
Chapter 2
Simple Switching Transients

2.1 Laplace Transform

The Laplace transformation is among the most useful tools used by electrical
engineers. The purpose of this book is not to provide a mathematical treatment of
the Laplace transform. Instead, the next pages focus on the practical application of
the method and its use on different types of circuits.

The Laplace transformation is a method that can be used for solving ordinary
differential equations by reducing a differential equation to an algebraic equation
which can then be solved by the more common and easy algebraic operations.
Moreover, the Laplace transformation is a linear operation, i.e., L(af(t) ? bg
(t)) = aL(f(t)) ? bL(g(t)) and it can be applied to piecewise continuous functions,
meaning that the function may have finite ‘‘jumps’’.

The Laplace transform of a function f(t) is defined by (2.1). However, it is
normally unnecessary to solve the equation as tables of transforms exist for the
more common expressions. Table 2.1 shows some of the main transformations
used by electrical engineers.

F sð Þ ¼ L f tð Þð Þ ¼
Z1

0

e�stf tð Þdt ð2:1Þ

One question that may arise is: can Laplace transform applied to any function.
The theory states that the transform can be applied for any s [ c as long as the
condition (2.2) is fulfilled for all t C 0 and for some constant M and c [1]. In other
words, the transform exists if e-stf(t) goes to zero when t ? ?, something which
is true for any physical system, since that for any real physical stimulus there will
be a real physical response [2].

f tð Þj j �Mect ð2:2Þ
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As mentioned the Laplace transform is normally used to solve differential
equations. These equations contain a combination of derivative and integration
functions and in the following, we will see how to work with these functions.

The Laplace transform of a differentiation corresponds to the multiplication of
the transform F(s) by the complex Laplace variable s, whereas the Laplace
transform of an integration corresponds to a division. In other words, the differ-
ential equation becomes a polynomial equation.

Equation (2.3) shows how to apply the Laplace transform to a first order der-
ivate. The variable s multiplies the transformation and the initial value of the
function f is subtracted. It is important to keep in mind that the solution to a
differential equation has two parts, the general solution and the particular solution.
The general solution is a characteristic of the system being studied, and it is
independent of the system condition [left term in (2.3)], whereas the particular
solution depends on the system condition, normally the system initial conditions
[right term in (2.3)].

L f
0

tð Þ
� �

¼ sL f tð Þð Þ � f 0ð Þ ð2:3Þ

The same method can be applied to higher order derivate functions, with minor
changes. Equation (2.4) shows how to apply the Laplace transform to a second
order derivate. The deduction of the formula is rather straightforward and shown in
(2.5).

L f
00

tð Þ
� �

¼ s2L f tð Þð Þ � sf 0ð Þ � f
0

0ð Þ ð2:4Þ

L f 00 tð Þð Þ ¼ sL f 0 tð Þð Þ � f 0 0ð Þ
¼ s sL fð Þ � f 0ð Þð Þ � f 0 0ð Þ
¼ s2L f tð Þð Þ � sf 0ð Þ � f 0 0ð Þ

ð2:5Þ

The reasoning applied in (2.5) can be applied to any higher order derivate
function and the following general expression is obtained (2.6).

L f n tð Þð Þ ¼ snL f tð Þð Þ � sn�1f 0ð Þ � sn�2f
0

0ð Þ � � � � � f n�1 0ð Þ ð2:6Þ

The integration is the opposite operation of derivation, and thus, there is a
division instead of a multiplication. Equation (2.7) shows how to apply the Laplace
transform to an integral defined between 0 and a random time t.

Table 2.1 Some Laplace transforms of the more common functions

f(t) F(s) f(t) F(s) f(t) F(s)

I 1 1
s

IV eat 1
s�a

VII e�a tj j 2a
a2�s2

II t 1
s2 V 1� e�at a

s sþað Þ VIII cos xtð Þ s
s2þx2

III tn n!
snþ1 VI tn

n! e
�at 1

sþað Þnþ1 IX sin xtð Þ x
s2þx2
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L
Z t

0

f tð Þdt

0
@

1
A ¼ 1

s
L f tð Þð Þ ð2:7Þ

Do not worry if it seems complicated. The use of the Laplace transformation of
the different proprieties will become clearer via the examples shown on the next
pages.

2.2 Switching of RL Circuits (or Shunt Reactors)

The first circuit that we are going to analyse is a basic RL circuit. An RL circuit is
a first-order circuit and due to its simplicity, it is a good choice for an introduction
to the world of transients. The circuit also resembles the behaviour of a shunt
reactor which is an important piece of equipment in any high voltage cable-based
network. Figure 2.1 shows the single-line of an RL circuit consisting of a resis-
tance and inductance in series connected to a voltage source through a switch
(CB).

