context and Initial Model

Abstraction of AOO and VOO Modes

We begin by defining the Event-B context. The context uses sets and constants to
define axioms and theorems. Axioms and theorems represent the logical theory of
a system. The logical theory is the static properties and properties of the system.
In the context, we define constants LRL and URL that relate to the lower rate limit
(minimum number of pace pulses delivered per minute by pacemaker) and upper
rate limit (how fast the pacemaker will allow the heart to be paced). These constants
are extracted from the pacemaker specification document [7]. The lower rate limit
(LRL) must be between 30 and 175 pulse per minute (ppm) and upper rate limit
(URL) must be between 50 and 175 pulse per minute (ppm).

The two new constants URI and LRI represent the corresponding upper rate in-
terval and lower rate interval, respectively. The pacemaker (or pacing) rate is pro-
grammed in milliseconds. To convert a heart rate from beats per minute (bpm) to
milliseconds, 60,000 is divided by the heart rate. For example, a heart rate of 70 bpm
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equals 857 milliseconds. In the context, the axioms (axm3 and axm4) represent the
upper rate interval (URI) and lower rate interval (LRI). Additionally, we define an
enumerated set status of an electrode as ON or OFF states. Finally, we introduce
some basic initial properties using defined constants of the system by axioms (axm6
and axm7).

axm1 : LRL ∈ 30 .. 175
axm2 : URL ∈ 50 .. 175
axm3 : URI ∈ N1 ∧ URI = 60000/URL
axm4 : LRI ∈ N1 ∧ LRI = 60000/LRL
axm5 : status = {ON,OFF}
axm6 : LRL < URL
axm7 : URI < LRI

In the one-electrode pacemaker system, the pacemaker delivers a pacing stimu-
lus in the atrial or the ventricular chamber. In our initial model, we formalise the
functional behaviours of the pacemaker system, where a new variable Pace_Actu
is a pacemaker’s actuator, represents the presence or absence of pulse. A variable
Pace_Int is an interval between two paces, which is initialised by the system be-
fore starting the pacing process. A variable sp represents the current clock counter
and a variable last_sp represents the last interval (in ms) between two paces. An
invariant (inv5) states that the clock counter sp should be less than or equal to the
lower rate interval (LRI). The next two invariants (inv6, inv7) introduce two vari-
ables Pace_Int_flag and last_sp. The variable Pace_Int_flag is defined as a boolean
type to represent changing state of the pacing interval (Pace_Int), and the variable
last_sp is used to store an interval between last two heart beats or paces. An in-
variant (inv8) represents safety properties: the pacemaker delivers a pacing stimulus
into the heart chamber between upper rate interval (URI) and lower rate interval
(LRI). Similarly, the next invariant (inv9) represents the states of the pacemaker’s
actuator under the heart environment as the safety properties, and state that it is
never activated between two heart beats, means pacemaker’s actuator is OFF during
pace interval Pace_Int, and pace changing flag is FALSE. The last invariant (inv10)

states that if pace changing flag is FALSE and the pacemaker’s actuator is ON, then
the current clock counter sp is equal to the pace interval Pace_Int.

inv1 : Pace_Actu ∈ status
inv2 : Pace_Int ∈ URI .. LRI
inv3 : sp ∈ 1 ..N

inv4 : last_sp ∈ N

inv5 : sp ≤ LRI
inv6 : Pace_Int_flag ∈ BOOL
inv7 : last_sp ∈ N

inv8 : last_sp ≥ URI ∧ last_sp ≤ LRI
inv9 : Pace_Int_flag = FALSE ∧ sp < Pace_Int ⇒ Pace_Actu = OFF
inv10 : Pace_Int_flag = FALSE ∧ Pace_Actu = ON ⇒ sp = Pace_Int
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In our abstract specification, there are four events Pace_ON to start pacing,
Pace_OFF to stop pacing, tic to increment the current clock counter under the time
constraints and Change_Pace_Int to update the pace interval. The events Pace_ON
and Pace_OFF start and stop the pulse stimulating into the heart chamber, respec-
tively. The guards of these events synchronise ON and OFF states of the pacemaker
system under the time constraints. The action part of event Pace_ON sets ON state
of the pacemaker’s actuator and assigns the value of current clock counter sp to a
new variable last_sp. Similarly, an action part of the event Pace_OFF sets OFF state
of the pacemaker’s actuator and resets the current clock counter variable sp to 1.

EVENT Pace_ON
WHEN

grd1 : Pace_Actu = OFF
grd2 : sp = Pace_Int

THEN
act1 : Pace_Actu := ON
act2 : last_sp := sp

END

EVENT Pace_OFF
WHEN

grd1 : Pace_Actu = ON
grd2 : sp = Pace_Int

THEN
act1 : Pace_Actu := OFF
act2 : sp := 1

END

EVENT tic
WHEN

grd1 : sp < Pace_Int
THEN

act1 : sp := sp + 1
END

The pacing and sensing events update a state every millisecond. We model this
increment by the event tic, that increments time in 1 ms. The event tic progressively
increases the current clock counter sp under pre-defined pace interval Pace_Int. The
predicate in guard (grd1) of the event tic represents an upper bound time limit.

EVENT Change_Pace_Int
WHEN

grd1 : Pace_Int_flag = TRUE
THEN

act1 : Pace_Int :∈ URI .. LRI
END
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A new event Change_Pace_Int is introduced to update the current value of the
pace interval. This event is defined abstractly, which is used in further refinement
levels to modify the pace interval according to the introduction of different operating
modes like hysteresis and rate modulation. This event represents that when the pace
changing flag (Pace_Int_flag) is TRUE then the pace interval (Pace_Int) can be
chosen from URI to LRI range.

Abstraction of AAI and VVI Modes

In the abstract model of AAI and VVI modes, all the constants, variables and events
are common as the abstract model of AOO and VOO modes. In this section, we
introduce only extra added new constants, variables and events. We introduce a new
constant refractory period RF (Atria Refractory Period (ARP) or Ventricular Re-
fractory Period (VRP)) that represents a period during which pacemaker timing in
the heart chamber is not affected by events. Two new axioms (axm1, axm2) are in-
troduced in this abstract level. The first axiom (axm1) represents a refractory period
as a constant and the second axiom (axm2) represents a static property.

axm1 : RF ∈ 150 .. 500
axm2 : URI > RF

A new variable Pace_Sensor as a pacemaker’s sensor, is defined as an enumerated
type that represents the presence or absence of sensing pulse from the heart chamber
and a variable last_ss represents the last interval (in ms) between two sensed pulses.
Some new invariants are added here that are common to all other operating modes
(except AOO and VOO) of the pacemaker system. An invariant (inv3) states that
the interval between two sensed pulses is greater than or equal to the refractory
period RF and less than or equal to the pace interval (Pace_Int). Invariants (inv4,
inv5) state that the pacemaker’s sensor and actuator are always in OFF state during
the refractory period RF. These are the essential safety properties for the refractory
period during which the pacemaker timing must not to be affected by any events that
occur. The last invariant (inv6) states that when pace changing flag (Pace_Int_flag)
is FALSE, current clock counter (sp) is greater than the refractory period (RF) and
less than the pacing interval (Pace_Int), then the pacemaker’s sensor should be ON,
means the pacemaker’s sensor is ON and continuously sensing the intrinsic activities
from the heart chamber within an alert period (Pace_Int − RF).

inv1 : Pace_Sensor ∈ status
inv2 : last_ss ∈ N

inv3 : last_ss ≥ RF ∧ last_ss ≤ LRI
inv4 : sp < RF ⇒ Pace_Sensor = OFF
inv5 : sp < RF ⇒ Pace_Actu = OFF
inv6 : Pace_Int_flag = FALSE ∧ sp > RF ∧ sp ≤ Pace_Int ⇒

Pace_Sensor = ON
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We introduce extra events Pace_OFF_with_Sensor and Sense_ON in the abstrac-
tion model of the AAI and VVI modes. The guards of event Pace_OFF_with_Sensor
state that, when the pacemaker’s actuator is OFF, pacemaker’s sensor is ON and
current clock counter sp is greater than or equal to the refractory period RF then it
stores the value of the current clock counter sp to the new variable last_ss, resets
the current clock counter sp to 1 and sets OFF state of the pacemaker’s sensor. It
means that during the alert period (Pace_Int − RF), the pacemaker inhibits a pacing
stimulus and resets the current clock counter whenever it senses an intrinsic activity
from the heart chamber.

EVENT Pace_OFF_with_Sensor
WHEN

grd1 : Pace_Actu = OFF
grd2 : Pace_Sensor = ON
grd3 : sp ≥ RF

THEN
act1 : last_ss := sp
act2 : sp := 1
act3 : Pace_Sensor := OFF

END

The event Sense_ON starts the sensing process of pacemaker’s sensor when the
sensor is OFF and the current clock counter sp is greater than or equal to the re-
fractory period RF and lower than the pace interval Pace_Int. We have added some
new guards in the events Pace_OFF of AAI and VVI operating modes to control
the sensor under the current clock counter sp.

EVENT Sense_ON
WHEN

grd1 : Pace_Sensor = OFF
grd2 : sp ≥ RF
grd3 : sp < Pace_Int

THEN
act1 : Pace_Actu := ON

END

We have added more real time constraints in the guard (grd1) of the event tic
in all operating modes that control the progressive increment of the current clock
counter sp as follows:

grd1 : (sp < RF ∧ Pace_Sensor = OFF∧
Pace_Actu = OFF)

∨
(sp ≥ RF ∧ sp < Pace_Int∧
Pace_Sensor = ON ∧ Pace_Actu = OFF)
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Abstraction of AAT and VVT Modes

The abstract model of AAT and VVT modes are similar to AAI and VVI
modes. We introduce a new event Pace_ON_with_Sensor in place of event
Pace_OFF_with_Sensor in this abstract model. The guards of this event state, when
the pacemaker’s actuator is OFF, the pacemaker’s sensor is ON and the current clock
counter sp is greater than or equal to the refractory period RF and less than or equal
to pace interval Pace_Int then it stores the value of current clock counter sp to the
variable last_ss, and the pacemaker’s actuator sets ON under the sensing process.
During the alert period (Pace_Int − RF), the pacemaker delivers a pacing stimulus
whenever it senses an intrinsic activity from the heart chamber.

EVENT Pace_ON_with_Sensor
WHEN

grd1 : Pace_Actu = OFF
grd2 : Pace_Sensor = ON
grd3 : sp ≥ RF ∧ sp ≤ Pace_Int

THEN
act1 : Pace_Actu := ON
act2 : last_ss := sp

END

9.7.2 First Refinement: Threshold

The pacemaker control unit delivers stimulation to the heart chamber, on the basis of
measured value under the safety margin. We define a new constant THR as THR ∈
N1 to hold standard threshold value, and we use the constant nominal threshold
value for modelling that is different for the atria and the ventricular chambers.

The pacemaker’s sensor starts sensing after the refractory period RF but pace-
maker’s actuator delivers a pacing stimulus when sensing value is greater than or
equal to the standard threshold constant THR.3 The first invariant is introduced in
operating modes (AAI, VVI) that states that the pacemaker’s actuator is OFF, when
the pace changing flag (Pace_Int_flag) is FALSE, the pacemaker’s sensor is ON; an
obtained sensor value is greater than or equal to the standard threshold value, the
current clock counter sp is within the alert period (Pace_Int − RF) and the state of
threshold thr_val_state is TRUE. Similarly, the second invariant is introduced in the
operating modes (AAT, VVT) that states that the pacemaker’s actuator is ON, when
the pace changing flag (Pace_Int_flag) is FALSE, the pacemaker’s sensor is ON,
an obtained sensor value is greater than or equal to the standard threshold constant
THR, the current clock counter sp within the alert period (Pace_Int − RF), and the
state of threshold thr_val_state is TRUE.

3Standard threshold constant values of atria and ventricular chambers are different.
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inv1 : Pace_Int_flag = FALSE ∧ Pace_Sensor = ON ∧ thr ≥ THR ∧
sp > RF ∧ sp < Pace_Int ∧
thr_val_state = TRUE ⇒
Pace_Actu = OFF

inv2 : Pace_Int_flag = FALSE ∧ Pace_Sensor = ON ∧ thr ≥ THR ∧
sp > RF ∧ sp < Pace_Int ∧
thr_val_state = TRUE ⇒
Pace_Actu = ON

A new event Thr_value is introduced in all the operating modes (AAI, AAT, VVI
and VVT) that obtains a measured value of the heart activities using the pacemaker’s
sensor. The guards of this event state that when the pacemaker’s sensor is ON, the
current clock counter sp is within the alert period (Pace_Int − RF) and the state
of threshold value thr_val_state is TRUE then the sensed value th is assigned to
the threshold variable thr and the state of threshold variable thr_val_state becomes
FALSE.

EVENT Thr_value
ANY

th
WHERE

grd1 : Pace_Sensor = ON
grd2 : sp ≥ RF ∧ sp < Pace_Int
grd3 : thr_val_state = TRUE
grd4 : th ∈ N

THEN
act1 : thr := th
act2 : thr_val_state := FALSE

END

In this refinement, we have added a new guard thr ≥ THR in the events
(Pace_OFF_with_Sensor and Pace_ON_with_Sensor). Moreover, we modify the
guard (grd1) of the event (tic) to synchronise the pacing-sensing events with a new
threshold functional behaviour under the real-time constraints.

grd1 : (sp < RF ∧ Pace_Sensor = OFF ∧
Pace_Actu = OFF)

∨
(sp ≥ RF ∧ sp < Pace_Int ∧
Pace_Sensor = ON ∧ Pace_Actu = OFF ∧
thr < THR ∧ thr_val_state = FALSE)
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9.7.3 Second Refinement: Hysteresis

Hysteresis is a programmed feature whereby the pacemaker paces at a faster rate
than the sensing rate. For example, pacing at 80 pulses a minute with a hysteresis
rate of 55 means that the pacemaker will be inhibited at all rates down to 55 beats
per minute, having been activated at a rate below 55, the pacemaker then switches on
and paces at 80 pulses a minute [22, 39]. The application of the hysteresis interval
provides consistent pacing of the atrial or ventricle, or prevents constant pacing
of the atrial or ventricle. The main purpose of hysteresis is to allow the patient to
have his or her own underlying rhythm as much as possible. Two new variables
(Hyt_Pace_Int_flag, HYT_State) are introduced to define the functional properties
of the hysteresis operating modes. Both variables are defined as a boolean type.
The hysteresis state HYT_State is used to set the hysteresis functional parameter as
TRUE or FALSE, to apply the hysteresis operating modes.

inv1 : Hyt_Pace_Int_flag ∈ BOOL
inv2 : HYT_State ∈ BOOL

A new event Hyt_Pace_Updating is introduced to implement the functional prop-
erties of the hysteresis operating modes. In the hysteresis operating modes, the pace-
maker tries to maintain own heart rhythm as much as possible. Hence, this event
can change the pacing interval and set a pacing length longer than existing, which
changes the pacing length of the cardiac pacemaker. This event is only used for up-
dating the pacing interval (Pace_Int). Guards of this event state that the pace chang-
ing flag (Pace_Int_flag) is TRUE, the hysteresis pacing flag (Hyt_Pace_Int_flag) is
TRUE and the hysteresis pace interval (Hyt_Pace_Int) should be within the range
of the pace interval (Pace_Int) and lower rate interval (LRI). Actions of this event
state that a new hysteresis pace interval (Hyt_Pace_Int) updates the pace interval
Pace_Int, the hysteresis pacing flag (Hyt_Pace_Int_flag) sets to FALSE and the hys-
teresis state (HYT_State) becomes TRUE.

EVENT Hyt_Pace_Updating Refines Change_Pace_Int
ANY

Hyt_Pace_Int
WHERE

grd1 : Pace_Int_flag = TRUE
grd2 : Hyt_Pace_Int_flag = TRUE
grd3 : Hyt_Pace_Int ∈ Pace_Int .. LRI

THEN
act1 : Pace_Int := Hyt_Pace_Int
act2 : Hyt_Pace_Int_flag := FALSE
act3 : HYT_State := TRUE

END
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9.7.4 Third Refinement: Rate Modulation

Rate modulation term is used to describe the capacity of a pacing system to respond
to physiologic needs by increasing and decreasing pacing rate. The rate modulation
mode of the pacemaker can progressively pace faster than the lower rate, but no
more than the upper sensor rate limit, when it determines that heart rate needs to
increase. This typically occurs with exercise in patients who cannot increase their
own heart rate. The amount of rate increases is determined by the pacemaker based
on maximum exertion is performed by the patient. This increased pacing rate is
sometimes referred to as the “sensor indicated rate”. When exertion has stopped the
pacemaker will progressively decrease the paced rate down to the lower rate.

In this last refinement, we introduce the rate modulation function and found some
new operating modes (AOOR, VOOR, AAIR, VVIR, AATR and VVTR) of the
pacemaker system. For modelling the rate modulation, we introduce some new con-
stants maximum sensor rate MSR as MSR ∈ 50 .. 175 and acc_thr as acc_thr ∈ N1
using axioms (axm1,axm2). The maximum sensor rate (MSR) is the maximum pac-
ing rate allowed as a result of sensor control, and it must be between 50 and 175
pulse per minute (ppm). The constant acc_thr represents the activity threshold. Ax-
iom (axm3) represents a static property for the rate modulation operating modes.

axm1 : MSR ∈ 50 .. 175
axm2 : acc_thr ∈ N1
axm3 : MSR = URL

Two new variables acler_sensed and acler_sensed_flag are defined as to store
a measured value from the accelerometer and boolean type of the accelerometer
sensor. Boolean type of the accelerometer sensor is used to synchronise with other
functionalities of the system. The accelerometer is used to measure the physical
activities of the body in the pacemaker system. Two new invariants (inv3, inv4)
provide the safety margin and state that the heart rate never falls below the lower
rate limit (LRL) and never exceeds the maximum sensor rate (MSR) limit.

inv1 : acler_sensed ∈ N

inv2 : acler_sensed_flag ∈ BOOL
inv3 : HYT_State = FALSE ∧ acler_sensed < acc_thr∧

acler_sensed_flag = TRUE ⇒ Pace_Int = 60000/LRL
inv4 : HYT_State = FALSE ∧ acler_sensed =≥ acc_thr∧

acler_sensed_flag = TRUE ⇒ Pace_Int = 60000/MSR

In this final refinement, we introduce two new events Increase_Interval and
Decrease_Interval, which are the refinement of event Change_Pace_Int. These
new events are used to control the pacing rate of the one-electrode pacemaker in
the rate modulating operating modes. The new events Increase_Interval and De-
crease_Interval control the value of the pace interval variable Pace_Int, whenever a
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measured value (acler_sensed) from the accelerometer sensor goes higher or lower
than the activity threshold acc_thr.

EVENT Increase_Interval Refines Change_Pace_Int
WHEN

grd1 : Pace_Int_flag = TRUE
grd1 : acler_sensed ≥ threshold
grd1 : HYT_State = FALSE

THEN
act1 : Pace_Int := 60000/MSR
act1 : acler_sensed_flag := TRUE

END

EVENT Decrease_Interval Refines Change_Pace_Int
WHEN

grd1 : Pace_Int_flag = TRUE
grd1 : acler_sensed < threshold
grd1 : HYT_State = FALSE

THEN
act1 : Pace_Int := 60000/LRL
act1 : acler_sensed_flag := TRUE

END

A new event (Acler_sensed) is defined as to simulate the behaviour of accelerom-
eter sensor. This event senses continue the motion of the body to increase or decrease
the length of the pace interval (Pace_Int). In this event, the guards state that the ac-
celerometer sensor flag is TRUE and the hysteresis state is FALSE. A new variable
acl_sen is used to store the current sensing value. Actions of this event state that
a local variable acl_sen updates accelerometer sensor (acler_sensed) and the ac-
celerometer sensor flag (acler_sensed_flag) becomes FALSE.

EVENT Acler_sensed
ANY

acl_sen
WHERE

grd1 : acl_sen ∈ N

grd1 : acler_sensed_flag = TRUE
grd1 : HYT_State = FALSE

THEN
act1 : acler_sensed := acl_sen
act1 : acler_sensed_flag := FALSE

END

In the next section, we explore the formal model of the two-electrode pacemaker
system using incremental refinements.
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9.8 Formal Development of the Two-Electrode Cardiac
Pacemaker

9.8.1 Context and Abstract Model

In this section, we describe the formal development of initial modes of the two-
electrode pacemaker system using the basic notion of action-reaction and real-time
constraints, to focus on pacing and sensing activities of the pacemaker’s actuator
and sensor. The initial context of the two-electrode pacemaker is similar to the one-
electrode pacemaker. We give here only newly defined constants and axioms. A new
constant atrioventricular (AV) interval (FixedAV) is defined in axm8. Refractory pe-
riod constants Atria Refractory Period (ARP), Ventricular Refractory Period (VRP)
and Post Ventricular Atria Refractory Period (PVARP) are defined by axioms (axm9,
axm10 and axm11). Another new constant V _Blank is defined as blanking period
as an initial period of VRP. Finally, we introduce some basic initial properties using
defined constants of the system by axioms (axm13, axm14 and axm15).

axm8 : FixedAV ∈ 70 .. 300
axm9 : ARP ∈ 150 .. 500
axm10 : VRP ∈ 150 .. 500
axm11 : PVARP ∈ 150 .. 500
axm12 : V _Blank ∈ 30 .. 60
axm13 : URI > PVARP
axm14 : URI > VRP
axm15 : VRP ≥ PVARP

Abstraction of DDD Mode

In the two-electrode pacemaker system, the pacemaker delivers a pacing stimulus
in both atrial and ventricular chambers. In DDD operating mode, the first letter ‘D’
represents that the pacemaker paces in both atrial and ventricle chambers; second
letter ‘D’ represents that the pacemaker senses intrinsic activities from both atrial
and ventricle chambers and final letter ‘D’ represents two conditional meaning that
depends on atrial and ventricular sensing; first is that atrial sensing inhibits atrial
pacing and triggers ventricular pacing and second is that ventricular sensing inhibits
ventricular and atrial pacing [22, 35].

Two new variables PM_Actuator_A and PM_Actuator_V are defined that repre-
sent ON or OFF state of the pacemaker’s actuators for pacing in both atrial and ven-
tricular chambers. Similarly next two variables PM_Sensor_A and PM_Sensor_V
represent ON or OFF state of the pacemaker’s sensor for sensing an intrinsic pulse
from both atrial and ventricular chambers. An interval between two paces is de-
fined by a new variable Pace_Int that must be between upper rate interval (URI)
and lower rate interval (LRI), is represented by an invariant (inv5). A variable sp
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represents the current clock counter. A variable last_sp represents the last interval
(in ms) between two paces, and a safety property in invariant (inv7) states that the
last interval must be between PVARP and pace interval Pace_Int. Another new vari-
able AV_Count_STATE is defined as a boolean type to control the atrioventricular
(AV) interval state and the next variable AV_Count is defined as a natural number to
count the atrioventricular (AV) interval. A variable (Pace_Int_flag) is defined as a
boolean type to represent changing state of the pace interval (Pace_Int). Invariants
(inv11, inv12 and inv13) represent the safety properties. The invariant inv11 states
that, when the clock counter sp is less than VRP and atrioventricular (AV) counter
state AV_Count_State is FALSE, then the pacemaker’s actuators and sensors of both
chambers are OFF. Similarly, the next invariants (inv12 and inv13) represent the
conditions of ON state of the pacemaker’s actuators in the both chambers.

inv1 : PM_Actuator_A ∈ status
inv2 : PM_Actuator_V ∈ status
inv3 : PM_Sensor_A ∈ status
inv4 : PM_Sensor_V ∈ status
inv5 : Pace_Int ∈ URI .. LRI
inv6 : sp ∈ 1 .. Pace_Int
inv7 : last_sp ≥ PVARP ∧ last_sp ≤ Pace_Int
inv8 : AV_Count_STATE ∈ BOOL
inv9 : AV_Count ∈ N

inv10 : Pace_Int_flag ∈ BOOL

inv11 : sp < VRP ∧ AV_Count_STATE = FALSE
⇒
PM_Actuator_V = OFF∧
PM_Sensor_A = OFF∧
PM_Sensor_V = OFF∧
PM_Actuator_A = OFF

inv12 : Pace_Int_flag = FALSE ∧ PM_Actuator_V = ON
⇒
sp = Pace_Int ∨ (sp < Pace_Int∧
AV_Count > V _Blank ∧ AV_Count ≥ FixedAV)

inv13 : Pace_Int_flag = FALSE ∧ PM_Actuator_A = ON
⇒
(sp ≥ Pace_Int − FixedAV)

In the abstract specification of DDD operating mode, there are ten events Ac-
tuator_ON_A to start pacing in atrial, Actuator_OFF_A to stop pacing in atrial,
Actuator_ON_V to start pacing in ventricular, Actuator_OFF_V to stop pacing in
ventricular, Sensor_ON_V to start sensing in ventricular, Sensor_OFF_V to stop
sensing in ventricular, Sensor_ON_A to star sensing in atrial, Sensor_OFF_A to
stop sensing in atrial, tic to increment the current clock counter sp under the real
time constraints and tic_AV to count the atrioventricular (AV) interval.
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EVENT Actuator_ON_V
WHEN

grd1 : PM_Actuator_V = OFF
grd2 : (sp = Pace_Int)

∨
(sp < Pace_Int ∧ AV_Count > V _Blank ∧
AV_Count ≥ FixedAV)

grd3 : sp ≥ VRP ∧ sp ≥ PVARP
THEN

act1 : PM_Actuator_V := ON
act2 : last_sp := sp

END

The events Actuator_ON_V and Actuator_OFF_V are used to start and stop the
pacemaker’s actuator in the ventricular chamber under the real-time constraints.
In the event (Actuator_ON_V), the first guard states that the pacemaker’s actuator
(PM_Actuator_V) of the ventricular is OFF, the next guard (grd2) states that the cur-
rent clock counter sp is either equal to the pace interval Pace_Int or the clock counter
sp is less than the pace interval Pace_Int, the atrioventricular counter is greater than
the blanking period V_Blank and the atrioventricular counter is greater than the fixed
atrioventricular interval FixedAV. The last guard (grd3) states that the clock counter
sp is greater than or equal to the VRP and PVARP. The actions of this event show
that when all guards are true then the pacemaker’s actuator (PM_Actuator_V) of
ventricular sets ON and assigns a value of the clock counter sp into other variable
last_sp.

EVENT Actuator_OFF_V
WHEN

grd1 : PM_Actuator_V = ON
grd2 : (sp = Pace_Int)

∨
(sp < Pace_Int ∧ AV_Count > V _Blank ∧
AV_Count ≥ FixedAV)

grd3 : AV_Count_STATE = TRUE
grd4 : PM_Actuator_A = OFF
grd5 : PM_Sensor_A = OFF

THEN
act1 : PM_Actuator_V := OFF
act2 : AV_Count := 0
act3 : AV_Count_STATE := FALSE
act4 : PM_Sensor_V := OFF
act5 : sp := 1

END

First two guards of the event (Actuator_OFF_V) state that the pacemaker’s ac-
tuator (PM_Actuator_V) of ventricular is ON, and the clock counter (sp) is equal
to the pace interval (Pace_Int), or less than the pace interval (Pace_Int), the atri-
oventricular (AV) counter (AV_Count) is greater than the blanking period (V_Blank)
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and the atrioventricular (AV) counter is greater than or equal to the atrioventricu-
lar (AV) interval (FixedAV). Third guard (grd3) states that the atrioventricular (AV)
counter state (AV_Count_STATE) is TRUE, and the last two guards represent that
the pacemaker’s actuator and sensor (PM_Actuator_A, PM_Sensor_A) of atrial is
OFF. In action’s part, sets OFF state of the pacemaker’s actuator (PM_Actuator_V)
of ventricular, reassigns the value of variable (AV_count) as 0, sets FALSE state to
the AV counter state (AV_Count_STATE), sets OFF state to the pacemaker’s Sensor
(PM_Sensor_V) of the ventricular chamber and finally assigns the value of the clock
counter (sp) as 1.

EVENT Actuator_ON_A
WHEN

grd1 : PM_Sensor_V = ON
grd2 : sp ≥ Pace_Int − FixedAV ∧

sp ≥ VRP ∧ sp ≥ PVARP
grd3 : PM_Actuator_A = OFF
grd4 : PM_Sensor_A = ON

THEN
act1 : PM_Actuator_A := ON
act2 : PM_Sensor_V := OFF
act3 : PM_Sensor_A := OFF

END

A set of new events Actuator_ON_A and Actuator_OFF_A are introduced to
start and stop the pacemaker’s actuator in the atrial chamber. Actions (act1–act3) of
the event (Actuator_ON_A) state that the pacemaker’s actuator (PM_Actuator_A)
of the atria sets ON and the pacemaker’s sensors (PM_Sensor_V, PM_Sensor_A)
of the ventricular and atrial set OFF when all the guards satisfy. The first guard of
this event states that the pacemaker’s sensor (PM_Sensor_V) of ventricular is ON,
the next guard (grd2) states that the clock counter (sp) is greater than or equal to
the ventriculoatrial (VA) interval, VRP and PVARP, the third guard shows that the
pacemaker’s actuator (PM_Actuator_A) of atrial is OFF and last guard states that
the pacemaker’s sensor (PM_Sensor_A) of atrial is ON.

EVENT Actuator_OFF_A
WHEN

grd1 : PM_Actuator_A = ON
grd2 : sp ≥ Pace_Int − FixedAV ∧

sp ≥ VRP ∧ sp ≥ PVARP
grd3 : AV_Count_STATE = FALSE

THEN
act1 : PM_Actuator_A := OFF
act2 : AV_Count_STATE := TRUE

END

First two actions (act1,act2) of the event (Actuator_OFF_A) state that the pace-
maker’s actuator (PM_Actuator_A) of atria is OFF and the atrioventricular (AV)
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counter state (AV_Count_STATE) is TRUE. The guards (grd1,grd2) of this event
state that the acemaker’s actuator (PM_Actuator_A) of the atria is ON, the cur-
rent clock counter (sp) is greater than or equal to the ventriculoatrial (VA) interval,
VRP and PVARP. The last guard presents that the atrioventricular (AV) counter state
(AV_Count_STATE) is FALSE.

EVENT Sensor_ON_V
WHEN

grd1 : PM_Sensor_V = OFF
grd2 : (sp ≥ VRP ∧ sp < Pace_Int − FixedAV∧

PM_Sensor_A = ON)

∨
(sp ≥ Pace_Int − FixedAV ∧
AV_Count_STATE = TRUE)

grd3 : PM_Actuator_A = OFF
THEN

act1 : PM_Sensor_V := ON
END

The events (Sensor_ON_V and Sensor_OFF_V) are used to control the sensing
activities from the ventricular chamber. The pacemaker’s sensor (PM_Sensor_V)
of ventricular chamber synchronises ON and OFF states under the real-time con-
straints. The pacemaker’s sensor (PM_Sensor_V) of the ventricular is ON when all
guards are satisfied. The event (Sensor_OFF_V) is used to set the pacemaker’s sen-
sor (PM_Sensor_V) of the ventricular as OFF and resets all other variables in the
action part when all guards fulfil the required conditions. The guards represent the
different states of the pacemaker’s actuators and sensors under the real-time con-
straints with various time interval parameters (i.e. VRP, PVARP, Pace_Int, etc.).

EVENT Sensor_OFF_V
WHEN

grd1 : PM_Sensor_V = ON
grd2 : sp ≥ VRP ∧ sp ≥ PVARP
grd3 : (sp < Pace_Int − FixedAV)

∨
(sp ≥ Pace_Int − FixedAV ∧
sp < Pace_Int)

grd4 : PM_Actuator_V = OFF
grd5 : PM_Actuator_A = OFF

THEN
act1 : PM_Sensor_V := OFF
act2 : AV_Count := 0
act3 : AV_Count_STATE := FALSE
act4 : last_sp := sp
act5 : sp := 1
act6 : PM_Sensor_A := OFF

END
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The event (Sensor_OFF_V) is used to set the pacemaker’s sensor (PM_Sensor_V)
of ventricular in OFF state. The guards (grd1,grd2) of this event represent that the
pacemaker’s sensor (PM_Sensor_V) of ventricular is ON, and the clock counter (sp)

is greater than or equal to the VRP and PVARP. The next guard (grd3) represents
that the clock counter sp is less than the ventriculoatrial (VA) interval, or greater
than or equal to the ventriculoatrial (VA) interval and less than the pace interval
(Pace_Int). The last two guards (grd4,grd5) state that the pacemaker’s actuators
(PM_Actuator_V, PM_Actuator_A) of the ventricular and atrial are OFF. The ac-
tions (act1–act6) of this event state that the pacemaker’s sensor (PM_Sensor_V) of
ventricular is OFF, assigns the value of variable (AV_count) as 0, the atrioventricular
(AV) counter state (AV_Count_STATE) sets FALSE, assigns the value of the clock
counter (sp) to new variable (last_sp), assigns the value of the clock counter (sp) as
1 and sets OFF state of the pacemaker’s actuator (PM_Actuator_A) of atrial.

