
Chapter 6
Obtaining Cryptographic Keys Using
Multi-biometrics

Sanjay Kanade, Dijana Petrovska-Delacrétaz, and Bernadette Dorizzi

Abstract Multi-biometric systems have several advantages over uni-biometrics
based systems, such as, better verification accuracy, larger feature space to accom-
modate more subjects, and higher security against spoofing. Unfortunately, as in
case of uni-biometric systems, multi-biometric systems also face the problems of
nonrevocability, lack of template diversity, and possibility of privacy compromise.
A combination of biometrics and cryptography is a good solution to eliminate these
limitations. In this chapter we present a multi-biometric cryptosystem based on the
fuzzy commitment scheme, in which, a crypto-biometric key is derived from multi-
biometric data. An idea (recently proposed by the authors) denoted as FeaLingECc
(Feature Level Fusion through Weighted Error Correction) is used for the multi-
biometric fusion. The FeaLingECc allows fusion of different biometric modalities
having different performances (e.g., face + iris). This scheme is adapted for a multi-
unit system based on two-irises and a multi-modal system using a combination of
iris and face. The difficulty in obtaining the crypto-biometric key locked in the sys-
tem (and in turn the reference biometric data) is 189 bits for the two-iris system
while 183 bits for the iris-face system using brute force attack. In addition to strong
keys, these systems possess revocability and template diversity and protect user pri-
vacy.

6.1 Introduction

An important development in the field of biometrics is to combine information from
multiple biometric sources (i.e., cues). A system that consolidates the evidence pre-
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sented by multiple biometric cues is known as a multi-biometric system. Such sys-
tems offer several advantages over uni-biometric systems, some of which are dis-
cussed below.

• Multi-biometric systems can substantially improve the matching accuracy of the
system.

• Having multiple information sources increases the size of the feature space avail-
able to individual users, thus making it possible to accommodate more individuals
in a system.

• Multi-biometrics may address the problem of nonuniversality, e.g., in a speaker
recognition system, the individuals who cannot speak cannot be enrolled. But
inclusion of another biometric such as iris may enable that person to enroll.

• When multiple biometric traits are involved, it becomes more difficult for an im-
postor to spoof the system.

However, the main disadvantage of multi-biometric systems is their increased com-
plexity.

Depending on the sources of information combined in it, the multi-biometric
system can be called multi-sensor, multi-sample, multi-algorithm, multi-unit (or
multi-instance), and multi-modal. The information fusion can be carried out at dif-
ferent levels of the biometric system, such as sensor, feature, score, decision, or rank
level [30].

Unfortunately, despite all these advantages over uni-biometric systems, their lim-
itations such as nonrevocability, lack of template diversity, and possibility of privacy
compromise are also inherited by the multi-biometric systems. In recent years, a lot
of efforts have been made to overcome these issues in uni-biometric systems by us-
ing various template protection mechanisms. Some of these mechanisms transform
the biometric data in a non-recoverable manner so that the comparison is carried
out in the transformed domain. In some other schemes, a stable key is obtained
from biometric data and such systems are denoted as biometric cryptosystems [10].
However, the main aim of the biometric cryptosystems is to obtain a key for crypto-
graphic purposes and many of these systems do not possess the property of revoca-
bility.

Despite these efforts in case of uni-biometrics, there are very few works in lit-
erature that deal with these issues in multi-biometric systems. Multi-biometrics-
based cryptosystems, which obtain cryptographic keys using multi-biometrics are
a promising solution to this problem. In this chapter, first a review of such multi-
biometric cryptosystems is presented. The review is followed by a detailed descrip-
tion of the multi-biometric key regeneration schemes recently proposed by the au-
thors.

This chapter is organized as follows: the state of the art related to multi-biometric
cryptosystems is discussed in Sect. 6.2. A generic scheme for multi-biometric
template protection based on the fuzzy commitment scheme [12] is described in
Sect. 6.3. This is in fact a multi-biometrics-based key regeneration scheme which
also provides template protection. Two adaptations of this scheme, a multi-unit type
system using two irises and a multi-modal type system using iris and face, along
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with their experimental evaluation, are then described in Sects. 6.4 and 6.5, respec-
tively. These two systems were recently published in [15] and [16], respectively.
Finally, conclusions and perspectives are given in Sect. 6.6.

6.2 Obtaining Cryptographic Keys Using Multi-biometrics:
State of the Art

The key regeneration systems described in this chapter combine techniques from
biometrics and cryptography. In literature, such systems are generally denoted
biometric template protection schemes and are classified into two main cate-
gories [10]: feature transformation and biometric cryptosystems. In feature trans-
formation type systems, a user specific transformation is applied on the biometric
features [14, 20, 29]. The goal of the systems in this category is to induce revoca-
bility, template diversity, and privacy protection into biometric systems. The com-
parison between two biometric samples is carried out in the transformed domain
using some distance metric similar to the classical biometric systems. Therefore,
using multi-biometrics in these kind of systems is straightforward. Classical fusion
techniques, such as feature level and score level fusion, can be applied directly to
these systems.

On the other hand, the main aim of the systems from the biometric cryptosys-
tems category is to obtain a stable multi-bit string from biometrics [9, 11, 12]. Such
crypto-bio keys are strongly linked to the user’s identity and therefore can enhance
the security of the system. In fact, many systems in this category were originally
designed for obtaining cryptographic keys and did not possess revocability. How-
ever, if properly designed, revocability, template diversity, and privacy protection
properties can be induced in these systems.

For example, the fuzzy commitment-based key regeneration system [12], which
is the most widely studied approach for template protection (and key generation),
treats biometric data matching as an error correction issue by considering it as a
problem of data transmission through a noisy communication channel. First, a ran-
domly generated key K is encoded using Error Correcting Codes (ECC) and the
variations in the biometric data are transferred onto the encoded key. These varia-
tions, treated as errors, are corrected by the ECC to regenerate the random key K′ at
the verification step. This system does not store the biometric features or templates
as in classical biometric systems. The biometric features are stored in a protected
form in the crypto-biometric template. Since there is no stored biometric template,
nor are there features, classical biometric comparison cannot be performed in this
system and no match score can be obtained. In fact, such systems directly output
the regenerated key. The user verification success or failure decision, unlike clas-
sical biometric systems, depends on the exact comparison between the crypto-bio
keys obtained with the system. Since there is no score, score level fusion cannot be
applied for multi-biometric information fusion in key regeneration systems.

