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Abstract The demand of electricity is increasing in parallel with the growth of the
world population. The existing power grid, which is over 100 years old, is facing
many challenges to facilitate the continuous flow of electricity from large power
plants to the consumers. To overcome these challenges, the power industry has
warmly accepted the new concept smart grid which has been initiated by the
engineers. This movement will be more beneficial and sustainable to the extent if
we can offer a secure smart grid. Machine learning, representing a comparatively
new era of Information Technology, can make smart grid really secure. This
chapter provides an overview of the smart grid and a practical demonstration of
maintaining the security of smart grid by incorporating machine learning.

8.1 Introduction

Due to growing concern over massive carbon emission and consequently, rapid
climate change, there has been a global movement towards the discovery of clean
and renewable energy sources. Traditional energy sources, like fossil fuel, are non-
renewable in the sense that they take millions of years to form. Due to huge energy
demand worldwide, these traditional energy sources are being exhausted more
quickly than the ones being created. The most significant advantage of renewable
energy sources are that they are never going to run out as they are refilled naturally.
Another advantage is that almost all of the renewable energy sources are relatively
clean and cause minor or no pollution to the environment. The most prominent
renewable energy source is the solar power. The other significant sources are wind
power, ocean waves, hydropower, biomass power and geothermal energy.
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Due to the technological advancements, increased automation and ever
increasing number of consumers, the hunger for energy is likely to aggravate. As
the supply from traditional energy sources is running low, there is a tremendous
urge globally to become energy efficient. The practice of being energy efficient not
only saves energy but also helps to reduce the amount of carbon discharged in the
environment during the generation of power. Energy efficiency can be ensured
through minimizing of the loss during generation, transmission and distribution
phase on the power production side. On the consumer side, energy efficiency can
be guaranteed through the design and use of devices that would consume minimum
energy during their operations. The consumers also have the responsibility to use
power in a sensible way i.e., they should not keep the devices turned on unnec-
essarily. Alternatively, the device itself should detect when it is not being used and
should switch to sleep mode as soon as possible.

The function of an electric power grid is to carry out mass transfer of electric
energy at high voltage from power plants, where power is generated, to the sub-
stations located near the customer base. In the substations, the electricity is stepped
down in voltage and passed through distribution wiring to the consumer site where
the power is further stepped down to service voltage. The major problem with
tradition electricity distribution systems are that the energy produced cannot be
stored and therefore, should be generated as required. When the supply and
demand is not in equilibrium, the generation units and transmission network can be
shut down causing blackouts. The introduction of alternative power sources, which
are intermittent in nature, has made the stable power supply more difficult. Tra-
ditional distribution systems are vulnerable to security threats either from energy
suppliers or cyber attacks.

The concept of smart grid emerged as result of the desperate attempts to make
the power grid stable, reliable, efficient and secure. Smart grid attempts predict the
usage pattern of the customers and respond intelligently in order to provide reli-
able, sustainable, and cost-effective services. One significant aspect of the smart
grid is that it can schedule and control the load to effectively shift the usage to off-
peak hours and reduce the peak demand, which is known as demand management.
Dynamic pricing is another mechanism of the smart grid to facilitate demand
management, which motivates the consumers by increasing the electricity price
during the high demand period and reducing the electricity price during the low
demand periods. According to the Energy Future Coalition’s Smart Grid Working
Group, a smart gird should incorporate the following functionalities [1]:

• Would give consumers control over their usage.
• Increase the efficiency and be more economical.
• Should be self-healing and more secure both from physical and cyber attacks.
• Should be able to integrate alternate energy sources like solar cell or wind

power.

Smart grid is seen as a way to allow consumers to take part in optimizing the
operations by providing them greater information and options. Figure 8.1
describes the operation of self-healing smart grid.
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8.2 Smart Power Generation

The main challenge in the current grid is that electricity demand fluctuates
throughout the day and also varies from one season to another [2]. Therefore, one
of the key factors to maintain reliability and stability in power supply is load
balancing. The load balancing task is performed by the transmission operators by
matching the power output with the load. In the traditional power grid, combi-
nation of three types of power plants—baseload, load follower and peaking are
installed to mitigate the balancing task, while maintaining the economy.