EVENT Sensor_ON_A
WHEN

grd1 : PM_Sensor_A = OFF
grd2 : sp < Pace_Int − FixedAV ∧

sp ≥ VRP ∧ sp ≥ PVARP
grd3 : PM_Sensor_V = OFF

THEN
act1 : PM_Sensor_A := ON

END

The events (Sensor_ON_A and Sensor_OFF_A) are used to control the sens-
ing activities of the atrial chamber. The pacemaker’s sensor (PM_Sensor_A) of the
atrial chamber synchronises ON and OFF states under the real time constraints.
A guard (grd1) of the event (Sensor_ON_A) represents that if the pacemaker’s sen-
sor (PM_Sensor_A) of atrial is OFF and the second guard (grd2) represents that the
clock counter (sp) is less than the ventriculoatrial (VA) interval and greater than or
equal to the VRP and PVARP. The last guard (grd3) represents that the pacemaker’s
sensor (PM_Sensor_V) of ventricular is OFF. If all guards are true, then in action
part of this event the pacemaker’s sensor (PM_Sensor_A) of atrial sets ON.

EVENT Sensor_OFF_A
WHEN

grd1 : PM_Sensor_A = ON
grd2 : sp < Pace_Int − FixedAV ∧

sp ≥ VRP ∧ sp ≥ PVARP
THEN

act1 : PM_Sensor_A := OFF
act2 : AV_Count_STATE := TRUE

END

The event (Sensor_OFF_A) is used to set the pacemaker’s sensor (PM_Sensor_A)
of atrial in OFF state. The guards of this event represent that the pacemaker’s sensor
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(PM_Sensor_A) of atrial is ON, and the clock counter (sp) is less than the ventricu-
loatrial (VA) interval and greater than or equal to the VRP and PVARP. In actions of
this event state that the pacemaker’s sensor (PM_Sensor_A) of atrial sets OFF and
the atrioventricular (AV) counter state (AV_Count_STATE) sets TRUE.

EVENT tic
WHEN

grd1 : (sp < VRP)

∨
(sp ≥ VRP ∧ sp < Pace_Int − FixedAV ∧
PM_Sensor_A = ON ∧ PM_Sensor_V = ON

THEN
act1 : sp := sp + 1

END

The event (tic) of this abstraction progressively increases the current clock
counter sp under the pre-defined pace interval (Pace_Int). This event controls the
time line of pacing and sensing events. A guard (grd1) of this event provides the re-
quired conditions to increase the clock counter sp by 1 (ms). The last event (tic_AV)
of this abstraction progressively counts the atrioventricular (AV) interval and in-
creases the current clock counter sp is represented by actions act1 and act2, respec-
tively.

EVENT tic_AV
WHEN

grd1 : AV_Count < FixedAV
grd2 : AV_Count_STATE = TRUE
grd3 : (sp ≥ VRP ∧ sp ≥ PVARP ∧

sp < Pace_Int − FixedAV)

∨
(sp ≥ Pace_Int − FixedAV ∧
sp < Pace_Int)

THEN
act1 : AV_Count := AV_Count + 1
act2 : sp := sp + 1

END

A new event Change_Pace_Int is introduced to update the current value of the
pace interval. This event is defined abstractly, which is used in further refinement
levels to modify the pace interval according to the introduction of different operating
modes like hysteresis and rate modulation. This event represents that when pace
changing flag (Pace_Int_flag) is TRUE then the pace interval (Pace_Int) can be
chosen from URI to LRI ranges.
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EVENT Change_Pace_Int
WHEN

grd1 : Pace_Int_flag = TRUE
THEN

act1 : Pace_Int :∈ URI .. LRI
END

Abstraction of DVI Mode

In DVI operating mode of the two-electrode pacemaker system, the first letter ‘D’
represents that the pacemaker paces both atrial and ventricle; second letter ‘V’ rep-
resents that the pacemaker only senses the ventricle and final letter ‘I’ represents
that the ventricular sensing inhibits atrial and ventricular pacing [22, 35].

In this subsection, we formalise the operating mode (DVI) of the two-electrode
pacemaker system. Variables, constants and some invariants (inv1, inv2 and inv4–
inv10) are similar to the previous operating mode; DDD. More invariants are intro-
duced in this operating mode (DVI) as the safety properties. Invariant (inv11) states
that, when the clock counter sp is less than VRP, then the pacemaker’s actuator
of both chambers and pacemaker’s sensor of ventricular are OFF. Next two invari-
ants (inv12 and inv13) state that, when the pacemaker’s actuator (PM_Actuator_A)
of atrial is ON, then the clock counter sp is greater than or equal to the ven-
triculoatrial (VA) interval Pace_Int-FixedAV and when the pacemaker’s actuator
(PM_Actuator_V) of ventricular is ON, then the clock counter sp is equal to the
pace interval Pace_Int, respectively.

inv11 : sp < VRP ⇒ PM_Actuator_A = OFF ∧
PM_Actuator_V = OFF ∧
PM_Sensor_V = OFF

inv12 : Pace_Int_flag = FALSE ∧ PM_Actuator_A = ON ⇒
sp ≥ Pace_Int − FixedAV

inv13 : Pace_Int_flag = FALSE ∧ PM_Actuator_V = ON ⇒ sp = Pace_Int

In the abstract specification of DVI operating mode, there are eight events Ac-
tuator_ON_A to start pacing in atrial, Actuator_OFF_A to stop pacing in atrial,
Actuator_ON_V to start pacing in ventricular, Actuator_OFF_V to stop pacing in
ventricular, Sensor_ON_V to start sensing in ventricular, Sensor_OFF_V to stop
sensing in ventricular, tic to increment the current clock counter sp under the real
time constraints and tic_AV to count the atrioventricular (AV) interval. All these
events are similar to the DDD operating modes, which are already described. The
guards of events are not exactly similar to the DDD operating modes. The guards
and actions are changed according to the requirements of the DVI operating mode.

Abstraction of DDI Mode

In DDI operating mode of the two-electrode pacemaker system, the first letter ‘D’
represents that the pacemaker paces both atrial and ventricle; second letter ‘D’ repre-
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sents that the pacemaker senses both atrial and ventricle and final letter ‘I’ represents
two conditional meaning that depends on atrial and ventricular sensing; first, atrial
sensing inhibits atrial pacing and does not trigger ventricular pacing and second,
ventricular sensing inhibits ventricular and atrial pacing [22, 35].

We formalise the operating mode DDI of the two-electrode pacemaker system.
Variables, constants and some invariants (inv1–inv10) are similar to the previous
operating mode; DDD. Invariant (inv11) states that, when the clock counter sp is
less than the VRP, and the atrioventricular (AV) counter state (AV_Count_STATE) is
TRUE, then the pacemaker’s actuators and sensors of both chambers are OFF. The
next invariant (inv12) represents that, when the pacemaker’s actuator of ventricular
is ON, then the clock counter sp is equal to the pace interval Pace_Int.

inv11 : sp < VRP ∧ AV_Count_STATE = FALSE ⇒
PM_Actuator_A = OFF ∧
PM_Actuator_V = OFF ∧
PM_Sensor_A = OFF ∧
PM_Sensor_V = OFF

inv12 : Pace_Int_flag = FALSE ∧ PM_Actuator_V = ON ⇒ sp = Pace_Int

In the abstract specification of the DDI operating mode, there are ten events ex-
actly similar to the DDD operating mode, which are already described. The guards
and actions of the events are changed according to the DDI operating mode require-
ments.

Abstraction of VDD Mode

In VDD operating mode of the two-electrode pacemaker system, the first letter ‘V’
represents that the pacemaker only paces ventricle; second letter ‘D’ represents that
the pacemaker senses both atrial and ventricle and final letter ‘D’ represents two
conditional meanings that depend on atrial and ventricular sensing; first, atrial sens-
ing triggers ventricular pacing and second, ventricular sensing inhibits ventricular
pacing [22, 35].

In this model, we formalise the functional behaviours of the pacemaker system
in VDD operating mode, where all variables, constants and invariants (inv2–inv10)
are similar to the previously described DDD operating mode. Here, a new invariant
(inv11) states that, when the clock counter sp is less than VRP and the atrioventricu-
lar (AV) counter state (AV_Count_STATE) is FALSE, then the pacemaker’s actuator
(PM_Actuator_V) of the ventricular is OFF, and the pacemaker’s sensors of both
chambers are OFF. Next invariant (inv12) represents that, when the pacemaker’s ac-
tuator (PM_Actuator_V) of ventricular is ON, then the clock counter sp is either
equal to the pace interval Pace_Int or the clock counter sp is less than the pace in-
terval Pace_Int and the atrioventricular (AV) counter (AV_Count) is greater than the
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blanking period (V_Blank), and greater than or equal to the fixed atrioventricular
(AV) period (FixedAV).

inv11 : sp < VRP ∧ AV_Count_STATE = FALSE ⇒
PM_Actuator_V = OFF ∧
PM_Sensor_A = OFF ∧
PM_Sensor_V = OFF

inv12 : Pace_Int_flag = FALSE ∧ PM_Actuator_V = ON ⇒
(sp = Pace_Int
∨
(sp < Pace_Int ∧
AV_Count > V _Blank ∧
AV_Count ≥ FixedAV))

In the abstract specification of VDD operating mode, there are eight events Ac-
tuator_ON_V to start pacing in ventricular, Actuator_OFF_V to stop pacing in ven-
tricular, Sensor_ON_V to start sensing in ventricular, Sensor_OFF_V to stop sens-
ing in ventricular, Sensor_ON_A to star sensing in atrial, Sensor_OFF_A to stop
sensing in atrial, tic to increment the current clock counter sp under the real time
constraints and tic_AV to count the atrioventricular (AV) interval. All these events
are similar to the DDD operating modes, which are already described.

Abstraction of DOO Mode

In DOO operating mode of the two-electrode pacemaker system, the first letter ‘D’
represents that the pacemaker paces both atrial and ventricle, second letter ‘O’ rep-
resents that the pacemaker does not sense the atrial and ventricular chambers and
final letter ‘O’ represents that there is no any inhibits or triggers modes in both
chambers [22, 35].

In this model, we formalise the functional behaviours of the pacemaker system
of DOO operating mode, where all variables, constants and invariants (inv1, inv2
and inv5–inv10) are similar to the previous operating mode; DDD. New invariant
(inv11) states that the pacemaker’s actuator of the atrial and ventricular chambers
are OFF, when the clock counter sp is less than the ventriculoatrial (VA) interval,
and the atrial state (Atria_state) is FALSE. The next invariant (inv12) states that
the pacemaker’s actuators of both chambers are OFF, when the clock counter sp
is greater than the atrioventricular (AV) interval, and the atrial state (Atria_state)
is TRUE. The last invariants (inv13 and inv14) state that, when the pacemaker’s
actuator of atrial is ON, then the clock counter sp is greater than or equal to the
ventriculoatrial (VA) interval (Pace_Int-FixedAV) and when the pacemaker’s actua-
tor of the ventricular is ON, then the clock counter sp is equal to the pace interval
Pace_Int, respectively.
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inv11 : Pace_Int_flag = FALSE ∧ sp < (Pace_Int − FixedAV) ∧
Atria_state = FALSE ⇒
PM_Actuator_V = OFF ∧
PM_Actuator_A = OFF

inv12 : Pace_Int_flag = FALSE ∧ sp > (Pace_Int − FixedAV) ∧
sp < Pace_Int ∧
Atria_state = TRUE ⇒
PM_Actuator_A = OFF ∧
PM_Actuator_V = OFF

inv13 : Pace_Int_flag = FALSE ∧ PM_Actuator_A = ON ⇒
sp = Pace_Int − FixedAV

inv14 : Pace_Int_flag = FALSE ∧ PM_Actuator_V = ON ⇒ sp = Pace_Int

In the abstract specification of DOO operating mode, there are five events
Pace_ON_A to start pacing in atrial, Pace_OFF_A to stop pacing in atrial,
Pace_ON_V to start pacing in ventricular, Pace_OFF_V to stop pacing in ventricu-
lar and tic to increment the current clock counter sp under the real time constraints.
These events are similar to the previously described events but guards, and actions
are changed according to the requirements of the DOO operating mode.

9.8.2 First Refinement: Threshold

The pacemaker control unit delivers stimulation to the heart chambers, on the basis
of measured threshold value under the safety margin. We define two new constants
STA_THR_A and STA_THR_V to hold the standard threshold value in axioms (axm1
and axm2). The threshold constants are different for the atrial and the ventricular
chambers.

axm1 : STA_THR_A ∈ nat1 ∧ STA_THR_A = 75
axm1 : STA_THR_V ∈ nat1 ∧ STA_THR_V = 250

The pacemaker’s sensor starts sensing after the refractory period but the pace-
maker’s actuator delivers a pacing stimulus, when sensing value is greater than or
equal to the standard threshold constants STA_THR_A or STA_THR_V. In the DOO
operating mode only the pacemaker’s actuators paces in the atrial and ventricular
chambers under the automatic pace interval without using any pacemaker’s sensors,
so in this mode none of the refinement is given related to the threshold. Table 9.2
shows a list of invariants common in this refinement of other operating modes. First
column shows the group of operating modes and second column shows correspond-
ing common invariants.
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First Refinement of DDD Mode

A pacemaker has a stimulation threshold measuring unit which measures a stimula-
tion threshold voltage value of heart and a pulse generator for delivering stimulation
pulses to the heart. The pulse generator is controlled by a control unit to deliver
the stimulation pulses with respective amplitudes related to the measured threshold
value under the safety margin. We introduce two new variables Thr_A and Thr_V
to hold the sensing threshold value of the pacemaker’s sensor from the atrial and
ventricular chambers. Similarly, next two variables Thr_A_State and Thr_V_State
represent boolean states as TRUE or FALSE of the pacemaker’s sensor to sense the
intrinsic activity from the atrial and ventricular chambers.

inv1 : Thr_A ∈ N1
inv2 : Thr_V ∈ N1
inv3 : Thr_A_State ∈ BOOL
inv4 : Thr_V _State ∈ BOOL
inv5 : Pace_Int_flag = FALSE ∧ PM_Actuator_A = ON ⇒

sp ≥ Pace_Int − FixedAV

Invariants are given in Table 9.2. An additional invariant (inv5) is introduced and
states that, when the pacemaker’s actuator of the atrial chamber is ON, then the
current clock counter sp is greater than or equal to the ventriculoatrial (VA) interval
(Pace_Int − FixedAV).

EVENT Thr_Value_V
ANY Thr_V _val
WHERE

grd1 : Thr_V _val ∈ N

grd2 : PM_Sensor_V = ON
grd3 : Thr_V _State = TRUE
grd4 : Thr_V < STA_THR_V

grd5 : (sp ≥ VRP ∧ sp < Pace_Int − FixedAV)

∨
(sp ≥ Pace_Int − FixedAV ∧ sp < Pace_Int)

grd6 : (Thr_A_State = FALSE∧
Thr_A < STA_THR_A)

∨
(PM_Sensor_A = OFF∧
AV_Count < FixedAV)

THEN
act1 : Thr_V := Thr_V _val
act2 : Thr_V _State := FALSE

END

In this refinement, we introduce two new events (Thr_Value_V and Thr_Value_A)
for sensing the intrinsic activities from the ventricular and atrial chambers. These
events are synchronised with all other events of the operating mode under all the
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Table 9.2 Common invariants list

Modes Common invariants

DDD 1. Pace_Int_flag = FALSE ∧ sp > Pace_Int − FixedAV ∧
sp < Pace_Int ∧ AV_Count_STATE = TRUE ⇒
PM_Sensor_V = ON

VDD

DDI

DVI

DDD 2. Pace_Int_flag = FALSE ∧ sp > VRP ∧
sp < Pace_Int − FixedAV ⇒ PM_Sensor_V = ONDVI

DDD 3. Pace_Int_flag = FALSE ∧ PM_Actuator_V = ON ⇒
(sp = Pace_Int) ∨ (sp < Pace_Int ∧ AV_Count > V _Blank ∧
AV_Count ≥ FixedAV)

4. Pace_Int_flag = FALSE ∧ sp > Pace_Int − FixedAV ∧
sp < Pace_Int ∧ AV_Count_STATE = TRUE ⇒
PM_Sensor_A = OFF

VDD

DDD 5. Pace_Int_flag = FALSE ∧ sp > Pace_Int − FixedAV ∧
sp < Pace_Int ∧ AV_Count_STATE = TRUE ⇒
PM_Actuator_A = OFF

DVI

DDI

DVI 6. Pace_Int_flag = FALSE ∧ sp > Pace_Int − FixedAV ∧
sp < Pace_Int ∧ AV_Count_STATE = TRUE ⇒
PM_Actuator_V = OFF

DDI

safety properties and real time constraints. The guards of the event (Thr_Value_V)
are introduced as to fulfil all the requirements of the sensing intrinsic activities from
the ventricular chamber and actions (act1–act2) of this event state that the actual
sensed value from a chamber is assigned to the variable Thr_V and sets FALSE
state of the variable threshold ventricular state (Thr_V_State), respectively.

EVENT Thr_Value_A
ANY Thr_A_val
WHERE

grd1 : Thr_A_val ∈ N

grd2 : PM_Sensor_A = ON
grd3 : Thr_A_State = TRUE
grd4 : Thr_A < STA_THR_A

grd5 : (sp ≥ VRP ∧ sp < Pace_Int − FixedAV)

THEN
act1 : Thr_A := Thr_A_val
act2 : Thr_A_State := FALSE

END

In the event Thr_Value_A, the guards (grd2–grd4) state that the pacemaker’s
sensor (PM_Sensor_A) of atrial chamber is ON; the threshold state (Thr_A_State)
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of atrial chamber is TRUE and the sensed value (Thr_A) from the atrial chamber is
less than the standard threshold (STA_THR_A) of atrial chamber. The last guard of
this event states that the clock counter sp is greater than or equal to the VRP and
less than the ventriculoatrial (VA) interval. Actions (act1–act2) of this event state
that the actual sensed value (Thr_A_val) of atrial chamber is assigned to a variable
(Thr_A) and sets FALSE state of a variable threshold atrial state (Thr_A_State).

EVENT Actuator_OFF_V
⊕ act6 : Thr_A := 0
⊕ act7 : Thr_V := 0
⊕ act8 : Thr_A_State := FALSE
⊕ act9 : Thr_V _State := FALSE

EVENT Sensor_ON_A
⊕ act2 : Thr_A_State := TRUE

EVENT Sensor_OFF_A
⊕ grd3 : Thr_A ≥ STA_THR_A

EVENT Sensor_OFF_V
⊕ grd6 : Thr_V ≥ STA_THR_V

⊕ act7 : Thr_A := 0
⊕ act8 : Thr_V := 0
⊕ act9 : Thr_A_State := FALSE
⊕ act10 : Thr_V _State := FALSE

We have introduced some new actions and guards in events (Actuator_OFF_V,
Sensor_ON_A, Sensor_OFF_A, and Sensor_OFF_V) to synchronise the sensing
activities using events (Thr_Value_V and Thr_Value_A) under the real time con-
straints. These events are already defined in the abstract model.4

EVENT tic
WHEN

grd1 : (sp < VRP ∧ AV_Count_STATE = FALSE
∨
(sp ≥ VRP ∧ sp < Pace_Int − FixedAV∧
PM_Sensor_V = ON∧
PM_Sensor_A = ON∧
Thr_V _State = FALSE∧
Thr_V < STA_THR_V ))

grd2 : AV_Count_STATE = FALSE
THEN

⊕ act2 : Thr_A_State := TRUE
⊕ act3 : Thr_V _State := TRUE

END

4⊕: To add a new guard and an action in the model. �: To remove a new guard and an action in
the model.
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The event (tic) of this refinement model progressively increases the current clock
counter sp. We have strengthened the guard of this event to properly synchronise
with new introduced threshold events, and the pacing and sensing activities of both
chambers. Some new actions (act2 and act3) are added in this event. The addi-
tional guards and actions handle the behaviour of the events (Thr_Value_A and
Thr_Value_V) to sense the intrinsic activities from the atrial and ventricular cham-
bers.

EVENT tic_AV
WHEN

⊕ grd4 : PM_Sensor_V = ON
⊕ grd5 : Thr_V _State = FALSE
⊕ grd6 : Thr_V < STA_THR_V

⊕ grd7 : PM_Actuator_V = OFF
⊕ grd8 : PM_Sensor_A = OFF
⊕ grd9 : PM_Actuator_A = OFF

THEN
⊕ act3 : Thr_V _State := TRUE

END

We have introduced some new guards (grd4–grd9) and an action (act3) in the
event (tic_AV) of this refinement. New guards provide more specific conditions and
some specific states of the pacemaker’s actuators and sensors to count the atrioven-
tricular (AV) interval. An extra action (act3) sets TRUE state of the variable thresh-
old state of ventricular (Thr_V_State).

First Refinement of DVI Mode

In this refinement, we introduce two new variables Thr_V and Thr_V_State to hold
the sensing threshold value as similar to the DDD operating mode. We introduce
few more invariants except some defined common invariants (see Table 9.2).

inv1 : Pace_Int_flag = FALSE ∧ PM_Actuator_V = ON ⇒ sp = Pace_Int
inv2 : Pace_Int_flag = FALSE ∧ sp > VRP ∧ sp < Pace_Inta∧

Thr_V ≥ STA_THR_V ∧
Thr_V _State = TRUE ⇒
PM_Sensor_V = OFF

inv3 : Pace_Int_flag = FALSE ∧ PM_Actuator_A = ON ⇒
sp ≥ Pace_Int − FixedAV ∧ sp ≥ VRP ∧ sp < Pace_Int

The first invariant (inv1) states that when the pacemaker’s actuator (PM_Actu-
ator_V) of ventricular is ON, then the current clock counter sp is equal to the pace
interval Pace_Int. Second invariant (inv2) represents that the pacemaker’s sensor
(PM_Sensor_V) of ventricular is OFF, when the clock counter sp is greater than
the VRP, less than the pace interval (Pace_Int), the sensed value (Thr_V) is greater
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than or equal to the standard threshold (STA_THR_V) value of ventricular chamber
and the threshold ventricular state (Thr_V_State) is TRUE. The last invariant (inv3)
states that, when the pacemaker’s actuator of atrial chambers is ON, then the current
clock counter sp is within the ventriculoatrial (VA) interval (Pace_Int − FixedAV)
and greater than or equal to the VRP and less than the pace interval Pace_Int.

In this refinement, we introduce a new event (Thr_Value_V) for sensing the in-
trinsic activities of the ventricular chamber, and it is similar to the first refinement
of DDD operating mode. This event is synchronised with all other events of this
operating mode under all the safety properties and real time constraints. The other
events tic and tic_AV are also modified in this refinement to synchronise sensors and
actuators behaviour.

First Refinement of DDI Mode

We introduce some new variables (Thr_A, Thr_V, Thr_A_State and Thr_V_State) as
similar to the refinement of the DDD operating modes. In this refinement, we intro-
duce some new invariants except some defined common invariants (see Table 9.2).

inv1 : Pace_Int_flag = FALSE ∧ PM_Actuator_V = ON ⇒ sp = Pace_Int
inv2 : Pace_Int_flag = FALSE ∧ sp > VRP ∧ sp < Pace_Int − FixedAV ⇒

PM_Actuator_A = OFF
inv3 : Pace_Int_flag = FALSE ∧ PM_Actuator_A = ON ⇒

sp = Pace_Int − FixedAV

The first invariant states that when the pacemaker’s actuator (PM_Actuator_V)
of ventricular is ON, then the clock counter sp is equal to the pace interval Pace_Int.
The next invariant (inv2) states that the pacemaker’s actuator (PM_Actuator_A) of
atrial is OFF, when the current clock counter sp is greater than the VRP and less
than the ventriculoatrial (VA) interval. The last invariant states that, when the pace-
maker’s actuator of atrial chamber is ON, then the current clock counter sp is equal
to ventriculoatrial (VA) interval (Pace_Int − FixedAV).

In this refinement, we introduce two new events (Thr_Value_V and Thr_Value_A)
for sensing the intrinsic activities from the ventricular and atrial chambers that are
similar to the first refinement of DDD operating mode. These events are synchro-
nised with all other events of this operating mode under all the safety properties and
real time constraints. Other events are also modified in this refinement to synchro-
nise the sensors and actuators behaviour as similar to the DDD operating mode.

First Refinement of VDD Mode

We introduce four new variables (Thr_A, Thr_V, Thr_A_State and Thr_V_State) as
similar to the refinement of the DDD operating mode. In this refinement, we in-
troduce an extra invariant except some defined common invariants (see Table 9.2).
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Invariant (inv1) states that the pacemaker’s sensor (PM_Sensor_A) of atrial is ON,
when the clock counter sp is greater than the VRP and less than the pace inter-
val (Pace_Int) and the atrioventricular (AV) counter state (AV_Count_STATE) is
FALSE.

inv1 : Pace_Int_flag = FALSE ∧ sp > VRP ∧ sp < Pace_Int∧
AV_Count_STATE = FALSE⇒
PM_Sensor_A = ON

In this refinement, we introduce two new events (Thr_Value_V and Thr_Value_A)
as similar to the DDD operating mode. These events are synchronised with all other
events of this operating mode under all the safety properties and real time con-
straints. Some guards and actions are added in the old events as defined in the DDD
operating mode.

9.8.3 Second Refinement of DDD Mode: Hysteresis

In the two electrode pacemaker, hysteresis mode is applicable only in the DDD op-
erating mode. Hysteresis is a programmed feature whereby the pacemaker paces at
a faster rate than the sensing rate. For example, pacing at 80 pulses a minute with a
hysteresis rate of 55 means that the pacemaker will be inhibited at all rates down to
55 beats per minute, having been activated at a rate below 55, the pacemaker then
switches on and paces at 80 pulses a minute [22, 39]. The application of the hystere-
sis interval provides consistent pacing of the atrial or ventricle, or prevents constant
pacing of the atrial or ventricle. The main purpose of hysteresis is to allow a patient
to have his or her own underlying rhythm as much as possible. Two new variables
(Hyt_Pace_Int_flag, HYT_State) are introduced to define functional properties of the
hysteresis operating modes. Both variables are defined as a boolean type. The hys-
teresis state HYT_State is used to set the hysteresis functional parameter as TRUE
or FALSE, to apply the hysteresis operating modes.

inv1 : Hyt_Pace_Int_flag ∈ BOOL
inv2 : HYT_State ∈ BOOL

A new event Hyt_Pace_Updating is introduced to implement the functional
properties of the hysteresis operating modes, which is a refinement of the event
Change_Pace_Int. In the hysteresis operating modes, the pacemaker is trying to
maintain own heart rhythm as much as possible. Hence, this event can change
the pacing interval and sets pacing length longer than existing, which changes the
pacing length of the cardiac pacemaker. This event is only used for updating the
pacing interval (Pace_Int). Guards of this event state that the pace changing flag
(Pace_Int_flag) is TRUE, the hysteresis pacing flag (Hyt_Pace_Int_flag) is TRUE
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and the hysteresis pace interval (Hyt_Pace_Int) should be lied between the pace in-
terval (Pace_Int) and lower rate interval (LRI). The actions of this event state that
a new hysteresis pace interval (Hyt_Pace_Int) updates the pace interval Pace_Int,
the hysteresis pacing flag (Hyt_Pace_Int_flag) sets FALSE and hysteresis state
(HYT_State) sets TRUE.

EVENT Hyt_Pace_Updating Refines Change_Pace_Int
ANY

Hyt_Pace_Int
WHERE

grd1 : Pace_Int_flag = TRUE
grd2 : Hyt_Pace_Int_flag = TRUE
grd3 : Hyt_Pace_Int ∈ Pace_Int .. LRI

THEN
act1 : Pace_Int := Hyt_Pace_Int
act2 : Hyt_Pace_Int_flag := FALSE
act3 : HYT_State := TRUE

END

9.8.4 Third Refinement: Rate Modulation

Rate modulation is the final refinement of the two-electrode pacemaker. Rate mod-
ulation refers to the ability of the pacemaker to increase the rate of pacing on its
own. The manner that the pacemaker does this is by having its own special sensor’s
measure such as things as vibration or minute ventilation (volume of air moved in
1 minute’s time). The pacemaker uses these measurements as a determination of at
least how fast heart rate should be. This rate is termed the “sensor indicated rate.”

Rate modulation is typically used when a patient’s heart does not appropriately
increase its own rate with exertion or stress. This intrinsic inability to increase heart
rate is called “chronotropic incompetence.” Use of rate modulation also demands to
set an upper limit on how fast the heart may be paced.

This refinement is similar to the one-electrode pacemaker and pacing rate con-
trol both chambers according to the required physiologic need. Here, we intro-
duce the rate modulation function and found some new operating modes (DDDR,
DVIR, AAIR, DDIR, VDDR and DOOR) of the two-electrode pacemaker system.
For modelling the rate modulation, we introduce some new constants maximum
sensor rate MSR as MSR ∈ 50 .. 175 and acc_thr as acc_thr ∈ N1 using axioms
(axm1,axm2). The maximum sensor rate (MSR) is the maximum pacing rate al-
lowed as a result of sensor control, and it must be between 50 and 175 pulse per
minute (ppm). The constant acc_thr represents the activity threshold. Axiom (axm3)
represents a static property for the rate modulation operating modes.
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axm1 : MSR ∈ 50 .. 175
axm2 : acc_thr ∈ N1
axm3 : MSR = URL

Two new variables acler_sensed and acler_sensed_flag are defined as to store
the measured value from the accelerometer and boolean stats of the accelerometer
sensor. Boolean state of the accelerometer sensor is used to synchronise with other
functionalities of the system. The accelerometer is used to measure the physical
activities of the body in the pacemaker system. Two invariants (inv3, inv4) provide
the safety margin and state that the heart rate never falls below the lower rate limit
(LRL) and never exceeds the maximum sensor rate (MSR) limit.

inv1 : acler_sensed ∈ N

inv2 : acler_sensed_flag ∈ BOOL
inv3 : HYT_State = FALSE ∧ acler_sensed < acc_thr∧

acler_sensed_flag = TRUE ⇒ Pace_Int = 60000/LRL
inv4 : HYT_State = FALSE ∧ acler_sensed =≥ acc_thr∧

acler_sensed_flag = TRUE ⇒ Pace_Int = 60000/MSR

In this final refinement, we introduce two new events Increase_Interval and De-
crease_Interval, which are the refinements of the event Change_Pace_Int. These
new events are used to control the pacing rate of the one-electrode pacemaker in
the rate modulating operating modes. The new events Increase_Interval and De-
crease_Interval control the value of the pace interval variable Pace_Int, whenever a
measured value (acler_sensed) from the accelerometer sensor goes higher or lower
than the activity threshold acc_thr.

EVENT Increase_Interval Refines Change_Pace_Int
WHEN

grd1 : Pace_Int_flag = TRUE
grd1 : acler_sensed ≥ threshold
grd1 : HYT_State = FALSE

THEN
act1 : Pace_Int := 60000/MSR
act1 : acler_sensed_flag := TRUE

END

EVENT Decrease_Interval Refines Change_Pace_Int
WHEN

grd1 : Pace_Int_flag = TRUE
grd1 : acler_sensed < threshold
grd1 : HYT_State = FALSE

THEN
act1 : Pace_Int := 60000/LRL
act1 : acler_sensed_flag := TRUE

END
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A new event (Acler_sensed) is defined as to simulate the behaviour of the ac-
celerometer sensor. This event is continued sensing the motion of the body to in-
crease or decrease the length of the pace interval (Pace_Int). In this event, the guards
state that the accelerometer sensor flag is TRUE and the hysteresis state is FALSE.
A new variable acl_sen is used to store the current sensing value. The actions of
this event state that the local variable acl_sen updates the accelerometer sensor
(acler_sensed) and the accelerometer sensor flag (acler_sensed_flag) sets FALSE.

EVENT Acler_sensed
ANY

acl_sen
WHERE

grd1 : acl_sen ∈ N

grd1 : acler_sensed_flag = TRUE
grd1 : HYT_State = FALSE

THEN
act1 : acler_sensed := acl_sen
act1 : acler_sensed_flag := FALSE

END

Finally, we have completed the formal specifications of the one- and two-
electrode cardiac pacemaker. The next section describes the validation of the formal
model using ProB animator.

9.9 Model Validation and Analysis

There are two main validation activities in Event-B, and both are complementary
for designing a consistent system:

• Consistency checking, which is used to show that the events of a machine preserve
the invariant, and refinement checking, which is used to show that one machine is
a valid refinement of another. A list of automatically generated proof obligations
should be discharged by the proof tool of the Rodin platform.

• Model analysis, which is done by the ProB tool and consists in exploring traces or
scenarios of our consistent Event-B models. For instance, the ProB may discover
possible deadlocks or hidden properties that are not expressed by generated proof
obligations.