The decision level fusion is possible in these systems, but the increase in the key
entropy can be a maximum of one bit. The key entropy indicates the difficulty in
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obtaining the key without having the genuine biometric data which is, in turn, the
security of the stored template. In decision level fusion, depending on the verifica-
tion results of two individual biometric systems, a combined key can be released.
If the length and entropy of each of these keys is N and H bits, respectively, the
combined key will have a length equal to 2N bits but the entropy will increase by
only one bit to H +1. The reason behind this is the entropy is measured on logarith-
mic scale. If an attacker needs 2H attempts to guess the key, then the entropy is H

bits. When two such keys are present, the number of attempts increases to 2 × 2H

resulting in an entropy of H + 1 bits. Thus, the entropy increase in such a case is
only one bit.

Therefore, if multi-biometric techniques are to be used for template protection,
specific methods for information fusion need to be developed. There are very few
systems found in literature that address the issue of multi-biometric template pro-
tection which are summarized below.

One of the first systems to use multi-biometrics with template protection is by
Sutcu et al. [32] (in 2007). They proposed a method to combine fingerprint and face
features in a fuzzy sketch scheme. But they did not carry out experiments with the
fused biometric information but rather predicted the results for the multi-biometric
system from the two uni-biometric system results.

Nandakumar and Jain [23, 24] (in 2008) proposed a fuzzy vault scheme which
combines fingerprints with iris. A significant improvement in verification perfor-
mance over the uni-biometric systems is observed (e.g., from a Genuine Accep-
tance Rate (GAR) of 88 % and 78.8 % for individual iris and fingerprint systems,
respectively, to 98.2 % for the multi-biometric system). However, despite these im-
provements in the verification performance, the entropy of the key increases from
40 bits (for uni-biometric system) to 49 bits (in the multi-biometric case) which is
still low from a security point of view.

Cimato et al. [5] (in 2008) proposed a multi-modal biometrics-based cryptosys-
tem. Similar to that of Nandakumar and Jain [24], the two modalities employed in
their system are iris and fingerprints. Their proposed system is based on the fuzzy
extractor concept [3, 7]. They experimentally showed that the performance of the
multi-modal system is as good as the best performing single modality system. How-
ever, they did not provide security analysis of the system in terms of key entropy.

Kelkboom et al. [17] (in 2009) proposed various ways of combining multi-
biometrics with fuzzy commitment-based schemes. Their proposed systems involve
multi-algorithmic fusion at feature-, score-, and decision-level. However, their per-
formance evaluation suggests that the improvement due to multi-biometrics occurs
only in terms of verification performance. The security of the system does not im-
prove significantly.

Fu et al. [8] (in 2009) proposed theoretical models describing multi-biometric
cryptosystems. They proposed fusion at the biometric and cryptographic levels and
then derived four models adopted at these two levels. However, this work is theoret-
ical and no actual evaluation of verification performance as well as key entropy is
carried out.



6 Obtaining Cryptographic Keys Using Multi-biometrics 127

In this chapter, a new technique recently proposed by the authors, called
FeaLingECc (Feature Level Fusion through Weighted Error Correction), is de-
scribed. With this technique, the biometric information obtained from different cues
can be combined into a fuzzy commitment-based template protection system. We
explore the possibilities of using multi-biometrics in a fuzzy commitment-based
scheme [12] using two different methodologies:

1. multi-unit (also called multi-instance) type system combining information from
left and right irises of a person, and

2. multi-modal type system which combines information from iris and face biomet-
rics.

For both these systems, the information fusion is carried out at feature level,
which increases the key entropy. The FeaLingECc technique allows to apply differ-
ent weights to different modalities (or different information sources). The general
description of this proposed scheme is presented in the next section.

6.3 Multi-biometrics Based Key Regeneration

The basic structure of our scheme is shown in Fig. 6.1. It is based on the fuzzy
commitment scheme [12]. In this scheme, the biometric data variability is treated
with error correcting codes. There are two levels of error correction: Level-1, also
called inner level, and Level-2, which is the outer level. A randomly generated key
K is assigned to a user and is then encoded using Level-2 encoder. The output of the
Level-2 encoder is then randomized with a shuffling key by applying the shuffling
scheme proposed by Kanade et al. [13]. The shuffled output is further encoded by
Level-1 encoder. The output of the encoder is called pseudo code θps. The reference
biometric data is XORed with this pseudo code to obtain the locked code θlock.
The reference biometric data cannot be recovered from the locked code unless the
pseudo code or another biometric data sample from the same user is provided.

In the proposed scheme, the biometric data is a combined data from two bio-
metric cues. The biometric information fusion is carried out in the feature domain.
The proposed system is based on the fuzzy commitment scheme and therefore re-
quires the feature vectors in binary form. Assuming that the binary feature vector
corresponding to the first biometric source is denoted as θ1 and that to the second
biometric source as θ2, the reference feature code is obtained by concatenating these
two feature vectors as, θref = θ1‖θ2. This reference feature code θref is XORed with
the pseudo code θps to obtain a locked code θlock,

θlock = θps ⊕ θref. (6.1)

This locked code along with the hash value H(K) of the key K is the crypto-
biometric template. The locked code is required for regeneration of the key K,
whereas the hash value is required to check the correctness of the regenerated key.

At the time of key regeneration/verification, a multi-biometric test feature vector
θtest is obtained by following a procedure similar to that at the enrollment step.
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Fig. 6.1 Schematic diagram
showing the structure of the
proposed
multi-biometrics-based
cryptographic key
regeneration scheme

This test feature vector is XORed with the locked code θlock to obtain a modified
version θ ′

ps of the pseudo code. This modified version consists of the pseudo code
θps contaminated with the errors e between reference and test biometric vectors. The
Error Correcting Codes (ECC) decoding scheme corrects these errors and retrieves
a trial value K′ of the random key K. A comparison between the hash values of the
original and the regenerated key is carried out and a positive result indicates key
regeneration success;

θ ′
ps = θlock ⊕ θtest

= θps ⊕ θref ⊕ θtest

= θps ⊕ e, (6.2)

K′ = ECC−1(θ ′
ps

)
. (6.3)

The Level-1 error correcting codes perform majority of the error correction.
These ECC correct bit-level errors occurring in blocks. If the number of errors in
a block is more than the error correction capacity of the Level-1 ECC, that block
is decoded incorrectly. Such incorrectly decoded blocks are further treated by the
Level-2 codes. Thus, the Level-2 ECC work on block level. In order to cope with
the cascading structure of the two ECC, the number of bits in each symbol of the
Level-2 ECC must be the same as (or possibly an integer multiple of) the number of
bits in Level-1 ECC input block.