2.2.1 DC Source

The simplest example is the energisation of the RL load by a DC voltage source.
Such a system is mathematically described by (2.8). The application of the Laplace
transform to (2.8) leads to (2.9).

V ¼ RI þ L
dI

dt
ð2:8Þ

V ¼ RI sð Þ þ L sI sð Þ � I 0ð Þð Þ ð2:9Þ

The circuit is considered as being discharged previous to the switching and thus
I(0) = 0, because of the inductor, and the solution to the equation is the one shown
in (2.10).

V

R

L

CBFig. 2.1 Switching of an RL
load
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V

s
¼ RI sð Þ þ sLI sð Þ , I sð Þ ¼ V

s Rþ sLð Þ , I sð Þ ¼ V

L

1
s R=Lþ sð Þ ð2:10Þ

Applying the inverse Laplace transform (V in Table 2.1) to (2.10) allows to
obtain the time domain expression of the current (2.11).

I tð Þ ¼ L�1 I sð Þð Þ , I tð Þ ¼ L�1 V

L

L

R

R=L

s R=Lþ sð Þ

� �

, I tð Þ ¼ V

R
1� e�

R
Lt

� � ð2:11Þ

We can see that the current starts at zero and increases up to V/R with a time
constant (s) equal L/R and with the behaviour of an inverse exponential decay
function. It is common to consider the current in steady-state after approximately 5s.

It is important to keep in mind that the current cannot change instantaneously
due to the conservation of the moment in the magnetic flux associated to the
inductor. In other words, the magnetic flux has to be continuous, i.e., an instant
change in the current would require an infinite voltage which is obviously
impossible in a real system.

Example:
Figure 2.2 shows the current during the switching of an RL load for the following
parameters: V = 100 V, R = 1 X and L = 0.1 H.

We know from (2.11) that the time constant of the circuit is L/R = 0.1 s and the
steady-state value is equal to V/R = 100 A. Figure 2.2 confirms the results
showing a current with the shape of an inverse exponential decaying function with
an approximate steady-state value of 100 A after 0.5 s (5 9 0.1).
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Fig. 2.2 Current in the load
during the first 0.5 s when
using a DC voltage source
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2.2.2 AC Source

The previous example was for a DC circuit, however, the majority of the power
systems are AC. The change of the voltage source from DC to AC leads to radical
changes in both the equation and the waveform.

The first step is to solve the equation describing the circuit (2.12) and apply the
Laplace transform (2.13). For simplification, it is considered that the circuit is
switched at zero voltage and that it was unloaded prior to the energisation,
I(0) = 0 A.

VPsin xtð Þ ¼ RI þ L
dI

dt
ð2:12Þ

VP
x

s2 þ x2
¼ I Rþ sLð Þ � I 0ð Þ ð2:13Þ

I ¼ VP
x

s2 þ x2

1
Rþ sL

, I ¼ VP
x
L

1
s2 þ x2

1

sþ R
L

ð2:14Þ

The resolution of (2.14) requires the use of the partial fraction method as done
in (2.15) and (2.16), where a = R/L.

1
s2 þ x2

1
sþ a

¼ Asþ B

s2 þ x2
þ C

sþ a
ð2:15Þ

s2 : Aþ C ¼ 0
s1 : Aaþ B ¼ 0
s0 : Baþ Cx2 ¼ 1

8<
: ð2:16Þ

By solving (2.16), (2.17) is obtained. Using (2.17) in (2.15) and later in (2.14),
(2.18) is obtained.

A ¼ �1
a2 þ x2

^ B ¼ a

a2 þ x2
^ C ¼ 1

a2 þ x2
ð2:17Þ

I ¼VP
x
L

1
a2 þ x2

�sþ a

x2 þ s2
þ 1

sþ a

� �

, I ¼VP
x
L

1
a2 þ x2

�s

s2 þ x2
þ a

s2 þ x2
þ 1

sþ a

� � ð2:18Þ

The inverse Laplace transform can be applied to (2.18) leading to (2.19). Notice
how the linearity of the Laplace transform act as an advantage in this case.
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I tð Þ ¼ VP
x
L

1
a2 þ x2

� cos xtð Þ þ a

x
sin xtð Þ þ e�at

� �

, I tð Þ ¼ VP

L

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p cos xtð Þ þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p sin xtð Þ þ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p e�at

� �

ð2:19Þ

It is known that the power factor [cos(/)] of an RL load is given by (2.20)
which is equivalent to (2.21).

cosð/Þ ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xLð Þ2

q ð2:20Þ

cosð/Þ ¼ R

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
L

� �2þx2
q , cosð/Þ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p ð2:21Þ

Similar relations can be obtained for sin(/) (2.22) and tan(/) (2.23).

sin2 ð/Þ þ cos2 ð/Þ ¼ 1, sin ð/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

a2 þ x2

r
, sin ð/Þ ¼ x

a2 þ x2

ð2:22Þ

tan ð/Þ ¼ sin ð/Þ
cosð/Þ , tan ð/Þ ¼ x

a
ð2:23Þ

Replacing (2.21) and (2.22) in (2.19), (2.24) is obtained.