Baseload power plants [3] are the power generation facility that produces the
minimum amount of energy that is continuously required by a region. Baseload
plants operate at the maximum capacity and they typically generate power round
the clock and are only shut down for repair and maintenance. Baseload plants are,
in general, based on nuclear energy, coal or geothermal energy. Load follower
power plants [3] generate power only during period of high demand, for example,
during daytime or early evening. Gas turbine combined cycle and hydroelectric
power plants are typical load followers. Peaking power plants [3] generate power
when the power demand rises for a short period. Single cycle gas turbines or gas
engines are usually deployed as peaking power plants. The baseload plants have
the lowest fuel cost followed by the load follower plants and the peaking plants
have the highest fuel cost. However, the peaking plants have the shortest start-up
time, which means they can start within a very short time during the period of peak
demand.

Fig. 8.1 A smart self-healing grid system [40]
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8.2.1 Incorporating Renewable Sources

The supply of power from the renewable sources like solar cell and wind power is
not steady and precisely predictable as the time of the day and weather events
dictate the output from these sources. It was initially envisaged that statistical
smoothing of high peaks of wind or solar power might be possible by intercon-
necting adjacent areas [4, 5]. But recent research shows that wind and solar power
patterns match across a large area and hence, the desired smoothing affect is not
achievable [6]. Due to the incorporation of intermittent and variable power gen-
erators, the task of load balancing is becoming increasingly complex. For example,
the wind speed in South Australia usually drops when the ambient temperature
rises during the day [6]. The demand rises, while the electricity production drops
during that period, which results in a wind output pattern contrary to the electricity
demand. The planned increase in wind power by 2020 in South Australia will
severely impact the balance dynamics.

Intermittent power output from renewable sources often causes temporary high-
peaks and extended period of zero output. The instantaneous output from the
renewable sources is sometimes so huge that it can even drive baseload plants out
of production. As the baseload plants require high investment, if the baseload
plants remain shut down and operate at reduced load, the capital cost per kWh will
rise drastically due to high investment behind the plants. It would be smarter if
energy from renewable sources can be stored and used later to flatten the peaks and
valleys.

8.2.2 Energy Storage Technologies

Flywheels can be accelerated by electricity and this energy will be preserved as
rotation energy. The flywheels can drive generators to cover up sudden shortage of
power. The rotational energy will eventually be lost due to friction in the bearing.
Putting the rotor inside a vacuum chamber and using magnetic bearing can min-
imize the energy loss. Electric vehicle batteries may also be used as virtual energy
storage which can be charged during off-peak hours and drained off during peak
hours. The above mentioned peak-shaving technologies can only provide backup
for a short period of time. Storage of energy as thermal energy can be an effective
way to balance the demand and supply. Molten salt is heated using solar energy
and sent to hot storage tank. This hot salt is later used to produce superheated
steam for electricity generation. Surplus renewable energy can also be used to
compress air to a high pressure and stored for a long time. The pressurized air can
later be used as combustion air in the peaking power plants. Stored natural gas or
biogas provides higher energy density and hence, better alternatives to compressed
air. Pumped hydro-storage system can pump water from low-altitude reservoir to a
high-altitude reservoir. During the period of high demand, this water is passed
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through the turbines to produce electricity. However, most of the solutions are still
more expensive than conventional peaking power plants. Also they are unable to
provide backup for extended period of time with zero output from wind or solar
power plants. So far, pumped hydro-storage has been proved to be the most
economical alternative to the conventional peaking plants. However, pumped
hydro-storage system requires huge unoccupied land for the construction of
reservoirs.

Recently, hydrogen is emerging as a storage medium. Hydrogen can be pro-
duced using electricity or heat and stored in compressed or liquid form. The
hydrogen is later converted back to electricity by a combustion engine. An
alternative way is to use the hydrogen as a fuel for fuel cell that can convert
chemical energy into electricity.

8.2.3 Mitigation of Peak Demand

Since air conditioning is one of the key factors for peak demands, excess energy
can be used to produce ice during night time and can be used for air conditioning
during daytime. Optimum insulation of buildings is generally the cheapest and
most effective solution for reducing the seasonal peaks. Export and import of
electricity from neighboring countries can ease the gap between production and
demand to a large extent. Cogeneration units use waste heat produced in the power
plants for heating purposes either utilizing the heat near the power plants or
through district heating. The fuel utilization efficiency of cogeneration units is
higher than producing electricity and heat separately [2]. District heating is one of
the cheapest methods for reducing carbon footprint.

Demand management rewards the customers for using less energy during the
peak time and moves the energy usage to off-peak time so as to shave the peaks
and to fill the valleys. Price-based demand management charges the customers at
time varying rates that correspond to the value and cost of electricity at different
times. Incentive based demand response pay for reducing their loads as requested
by the utility provider. Demand management also increases the load during the
time of high supply or low demand. The Queensland government is planning to
install devices into some household appliances such as air conditioners, pool
pumps and hot water systems. The devices would enable the utility companies to
cycle the use of these devices during the peak hours [7].