6.3.1 FeaLingECc (Feature Level Fusion Through Weighted
Error Correction)

When feature vectors corresponding to two biometric sources are combined, it is
required that the two vectors have a common representation which is not always
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the case. For example, fingerprint minutiae set consists of minutiae locations and
orientation information, while the iris feature vector is a binary string. The minutiae
set is an unordered set while the iris code is an ordered set. Therefore, the two feature
vectors must be converted into a common representation. Moreover, the dimensions
of the feature vectors can also be different and simply concatenating the two feature
vectors may not be beneficial. The difference in the dimensionality of the two feature
vectors can cause an adverse effect on the system performance. This problem is
called the curse of dimensionality [30]. Therefore, in order to deal with this problem,
the feature level fusion module is generally followed by a feature selection module
in classical multi-biometric systems.

Moreover, one biometric trait may be performing better than the other in terms
of verification performance (e.g., in general, iris performs better than face). This
knowledge can be exploited in score level fusion systems by applying different
weights to the individual biometric traits. In such systems, higher weight is given to
the better performing biometric trait in the verification decision process. This kind
of weighting can significantly improve the performance of multi-biometric system.

Since the match scores cannot be computed in key regeneration systems, clas-
sical score level fusion techniques cannot be used. Therefore, we propose a novel
method in which the features are combined in feature domain and the error correc-
tion scheme is designed so that different weights can be applied to the individual
biometric traits. This scheme also deals with the problem of curse of dimensional-
ity. It can cope with the differences in the dimensions of individual feature vectors
by carefully selecting the dimensions of the Level-1 ECC for the individual bio-
metrics and minimize the effect of dimensions mismatch on the verification perfor-
mance.

The enrollment and key regeneration modules of the proposed system are shown
in Fig. 6.2(a) and 6.2(b). The error correction scheme in the proposed system con-
sists of two levels. The Level-1 work on bit-errors occurring in blocks while the
Level-2 ECC correct the block errors which are left after the Level-1 ECC action.
Since the amount and nature of variations in biometric data are different for differ-
ent modalities, and they also depend on the acquisition conditions, we need to select
different Level-1 ECC for different modalities. The Level-1 ECC and their error
correction capacity is selected by observing the Hamming distance distributions for
genuine and impostor comparisons for the corresponding trait.

The application of different weights is carried out by assigning different num-
ber of blocks of the Level-2 ECC for different biometrics. As shown in Fig. 6.2(a),
the output of the Level-2 codes (which is in form of ns blocks) is split into two
parts: Part-1 which consists of x blocks and Part-2 consisting of y = (ns − x)

blocks. Higher weight can be applied to the Biometric-1 by having x > y and vice
versa.

The x blocks of Part-1 are further encoded and combined into x′ bits by the
Level-1 encoder for the first biometric (Biometric-1). The y blocks of Part-2 are
encoded and combined into y′ bits by the Level-1 encoder for the second biometric
(Biometric-2). Here, x′ and y′ are equal to the number of effective bits in the feature
vectors of Biometric-1 and Biometric-2, respectively. The number of bits in each
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Fig. 6.2 Schematic diagram of the proposed multi-biometrics-based cryptographic key regenera-
tion scheme using FeaLingECc (Feature Level Fusion through Weighted Error Correction)

input block of the Level-1 encoder should be equal to the number of bits in each
output block of the Level-2 encoder. Alternatively, the input block size of the Level-
1 encoder can be an integer multiple of the output block size of the Level-2 encoder.
Concatenation of the outputs of the two Level-1 encoders yields the pseudo code
θps. This pseudo code is XORed with the multi-biometric reference feature vector
θref (which is obtained by concatenation of two individual feature vectors θ1 and θ2)
to obtain the locked code θlock.

The weights are applied by changing the sizes of Part-1 and Part-2. In order to
understand the concept, let us take a closer look into the error correction mech-
anism that takes place during the key regeneration step (see Fig. 6.3). When a
multi-biometric test feature vector θtest (which is obtained by concatenation of
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Fig. 6.3 Schematic diagram showing the proposed weighted error correction process. Note that
Part-b is bigger than Part-a. When Level-1 ECC are applied, this relationship changes. Part-1
becomes bigger than Part-2 which means that higher weight is applied to the Biometric-1 than
Biometric-2

two individual test feature vectors θ ′
1 and θ ′

2) is XORed with the locked code
θlock, the errors between the reference and test feature codes are transferred onto
the pseudo code θps. Figure 6.3 shows the process of error correction that fol-
lows.

The modified (error transferred) pseudo code θ ′
ps is divided into two parts: Part-a

consists of the first x′ bits while the Part-b consists of the remaining y′ bits. The
Level-1 decoder corresponding to Biometric-1 is applied on the x′ bits to correct
the bit errors caused by the Biometric-1. This process yields x blocks. Similarly,
y blocks are obtained from the y′ bits corresponding to the Biometric-2. These
two parts are concatenated to form a single codeword which contains ns = (x + y)

blocks. The Level-2 decoder corrects the erroneous blocks present in this code-
word to obtain a trial value K′ of the random key K. The Level-2 decoder can
correct up to ts erroneous blocks where ts is its error correction capacity. This
Level-2 decoder can be seen as a threshold-based classifier which operates on an
ns element vector where ts acts as a threshold. If the number of erroneous blocks
are less than or equal to ts , the key is successfully generated and the verifica-
tion result is positive. Therefore, if we set x > y, a higher weight will be given
to Biometric-1 than Biometric-2 in the decision process. The condition x > y

(or x < y if required) is achieved by properly selecting the dimensions of the
Level-1 ECC. However, this selection needs to take care of the error correction
capacity which depends on the Hamming distance distribution of the biometric
data.
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6.3.2 Adding Revocability

The problem with biometrics is that it lacks the property of revocability and can
compromise user’s privacy. In order to overcome these drawbacks, some one-way
transformations [20, 22, 29] are applied on the biometric data in case of uni-
biometric systems. In a similar way, some cancelable mechanism should be used
in the multi-biometrics-based system. One simple option is to apply the transforma-
tion on the two individual biometric feature vectors. In this way, revocability and
privacy protection can be added to the multi-biometrics-based system.

But there is a loophole in this design. This loophole appears if the Level-2 error
correcting codes used in the system (e.g., we use Reed–Solomon codes as Level-2
codes in our proposal) are of systematic nature. An error correcting code is said
to be systematic in nature if the input to the code is present in its original form
in the output. The output of such codes comprises the input data appended by the
parity symbols, and thus, the locations of the original data and the parity symbols is
known to an attacker. In this case, the attacker can attack the biometric information
corresponding only to the data blocks.