I ðtÞ ¼ VP

L

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p � sin ð/Þ cos ðxtÞ þ cos ð/Þ sin ðxtÞ þ sin ð/Þe�atð Þ ð2:24Þ

Equation (2.24) can be further simplified using the trigonometric relation
(2.25), leading to (2.26).

cos ð/Þ sin ðxtÞ � sin ð/Þ cos ðxtÞ ¼ sin ðxt � /Þ ð2:25Þ

I tð Þ ¼VP

L

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p sin xt � /ð Þ þ sin /ð Þe�atð Þ

, I tð Þ ¼VP

L

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p sin xt � tan�1 x

a

� �� �
þ sin tan�1 x

a

� �� �
e�at

� �

, I tð Þ ¼ VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xLð Þ2

q sin xt � tan�1 x
L

R

� �� �
� sin � tan�1 x

L

R

� �� �
e�

R
Lt

� �

ð2:26Þ

The equation were developed assuming that the circuit was switched on for zero
voltage. However, the circuit can be energised at any chosen instant. A process
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similar to the one just done in the last pages can be done, which would result in
(2.27), where h is the switching angle (Fig. 2.3).

I tð Þ ¼ VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xLð Þ2

q sin xt þ h� tan�1 x
L

R

� �� �
� sin h� tan�1 x

L

R

� �� �
e�

R
Lt

� �

ð2:27Þ

As previously stated, a shunt reactor is basically an RL circuit and it is
described by (2.27). However, the high inductance of a shunt reactor which is
typically hundreds of times larger than the resistance allows simplification of
(2.27) to the more compact (2.28).

I tð Þ ’ VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xLð Þ2

q sin xt þ h� p
2

� �
� sin h� p

2

� �
e�

R
Lt

� �
ð2:28Þ

We obtained an equation describing a general RL circuit, but we have not yet
analysed and explained it. The current in (2.28) is the summation of two parts:

• The steady-state component (also known as forced regime): sin xt þ h� p
2

� �
;

• The transient component (also known as homogeneous regime): sin h� p
2

� �
e�

R
Lt.

The steady-state component of the current is basically a sinusoidal wave
oscillating at power frequency with a phase difference of approximately 90� to the
voltage, and it is independent of the switching instant or conditions.

The transient component is a decaying DC current whose amplitude depends on
the initial conditions, i.e., switching instant and the energy stored in the induc-
tance. The energy stored is typically zero (I(0) = 0 A), but the switching instant
can be any, depending on the application and type of CB.

To better understand the high importance of the switching instant, let’s see two
examples.

Energisation at peak voltage:
The energisation of the RL load for peak voltage is equivalent to having
h ¼ �90�. As a consequence, the transient component is zero and the current is
only the steady-state component.

O

1

-1

π/ 2 π 2π3π/ 2

y

x

Fig. 2.3 Switching angle in
a sinusoidal wave
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Figure 2.4 shows the energisation of the RL circuit for peak voltage where only
the steady-state component is present.

Energisation at zero voltage:
The energisation of the RL load for zero voltage is equivalent to having h ¼ 0�.
The steady-state component is the same for the previous example, as it would be
for any example that we can come up with for this circuit. However, the transient
component is radically different.

The transient component is a result of the need of maintaining the continuity of
the current at the inductor. The steady-state current component has a phase dif-
ference of almost 90� to the voltage. Due to energy conservation, the current in the
inductor must be continuous; therefore, the transient component has an initial
value equal to that of the steady-state current in the connection moment with an
opposite sign. Thus, if the RL load is energised when the voltage is zero, the DC
component will be at its maximum with a value which is in theory equal to the
peak value of the steady-state component.

Figure 2.5 shows the energisation of the RL circuit for zero voltage. Notice the
decaying DC component whose initial amplitude is equal to the peak value of the
steady-state component, *3.2 A. The decaying rate of the DC component depends
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Fig. 2.5 Current during the
first 0.5 s when using an AC
voltage and energising at zero
voltage. Solid line current in
the RL load, dashed line
transient component
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Fig. 2.4 Current in the load
during the first 0.5 s when
using an AC voltage source
and energising at peak
voltage
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on the time constant R/L, and the smaller the time constant, the longer it takes to
damp the transient.

The DC component in the previous example is positive, but it can also be
negative. A voltage passes twice by zero during a cycle, and the DC component is
maxima for both zeros. However, the signal of the DC component depends on
derivate of the voltage. If the voltage is going from negative values to positive
values (positive derivate) the DC component has a positive signal; if the voltage is
going from positive values to negative values (negative derivate) the DC com-
ponent has a negative signal.