8.2.4 Forecasting Renewable Energy Supply

Wind and solar forecasting technology makes renewable energy supply more
reliable and cost-effective as it provides more time to the grid operators to plan in
advance for a backup energy supply when the renewable energy source is expected
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to produce less energy than required. For example, grid operators will not carry
much spinning reserve if they know ahead that a sudden drop in renewable is less
likely. The objective of wind power prediction is to predict the wind speed and
direction, while the objective of solar power prediction is to predict the solar
irradiation. Forecasting may be done with a numerical weather prediction model or
statistical analysis of local measurements [8]. The first method uses models on
meteorological measurements and observations coming from satellites or weather
stations. As this is a pure analytical method, no historical data is necessary but the
computational complexity is huge. The second method based is on the relationship
between the historical data and forecast variables. Since it learns from previous
experience, the statistical model can account for the local terrain and other details
that can’t realistically be represented in the numerical weather prediction model
[9]. For the same reason, the statistical model tends to predict typical weather
events rather than exceptional events [10].

8.3 Smart Grid Security Issues

Since the smart grid technology is complex which includes generation, transmis-
sion, and distribution and hence, there are manifold opportunities for the attackers
to disrupt the system. It is a common conception that threats solely comes from
hackers or other individuals or groups with malicious intent. In fact, staff and other
insiders can also pose a risk as they have authorized access to one or more
components of the system. Insiders know about sensitive information of the system
such as passwords stored in the database, cryptographic keys and others security
mechanisms that could be utilized to organize an attack. However, not all security
infringements are malicious; many of them originate from accidental mis-
configurations, failure to follow procedures and other oversights.

Smart grid threats can be classified into three broad groups: (1) system level
threats that attempt to take down the grid; (2) attempts to steal electrical service;
and (3) attempts to compromise the confidentiality of data on the system.

8.3.1 System Level Threats

System level threats attempts to take down part or the entire smart grid. For
example, entities or individuals with malicious intent could attempt to change
programmed instructions in the meter, change alarm thresholds or issue unau-
thorized commands to meters or other control device on the grid. This type of
actions could result in damage to equipment, premature shutdown of power or
processes or even disabling of control equipment. The following are among the
system level threats commonly encountered.
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8.3.2 Radio Subversion or Takeover

This threat aims to capture one or more radios or the RF communication modules
in the meters so they act on behalf of the attackers. The common form of this
attack is firmware replacement. Attackers attempt to insert modified firmware into
a device or attempt to spread compromised firmware to numerous devices.

8.3.3 Network Barge-in by Strangers

This threat is characterized by attempt of stranger radios to join the RF radio network
and/or preventing the communication modules to communicating properly. For
example, an attacker may try to use the communication module to piggyback
unauthorized traffic through the network or use a stranger radio to intercept or relay
traffic. Moreover, an attacker may attempt to modify a radio or communications
modules’ credentials to assume a different role. Since the interface between the radio
and microcontroller is frequently not encrypted, an attacker can participate in the
communication as a legitimate device by manipulating the trust relationship.

8.3.4 Denial of Service

This threat results in part or the entire network becoming unresponsive to service
request. This attack can take place in form of resource exhaustion or jamming. In
routing black holes attack, a node is hacked so that it’s advertised as the shortest
path to everywhere, resulting in all traffic being diverted to it. RF spectrum
jamming attack prevents signal from being received. In jabbering attack, a legit-
imate node is co-opted to send so much traffic that other nodes can’t communicate;
Kill packets are protocol packets that cause radios to crash or to become
unreachable via the RF field. Stack smashing, a method of subverting or crashing a
device’s operating system or applications by overloading memory buffers so that
data is exposed, lost or corrupted.

The core elements of the network—routers and switches, if not safeguarded
properly, can be compromised and make smart grid vulnerable. For example,
routers can be shipped with factory default password and remote access such as
Telnet or HTTP services turned on. Network administrators knowingly or
unknowingly leaving these default settings unchanged can create an entry point
into the system for the intruders. In case the devices are compromised, they can be
utilized to disrupt grid operations through denial-of-service (DoS) attack. In the
worst case, they can be used to take control of more critical control systems.
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8.3.5 Malicious Code

Software update feature allows the devices to check for download and install the
software packages and patches. If the update is not from trusted vendors, malicious
codes such as Trojan horses, or malicious worms can make a way into the system.
It is a common practice to write the downloaded software into flash. The code is
only executed if it passes the authentication, while the unauthenticated code
remains in the flash. This could be executed through code exploit or glitch hard-
ware. The local interfaces are often not secured and create an easy entry point [11].