For example, consider the case of Table 6.7, where ts = 8. In this particular exam-
ple, ns = 46 which is the total number of blocks after Reed–Salomon (RS) encoding
which are obtained by appending 16 parity blocks to the 30-block input data blocks
(ns = ks + 2ts ). This encoded output is further encoded with the Level-1 encoders.
The first 31 blocks of this output correspond to Biometric-1 and the remaining to
Biometric-2. Therefore, an attacker can choose to attack only biometric-1 and obtain
the 31 blocks, out of which the first 30 blocks constitute the actual key.

Clearly, this kind of attack can suppress the advantage gained by using multiple
biometrics. The attacker may need only one set of biometric information to crack
the multi-biometric system.

In order to overcome this drawback, we propose to apply the biometric data trans-
formation mechanism (shuffling scheme in our case) after the Level-2 encoding in-
stead of applying it on the biometric data. In this case, even if the Level-2 ECC
are systematic, the shuffling process breaks the systematic nature of its output. The
shuffled output of Level-2 ECC is further encoded with the Level-1 ECC. At the
time of key regeneration, the original order of the Level-2 encoder output must be
restored in order for the Level-2 decoder to function correctly. This is done by apply-
ing the de-shuffling process. For better understanding, the shuffling and de-shuffling
processes are shown together in Fig. 6.4.

One might argue that revocability can be induced into the system by applying
classical encryption on the fuzzy commitment (protected template), which is true
in principle. However, this type of encryption of templates does not eliminate the
security loophole cited above that occurs due to the systematic nature of the ECC. In
this case, an attacker needs to decrypt the template and then crack only one biomet-
ric source in order to obtain the crypto-biometric key. By employing the shuffling
scheme in the above mentioned manner, the attacker needs to crack the shuffling
key and both the biometric sources.
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Fig. 6.4 A schematic diagram showing the shuffling and de-shuffling process. Note that the shuf-
fling and de-shuffling key must be the same to recover the correct data

The generic multi-biometrics-based key regeneration scheme described in this
section can be applied to a combination of two sets of biometric information. The
pre-requisite for this system is that both the biometric data must be in form of binary
vectors. We developed two systems based on this scheme:

• multi-unit type system that combines information from the left and the right irises
of a person, and

• multi-modal type system that combines information from an iris with that from
the face.

These systems are described in subsequent sections.

6.4 Multi-unit Type Multi-biometrics Based Key Regeneration

6.4.1 Algorithm for Multi-unit Biometrics Based Key Regeneration

We developed a multi-unit type multi-biometrics system to obtain cryptographic
keys. Feature level fusion in multi-unit type systems is comparatively less com-
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Fig. 6.5 Schematic diagram of the proposed multi-unit type multi-biometrics-based crypto-
graphic key regeneration scheme using feature level fusion, weighted error correction, and pass-
word—(a) User enrollment phase; (b) cryptographic key regeneration phase

plicated than in the multi-modal type systems. The reason is that the feature sets
obtained from different sources in a multi-unit system are generally similar in na-
ture and dimensions. Our system incorporates information from left and right irises
of a person in a fuzzy commitment-based key regeneration scheme. The information
fusion is carried out in feature domain using the weighted error correction approach
described in previous section.

The iris codes obtained from different iris images of the same user contain vari-
abilities which are treated as errors. As pointed out by Hao et al. [9], there are two
types of errors in iris codes: (1) background errors caused by the camera noise,
image capture effects, etc., and (2) burst errors which are a result of specular reflec-
tions, occlusions, etc. Both these types of errors are corrected using the two level
error correction scheme shown in Fig. 6.1.

The enrollment and key regeneration phases of the proposed multi-unit type sys-
tem are shown in Fig. 6.5. We used Hadamard codes as Level-1 ECC and Reed–
Solomon (RS) codes as Level-2 ECC for our two-iris-based system. A random
bit string K is generated and assigned to a user and is then encoded using Reed–
Solomon (RS) codes, the output of which is further encoded by the Hadamard
codes. The Hadamard codes correct the background errors and RS codes correct
burst errors. Details about these ECC can be found in [21]. The output of the en-
coder is called pseudo code θps. In order to cope with the cascading structure of the
two ECC, the number of bits in each symbol of RS and that in the input words of
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Hadamard codes is set to be equal (m = 7). Iris codes I1 and I2 from the right and
left iris images, respectively, are concatenated to form a reference (multi-) iris code
Iref. This Iref is XORed with θps to obtain the locked iris code template Ilock.

In the key regeneration phase, a test (multi-) iris code Itest is obtained similarly
and XORed with Ilock. These XORing operations transfer the errors in the iris codes
onto the pseudo code. The Hadamard codes can correct (up to) 2(k−2) − 1 errors in
a 2k-bit block. If a block has more than 2(k−2) − 1 errors, that block is not decoded
correctly and results in an error. The second level of ECC consists of the RS codes.
The output of the Hadamard decoding stage acts as the input to the RS decoder
stage. The RS codes correct the errors caused due to the wrong decoding by the
Hadamard codes and generate the key K′. If the total amount of errors is within
the error correction capacity of the ECC, the errors are corrected and a key K′ is
regenerated which is the same as K. If the amount of errors is more than the error
correction capacity of the ECC, K′ �= K.

In the proposed scheme, we apply higher weights to one iris than the other by
employing the weighted error correction method described in Sect. 6.3.1. We use a
bigger number of RS blocks for one iris than for the other to apply these weights.
Kanade et al. [13] have shown that inserting certain amount of zeros in the biometric
data can increase the error correction capacity of the Hadamard codes. Using this
property, we applied the zero insertion scheme to one iris code in order to increase
the error correction for it. Using the Hadamard codes without zero insertion scheme
results in high false rejections but zero false acceptances. Thus, the increased error
correction for the first iris code helps to increase acceptances while the low error cor-
rection for the second iris code increases rejections. The combined effect of the two
is the improvement in the verification performance of the key regeneration system.
The most important advantage of this scheme is that the feature vector is longer than
in uni-biometrics-based system, and therefore, we can obtain longer keys. The bio-
metric information is also larger compared to the uni-biometric systems resulting in
higher entropy. Additionally, it experimentally validates our proposal of weighted
error correction. The experimental results of this system are reported in the next
subsection.

6.4.2 Results and Security Analysis of the Multi-unit (Two-Iris)
Type System

In this section, we briefly describe the experimental setup, and then present the
results and security analysis of the proposed multi-unit type system.

6.4.2.1 Experimental Setup

We used the OSIRISv1 (Open Source for Iris Recognition) system described in [28]
and available online at [27] to extract a 1,188-bit binary string called iris code from
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Table 6.1 Baseline
biometric system’s
verification performance in
terms of EER in %. Single as
well as two-iris tests. Results
previously published in [15]

CBS-BiosecureV1 (development) NIST-ICE (evaluation)

Left Right Both irises Left Right Both irises

3.23 2.90 2.54 2.44 4.81 1.18

an iris image. In this system, the iris region in an image is detected, normalized, and
then decomposed using Gabor filters having different scales and orientations. The
phase information is then quantized to obtain the binary code. In order to cope with
the iris rotations, the normalized test iris image is shifted 10 times in both directions
and codes are extracted from them for comparison, leading to 21 comparisons.