2.2.3 Summary

In this section, we took contact with our first transient, the energisation of an RL
load. We saw how to use the Laplace transform to solve the system and how the
switching instant influences the transient. In the case of a RL circuit, the peak
current doubles if the circuit is energised at zero-voltage when compared with an
energisation at peak voltage. Thus, contrary to what many believe, in this specific
case, it would be advantageous to energise at peak voltage instead of zero voltage.

The influence of the switching instant on the transient waveform is common to
many transients and it is very often the difference between a smooth transient and a
highly undesired transient, as we shall see in Chap. 4.

2.3 Switching of RC Circuits (or Capacitor Banks)

After analysing an RL circuit, we are ready for the next step which is the RC
circuit. The RC circuit is also a first order circuit and it resembles the behaviour of
a capacitor bank. Figure 2.6 shows the single-line of an RC circuit consisting in a
resistance and capacitor in series, connected to a voltage source through a switch.
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C

Fig. 2.6 Switching of an RC
load
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2.3.1 AC Source

An RC load behaves like an open circuit for a DC current, and its transient is
identical to the one obtained when the load is connected to an AC source at peak
voltage. Thus, we do an analysis for an AC source. Like before, the first thing to do
is to write the equation describing the system (2.29) and to apply the Laplace
transform (2.30). In order to be able to generalise and become even more
acquainted with the Laplace transform, we now consider that the switch can be at
any given instant.

VP sinðxt þ hÞ ¼ RI þ 1
C

Z
Idt ð2:29Þ

VP
xcos hð Þ
s2 þ x2

þ ssin hð Þ
s2 þ x2

� �
¼ RI þ 1

C

I

s
þ 0

s

, I ¼ VP
saC

sþ a

xcos hð Þ
s2 þ x2

þ ssin hð Þ
s2 þ x2

� �
; where a ¼ 1

RC

ð2:30Þ

The easiest way to solve the equation is to divide the second term of (2.31) into
two parts (2.32).

I ¼ VPaC
sxcos hð Þ

s2 þ x2ð Þ sþ að Þ þ
s2sin hð Þ

s2 þ x2ð Þ sþ að Þ

� �
ð2:31Þ

1ð Þ : sx cos hð Þ
s2þx2ð Þ sþað Þ

2ð Þ : s2 sin hð Þ
s2þx2ð Þ sþað Þ

ð2:32Þ

By applying the partial fraction method to (2.32), (2.33) is obtained. Replacing
(2.33) in (2.31), (2.34) is obtained.

1ð Þ : xcos hð Þ
x2þa2

saþx2

s2þx2 � a
sþa

� �

2ð Þ : sin hð Þ
x2þa2

sx2�ax2

s2þx2 þ a2

sþa

� � ð2:33Þ

I ¼ VP
aC

a2 þ x2
x cos ðhÞ saþ x2

s2 þ x2
� a

sþ a

� �
þ sin ðhÞ sx2 � ax2

s2 þ x2
þ a2

sþ a

� �	 


ð2:34Þ

The inverse Laplace transform (VI, VIII and IX in Table 2.1) is applied to
(2.34) and (2.35) is obtained.

I tð Þ ¼VP
aC

a2 þ x2
x cos hð Þ a cos xtð Þ þ x sin xtð Þ � ae�atð Þ½ �

þ sin hð Þ x2 cos xtð Þ � ax sin xtð Þ þ a2e�at
� � ð2:35Þ
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The power factor of an RC load is given by (2.36), which is equivalent to
(2.37).

cos ð/Þ ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

xC

� �2
q ð2:36Þ

cos ð/Þ ¼ 1

1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

xC

� �2
q , cos ð/Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
xRC

� �2
q , cos ð/Þ

¼ 1

1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

RC

� �2
q , cos ð/Þ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p ð2:37Þ

Similar relations can be obtained for sin(/) (2.38) and tan(/) (2.39).

sin2 /ð Þ þ cos2 /ð Þ ¼ 1, sin /ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2 þ x2

r
, sin /ð Þ ¼ a

a2 þ x2
ð2:38Þ

tan /ð Þ ¼ sin /ð Þ
cos /ð Þ , tan /ð Þ ¼ a

x
ð2:39Þ

Substituting (2.37)–(2.39), (2.40) is obtained.