This section conveys the validity of the model by using ProB tool [36] and Proof
Statistics. “Validation” refers to the activity of gaining confidence that the devel-
oped formal models are consistent with the requirements, which expressed in the
requirements document [7]. We have used the ProB tool [36] that supports au-
tomated consistency checking of Event-B machines via model checking [10] and
constraint-based checking [28]. Animation using ProB worked very well, and we
have then used ProB to validate the Event-B machine. This tool assists us to find
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Table 9.3 Proof statistics

Model Total number of POs Automatic proof Interactive proof

One-electrode pacemaker

Abstract model 203 199 (98 %) 4 (2 %)

First refinement 48 44 (91 %) 4 (9 %)

Second refinement 12 8 (66 %) 4 (34 %)

Third refinement 105 99 (94 %) 6 (6 %)

Two-electrode pacemaker

Abstract model 204 195 (95 %) 9 (5 %)

First refinement 234 223 (95 %) 11 (5 %)

Second refinement 3 3 (100 %) 0 (0 %)

Third refinement 83 74 (89 %) 9 (11 %)

Total 892 845 (94 %) 47 (6 %)

potential problems, to improve invariant’s expressions in our Event-B models, for
instance, by generating counter-examples when it discovers an invariant violation.
ProB may help in improving invariant expression by suggesting hints for strength-
ening the invariant and each time an invariant is modified; new proof obligations are
generated by the Rodin platform. It is the complementary use of both techniques to
develop formal models of critical systems, where high safety and security are re-
quired. More errors are corrected during the elaboration of the specifications while
discharging the proof obligations and careful cross-reading than during the anima-
tions. We have validated all operating modes of the pacemaker in each refinement
of models. The pacemaker specification is developed and formally proved by the
Rodin tool.

ProB was very useful in the development of the pacemaker specification, and was
able to animate all of our models and able to prove the absence of error (no counter
example exist). The ProB model checker also discovered several invariant viola-
tions, e.g., related to incorrect responses or unordered pacing and sensing activities.
It was also able to discover a deadlock in two of the models, which was due to the
fact that “clock counter” were not properly recycled, meaning that after a while no
pacing or sensing activities occur into the system. Such kind of errors would have
been more difficult to uncover with the prover of Rodin tool.

Table 9.3 is expressing proof statistics for the formal development of the pace-
maker using the Rodin platform. These statistics measure the size of the model, the
proof obligations generated and discharged by the Rodin prover, and those are in-
teractively proved. The complete development of the pacemaker system results in
892 (100 %) proof obligations, in which 845 (94 %) are proved automatically by the
Rodin tool. The remaining 47 (6 %) proof obligations are proved interactively using
the Rodin tool. In the Event-B models, many proof obligations are generated due to
the introduction of new functional behaviours and their parameters (threshold, hys-
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teresis and rate modulation) under the real-time constraints. In order to guarantee the
correctness of these functional behaviours, we have established various invariants in
the stepwise refinements. As it can be seen, the abstract model in one electrode re-
quired by far the largest number of proofs: it is due to the large number of invariants
(57), together with the number of events (26) which shows a size of the model. Sim-
ilarly, large numbers of proofs are in the abstract model and the first refinement of
two electrodes, where a large number of invariants (36 (abstract), 30 (refinement 1)),
together with the number of events (41 (abstract), 43 (refinement 1)). It should be
noted that the manual proofs were not difficult. Proofs are quite simple, and have
been achieved with the help of do case operation. Guards of some events are very
complex, so for proving invariants and theorems; we simplify guards using do case.
The stepwise refinement of the pacemaker system helps to achieve a high degree of
automatic proofs.

9.10 Closed-Loop Model of Heart and Cardiac Pacemaker

A detailed description of the heart model based on electrocardiography analy-
sis [5, 21, 33] and cellular automata is given in Chap. 8. The heart model is based
on logico-mathematical theory. The logico-mathematical based heart model is de-
veloped using refinement approach in Event-B modelling language [1, 56]. In this
investigation, we present a methodology for modelling a heart model, to extract a
set of biological nodes (i.e. SA node, AV node, etc.), impulse propagation speed
between nodes, impulse propagation time between nodes and cellular automata for
propagating impulses at the cellular level. A main key feature of this heart model
is a representation of all the possible morphological states of the electrocardiogram
(ECG) [2, 5]. The morphological states represent the normal and abnormal states of
the electrocardiogram (ECG). The morphological representation generates any kind
of heart model (patients model or normal heart model using ECG). This model can
observe a failure of the impulse generation and a failure of the impulse propagation.
This model is also verified through electro-physiologist and cardiac experts.

Formal specification of the cardiac pacemaker is expressed in this chapter. But
this cardiac pacemaker is modelled without any biological environment like the
heart system. This section describes a closed-loop formal model of a cardiac pace-
maker and the heart system, where the cardiac pacemaker responses according to the
functional behaviour of the heart [49, 50, 52]. The main objective of this model is
to verify the complex properties of the cardiac pacemaker under the virtual environ-
ment. Figure 9.9 represents a block diagram of the cardiac pacemaker and the heart
system, where the cardiac pacemaker responses when it senses intrinsic activities
from the heart. In this system specification, the heart model simulates the functional
behaviour of the normal and abnormal heart. The heart model activities are always
monitored by the cardiac pacemaker and it responses according to the user needs.

This section presents a closed-loop model of the cardiac pacemaker, where the
heart is used as an environment. For developing this closed-loop model [50], we
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Fig. 9.9 Closed-loop model

borrow formal specifications from the previously developed and verified formal
models of the cardiac pacemaker [48] and heart system [52]. However, to develop
the closed-loop model, we have done substantial changes in the existing models to
specify the desired behaviour of the system. Moreover, we develop the whole sys-
tem from the scratch using progressive refinement. Each refinement level introduces
both cardiac pacemaker and heart system behaviours. To check the correctness of
the closed-loop system we have introduced many safety properties using invariants,
and discharged all the generated proof obligations at each refinement level.

The closed-loop model of the cardiac pacemaker is also based on action-reaction
and time patterns. We apply the action-reaction and time patterns in modelling to
synchronise the sensing and pacing stimulus functions of the pacemaker system in
a continuous progressive time constraint. We present here only summary informa-
tions about each refinement of one- and two-electrode pacemakers and omit detailed
formalisation and proof details. The following outline is given about every refine-
ment level to understand the basic formalism structure of the closed-loop model of
the cardiac pacemaker. We have combined the model of the heart and the cardiac
pacemaker to formalise the closed-loop model. To know more about detailed for-
malism see individual model of the heart system and the cardiac pacemaker. We
have described here only summary informations about each refinement in form of
very basic description of the heart modelling and the cardiac pacemaker modelling
incremental refinement-based approach and omit detailed formalisation of events
and proof details due to repetition of the formalism. To find more detailed informa-
tion about developed formal model of the cardiac pacemaker and the heart model,
see the published papers and research reports [40, 43, 48, 49].

9.10.1 The Context and Initial Model

To formalise the heart behaviour, we capture the electrical features. We identify a
set of landmark nodes from the conduction network (see Fig. 9.10(a)) of the heart.
These landmark nodes are also known as the electrical impulse propagation nodes
ConductionNode, which enable expression of the normal and abnormal behaviours
of the heart system. We find the direct connections among the impulse propagation
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Fig. 9.10 The electrical conduction and landmarks of the heart system

nodes, which constitute the impulse propagation path. The impulse propagation time
and impulse propagation velocity for each pair of nodes vary due to different types
of muscles in the heart. To formalise the heart system, we define three constants im-
pulse propagation time ConductionTime, impulse propagation path ConductionPath
and impulse propagation velocity ConductionSpeed. All these constants are initial
components, which are defined through a set of axioms (axm1–axm4).

To formalise the cardiac pacemaker, we define a set of constants (LRL, URL,
ARP, VRP, PVARP, etc.), which expresses timing intervals. These timing intervals
are used as a set of configuration parameters. To model boolean behaviour of the
sensor and actuator, we define an enumerated set status. A set of axioms for the
cardiac pacemaker is defined in axm5 and axm6. All these constants and axioms
have been extracted from the technical specification [7], which are validated by the
cardiologist and the physiologist.

axm1 : partition(ConductionNode, {A}, {B}, {C}, {D}, {E}, {F }, {G}, {H })
axm2 : ConductionTime ∈ ConductionNode → P(0 .. 230)

axm3 : ConductionPath ⊆ ConductionNode × ConductionNode
axm4 : ConductionSpeed ∈ ConductionPath → P(5 .. 400)

axm5 : LRL ∈ 30 .. 175 ∧ URL ∈ 50 .. 175 ∧ PVARP ∈ 150 .. 500
axm6 : ARP ∈ 150 .. 500 ∧ VRP ∈ 150 .. 500 ∧ status = {ON,OFF}

To define an abstract model of the closed-loop system, we develop the combined
model of the cardiac pacemaker and heart, where the cardiac pacemaker acts accord-
ing to the heart behaviour. The environment model of the heart behaves according
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to observations of the impulse propagation in the conduction nodes. We define a set
of variables to model the heart and pacemaker models, where four variables (Con-
ductionNodeState, CConductionTime, CConductionSpeed and HeartState) are used
to model the heart behaviour, and six variables (PM_Actuator_A, PM_Actuator_V ,
PM_Sensor_A, PM_Sensor_V , Pace_Int and sp) are used to express the cardiac
pacemaker behaviour. All these variables are defined using a set of invariants (inv1–
inv7). The cardiac pacemaker variables are introduced for modelling actuators, sen-
sors and timing intervals. A group of invariants (inv8, inv9 and inv10) presents safety
properties. The invariant inv8 states that, when the clock counter sp is less than the
VRP and the atrioventricular (AV) counter state AV_Count_State is FALSE, then
the pacemaker’s actuators and sensors of both chambers are OFF. Similarly, the
next invariants (inv9 and inv10) represent required properties of ON state of the
pacemaker’s actuators in both chambers.

inv1 : ConductionNodeState ∈ ConductionNode → BOOL
inv2 : CConductionTime ∈ ConductionNode → 0 .. 300
inv3 : CConductionSpeed ∈ ConductionPath → 0 .. 500
inv4 : HeartState ∈ BOOL
inv5 : PM_Actuator_A ∈ status ∧ PM_Actuator_V ∈ status
inv6 : PM_Sensor_A ∈ status ∧ PM_Sensor_V ∈ status
inv7 : Pace_Int ∈ URI .. LRI ∧ sp ∈ 1 .. Pace_Int
inv8 : sp < VRP ∧ AV_Count_STATE = FALSE ⇒

PM_Actuator_V = OFF ∧ PM_Sensor_A = OFF∧
PM_Sensor_V = OFF ∧ PM_Actuator_A = OFF

inv9 : PM_Actuator_V = ON ⇒ sp = Pace_Int ∨ (sp < Pace_Int∧
AV_Count > V _Blank ∧ AV_Count ≥ FixedAV)

inv10 : PM_Actuator_A = ON ⇒ (sp ≥ Pace_Int − FixedAV)

The abstract specification of the closed-loop model contains several events re-
lated to the cardiac pacemaker and heart system. There are many events, namely
HeartOK to represent a normal state of the heart, HeartKO to express an abnormal
state of the heart, HeartConduction to trace the current updated value of each land-
mark node in the conduction network, Actuator_ON_V, Actuator_OFF_V, Actua-
tor_ON_A and Actuator_OFF_A to represent ON and OFF states of pacemaker’s
actuators for both chambers, Sensor_ON_A, Sensor_OFF_A, Sensor_ON_V, and
Sensor_OFF_V to represent ON and OFF states of pacemaker’s sensors for both
chambers, and tic to represent the clock counter.

The event HeartOK expresses desired behaviour of the normal heart, where a set
of guards formulates the required conditions. The first guard (grd1) states that all
the landmark nodes must be visited for one cycle during impulse propagation using
conduction network. The second guard specifies that the current impulse propaga-
tion time for each landmark node should be lie in the pre-specified ranges (Chap. 8,
Property 1). Similarly, the last guard states that the current impulse propagation ve-
locity of each path should lie between pre-defined impulse propagation velocities
(Chap. 8, Property 2). The action predicate (act1) denotes the normal state of the
heart, when all these set of guards are satisfied.
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EVENT HeartOK
WHEN

grd1 : ∀i · i ∈ ConductionNode ⇒ ConductionNodeState(i) = TRUE
grd2 : ∀i · i ∈ ConductionNode ⇒

CConductionTime(i) ∈ ConductionTime(i)
grd3 : ∀i, j · i �→ j ∈ ConductionPath ⇒

CConductionSpeed(i �→ j) ∈ ConductionSpeed(i �→ j)

THEN
act1 : HeartState := TRUE

END

In the two electrode pacemaker, we use two sensors and two actuators for cap-
turing the required behaviour of the cardiac pacemaker. In this section, we consider
to show only actuator and sensor events of the ventricle chamber. Moreover, other
events related to the sensor and actuator of the atrial chamber are same. The events
Actuator_ON_V and Sensor_ON_V excerpt from the abstract model to describe
ON state of the actuator and sensor of the cardiac pacemaker. A set of guards of
both events enables to set ON state of both actuator and sensor, which allows to
pace and sense in the ventricular chamber under the desired conditions using real-
time constraints.

EVENT Actuator_ON_V
WHEN

grd1 : PM_Actuator_V = OFF
grd2 : (sp = Pace_Int)∨

(sp < Pace_Int∧
AV_Count > V _Blank ∧
AV_Count ≥ FixedAV)

grd3 : sp ≥ VRP ∧ sp ≥ PVARP
∧sp ≥ URI

THEN
act1 : PM_Actuator_V := ON
act2 : last_sp := sp

END

EVENT Sensor_ON_V
WHEN

grd1 : PM_Sensor_V = OFF
grd2 : (sp ≥ VRP ∧ sp < Pace_Int − FixedAV∧

PM_Sensor_A = ON)

∨
(sp ≥ Pace_Int − FixedAV ∧
AV_Count_STATE = TRUE)

grd3 : PM_Actuator_A = OFF
THEN

act1 : PM_Sensor_V := ON
END
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In our previous models of the cardiac pacemaker and the heart system, we use
the tic event to model a clock, separately. However, in the closed-loop model, we
use a single event tic to specify a common clock for both cardiac pacemaker and
heart environment models. The event (tic) models the clock behaviour, where time
is progressively increased using the current clock counter sp. This event controls
the time line of pacing and sensing events. A guard (grd1) of this event provides the
required conditions to increase the clock counter sp by 1 (ms).

EVENT tic
WHEN

grd1 : (sp < VRP)

∨
(sp ≥ VRP ∧ sp < Pace_Int − FixedAV ∧
PM_Sensor_A = ON ∧ PM_Sensor_V = ON

THEN
act1 : sp := sp + 1

END

9.10.2 Chain of Refinements

So far, we have described our abstract model of the closed-loop model [50]. Each
refinement level is used to introduce a new set of functional properties for modelling
normal and abnormal behaviours of the heart and pacemaker. Rather than presenting
the chain of refinement stages in great detail, we will just give an overview of the
remaining refinement stages, sufficient to explain the rationale of each refinement
stage in formalising the system.

Refinement 1: Introducing threshold in cardiac pacemaker and impulse propaga-
tion in the heart system. This refinement step is known as a conduction model, which
introduces the impulse propagation in the conduction network of the heart. The im-
pulse propagation originates from the SA node and pass through all the landmark
nodes and reached at the Purkinje fibres of the ventricles. Formalising the conduc-
tion model, we introduce a set of events, which supports piecewise development of
the impulse propagation. The electrical impulse passes through several intermediate
landmark nodes and finally sink to the terminal nodes (C, G, H). The conduction
model uses the clock counter to model the real-time system to satisfy the required
temporal properties for the impulse propagation. A set of new events simulates the
desired behaviour of the impulse propagation into the heart conduction network,
where each new refined event formalises impulse flow between two landmark nodes;
for instance, the electrical impulse moves from SA node (A) to AV node (B).

In the refinement of the closed-loop system, the cardiac pacemaker development
introduces sensors behaviour for both atrial and ventricular chambers, which models
to capture the sensing activities using some standard threshold values. The threshold
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values are different for both atria and ventricle chambers. The heart conduction
behaviour is continue monitored by the cardiac pacemaker model. The monitored
value is compared with the standard threshold value under required timing intervals
to allow or inhibit to pace into the heart chamber to control the desired behaviours
of the heart.

Refinement 2: Introduction of hysteresis for cardiac pacemaker model and pertur-
bation the conduction for the heart model. This refinement step introduces an abnor-
mal behaviour in the closed-loop model through introduction of the blocking activ-
ities, and hysteresis operating mode in the cardiac pacemaker model. The blocking
behaviour in the heart network is known as perturbation model, which specifies per-
turbation in the heart conduction system and helps to discover exact block into the
heart conduction network. We introduce a set of events through progressive refine-
ment to simulate the desired blocking behaviour. The blocking behaviour generates
trouble into electrical impulse propagation. Different types of heart blocks are pre-
sented through the partition of the landmark nodes in the conduction network.

The cardiac pacemaker model uses refinement to introduce a new feature related
to the operating modes. This new feature is know as hysteresis operating mode,
which prevents the constant pacing and allows a patient to have his or her own
underlying rhythm as much as possible. The hysteresis is a programmed feature
whereby the pacemaker paces at a faster rate than the sensing rate. This refinement
introduces a new event, which allows to set hysteresis mode, and the cardiac pace-
maker operates according to the desired rate.

Refinement 3: Introduction of rate modulation for the cardiac pacemaker model
and a cellular model for the heart system. This is the final refinement of the closed-
loop system, which introduces cellular level modelling for the heart system and
rate modulation for the cardiac pacemaker. The final refinement of the heart system
provides simulation model, which introduces the impulse propagation at the cellular
level using cellular automata. The electrical impulse propagates at the cells level.
A set of constants and mathematical properties are introduced using axioms, and a
set of events are used to formalise the desired behaviour of the heart using cellular
automata, which are described in [52].

In the final model of the cardiac pacemaker, we describe a rate adapting pacing
technique. The rate adapting pacing technique gives freedom to select automatically
desired pacing rate according to the physiologic needs. Automatic selection of the
desired pacing rate helps to increase or decrease the pacing rate and assists a patient
for controlling the heart rate according to the different day to day activities. In the
rate modulation mode, the pacemaker operates faster than the lower rate, but no
more than the upper sensor rate limit, when it determines that the heart rate needs
to increase. For instance, when a patient does exercise and the heart rate cannot
increase automatically to fulfil the required pupping rate. The rate modulation sensor
is used to determine the maximum exertion performed by the patient. This increased
pacing rate refers to the sensor indicated rate. Reducing the physical activities helps
to progressively decrease the pacing rate down to the lower rate. A set of new refined
events models increasing and decreasing pacing rate of the cardiac pacemaker [50].
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Table 9.4 Proof statistics

Model Total number of POs Automatic proof Interactive proof

Closed-loop model of one-electrode pacemaker

Abstract model 304 258 (85 %) 46 (15 %)

First refinement 1015 730 (72 %) 285 (28 %)

Second refinement 72 8 (11 %) 64 (89 %)

Third refinement 153 79 (52 %) 74 (48 %)

Closed-loop model of two-electrode pacemaker

Abstract model 291 244 (84 %) 47 (16 %)

First refinement 1039 766 (74 %) 273 (26 %)

Second refinement 53 2 (4 %) 51 (96 %)

Third refinement 122 60 (49 %) 62 (51 %)

Total 3049 2147 (70 %) 902 (30 %)

9.10.3 Proof Statistics

Table 9.4 expresses the proof statistics of the development of the closed-loop model
of the cardiac pacemaker with the heart system. These statistics measure the size
of the model, the proof obligations (POs) generated and discharged by the Rodin
prover and those that are interactively proved. The complete development of the
heart model results in 3049 (100 %) POs, within which 2147 (70 %) are proved
automatically by the Rodin tool. The remaining 902 (30 %) POs are proved inter-
actively using the Rodin tool. Integration of the heart model and the cardiac pace-
maker model generates lots of extra POs. The main reason of these new POs is
to use shared variables in both models to link between the heart and pacemaker
models. A set of invariants corresponding to the shared variables generates new
POs. For example, the current clock counter variable (sp) is shared, which has
been used in events of the heart and pacemaker models. The combined invariants
of the heart and pacemaker models generate new POs corresponding to the cur-
rent clock counter variable (sp). The whole system represents functional properties
of the cardiac pacemaker operating modes under the biological environment in the
heart. The heart model represents normal and abnormal states of the heart, which
is estimated by the physiological analysis. To guarantee the correctness of these
functional behaviours, we have established various invariants in the incremental re-
finements.

The use of model checker helps to discover some unexpected behaviours, and
assists to verify all the operating modes of the cardiac pacemaker in the heart envi-
ronment model. A tool ProB [36] is used to animate the closed-loop model and able
to prove the absence of errors.
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9.11 Closed-Loop Modelling Requirements

This section presents a set of requirements for modelling the closed-loop system to
guarantee the safety properties [29]. These requirements are useful for verifying the
closed-loop system.

9.11.1 Patient Safety in Closed-Loop

The closed-loop system must hold a set of requirements related to the physiological
needs. Few properties are constant and others are conditional. The heart indicates the
patient condition, which presents conditional properties. In the closed-loop system
the heart states are connected to the heart model parameters, which are not affected
by pacemaker therapy. The integration of the heart model and pacemaker model
allow us to evaluate whether the pacemaker provides an appropriate therapy for any
arrhythmias.

9.11.2 Behavioural Requirements

The closed-loop system exposes several conditions for normal and abnormal heart,
which are represented through node automata (Fig. 9.10(b)) using ranges of impulse
propagation speed and impulse propagation time. Condition is a boolean value for
whether the heart state is true. The cardiac pacemaker presents pacing and sens-
ing activities under specified conditions. Some behaviour requirements are given as
follows: (1) Atria and ventricular pace should not occur during atrial and ventricle
refractory period, respectively. This requirement is an important safety properties,
which is verified in the closed-loop model. Any pacing during the refractory period
creates derangements in timing for the atria and ventricle. (2) Intrinsic activities of
the atrial and ventricles should be sensed by different leads. The intrinsic activities
are essential input for the pacemaker. The pacemaker should ensure that the intrinsic
activities are sensed accurately. (3) Natural pacing in the atria and ventricle, and ar-
tificial pacing and sensing activities of the pacemaker must be coordinated to ensure
efficient pumping for maintaining the heart rhythm.

9.11.3 Clinical Requirements with Closed-Loop

Clinical requirements are depended on the patient needs such as normal sinus
rhythm, bradycardia, heart block and tachycardia. These requirements are common
critical conditions, which can vary for each patient because of different physiologi-
cal needs.
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In this section, the heart model is presented as abstract as possible to capture all
possible scenarios of the heart, which is completely based on the conduction speed
and conduction time. Whenever these two parameters change or lie out of the range,
then the ECG signal deforms and we cannot obtain the desired ECG signal, which
represents an abnormal heart state. Moreover, we have introduced heart blocking be-
haviour using stepwise refinement. Rather than considering any particular behaviour
of the heart, we have formalised the heart abstractly. For instance, we have not done
any special treatment in our model to capture the retrograde conduction (travel back-
ward). We have considered the perfect heart condition (see HeartOK, we have only
forward conduction network). The retrograde conduction results in many symptoms,
primarily those symptoms result from the delayed, non-physiologic timing of atrial
contraction in relation to ventricular contraction. According to our model, if the
retrograde conduction affects the timing cycle or conduction speed, then the heart
presents an abnormal state. Normal state of the closed-loop model is presented ac-
cording to the timing and speed of the conduction requirements. In case of abnormal
state of the heart, the cardiac pacemaker does pacing and sensing according to the
patient needs. In this closed-loop system, the cardiac pacemaker can take effect
when the heart presents an abnormal state, which helps to maintain the patient heart
rhythm. We have considered heart state (OK or KO) for each cycle. If the cycle has
any abnormality, heart will be in abnormal state and pacemaker takes over to main-
tain heart rhythm. However, this closed-loop model helps to identify the pacemaker
requirements according to the heart behaviour.

9.11.4 To Discover Essential Safety Properties

The closed-loop model provides higher insurance for safety and security. The num-
ber of POs of the closed-loop model of the cardiac pacemaker are higher than the
simple model of the cardiac pacemaker model (see Tables 9.3 and 9.4). In the closed-
loop model invariants are stronger than the plain model. The closed model generates
more than 70 % extra POs.

9.12 Real-Time Animation Using Pacemaker Case Study

This section shows an applicability of the real-time animator [42] through anima-
tion of formal models of the pacemaker using real-time data sets. Figure 9.11 repre-
sents an implementation of the given architecture for the formal model of a cardiac
pacemaker case study. We have mainly used this case study to experiment on our
proposed architecture, which enables the animation of a proved specification with
real-time data set without generating the source code in any programming language.
According to the proposed architecture (see Fig. 9.11) for this experiment, we have
not used any data-acquisition device to collect the ECG (electrocardiogram) signal.
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Fig. 9.11 Real-time animation of cardiac pacemaker

We have done this experiment in off-line mode, means we have used our architec-
ture to test the real-time data set of ECG signal that is already collected. ECG signal
collection and features extraction in on-line mode is too expensive due to complex
data-acquisition process and limitation of feature extracting algorithms. So, we have
used the ECG signal and feature extraction algorithms for our experiment from the
MIT-BIH Database Distribution [54].

We have downloaded the ECG signal from ECG data bank [54]. The ECG sig-
nals are freely available for academic experiments. We have applied some algo-
rithms to extract the features (P, QRS, PR, etc.) from the ECG signal and stored it
into a database. We have written down some Macromedia Flash scripts to interface
between Flash tool and Brama component, to pass the real data set as a param-
eter from a database to the Event-B model. No any tool is available to interface
between database and the Event-B model. Extra Macromedia Flash script coding
and the Brama animation tool help to test the Event-B formal model of the car-
diac pacemaker on the real-time data set. We have designed an animated graphic of
heart and pacemaker in Macromedia Flash, where this animated model represents
the pacing activity in the right ventricular chamber. This animated model simulates
the behaviour of heart according to the bradycardia operating modes and animates
the graphic model. The animation of the model is fully based on the Event-B model.
Event-B model is executing all events according to the parametric value. These para-
metric values are the extracted features from the ECG signal, which are passing into
the Event-B model.

Figure 9.11 represents an implementation of proposed architecture on the for-
mal model of a cardiac pacemaker case study. According to the architecture, data
acquisition unit collects the ECG signal and features extractions are done by the
feature extraction or parameter estimation unit. The extracting features are stored in
the database XML file format. Macromedia Flash tool helps to design the animated
graphics of the heart and pacemaker. Brama plug-in helps to communicate between
animated graphics and Event-B formal model of the single electrode cardiac pace-
maker. Finally, we have tested a real-time data set in the formal models without
generating the source code.
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One- and two-electrode Pacemaker’s pacing and sensing behaviours are validated
through cardiologist experts using real-time data; ECG signal. We have found some
unexpected behaviours of the formal model according to the cardiologist experts in
visualisation. We have modified the pacemaker formal model according to cardiol-
ogist experts and verify through the real-time animation tool. So, we consider that
the real-time animation tool has a very important role in the area of development of
the formal methods, and it can help to obtain a trust-able formal model, which can
be helpful to obtain the certification assurances [11, 16, 23, 26, 27, 44].

9.13 Code Generation Using EB2ALL Tool

We have presented a proof-based an incremental formal development of a cardiac
pacemaker in [40, 43, 48, 53] using our proposed tool and techniques. This section
presents an automatic code generation from developed and proved formal specifi-
cation of a cardiac pacemaker. We now illustrate the use of EB2C, EB2C++, EB2J
and EB2C# tools [13, 41, 46, 47] by means of the automatic generation of C, C++,
Java and C# codes for the cardiac pacemaker system described with EVENT B
in [45, 51]. This tool has a technique of automatic support of safety assurance of
a generated code. To achieve a verified source code of the cardiac pacemaker, we
have done further refinement of the concrete models of the cardiac pacemaker us-
ing a new context, which has some data ranges (see Table 7.1) corresponding to the
programming languages. The context file provides deterministic ranges for all kinds
of data types. This refinement makes the model deterministic and generates some
proof obligations due to defining the fixed data ranges of all constants and variables
of the cardiac pacemaker model. The generated proof obligations are discharged by
automatic as well as manual, and all these proofs are necessary to verify the specifi-
cation in order to guarantee the consistency and correctness of the system. We have
discharged all the generated proof obligations before generating the source code.
This level of refinement complies system specification abstractly. Now, we move
to the next level of code translation methodology as to pass the concrete model for
continuing translation process.

The code translation from Event-B formal specification into any programming
language using EB2ALL is straightforward using a set of plug-ins (EB2C, EB2C++,
EB2J and EB2C#) [13, 41, 46, 47]. The main idea is to translate an Event-B model
into any programming language code using the last concrete model. The EB2ALL
tool generates programming language files corresponding to the concrete models.
A generated source file using EB2ALL tool has a basic structure: a set of con-
stants, variables and functions. A set of constants and variables are extracted from
the context and machines sections of the Event-B model of the cardiac pacemaker,
respectively. Data type of constant is defined as an axiom in Event-B model. Simi-
larly, data type of variable is extracted from the invariant section of the model. Initial
value of the constants and variables are initialised, if their initial values are declared.
A set of constants and variables are given as follows, which are excerpted from the
translated ‘C’ codes of the cardiac pacemaker model.
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enum s t a t u s {ON, OFF } ; /∗ Enumerated d e f i n i t i o n ∗ /
c o n s t i n t FixedAV =90; /∗ I n t e g e r i n r a n g e 70−300 ∗ /
c o n s t i n t LRL=60; /∗ I n t e g e r i n r a n g e 30−175 ∗ /
c o n s t i n t ARP=200; /∗ I n t e g e r i n r a n g e 50−175 ∗ /
c o n s t i n t URL=120; /∗ I n t e g e r i n r a n g e 50−175 ∗ /
c o n s t i n t VRP=250;
c o n s t i n t PVARP=150;
c o n s t i n t V_Blank =50;
. . .

enum s t a t u s PM_Actuator_V ; /∗ Enumerated t y p e v a r i a b l e ∗ /
enum s t a t u s PM_Sensor_V ; /∗ Enumerated t y p e v a r i a b l e ∗ /
u n s i g n e d long i n t Thr_V ; /∗ I n t e g e r i n r a n g e u n d e f i n e d ∗ /
u n s i g n e d long i n t AV_Count ; /∗ I n t e g e r i n r a n g e u n d e f i n e d ∗ /
BOOL AV_Count_STATE ;
u n s i g n e d long l a s t _ s p ;
u n s i g n e d long i n t sp ;
u n s i g n e d long i n t P a c e _ I n t ;
. . .

A set of functions are extracted equivalent to a set of events of the pacemaker
formal model. All the events of Event-B are translated into equivalent program-
ming language functions. An event INITIALISATION is a programming language
function, which initialise default values of all the variables. An event of Event-B
model has fixed organisation of the internal components; local variables, guards
(pre-conditions) and actions. An event may contain some local variables. The global
constants and variables are declared on the top of the programming language source
file, while local variables are declared within the function body. All events of a for-
mal model is translated as a set of programming language functions. This function
has the similar structure as an event. During the translation of the events, the guards
are translated into equivalent to ‘if’ statement using logical conjunction, disjunc-
tion, implication and equivalence. Each guard represents into a separate ‘if’ state-
ment like nested ‘if’ structure. All these guards represent a set of preconditions,
which are required to satisfy for executing the action predicates. All action predi-
cates of a formal model event are directly translatable equivalent into programming
language assignment expressions. The EB2ALL tool is capable to analyse the syn-
tax of Event-B guards and actions predicate. In the cardiac pacemaker formal model,
their predicates are simple, which are obtained through several refinements. All pre-
conditions or guards are required to be TRUE for executing all actions. However,
despite being a complex system, the pacemaker pre-conditions are fairly simple to
calculate. If all the guards are true, then the action’s predicates execute and return
TRUE for successful execution of the function. If any ‘if’ condition false, then the
function returns FALSE and action’s part of the function does not execute.

. . .
BOOL Actuator_ON_V ( vo id )
{

/∗ Guards No . 1∗ /
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i f ( PM_Actuator_V == OFF) {
/∗ Guards No . 2∗ /
i f ( ( sp == P a c e _ I n t ) | | ( ( sp < P a c e _ I n t ) &&
( AV_Count > V_Blank ) && ( AV_Count >= FixedAV ) ) ) {
/∗ Guards No . 3∗ /
i f ( ( sp >= VRP)&&( sp >= PVARP) && ( sp >= URI ) ) {
/∗ A c t i o n s ∗ /
PM_Actuator_V = ON;
l a s t _ s p = sp ;
r e t u r n TRUE;

}}}
r e t u r n FALSE ;

}
. . .

To make the generated code executable, the EB2ALL tool generates an Iterate
function that contains a list of all functions as in form of a function call. Another
function is a main body of the program like main() in ‘C’, which calls Iterate func-
tion. These two extra functions are used to compile and execute the generated code.

. . .
BOOL I t e r a t e ( vo id )
{

i f ( Actuator_ON_V ()==TRUE ) r e t u r n TRUE;
i f ( Actuator_OFF_V ()==TRUE ) r e t u r n TRUE;
i f ( Actuator_ON_A ()==TRUE ) r e t u r n TRUE;
i f ( Actuator_OFF_A ()==TRUE ) r e t u r n TRUE;
i f ( Sensor_ON_A ()==TRUE ) r e t u r n TRUE;
i f ( Sensor_OFF_A ()==TRUE ) r e t u r n TRUE;
i f ( Sensor_ON_V ()==TRUE ) r e t u r n TRUE;
i f ( Sensor_OFF_V ()==TRUE ) r e t u r n TRUE;
i f ( t i c ( )==TRUE ) r e t u r n TRUE;
i f ( t ic_AV ()==TRUE ) r e t u r n TRUE;
i f ( Thr_Value_A ( )==TRUE ) r e t u r n TRUE;
i f ( Thr_Value_V ( )==TRUE ) r e t u r n TRUE;
i f ( Hyt_Pace_Upda t ing ( )==TRUE ) r e t u r n TRUE;
i f ( I n c r e a s e _ I n t e r v a l ( )==TRUE ) r e t u r n TRUE;
i f ( D e c r e a s e _ I n t e r v a l ( )==TRUE ) r e t u r n TRUE;
i f ( A c l e r _ s e n s e d ( )==TRUE ) r e t u r n TRUE;

/∗ S i g n a l d e a d l o c k ∗ /
r e t u r n FALSE ;

}
. . .