8.3.6 Glitching

No two transistors in the system are the same due to their locations, tolerances and
I/O factors. A glitch forces transistors to operate when they shouldn’t [12]. The
glitch can be injected through power supply, clock signal, and electromagnetic
radiation.

8.4 System Level Theft of Service

Theft of service attack consumes service from the utility provider without paying
the revenue to the provider. For example, individual meters or a group of meters
can be subverted to misreport to the customer, the amount of service provided or
the cost of service provided (changing from a higher-priced one to lower-priced
one). The following are theft of service threats commonly encountered [13]:

8.4.1 Cloning

A perpetrator commits this attack by replacing a meter or radio ID with a duplicate
one designed to report zero usage. As a result, the utility providers receive no
revenue for the service it provides.

8.4.2 Migration

This attack aims at reducing the reported usage and associated bills by swapping a
meter (or communication module) from a location reporting high usage to with a
meter (or module) from a location reporting low usage.
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8.4.3 Meter/Communication Module Interface Intrusion

The communication module connects to meter through a serial port. A perpetrator
can disconnect the communication module from the meter or can break into
communication module so that it doesn’t report any usage information or incorrect
usage information.

8.5 Breach of Privacy or Confidentiality

This sort of attack may render personally identifiable information being exposed.
Common privacy and confidentiality attacks include:

8.5.1 Meter Compromise

A meter can be broken into to retrieve personal information.

8.5.2 RF Interception

A perpetrator can intercept the packets by passive eavesdropping on the radio
network.

8.5.3 Forwarding Point Compromise

If a node on the network is compromised, it can be used to forward traffic to some
unauthorized individual or group.

8.5.4 Backbone Network Interception

Packets can be captured as it passes through the backbone IP network.
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8.5.5 Bus Sniffing

The interface between the microcontroller and the radio is not often encrypted
which can attract bus sniffing. It may be possible for an eavesdropper to capture
radio configuration information, cryptographic keys, and network authentication
credentials.

8.5.6 Key Compromise

The secret key can be revealed by monitoring the power consumption of the device
[11]. Transistors draw more current when switching occurs. Since processing is
deterministic and repeatable, each operation in the device leaves an EM signature
which can be detected by sampling the current consumed by that device. This is
known as power analysis attack. Timing attack can decode the entire secret key by
examining the variation in time a cryptographic operation takes. The secret key
can also be inferred from the analysis of electromagnetic radiation emitted from a
device. This is known as electromagnetic attack.

Using the same symmetric key for encryption across the system can make the
system seriously vulnerable. If one of the devices in the system is compromised,
the whole system is system is eventually compromised.

8.6 Threat Mitigation

Threat mitigation strategies in smart grid can be broadly classified into four main
categories—physical security, privacy and security of data, authorization and
access control, and securing network devices and systems. Moreover, a number of
general strategies are needed to tighten the overall security of the system as
discussed in Sect. 8.6.5.

8.6.1 Physical Security

When it comes to physical security, the SCADA network always found to have
poorly protected. The primary security measure to secure a smart grid would be to
keep the intruders off the premises. This could be achieved through video sur-
veillance, cameras, electronic access control, and emergency response [14].
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8.6.2 Privacy and Security of Data

Since different entities are involved in the smart grid, it is crucial to protect the
data as it is stored and transmitted. The following measures should be imple-
mented to protect the data in the smart grid [14]:

• Implement firewall functionality to impose access policies between different
segments of the smart grid.

• Deployment of VPN architecture that encrypts data to ensure secure and con-
fidential data transmission.

• Leverage encryption and data storage security capabilities to protect critical
assets on servers and endpoints.

• Provide granular access to sensitive data at the application level.
• Provide ubiquitous and consistent security measures across wired and wireless

security connections.

Moreover, care must be taken in the following cases [14]:

• Avoid using insecure remote management and communication protocols.
• Avoid failed authentication account lockout and logging weaknesses.
• Implement certificate revocation list checking practices.

8.6.3 Authentication and Access Control

The smart grid is accessed by various user groups such as employees, contractors
or even customers. Access to these user groups, be it local or remote, must be
granular and authorization should be granted to ‘need to know’ assets.