I tð Þ ¼VP
aCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p xcos hð Þ sin /ð Þcos xtð Þ þ cos /ð Þsin xtð Þ � sin /ð Þe�atð Þ

þ VP
aCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p xsin hð Þ cos /ð Þcos xtð Þ � sin /ð Þsin xtð Þ þ a

x
sin /ð Þe�at

� �

ð2:40Þ

Equation (2.40) can be further simplified using the trigonometric relation (2.42)
and (2.42), leading to (2.43).

sin /ð Þcos xtð Þ þ cos /ð Þsin xtð Þ ¼ sin xt þ /ð Þ ð2:41Þ

cos /ð Þcos xtð Þ � sin /ð Þsin xtð Þ ¼ cos xt þ /ð Þ ð2:42Þ

I tð Þ ¼ VP
aCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p

x cos hð Þ sin xt þ /ð Þ � sin /ð Þe�atð Þ þ x sin hð Þ cos /þ xtð Þ þ a

x
sin /ð Þe�at

� �h i

ð2:43Þ

Equation (2.43) can be written as (2.44).
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I tð Þ ¼ VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

xC

� �2
q cos hð Þ sin xt þ tan�1 1

xRC

� �� �
� sin tan�1 1

xRC

� �� �
e�

1
RCt

� �
þ

þ VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

xC

� �2
q sin hð Þ cos xt þ tan�1 1

xRC

� �� �
þ 1

xRC
sin tan�1 1

xRC

� �� �
e�

1
RCt

� �

ð2:44Þ

A capacitance of either a cable or a capacitor bank is in the order of micro-
farad. Thus, (2.44) can be simplified into (2.45).

I tð Þ ¼ VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

xC

� �2
q cos hð Þ sin xt þ p

2

� �
� e�

1
RCt

� �
þ sin hð Þ cos xt þ p

2

� �
þ 1

xRC
e�

1
RCt

� �	 


ð2:45Þ

Another consequence of having typically a capacitance of micro-farad is the
low value of the time constant s = RC. Meaning that an energisation transient is
damped in some micro-seconds; something that must be taken into account when
choosing the simulation time-step.
Energisation at zero voltage:
Like before, we are going to separate the analysis of the energisation of the load at
zero voltage and the energisation of the load at peak voltage into two cases,
starting with the former.

The energisation of the RC load for zero voltage is equivalent to having
h ¼ 0�. Thus, (2.45) can be simplified into (2.46).

I tð Þ ¼ VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

xC

� �2
q sin xt þ p

2

� �
� e�

1
RCt

� �
ð2:46Þ

The equation shows us that the current starts at zero and rises while the transient
component is damped. It was previously stated that the time constant is typically
very high and that the transient component is damped in just some micro-seconds.
As a result, the current rises to a value approximately equal to the peak in a matter
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Fig. 2.7 Current in the load when energising at zero voltage. a First 10 ls. b First 40 ms
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of micro-seconds (remember that the variation of a sinus function magnitude
around the maximum is very slow).

Figure 2.7 shows the energisation of a RC load with a resistance of 1 X and a
capacitance of 1 lF connected to a 100 V-peak voltage source. Figure 2.7a zooms
the first 10 ls of the energisation and shows that the current reaches the peak value
in just 5 ls and that after this instant, only the steady-state current is present.

Energisation at peak voltage:
The energisation of the RC load for zero voltage is equivalent to having
h ¼ �90�. Thus, (2.45) can be simplified into (2.47).

I tð Þ ¼ � VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

xC

� �2
q cos xt þ p

2

� �
þ 1

xRC
e�

1
RCt

� �
ð2:47Þ

The analysis indicated that the current jumps from 0 A to current approximately
equal to VP/R instantaneously. Some readers may now be a little confused as they
were taught that an instantaneous current change is impossible.

At this point, it is a good idea to distinguish between the electrical and the
magnetic fields. A capacitor is an element that stores energy in the electric field,
whereas an inductor is an element that stores energy in the magnetic field.

A change in the electric field requires a change in the voltage or charge which is
opposed by a current. Thus, an instantaneous change of the voltage would require
infinite current, something which is impossible because it would require infinite
power. In other words, there must be conservation of charge and the voltage may
be continuous at the capacitor.

As an example, think about the voltage-current relation of a capacitor (2.48). If
the voltage changes suddenly, like in the connection of the capacitor to an ideal
voltage source, the value of dV/dt would be infinite and so also would be the
current.

I tð Þ ¼ C
dV

dt
ð2:48Þ
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and voltage in the capacitor
(dashed line) during the first
10 ls of the energisation of
an RC load
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A similar situation happens in a magnetic field, where a change in the current is
opposed by an electromotive force (emf), i.e., a voltage. Thus, an instantaneous
change of the current would require infinite voltage.

Going back to our RC example, we see that there is an instantaneous change of
the current, but not to infinite. This difference is a consequence of the law of
conservation of charge preciously stated and the presence of the resistance.

The capacitor is initially uncharged, but it starts to charge when the switch is
closed. The voltage at the capacitor has to be continuous, meaning that at t(0+) all the
voltage is dropped at the resistor. As a result, the current at t(0+) is equal to VP/R. As
the capacitor charges, the voltage at the resistor drops, as does the current, until the
system reaches steady-state conditions.

Figure 2.8 shows the current and voltage in the capacitor for an energisation at
peak voltage of the RC load used in the previous example. Notice how the voltage
at the capacitor raises from zero to approximately 100 V, while the current
decreases to the steady-state peak value.