The source code is automatically generated in any programming language (C,
C++, Java and C#) from the verified specification in less than five seconds. The
generated code resulted in over 5000 lines in all operating modes. Here, we have
presented a brief overview of the translation from the Event-B specification of the
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cardiac pacemaker formal model into ‘C’ using EB2C tool. Based on this transla-
tion, we were able to automatically generate ‘C’ code and execute a simulation of
the pacemaker.

9.14 Discussion

New development methodology is successfully applied for developing the cardiac
pacemaker from requirement analysis to code implementation. The whole system
development life-cycle is based on formal techniques. The complete system is de-
signed using different kinds of tools related to the formal techniques. The Event-B
modelling language is used for formalising the pacemaker system using refinement
techniques. Each level of refinements is validated through the ProB model checker
and the real-time animator for verifying the correctness of the system behaviours
against requirements and according to the medical experts, respectively. If any er-
ror is discovered during verification, validation or domain experts reviews, then the
pacemaker specification is modified and again follow the verification, validation and
domain experts reviews. This process is continued applied in a loop until not find
the correct proved formal specification of the cardiac pacemaker. The verification,
validation and domains experts reviews are applied on each refinement level for
modelling the whole system. To handle the complexity of a system according to the
refinements, we have used the refinement chart to model the cardiac pacemaker sys-
tem. The refinement charts of the pacemaker present integration architecture of the
system in form of all possible operating modes. Some operating modes are an ex-
tension of the existing operating modes, it is clearly expressible from the refinement
charts. This technique is not only for code integration, but also it helps for analysing
the operating modes and code structuring of the system. Finally, we have used the
tool EB2ALL for generating the source code into multiple languages (C, C++, C#,
and Java) from the formal specifications. In this development process, we have not
considered the safety assessment approach.

According to the existing development life cycle, we use formal methods only on
the selected part of the system for verifying the correctness of the system against re-
quirement. No formal methods are likely to be suitable for describing and analysing
every aspect of a complex system; a practical approach is to use different meth-
ods in combination. In this book, we have provided some possible solutions for
emerging problems in area of software engineering related to the development of
critical systems, where we have proposed a development life-cycle and associated
a set of techniques and tools to develop the highly critical systems using formal
techniques from requirements analysis to automatic source code generation. There
is not a set of supporting tools, which can be used for system development using
only formal techniques. We have developed a set of new tools, which support a rig-
orous framework for the system development and finally; we have applied this new
development life-cycle methodology and associated tools for developing the car-
diac pacemaker system for assessing the usability of our proposed approach. This
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methodology uses only refinement approach to build the complete system and each
refinement level is verified using different techniques. Last level of the system is
the concrete model, which has been used for producing the source code. The code
generation tool EB2ALL is very simple in use, which can generate the optimised
codes for future use. The process for system development is user friendly, but a
developer has required the strong knowledge of formalisation and refinement tech-
niques to build the correct system using this new system development methodology
and associated techniques and tools.

9.15 Summary

In this chapter, we have presented the pacemaker specification, one of the chal-
lenges proposed by the Verified Software Initiative [25]. We have developed the
formal model of the pacemaker system in Event-B and discovered the exact func-
tional behaviour of the pacing and sensing events. Our approach for formalising
and reasoning about action-reaction is based on real-time as a pacemaker system.
The pacemaker case study suggests that such an approach can yield a viable model
that can be subjected to useful validation against system-level properties at the early
stage of the development process. The proposed techniques based on development
patterns intend to assist in the design process of the system where correctness and
safety are important issues.

A series of high confidence medical devices of increasing scope and complex-
ity will follow the pacemaker system. Main advantage of proposed development
methodology and a set of associated techniques and tools is the ability to develop
the whole system from requirement analysis to code generation. Proposed method-
ology exploits the advance capabilities of the combined approach of formal verifi-
cation and model validation using a model-checker, use of real time animation to
test system behaviour and, finally automatic source code generation from a verified
formal model in order to achieve the considerable advantages for a critical system
design.

The proposed approach has also involved the use of the real-time animator for
executing formal specification to validate the actual requirements. The main objec-
tives of this real-time animator [42] are to promote the use of such kinds of tool to
bridge a gap between software engineers and stakeholders to build quality system
and to discover all the ambiguous information from the requirements. Moreover,
this tool helps to verify the correctness of behaviour of the system according to the
stakeholders requirements. The combined approach of the formal verification and
real-time animation allows the systematic development of a clear, concise, precise
and unambiguous specification of a software system and enables to the software en-
gineers to animate the formal specification at the early stage of the development. The
formal specification animation is supported by both software engineers and stake-
holders. Our case study on cardiac pacemaker illustrates the potential value which is
a formal specification, and its subsequent animation can bring to the comprehension
and clarification of the informal requirements.
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System integration methodology using refinements charts (see Figs. 9.5, 9.6) are
also used for system development, which helps a code designer to improve the code
structure and code optimisation, and the code generation for synthesising and syn-
chronising the software codes of a critical system like the cardiac pacemaker. In the
pacemaker case study, each operating mode (see Table 9.1) have different kinds of
functional requirements, and all the operating modes are decomposed in the refine-
ment chart using multiple refinements. The refinement chart and formal specifica-
tions support more systematic and error-free designing and implementation rather
than other traditional approaches of system designing and implementation. Here,
the refinement chart is tightly coupled with the formal specifications. A set of re-
quirements are formally represented in the specifications. The complexity of formal
specifications is the amounts of proof obligations (see Tables 9.3 and 9.4). There-
fore use of the refinement chart, and formal specifications states the correctness of
the system design and implementation.

The refinement chart specially covers component-based design frameworks and
decomposition, integration of the critical infrastructure and device integration. We
can see from our pacemaker case study that all these claims help to design error-
free system and different phase of the pacemaker has been shown by refinements
in form of formal development as well as refinement charts. We have presented
evidence that such an analysis is fruitful for both formal and non-formal group of
people. The second observation from our experiments is that the development of
multiple models helped us not only find errors in the requirement documents but
also gave us an opportunity to better understand intricate requirements such as the
control algorithm of a medical system. Moreover, we believe that the effort needed
is commensurate with the benefits we derive from developing the multiple models.
An ideal critical system has the following characteristics:

• Embedded real-time system’s design.
• To obtain the certification for providing the higher safety integrity level.
• Helps to domain experts to analyse work process guidelines.
• Sufficient complexity that traditional methods, such as testing and code reviews,

are inadequate to establish its correctness.
• Model-based development and component-based design frameworks.
• Animator assists to regulatory agencies and helps to meet ISO/IEC and IEEE

standards.
• Ability to monitor a real-time environment using animator at animation time and

analyse the requirements, violations of goals, expectations on the environments,
and domain properties.

• Real-time animation of a specification supplements inspection and reasoning
as means for validation. This is especially important for the validation of non-
functional behaviour.

• Real-time animation technique is available in early phase of the system devel-
opment life-cycle, which can be used to correct validation errors immediately,
without incurring costly redevelopment.

• Infrastructure for critical system integration and inter-operation.
• System integration of critical infrastructure.
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• Possibility of annotating models for different purposes (e.g., directing synthesis
or hooking to verification tools).

• To discover the complex situation using refinement approach.
• Decomposition of the complex system into different independent subsystems.
• To reduce the gap between software engineers and stakeholders requirements us-

ing real-time animator and easy to explain model behaviour to domain experts as
well stakeholders.

• Ambiguous and incomplete requirements can be clarified and completed by
hands-on experience with the specifications using our approach.

Code generation is a process, which is used to transform a formal specifica-
tion into any programming language like C, C++, C#, Java, etc. Code generation
from the verified formal model is our main objective. For generating the source
code into different kinds of programming languages (C, C++, Java and C#), we
have used a tool EB2ALL [13, 41, 46, 47]. We have developed a set of plug-ins
tools [13, 41, 46, 47], which provides fully automatic code generation from Event-
B formal specification into programming languages. The adaptations of the transla-
tion rules are required more complete experiments, especially with the large formal
models for checking the impact on the execution time for some specific platforms.
Finally, we have shown a satisfactory result and demonstrate the ability to generate
automatically source code from EVENT B specification of the cardiac pacemaker in
C, C++, Java and C# languages, which are comparable to a code written by hand
with ordinary programming languages. The gains rely then on the guarantees pro-
vided using formal methods and on the certification level which can be obtained
by this way. As far as we know, only few formal methods support code generation,
which is as time/space efficient as handwritten code.

This chapter also presents an approach for modelling the closed-loop system of
the cardiac pacemaker. The prime objective of this approach is to provide a new
modelling technique, which helps to combine the formal models of a critical sys-
tem and related environment. For example, the cardiac pacemaker operates in the
biological heart system. The closed-loop modelling is an effective approach, which
guarantees the correctness of the operating behaviour of the critical system. More-
over, this approach can be viable to obtain the certification standards for the de-
veloping system. To build a closed-loop model using both environment and device
modelling is considered as a standard approach for validation, given that designing
an environment model is a challenging problem in the real world. Industry has long
sought such an approach to validating system models in a biological environment.

Proposed development methodology and associated techniques and tools enable
us to design a new environment for medical device modelling and simulating and
offers to obtain that challenge of complying with FDA’s QSR and ISO’s 13485
quality system directives [23, 32].

In order to assess the overall utility of our approach, a selection of the results of
the formalisation and verification steps have been presented to a group of pacemaker
developers (French-Italian based pacemaker company). The developers are satisfied
by the results of pacemaker development using all proposed approaches in sense of
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incremental development, real-time animation of formal model, integration of hard-
ware and software and automatically code generation approach from verified formal
specifications. They are really agreed on the refinement charts for showing operat-
ing mode relation and their mode transitions. Based on the experiment described
above and our conclusions we are convinced of the usefulness on certain areas, and
therefore, we are considering to use all these tools and methodology, which are very
helpful to design not even in a medical domain but also for other industrial domains,
such as avionic and automotive domains.
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Chapter 10
Formalisation of Electrocardiogram (ECG)

Abstract Today, an evidence-based medicine has given number of medical prac-
tice clinical guidelines and protocols. Clinical guidelines systematically assist prac-
titioners with providing appropriate health care for specific clinical circumstances.
However, a significant number of guidelines and protocols are lacking in quality. In-
deed, ambiguity and incompleteness are more likely anomalies in medical practices.
From last few years, many researchers have tried to address the problem of protocol
improvement in clinical guidelines, but results are not sufficient since they believe
on informal processes and notations. Our objective is to find anomalies and to im-
prove the quality of medical protocols using well known formal techniques, such
as Event-B. In this chapter; we use a modelling language to capture the guidelines
for their validation. We have established a classification of the possible properties
to be verified in a guideline. Our approach is illustrated with a guideline which pub-
lished by the National Guideline Clearing House (NGC) and AHA/ACC Society.
Our main contribution is to evaluate the real-life medical protocols using refinement
based formal methods for improving quality of the protocols. Refinement based
formalisation is very easy to handle any complex medical protocols. For this eval-
uation, we have selected a real-life reference protocol (ECG Interpretation), which
covers a wide variety of protocol characteristics related to the several heart diseases.
We formalise the given reference protocol, verify a set of interesting properties of
the protocol and finally determine anomalies. Our main results are: to formalise an
ECG interpretation protocol for diagnosing the ECG signal in an optimal way; to
discover a hierarchical structure for the ECG interpretation efficiently using incre-
mental refinement approach; a set of properties which should be satisfied by the
medical protocol; verification proofs for the protocol and properties according to
the medical experts; and perspectives of the potentials of this approach. Finally, we
have shown the feasibility of our approach for analysing the medical protocols.

10.1 Introduction

A promising and challenging application area for the application of formal meth-
ods is a clinical decision making, as it is vital that the clinical decisions are
sound. In fact, ensuring safety is the primary preoccupation of medical regula-
tory agencies. Medical guidelines are “systematically developed statements to assist

N.K. Singh, Using Event-B for Critical Device Software Systems,
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practitioners and patient decisions about appropriate health care for specific circum-
stances” [11, 36]. Based on updated empirical evidence; the medical protocols to
provide clinicians with health-care testimonial and facilitate the spreading of high-
standard practices. In fact, this way represents that adherence to protocol may reduce
the costs of care up to 25 % [36]. In order to reach their potential benefits, protocols
must fulfil strong quality requirements. Medical bodies worldwide have made ef-
forts in this direction, e.g. elaborating appraisal documents that take into account a
variety of aspects, of both protocols and their development process. However, these
initiatives are not sufficient since they rely on informal methods and notations. The
informal methods and notations have not any mathematical foundation.

We are concerned with a different approach, namely the quality improvement of
medical protocols through formal methods. In this chapter, we report on our experi-
ences in the formalisation and verification of a medical protocol for diagnosis of the
Electrocardiogram (ECG) [21, 22]. The ECG signals are too complex for diagnosis.
All kinds of diseases related to the heart are predictable using 12-lead ECG signals.
A high number of medical guidelines for the ECG interpretation has been published
in the literature and on the Internet, making them more accessible. Currently, proto-
cols are described using a combination of different formats, e.g. text, flow diagrams
and tables. These approaches are used in form of informal processes and notations
for analysing the medical protocols, which are not sufficient for medical practices.
As a result, the ECG interpretation guidelines and protocols1 still contain ambigu-
ous, incomplete or even inconsistent elements.

The idea of our work is translating the informal descriptions of the ECG inter-
pretation into a more formal language, with the aim of analysing a set of properties
of the ECG protocol. In addition to the advantages of such a kind of formal verifica-
tion, making these descriptions more formal can serve to expose problematic parts
in the protocols.

Formal methods have well structured representation language with clear and
well-defined semantics, which can be used for taxonomy verification of clinical the
guidelines and medical protocols. The representation language represents guidelines
and protocols explicitly and in a non-ambiguous way. The process of verification
using formal semantic representation of guidelines and protocols to allow the deter-
mination of consistency and correctness.

Formal modelling and verification of medical protocol to have been carried out
as a case study to assess the feasibility of this approach. Throughout our case study,
we have shown formal specification and verification of medical protocols. The ECG
interpretation protocol is very complex, ambiguous, incomplete and inconsistent.

The contribution of this chapter is to give a complete idea of formal develop-
ment of the ECG interpretation protocol, and we have discovered a hierarchical
structure for the ECG interpretation efficiently using incremental refinement ap-
proach [21, 22]. Same approach can be also applied for developing a formal model
of the protocol of any other disease. Our approach is based on the Event-B [1, 7]

1Guideline and protocol are different terms. The term protocol is used to represent a specialised
version of a guideline. In this chapter, we use them indistinctively.
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modelling language which is supported by the Rodin platform integrating tools for
proving models and refinements of the models. Here, we present an incremental
proof-based development to model and verify such interdisciplinary requirements
in the Event-B [1, 7]. The ECG interpretation models must be validated to ensure
that they meet requirements of the ECG protocols. Hence, validation must be carried
out by both formal modelling and medical domain experts.

We have used a general formal modelling tool like Event-B [1] for modelling
a complex medical protocol related to diagnoses of the ECG signal. To apply a
refinement based technique to model a medical protocol is our main objective. The
Event-B supports refinement technique. The refinement supported by the Rodin [29]
platform guarantees the preservation of safety properties. The safety properties are
detection of an actual disease under the certain conditions. The behaviour of the
final system is preserved by an abstract model as well as in the correctly refined
models. This technique is used to model a medical protocol more rigorously based
on formal mathematics, which helps to find the anomalies and provide the consis-
tency and correctness of the medical protocol. The current work intends to explore
those problems related to the modelling of the ECG protocols. The formalisation
of the ECG protocol is based on the original protocol, and all the safety properties
and related assumptions are verified with the medical experts. Moreover, an incre-
mental development of the ECG interpretation protocol model helps to discover the
ambiguous, incomplete or even inconsistent elements in current the ECG interpre-
tation protocol.

10.1.1 Structure of This Chapter

The outline of the remaining chapter is as follows. Section 10.2 contains related
work. Section 10.3 presents selection of medical protocol for formalisation. We give
a brief outline of the ECG in Sect. 10.4. In Sect. 10.5, we explore the incremental
proof-based formal development of the ECG interpretation protocol. The verifica-
tion results are discussed in Sect. 10.6. Finally, Sect. 10.7 summarises the chapter.

10.2 Related Work

Section 10.2 currently presents ongoing research work related to computer-based
medical guidelines and protocols for clinical purposes. From past few years many
languages have been developed for representing medical guidelines and protocols
using various levels of formality based on expert’s requirements. Although we have
used the Event-B modelling language for guidelines and protocol representation in
our case study. Various kinds of protocol representation languages like Asbru [33,
36], EON [26], PROforma [12] and others [27, 38] are used to represent a formal
semantics of guidelines and medical protocols.
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Clinical guidelines are useful tools to provide some standardisation and helps
for improving the protocols. A survey paper [15] presents benefits and comparison
through an analysis of different kinds of systems, which are used by clinical guide-
lines. This paper covers a wide scope of clinical guidelines related literatures and
tools, which are collected from the medical informatics area.

An approach for improving guidelines and protocols is by evaluating the physi-
cian. Evaluation process involves the scenario and evidence based testing, which
compares the actions. The actions are performed by physicians to handle particu-
lar patient case using testimonials that are prescribed by the guidelines [24]. When
results of the actions deviate, evaluation process can be either focused on the expla-
nation alternatively provide some valuable feedback for improving the guidelines
and protocols [20]. An intention based evaluation process are deduced by the physi-
cians from both the patient data and the performed actions. These are then verified
against the intentions reported in the guidelines.

Automated quality assessment of clinical actions and patient outcomes is an-
other area of related work, which is used to derive structured quality indicators from
formal specifications of guidelines. This technique is used in decision support [2].
Such kinds of indicators is used as formal properties in our work that guideline must
comply with.

Decision-table based techniques for the verification and simplification of guide-
lines are presented by Shiffman et al. [34, 35]. The basic idea behind this approach
is to describe guidelines as condition/action statements: If the antecedent circum-
stances exist, then one should perform the recommended actions [34]. Completeness
and consistency are two main properties for verification, when guidelines and pro-
tocols are expressed in terms of decision-table. Again, these properties are internal
coherence properties, whereas we are focused on domain-specific properties.

Formal development of the guidelines and protocols using clinical logic may be
incomplete or inconsistent. This problem is tackled by Miller et al. [25]. If “if-then”
rules are used as representation language for guidelines, incompleteness means
that there are combinations of clinically meaningful conditions to which the system
(guideline) is not able to respond [25]. The verification of rule-based clinical guide-
lines using semantic constraints is supported by the commander tool. This tool is
able to identify clinical conditions where the rules are incomplete. Miller et al. [25]
were able to find a number of missing rules in various case studies of the guidelines
and protocols.

Guidelines enhancement is represented through adoption of an advanced Artifi-
cial Intelligence techniques [6]. This paper has proposed an approach for verifica-
tion of the guidelines, which is based on the integration of a computerised guidelines
management system with a model-checker. They have used SPIN model checker [8,
14] for executing and verifying medical protocols or guidelines. A framework for
authoring and verification of clinical guidelines is provided by Beatriz et al. [28].
The verification process of guidelines is based on combined approach of Model
Driven Development (MDD) and Model Checking [8] to verify guidelines against
semantic errors and inconsistencies. UML [30, 39] tool is used for modelling the
guidelines, and a generated formal model is used as the input model for a model
checker.
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Jonathan et al. [31] have proposed a way to apply formal methods, namely inter-
active verification to improve the quality of medical protocols or guidelines. They
have applied this technique for the management of jaundice in newborns based on
guidelines of American Academy of Pediatrics. This paper includes formalisation
of the jaundice protocol and verifies some interesting properties. Simon et al. [5]
have used the same protocol for improvement purpose using a modelling language
Asbru, temporal logic for expressing the quality requirements, and model checking
for proof and error detection.

Applying a formal approach for improving medical protocol is one major area
of research, which helps to the medical practitioners for improve the quality of pa-
tient care. A project Protocure [37] is a European project, which is carried out by
five different institutions. The main objective of this project is for improving med-
ical protocol through integration of formal methods. The main motivation of this
project is to identify anomalies like ambiguity and incompleteness in the medical
guidelines and protocols. Presently, all medical protocols and guidelines are in text,
flow diagrams and tables formats, which are easily understandable by the medical
practitioners. But these are incomplete and ambiguous due to lack of formal seman-
tics. The idea of using formal methods is to uncover these ambiguous, incomplete
or even inconsistent parts of the protocols, by defining all the different descrip-
tions more precisely using a formal language and to enable verification. Mainly, the
researchers have used Asbru [36] language for protocol description and KIV for
interactive verification system [3].

Asbru [36] is a main modelling language for describing medical protocol and
formal proof of the medical protocol is possible through KIV interactive theorem
prover [3]. Guideline Markup Tool (GMT) [17] is an editor who helps to translate
guidelines into Asbru. An additional functionality of the tool is to define relations
between the original protocol and its Asbru translation with a link macro [17]. As-
bru language is used for protocol description and Asbru formalisations are translated
into KIV. Asbru is considered as a semi-formal language to support the tasks nec-
essary for protocol-based care. It is called a semi-formal language because of its
semantics, although more precise than in other protocol representation languages,
are not defined in a formal way. This semi-formal quality makes Asbru suitable for
an initial analysis but not for systematic verification of protocols [23].

According to our literatures survey, existing medical protocol tools are based
on semi-formal techniques. Existing techniques [6, 25, 36] based on formal tech-
niques are failed to scale the complexity of the protocol. They have not given any
proper idea to model the medical protocols only using formal techniques due to
complex nature of the medical protocol. To tackle the complexity of the protocol
in formal methods is only a solution to use the refinement approach to model the
whole protocol from abstract level to a final concrete model. In this chapter, we
have provided sufficient detailed information about modelling a complex protocol
using any formal method technique. In this study, we have tried to model a medical
protocol, completely based on formal semantics and to check various anomalies.
To overcome from the existing problems [23, 32] in the area of development of
medical protocols, we have used the general formal modelling tool like Event-B [1]
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for specifying a complex medical protocol related to the diagnoses of ECG signal.
The main objective to use Event-B modelling language is to model medical proto-
cols using the refinement approach. The medical protocols are very complex and to
model a complex protocol, a refinement approach is very helpful, which introduces
peculiarity of the protocols in an incremental way. This technique is used to model a
medical protocol more rigorously based on formal mathematics, which helps to find
the anomalies and provide the consistency and correctness of the medical protocol.

10.3 Selection of Medical Protocol

Concerning the protocols that is the object of our study, we have selected the ECG
interpretation that covers a wide range of protocol characteristics related to the heart
diseases. All kinds of medical guidelines and protocols to differ from each others
along several dimensions, which can be referred to the contents of the protocols or
to its form. General practitioners (GPs), nurses and a large group of people related
to this domain2 are the most important target users of the guidelines and protocols,
and the main aspects of clinical practice are to cover diagnosis as well as help in
treatments. The medical guidelines and protocols, which are used by general practi-
tioners and nurses, are also characterised by time dimensions; short time-span pro-
tocols; long-time span protocols. The form of guidelines and protocols are related
to the textual descriptions. Sometimes it is also represented in the textual form as
well as the combination with tables and flowcharts.

The ECG interpretation protocol [4, 16] aims at cardiologist as well as GPs and
covers both diagnosis and treatment over a long period of time. The ECG interpre-
tation protocol can be considered more precisely: one is in daily use by cardiologist,
and the other is included in the repository of the National Guideline Clearinghouse
(NGC), American College of Cardiology/American Heart Association (ACC/AHA).
The basic standard for inclusion in the NGC and ACC/AHA are that the guidelines
and protocols to contain well structured meaningful informations and systematically
developed statements. The contents are produced under the supervision of medical
specialty associations. It should be also based on literatures, reviewed and revised
within the last 5 years. Furthermore, the ECG interpretation protocol has been pub-
lished in a peer-reviewed scientific journal. In summary, the chosen protocol covers
different aspects while fulfilling high-quality standards, which are the good criteria
for selection of our case study.

In the following sections, we will use the ECG interpretation protocol as the
main example in our explanations, and we therefore give a brief description of this
protocol. The Electrocardiogram (ECG or EKG) interpretation is a common tech-
nique to trace abnormalities in the heart system and various levels of tracing help to
find severe diseases. The guideline is more than 100 pages document, which con-
tains knowledge in various notations: the main text; a list of factors to be considered

2http://www.guideline.gov/.

http://www.guideline.gov/
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when assessing an abnormality in the ECG signal and a flowchart describing the
steps in the ECG interpretation protocol. The protocol consists of an evaluation (or
diagnosis) part and a treatment part, to be performed in the successive way. During
the application of guidelines and protocols, as soon as the possibility of a more se-
rious disease is uncovered, the recommendation is to leave the protocol without any
further actions.

10.4 Basic Overview of Electrocardiogram (ECG)

The electrocardiogram (ECG or EKG) [13, 16] is a diagnostic tool that measures
and records the electrical activity of the heart precisely in the form of signals. Clin-
icians can evaluate the conditions of a patient’s heart from the ECG and perform
further diagnosis. Analysis of these signals can be used for interpreting diagnosis of
a wide range of the heart conditions and to predict the related diseases. The ECG
records are obtained by sampling the bioelectric currents sensed by several elec-
trodes, known as leads. A typical one-cycle ECG tracing is shown in Fig. 10.1.
Electrocardiogram term is introduced by Willem Einthoven in 1893 at the meeting
of Dutch Medical Society. In 1924, Einthoven received the Nobel Prize for his life’s
work in developing the ECG [4, 9, 10, 13, 16, 18, 19].

The normal electrocardiogram (ECG or EKG) is depicted in Fig. 10.1. All kinds
of segments and intervals are represented in this ECG diagram. The depolarisation
and repolarisation of the ventricular and atrial chambers are presented by deflection
of the ECG signal. All these deflections are denoted by alphabetic order (P-QRS-
T). Letter P indicates the atrial depolarisation, and the ventricular depolarisation is
represented by QRS complex. The ventricular repolarisation is represented by T-
wave. The atrial repolarisation appears during the QRS complex and generates a
very low amplitude signal which cannot be uncovered from a normal ECG signal.

10.4.1 Differentiating the P-, QRS- and T-waves

Sequential activation, depolarisation, and repolarisation are deflected distinctly in
the ECG due to anatomical difference of the atria and ventricles. Even all sequences
are easily distinguishable when they are not in a correct sequence: P-QRS-T. The
QRS-complex is easily identifiable between P- and T-waves because it has char-
acteristic waveform and dominating amplitude. This amplitude is about 1000 µm
in a normal heart and can be much greater in the ventricular hypertrophy. Nor-
mal duration of the QRS-complex is 80–90 ms. In case of non-existence of the
atrial hypertrophy; an amplitude and duration of the P-wave are about 100 µm and
100 ms, respectively. The T-wave has about twice of the amplitude and duration of
the P-wave. The T-wave can be differentiated from the P-wave by observing that the
T-wave follows the QRS-complex after about 200 ms. In the ECG signal several pa-
rameters are used to evaluate the conditions of a patient’s heart from the ECG. The
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Fig. 10.1 A typical one-cycle ECG tracing

parameters are: PR-interval, P-wave, QRS duration, Q-wave, R-wave, ST-segment,
T-wave, Axis, QT-interval. All these parameters have several characteristics that are
used for diagnosis.

10.5 Formal Development of the ECG Interpretation

10.5.1 Abstract Model: Assessing Rhythm and Rate

We begin by defining the Event-B context. The context uses sets and constants
to define axioms and theorems. Axioms and theorems represent the logical the-
ory of a system. The logical theory is the static properties and properties of the
target system. In the context, we define constants LEADS, HState and YesNo-
State that are related to an enumerated set of the ECG leads, normal and abnor-
mal states of the heart and yes-no states, respectively. These constants are ex-
tracted from the ECG interpretation protocol [9, 10, 13, 16]. The standard 12-
lead electrocardiogram is a representation of the heart’s electrical activity recorded
from electrodes on the body surface. A set of leads is represented as LEADS =
{I, II, III,aVR,aVL,aVF,V 1,V 2,V 3,V 4,V 5,V 6}. Normal and abnormal states
of the heart are represented by HState = {OK,KO} and yes-no states are represented
by YesNoState = {Yes,No}. Figure 10.2 depicts an incremental formal development
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Fig. 10.2 ECG interpretation
protocols refinements

of the ECG interpretation protocol. In our development process, some refinements
are decomposed into several refinements for the simplicity. Every refinement level
introduces a diagnosis criteria for different components of the ECG signal, and each
new criteria helps to analyse a particular set of diseases. A particular set of diseases
is introduced in the multiple context related to each refinement.

Figure 10.3 shows an abstract representation of a diagnostic-based system devel-
opment, where a root node (top circle in Fig. 10.3) represents a set of conditions for
testing any particular disease abstractly. The possible abstract outcomes of a diag-
nosis criterion are in form of OK and KO, which are represented by two branches.
The KO represents that the diagnosis criteria have found some conditions for fur-
ther testing, while the OK represents the absence of any disease. The dash line of
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Fig. 10.3 Abstract
representation

circles and arrows represent the next level of refinement for further analysing of any
particular diseases according to the guidelines and protocol.

Our abstract Event-B model of the ECG interpretation protocol assesses the
rhythm and heart rate to distinguish between normal and abnormal heart. Fig-
ure 10.4 presents a basic diagram of the ECG analysis at an abstract level according
to the standard procedure of the ECG protocol analysis. The specification consists
of just three-state variables (inv1–int3) Sinus, Heart_Rate and Heart_State. The Si-
nus variable is represented by YesNoState as enumerated sets. The last two variables
Heart_Rate and Heart_State are introduced as to show the heart rate limit and heart
states. One possible approach is to introduce a set of variables (RR_Int_equidistant,
PP_Int_equidistant, P_Positive, PP_Interval and RR_Interval) representing total
functions mapping leads (LEADS) to a standard data type (BOOL, N) in invariants
(inv4–inv8). The RR and PP equidistant intervals in the ECG signal are represented
by variables RR_Int_equidistant and PP_Int_equidistant as the total functions from
LEADS to BOOL. The RR_Int_equidistant and PP_Int_equidistant are functions,
which represent RR and PP equidistant interval’s states in a boolean form. A vari-
able P_Positive represents a positive wave of the signal also as a total function from
LEADS to BOOL. The P_Positive function is used to show the positive visualisation
of the P-waves. The next variables PP and RR intervals in the ECG signal are rep-
resented by the variables PP_Interval and RR_Interval as the total functions from

Fig. 10.4 Basic diagram of assessing rhythm and rate (adapted from [16])



10.5 Formal Development of the ECG Interpretation 253

LEADS to N. The PP_Interval and RR_Interval functions are used to calculate the
PP and RR-intervals.

inv1 : Sinus ∈ YesNoState
inv2 : Heart_Rate ∈ 1 .. 300
inv3 : Heart_State ∈ HState
inv4 : RR_Int_equidistant ∈ LEADS → BOOL
inv5 : PP_Int_equidistant ∈ LEADS → BOOL
inv6 : P _Positive ∈ LEADS → BOOL
inv7 : PP_Interval ∈ LEADS →N

inv8 : RR_Interval ∈ LEADS →N

inv9 : P _Positive(II) = FALSE ⇒ Sinus = No
inv10 : ((∀l · l ∈ {II,V 1,V 2}

⇒
PP_Int_equidistant(l) = FALSE ∨
RR_Int_equidistant(l) = FALSE ∨
RR_Interval(l) �= PP_Interval(l))
∨
P _Positive(II) = FALSE) ⇒ Sinus = No

inv11 : Sinus = Yes ⇒ ((∃l · l ∈ {II,V 1,V 2} ∧
PP_Int_equidistant(l) = TRUE ∧
RR_Int_equidistant(l) = TRUE ∧
RR_Interval(l) = PP_Interval(l))
∧
P _Positive(II) = TRUE)

inv12 : Heart_Rate ∈ 60 .. 100 ∧ Sinus = Yes
⇒
Heart_State = OK

inv13 : Heart_Rate ∈ 1 .. 300 \ 60 .. 100 ∧ Sinus = Yes
⇒
Heart_State = KO

inv14 : Heart_Rate ∈ 60 .. 100 ∧ Sinus = No
⇒
Heart_State = KO

A set of invariants (inv9–inv14) represents the safety properties, and these are
used to verify the required conditions for the ECG interpretation protocol using all
possible behaviour of the heart system and analysis of the signal features, which
are collected from the ECG signals. All these safety properties are designed un-
der the supervision of cardiologist experts to verify the correctness of the formal
model. These invariants in form of safety properties are extracted from the original
protocol.