The CBS database [28] is used for development to find out the ECC and error
correction capacities. The system is then evaluated on the NIST-ICE database [26].
In the NIST-ICE database, there are 132 subjects out of which, only 112 subjects
have recorded images of their both eyes. We select images of these 112 subjects for
carrying out our tests. The right iris images are coupled with the left iris images for
the multi-iris tests. The first such image pair of a person is considered for enrollment
and a template is registered for that person. The genuine comparisons are carried out
by comparing the remaining image pairs of that subject with the enrollment template
leading to 1,099 genuine comparisons. For impostor comparisons, one image pair
from each of the remaining subjects is randomly selected and these image pairs are
compared with the enrollment template. Thus, for each person, we carry out 111 im-
postor comparisons. In summary, 1,099 genuine and 12,432 impostor comparisons
are carried out on the NIST-ICE database for the two-iris experiment.

6.4.2.2 Experimental Results of the Multi-unit (Two-Iris) Type System

Since the proposed system is based on an iris recognition system, it is worthwhile to
report the performance of the baseline biometric system for fair comparison. Such
performance results are reported in Table 6.1. Note that the baseline iris system is
based on OSIRISv1 with a re-implemented matching module. Classical multi-iris-
based biometric system is also tested in which the iris codes are simply concatenated
and compared. Note that, as expected, the combination of left and right irises results
in reduction in the Equal Error Rate (EER).

For the cryptographic key regeneration system, we first report the results for the
simple feature level fusion scheme in Table 6.2. The feature level fusion in this case
is by simple concatenation of two feature vectors. For the sake of comparison, the
key regeneration results (for CBS database) using single irises are also reported in
the same table. The shuffling scheme is not used in any of these tests. It can be
observed that the minimum FRR using single iris is 7.37 % with a key length of
6 bits. The combination of two irises reduces the FRR and also leads to longer keys
such as 35-bit keys at 4.93 % FRR. In spite of the improvement, the FRR is still too
high and hence we did not carry out these tests on the NIST-ICE database.

When the proposed FeaLingECc approach is used, a significant improvement
is achieved that can be seen in Table 6.3. As is done in the uni-biometrics-based
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Table 6.2 Key regeneration system results on the CBS-BiosecureV1 data set when two iris codes
are combined using only feature level fusion; no weighting, no shuffling; FRR values are in %;
length of key K is in bits; FAR is always zero for all these tests. ts is the error correction capacity
of RS codes. Results previously published in [15]

ts Left iris Right iris Both irises

FRR Length (K) FRR Length (K) FRR Length (K)

16 9.80 30 14.13 30 4.93 35

17 8.60 18 13.10 18 4.57 21

18 7.37 6 12.03 6 4.27 7

Table 6.3 Key regeneration system results when two iris codes are combined using the proposed
FeaLingECc method; FAR and FRR values are in %. Results previously published in [15]

ts Key length
(in bits)

Without shuffling With shuffling

CBS-Bio NIST-ICE CBS-Bio NIST-ICE

FAR FRR FAR FRR FAR FRR FAR FRR

6 259 0 8.37 0 13.28 0 8.50 0 13.74

9 217 0 5.37 0 5.19 0 5.63 0 5.46

10 203 0 4.50 0.016 3.37 0 4.60 0 3.28

11 189 0 4.10 0.06 2.09 0 4.10 0 2.09

12 175 0 3.63 0.38 1.64 0 3.67 0 1.36

13 161 0.10 3.40 1.49 0.55 0 3.50 0 1.00

14 147 0.70 3.30 2.98 0.27 0 3.30 0 0.18

15 133 1.87 3.13 10.46 0.18 0 3.03 0 0.18

16 119 6.40 2.80 15.86 0.09 0 2.37 0 0.09

21 49 84.47 0.23 91.37 0 0 0.30 0 0

system, we added certain amount of zeros to the right iris code to correct higher
amount of errors in it whereas no zeros are added to left iris code. The Hadamard
codes operate on 64-bit blocks and there are 49 such blocks resulting in a total
amount of error correction equal to 735 bits. It also allows us to obtain much longer
keys with low error rates, e.g., we can have 175-bit keys at 0.38 % False Acceptance
Rate (FAR) and 1.64 % FRR for the NIST-ICE database.

Finally, the results for the key regeneration scheme with shuffling are presented
in Table 6.3. These results are better than any previously published results in lit-
erature, e.g., we can generate 147-bit keys at 0.18 % FRR and 0 % FAR for ICE
database. In our experiments, the number of blocks at the output of the RS encoder
is 49. Hence we use a 49-bit shuffling key to shuffle those blocks. The shuffling
key can be protected by a password of eight characters. Note that there is not much
decrease in FRR due to the use of shuffling. The main improvement is in the FAR,
which becomes zero, which means that the systems become more secure by using
the shuffling.
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The most appropriate work to compare with the proposed system is that by Nan-
dakumar and Jain [24]. In their system, information from iris and fingerprints is
combined and they succeed to obtain keys with 49-bit entropy while the verifica-
tion error rates are FAR = 0.02 % and FRR = 1.80 %. For the proposed system, at
FAR = 0 %, FRR = 0.18 % and the key entropy is 147 bits. This security analysis
of the proposed system in terms of entropy is presented in the next subsection.

6.4.2.3 Security Analysis of the Multi-unit (Two-Iris) Type System

Since the main aim of the system is to provide security, it is required to analyze
the security of the system. The entropy of the key can give us an estimate of the
difficulty which an attacker has to face to obtain the key without having the proper
credentials. It also indicates the strength of the template protection mechanism be-
cause once the attacker has the key, he can inverse the stored template and obtain the
reference biometric data. Though the key is generated randomly at enrollment time,
a lot of redundancy is added by the ECC and hence its entropy is bound to decrease.
We use the same approach as used by Hao et al. [9] to estimate the entropy. They
used the sphere packing bound [21] to roughly estimate the number of brute force
attempts required for an attacker to guess the key K correctly. Let N be the num-
ber of degrees of freedom in the data being XORed with the pseudo code θps, and
P is the fraction of this information corresponding to the error correction capacity
(i.e., P = N × error correction capacity). Then the number of brute force attacks an
attacker needs to carry out is estimated by Equation (6.4) as

BF ≈ 2N

(
N
P

) . (6.4)

The number of degrees of freedom can be estimated by the procedure given by
Daugman [6]. The iris codes used in our experiments are 1,188 bits long. We es-
timate the degrees of freedom in the iris codes to be 561. Collectively, in two iris
codes, we have 1,122 degrees of freedom. In the weighted error correction config-
uration in the multi-iris system, the total amount of error correction is ≈30 %. If
N = 1,122 and P = 0.3 × N ≈ 336, applying (6.4), an impostor needs approxi-
mately

BF ≈ 2N

(
N
P

) ≈ 21122

(1122
336

) ≈ 2140, (6.5)

brute force calculations to successfully get the cryptographic key. Thus the entropy
of the key is 140 bits, which is much higher than any other system reported in
literature.