Identity must be verified through strong authentication such as multifactor
authentication. Passwords should strong, attempts must be logged and unautho-
rized attempts also should be logged. Moreover, all access points should be
hardened to avoid any loophole in the system. Only ports and services required for
normal operation should be enabled.

Communication modules in the meters should use cryptographic keys and
digital signatures to confirm that the firmware is from a genuine source and not
been tempered. The secret keys must be stored securely and properly protected.
One way to achieve this is requiring a password to control the use of the secret key.
Blinding the cryptographic operations so that the timing of the operation does not
depend on the key can protect against timing attack.
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8.6.4 Securing Networked Devices and Systems

Meters should be equipped with temper detection mechanisms. Local temper
detection systems are fitted with physical indicators that the meter has been
tempered. In remote temper detection mechanism, the meter notifies the head-end
about the tempering. System integrity protection system allows the meter to
protect its integrity by self-erasure of keys and firm-ware.

To prevent bus sniffing or bus injection, the microcontroller and the radio are
placed on the same chip in the meter. However, some devices still have bus
sniffing turned on for debugging purposes.

A unique key should be assigned for per device and per use rather than using a
single key for all devices across the system. Caution must be taken when cryp-
tographic errors take as it may be an indication of an attack (such as glitching).
Care must be taken so that local interfaces are disabled by software.

8.6.5 Maintaining Overall Security

In spite of having discrete functional zones and clear segmentation, it is hard to
predict what form of attack would take place. A comprehensive defense strategy is
required which would largely cover all sorts of threats and vulnerabilities a smart
grid can encounter. An effective, layered defense mechanism should be put in
place, which would implement the security principles across the whole infra-
structure. The security of the system should be reviewed by the third parties.

System and software development lifecycle implement security all layers
(design, coding, testing, deployment and maintenance). Security should be
enforced by default instead of making it the responsibility of the end user.

An intrusion detection system (IDS) and/or an intrusion prevention system
(IPS) should be implemented to identify external threats trying to penetrate the
system and stop any attempts at internal propagation. Host protection mechanism
should be deployed to protect critical client systems such as clients, servers and
endpoints. Antivirus software and host-based IPSs should be kept up-to-date with
latest threat intelligence and signature update.

8.7 An Intelligent DoS Attack Prevention Mechanism

As mentioned earlier in this chapter, the DoS attack is basically an attempt to make
a smart grid resource unavailable to its existing users. Although the methods to
carry out, motives for, and targets of a DoS attack may differ, it commonly consists
of the efforts of an individual or a group of people to temporarily or indefinitely
interrupt or suspend the services of smart grid. Distributed denial-of-service
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(DDoS) attack is the distributed version of DoS attack, where the attacker uses
multiple computers to launch the attacks. Modern DDoS attacks use new tech-
niques to exploit areas where the traditional security solutions are lacking. These
attacks can cause severe network downtime to the systems that heavily depend on
networks and servers. The number of DDoS attacks remained steady in the recent
times but complex multi-vector attacks are becoming more common.

We should not assume that all disruptions to service in the smart grid are the
result of a DoS attack. Sometime, the grid may have technical problems with a
particular network, or the system administrators may be performing maintenance
works. However, the following symptoms could indicate a DoS or DDoS attack in
the smart grid [15]:

• unusually slow grid network performance
• unavailability for the administrator/customer to get access to a particular or any

Website
• dramatic increase in the amount of spam e-mails in the user account

Until today there are no effective ways to prevent being the victim of a DoS or
DDoS attack, but there are steps we can take to reduce the likelihood that an
attacker will use smart grid network computer to attack user computers. The steps
are as follows:

• Install and keep updated anti-virus and operating system software.
• Install a firewall, and configure it to restrict traffic coming into and leaving your

computer.
• Following proper security practices.
• Applying email filters may help you manage unwanted traffic.

This chapter demonstrates an intelligent DoS prevention mechanism using
machine learning techniques to reduce the likelihood of this sort of attack.
Machine learning techniques have been proved to be a very useful tool to prevent a
DOS attack [16]. If there is a known type of attack, machine learning can take
proactive action to address the issue, and at the same time, notify systems/security
administrators as well as the data owner. If an unknown type of attack happens,
machine learning will still be able to detect it as an attack from the performance
variations from the standard usage, and can notify the designated person with the
closest type attack known to its database. That would make the security admin-
istrator’s job easier and help the administrator fight against unknown types of
attacks. In the previous research experiments, the authors successfully identified
Cloud insiders activities [17] and DoS/DDoS attacks [18] using machine learning
techniques. The previous research found that rule based technique C4.5 is an
efficient technique to identify this sort of attacks. The authors validated the per-
formance of different machine learning techniques with the rigorous testing of
tenfold cross validation. The experimental outcome demonstrated that C4.5
algorithm not only performs better than other techniques, but also the level of
performance is of acceptable standard. The other algorithms tested were Naive
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Bayes, Multilayer Perceptron, SVM and PART [17, 18]. This chapter investigates
the two groups of machine learning algorithms: Statistical based and Rule based
algorithms to stop DoS attack in the Smart Grid Environment.