The invariant (inv9) states that if positive visualisation of the P-wave is FALSE,
then there is no sinus rhythm. According to the clinical document, lead II is best
for visualisation of the P-waves to determine the presence of sinus rhythm. The
next invariant (inv10) is stronger invariant to identify the non-existence of the si-
nus rhythm. This invariant states that if the PP intervals (PP_Int_equidistant) or
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RR intervals (RR_Int_equidistant) is not equidistant (FALSE), or the RR inter-
vals (RR_Interval) and PP intervals (PP_Interval) are not equivalent, in all leads
(II, V1, V2), or positive visualisation of the P-wave in lead II is FALSE, then there
is no sinus rhythm. Similarly, next invariant (inv11) confirms, if the rhythm is sinus,
then the PP intervals (PP_Int_equidistant) and RR intervals (RR_Int_equidistant)
are equidistant, and the RR intervals (RR_Interval) and PP intervals (PP_Interval)
are equal, exist in any leads (II, V1, V2), and the P-wave is positive in lead II. The
invariant (inv12) represents that if the heart rate (Heart_Rate) is belonging between
60–100 bpm and the sinus rhythm is Yes, then the Heart_State is OK. The next two
invariants (inv13–inv14) represent KO state of the Heart, mean the heart has any
disease. The invariant (inv13) states that if the heart rate (Heart_Rate) is belonging
between less than 60 bpm and greater than 100 bpm but less than 300 bpm, and
the sinus rhythm is Yes, then the heart state (Heart_State) is KO. Similarly, the last
invariant (inv14) represents that if the heart rate (Heart_Rate) is in between 60–
100 bpm and the sinus rhythm is No, then the Heart_State is KO, means heart has
any disease.

Three significant events Rhythm_test_TRUE, Rhythm_test_FALSE and Rhythm_
test_TRUE_abRate are introduced in the abstract model. The Rhythm_test_TRUE
represents successful ECG testing and found the sinus rhythm Yes and the heart
state is OK. The next event Rhythm_test_FALSE represents successful ECG test-
ing and found the sinus rhythm is No and the heart state is KO. Third event
Rhythm_test_TRUE_abRate represents successful ECG testing and found the sinus
rhythm is Yes and the heart state is KO due to abnormal heart rate. These events are
the abstract events, which are equivalent to the first step of diagnosis of the ECG
signal of the original protocol. We have taken some assumptions for modelling the
medical protocol. These assumptions are extracted from the original protocol. In our
formal model, all invariants and assumptions are verified with the medical experts.
Our developed formal models are always complied with existing original proto-
cols.

Mostly, events are used to test the criteria of possible disease using the ECG fea-
tures. The criteria for testing the sinus rhythm is to focus on leads V1, V2, and II.
The leads V1 and II are best for visualisation of the P-waves to determine the pres-
ence of the sinus rhythm or an arrhythmia, and the V1 and V2 are best to observe for
the bundle branch block. If the P-waves are not clearly visible in V1, assess them in
lead II, which usually shows well-formed P-waves [16]. Identification of the P-wave
and then the RR intervals allow the interpreter to discover immediately whether the
rhythm is sinus or other and to take the following steps:

• Confirm, if the rhythm is sinus, that the RR intervals are equidistant, that the P-
wave is positive in lead II, and that the PP intervals are equidistant and equal to
the RR interval.

• Do an arrhythmia assessment if the rhythm is abnormal.
• Determine the heart rate.
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EVENT Rhythm_test_TRUE
ANY rate
WHERE

grd1 : (∃l · l ∈ {II,V 1,V 2} ∧ PP_Int_equidistant(l) = TRUE ∧
RR_Int_equidistant(l) = TRUE ∧
RR_Interval(l) = PP_Interval(l)) ∧
P _Positive(II) = TRUE

grd2 : rate ∈ 60 .. 100
THEN

act1 : Sinus := Yes
act2 : Heart_Rate := rate
act3 : Heart_State := OK

END

EVENT Rhythm_test_FALSE
ANY rate
WHERE

grd1 : (∀l · l ∈ {II,V 1,V 2} ⇒ PP_Int_equidistant(l) = FALSE
∨ RR_Int_equidistant(l) = FALSE ∨
RR_Interval(l) �= PP_Interval(l)) ∨
P _Positive(II) = FALSE

grd2 : rate ∈ 1 .. 300
THEN

act1 : Sinus := No
act2 : Heart_Rate := rate
act3 : Heart_State := KO

END

EVENT Rhythm_test_TRUE_abRate
ANY rate
WHERE

grd1 : (∃l · l ∈ {II,V 1,V 2} ∧ PP_Int_equidistant(l) = TRUE ∧
RR_Int_equidistant(l) = TRUE ∧
RR_Interval(l) = PP_Interval(l)) ∧
P _Positive(II) = TRUE

grd2 : rate ∈ 1 .. 300 \ 60 .. 100
THEN

act1 : Sinus := Yes
act2 : Heart_Rate := rate
act3 : Heart_State := KO

END

In the abstract model, we have seen that the sinus rhythm and heart rate are intro-
duced for the ECG interpretation in a single atomic step. This provides for a clear
and simple specification of the essence of the basic ECG interpretation protocol and
predicts the heart state (OK or KO). However, in the real protocol, the ECG interpre-
tation and heart state prediction is not atomic. Instead, the ECG interpretation and
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prediction are also encountered lots of diagnosis to find the various kinds of heart
diseases.

This section describes the abstract model of the ECG interpretation protocol.
Every level of refinement introduces new context file for adding static properties of
the system and list of heart diseases after introducing certain protocol of the ECG
interpretation. Every refinement level is used to introduce a new set of diagnosis
criteria to test the ECG signals. The following sections presents a sufficient detail
information of the remaining refinement stages helping a reader to understand the
rational of each refinement stage for formalising the ECG interpretation protocol.

10.5.2 First Refinement: Assess Intervals and Blocks

In an abnormal ECG signal, all the ECG features are varying according to the symp-
toms of heart diseases. We formalise the ECG interpretation protocol using an incre-
mental approach, where we determine all features of the ECG signal. This level of
refinement determines the PR- and QRS-intervals for the ECG interpretation. These
intervals classify different kinds of the heart diseases.

Invariants (inv1–inv3) represent a set of new introduced variables in the refine-
ment for expressing formalisation of the ECG interpretation protocol. These vari-
ables are PR_Int, Disease_step2, QRS_Int. Other variables (M_Shape_Complex,
Slurred_S, Notched_R, Small_R_QS and Slurred_S_duration) are introduced as
total functions in invariants (inv4–inv8) where total functions are mapping from
leads (LEADS) to BOOL and N1, respectively. The function M_Shape_Complex
returns existence of M-shape complex from the ECG signals in form of TRUE or
FALSE. The function Slurred_S represents Slurred S-wave, the function Notched_R
represents notched R-wave and the function Small_R_QS represents small R- or
QS-waves, in boolean type. The function Slurred_S_duration is used to calculate
Slurred-S duration.

A set of invariants (inv9–inv14) presents safety properties to validate formal rep-
resentation of the ECG interpretation protocol. All these properties are derived from
the original protocol to verify the correctness and consistency of the system. These
properties are formulated through logic experts as well as cardiologist experts ac-
cording to the original protocol. The main advantage of this technique is that if
any property does not hold by the model, then it helps to find anomalies or to find
missing parts of the model such as required conditions and parameters.

Invariants (inv9–inv13) represent an abnormal state of the heart (KO) to identify
any disease and unsatisfying condition for features of the ECG signal, in the formal
diagnosis process. While the last invariant (inv14) presents all the required proper-
ties for a normal heart. It states that if the heart rate is in between 60 to 100 bpm,
the sinus rhythm is Yes, the PR interval is less than or equal to 200 ms and the QRS
interval is less than 120 ms, then the heart state is OK.
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inv1 : PR_Int ∈ 120 .. 250
inv2 : Disease_step2 ∈ Disease_Codes_Step2
inv3 : QRS_Int ∈ 50 .. 150
inv4 : M_Shape_Complex ∈ LEADS → BOOL
inv5 : Slurred_S ∈ LEADS → BOOL
inv6 : Notched_R ∈ LEADS → BOOL
inv7 : Small_R_QS ∈ LEADS → BOOL
inv8 : Slurred_S_duration ∈ LEADS →N1
inv9 : Sinus = Yes ∧ PR_Int > 200 ∧ Disease_step2 = First_degree_AV _Block

⇒
Heart_State = KO

inv10 : Sinus = Yes ∧ QRS_Int ≥ 120 ∧ Disease_step2 ∈ {LBBB,RBBB}
⇒
Heart_State = KO

inv11 : Sinus = Yes ∧ Disease_step2 = First_degree_AV_Block
⇒
Heart_State = KO

inv12 : Sinus = Yes ∧ Disease_step2 = LBBB
⇒
Heart_State = KO

inv13 : Sinus = Yes ∧ Disease_step2 = RBBB
⇒
Heart_State = KO

inv14 : Heart_Rate ∈ 60 .. 100 ∧ Sinus = Yes ∧ PR_Int ≤ 200 ∧ QRS_Int < 120
⇒
Heart_State = OK

To express formal logic for a new set of diagnoses for the ECG signal, we in-
troduce three events PR_Test, QRS_Test_LBBB and QRS_Test_RBBB. The PR_Test
interval represents, if the PR intervals are abnormal (>200 ms), then consider the
first-degree atrioventricular (AV) block. The next two events QRS_Test_LBBB and
QRS_Test_RBBB are used to assess the QRS duration for the bundle branch block
and states that, if the QRS interval is ≥120 ms, the bundle branch block is present.
Understanding the genesis of the QRS complex is an essential step and clarifies the
ECG manifestations of bundle branch blocks [16]. We formalise the basic criteria to
distinguish between RBBB and LBBB in the diagnosis process.

Left Bundle Branch Block (LBBB)

• QRS duration ≥120 ms.
• A small R- or QS-wave in V1 and V2.
• A notched R-wave in leads I, V5, and V6.

Right Bundle Branch Block (RBBB)

• QRS duration ≥120 ms.
• M-shaped complex in V1 and V2.
• Slurred S-wave in leads 1, V5, V6; and an S-wave that is of greater amplitude

(length) than the preceding R-wave.
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Right Bundle Branch Block (RBBB)

• QRS duration ≥120 ms.
• M-shaped complex in V1 and V2.
• Slurred S-wave in leads I, V5, V6; and an S-wave that is of greater amplitude

(length) than the preceding R-wave.

The event PR_Test is used to capture the PR interval in the ECG signal, and to
assess the first degree AV block. A set of guards of this event states that the current
PR interval is within the range of 120 ms to 220 ms, and it is greater than 200 ms,
sinus rhythm is Yes, and the heart is in abnormal state.

EVENT PR_Test
ANY pr
WHERE

grd1 : pr ∈ 120 .. 220
grd2 : pr > 200
grd3 : Sinus = Yes
grd4 : Heart_State = KO

THEN
act1 : PR_Int := pr
act2 : Disease_step2 := First_degree_AV_Block

END

The event QRS_Test_LBBB is used to diagnose left bundle branch block through
testing of QRS-wave. This event refines QRS_Test. The guards of this event state
that the current QRS interval is within the range of 50 ms to 150 ms, and it is greater
than or equal to 120 ms, sinus rhythm is Yes, the heart is in abnormal state, notched
R-wave is TRUE in leads (I, V5, and V6), and small R- or QS-wave is TRUE in
leads V1 and V2.

EVENT QRS_Test_LBBB Refines QRS_Test
ANY qrs
WHERE

grd1 : qrs ∈ 50 .. 150
grd2 : qrs ≥ 120
grd3 : Sinus = Yes
grd4 : Heart_State = KO
grd5 : Notched_R(I) = TRUE ∧ Notched_R(V 5) = TRUE ∧

Notched_R(V 6) = TRUE
grd6 : Small_R_QS(V 1) = TRUE ∧ Small_R_QS(V 2) = TRUE

THEN
act1 : QRS_Int := qrs
act2 : Disease_step2 := LBBB

END
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The event QRS_Test_RBBB refines QRS_Test that is used to diagnose right bun-
dle branch block through the testing of QRS-wave. The guards of this event state that
the current QRS interval is within the range of 50 ms to 150 ms, and it is greater
than or equal to 120 ms, sinus rhythm is Yes, the heart is in abnormal state, M-shaped
complex is TRUE in leads (V1 and V2), slurred S-wave is TRUE in leads I, V5 and
V6, and slurred S-wave duration is greater than 40 ms in leads I, V5, and V6.

EVENT QRS_Test_RBBB Refines QRS_Test
ANY qrs
WHERE

grd1 : qrs ∈ 50 .. 150
grd2 : qrs ≥ 120
grd3 : Sinus = Yes
grd4 : Heart_State = KO
grd5 : M_Shape_Complex(V 1) = TRUE ∧

M_Shape_Complex(V 2) = TRUE
grd6 : Slurred_S(I) = TRUE ∧ Slurred_S(V 5) = TRUE ∧

Slurred_S(V 6) = TRUE∧
grd7 : Slurred_S_duration(I ) > 40 ∧ Slurred_S_duration(V 5) > 40 ∧

Slurred_S_duration(V 6) > 40
THEN

act1 : QRS_Int := qrs
act2 : Disvease_step2 := RBBB

END

10.5.3 Second Refinement: Assess for Nonspecific Intraventricular
Conduction Delay and Wolff-Parkinson-White Syndrome

This level of refinement of the ECG interpretation assesses for nonspecific intraven-
tricular conduction delay (IVCD) and Wolff-Parkinson-White (WPW) syndrome.
The WPW syndrome may mimic an inferior MI (see in further refinements). If
the WPW syndrome, RBBB, or LBBB is not present, interpret as nonspecific in-
traventricular conduction delay (IVCD) and assess for the presence of electronic
pacing [16]. Some new variables (Delta_Wave and Disease_step3) are introduced
in this refinement to assess atypical right bundle branch block using ECG signal.
Two invariants (inv3–inv4) are used to declare new variables in form of the total
functions mapping leads (LEADS) to BOOL. These functions are used to calculate
the ST-segment elevation and epsilon wave, respectively. Invariants (inv5–inv8) rep-
resent an abnormal state of the heart (KO) when the sinus rhythm is Yes and any
new particular disease is found in this refinement. All these properties are derived
from the original protocol to verify the correctness and consistency of the system
according to the cardiologist.
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inv1 : Delta_Wave ∈ N

inv2 : Disease_step3 ∈ Disease_Codes_Step3
inv3 : ST_elevation ∈ LEADS → BOOL
inv4 : Epsilon_Wave ∈ LEADS → BOOL
inv5 : Sinus = Yes ∧ Disease_step3 = WPW_Syndrome

⇒
Heart_State = KO

inv6 : Sinus = Yes ∧ Disease_step3 = Brugada_Syndrome
⇒
Heart_State = KO

inv7 : Sinus = Yes ∧ Disease_step3 = RV_Dysplasia
⇒
Heart_State = KO

inv8 : Sinus = Yes ∧ Disease_step3 = IVCD
⇒
Heart_State = KO

We have introduced four events QRS_Test_Atypical_RLBBB_WPW_Syndrome,
QRS_Test_Atypical_RBBB_Brugada_Syndrome, QRS_Test_Atypical_RBBB_RV_
Dysplasia and QRS_Test_Atypical_RBBB_IVCD to interpret atypical right bundle
branch block using QRS interval. The basic rules for assessing the ECG signal in
this refinement are given as follows:

• If the QRS duration is prolonged ≥110 ms and bundle branch block appears to
be present but is atypical, consider WPW syndrome, particularly if there is a tall
R-wave in leads V1 and V2.

• Assess for a short PR interval ≤120 ms and for a delta wave.

The event QRS_Test_Atypical_RLBBB_WPW_Syndrome is used to identify a dis-
ease WPM Syndrome, where a set of required conditions for diagnosis purpose is
given in form of guard predicates. The guards of this event state that the QRS in-
terval is greater than or equal to 110 ms, already symptoms of RBBB or LBBB is
identified, summation of delta wave and PR interval is less than or equal to 120 ms,
and the heart is in abnormal state (KO).

EVENT QRS_Test_Atypical_RLBBB_WPW_Syndrome
ANY sympt, d_wave
WHERE

grd1 : QRS_Int ≥ 110
grd2 : sympt = A_RBBB ∨ sympt = A_LBBB
grd3 : d_wave ∈ N

grd4 : d_wave + PR_Int) ≤ 120
grd5 : Heart_State = KO

THEN
act1 : Delta_Wave := d_wave
act2 : Disease_step3 := WPW_Syndrome

END
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The next event QRS_Test_Atypical_RBBB_Brugada_Syndrome is used to trace
the symptoms of Brugada Syndrome. The guards of this event presents that the
heart is in state of Atypical RBBB, QRS interval is greater than or equal to 110 ms,
slurred S-wave is FALSE in leads V5 and V6, the heart has not the symptoms of
WPW syndrome and the possibility of any other diseases, ST elevation is TRUE in
leads V1 and V2, and the sinus rhythm is Yes.

EVENT QRS_Test_Atypical_RBBB_Brugada_Syndrome
ANY sympt,dis
WHERE

grd1 : sympt = A_RBBB
grd2 : QRS_Int ≥ 110
grd3 : Slurred_S(V 5) = FALSE ∧ Slurred_S(V 6) = FALSE
grd4 : dis ∈ Disease_Codes_Step3 \ {WPW_Syndrome,NDS3}
grd5 : ST_elevation(V 1) = TRUE ∧ ST_elevation(V 2) = TRUE
grd6 : Sinus = Yes

THEN
act1 : Disease_step3 := Brugada_Syndrome

END

The event QRS_Test_Atypical_RBBB_RV_Dysplasia captures the diagnosis pro-
cess for Right Ventricular Dysplasia (RV Dysplasia), where a set of guards ex-
plores the required symptoms using predicates. These predicates express that the
heart is in state of Atypical RBBB, QRS interval is greater than or equal to
110 ms, the heart has not the symptoms of WPW syndrome, Brugada Syndrome
and the possibility of any other diseases, and epsilon wave is TRUE in leads V1
and V3.

EVENT QRS_Test_Atypical_RBBB_RV_Dysplasia
ANY sympt,dis
WHERE

grd1 : sympt = A_RBBB
grd2 : QRS_Int ≥ 110
grd3 : dis ∈ Disease_Codes_Step3 \ {WPW_Syndrome,

Brugada_Syndrome,NDS3}
grd4 : Epsilon_Wave(V 1) = TRUE ∧ Epsilon_Wave(V 3) = TRUE

THEN
act1 : Disease_step3 := RV_Dysplasia

END

The event QRS_Test_Atypical_RBBB_IVCD captures the essential conditions to
determine the IVCD. A set of guards of this event describes that QRS interval is
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greater than or equal to 110 ms, the heart has not the symptoms of WPW syndrome,
Brugada Syndrome, RV Dysplasia, and the possibility of any other disease.

EVENT QRS_Test_Atypical_RBBB_IVCD
ANY dis
WHERE

grd1 : QRS_Int ≥ 110
grd2 : dis ∈ Disease_Codes_Step3 \ {WPW_Syndrome,

Brugada_Syndrome,RV_Dysplasia,NDS3}
THEN

act1 : Disease_step3 := IVCD
END

10.5.4 Third Refinement: Assess for ST-segment Elevation or
Depression

This refinement provides a criterion for the ST-segments assessment by introduc-
ing some new variables (ST_seg_ele and ST_depression) in form of total functions
mapping leads (LEADS) to N in invariants (inv2–inv3). The ST-segment for eleva-
tion and ST depression features are calculated by the ST_seg_ele and ST_depression
functions. Invariants (inv4–inv8) are introduced for representing the safety proper-
ties to confirm an abnormal state of the heart (KO) when sinus rhythm is Yes and a
new disease is found in this refinement.

inv1 : Disease_step4 ∈ Disease_Codes_Step4
inv2 : ST_seg_ele ∈ LEADS →N

inv3 : ST_depression ∈ LEADS →N

inv4 : Sinus = Yes ∧ Disease_step4 ∈ {Acute_inferior_MI,
Acute_anterior_MI⇒
Heart_State = KO

inv5 : Sinus = Yes ∧ Disease_step4 = STEMI
⇒
Heart_State = KO

inv6 : Sinus = Yes ∧ Disease_step4 ∈ {Troponin,CK_MB}
⇒
Heart_State = KO

inv7 : Sinus = Yes ∧ Disease_step4 = Non_STEMI
⇒
Heart_State = KO

inv8 : Sinus = Yes ∧ Disease_step4 = Ischemia
⇒
Heart_State = KO

Four new events ST_seg_elevation_YES, ST_seg_elevation_NOTCKMB_Yes,
ST_seg_elevation_NO_TCKMB_No and Acute_IA_MI are defined to cover diag-
nosis related to the ECG signals. All these events are used to interpret about the
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ECG signal using ST-segment elevation or depression features [16]. To assess the
ST-segments elevation or depression; we have formalised the following the textual
criteria:

• Focus on the ST-segment for elevation or depression. ST-elevation ≥1000 µm
(0.1 mV) in two or more contiguous ECG leads in a patient with chest pain indi-
cates ST elevation MI (STEMI). The diagnosis is strengthened if there is recipro-
cal depression.

• ST-elevation in leads II, III, and aVF, with marked reciprocal depression in leads
I and aVL, diagnostic of acute inferior MI.

• ST-segment elevation in V1 through V5, caused by extensive acute anterior
MI.

• The ECG of a patient with a subtotal occlusion of the left main coronary artery.
Note the ST elevation in aVR is greater than the ST elevation in V1, a recently
identified marker of left main coronary disease.

• Features of non-ST-elevation MI (non-Q-wave MI).
• Elevation of the ST-segment may occur as a normal variant and ST-segment ab-

normalities and MI.

These textual sentences are formulated in the incremental development of our
ECG protocol. This refinement advises scrutiny of the ST-segment before assess-
ment of the T-waves, electrical axis, QT interval, and hypertrophy because the diag-
nosis of acute MI or ischemia is vital and depends on careful assessment of the
ST-segment. Above given criteria are more complex and too ambiguous to rep-
resent. Therefore, we have formalised this part through careful cross reading of
many reliable sources such as literature and encounter suggestions of the medical
experts.

The event ST_seg_elevation_YES presents a diagnoses process for the ST Ele-
vation Myocardial Infarction (STMEI). A set of guard predicates characterised the
heart state and shows that the sinus rhythm is Yes, the ST elevation is TRUE and
the length of ST segment elevation is greater than or equal to 1000 µm in two or
more leads (II, III, aVF), or the ST elevation is TRUE and the length of ST seg-
ment elevation is greater than or equal to 1000 µm in two or more contiguous pre-
cordial leads V1 to V6, and disease must be Acute anterior MI or Acute inferior
MI.

EVENT ST_seg_elevation_YES
WHEN

grd1 : Sinus = Yes
grd2 : (∃l, k · l ∈ {II, III,aVF} ∧ k ∈ {II, III,aVF}∧

(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
(ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∧l �= k)
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∨
((∃l1, k1 · l1 ∈ {V 1,V 2,V 3,V 4,V 5,V 6} ∧ k1 ∈ {V 1,V 2,V 3,V 4,V 5,V 6}∧
(ST_elevation(l1) = TRUE ∧ ST_elevation(k1) = TRUE)

∧
(ST_seg_ele(l1) ≥ 1000 ∧ ST_seg_ele(k1) ≥ 1000)

∧l1 �= k1
∧
(

(l1 = V 1 ∧ k1 = V 2)∨
(l1 = V 2 ∧ k1 = V 3)∨
(l1 = V 3 ∧ k1 = V 4)∨
(l1 = V 4 ∧ k1 = V 5)∨
(l1 = V 5 ∧ k1 = V 6)

)

))

grd3 : Disease_step4 ∈ {Acute_inferior_MI,Acute_anterior_MI}
THEN

act1 : Disease_step4 := STEMI
END

The event ST_seg_elevation_NOTCKMB_Yes is used to trace the symptoms of
the Non-ST Elevation Myocardial Infarction (Non-STMEI). A set of guard predi-
cates characterised the heart state and shows that the sinus rhythm is Yes, ST ele-
vation is TRUE and the length of ST segment elevation is greater than or equal to
1000 µm in anyone lead (II, III, aVF), or the ST elevation is FALSE and the length
of ST segment elevation is less than 1000 µm in all leads (II, III, aVF), the ST de-
pression is greater than or equal to 1000 µm in two or more leads (LEADS), and
disease must be Troponin, CK-MB.

EVENT ST_seg_elevation_NOTCKMB_Yes Refines ST_seg_elevation_NO
WHEN

grd1 : Sinus = Yes
grd2 : (∃l, k · l ∈ {II, III,aVF} ∧ k ∈ {II, III,aVF}∧

(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
(ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∧l = k)

∨
(∀l1 · l1 ∈ {II, III,aVF}⇒
(ST_elevation(l1) = FALSE ∧ ST_seg_ele(l1) < 1000))

grd3 : ∃l, k · l ∈ LEADS ∧ k ∈ LEADS∧
(ST_depression(l) ≥ 1000 ∧ ST_depression(k) ≥ 1000)

∧l �= k

grd4 : Disease_step4 ∈ {Troponin,CK_MB}
THEN

act1 : Disease_step4 := Non_STEMI
END

The event ST_seg_elevation_NO_TCKMB_No captures the essential conditions
to determine the ischemia. A set of guards of this event describes that the sinus
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rhythm is Yes, the ST elevation is TRUE and the length of ST segment elevation is
greater than or equal to 1000 µm in anyone lead (II, III, aVF), or the ST elevation is
FALSE and the length of ST segment elevation is less than 1000 µm in all leads (II,
III, aVF), ST depression is greater than or equal to 1000 µm in two or more leads
(LEADS), and disease must be Troponin, CK-MB.

EVENT ST_seg_elevation_NO_TCKMB_No Refines ST_seg_elevation_NO
WHEN

grd1 : Sinus = Yes
grd2 : (∃l, k · l ∈ {II, III,aVF} ∧ k ∈ {II, III,aVF}∧

(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
(ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∧l = k)

∨
(∀l1 · l1 ∈ {II, III,aVF}⇒
(ST_elevation(l1) = FALSE ∧ ST_seg_ele(l1) < 1000))

grd3 : ∃l, k · l ∈ LEADS ∧ k ∈ LEADS∧
(ST_depression(l) ≥ 1000 ∧ ST_depression(k) ≥ 1000)

∧l �= k

grd4 : Disease_step4 /∈ {Troponin,CK_MB}
THEN

act1 : Disease_step4 := Ischemia
END

The event Acute_IA_MI presents a diagnoses process for the Acute inferior MI
and Acute anterior MI. A set of guard predicates characterised the heart state and
shows that the sinus rhythm is Yes, the ST elevation is TRUE and the length of ST
segment elevation is greater than or equal to 1000 µm in two or more leads (II, III,
aVF), or the ST elevation is TRUE and the length of ST segment elevation is greater
than or equal to 1000 µm in two or more contiguous pre-cordial leads V1 to V6.

EVENT Acute_IA_MI
WHEN

grd1 : Sinus = Yes
grd2 : (∃l, k · l ∈ {II, III,aVF} ∧ k ∈ {II, III,aVF}∧

(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
(ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∧l �= k)

∨
((∃l1, k1 · l1 ∈ {V 1,V 2,V 3,V 4,V 5,V 6} ∧ k1 ∈ {V 1,V 2,V 3,V 4,V 5,V 6}∧
(ST_elevation(l1) = TRUE ∧ ST_elevation(k1) = TRUE)

∧
(ST_seg_ele(l1) ≥ 1000 ∧ ST_seg_ele(k1) ≥ 1000)

∧l1 �= k1
∧
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(

(l1 = V 1 ∧ k1 = V 2)∨
(l1 = V 2 ∧ k1 = V 3)∨
(l1 = V 3 ∧ k1 = V 4)∨
(l1 = V 4 ∧ k1 = V 5)∨
(l1 = V 5 ∧ k1 = V 6)

)

))

THEN
act1 : Disease_step4 :∈ {Acute_inferior_MI,Acute_anterior_MI}

END

10.5.5 Fourth Refinement: Assess for Pathologic Q-wave

This refinement only introduces new guidelines to interpret Q-wave feature of the
ECG signal and assessment-related diseases to the Q-wave and R-wave [16]. Some
new variables are represented by a set of invariants (inv1–inv2) to handle the re-
quired features of the Q-wave and R-wave to diagnose the ECG signal. The func-
tions Q_Normal_Status and R_Normal_Status represent the normal state of the Q
and R-waves in a boolean type. The next three invariants (inv3–inv5) are used to de-
clare new variables in form of total functions mapping leads (LEADS) to N, and
an invariant (inv6) is also total function mapping leads (LEAD) to BOOL. The
functions Q_Width, Q_Depth and R_Depth calculate the Q-wave width, Q-wave
depth and R-wave depth, respectively. The last function Q_Wave_State represents
the boolean state of the Q-wave for all leads. Two other new variables Age_of_Inf
and Mice_State represent infarction age and miscellaneous states. An enumerated
set of infarction age and miscellaneous states define as Age_of_Infarct = {recent,
indeterminate, old} and Mice_State5 = {Exclude_Mimics_MI, late_transition, nor-
mal_variant, borderline_Qs, NMS}, respectively in the context. The variable Dis-
ease_step5 represents a group of diseases of this refinement level as analysis of the
Q-wave from the ECG signals. Some invariants (inv10–inv13) are introduced as rep-
resenting the safety properties to confirm an abnormal state of the heart (KO). All
invariants have similar form for checking the heart state under the various disease
conditions. These invariants state that if the sinus rhythm is Yes and a new disease
is found, then the heart must be in the abnormal (KO) state.

inv1 : Q_Normal_Status ∈ BOOL
inv2 : R_Normal_Status ∈ BOOL
inv3 : Q_Width ∈ LEADS →N

inv4 : Q_Depth ∈ LEADS →N

inv5 : R_Depth ∈ LEADS →N

inv6 : Q_Wave_State ∈ LEADS → BOOL
inv7 : Age_of _Inf ∈ Age_of _Infarct
inv8 : Mice_State ∈ Mice_State5
inv9 : Disease_step5 ∈ Disease_Codes_Step5
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inv10 : Sinus = Yes ∧ Disease_step4 = Acute_anterior_MI
⇒
Heart_State = KO

inv11 : Sinus = Yes ∧ Disease_step4 = Acute_inferior_MI
⇒
Heart_State = KO

inv12 : Sinus = Yes ∧ Disease_step5 = Hypertrophic_cardiomyopathy
⇒
Heart_State = KO

inv13 : Sinus = Yes ∧ Disease_step5 ∈
{anterior_MI,LVH, emphysema, lateral_MI}
⇒
Heart_State = KO

In this level of refinement, we have introduced nine events (Q_Assessment_
Normal, Q_Assessment_Abnormal_AMI, Q_Assessment_Abnormal_IMI, Deter-
mine_Age_of_Infarct, Exclude_Mimics, R_Assessment_Normal, R_Assessment_
Abnormal, R_Q_Assessment_R_Abnormal_V1234 and R_Q_Assessment_R_Ab-
normal_V56) for assessing the Q-wave and R-wave in all leads of the ECG signals.
We have represented the formal notation of following guidelines, which are used to
assess the Q-wave and the R-wave:

• Assess for the loss of R-waves-pathologic Q-waves in leads I, II, III, aVL, and
aVF.

• Assess for R-wave progression in V2 through V4. The variation in the normal
QRS configuration that occurs with rotation. The R-wave amplitude should mea-
sure from 1000 µm to at least 20000 µm in V3 and V4. Loss of R-waves in V1
through V4 with ST-segment elevation indicates acute anterior MI.

• Loss of R-wave in leads V1 through V3 with the ST-segment isoelectric and the
T-wave inverted may be interpreted as anteroseptal MI age indeterminate (i.e.,
infarction in the recent or distant past). Features are given of old anterior MI and
lateral infarction in this refinement.

Sometimes, R-wave progression in leads V2 through V4 are very poor, may
be caused by the following reasons: improper lead placement, late transition, an-
teroseptal or anteroapical MI, LVH Severe chronic obstructive pulmonary disease,
particularly emphysema may cause QS complexes in leads V1 through V4, which
may mimic MI; a repeat ECG with recording electrodes placed one intercostal
space below the routine locations should cause R-waves to be observed in leads
V2 through V4, Hypertrophic cardiomyopathy, LBBB [16].

The event Q_Assessment_Normal presents a diagnoses process to test the normal
state of the Q-wave. A set of guard predicates of this event shows that the width of
Q-wave is less than 40 ms and the depth of Q-wave is less than or equal to 3000 µm
in leads II and aVF, the width of Q-wave is less than 40 ms in lead aVL, the width of
Q-wave is less than 40 ms and the depth of Q-wave is less than or equal to 7000 µm
in lead III and the width of Q-wave is less than or equal to 7000 µm in lead aVL,
and the depth of Q-wave is less than 40 ms and less than or equal to 1500 µm in
lead I.
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EVENT Q_Assessment_Normal
WHEN

grd1 : Q_Width(II) < 40 ∧ Q_Depth(II) ≤ 3000∧
Q_Width(aVF) < 40 ∧ Q_Depth(aVF) ≤ 3000∧
Q_Width(aVL) < 40

grd2 : Q_Width(III) ≤ 40 ∧ Q_Depth(III) ≤ 7000 ∧ Q_Depth(aVL) ≤ 7000
grd3 : Q_Depth(I ) < 40 ∧ Q_Depth(I ) ≤ 1500

THEN
act1 : Q_Normal_Status := TRUE

END

The event Q_Assessment_Abnormal_AMI is used to identify the Acute_anterior_
MI symptoms of the heart using ECG signal. A list of guards are defined to cover
the conditions of the diagnosis process. These guards express that the sinus rhythm
is Yes, ST elevation is TRUE and the length of ST segment elevation is greater than
or equal to 1000 µm in two or more leads (II, III, aVF), or the ST elevation is TRUE
and the length of ST segment elevation is greater than or equal to 1000 µm in two
or more contiguous pre-cordial leads V1 to V6, the width of Q-wave is greater than
or equal to 40 ms and the depth of Q-wave is greater than or equal to 3000 µm in
leads V5 and V6, the width of Q-wave is greater than or equal to 40 ms and depth
of Q-wave is greater to 7000 µm in lead aVL, the width of Q-wave is greater than
or equal to 40 ms and the depth of Q-wave is greater to 1500 µm in lead I, and the
normal state of the Q-wave is FALSE.