In this particular case, the resistance is 1 X and the voltage at the resistor is
equal to the current. Therefore, the summation of the two curves at any given
instant is equal to the voltage in the source for this particular case.

A capacitor bank strongly resembles a RC circuit and a large current will be
present in the energisation of a capacitor bank, if no extra precautions are taken.
This current is called inrush current and it has both a high magnitude and a high
frequency.

However, a real circuit also has some inductance, which reduces the current
magnitude and frequency and more importantly assures the continuity of the
current, i.e., there is no longer the current jump that is present in a RC circuit.

2.3.2 The Importance of the Time-Step

We saw that the energisation transient of an RC load is damped in just some
micro-seconds. Thus, special care regarding the time-step is necessary when
simulating this phenomenon in an EMTP-type software.
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Figure 2.9 shows the current in the RC load during the energisation for different
simulation time-steps in EMTDC/PSCAD. The peak current is different for all the
three cases and the smaller the time-step, the higher the peak current.

The time constant of this particular example is 1 ls. Thus, the peak current of
the 1 ls is approximately 30 A, remembering that the time constant is the time
necessary for the current to decay 63.2%.

This is a simple example of the importance of choosing a good time-step and
how sometimes it is necessary to use very small time-steps. However, we want to
have the time-step as large as possible in order to reduce the simulation running
time. Thus, it is necessary to learn how to choose the right time-step in function of
the expected phenomenon.

2.3.3 Summary

In this section, we analysed the energisation of an RC load. We saw another
example of the use of the Laplace transform, how the transient changes in function
of the switching instant and how the transient current and the frequency may be
very high when energising the load at peak voltage.

Contrary to the RL load, the transient is ‘‘smoother’’ when energising at zero
voltage and more problematic when energising at peak voltage.

Finally, we saw how the time-step influences the results and how it is important
to choose the appropriate time-step.

2.4 Switching of RLC Circuits

The final example of circuits with lumped-parameters is the RLC circuit. The RLC
circuit is a second-order circuit whose behaviour is more complex than in the
previous two examples, as both electric and magnetic fields are present.

The conjugation of these three elements can describe, up to some degree, many
of the electrical equipment that exists in real life. As an example, a capacitor bank
can be described as just a resistor and a capacitor, but it would never be connected
to an ideal voltage source. In reality there is always some inductance between the
two elements, making the circuit similar to an RLC circuit. Another example is the
pi-model used to represent overhead lines or cables, which we will use in future
chapters.
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2.4.1 DC Source

A series RLC circuit connected to a DC voltage source is described by (2.49),
which can be written in the frequency domain (2.50). Note: For a parallel RLC
circuit, see the exercises.

V ¼ RI þ L
dI

dt
þ 1

C

Z
Idt ð2:49Þ

d VPð Þ
dt
¼ R

dI

dt
þ L

d2I

dt2 þ
I

C
, 0 ¼ d2I

dt2
þ R

L

dI

dt
þ I

LC
ð2:50Þ

A series RLC circuit connected to a DC source has only the transient compo-
nent of the current, whereas the steady-state current is zero; remember that the
capacitor is like an open circuit when in the presence of a DC current. The
transient component is a result of an exchange of energy between the capacitor and
the inductor that it is eventually damped by the resistance.

Equation (2.50) is a homogeneous differential equation and it can easily be
solved without using the Laplace Transform. The derivatives are replaced by k and
(2.50) is replaced by (2.51). The roots of (2.51) are calculated (2.52) and replaced
in the general solution of a homogeneous differential equation (2.53).

0 ¼ k2 þ R

L
kþ 1

LC
ð2:51Þ

k1;2 ¼ �
R

2L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

� 1
LC

s
ð2:52Þ

I tð Þ ¼ C1ek1t þ C2ek2t ð2:53Þ

The roots solution (k1,2) can be one of three types, each with a different type of
solution.

Two distinct real roots: (R/2L)2 [ 1/(LC) –[ Overdamped circuit
Two complex conjugate roots: (R/2L)2 \ 1/(LC) –[ Underdamped circuit

(Oscillating)
A double root: (R/2L)2 = 1/(LC) –[ Critically damped circuit.
It is still necessary to calculate the values of C1 and C2, which depend on the

system initial conditions. There are two variables, meaning that two equations are
needed (2.54).

I 0ð Þ ¼ C1 þ C2
_I 0ð Þ ¼ k1C1 þ k2C2

�
ð2:54Þ

The circuit is de-energised prior to the switching and the value of I(0) is simply
zero.
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For calculating the value of _I(0), we must do some deductions. An RLC circuit
has both capacitance and inductance and it is not possible to have a sudden change
of the voltage because of the capacitor, or of the current because of the inductor.
As the current cannot change instantaneously, its value is 0 A at t = 0+ and there
is no voltage drop at the resistor. Therefore, all the voltage is dropped in the
inductor (2.55).