8.8 Data Collection

As discussed in the previous section, DoS and DDoS attacks cause significant
changes in system performances, and machine learning can easily identify when
noteworthy change in system performance occurs. Also [17, 19] suggest that some
activities carried out in modern day systems may cause major changes in the
performance graph and look very similar to some of the DoS/DDoS attacks in
naked eyes. In this situation, machine learning can play a significant role by
distinguishing an attack from an activity as it can work with multiple system
performance parameters simultaneously that is not possible by human being.

In this section, the pictures of the performance charts that are taken from the
modern day server during the cyber attack are presented. The performance plot
generated by the data collection spreadsheet during the attack and the similarity
between these two indicates are also presented. The primary intention was to train
machine with some of the well known DoS/DDoS attacks types and also to train
with some normal activities that are carried out in modern network environments
every day. So that the machine can distinguish between these two types of
activities and can detect unknown type of attacks which are not recorded in the
database as an attack or an activity. All these cyber attacks were generated in an
experimental environment with some real attack tools. It is to be noted that the
performance data of 20 different parameters of System, CPU, Memory and net-
work were collected. In this chapter, only performance charts and plots of those
that show significant changes during an attack are included, however, to refine the
data using machine learning, all 20 parameters at the same time, irrespective of
whether they made any noteworthy dissimilarity or not, are included.

8.8.1 Similarity Between Attacks and Other Activities

Accurate data collection is very important to achieve correct results from machine
learning, and also, to make a distinction between an attack and a non-attack
activity. To give example of similarity between an attack and a non-attack activity,
at first three charts of three different activities are presented. Figure 8.2 presents
the disk performance chart for the period of cloning a Virtual Machine (VM) that
looks exceptionally similar to disk performance chart at some point in DoS attack
using RDoS. Figure 8.3 represents network performance chart while taking the
snapshot of a VM over the network and the chart looks incredibly alike to the
network performance chart during SYN flood attack. Figure 8.4 shows network

182 A. B. M. S. Ali et al.



performance chart during installation of new VM and it looks very comparable to
the network performance chart during HTTP-DoS attacks.

8.8.2 DoS Using Real-time Disk Operating System

Real-time disk operating system (RDoS) by Rixer [20] is one of the most easily
available DDoS attack tool for Web attack. This tool together with a port scanner
can be very useful DDoS attacking tools for Web resources. In our experiment the
authors only used RDoS and did not use any port scanner as the authors created

Fig. 8.2 Disk performance chart during the cloning of a VM; it looks incredibly similar to the
disk performance chart during DoS attack using RDoS

Fig. 8.3 Network performance chart while taking a snapshot of a VM over the network; it looks
exceptionally identical to the network performance chart during SYN flood attack
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their own Website on a virtual network environment and knew the port number
already, which in this case was default HTTP port 80. The HTTP server’s Internet
Protocol (IP) address is 10.1.1.1 and RDoS tool was executed from other VMs
selecting victim’s IP address 10.1.1.1 and port 80 from 4:30 to 4:40 a.m.

Figure 8.5 shows RDoS by Rixer tool operation in the virtual network envi-
ronment and also victim’s system performance chart screening important changes
during the attack. There is a notable change in the performance chart from 4:30
a.m. onwards since the authors ran this tool.

Figures 8.6 and 8.7 represent System and CPU performance charts respectively,
during the attack which happened between 4:30 to 4:40 a.m. Important changes in
both System and CPU performances are obvious during attack moment.

The following four diagrams presented here are the plots taken from the data
collection spreadsheet. These are exactly the same as the hypervisor performance
charts during the time of attack, which indicates how precisely the performance
data were collected. Figures 8.8 and 8.9 show the performance plots of CPU and
Disk respectively, generated by the data collection spreadsheet.