EVENT Q_Assessment_Abnormal_AMI
WHEN

grd1 : Sinus = Yes
grd2 : (∃l, k · l ∈ {II, III,aVF} ∧ k ∈ {II, III,aVF}∧

(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
(ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∧l �= k)

∨
((∃l1, k1 · l1 ∈ {V 1,V 2,V 3,V 4,V 5,V 6} ∧ k1 ∈ {V 1,V 2,V 3,V 4,V 5,V 6}∧
(ST_elevation(l1) = TRUE ∧ ST_elevation(k1) = TRUE)

∧
(ST_seg_ele(l1) ≥ 1000 ∧ ST_seg_ele(k1) ≥ 1000)

∧l1 �= k1
∧
(

(l1 = V 1 ∧ k1 = V 2)∨
(l1 = V 2 ∧ k1 = V 3)∨
(l1 = V 3 ∧ k1 = V 4)∨
(l1 = V 4 ∧ k1 = V 5)∨
(l1 = V 5 ∧ k1 = V 6)

)

))
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grd3 : Q_Width(V 5) ≥ 40 ∧ Q_Depth(V 5) > 3000∧
Q_Width(V 6) ≥ 40 ∧ Q_Depth(V 6) > 3000

grd4 : Q_Width(aVL) ≥ 40 ∧ Q_Depth(aVL) > 7000
grd5 : Q_Width(I ) ≥ 40 ∧ Q_Depth(I ) > 1500
grd6 : Q_Normal_Status = FALSE

THEN
act1 : Disease_step4 := Acute_anterior_MI

END

The event Q_Assessment_Abnormal_IMI is used to characterised the symptoms
of Acute_inferior_MI symptoms. A set of guards are used to satisfy the required
condition for the symptoms of Acute_inferior_MI. A list of guards state that the si-
nus rhythm is Yes, the ST elevation is TRUE and the length of ST segment elevation
is greater than or equal to 1000 µm in two or more leads (II, III, aVF), or the ST
elevation is TRUE and the length of ST segment elevation is greater than or equal
to 1000 µm in two or more contiguous pre-cordial leads V1 to V6, the width of
Q-wave is greater than or equal to 40 ms and the depth of Q-wave is greater than or
equal to 3000 µm in lead II, the width of Q-wave is greater than 40 ms and the depth
of Q-wave is greater than or equal to 7000 µm in lead III, the width of Q-wave is
greater than or equal to 40 ms and the depth of Q-wave is greater to 3000 µm in lead
aVL, and the normal state of the Q-wave is FALSE.

EVENT Q_Assessment_Abnormal_IMI
WHEN

grd1 : Sinus = Yes
grd2 : (∃l, k · l ∈ {II, III,aVF} ∧ k ∈ {II, III,aVF}∧

(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
(ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∧l �= k)

∨
((∃l1, k1 · l1 ∈ {V 1,V 2,V 3,V 4,V 5,V 6} ∧ k1 ∈ {V 1,V 2,V 3,V 4,V 5,V 6}∧
(ST_elevation(l1) = TRUE ∧ ST_elevation(k1) = TRUE)

∧
(ST_seg_ele(l1) ≥ 1000 ∧ ST_seg_ele(k1) ≥ 1000)

∧l1 �= k1
∧
(

(l1 = V 1 ∧ k1 = V 2)∨
(l1 = V 2 ∧ k1 = V 3)∨
(l1 = V 3 ∧ k1 = V 4)∨
(l1 = V 4 ∧ k1 = V 5)∨
(l1 = V 5 ∧ k1 = V 6)

)

))

grd3 : Q_Width(II) ≥ 40 ∧ Q_Depth(II) > 3000∧
Q_Width(III) > 40 ∧ Q_Depth(III) > 7000∧
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Q_Width(aVF) ≥ 40 ∧ Q_Depth(aVF) > 3000
grd4 : Q_Normal_Status = FALSE

THEN
act1 : Disease_step4 := Acute_inferior_MI

END

The event Determine_Age_of_Infarct is used to determine the age of Infarct dur-
ing diagnosis process. The age of Infarct can be in different states as recent, old, and
indeterminate. These states can be determined if the heart disease can be classified
using anyone disease that is given in the guards of the event.

EVENT Determine_Age_of_Infarct
WHEN

grd1 : Disease_step4 = Acute_inferior_MI
∨
Disease_step5 ∈ {anterior_MI,LVH, emphysema}
∨
Mice_State = Exclude_Mimics_MI
∨
Disease_step2 = LBBB

THEN
act1 : Age_of _Inf :∈ {recent,old, indeterminate}

END

The event Exclude_Mimics is used to identify the Hypertrophic cardiomyopathy.
The guards of this event state that the heart has the condition of Acute inferior MI,
and the miscellaneous state of the heart confirms the Exclude Mimics MI.

EVENT Exclude_Mimics
ANY exmi
WHERE

grd1 : Disease_step4 = Acute_inferior_MI
grd2 : exmi ∈ Mice_State5 ∧ exmi = Exclude_Mimics_MI

THEN
act1 : Disease_step5 := Hypertrophic_cardiomyopathy
act2 : Mice_State := borderline_Qs

END

The event R_Assessment_Normal presents a diagnoses process to test the normal
state of the R-wave. A set of guard predicates of this event shows that the depth of
R-wave is greater than or equal to 0 µm and less than or equal to 6000 µm in lead
V1 and age is greater than 30 years, the depth of R-wave is greater than 200 µm and
less than or equal to 12000 µm in lead V2 and age is less than 30, and the depth
of R-wave is greater than or equal to 1000 µm and less than or equal to 24000 µm
in lead V3 and age is greater than 30. Here, the age is relevant to the diagnosis of
myocardial infarction.
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EVENT R_Assessment_Normal
ANY age
WHERE

grd1 : R_Depth(V 1) ≥ 0 ∧ R_Depth(V 1) ≤ 6000 ∧ age > 30
grd2 : R_Depth(V 2) > 200 ∧ R_Depth(V 2) ≤ 12000 ∧ age < 30
grd3 : R_Depth(V 3) ≥ 1000 ∧ R_Depth(V 3) ≤ 24000 ∧ age > 30

THEN
act1 : R_Normal_Status := TRUE

END

The event R_Assessment_Abnormal is used to identify the miscellaneous states
of the heart, when the R-wave of the ECG signal is abnormal.

EVENT R_Assessment_Abnormal
WHEN

grd1 : R_Normal_Status = FALSE
THEN

act1 : Mice_State :∈ {late_transition,normal_variant}
END

The event R_Q_Assessment_R_Abnormal_V1234 is used to determine the ante-
rior MI, LVH and emphysema with miscellaneous state Exclude Mimics MI. A set
guards shows that the normal state of the R-wave is FALSE, the state of Q-wave is
TRUE in leads V1 to V4.

EVENT R_Q_Assessment_R_Abnormal_V1234
WHEN

grd1 : R_Normal_Status = FALSE
grd2 : Q_Wave_State(V 1) = TRUE∧

Q_Wave_State(V 2) = TRUE∧
Q_Wave_State(V 3) = TRUE∧
Q_Wave_State(V 4) = TRUE

THEN
act1 : Disease_step5 :∈ {anterior_MI,LVH, emphysema}
act1 : Mice_State := Exclude_Mimics_MI

END

The event R_Q_Assessment_R_Abnormal_V56 diagnose the lateral MI and Hy-
pertrophic cardiomyopathy. The guards of this event state that the state of Q-wave
is TRUE in leads V5 and V6, and the heart state is in abnormal state (KO).



272 10 Formalisation of Electrocardiogram (ECG)

EVENT R_Q_Assessment_R_Abnormal_V56
WHEN

grd1 : Q_Wave_State(V 5) = TRUE∧
Q_Wave_State(V 6) = TRUE

grd3 : Heart_State = KO
THEN

act1 : Disease_step5 :∈ {lateral_MI,Hypertrophic_cardiomyopathy}
END

10.5.6 Fifth Refinement: P-wave

This refinement level introduces a criterion to assess the P-wave for abnormali-
ties, including the atrial hypertrophy in the ECG signal [16]. A new variable Dis-
ease_step6 is introduced in this refinement to introduce a set of diseases related
to the P-wave. Some new variables are also introduced to assess the P-wave from
12-leads ECG signals, which are represented by inv2–inv4. The first two invariants
introduce new variables in form of total functions mapping from leads (LEADS)
to N. These functions return height and broadness of the P-waves. The next invari-
ant (inv4) represents total function mapping leads (LEADS) to BOOL. It returns
diphasic state in a boolean type. A set of invariants (inv5–inv7) are representing the
confirmation of an abnormal state of the heart (KO). These invariants state that if
the sinus rhythm is Yes and a new disease is found, then the heart will be in an ab-
normal state. The invariant (inv5) is checking for existence of multiple diseases dur-
ing the P-wave diagnosis. Five new events P_Wave_assessment_Peaked_Broad_No,
P_Wave_assessment_Peaked_Yes, P_Wave_assessment_Peaked_Yes_Check_RAE,
P_Wave_assessment_Broad_Yes and P_Wave_assessment_Broad_Yes_Check_LAE
are introduced to assess the P-wave.

inv1 : Disease_step6 ∈ Disease_Codes_Step6
inv2 : P _Wave_Peak ∈ LEADS →N

inv3 : P _Wave_Broad ∈ LEADS →N

inv4 : Diphasic ∈ LEADS → BOOL
inv5 : Sinus = Yes ∧ Disease_step6 ∈

{RVH,RV_strain,pulmonary_embolism,

RAE,mitral_stenosis,mitral_regurgitation,LV_failure,
LAE,dilated_cardiomyopathy,LVH_cause}
⇒
Heart_State = KO

inv6 : Sinus = Yes ∧ Disease_step6 = LAE ⇒ Heart_State = KO
inv7 : Sinus = Yes ∧ Disease_step6 = RAE ⇒ Heart_State = KO

The textual representation of formal notation of the P-wave assessment is given
in [16]. We have formalised all the textual guidelines.

The event P_Wave_assessment_Peaked_Broad_No shows that there is not any
particular condition related to the heart disease under the specified guards. The
guard of this event state that the peak of P-wave is less than 3000 µm in leads II
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and VI, or the broad of P-wave is less than 110 ms in leads II and VI, or the diphasic
is FALSE in lead (II or VI).

EVENT P_Wave_assessment_Peaked_Broad_No
WHEN

grd1 : (P _Wave_Peak(II) < 3000∧
P _Wave_Peak(V 1) < 3000)

∨
(P _Wave_Broad(II) < 110 ∧ P _Wave_Broad(V 1) < 110)∨
Diphasic(II) = FALSE∨
Diphasic(V 1) = FALSE

THEN
act1 : Disease_step6 := NDS6

END

The event P_Wave_assessment_Peaked_Yes is used to assess the heart condition
using ECG signal. The guards of this events state that the peak of P-wave is greater
than or equal to 3000 µm in lead II and VI and the heart is in abnormal state.

EVENT P_Wave_assessment_Peaked_Yes
WHEN

grd1 : P _Wave_Peak(II) ≥ 3000
grd2 : P _Wave_Peak(V 1) ≥ 3000
grd3 : Heart_State = KO

THEN
act1 : Disease_step6 := RAE

END

The event P_Wave_assessment_Peaked_Yes_Check_RAE is used to identify sev-
eral diseases related to the RVH, RV strain, and pulmonary. The guards of this event
are very simple that formalise basic assessment process to discover the disease from
the ECG signal. The guards of this event state that the peak of P-wave is greater than
or equal to 3000 µm in lead II and VI, the heart is in abnormal state and the heart
condition must be equivalent by RAE.

EVENT P_Wave_assessment_Peaked_Yes_Check_RAE
Refines P_Wave_assessment_Peaked_Yes

WHEN
grd1 : P _Wave_Peak(II) ≥ 3000
grd2 : P _Wave_Peak(V 1) ≥ 3000
grd3 : Heart_State = KO
grd4 : Disease_step6 = RAE

THEN
act1 : Disease_step6 :∈ {RVH,RV_strain,pulmonary_embolism}

END
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The event P_Wave_assessment_Broad_Yes is used to trace the heart condition for
the left atrial enlargement (LAE). The guards of this event formalise to assess the
disease from the ECG signal. The guards of this event state that the broad of P-wave
is greater than or equal to 110 ms in leads II and VI, or the diphasic is TRUE in lead
(II or VI), and the heart state is in abnormal state.

EVENT P_Wave_assessment_Broad_Yes
WHEN

grd1 : (P _Wave_Broad(II) ≥ 110 ∧ P _Wave_Broad(V 1) ≥ 110)∨
Diphasic(II) = TRUE∨
Diphasic(V 1) = TRUE

grd2 : Heart_State = KO
THEN

act1 : Disease_step6 := LAE
END

The event P_Wave_assessment_Broad_Yes_Check_LAE is refinement of P_
Wave_assessment_Broad_Yes and it is used to identify the several diseases (mi-
tral stenosis, mitral regurgitation, LV failure, dilated cardiomyopathy, LVH cause).
The guards of this event state that the broad of P-wave is greater than or equal to
110 ms in leads II and VI, or the diphasic is TRUE in lead (II or VI), the heart state
is in abnormal state, and the traced disease be equivalent to LAE.

EVENT P_Wave_assessment_Broad_Yes_Check_LAE
Refines P_Wave_assessment_Broad_Yes

WHEN
grd1 : (P _Wave_Broad(II) ≥ 110 ∧ P _Wave_Broad(V 1) ≥ 110)∨

Diphasic(II) = TRUE∨
Diphasic(V 1) = TRUE

grd2 : Heart_State = KO
grd3 : Disease_step6 = LAE

THEN
act1 : Disease_step6 :∈ {mitral_stenosis,mitral_regurgitation,LV_failure,

dilated_cardiomyopathy,LVH_cause}
END

10.5.7 Sixth Refinement: Assess for Left and Right Ventricular
Hypertrophy

The Left Ventricular Hypertrophy (LVH) and Right Ventricular Hypertrophy (RVH)
are assessed by this refinement. The criteria for LVH and RVH are not applica-
ble if the bundle branch block is present [16]. Thus, it is essential to exclude the
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LBBB and RBBB early in the interpretive sequences as delineated previously in re-
finement 2 and refinement 3. This refinement introduces two new variables S_Depth
and R_S_Ratio in form of total functions mapping leads (LEADS) to N. These func-
tions are used to calculate the S-wave depth and ratio of R-wave and S-wave from
the 12-leads ECG signal.

Invariants (inv3–inv4) are used to verify an abnormal state (KO) of the heart in
case of detecting any disease. Two new events (LVH_Assessment and RVH_Assess-
ment) are introduced to assess the LVH and RVH from the 12-leads ECG. Detailed
textual representation of assessment of the LVH and RVH is given in [16].

inv1 : S_Depth ∈ LEADS →N

inv2 : R_S_Ratio ∈ LEADS →N

inv3 : Sinus = Yes ∧ Disease_step6 = RVH ⇒ Heart_State = KO
inv4 : Sinus = Yes ∧ Disease_step6 = LVH_cause ⇒ Heart_State = KO

The event LVH_Assessment refines P_Wave_assessment_Broad_Yes_Check_
LAE. This event is used to assess the Left Ventricular Hypertrophy (LVH) causes.
A set of guards is used to satisfy the required condition for the symptoms of LVH.
The guards of this event state that the broad of P-wave is greater than or equal to
110 ms in leads II and V1, or the diphasic is TRUE in lead II or V1, through the
previous assessment of the disease indicates that the symptoms of LAE, sex is 0 or
1, where 0 denotes for man and 1 denotes for woman, an addition of the depth of
S-wave in lead V1 and R-wave in lead V5 is greater than 35000 µm or an addition
of depth of S-wave in lead V1 and R-wave in lead V6 is greater than 35000 µm, an
addition of the depth of S-wave in lead aVL and R-wave in lead V1 is greater than
or equal to 24000 µm for a man or 18000 µm for woman, LVH specificity is equal to
90 and sensitivity is less than 40, if the previous assessment of the disease indicates
the symptoms of LAE then LVH specificity should be less than 98, and heart state
is in abnormal state.

EVENT LVH_Assessment Refines P_Wave_assessment_Broad_Yes_Check_LAE
ANY LVH_specificity, sensitivity, sex
WHERE

grd1 : (P _Wave_Broad(II) ≥ 110 ∧ P _Wave_Broad(V 1) ≥ 110)∨
Diphasic(II) = TRUE∨
Diphasic(V 1) = TRUE

grd2 : Disease_step6 = LAE
grd5 : sex ∈ {0,1}
grd3 : ((S_Depth(V 1) + R_Depth(V 5)) > 35000

∨
(S_Depth(V 1) + R_Depth(V 6)) > 35000)

grd4 : ((R_Depth(aVL) + S_Depth(V 1) ≥ 24000) ∧ sex = 0)

∨
((R_Depth(aVL) + S_Depth(V 1) ≥ 18000) ∧ sex = 1)
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grd6 : LVH_specificity = 90
∧
sensitivity < 40

grd7 : Disease_step6 = LAE ⇒ LVH_specificity < 98
grd8 : Heart_State = KO

THEN
act1 : Disease_step6 := LVH_cause

END

The event RVH_Assessment refines P_Wave_assessment_Broad_Yes_Check_
RAE. This event is used to identify the Right Ventricular Hypertrophy RVH. A list
of guards presents the required conditions for the symptoms of RVH. The guards
of this event state that the peak of P-wave is greater than or equal to 3000 µm in
leads II and V1, using previous assessment of the disease indicates the symptoms
of RAE, the depth of R-wave is greater than or equal to 7000 µm and age is greater
than 30 years, the depth of S-wave is greater than or equal to 7000 µm in leads V5
or V6, the ratio of R- and S-wave is greater than or equal to 1 in lead V1, the ratio
of R-wave and S-wave is less than or equal to 1 in lead V5 or V6, angular axis is
greater than or equal to 110 degree, the previous assessment of the disease does not
indicate the symptoms of LBBB or RBBB, QRS interval is less than 120 ms, and
heart state is in abnormal state.

EVENT RVH_Assessment Refines P_Wave_assessment_Peaked_Yes_Check_RAE
ANY age,aixs
WHERE

grd1 : P _Wave_Peak(II) ≥ 3000
grd2 : P _Wave_Peak(V 1) ≥ 3000
grd3 : Disease_step6 = RAE
grd4 : R_Depth(V 1) ≥ 7000 ∧ age > 30
grd5 : S_Depth(V 5) ≥ 7000∨

S_Depth(V 6) ≥ 7000
grd6 : R_S_Ratio(V 1) ≥ 1
grd7 : R_S_Ratio(V 5) ≤ 1

∨
R_S_Ratio(V 6) ≤ 1

grd8 : aixs ∈ 0 .. 360 ∧ aixs ≥ 110
grd9 : Disease_step2 /∈ {LBBB,RBBB}
grd10 : QRS_Int < 120
grd11 : Heart_State = KO

THEN
act1 : Disease_step6 := RVH

END
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10.5.8 Seventh Refinement: Assess T-wave

This refinement is used to assess the pattern of T-wave changes in the 12-leads
ECG signals. The T-wave changes are usually nonspecific [16]. The T-wave inver-
sion associated with the ST-segment depression or elevation indicates myocardial
ischemia. A new variable T_Normal_Status represents as a boolean state like TRUE
is for normal state, and FALSE is for abnormal state. A variable Disease_step8 is
introduced in this refinement to assess a set of diseases related to T-wave from the
ECG signals. Invariants (inv3–inv8) represent variables in form of total functions
mapping leads (LEADS) to possible other attributes (T_State, T_State_B, BOOL, N
and T_State_l_d).

The function T_Wave_State represents the T-wave states like peaked or flat,
or inverted. Similarly, the function T_Wave_State_B also represents the T-wave
states like upright or inverted, or variable using second method of diagnosis of the
T-wave. The function Abnormal_Shaped_ST and Asy_T_Inversion_strain returns
boolean state of the abnormal ST-shape and asymmetric T-wave inversion strain
pattern, respectively. The Function T_inversion calculates deep the T-wave inver-
sion and the last function T_inversion_l_d represents the localised and diffuse T-
inversion.

From inv9 to inv15 represent an abnormal state of the heart due to finding some
diseases. All these invariants are similar to the previous level of refinements. This
refinement is very complex, and we have formalised two alternate diagnosis for
the ECG signal. We have introduced many events to assess the T-wave from the
ECG signals and to predict the various diseases related to the T-wave. Events
are T_Wave_Assessment_Peaked_V123456, T_Wave_Assessment_Peaked_V12, T_
Wave_Assessment_Peaked_V12_MI, T_Wave_Assessment_Flat, T_Wave_Assess-
ment_Inverted_Yes, T_Wave_Assessment_Inverted_No, T_Wave_Assessment_Inver-
ted_Yes_PM, T_Wave_Assessment_B, T_Wave_Assessment_B_DI, T_Inversion_
Likely_Ischemia, T_Inversion_Diffuse_B. All these events estimate a different kinds
of properties from the T-wave signal for obtaining the correct heart disease. A long
textual representation for analysing the T-wave is given in [16].

inv1 : T _Normal_Status ∈ BOOL
inv2 : Disease_step8 ∈ Disease_Codes_Step8
inv3 : T _Wave_State ∈ LEADS → T _State
inv4 : T _Wave_State_B ∈ LEADS → T _State_B

inv5 : Abnormal_Shaped_ST ∈ LEADS → BOOL
inv6 : Asy_T _Inversion_strain ∈ LEADS → BOOL
inv7 : T _inversion ∈ LEADS →N

inv8 : T _inversion_l_d ∈ LEADS → T _State_l_d

inv9 : Sinus = Yes ∧ Disease_step8 = Nonspecific ⇒ Heart_State = KO
inv10 : Sinus = Yes ∧ Disease_step8 = Nonspecific_ST_T _changes

⇒
Heart_State = KO
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inv11 : Sinus = Yes ∧ Disease_step8 = posterior_MI ⇒ Heart_State = KO
inv12 : Sinus = Yes ∧ Disease_step8 ∈ {Definite_ischemia,

Probable_ischemia,Digitalis_effect}
⇒
Heart_State = KO

inv13 : Sinus = Yes ∧ Disease_step8 = Definite_ischemia ⇒ Heart_State = KO
inv14 : Sinus = Yes ∧ Disease_step8 = Probable_ischemia ⇒ Heart_State = KO
inv15 : Sinus = Yes ∧ Disease_step8_B ∈ {Cardiomyopathy,other_nonspecific}

⇒
Heart_State = KO

The event T_Wave_Assessment_Peaked_V123456 presents basic symptoms for
assessing the hyperkalaemia. The guards of this event state that the heart is in ab-
normal state, and the state of T-wave is peaked in leads from V1 to V6.

EVENT T_Wave_Assessment_Peaked_V123456
WHEN

grd1 : Heart_State = KO
grd2 : ∀l · l ∈ {V 1,V 2,V 3,V 4,V 5,V 6} ⇒ T _Wave_State(l) = Peaked

THEN
act1 : Disease_step8 := Hyperkalemia

END

The event T_Wave_Assessment_Peaked_V12 is used to assess normal variant in
the ECG signal. A list of conditions for assessing the normal variant is given in the
guards. The guards of this event state that the normal status of the R-wave is FALSE,
the state of T-wave is peaked in leads V1 and V2, the ST elevation is TRUE and the
ST segment elevation is greater than or equal to 1000 µm, or the abnormal shape
of ST segment is TRUE in anyone lead, or the ST elevation is FALSE or the ST
segment elevation is less than 1000 µm, and the abnormal shape of ST segment is
FALSE in any two leads, inversion in T-wave is less than 5000 µm in all leads, and
the status of T-wave is FALSE.

EVENT T_Wave_Assessment_Peaked_V12
WHEN

grd1 : R_Normal_Status = FALSE
grd2 : T _Wave_State(V 1) = Peaked∧

T _Wave_State(V 2) = Peaked
grd3 : ((∃l, k · l ∈ LEADS ∧ k ∈ LEADS∧

(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
((ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∨
(Abnormal_Shaped_ST(l) = TRUE ∧ Abnormal_Shaped_ST(k) = TRUE))

∧l = k)

∨
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(∀l1, k1 · l1 ∈ LEADS ∧ k1 ∈ LEADS∧
((ST_elevation(l1) = FALSE ∨ ST_elevation(k1) = FALSE)

∨
((ST_seg_ele(l1) < 1000 ∨ ST_seg_ele(k1) < 1000)

∧
(Abnormal_Shaped_ST(l1) = FALSE∨
Abnormal_Shaped_ST(k1) = FALSE)))

⇒l1 �= k1))

grd4 : ∀l · l ∈ LEADS ⇒ T _inversion(l) < 5000
grd5 : T _Normal_Status = FALSE

THEN
act1 : Mice_State := normal_variant

END

The event T_Wave_Assessment_Peaked_V12_MI is used to discover the poste-
rior MI from the ECG signal. A list of guards has characterised the conditions for
assessing the posterior MI. These guards state that the state of T-wave is peaked in
V1 and V2, the ST elevation is TRUE and the ST segment elevation is greater than
or equal to 1000 µm, or the abnormal shape of ST segment is TRUE in anyone lead,
or the ST elevation is FALSE or the ST segment elevation is less than 1000 µm, and
the abnormal shape of ST segment is FALSE in any two leads, inversion in T-wave
is greater than 5000 µm in all leads, and the deep inversion in T-wave is localised in
leads from V2 to V5 and II, III, aVF.

EVENT T_Wave_Assessment_Peaked_V12_MI
WHEN

grd1 : T _Wave_State(V 1) = Peaked ∧
T _Wave_State(V 2) = Peaked

grd2 : ((∃l, k · l ∈ LEADS ∧ k ∈ LEADS ∧
(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
((ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∨
(Abnormal_Shaped_ST(l) = TRUE ∧ Abnormal_Shaped_ST(k) = TRUE))

∧l = k)

∨
(∀l1, k1 · l1 ∈ LEADS ∧ k1 ∈ LEADS∧
((ST_elevation(l1) = FALSE ∨ ST_elevation(k1) = FALSE)

∨
((ST_seg_ele(l1) < 1000 ∨ ST_seg_ele(k1) < 1000)

∧
(Abnormal_Shaped_ST(l1) = FALSE∨
Abnormal_Shaped_ST(k1) = FALSE)))

⇒l1 �= k1))

grd3 : ∀l · l ∈ LEADS ⇒ T _inversion(l) > 5000
grd4 : T _inversion_l_d(V 2) = Localized∧

T _inversion_l_d(V 3) = Localized∧
T _inversion_l_d(V 4) = Localized∧
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T _inversion_l_d(V 5) = Localized
grd5 : T _inversion_l_d(II) = Localized∧

T _inversion_l_d(III) = Localized∧
T _inversion_l_d(aVF) = Localized

grd7 : T _Normal_Status = FALSE
THEN

act1 : Disease_step8 := posterior_MI
END

The event T_Wave_Assessment_Flat is used to trace Nonspecific ST-T changes
including other several diseases. To identify these diseases, a set of guards is given
that represents the required conditions. These guards state that the state of T-wave
is flat in all leads, the ST elevation is TRUE and the ST segment elevation is greater
than or equal to 1000 µm, or the abnormal shape of ST segment is TRUE in anyone
lead, or the ST elevation is FALSE or the ST segment elevation is less than 1000 µm,
and the abnormal shape of ST segment is FALSE in any two leads, inversion in T-
wave is less than 5000 µm in all leads, and the normal state of T-wave is FALSE.

EVENT T_Wave_Assessment_Flat
WHEN

grd1 : ∀l · l ∈ LEADS ⇒ T _Wave_State(l) = Flat
grd2 : ((∃l, k · l ∈ LEADS ∧ k ∈ LEADS∧

(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
((ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∨
(Abnormal_Shaped_ST(l) = TRUE ∧ Abnormal_Shaped_ST(k) = TRUE))

∧l = k)

∨
(∀l1, k1 · l1 ∈ LEADS ∧ k1 ∈ LEADS∧
((ST_elevation(l1) = FALSE ∨ ST_elevation(k1) = FALSE)

∨
((ST_seg_ele(l1) < 1000 ∨ ST_seg_ele(k1) < 1000)

∧
(Abnormal_Shaped_ST(l1) = FALSE∨
Abnormal_Shaped_ST(k1) = FALSE)))

⇒l1 �= k1))

grd3 : ∀l · l ∈ LEADS ⇒ T _inversion(l) < 5000
grd5 : T _Normal_Status = FALSE

THEN
act1 : Disease_step8 := Nonspecific_ST_T _changes
act1 : Disease_step8_B :∈ {Cardiomyopathy,Electrolyte_depletion,

Alcohol,Myocarditis,Other}
END

The event T_Wave_Assessment_Inverted_Yes presents basic symptoms for as-
sessing the definite ischemia, probable ischemia, and digitalis effect. The guards
of this event state that the state of T-wave is inverted and the ST elevation is TRUE



10.5 Formal Development of the ECG Interpretation 281

in all leads, or the normal state of Q-wave is FALSE, and the heart is in abnormal
state.

EVENT T_Wave_Assessment_Inverted_Yes
WHEN

grd1 : ∀l · l ∈ LEADS ⇒ T _Wave_State(l) = Inverted
grd2 : ∀l · l ∈ LEADS ⇒ ST_elevation(l) = TRUE

∨
Q_Normal_Status = FALSE

grd3 : Heart_State = KO
THEN

act1 : Disease_step8 :∈ {Definite_ischemia,Probable_ischemia,Digitalis_effect}
END

The event T_Wave_Assessment_Inverted_No is used to trace the condition of
nonspecific of the heart using ECG signal. The guards of this event specify that
the state of T-wave is inverted and the ST elevation is FALSE in all leads, or the
normal state of Q-wave is TRUE, and the heart is in abnormal state.

EVENT T_Wave_Assessment_Inverted_No
WHEN

grd1 : ∀l · l ∈ LEADS ⇒ T _Wave_State(l) = Inverted
grd2 : ∀l · l ∈ LEADS ⇒ ST_elevation(l) = FALSE

∨
Q_Normal_Status = TRUE

grd3 : Heart_State = KO
THEN

act1 : Disease_step8 := Nonspecific
END

The event T_Wave_Assessment_Inverted_Yes_PM is used to find the symptoms
for pulmonary embolism from the ECG signal. A set of guards is used that specifies
underlined conditions for the pulmonary embolism. The guards of this event state
that the peak of P-wave is greater than or equal to 3000 µm in leads II and VI,
through the previous assessment RAE has been identified, the state of T-wave is
inverted and the ST elevation is TRUE in all leads or the normal state of Q-wave is
FALSE, the ST elevation is TRUE and the ST segment elevation is greater than or
equal to 1000 µm, or the abnormal shape of ST segment is FALSE in anyone lead,
or the ST elevation is FALSE and the ST segment elevation is less than 1000 µm,
or the abnormal shape of ST segment is FALSE in any two leads, the Asymmetric
T inversion strain is TRUE in leads V1 to V3, and the normal state of T-wave is
FALSE.
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EVENT T_Wave_Assessment_Inverted_Yes_PM
WHEN

grd1 : P _Wave_Peak(II) ≥ 3000
grd2 : P _Wave_Peak(V 1) ≥ 3000
grd3 : Disease_step6 = RAE
grd4 : ((∀p · p ∈ LEADS ⇒ T _Wave_State(p) = Inverted)∧

(∀t · t ∈ LEADS ⇒ ST_elevation(t) = TRUE
∨
Q_Normal_Status = FALSE))

grd5 : ((∃l, k · l ∈ LEADS ∧ k ∈ LEADS∧
(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
((ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∨
(Abnormal_Shaped_ST(l) = FALSE∧
Abnormal_Shaped_ST(k) = FALSE))

⇒l = k)

∨
(∀l1, k1 · l1 ∈ LEADS ∧ k1 ∈ LEADS∧
(ST_elevation(l1) = FALSE ∧ ST_elevation(k1) = FALSE)

∧
((ST_seg_ele(l1) < 1000 ∧ ST_seg_ele(k1) < 1000)

∨
(Abnormal_Shaped_ST(l1) = FALSE∧
Abnormal_Shaped_ST(k1) = FALSE))

⇒l1 �= k1))

grd6 : Asy_T _Inversion_strain(V 1) = TRUE∧
Asy_T _Inversion_strain(V 2) = TRUE∧
Asy_T _Inversion_strain(V 3) = TRUE

grd8 : T _Normal_Status = FALSE
THEN

act1 : Disease_step6 := pulmonary_embolism
END

The event T_Wave_Assessment_B is used to identify the status of the T-wave.
Moreover, this event assess the pattern of T-wave changes. The guards of this event
state that the state of T-wave is upright in leads I, II, and V3 to V6, the state of
T-wave is inverted in lead aVL, and the state of T-wave is variable in leads III, aVL,
aVF, V1 and V2.