Vð0þÞ ¼ L
dI

dt

����
t¼0þ
) _I 0ð Þ ¼ V

L
ð2:55Þ

Substituting in (2.54), (2.56) is obtained.

0 ¼ C1 þ C2
V
L ¼ k1C1 þ k2C2

�
ð2:56Þ

Example:
In the following example, the following three possible scenarios are considered:

1. Overdamped circuit: V = 100 V; L = 0.1 H; C = 1 lF; R = 1,000 X
2. Underdamped circuit: V = 100 V; L = 0.1 H; C = 1 lF; R = 100 X
3. Critically damped circuit; V = 100 V; L = 0.1 H; C = 1 lF; R = 633 X.

The first step is to calculate the roots’ values for each case:

1. k1 = -1273; k2 = -8873;
2. k1,2 = -500 ± j3123
3. k1,2*3161 (in reality, there is a small difference between the roots, as R is an

irrational number).

The next step is to calculate the value of the constants C1 and C2. The initial
current is zero, therefore, C1 = -C2 for all the cases.

1, C1 = -C2 = 0.1291
2. C1 = -C2 = -j0.1601
3. C1 = -C2 = 341.
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Fig. 2.10 Current during the
energisation of an RLC
circuit. Solid line
overdamped circuit, dashed
line underdamped circuit,
dotted line critically damped
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Figure 2.10 shows the transient current for all the three scenarios:

1. The current increases up to a peak value and it damps to zero;
2. The current oscillates around zero, decaying as the time advances. In an LC

circuit, the current continues to oscillate at approximately the same frequency,
but it is not damped;

3. Identical to scenario 1, but it is the limit case. If the resistance was smaller, and
the inductance and capacitance were the same, there would be an oscillation.

2.4.2 AC Source

One would think that the transient obtained when connecting an RLC load to an
AC source is completely different from connecting the load to an equivalent DC
source (i.e., the same peak amplitude). However, we will see that this is not
necessarily true.

We start by writing the equation describing the system on the time domain
(2.57) and simplify it to (2.58) and apply the Laplace Transform (2.59).

VPsin xt þ hð Þ ¼ RI þ L
dI

dt
þ 1

C

Z
Idt ð2:57Þ

d VPsin xt þ hð Þð Þ
dt

¼ R
dI

dt
þ L

d2I

dt2 þ
I

C
, VPxcos xt þ hð Þ ¼ L

d2I

dt2 þ R
dI

dt
þ I

C
ð2:58Þ

VPx
scos hð Þ
s2 þ x2

� xsin hð Þ
s2 þ x2

� �
¼ I s2Lþ sRþ 1

C

� �
� sLI 0ð Þ � L_I 0ð Þ � RI 0ð Þ

ð2:59Þ

We already know from the previous sections that the current at t0 is zero
because of the continuity of the current, and that the derivative of the current at the
same instant is given by VP(0)/L. Thus, (2.59) becomes (2.60).

VPx
scos hð Þ
s2 þ x2

� xsin hð Þ
s2 þ x2

� �
¼ I s2Lþ sRþ 1

C

� �
� L

VP 0ð Þ
L

ð2:60Þ

At this point, we may solve the system using the Laplace transform as described
in the previous sections, but this is unnecessary. The current is a summation of the
forced and homogeneous components (2.61).

I tð Þ ¼ If tð Þ þ Ih tð Þ ð2:61Þ

The forced component is the steady-state component and it is easy to obtain by
using phasors (2.62).
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If tð Þ ¼ VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xL� 1

xC

� �2
q sin xt þ h� tan�1 xL� 1

xC

R

� �� �
ð2:62Þ

The homogeneous component is similar to the one obtained when using a DC
source, with the difference that the value of VP(0) depends on the switching instant
and that the derivative of the voltage is no longer zero. The relation (2.63) con-
tinues to be valid, but the values of Ih(0) and _Ih(0) need to be calculated. The
premises used for the DC source example continue to be valid; the initial current
has to be zero, thus (2.64), and the value of the derivative of the current at t = 0 is
still given by having all the voltage dropping in the inductor. Thus, the derivative
of the homogeneous current component is given by (2.65). The variables k1 and k2

continue to be calculated by (2.52).

Ih 0ð Þ ¼ C1 þ C2
_Ih 0ð Þ ¼ k1C1 þ k2C2

�
ð2:63Þ

I 0ð Þ ¼ 0, Ih 0ð Þ ¼ �If 0ð Þ ð2:64Þ

_I 0ð Þ ¼ _Ih 0ð Þ þ _If 0ð Þ ) _Ih 0ð Þ

¼ VPxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xL� 1

xC

� �2
q cos h� tan�1 xL� 1

xC

R

� �� �0
B@

1
CA� VP

L
sin hð Þ

� �

ð2:65Þ

Replacing (2.64) and (2.65) in (2.63), (2.66) is obtained for C1 and C2.
Replacing the results in (2.61), the general expression of the current in the RLC
load when connected to an AC source is obtained (2.67).