The shuffling scheme applied in the two-iris system needs a 49-bit shuffling key.
This key is randomly generated and is protected by a password. We propose to
use a randomly generated 8-character password which can have 52-bit entropy [4].
The shuffling process is embedded into the error correction process and hence the
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individual entropies add up together resulting in a total key entropy of 140 + 49 =
189 bits. Thus the entropy of the key is

Entropy = min
(
Length(K),189

)
bits. (6.6)

Recently, Stoianov [31] has proposed an attack on the iris-based key regener-
ation scheme of Kanade et al. [13] which targets the zero insertion scheme. This
attack takes into consideration the known positions of the zeros inserted into the iris
codes. Using this attack, a large amount of errors in the Hadamard codewords can
be corrected and hence the crypto-biometric key can be recovered. The same zero
insertion scheme is applied in the multi-unit type system described in this chap-
ter. However, in this scheme, the de-shuffling process is done after the Hadamard
codes error correction level. Therefore, even if an attacker successfully decodes
the Hadamard codewords, he still needs to overcome the security offered by the
shuffling/de-shuffling process. Moreover, this scheme involves multiple biometric
information sources. The zeros are inserted into only one iris code, while the other
iris code is left as it is. This provides another level of protection against the attack
reported by Stoianov.

In order to carry out experimental security evaluation, we defined two extreme
scenarios: (1) stolen biometric scenario, where an impostor always provides a stolen
biometric sample of the genuine user, and (2) stolen key scenario, in which the
impostor always provides a stolen shuffling key of the genuine user.

In the stolen biometric scenario, the FAR of the system remains unchanged (i.e.,
FAR = 0 %). The shuffling process prevents the impostor from being accepted when
he provides the correct biometric data but a wrong shuffling key. Thus, use of shuf-
fling completely eliminates the threat caused by compromised biometric data.

In the other security scenario, stolen key scenario, the system still has two iris
codes which provide the security. The performance in this situation degrades but
it is equivalent to that of the system without shuffling. Moreover, the performance
degradation is only in terms of increase in FAR. The FRR remains unchanged even
if the shuffling key is stolen. This is a distinct advantage of the proposed system.

6.5 Multi-modal Type Multi-biometrics Based Key Regeneration

6.5.1 Algorithm for Multi-modal Biometrics Based Key
Regeneration

Multi-modal biometric systems combine biometric information from different traits.
In this case, an attacker who wants to break into the system by creating fake bio-
metric samples needs more efforts. Therefore, having multi-modal biometrics can
significantly increase the security of the system. Combination of information from
two biometric traits in the feature domain results in increase of the length of the fea-
ture vector. Additionally, the entropy of the crypto-bio keys also increases. We adapt
the FeaLingECc scheme described in Sect. 6.3 in order to combine the information
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Fig. 6.6 Schematic diagram of the multi-modal biometrics-based template protection scheme us-
ing FeaLingECc: (a) Enrollment phase, (b) Key regeneration phase

from an iris and a face image of a person. The length of the iris feature vector is
1,188 bits, while that of the face feature vector is 3,200 bits. Following the nota-
tions of the general scheme described in Sect. 6.3, we consider iris as Biometric-1
and face as Biometric-2. Hadamard codes are used as Level-1 ECC for iris while
Bose, Ray-Chaudhuri, Hocquengem (BCH) codes are used for face. These ECC
are selected according to the Hamming distance distributions of the correspond-
ing biometric data. Reed–Solomon (RS) codes are used as Level-2 ECC, which are
common for iris and face. The schematic diagrams of the enrollment and key regen-
eration phase of the proposed multi-modal biometrics-based system are shown in
Fig. 6.6(a) and 6.6(b), respectively.

The basic functioning of this scheme is the same as described in Sect. 6.3. But
the involvement of two different types of biometric data raises many design com-



6 Obtaining Cryptographic Keys Using Multi-biometrics 141

plications. The two biometric data (iris and face) being combined are different in
nature. The amount of variabilities, which is treated as errors, is different for iris
and face images. In key regeneration systems, the goal is to correct only the intra-
user variabilities. The amount of such errors to be corrected is highly dependent
on the biometric data set. The error correction capacities for each of the biometric
traits need to be set according to their respective Hamming distance distributions for
genuine and impostor comparisons.

6.5.2 Experimental Setup—Multi-modal Biometrics Based Key
Regeneration System

In this work, we created a virtual database created from two publicly available
databases: the NIST-ICE database [26] for iris, and the NIST-FRGCv2 database [25]
for face. In this selected data set, there are 175 subjects having five samples each of
iris and face images. The face images are taken from the controlled data set of the
FRGCv2 database. For each subject, data pairs are formed containing one iris im-
age and one face image corresponding to that subject. Thus, we have five such pairs
per subject for 175 subjects. For genuine comparisons, each data pair is compared
with every other data pair corresponding to the same subject. Similarly, each data
pair is compared with every other data pair of every other subject for impostor com-
parisons. This protocol results in 1,750 genuine comparisons and 380,625 impostor
comparisons. For the sake of fair comparison with uni-biometric systems, similar
protocol is followed to test the uni-biometrics-based systems’ performance in this
chapter.

We used a Gabor filter-based approach to extract features from the face im-
age [19]. The face image is first geometrically normalized using the CSU Face
Recognition System [1], and then processed using log-Gabor filters having four
scales and eight orientations using the MATLAB source code available at [18]. Mag-
nitude of the filtered output is calculated, downsampled, and concatenated to form a
3,200-element feature vector. The values in this vector are then binarized to obtain
a 3,200-bit string called face code. The binarization process used is fairly simple.
The median of the values in a feature vector is taken as a threshold for that feature
vector. The elements having higher value than the threshold are made one while the
remaining are made zeros.