8.8.3 HTTP-DoS Attack Using Low Orbit Ion Cannon

Low Orbit Ion Cannon (LOIC) is an open source network for stress testing and
DoS/DDoS attack application [21, 22]. An attacker can flood TCP/UDP packets
with the intention of disrupting the service of a particular host. On December 2010,
BBC report entitled ‘‘Anonymous Wikileaks supporters explain Web attacks’’

Fig. 8.4 Network performance chart during the installation of a new VM; it looks especially
alike to the network performance chart during HTTP-DoS attack
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quoted security experts that well-written firewall rules can filter out most traffic
from harmful DDoS attacks by LOIC [23]. However, in the previous research by
the authors discovered that these corporate firewalls are not very effective if the
attacker resides or shares the same physical hardware from same service provider
[24]. For that reason, here, the authors attacked a specific VM from other VMs that
is sharing the same physical resources. The HTTP-DoS attack started on victim

Fig. 8.5 DoS attack using RDoS; the system performance chart screening significant changes
during the attack [18]

Fig. 8.6 System performance chart during RDoS attack that happened between 4:30 to 4:40 a.m
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(IP 10.1.1.1) using LOIC at 6:08 a.m. and ended at 6:15 a.m. Figure 8.10 shows
LOIC running from attacker VM with target IP 10.1.1.1.

Figures 8.11, 8.12 and 8.13 present the performance plots of CPU, network and
system generated by the data collection spreadsheet that were collected from the

Fig. 8.7 CPU performance chart generated in hypervisor during the attack

Fig. 8.8 CPU performance plot generated by data collected for the experiment; It has similarity
with the one generated automatically by the hypervisor
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Virtual machine manager (VMM) during the attack. Sudden increase in the per-
formance was noticed during the time of attack (start 6:08 a.m. and ended at 6:15
a.m.).

Fig. 8.9 Performance plot disk performance from the data collection spreadsheet

Fig. 8.10 HTTP-DoS attack using LOIC running, also showing CPU performance chart
generated in hypervisor [18]
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8.8.4 Ping Flood Attack

Ping flood is another kind of DoS attack where the attacker crushes the victim with
Internet Control message protocol (ICMP) Echo Request (ping) packets. This
method could be very successful when sending packets quickly without waiting for
a response from the victim. If ICMP service is not disabled by the target host, it
will flood the target host with large data segments [25, 26]. However, in our study
and from work experience, we found organizations usually disable ICMP requests

Fig. 8.11 CPU performance plot generated from the data collection during HTTP-DoS attack
[24]

Fig. 8.12 Network performance plot generated from the collected data [24]
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at firewall or in the router so that it can stop ICMP requests from external net-
works, traditionally they keep ICMP open on hosts in their own internal networks
so that they can do network diagnostics. Our concern for modern VMs is that an
attacker could be residing on the same physical hardware or somehow can manage
to hack into another low secured VM that is residing on same internal virtual
network and, carry this kind of attack to a target VM.

A certain kind of ping flood attack in the past was named ‘‘ping of death’’ where
an attacker deliberately used to send packets larger than the 65,536 bytes, many
computer systems were not able to handle a ping packet larger than this maximum
IPv4 packet size [27]. So, in our experiment, we send ICMP packets from each
attacker VM slightly lower than that so that the attacker VM itself does not get
overwhelmed. We ran ‘‘ping 10.1.1.1 –t -l 65000’’ command from each attacker
VM. Here –t was used for repeated sending of echo messages and -l indicates the
size of packet to be sent, in this case it was 65,000 bytes from attacker VM1 (we
named it win7_1 as shown in Fig. 8.14).

Figure 8.14 shows hypervisor console running ping flood attack from attacker
VM to Victim VM. While Fig. 8.15 represents network performance chart from
VMM in the instance of attack and Fig. 8.16 is the performance plot of network
generated by our data collection spreadsheet.

8.8.5 SYN Flood Attack Using Engage Packet Builder

A SYN flood attack is also another kind of DoS attack where a network becomes
overwhelmed by a series of SYN requests to a target’s system [28]. Engage Packet

Fig. 8.13 System performance plot generated from the data collected
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Builder [29] is a powerful and scriptable packet builder with capability of packet
injection starting from link layer (MAC address spoofing), it can also generate
SYN-Floods by building ‘‘strange’’ packets [29]. We used Engage Packet builder
to execute SYN flood attack twice, at 5:13 and 5.17 a.m. Figure 8.17 shows
Engage Packet Builder running from attacker VM (IP 10.1.1.10) with target IP
10.1.1.1 and Fig. 8.18 shows a performance plot of the network generated from the
data which was collected from the VMM during the attack.