C1 ¼
_Ih 0ð ÞþIf 0ð Þk2

k1�k2

C2 ¼
_Ih 0ð ÞþIf 0ð Þk1

k2�k1

(
ð2:66Þ
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Fig. 2.11 Current during the energisation of the RLC load. Left energisation at h ¼ 0�, right
energisation at h ¼ 90�
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I tð Þ ¼ VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xL� 1

xC

� �2
q sin xt þ h� tan�1 xL� 1

xC

R

� �� �

þ
_Ih 0ð Þ þ If 0ð Þk2

k1 � k2
ek1t þ

_Ih 0ð Þ þ If 0ð Þk1

k2 � k1
ek2t ð2:67Þ

Figure 2.11 shows the current during an energisation at zero voltage and peak
voltage respectively. The simulation parameters are VP = 100 V; L = 0.1 H;
C = 1 lF; R = 100 X.

Notice that the waveform for the energisation at peak voltage is very similar,
regarding both shape and magnitude, to the one obtained when energising the same
load using a DC source of equal magnitude. The homogeneous component
depends on the voltage value at the energisation instant and the load initial
conditions.

The voltage initial conditions and the load initial conditions are the same in
both cases. The small difference between the two cases is present because the
forced component is not zero at t = 0. However, as this component is close to
zero, the difference between the two waveforms is very small.

It should also be noticed that the homogeneous waveform is influenced by the
load parameters in the same way as for the energisation with a DC source. As an
example, an overdamped oscillation would be present if the resistor has of
1,000 X.

Until now, we have been focusing on the current behaviour and not considering
the voltage much. Yet, in the same way that there is a transient waveform for the
current, there is also a transient waveform for the voltage.

The voltage at the terminals of each element is a function of the current: linear
function if a resistor, derivative if an inductor and integrative if a capacitor. Thus,
the voltage at the element’s terminal is expected to be larger when energising at
peak voltage, as both the magnitude and the current variation are larger in this
situation.

Figure 2.12 shows the voltage at the capacitor terminals for an energisation at
zero and peak voltage, where it can be seen that the voltage magnitude is sub-
stantially larger for the second case.
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Fig. 2.12 Voltage in the capacitor (VC) during the energisation of the RLC load. Left
energisation at h ¼ 0�, right energisation at h ¼ 90�
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We will return to this topic in the next chapters and understand better how the
switching instant may be a determining parameter when switching a cable.

2.4.3 Summary

In this section, we analysed an RLC circuit and saw how its behaviour is strongly
influenced by both the switching instant and the load parameters. We saw how the
current or voltage can be divided into two types, the forced and homogeneous
regime. The forced regime consists of the system in steady-state condition,
whereas the homogenous regime is a transient condition, the total current/voltage
is the summation of both regimes.

The equations were solved without the use of the Laplace transform in order to
show the reader other possibilities. However, the system can still be solved using
the Laplace transform. As a matter of fact, this is one of the exercises proposed
next, and the solution may be found online.

2.5 Exercises

1. Obtain the current expression for the RLC circuit of Sect. 2.4 (DC source) using
the Laplace Transform.

A: I ¼ V
L

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2Lð Þ2� 1ffiffiffi

LC
p

� �2
r

s� � R
2L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2Lð Þ

2� 1ffiffiffi
LC
p

� �2
r !�
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2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2Lð Þ2� 1ffiffiffi

LC
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r

s� � R
2Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2Lð Þ

2� 1ffiffiffi
LC
p

� �2
r !

0
BBBB@

1
CCCCA

2. Repeat exercise 1, but for a parallel RLC circuit, for both a DC and AC voltage
sources.

A: I tð Þ ¼ V
R þ V

L t þ VCd tð Þ; I ¼ V sin xtð Þ
R þ V

xL� V
xL cos xtð Þ þ xCV cos xtð Þ

3. Obtain the expression for the transient of the voltage at the receiving end of a
line connected to an AC source using a pi-model. The energisation is made at
peak voltage and the values are the following: R = 0.62 X; L = 44.7 mH;
C = 3.9 lF; VP = 100 kV.

A: V2 ¼ 1
1:95�10�6 0:2cos xtð Þ þ e�6:94t 4� 10�4sin 3387tð Þ þ 0:2cos 3387tð Þð Þ

� �
4. For the same pi-model obtain the expression of the current at the sending end of

the line.

A: I tð Þ ¼ �61:26sin xtð Þ � 61:75sin xtð Þ � e�6:94t 666sin 3387tð Þð Þ
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