EVENT T_Wave_Assessment_B
WHEN

grd1 : ∀l · l ∈ {I, II,V 3,V 4,V 5,V 6} ⇒ T _Wave_State_B(l) = Upright
grd2 : T _Wave_State_B(aVL) = Inverted_B

grd3 : ∀l · l ∈ {III,aVL,aVF,V 1,V 2} ⇒ T _Wave_State_B(l) = Variable
THEN

act1 : T _Normal_Status := TRUE
END
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The event T_Wave_Assessment_B_DI refines T_Wave_Assessment_Inverted_Yes.
This event is used to discover the symptoms for definite ischemia from the ECG sig-
nal. A set of guards is used that specifies underlined conditions for definite ischemia.
The guards of this event state that the ST elevation is TRUE in all leads or the normal
status of Q-wave is FALSE, the normal status of T-wave is FALSE, the ST elevation
is TRUE and the ST segment elevation is greater than or equal to 1000 µm, or the
abnormal shape of ST segment is TRUE in any two leads.

EVENT T_Wave_Assessment_B_DI Refines T_Wave_Assessment_Inverted_Yes
WHEN

grd2 : ∀l · l ∈ LEADS ⇒ ST_elevation(l) = TRUE
∨
Q_Normal_Status = FALSE

grd3 : T _Normal_Status = FALSE
grd4 : ∃l, k · l ∈ LEADS ∧ k ∈ LEADS∧

((ST _seg_ele(l) ≥ 1000 ∧ ST _seg_ele(k) ≥ 1000)∨
(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∨
(Abnormal_Shaped_ST(l) = TRUE ∧ Abnormal_Shaped_ST(k) = TRUE))

∧
l �= k

THEN
act1 : Disease_step8 := Definite_ischemia

END

The event T_Inversion_Likely_Ischemia refines T_Wave_Assessment_Inverted_
Yes. This event is used to trace the symptoms for probable ischemia from the ECG
signal. A set of guards is used that specifies the required conditions for the proba-
ble ischemia. The guards of this event state that the state of T-wave is inverted in
all leads, the ST elevation is TRUE in all leads or the normal status of Q-wave is
FALSE, the inversion in T-wave is greater than 5000 µm in all leads, the ST eleva-
tion is TRUE and the ST segment elevation is greater than or equal to 1000 µm, or
the abnormal shape of ST segment is TRUE in anyone lead, or the ST elevation is
FALSE or the ST segment elevation is less than 1000 µm, and the abnormal shape
of ST segment is FALSE in any two leads, the inversion in T-wave is localised in
leads II, III, aVF, and V2 to V5, and the normal state of T-wave is FALSE.

EVENT T_Inversion_Likely_Ischemia Refines T_Wave_Assessment_Inverted_Yes
WHEN

grd1 : ∀l · l ∈ LEADS ⇒ T _Wave_State(l) = Inverted
grd2 : ∀l · l ∈ LEADS ⇒ ST_elevation(l) = TRUE

∨
Q_Normal_Status = FALSE

grd3 : ∀l · l ∈ LEADS ⇒ T _inversion(l) > 5000
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grd4 : ((∃l, k · l ∈ LEADS ∧ k ∈ LEADS∧
(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
((ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∨
(Abnormal_Shaped_ST(l) = TRUE ∧ Abnormal_Shaped_ST(k) = TRUE))

∧l = k)

∨
(∀l1, k1 · l1 ∈ LEADS ∧ k1 ∈ LEADS∧
((ST_elevation(l1) = FALSE ∨ ST_elevation(k1) = FALSE)

∨
((ST_seg_ele(l1) < 1000 ∨ ST_seg_ele(k1) < 1000)

∧
(Abnormal_Shaped_ST(l1) = FALSE∨
Abnormal_Shaped_ST(k1) = FALSE)))

⇒l1 �= k1))

grd5 : T _inversion_l_d(V 2) = Localized∧
T _inversion_l_d(V 3) = Localized∧
T _inversion_l_d(V 4) = Localized∧
T _inversion_l_d(V 5) = Localized

grd6 : T _inversion_l_d(II) = Localized∧
T _inversion_l_d(III) = Localized∧
T _inversion_l_d(aVF) = Localized

grd7 : T _Normal_Status = FALSE
THEN

act1 : Disease_step8 := Probable_ischemia
END

The event T_Inversion_Diffuse_B is used to diagnose the symptoms for car-
diomyopathy, other nonspecific from the ECG signal. A set of guards is used that
specifies the required conditions that state that the ST elevation is TRUE and the ST
segment elevation is greater than or equal to 1000 µm, or the abnormal shape of ST
segment is TRUE in anyone lead, or the ST elevation is FALSE or the ST segment
elevation is less than 1000 µm, and the abnormal shape of ST segment is FALSE in
any two leads, the inversion in T-wave is greater than 5000 µm in all leads, the T
inversion is diffuse, and the normal state of T-wave is FALSE.

T_Inversion_Diffuse_B
WHEN

grd1 : ((∃l, k · l ∈ LEADS ∧ k ∈ LEADS∧
(ST_elevation(l) = TRUE ∧ ST_elevation(k) = TRUE)

∧
((ST_seg_ele(l) ≥ 1000 ∧ ST_seg_ele(k) ≥ 1000)

∨
(Abnormal_Shaped_ST(l) = TRUE∧
Abnormal_Shaped_ST(k) = TRUE))

∧l = k)
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∨
(∀l1, k1 · l1 ∈ LEADS ∧ k1 ∈ LEADS∧
((ST_elevation(l1) = FALSE ∨ ST_elevation(k1) = FALSE)

∨
((ST_seg_ele(l1) < 1000 ∨ ST_seg_ele(k1) < 1000)

∧
(Abnormal_Shaped_ST(l1) = FALSE∨
Abnormal_Shaped_ST(k1) = FALSE)))

⇒l1 �= k1))

grd2 : ∀l · l ∈ LEADS ⇒ T _inversion(l) > 5000
grd3 : ∀l · l ∈ LEADS ⇒ T _inversion_l_d(l) = Diffuse
grd4 : T _Normal_Status = FALSE

THEN
act1 : Disease_step8_B :∈ {Cardiomyopathy,other_nonspecific}

END

10.5.9 Eighth Refinement: Assess Electrical Axis

After finding all kinds of information about abnormal ECG, it is also essential to
check the electrical axis (see Table 10.1) using two simple clues:

• If leads I and aVF are upright; the axis is normal.
• The axis is perpendicular to the lead with the most equiphasic or smallest QRS

deflection. Left-axis deviation and the commonly associated left anterior fascicu-
lar block are visible in ECG signal.

This refinement is very essential refinement for the ECG interpretation because
of the different angle of the ECG signal gives different output and angle based pre-
diction can be changed [16]. So, for accuracy of the ECG interpretation electri-
cal axis must be included. New variables minAngle, maxAngle, Axis_Devi and Dis-

Table 10.1 Electrical axis

Most equiphasic lead Lead perpendicular Axis

Lead I and aVF positive = normal axis

III aVR Normal = +30 degrees

aVL II Normal = +60 degrees

Lead I positive and aVF negative = Left axis

II aVL (QRS positive) Left = −30 degrees

aVR III (QRS negative) Left = −60 degrees

I aVF (QRS negative) Left = −90 degrees

Lead I negative and aVF positive = right axis

aVR III (QRS positive) Right = +120 degrees

II aVL (QRS negative) Right = +150 degrees
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ease_step9 have been defined here for assessment of the electrical axis. A new vari-
able QRS_Axis_State is defined as a total function mapping from leads (LEADS) to
QRS_directions. This function represents the QRS-axis direction of the leads. Two
invariants (inv6–inv7) represent the safety properties in assessment of the correct
axis. These invariants are verifying an abnormal state of the heart (KO) using axis
position.

inv1 : minAngle ∈ −90 .. 180
inv2 : maxAngle ∈ −90 .. 180
inv3 : Axis_Devi ∈ Axis_deviation
inv4 : Disease_step9 ∈ Disease_Codes_Step9
inv5 : QRS_Axis_State ∈ LEADS → QRS_directions
inv6 : Disease_step9 ∈ {LPFB,Dextrocardia,NV_MSEC} ∧

maxAngle = 180 ∧ minAngle = 110
⇒
Heart_State = KO

inv7 : Disease_step9 ∈ {LAFB,MSCHD,Some_Form_VT,ED_OC}
∧maxAngle = −90 ∧ minAngle = −30
⇒
Heart_State = KO

In this refinement level, we introduce various events for assessing different kinds
of features from 12 leads ECG signal corresponding to the angle. Following events
are introduced in this refinement: Axis_Assessment_QRS_upright_Yes_Age_less_40,
Axis_Assessment_QRS_upright_Yes_Age_gre_40, Axis_Assessment_QRS_upright_
No_QRS_positive, Axis_Assessment_QRS_upright_No_QRS_negative, Misc_Dis-
ease_Step9_LAD, Misc_Disease_Step9_RAD, R_Q_Assessment_R_Abnormal_
V56_axis_deviation.

The event Axis_Assessment_QRS_upright_Yes_Age_less_40 refines Axis_As-
sessment_QRS_upright_Yes. This event is used to find the electrical axis. A set
of guards is used that specifies that the QRS axis state is upright in leads I and aVF,
and age is less than 40 years.

EVENT Axis_Assessment_QRS_upright_Yes_Age_less_40
Refines Axis_Assessment_QRS_upright_Yes

ANY age
WHERE

grd1 : QRS_Axis_State(I ) = D_Upright∧
QRS_Axis_State(aVF) = D_Upright

grd2 : age ∈ N∧ age < 40
THEN

act1 : minAngle := 0
act2 : maxAngle := 110

END
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The event Axis_Assessment_QRS_upright_Yes_Age_gre_40 refines Axis_Assess-
ment_QRS_upright_Yes. This event is similar to the last event that is also used to
assess the electrical axis. The minimum angle is −30 and maximum angle is 90.
A set of guards is used that defines that the QRS axis state is upright in leads I and
aVF, and age is greater than 40 years.

EVENT Axis_Assessment_QRS_upright_Yes_Age_gre_40
Refines Axis_Assessment_QRS_upright_Yes

ANY age
WHERE

grd1 : QRS_Axis_State(I ) = D_Upright∧
QRS_Axis_State(aVF) = D_Upright

grd2 : age ∈ N∧ age > 40
THEN

act1 : minAngle := −30
act2 : maxAngle := 90

END

The event Axis_Assessment_QRS_upright_No_QRS_positive refines Axis_As-
sessment_QRS_upright_No. This event is used to determine the electrical axis and
left axis deviation (LAD) in leads. A set of guards is used that defines that the QRS
axis state is not upright in leads I and aVF, the QRS axis state is positive in leads I
and aVF, and the heart is in abnormal state.

EVENT Axis_Assessment_QRS_upright_No_QRS_positive
Refines Axis_Assessment_QRS_upright_No

WHEN
grd1 : ¬(QRS_Axis_State(I ) = D_Upright∧

QRS_Axis_State(aVF) = D_Upright)
grd2 : QRS_Axis_State(I ) = D_Positive∧

QRS_Axis_State(aVF) = D_Positive
grd3 : Heart_State = KO

THEN
act1 : minAngle := −30
act2 : maxAngle := −90
act3 : Axis_Devi := LAD

END

The event Axis_Assessment_QRS_upright_No_QRS_negative refines Axis_As-
sessment_QRS_upright_No. This event is used to identify the electrical axis and
right axis deviation (RAD) in leads. A set of guards is used that defines that the
QRS axis state is not upright in leads I and aVF, the QRS axis state is negative in
leads I and aVF, and the heart is in abnormal state.
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EVENT Axis_Assessment_QRS_upright_No_QRS_negative
Refines Axis_Assessment_QRS_upright_No

WHEN
grd1 : ¬(QRS_Axis_State(I ) = D_Upright∧

QRS_Axis_State(aVF) = D_Upright)
grd2 : QRS_Axis_State(I ) = D_Negative∧

QRS_Axis_State(aVF) = D_Negative
grd3 : Heart_State = KO

THEN
act1 : minAngle := 110
act2 : maxAngle := 180
act3 : Axis_Devi := RAD

END

The event Misc_Disease_Step9_LAD assess miscellaneous diseases like LAFB,
MSCHD, etc. A set of guards is used that defines that the axis deviation is left axis
deviation (LAD) in leads, negative minimum angle is −30, negative maximum angle
is −90 and the heart is in abnormal state.

Misc_Disease_Step9_LAD
WHEN

grd1 : Axis_Devi = LAD∧
minAngle = −30∧
maxAngle = −90

grd2 : Heart_State = KO
THEN

act1 : Disease_step9 :∈ {LAFB,MSCHD,Some_Form_VT,ED_OC}
END

The event Misc_Disease_Step9_LAD assess several diseases like LPFB, Dextro-
cardia, NV MS-EC. A set of guards is used that defines that the axis deviation is
right axis deviation (RAD) in leads, positive minimum angle is 110, positive maxi-
mum angle is 180 and the heart is in abnormal state.

Misc_Disease_Step9_RAD
WHEN

grd1 : Axis_Devi = RAD∧
minAngle = 110∧
maxAngle = 180

grd2 : Heart_State = KO
THEN

act1 : Disease_step9 :∈ {LPFB,Dextrocardia,NV_MSEC}
END

The event R_Q_Assessment_R_Abnormal_V56_axis_deviation refines R_Q_
Assessment_R_Abnormal_V56. This event is used to identify the lateral MI. A set of
guards is used that formalises that the state of Q-wave is TRUE in leads V5 and V6,
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the axis deviation is right axis deviation (RAD) in leads, positive minimum angle is
110, positive maximum angle is 180 and the heart is in abnormal state.

EVENT R_Q_Assessment_R_Abnormal_V56_axis_deviation
Refines R_Q_Assessment_R_Abnormal_V56

WHEN
grd1 : Q_Wave_State(V 5) = TRUE∧

Q_Wave_State(V 6) = TRUE
grd2 : Axis_Devi = RAD∧

minAngle = 110∧
maxAngle = 180

grd3 : Heart_State = KO
THEN

act1 : Disease_step5 := lateral_MI
END

10.5.10 Ninth Refinement: Assess for Miscellaneous Conditions

There are lots of heart diseases, and it is very difficult to predict everything. A lot of
conditions make it more and more ambiguous. This refinement level keeps multiple
miscellaneous conditions about the ECG interpretation [16]. Following conditions
are given for miscellaneous conditions as follows:

• Artificial pacemakers: If electronic pacing is confirmed, usually no other diagno-
sis can be made from the ECG.

• Prolonged QT syndrome: See normal QT parameters listed in Table 10.2. No
complicated formula is required for assessment of the QT intervals.

A variable MC_Step10_Test_Needed is declared to represent miscellaneous con-
dition tests as a boolean type TRUE or FALSE. Variable Disease_step10 is intro-
duced in this refinement to assess a set of diseases of miscellaneous conditions
from the ECG signal. The next two invariants (inv2–inv3) represent the abnormal-
ity of the heart state (KO) in case of discovery of new miscellaneous diseases. In
this refinement, we introduce only two events (Miscellaneous_Conditions_Step10
and Misc_Disease_Step10_Dextrocardia_Test) to discover miscellaneous condi-
tions from the ECG signal.

Table 10.2 Clinically useful
approximation of upper limit
of QT interval (ms)

Heart rate (bpm) Male Female

45–65 <470 <480

66–100 <410 <430

>100 <360 <370
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inv1 : MC_Step10_Test_Needed ∈ BOOL
inv2 : Disease_step10 ∈ MiscDisease_Codes_Step10
inv3 : Sinus = Yes ∧ Disease_step10 ∈ {Incomplete_RBBB,

Long_QT,Hypokalemia,Digitalis_toxicity,Hypothermia,

Electronic_pacing,Pericarditis,Hypercalcemia}
Electrical_alternans
⇒
Heart_State = KO

inv4 : Sinus = Yes ∧ Disease_step9 = Dextrocardia
⇒
Heart_State = KO

The event Miscellaneous_Conditions_Step10 is used to assess miscellaneous dis-
ease. It is very difficult to identify all the possible diseases using ECG signal, there-
fore a set of disease is classified under the miscellaneous conditions. This event is
used to find the several diseases. A set of guards is used that specifies that the fur-
ther test is needed that is presented as a boolean type, and the heart is in abnormal
state.

EVENT Miscellaneous_Conditions_Step10
WHEN

grd1 : MC_Step10_Test_Needed = TRUE
grd2 : Heart_State = KO

THEN
act1 : Disease_step10 :∈ {Incomplete_RBBB,Pericarditis,Long_QT,Hypokalemia,

Digitalis_toxicity,Electrical_alternans,Electronic_pacing,Hypothermia,

Hypercalcemia}
END

The event Misc_Disease_Step10_Dextrocardia_Test refines Misc_Disease_
Step9_RAD and this event is modelled to assess the Dextrocardia. A list of required
conditions is formalised in form of guards. These guards present that the axis devia-
tion is right axis deviation (RAD) in leads, minimum angle is 110, maximum angle
is 180, boolean state for further testing is TRUE, and the heart is in abnormal state.

EVENT Misc_Disease_Step10_Dextrcardia_Test Refines Misc_Disease_Step9_RAD
WHEN

grd1 : Axis_Devi = RAD∧
minAngle = 110∧
maxAngle = 180

grd2 : MC_Step10_Test_Needed = TRUE
grd3 : Heart_State = KO

THEN
act1 : Disease_step9 := Dextrocardia

END
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10.5.11 Tenth Refinement: Assess Arrhythmias

This is the final refinement of the ECG interpretation of the system. In this refine-
ment, we introduce different kinds of tachyarrhythmias and give the protocols for
assessment as follows:

• Narrow complex tachycardia: Gives the differential diagnosis of narrow QRS
complex tachycardia.

• Wide complex tachycardia: Gives the differential diagnosis of wide QRS complex
tachycardia.

inv1 : NW_QRS_Tachycardia_RT_State ∈
NW_QRS_Tachycardia_RI

inv2 : Disease_step11 ∈ Misc_Disease_Codes_Step11
inv3 : Sinus = Yes ∧ Disease_step11 ∈

{Ventricular_Premature_Beats,Nodal_Premature_Beats,
Bradyarrhythmias,Narrow_QRS_Tachycardias,
Wide_QRS_Tachycardias,Atrial_Premature_Beats}
⇒Heart_State = KO

inv4 : Sinus = Yes ∧ Distease_step11_NW_QRST ∈
{Sinus_Tachycardia,Supraventricular_Tachycardia,

WPW_Syndrome_Orthodromic,Torsades_de_pointes,
Atrial_Tachycardia,AF_Fixed_AV_Conduction,AVNRT,

Ventricular_Tachycardia,WPW_Syndrome_Antidromic,
AF_Variable_AV_Conduction_BBB_WPW_Synd_Anti,
AF_BBB_WPW_Synd_Antidromic}
⇒Heart_State = KO

inv5 : Sinus = Yes ∧ Distease_step11_NW_QRST ∈
{AF_Variable_AV_Conduction,AVNRT,

AT_Paroxysmal_NParoxysmal,AT_Variable_AV_Block,
AF_Fixed_AV_Conduction,WPW_Syndrome_OCMT,

Sinus_Tachycardia,Multifocal_Atrial_Tachycardia,

Atrail_Fibrillation}
⇒Heart_State = KO

inv6 : NW_QRS_Tachycardia_RT_State = Regular ∧
Distease_step11_NW_QRST ∈ {Sinus_Tachycardia,

WPW_Syndrome_OCMT,AF_Fixed_AV_Conduction,

AVNRT,AT_Paroxysmal_NParoxysmal}
⇒Heart_State = KO

inv7 : NW_QRS_Tachycardia_RT_State = Irregular∧
Distease_step11_NW_QRST ∈ {Atrail_Fibrillation,

AT_Variable_AV_Block,AF_Variable_AV_Conduction,

Multifocal_Atrial_Tachycardia}
⇒Heart_State = KO
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inv8 : NW_QRS_Tachycardia_RT_State = Regular∧
Distease_step11_NW_QRST ∈ {Ventricular_Tachycardia,

Sinus_Tachycardia,AF_Fixed_AV_Conduction,

Supraventricular_Tachycardia,Atrial_Tachycardia,

AVNRT,WPW_Syndrome_Antidromic,
WPW_Syndrome_Orthodromic}
⇒Heart_State = KO

inv9 : NW_QRS_Tachycardia_RT_State = Irregular∧
Disteavse_step11_NW_QRST ∈
{AF_Variable_AV_Conduction_BBB_WPW_Synd_Anti,
Torsades_de_pointes,AF_BBB_WPW_Synd_Antidromic}
⇒Heart_State = KO

A new variable NW_QRS_Tachycardia_RT_State is defined to express the QRS
tachycardia regular or irregular state using inv1. A variable Disease_step11 is intro-
duced in this refinement to assess arrhythmias from the ECG signals. All rest of the
invariants (inv3–inv9) represents an abnormal state (KO) of the heart after analysing
the arrhythmia and related disease. All invariants have similar kinds of proper-
ties. We introduce five new events to assess tachyarrhythmias from the 12-leads
ECG signals in case of abnormal rhythm. Five events are Rhythm_test_FALSE_
Step11, Step11_N_QRS_Tachycardia_Regular, Step11_N_QRS_Tachycardia_Irreg-
ular, Step11_W_QRS_Tachycardia_Regular and Step11_W_QRS_Tachycardia_
Irregular.

The event Rhythm_test_FALSE_Step11 is used to identify the heart state, sinus
rhythm, heart rate and several diseases that are not identified through the last assess-
ment process. The guards of this event shows that the equidistant of PP interval is
FALSE or the equidistant of RR interval is FALSE, the RR interval is not equal to
the PP interval in leads II, V1, V2, or the positive state of P-wave is FALSE, and the
heart rate is within the range of 1 to 300 bps.

Rhythm_test_FALSE_Step11
ANY rate
WHERE

grd1 : (∀l · l ∈ {II,V 1,V 2} ⇒ PP_Int_equidistant(l) = FALSE∨
RR_Int_equidistant(l) = FALSE∨
RR_Interval(l) �= PP_Interval(l))
∨
P _Positive(II) = FALSE

grd2 : rate ∈ 1 .. 300
THEN

act1 : Sinus := No

act2 : Heart_Rate := rate
act3 : Heart_State := KO
act4 : Disease_step11 :∈ {Atrial_Premature_Beats,Ventricular_Premature_Beats,

Bradyarrhythmias,Narrow_QRS_Tachycardias,Wide_QRS_Tachycardias,
Nodal_Premature_Beats}

END
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The event Step11_N_QRS_Tachycardia_Regular refines Step11_N_QRS_Ta-
chycardia. This event assesses the different kinds of diseases like sinus tachycardia,
AVNRT, etc. A set of guards of this event is used to formalise the required condi-
tions. These conditions present that the heart has no sinus rhythm, the heart is in
abnormal state, the heart rate is within 1 to 60 or 100 to 300 range, through previous
assessment the heart has the conditions of narrow QRS tachycardia, and the state of
narrow QRS tachycardia is regular.

EVENT Step11_N_QRS_Tachycardia_Regular Refines Step11_N_QRS_Tachycardia
WHEN

grd1 : Sinus = No
grd2 : Heart_State = KO
grd3 : Heart_Rate ∈ 1 .. 300 \ 60 .. 100
grd4 : Disease_step11 = Narrow_QRS_Tachycardias
grd5 : NW_QRS_Tachycardia_RT_State = Regular

THEN
act1 : Distease_step11_NW_QRST :∈ {Sinus_Tachycardia,AVNRT,

AF_Fixed_AV_Conduction,AT_Paroxysmal_NParoxysmal,
WPW_Syndrome_OCMT}

END

The event Step11_N_QRS_Tachycardia_Irregular refines Step11_N_QRS_Ta-
chycardia. The action of this event specifies to identify several diseases using ECG
signal. The guards of this event state that the heart has no sinus rhythm, heart is in
abnormal state, the heart rate is within 1 to 60 or 100 to 300 range, through previous
assessment the heart has the conditions of narrow QRS tachycardia, and the state of
narrow QRS tachycardia is irregular.

EVENT Step11_N_QRS_Tachycardia_Irregular Refines Step11_N_QRS_Tachycardia
WHEN

grd1 : Sinus = No
grd2 : Heart_State = KO
grd3 : Heart_Rate ∈ 1 .. 300 \ 60 .. 100
grd4 : Disease_step11 = Narrow_QRS_Tachycardias
grd5 : NW_QRS_Tachycardia_RT_State = Irregular

THEN
act1 : Distease_step11_NW_QRST :∈ {AF_Variable_AV_Conduction,

Atrail_Fibrillation,AT_Variable_AV_Block,Multifocal_Atrial_Tachycardia}
END

The event Step11_W_QRS_Tachycardia_Regular refines Step11_W_QRS_Ta-
chycardia. As similar to the last event, the action of this event also specifies to
identify several diseases from the ECG signal. A set of guards presents required
conditions. These required conditions show that the heart has no sinus rhythm, heart
is in abnormal state, the heart rate is within 1 to 60 or 100 to 300 range, through
previous assessment the heart has the conditions of wide QRS tachycardia, and the
state of narrow QRS tachycardia is regular.
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EVENT Step11_W_QRS_Tachycardia_Regular Refines Step11_W_QRS_Tachycardia
WHEN

grd1 : Sinus = No

grd2 : Heart_State = KO
grd3 : Heart_Rate ∈ 1 .. 300 \ 60 .. 100
grd4 : Disease_step11 = Wide_QRS_Tachycardias
grd5 : NW_QRS_Tachycardia_RT_State = Regular

THEN
act1 : Distease_step11_NW_QRST :∈ {Ventricular_Tachycardia,

Supraventricular_Tachycardia,AVNRT,WPW_Syndrome_Orthodromic,
Sinus_Tachycardia,Atrial_Tachycardia,AF_Fixed_AV_Conduction,

WPW_Syndrome_Antidromic}
END

The event Step11_W_QRS_Tachycardia_Irregular refines Step11_W_QRS_Ta-
chycardia. A list of guards presents that the heart has no sinus rhythm, heart is in
abnormal state, the heart rate is within 1 to 60 or 100 to 300 range, through previous
assessment of the heart has the conditions of wide QRS tachycardia, and the state
of narrow QRS tachycardia is irregular. The action of this event is used to identify
several diseases from the ECG signal that are given in the action.

EVENT Step11_W_QRS_Tachycardia_Irregular Refines Step11_W_QRS_Tachycardia
WHEN

grd1 : Sinus = No
grd2 : Heart_State = KO
grd3 : Heart_Rate ∈ 1 .. 300 \ 60 .. 100
grd4 : Disease_step11 = Wide_QRS_Tachycardias
grd5 : NW_QRS_T achycardia_RT _State = Irregular

THEN
act1 : Distease_step11_NW_QRST :∈ {AF_BBB_WPW_Synd_Antidromic,

AF_Variable_AV_Conduction_BBB_WPW_Synd_Anti,Torsades_de_pointes}
END

Here, we have given required safety properties in form invariants in all refine-
ments. All these properties are derived from the original protocol to verify the cor-
rectness and consistency of the system. These properties are formulated through
logic experts as well as cardiologist experts according to the original protocol. The
main advantage of this technique is that if any property is not holding by the model,
then it helps to find anomalies or to find missing parts of the model such as required
conditions and parameters. A technical report [21] contains the complete formal
representation of the ECG interpretation protocol.

10.5.12 Proof Statistics

All the proof obligations for all ten refinements are generated and proved using the
Rodin prover [29]. Table 10.3 shows statistics of the ECG interpretation protocol us-
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Table 10.3 Proof statistics

Model Total number of POs Automatic proof Interactive proof

Abstract model 41 33 (80 %) 8 (20 %)

First refinement 61 54 (88 %) 7 (12 %)

Second refinement 41 38 (92 %) 3 (8 %)

Third refinement 51 36 (70 %) 15 (30 %)

Fourth refinement 60 35 (58 %) 25 (42 %)

Fifth refinement 43 22 (51 %) 21 (49 %)

Sixth refinement 38 14 (36 %) 24 (64 %)

Seventh refinement 124 29 (23 %) 95 (77 %)

Eighth refinement 52 30 (57 %) 22 (43 %)

Ninth refinement 21 9 (42 %) 12 (52 %)

Tenth refinement 67 43 (64 %) 24 (36 %)

Total 599 343 (58 %) 256 (42 %)

ing refinement approach. In the table, the POs column represents the total number of
proof obligations generated for each level. The interactive POs column represents
the number of those proof obligations that have to be proved interactively. Those
proof obligations that are not proved interactively are proved completely automati-
cally by the prover. The complete development of the ECG interpretation protocol
system results in 599 (100 %) proof obligations, in which 343 (58 %) are proved
automatically by the Rodin tool. The remaining 256 (42 %) proof obligations are
proved interactively using Rodin tool. In seventh refinement, numbers of POs are
higher than other refinements because significantly in this level; number of vari-
ables and events are higher than another level of refinements. All the proofs are
discharged completely automatic as well as interactive for all refinement levels. All
these proofs are involved either by the complexity of the formal expression that
proved by do case or finiteness constraints on a set of leads. The main interactive
steps involved instantiating for total function of the different features of the ECG
interpretation in every level of refinement. In order to guarantee the correctness of
the system, we have established various invariants in the stepwise refinement. All
these invariants are derived from the original protocol to verify the correctness and
consistency of the system under the guidance of the cardiologist expert. Most of
the invariants are introduced for checking the abnormality of the features of the
ECG signal. Detection of an abnormal criteria, the heart shows surety of a particu-
lar disease or a set of diseases. A set of diseases are distinguished in next level of
refinements.
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10.6 Lesson Learnt

The task of modelling of the ECG interpretation protocol in the Event-B has required
a significant effort. It is a typical knowledge engineering task, where the knowledge
is the original document, is transformed into the Event-B formal notation, which
provides a significant hierarchical structure for analysing the ECG interpretation
protocol and to diagnose different kinds of heart diseases. As the result, the Event-B
ECG interpretation protocol specification is much more lengthy than the original
text: the original ECG interpretation protocol. The complete formal specification of
the ECG interpretation protocol in the Event-B is more than 200 pages.

We consider that logic-based modelling approach is very difficult to model a
complex medical protocol. This approach has required a good understanding of
logic as well as knowledge of the medical protocol. We have spent lots of time with
medical experts to understand the structure of the medical protocols for formalising
purpose. For modelling the ECG protocol, we have consulted with cardiologist and
medical experts. The formal model of ECG protocol is based on original protocol
and checked by medical experts [21, 22].

We cannot strictly say that the formal representation of the ECG interpretation
protocol in the Event-B modelling language has contributed to the improvement
of the original protocol. Most important contribution is refinements-based formal
development of the ECG interpretation protocol and to generate a new optimal way
of the ECG interpretation protocol for diagnosing the ECG signal. The developed
formal model is proved and verified according to the given protocol properties as
discussed in the formal development. Furthermore, the Event-B formalisation has
served to disambiguate unclarities in the original document that resulted from the
modelling stage: a number of ambiguity and repetition diagnosis problems with
original document are uncovered and resolved by refining the formal specification
of the ECG interpretation protocol in the Event-B. The formal model can help to
restructure the original document of guidelines and protocols.

The verification attempts have served to clarify any remaining problems in the
original ECG interpretation protocol document. More importantly, we have shown
that it is possible in practice to systematically analyse whether a protocol formalised
in the Event-B complies with certain medically relevant properties. Various proper-
ties of the ECG interpretation protocol have been the object of formal verification
using the Event-B system, with different type of results. Mostly, the given properties
of the ECG interpretation protocol have been confirmed by the formal representa-
tion of the ECG interpretation protocol. However, in other cases, verification is not
simple and lots of ambiguous informations, i.e. it is not possible to complete the
proof or further development of the model due to ambiguity. We have introduced
some additional assumptions with the help of cardiologist experts for describing the
conditions needed to make the property true and added more conditions to remove
the ambiguity. These assumptions are missing piece of information in the medical
protocol, which helps to improve the medical protocol. We have applied a pragmatic
approach to collect lots of information through literature survey and medical experts
advises for finding the exact facts to introduce new assumptions and conditions for
discharging all the generated proof obligations.
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For example, pieces of informations missing from the original ECG interpreta-
tion protocol like it is not given that how many leads should hold particular property
during diagnosis. As per our solution, we have applied test for particular properties
in all leads. This results in a characterisation of the circumstances under which the
property holds. The obtained characterisation is analysed by the medical experts un-
der all the possible conditions, and it can be used either to redefine the property or
to improve the original ECG interpretation protocol text by documenting the cases
under which the property does (or does not) hold.

More importantly, numerous anomalies became apparent during the Event-B
modelling of the ECG interpretation protocol. Here, we have used term anomaly
to refer to any issues that are not able to represent satisfactory of the original ECG
interpretation protocol. Some set of anomalies, which have found during the devel-
opment of the system are described below. We have grouped all anomalies in three
well known general categories: ambiguity, inconsistency and incompleteness.