By observing the Hamming distance distributions for genuine and impostor com-
parisons for iris on the development data set, we know that the iris data need nearly
35 % error correction. For face, we used only the controlled subset of the FRGCv2
data set. The error correction required on this subset is nearly 21 %. Note that these
quantities of error correction requirements are specific to the data set concerned and
will change according to the modality and acquisition conditions. Also the amount
of error correction required for the iris is higher than for the face. However, this does
not impact the verification performance. The verification performance depends on
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the separation between genuine and impostor Hamming distance distributions (see
Table 6.4).

As shown in [13], Hadamard codes along with the zero insertion scheme can
achieve the 35 % error correction requirement for iris. For face, BCH codes can
be applied for correcting the 21 % errors. Therefore, we use Hadamard codes as
Level-1 ECC for iris and BCH codes as Level-1 ECC for face. The Level-2 ECC
are Reed–Solomon (RS) codes which is a common level for iris and face. But the
error correction scheme in the proposed system is a cascaded structure where the
dimensions of the Level-1 and Level-2 codes must be compatible. Each of the three
ECC used in the system (RS, BCH, and Hadamard codes) has its own dimensional
restrictions.

The Hadamard codes (which are used for iris) have a fixed relation between in-
put and output size: a block of m bits is converted into a block of 2m−1 bits. The
Reed–Solomon codes of block size m bits can have a maximum of 2m−1 blocks.
The BCH codes having ≈21 % error correction capacity are: BCH(127, 15, 27),
BCH(255, 21, 55), BCH(511, 28, 111), BCH(1023, 36, 223), BCH(2047, 56, 443),
etc. The suitable ECC sizes also depend on the dimensions of the individual bio-
metric feature vectors. For example, the face code is 3,200 bit. It has to be truncated
such that its length is an integer multiple of the BCH code output size. Similarly, the
effective iris code length must be an integer multiple of the Hadamard code output
size (32 or 64 bits). Moreover, from our experiments, we know that the iris system
performs better (from biometric recognition point of view) than the face system and
hence, it is desirable to apply higher weights to iris than to face. This means that
more blocks of RS codes output should be used for iris than for face.

Taking all these requirements into consideration, we fixed the size of the RS
codes block to be equal to m = 7. The output of the RS codes encoder is also in
form of blocks each of which is 7-bit. Hadamard codes of input size m = 7 should
be used for compatibility. The output of these Hadamard codes is 64-bits. The length
of the iris code after zero insertion is 1984 bits and thus there can be 31 blocks
of Hadamard codes. This also means that 31 blocks of RS codes output are used
for iris. The BCH codes should be selected such that the input size of BCH codes
is an integer multiple of seven (7) but also keeping in mind that the total num-
ber of RS code blocks required for face remains less than 31. BCH(127, 15, 27)
and BCH(255, 21, 55) will require 50 and 36 RS code blocks which is more
than that required for iris. Therefore, these codes cannot be employed in the sys-
tem. Hence we applied the next two possible BCH codes: BCH(511, 28, 111) and
BCH(1023, 36, 223).

In case of BCH(511, 28, 111), four RS codes output blocks are concatenated to
form a single input block. The 3,200-bit face code is truncated to 3,066 bits which
is an integer multiple of 511. There are six such BCH code blocks which require 24
RS codes output blocks. Thus, the total number of output blocks required in the RS
codes is 31+24 = 55. The iris part has 31/55 = 56 % weight in the final verification
decision while the face part has 44 % weight.

For the other possible BCH codes, BCH(1023, 36, 223), five RS codes output
blocks are concatenated and a zero is appended to it in order to obtain the re-
quired 36-bit input block. There can be three such BCH blocks requiring 15 RS
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Table 6.4 Baseline biometric systems’ user verification performances in terms of EER in % on
subsets of NIST-ICE and NIST-FRGCv2 databases; values in bracket indicate the error margins
for 90 % confidence interval; Baseline—corresponds to baseline biometric system; Shuffled—the
shuffling scheme is applied. Results previously published in [16]

Exp. Iris Face Iris+face

Baseline 1.29 [±0.23] 6.53 [±0.52] 1.06 [±0.22]

Shuffled 0.35 [±0.12] 0 0

code blocks. Thus the total number of RS code blocks is 31 + 15 = 46. The iris is
given 67 % weight in this scenario while the face is given 33 % weight.

It is also possible to combine BCH codes of different dimensions to apply differ-
ent weights. For example, in a third setting, we applied 61 % weight to iris and 39 %
to face. In order to achieve this, we employed one set of BCH(2047, 56, 443) codes
in combination of four sets of BCH(255, 21, 55) codes. This requires (8 + 12 =)20
RS code blocks.

The experimental performance evaluation along with security analysis of this
system is presented in the following subsection.

6.5.3 Results and Security Analysis for the Multi-modal (Iris and
Face) Type System

The experimental results and theoretical as well as experimental security analysis
are presented in this section.

6.5.3.1 Experimental Results of the Multi-modal (Iris and Face) Type System

For comparison purposes, the baseline biometric systems’ verification performances
are presented in Table 6.4. The BioSecure tool for performance evaluation [2] is
used to calculate the EER and confidence intervals. This tool takes the number of
comparisons and the match scores into account to calculate the error bounds on
the verification error rates. The high improvement in the face verification system
after shuffling is due to the high impact of shuffling on impostor face distribution.
Shuffling makes the impostor distribution random. The randomness in un-shuffled
iris data is higher than that of the face data, and hence, the impact of shuffling on
face data is higher than that on iris data.

As said earlier, we evaluated the multi-modal system with three sets of exper-
iments by applying different weights. In Set-1, RS codes having 55 blocks at the
output are used. 31 out of these 55 (i.e., ≈56 %) are used for iris and remaining 24
(i.e., ≈44 %) are for face. The BCH codes used in this set are BCH(511, 28, 111).
Since it requires 28-bit input, four RS code blocks are combined to form that block
resulting in a total of 24 RS code blocks for face.
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Table 6.5 Results for the proposed multi-modal biometrics-based key regeneration system—Set-1
(iris weight = 56 %, face weight = 44 %). FRR and FAR values are in %. ‖K‖ indicates length of
key K in bits; ts denotes the error correction capacity of RS codes. Results previously published
in [16]

ts ‖K‖ Without shuffling With shuffling

FRR FAR FRR FAR

3 343 7.54 2.93 7.54 0

9 259 1.94 20.80 1.94 0

12 217 0.91 36.43 0.91 0

16 161 0.17 62.93 0.17 0

Table 6.6 Results for the proposed multi-modal biometrics-based key regeneration system—Set-2
(iris weight = 61 %, face weight = 39 %). Other signs have the same meaning as in Table 6.5

ts ‖K‖ Without shuffling With shuffling

FRR FAR FRR FAR

3 315 6.46 3.89 6.46 0

6 273 2.74 13.41 2.74 0

8 245 1.66 22.70 1.66 0

10 217 0.86 32.70 0.86 0

In the second setting, Set-2, 61 % weight is applied to iris and 39 % is applied to
face. The errors in face data are corrected by a combination of BCH(2047, 56, 443)
and BCH(255, 21, 55) codes. BCH(2047, 56, 443) require concatenation of eight RS
code blocks while each of the BCH(255, 21, 55) requires three RS code blocks. The
total number of RS code blocks required in this setting is 51 out of which, 31 are
used for iris and 20 for face.