10.6.1 Ambiguous

Ambiguous is a well-known anomaly in the area of formal representation, and it
is very hard to interpret. For instance, a problem we encountered while modelling
the ECG interpretation protocol is determining whether the terms “ST-depression”
and “ST-elevation” had the same meaning or not. These are terms that are used in
the ECG interpretation original protocol, but not defined elsewhere. Similarly, what
is the difference between “ischemia”, “definite ischemia”, “probable ischemia” and
“likely ischemia”.

In the ECG interpretation, there are 12 leads ECG signals, which are used for
interpretation, but a lot of places in the original document not clarify in which lead
the particular property should hold. Such kinds of information are very ambiguous
and give lots of confusions to model the system.

10.6.2 Inconsistencies

Inconsistencies are other kinds of anomalies which are always given conflicting re-
sults or different decisions on same patient data. The problems derived from incon-
sistent elements are very serious and as such must be avoided during development.
The ECG interpretation protocol presents several inconsistencies. For instance, we
found an inconsistency in form of applicable conditions in the ECG protocol. It ex-
presses that the conditions are applicable to both “male” and “female” under some
certain circumstances. However, elsewhere in the protocol an action is advised that
these conditions of the protocol are not applicable to “female”.
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10.6.3 Incompleteness

Either missing pieces of information or insufficient information in the original doc-
ument are always related to the incompleteness anomaly. In either case, incomplete-
ness hinders a correct interpretation of the guidelines and protocols. For example,
the original protocol contains “normal variant” factors to be considered when as-
sessing the T-wave. However, what “normal variant” exactly means is missing in
the protocol. As an example of insufficient information for “normal variant”, we
provide the class of diseases for further analysis the system.

10.7 Summary

Refinement is a key concept for developing the complex systems, since it starts with
a very abstract model and incrementally adds new details to the set of requirements.
We have outlined an incremental refinement-based approach for formalising med-
ical protocols using the Rodin tool. The approach we have taken is not specific to
the Event-B. We believe a similar approach could be taken using others state-based
notations such as ASM, TLA+, Z, etc. The Rodin proof tool is used to generate
the hundreds of proof obligations and to discharge those obligations automatically
and interactively. Another key role of the tool is in helping us to discover appro-
priate gluing invariants to prove the refinements. In summary, some key lessons are
that incremental development with small refinement steps; appropriate abstractions
at each level and powerful tool support are all invaluable in such a kind of formal
development.

In this chapter, we have shown the formal representation of medical protocol.
The formal model of medical protocol is verified, and this verified model is not only
feasible but also useful for improving the existing medical protocol. We have fully
formalised a real-world medical protocols (ECG interpretation) in an incremental
refinement-based formalisation process, and we have used proof tools to systemat-
ically analyse whether the formalisation complies with certain medically relevant
protocol properties [21, 22]. The formal verification process has discovered a num-
ber of anomalies which all are discussed in the previous section. Throughout this
process, we have obtained the following concrete results:

• A formal specification language like Event-B is used for modelling a complex
system, is used to model the medical practice protocols. The Event-B is a general
modelling language tool. The Event-B is used to present a formal specification
for a real-life medical protocols; ECG interpretation.

• The ECG interpretation protocol is formalised in the Event-B modelling lan-
guage. The medical protocol ECG interpretation is used in our study has been
developed in incremental way and finally transformed into a concrete formal rep-
resentation. Each proved refinement level of the formal model of the protocol
represents feasibility and correctness.
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• In our formal verification process of the ECG interpretation, we have obtained a
list of anomalies.

• Verification proofs for the ECG interpretation protocol, and properties have
proved using the Rodin proof tool. Generated proof obligations and proofs show
that formal verification of the ECG interpretation protocols is feasible.

• Original protocol of the ECG is also based on some hierarchy, but in that hier-
archy, some diagnosis is repeating in multiple branches (see in [16]). We have
also discovered an optimised hierarchical structure for the ECG interpretation ef-
ficiently using incremental refinement approach, which can help to diagnose more
efficiently then old techniques, and this obtained hierarchical structure is verified
through medical experts.

The ECG interpretation protocol [21, 22] is very complex, and it interprets vari-
ous kinds of heart diseases. Improving quality of medical protocol using the formal
verification tools like highly mathematical based modelling languages; Event-B, is
the main contribution of our work. We have also discovered a hierarchical struc-
ture for the ECG interpretation efficiently that helps to discover a set of conditions
that can be very helpful to diagnose particular disease an early stage of the diagnosis
without using multiple diagnosis. Our hierarchical tree structure provides more con-
crete solutions for the ECG interpretation protocol and helps to improve the original
ECG interpretation protocol. Our objective behind this work is that if any medical
protocol is developed under particular circumstances to handle a set of specific prop-
erties according to the medical experts, formal verification can also meet whether
the protocol actually complies with them. This has been the first attempt ever in
verifying medical protocols with mathematical rigour with the generalised formal
modelling tool Event-B. The main objective of this approach to test correctness and
consistency of the medical protocol using refinement based incremental develop-
ment. This approach is not only for diagnosis purpose, but it may be applicable to
covering a large group of other categories (i.e. treatment, management, prevention,
counselling, evaluation, etc.)3 related to the medical protocols.
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Chapter 11
Conclusion

Abstract This chapter concludes the book through summarising important points
of each chapter. The main contribution of this book is to propose the formal meth-
ods based development life-cycle and associated techniques and tools, that are ex-
emplified by the grand challenge related to the cardiac pacemaker. Additionally, this
book provides a technique for identifying anomalies in the standard ECG protocol
through incremental formalisation in Event-B.

11.1 Introduction

Highly critical systems, such as medical, avionic, and automotive systems require
high integrity, software reliability, and proof based development for complying with
certification standards [2, 5, 8, 9], which evaluate the systems before their usage.
In this framework, adaptation of the formal method has become the state-of the-art
tech to meet the high demands on safety and reliability by certification bodies [6].
However, adaptation of formal methods significantly complicates the development
process of a system due to complexity of the modelling as well as a system itself.
Refinement based modelling techniques reduce verification effort significantly by
designing the whole system using the stepwise development process. The complete
system is verified with the help of theorem prover, model checker and animation
tools. Moreover, critical systems can be analysed already at the early stages of their
development, which allow to explore conceptual errors, ambiguities, requirement
correctness and design flaws before implementation of the actual system, and this
approach helps to correct errors more easily and with less cost.

This book presents a new development life-cycle methodology, which is an ex-
tension of the waterfall model for developing the critical systems, where each phase
has used different kinds of techniques based on formal techniques. In current system
development process, formal methods are used only at the early stage of the system
development for verifying the requirements. We have proposed new development
methodology, which supports formal methods at every stage of the system devel-
opment process. We have not only used existing development life-cycle steps, but
also introduced some new steps in the life-cycle methodology. The proposed new
recursive approach is based on refinement techniques to build the whole system
from requirement analysis to code generation. New introduced techniques and tools
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based on formal methods support refinement based formal development, essential
verification, and validation steps and automatic code generation in the process of
critical system development. The proposed techniques and tools are the develop-
ment methodology, framework for real-time animator [15], refinement chart [24],
automatic code generation tools [3, 14, 16, 17], and formal logic based heart model
for closed-loop modelling [19, 21, 22].

In Chap. 1, we have given a list of objectives, which all are covered in this book
through giving a new development life-cycle methodology and a set of associated
techniques and tools for developing the critical systems. Assessment of the develop-
ment methodology and a set of techniques and tools are given through well known
case study related to the medical domain. This work has established a unified the-
ory for the critical system development, and proposed techniques and tools fulfil
the other objectives. We have given a rigorous approach for the system develop-
ment rather than the traditional development of critical systems. In traditional de-
velopment, formal methods are used to provide safety assurances and to meet the
requirements of the standard of the certification bodies. Our new approach based
completely on formal techniques, develops the whole system rigorously from re-
quirement analysis to code implementation, satisfying all requirements of the stan-
dard certification bodies. In addition, the methodology provides a safety assessment
approach to analyse the whole development life cycle of the critical system, which
meets requirements of the certification standard bodies.

Complexity of the critical system makes, it is hard to understand and to verify.
Several approaches exist for the verification of critical systems, including model
checking, theorem proving, or simulation based validation. There exists a vast vari-
ety of problems related to the critical systems and several solutions for each prob-
lem. Rigorous reasoning about the system behaviour is required to ensure that a
desired behaviour is achieved. Event-B is a modelling language, which describes
a system abstractly, and introduces system details through refinement steps to ob-
tain the final concrete system. The Rodin [1, 25] tools provide significant automated
proof support for generating the proof obligations and discharging them. Generated
proof obligations help to understand the complexity of the problem and to ensure the
correctness of the system. In the following sections, we have made several contribu-
tions towards an integration of refinement based development using Event-B with
formal specification, verification and code implementation for the critical systems.

11.2 Life-Cycle Methodology

A major step forward is the new life-cycle methodology, exploits the mathematical
base to carry out a complete rigorous proof based system development using formal
techniques in every step from requirement analysis to automatic code generation.
This life-cycle methodology is used for developing the critical systems for obtaining
the certificate standards, such as IEC-62304 [7] and the Common Criteria [2, 4, 12].
This development methodology combines the refinement approach with verification
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tool, model checker tool, real-time animator, and finally generates the source code
using the automatic tools. System development process is concurrently assessed by
safety assessment approach [11] to comply with certification standards. Applying
these new approaches for highly critical systems have many benefits, i.e. the expo-
sure of errors, which might not have been detected without formal methods. The
guidance of NITRD [6] allows adoption of formal methods into an established set
of processes for development and verification of a high confidence medical device
to be an evolutionary refinement rather than an abrupt change of methodology.

11.3 Techniques and Tools

The book work also advances the development of new techniques and tools for
supporting the new life-cycle methodology, and is explained in subsequent phases:

Real time animator is used to validate the formal model with real-time data set
at an early stage of system development without generating the source code [15],
and to bridge the gap between software engineers and stakeholders to build quality
system and discover all ambiguous informations from the requirements. The com-
bined approach of formal verification and real-time animation allows the systematic
development of a clear, concise, precise and unambiguous specification of a soft-
ware system and enables software engineers to animate the formal specification at
an early stage of the development. Moreover, there are scientific and legal applica-
tions as well, where the formal model based animation can be used to simulate (or
emulate) certain scenarios to glean more information or better understandings of the
system to improve the final given system.

Another significant contribution towards improving techniques and tools section
is the “refinement chart”, which is used to present the whole system using layer-
ing approach in graphical block diagrams, where functional blocks are divided into
multiple simpler blocks in a new refinement level, without changing the original
behaviour of the system. The refinement chart offers a clear view of assistance in
“system” integration. This approach also gives a clear view about the system assem-
bling based on operating modes and different kinds of features. This is an important
issue not only for being able to derive system-level performance and correctness
guarantees, but also for being able to assemble components in a cost-effective man-
ner. The complexity of design is reduced by structuring systems using modes and
by detailing this design using refinement.

Automatic code generation from a proved formal model to the target program-
ming language is an essential step for system implementation, which is an equally
important contribution. We have developed the main principles, rules, and imple-
mentation solutions for the translation tool, and also code verification techniques
for generating target programming language (C, C++, Java and C#) code satisfying
Event-B specifications [3, 14, 16, 17]. The syntax adopted is restrictive, but with
many salient and essential characteristics for the most numeric applications, sup-
ports powerful static-analysis methods and generates fast and safe source code in
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the target programming languages. The benefits of developing and enhancing the
translation tool [3, 14, 16, 17] presented stem primarily from their increased sup-
port for automated translation between the two components of a formal model and
target programming language. The adaptations of the translation rules require more
complete experiments, especially with large formal models for checking the impact
on the execution time for some specific platforms. The gains rely then on the guar-
antees provided using a formal method and on the certification level which can be
obtained by this way. As far as we know, only few formal methods support code
generation, which is as time and space efficient as handwritten code.

Development of an environment for closed-loop modelling using formal tech-
niques [21] is our another remarkable contribution of this book. We have pre-
sented a methodology for modelling a mathematical heart model based on logico-
mathematical theory. The most important goal is that this formal model helps to ob-
tain a certification for the medical devices related to the heart system such as cardiac
pacemaker and ICDs. It can be also used as a diagnostic tool to identify a critical
state of the patient using a patient environment model. The heart model is based
on electrocardiography analysis, which models the heart circulatory system at the
cellular level. This has been one of the most challenging problems to validate and
verify the correct behaviour of the developed system model (a cardiac pacemaker
or ICDs) under biological environment (i.e. heart). This approach for formalising
and reasoning about impulse propagation into the heart system through the conduc-
tion network. The heart model suggests that such an approach can yield a viable
model that can be subjected to useful validation against medical device software at
an early stage in the development process (i.e. cardiac pacemaker). The heart model
is verified with the help of physiologist and cardiologist experts.

11.4 Applications

Assessment of proposed development life-cycle methodology and a set of associ-
ated techniques and tools are made through the development of the industrial-scale
case study, which cover medical domains. The well-known case study is the cardiac
pacemaker [13, 15, 18]. We have applied development methodology and associ-
ated techniques and tools for system implementation. The combined approaches
of the formal verification, and validation, refinement chart, real-time animator, and
automatic code generation, cover enumerated claims like certifiable assurance and
safety, error-free system development and system integration. Refinement chart spe-
cially covers component-based design frameworks and decomposition, integration
of critical infrastructure and device integration. Our case study on cardiac pace-
maker illustrates the potential value of a formal specification, and its subsequent
animation can bring to the comprehension and clarification of the informal require-
ments. The case study has shown that requirement specifications could be used di-
rectly in real-time environment without modifications for automatic test result eval-
uation using our approach. We can see from our pacemaker case study that all these
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claims help to design an error-free system and different phases of the system have
been shown by refinements in form of formal development as well as refinement
charts. We have presented evidence that such an analysis is fruitful for both formal
and non-formal group of people. The second observation from our experiments is
that development of multiple models helped us not only find errors in the require-
ments documents but also gave us an opportunity to better understand intricate re-
quirements such as the control algorithm of a critical system. Moreover, we believe
that the effort needed is commensurate with the benefits we derive from developing
the multiple models.

In order to assess the overall utility of our approach, a selection of the results
of the formalisation and verification steps have been presented to a group of pace-
maker developers (French-Italian based pacemaker company). The developers are
satisfied by the result of pacemaker development using this methodology in sense
of incremental development as well as integration of hardware and software. They
really agreed on the refinement charts for showing operating mode relation and their
mode transitions. Throughout our case study, we have shown formal specification
and verification of the cardiac pacemaker system and the models must be validated
to ensure that they meet requirements. Hence, validation must be carried out by both
formal modelling and domain experts. Based on the experiment described above
and our conclusions we are convinced of the usefulness on certain areas, and there-
fore, we are considering to use this methodology for designing the highly critical
systems. The proposed framework and developed techniques and tools offer sys-
tem development from formal verification to code generation, which offer to obtain
that challenge of complying with FDA’s QSR, ISO/IEC and IEEE standards quality
system directives [2, 5, 8–10] and help to get certification for the highly complex
critical systems.

11.5 Medical Protocol

This book also contributes in the area of formal representation of the medical pro-
tocol. The formal model of medical protocol is verified, and this verified model is
not only feasible but also useful for improving the existing medical protocol. We
have fully formalised a real-world medical protocol (ECG interpretation) in an in-
cremental refinement-based formalisation process, and we have used proof tools to
systematically analyse whether the formalisation complies with certain medically
relevant protocol properties [20, 23]. The formal verification process has discov-
ered a number of anomalies. We have also discovered a hierarchical structure for
the ECG interpretation efficiently that helps to discover a set of conditions that can
be very helpful to diagnose particular disease at early stage of the diagnosis without
using multiple diagnosis. Our hierarchical tree structure provides more concrete so-
lutions for the ECG interpretation protocol and helps to improve the original ECG
interpretation protocol. The main objective of this approach is to test correctness and
consistency of the medical protocol. This approach is not only for diagnosis purpose,
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but it may be applicable to covering a large group of other categories (i.e. treatment,
management, prevention, counselling, evaluation, etc.)1 related to the medical pro-
tocols.
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Appendix
Certification Standards

A.1 What Are Standards?

Standards are documented agreements containing technical specifications, which
produce precise criteria, consistent rules, procedures to ensure reliability, software
processes, methods, products, services and use of products are fit for their purpose in
this world. Standards include a set of issues corresponding to the product function-
ality and compatibility, facilitate interoperability, including designing, developing,
enhancing, and maintaining. A set of protocols and guidelines, which are produced
by the standards, are consistent and universally acceptable for product development.
Standards allow to understand the quality of different products for competing with
them and provides a way to verify the credibility of new products [13, 18]. A basic
definition of standards is defined by ISO [18] as follows:

Standards are documented agreements containing technical specifications or
other precise criteria to be used consistently as rules, guidelines, or definitions of
characteristics, to ensure that materials, products, processes and services are fit for
their purpose.

Different nations tend to have different views of what a standard is and what
standardisation is for. Standards are varied from nation to nation. For instance, UK
and Europe standards define a product. Implementation dependencies should be re-
duced, and rigorous testing of products should satisfy the standards. The standard is
a description of an artifact that is to be built precisely according to the provisions of
the standard.

Since software plays an increasingly important role in software-based products
related to medical, automotive and avionic systems. Because of the uncertainty of
the reliability and compatibility of these software-based products, different kinds of
national and international standards related to certification bodies (FDA’s QSR and
ISO’s 13485, etc.) need effective means for ensuring that the developed software-
based system is safe and reliable.

There is a wide variety of standards bodies. More than 300 software standards
and 50 organisations are developing software standards [8]. Standards come in many
different flavours, for example, de-facto standards, local, national and international
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Table A.1 Standards
organisations AIAA American Institute of Aeronautics and Astronauts

ANS American Nuclear Society

ANSI American National Standards Institute

ASTM American Society for Testing and Materials

BSI British Standards Institution

CCITT Telecommunication Standardization Bureau

CEN European Committee for Standardization

CSA Canadian Standards Association

CSE Communications Security Establishment

DEF British Defence Standards

DIN Drug Information Association

DIN Deutsches Institute für Normung

DoD U.S. Department of Defense

ISO International Organization for Standardization

IEC International Electrotechnical Committee

IEEE Institute of Electronic and Electrical Engineers

CC Common Criteria

FDA The Food & Drug Administration

standards. Some of the standards are more specific related to the defence, financial,
medical, nuclear, transportation, etc. Some of the major software standards are given
in Table A.1 [8].

In the next sections, we describe here only international standards related to the
information technology by ISO/IEC (the International Organization for Standard-
ization/International Electrotechnical Commission), IEEE (Institute of Electronic
and Electrical Engineers), FDA (Food and Drug Administration) and CC (Common
Criteria).

A.2 ISO/IEC Standards

IEC (International Electrotechnical Commission) is established in 1906 and ISO (In-
ternational Organization for Standardization) is a non-governmental organisation is
established in 1947 [6, 8, 18]. The ISO is a worldwide federation of national stan-
dards bodies from more than 140 countries, one from each country, which facilitate
the international coordination and unification of the industrial standards [18]. The
primary preoccupation of international standards is to eliminate technical barriers
to trade; the view is that world-wide standards help rationalise the international
trading process [6, 10].

There are number of standards addressing safety and security of a system related
to the software development. For example, avionics RTCA-Do-178B [22] or the
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IEC 61508 [9, 12] as the fundamental standard for functional safety of the E/E/EP
systems [9, 12]. The IEC 62304 [11] standard is for software life-cycles of med-
ical device development, which addresses to achieve more specific goals through
standard process activity. The process standard IEC 62304 [11] is a collection of
two other standards ISO 14791 and ISO 13485, where ISO 14791 standards are for
quality, and ISO 13485 is for risk management. Here, we have presented a brief
introduction about IEC 61508 and IEC 62304 standards, which may be achieved
using our proposed methodologies.

A.2.1 IEC 61508—Software Safety in E/E/EP Systems

Systems constitute of electrical and/or electronic elements, which can be used to
perform safety functions in many application sectors. ISO/IEC 61508 [9, 12] con-
stitutes a generic approach for all safety life cycle activities of the electrical and/or
electronic and/or programmable electronic (E/E/PE) systems to perform safety func-
tions. It provides a generic development approach for achieving a rational and con-
sistent technical policy for all kinds of electrical systems to the safety-related sys-
tem. This standard provides some frameworks to consider safe and reliable for the
safety-related systems that are developed in other technologies. It covers a wide va-
riety of complexity, hazard and risk potentials related to the E/E/PE systems. Main
objective of this standard is to define a life-cycle for safety-critical software con-
sidering best practices and recommendations from early phases of requirements and
development to operation, maintenance and disposal. A complete detail description
about Software Architecture Design related to the properties for systematic integrity,
software design and development are given in a tabular form [9, 10, 12]. The main
objective of the IEC 61508 is to provide software architecture design, including
design activity of the system, which are defined as follows:

• Selection of techniques and verify the satisfiable level according to the safety
requirements

• Partitioning of the system
• Software/hardware interaction
• Unambiguous representation of the architecture
• Treatment of safety integrity of data
• Specification of architecture integration tests

Besides generic quality goals, the IEC 61508 also covers process dependen-
cies and concrete characteristics of the architecture related to the completeness and
correctness according to the requirements, no design faults, simple modular and
structure-able, satisfiable desired behaviour, verifiable and testable design, and fault
tolerance against system failure due to common cause [10, 12].
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A.2.2 IEC 62304—Process Requirements for Medical Device
Software

The IEC 62304 [11] standard specifies a framework of the life cycle processes for
medical devices, which helps to design a safe system. All necessary requirements
for each life cycle process are provided by the IEC 62304. Life cycle process is
divided into a subset of activities and is controlled by the risk management and
quality management. The risk-management process is defined by the ISO 14971
standard and quality management is defined by the ISO 13485 standards.

The ISO 14971 and ISO 13485 standards [18] provide risk-based quality man-
agement that determines the required rigour of software quality assurance from the
risk, which appears from a medical device in form of undesired behaviour of the
system. Software can be an important part of a medical device providing safety and
effectiveness of the software-based a medical device requires to fulfil requirements
and to use of software without any risk. When a software is contributing to a haz-
ard, which is determined by hazard identification activity of the risk-management
process. Hazards could be indirectly caused by software, which can be considered
that software is a contributing factor. The use of software to control risk is made
during the risk control activity and risk management process under consideration of
the ISO 14971 and ISO 13485 standards, respectively. The software-development
process consists of a number of activities related to the service or maintenance of a
medical device system, including software updates. All these activities are also con-
sidered as an important task of the software-development process. The IEC 62304
mentions six sub-activities for the architectural design step, which are as follows:

• Realisation of the requirements
• Interface design
• Specification of functional and non-functional software components
• Specification of the environment of software components
• Partitioning due to the risk mitigation strategy
• Verification of the architecture

The software safety classification ranges from A—no harm or injury—to C—
death or severe injury is possible. The classification defines the principle level of
rigour, and consequently, the efforts to be undertaken, is required for all software
development and maintenance activities [10]. The IEC 62304 standards provide
assurance for medical software system and guarantees that the software does not
contribute to hazardous failure of the system due to its systematic safety-oriented
process and implementation of the functional requirements are performed carefully
for the required activities. The requirement analysis, architecture, design, imple-
mentation and integration are main phases of the development process for handling
the complexity of a system. Each phase of the development process is controlled
by the IEC 62304, which recommends activities to plan, track, control and com-
municate possible problems to prevent the risk of systematic errors. The complete
process development with risk management for a medical device is described in [8,
11].
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A.3 IEEE Standards Association

The Institute of Electrical and Electronics Engineers (IEEE) standard [13] provides
the safety assurance level for industries, including: power and energy, biomedical
and health care, information technology, transportation, nanotechnology, telecom-
munication, information assurance, and many more. The IEEE standard is interna-
tionally recognised and technical experts from all over the world participate in the
development of it [13, 17]. The IEEE standards documents are prepared within the
IEEE societies. The IEEE standards are developed by both groups of experts related
to the subject within the IEEE societies and outside from the IEEE societies. The
IEEE societies built a group from the broad range of individuals and organisations
from worldwide with different kinds of expert to assist in standards development
and standards-related collaboration. This group helps for innovation and expansion
of technologies on the criteria of international market demand related to the safety
systems. The IEEE standard is approved by authority and considers the users rec-
ommendations before apply into the development process. All these standards are
reviewed at least every five years to qualify the new amendments in the systems.
IEEE societies provide standards for almost every area of engineering, which are
enumerated as follows:

• Aerospace Electronics
• Antennas & Propagation
• Batteries
• Communications
• Computer Technology
• Consumer Electronics
• Electromagnetic Compatibility
• Green & Clean Technology
• Healthcare IT
• Industry Applications
• Instrumentation & Measurement
• National Electrical Safety Code
• Nuclear Power
• Power & Energy
• Power Electronics
• Smart Grid
• Software & Systems Engineering
• Transportation
• Wired & Wireless

We have given some basic details about related to the Software & Systems Engi-
neering, which are defined as follows:
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Fig. A.1 The standards
development life-cycle of
IEEE

A.3.1 IEEE Standard 1012

The IEEE Standard 1012 is particularly used for both critical and non-critical soft-
ware related to the Software Verification and Validation Plans (SVVP). Critical soft-
ware is software in which a failure could have an impact on safety or could cause
large, financial or social losses [14]. The SVVP mainly used for first, verification
of the software product according to the previously defined life-cycle phases, and
second validation of the final product according to the existing software and system
requirements [16].

A.3.2 IEEE Standard 730

The IEEE Standard 730 [15] is related to the Software Quality Assurance Plans
(SQAP), which provides minimum acceptable requirements for the software. This
standard helps specially for development and maintenance of the critical software.
A subset of requirements of this standard is applicable to non-critical and already
developed software.

A.3.3 IEEE Standard 1074

The IEEE Standard 1074 is used for developing a process of a software project life
cycle. This standard mainly controls the architecture of the process, which is partic-
ularly useful for organisation that is responsible to complete development process
of the software projects [17]. The development life cycle of the IEEE standards is
depicted in Fig. A.1, which describes a process for developing the IEEE standards
using six stages life cycle under the fixed time frame along with the effective and
trusted process. A detailed description about each level of the development life cycle
of the IEEE standards is available in [13].
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A.4 FDA

The Food and Drug Administration (FDA) [20] is established by US Department of
Health and Human Services (HHS) in 1930 for regulating the various kinds of prod-
uct like food, cosmetics, medical devices, etc. The FDA is now using standards in the
regulatory review process to provide safety to the public before using any product.
The FDA allows manufacturers to submit the declaration of conformity to satisfy
premarket review requirements. The FDA provides some guidelines on the recog-
nition use of and consensus standards. The FDA is interested in standards because
they can help to serve as a common yardstick to assist with mutual recognition,
based on the signed Mutual Recognition Agreement between the European Union
and United States. More than ever before, standards will have the more prominent
role for the review of medical devices. The FDA also recognises ISO/IEC and IEEE
standards [13, 14]. Basic goals of the FDA standard are:

• To promote health by reviewing research and approving new products.
• To ensure foods and drugs are safe and properly labelled.
• To work with other nations to “reduce the burden of regulation”.
• To cooperate with scientific experts and consumers to effectively carry out these

obligations.

The FDA standard classifies the medical devices based on risk and use of med-
ical devices. The FDA provides some standard guidelines for medical devices, and
medical devices have required to meet these standards. Time to time lots of amend-
ments have been done in the FDA standards [7, 20] according to the use of medical
devices to provide safety.

The Center for Devices and Radiological Health (CDRH) [5] is the branch of
the FDA, which is responsible for ensuring the safety of medical devices and elim-
inating unnecessary radiation from the medical products [7, 19, 20]. It provides
standards for medical products from the simple toothbrush to complex devices such
as pacemakers. The CDRH [5] also checks the safety performance of non-medical
devices, which emit certain types of electromagnetic radiation like cellular phones,
screening equipment, microwave ovens, etc. The CDRH has some standards, which
are used to describe many aspects of a medical device related to premarket and
post-market issues. Here, we briefly mention some basic concepts [7, 20] involved
in FDA regulation for medical devices:

• Class I devices are defined as non-life sustaining. These products are the least
complicated and their failure poses little risk.

• Class II devices are more complicated and present more risk than Class I, though
are also non-life sustaining. They are also subject to any specific performance
standards.

• Class III devices sustain or support life, so that their failure is life threatening.
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Table A.2 CC user groups (consumers, developers and evaluators)

Consumers Developers Evaluators

Part 1:
Introduction and
General Model

For background
information and
reference purposes

For background
information and
reference for the
development of
requirements and
formulating security
specifications for
TOEs

For background
information and
reference purposes.
Guidance structure for
PPs and STs

Part 2: Security
Functional
Requirements

For guidance and
reference when
formulating
statements of
requirements for
security functions

For reference when
interpreting
statements of
requirements and
formulating functional
specifications of
TOEs

Mandatory statement
of evaluation criteria
when determining
whether TOE
effectively meets
claimed security
functions

Part 3: Security
Assurance
Requirements

For guidance when
determining required
levels of assurance

For reference when
interpreting
statements of
assurance
requirements and
determining assurance
approaches of TOEs

Mandatory statement
of evaluation criteria
when determining the
assurance of TOEs
and when evaluating
PPs and STs

A.5 Common Criteria

The Common Criteria (CC) [1] is an international standard that allows evaluation
of security for IT products and technology. The CC is an international standard
(ISO/IEC 15408) [18] for computer security certification. The CC is a collection
of existing criteria: European (Information Technology Security Evaluation Criteria
(ITSEC)), US (Trusted Computer Security Evaluation Criteria (TCSEC)) and Cana-
dian (Canadian Trusted Computer Product Evaluation Criteria (CTCPEC)) [2–4].
The CC [1] contributes for developing an international standard and provides a way
to worldwide mutual recognition and evaluation results.

The Common Criteria enable an objective evaluation to validate that a particular
product or system satisfies a defined set of security requirements. The CC provides
a framework for computer users, vendors and testing organisations for fulfil their re-
quirements and ensure that the process of specification, implementation and testing
of the product has been conducted in a rigorous and standard manner. The CC has
mainly three parts, which has been described in Table A.2 to show the interest of
three different kinds of users (Consumers, Developers and Evaluators) [2].
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CC objectives [2–4] are described as follows:

• To ensure that evaluations of Information Technology (IT) products and protec-
tion profiles are performed to high and consistent standards and are seen to con-
tribute significantly to confidence in the security of those products and profiles.

• To improve the availability of evaluated, security-enhanced IT products and pro-
tection profiles.

• To eliminate the burden of duplicating evaluations of IT products and protection
profiles.

• To continuously improve the efficiency and cost-effectiveness of the evaluation
and certification/validation process for IT products and protection profiles.

A.5.1 CC Evaluation Assurance Level (EAL)

The Common Criteria (CC) certification provided insurance coverage by measuring
the level of security based the likelihood of threats and their impact. The Common
Criteria defines two classes of security requirements: functional and assurance. The
objectives of these two classes vary depending upon the security classification level.
There are seven levels of assurance that is known as Evaluation Assurance Levels
(EALs). The numerical rating of the EAL [4] describes development and presenta-
tion of the product’s evaluation. Each EAL corresponds to the Security Assurance
Requirements (SARs), which cover the product development within the level of
strictness. The assurance level from EAL1 to EAL7 represents an increasing or-
der of evaluation assurance level. In the EALs, the first level being when the threat
and impact are very low and the seventh is when the threat and impact are very
strong, means the higher level provides more confidence and assurance safety. The
last level of EAL involves verification of the developed software based on logical
reasoning and theorem proving techniques. Higher level of EALs do not necessar-
ily imply “better security”, they only mean that the security claimed is extensively
verified. All the Evaluation Assurance Levels (EALs) [21] of safety are described
as follows:

EAL1: Functionally Tested. It applies when you require confidence in a product’s
correct operation, but do not view threats to security as serious. An evaluation
at this level should provide evidence that the target of evaluation functions in a
manner consistent with its documentation, and that it provides useful protection
against identified threats.

EAL2: Structurally Tested. It applies when developers or users require low to
moderate independently assured security, but the complete development record
is not readily available. This situation may arise when there is limited developer
access or when there is an effort to secure legacy systems.

EAL3: Methodically Tested and Checked. It applies when developers or users
require a moderate level of independently assured security and require a thorough
investigation of the target of evaluation and its development, without substantial
re-engineering.
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EAL4: Methodically Designed, Tested, and Reviewed. It applies when develop-
ers or users require moderate to high independently assured security in conven-
tional commodity products and are prepared to incur additional security-specific
engineering costs.

EAL5: Semi-formally Designed and Tested. It applies when developers or users
require high, independently assured security in a planned development and re-
quire a rigorous development approach that does not incur unreasonable costs
from specialist security engineering techniques.

EAL6: Semi-formally Verified Design and Tested. It applies when developing
security targets of evaluation for application in high-risk situations where the
value of the protected assets justifies the additional costs.

EAL7: Formally Verified Design and Tested. It applies to the development of se-
curity targets of evaluation for application in extremely high-risk situations, as
well as when the high value of the assets justifies the higher costs.
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