In the third setting, Set-3, RS codes with 46-block output are selected, and 31 of
them are used for iris (i.e., ≈67 %) and remaining 15 blocks for face (i.e., 33 %).
BCH codes of higher output size are used so that the number of blocks coming
from BCH codes will reduce. We selected BCH(1023, 36, 223) for which the error
correction capacity is nearly the same. The 36-bit input required for these BCH
codes is obtained by concatenating five RS code blocks appended with a zero. Thus,
at the time of decoding, the last bit of the decoded value is discarded.

The results for these three experiments are reported in Tables 6.5, 6.6 and 6.7,
respectively. For all the settings, we also carried out experiments without using shuf-
fling, which are also reported.

The improvement in performance over uni-biometrics-based systems is three-
fold:

• better verification accuracy, e.g., at FRR of 0.91 %, FAR = 0 % for multi-
biometric system while for iris-based uni-biometric system, FRR = 0.86 % at
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Table 6.7 Results for the proposed multi-modal biometrics-based key regeneration system—Set-3
(iris weight = 67 %, face weight = 33 %). Other signs have the same meaning as in Table 6.5.
Results previously published in [16]

ts ‖K‖ Without shuffling With shuffling

FRR FAR FRR FAR

1 308 8.23 1.31 8.23 0

2 294 5.48 3.80 5.48 0

8 210 0.91 29.80 0.91 0

11 168 0.11 49.33 0.11 0

FAR = 0.21 %; similarly, for face-based uni-biometric system, FRR = 7.08 % at
FAR = 0,

• longer keys, e.g., 186 and 217 bit keys for uni- and multi-biometric systems,
respectively, at accuracies said above,

• higher key entropy, 183-bit for multi-biometric system while 83 for iris-based
uni-biometric system.

The security of the multi-modal biometrics-based system is analyzed in the next
subsection.

6.5.3.2 Security Analysis of the Multi-modal (Iris and Face) Type System

Theoretical as well as experimental security evaluation of the proposed system is
presented in this section. Using the procedure of Daugman [6], the number of de-
grees of freedom in the iris and face codes are estimated to be equal to 556 and 243,
respectively. Note that this estimation depends on the impostor Hamming distance
distribution and can change with the data set being used for evaluation. The total
number of degrees of freedom in the fused feature vector is N = 556 + 243 = 799.
In total, the system can correct 27 % errors in this code (i.e., P = N ∗ 0.27 ≈ 216).
Applying (6.4), an impostor needs,

BF ≈ 2N

(
N
P

) ≈ 2799

(799
216

) ≈ 2131, (6.7)

brute force calculations to obtain the key. Thus the entropy contributed by the bio-
metric information is 131 bits. The shuffling scheme, which employs a shuffling
key obtained with a password can add up to 52 bits of entropy to this estimate re-
sulting in 131 + 52 = 183 bits entropy. Therefore, the total entropy estimate for the
multi-modal type key regeneration system can be given as

Entropy = min
(
Length(K),183

)
bits. (6.8)

This entropy is significantly higher than that of the uni-biometrics-based system.
The entropy of the keys reported for the iris-based uni-biometric system in [13] is
83 bits.
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Experimental security evaluation of the multi-modal type key regeneration sys-
tem is carried out in a way similar to that performed for the two-iris system. In the
stolen biometric scenario, the performance of the system remains unchanged. None
of the impostors who provide stolen biometric data along with a wrong shuffling
key is accepted by the system. However, in the stolen key scenario, the FAR is equal
to that of the system without shuffling.

An interesting observation from the results in the stolen key scenarios is that
the system can better resist such attacks when higher weight is applied to the bet-
ter performing modality. For example, in stolen key scenario, the FAR is equal to
36.43 % at FRR = 0.91 % for Set-1 where iris is given 56 % weight. At a similar
FRR (0.86 %), the FAR is 32.70 % in the Set-3 when iris is given 61 % weight in
Set-2. While at the FRR = 0.91 %, the FAR is equal to 29.80 % for Set-2 where iris
is given 67 % weight.

6.6 Conclusions and Perspectives

Using multi-biometrics has several advantages over uni-biometrics such as: bet-
ter verification accuracy, larger feature space to accommodate more subjects, and
higher security against spoofing. We exploit these advantages and employ multi-
biometrics for obtaining high entropy keys. Additionally, the systems described in
this chapter also protect the biometric templates and enhance security and privacy.

In order to have keys with higher entropy and better security, we combine the
biometric information in feature domain. We propose a novel method of Feature
Level Fusion through Weighted Error Correction (FeaLingECc). With this method,
different weights can be applied to different biometric data. The shuffling scheme,
which we applied earlier to the biometric data, is used in this system to randomize
the error correcting codes data which helps make the system more secure. Addi-
tionally, the shuffling scheme induces revocability, template diversity, and privacy
protection in the system.

Two systems are discussed: (1) a multi-unit type system, and (2) a multi-modal
type system. Information from the left and right iris of a person is combined in the
multi-unit type system to obtain long and high entropy crypto-bio keys. The second
scheme is a multi-modal biometrics-based system in which information from iris
and face is combined.

The parameters (choice of ECC and correction capacity) of the systems are first
tuned on development databases and the systems are evaluated on the evaluation
databases. For the two-iris tests, we used the NIST-ICE database. On this database,
we obtain 147-bit keys having 147-bit entropy with 0 % FAR and 0.18 % FRR.

The multi-modal system (iris + face) is evaluated on a virtual database created by
combining images from the NIST-ICE and NIST-FRGCv2 databases. We succeed
to obtain 210-bit keys having 183-bit entropy at 0.91 % FRR and 0 % FAR. There
is a significant improvement over uni-modal biometrics-based systems, specifically
in terms of the key entropy. The key entropies for iris- and face-based uni-modal
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systems are 83 and 110 bits, respectively, while the entropy for the multi-iris-based
system is 147 bits and for iris-face-based system, it is 183 bits.

The proposed scheme can be adapted to other biometric modalities. The feature
level fusion combined with weighted error correction method allows the fusion of
biometric modalities having different performances (e.g., face + iris). This opens
up new directions for combining biometric information from different sources and
having different dimensions.
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