Fig. 8.14 Snapshot of the hypervisor console running ping flood attack from attacker VM to
Victim VM

Fig. 8.15 Network performance chart generated from the hypervisor
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8.9 Experimental Outcome

The data were collected from a real life environment to measure the strength of the
machine learning modeling performance to prevent any DoS attack in the Smart
Grid environment. The total numbers of instances in the dataset are 536 and the
number of attributes is 21. All the attributes are numeric in the dataset. The authors

Fig. 8.16 Network performance plot generated from collected data

Fig. 8.17 Snapshot of SYN flood attack using engage packet builder and network performance
monitoring from the hypervisor during the attack
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have chosen two sets of machine learning algorithms to prevent DoS attack in the
Smart Grid environment: statistical based learning algorithms and rule based
learning algorithms. Naive Bayes [30], Multilayer Perceptron [31], Support
Vector Machine [32, 33] are from the statistical based learning algorithms group
and PART [34], J48 [35], NBTree [36], and REPTree [37] are from the rule based
learning algorithm group selected for the experimental demonstration. All these
algorithms are implemented in Java with default parameter settings, which are
available in WEKA [38]. WEKA is a machine learning tool developed at the
University of Waikato and has become very popular among the academic com-
munity working on learning theory.

In the data modeling environment, modeling is a comparative easy task rather
than predict an unseen data instance which is called test data. In general, the
percentage of model prediction accuracy always carries the strength of the model.
Computational intelligence researchers are considering a range of methods to
verify the model strength. Among these, cross validation is one of the most widely
used methods for the final selection of a model. With cross validation measure, the
kappa statistics and model building time for the final model selection to stop
attacker in the smart grid network was also chosen. In the following, the tenfold
Cross Validation method [38] is explained.

The steps of tenfold cross validation procedure are as follows:

• First, use a random sampling procedure to split the entire training set into 10
sub-samples. Let’s call these samples S1, S2, S3 and so on, until we get to S10.

• As a first step, remove one sample set, say 10 (S10), from the training set.
• Train the machine learning algorithm using data from S1 to S9.

Fig. 8.18 Network performance plot generated from the data collected during the SYN flood
attacks
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• Once the machine has built a model based on data from S1 to S9, it sees how
accurately the model predicts the unseen data of S10. Error rates are stored by
the system.

• Once the accuracy of predicting the values in S10 is tested, S10 is put back into
the training set.

• For the next step, we remove sample set S9 from the training set.
• Re-train the machine learning algorithm, this time using data from S1 to S8 and

S10 (i.e., leave out S9).
• Once the machine has built a model based in the training set as described in Step

7, it evaluates how accurately it can predict values in the new test set (i.e., S9).
Error rates are stored by the system.

• Put S9 back into the training set.
• Now, remove S8 from the training set, and repeat the testing procedure.

At the end of the sequence, the 10 results from the folds can be averaged to
produce a single estimation of the model’s predictive performance. The main
advantage of the tenfold cross validation method is that all observations are used
for both training and validation, and each observation is used for validation exactly
once. This leads to a more accurate measure of how efficiently the algorithm has
‘‘learned’’ a concept, based on the training set data. Thus, a final model is setup to
predict the upcoming new sample.

Experimentally, the accuracy as the overall number of correct classifications
averaged across all tenfolds is estimated. Let Di be the test set that includes sample
vi ¼ xi; yih i and the cross validation accuracy estimation is defined as:

Acccv ¼
1
nf

Xf

i¼1

d = DðiÞ; xi

� �
; yi

� �
;

where f is the number of folds and n is the number of labeled instances in the fold.
Kappa is a chance-corrected measure of agreement between two raters, each of
whom independently classifies each of a sample of subjects into one of a set of
mutually exclusive and exhaustive categories [39]. It is computed as

K ¼ po � pe

1� pe
;

where po ¼
Pk

i¼1 pii; pe ¼
Pk

i¼1 pi:p:i, and p = the proportion of ratings by two
raters on a scale having k categories.

Both statistical and rule based learning algorithms’ performances have been
summarized in Figs. 8.19, 8.20, 8.21, 8.22, 8.23 and 8.24. Figure 8.19 shows
Multilayer Perceptron algorithm as is the best choice for preventing the DoS attach
in the Smart Grid. In the Kappa statistics measure of Fig. 8.20, Multilayer Per-
ceptron is again shown as the most superior. However, in terms of computational
complexity measure, Multilayer Perceptron was the last choice as shown in
Fig. 8.21. Naïve Bayes is a comparatively faster algorithm among the statistical
learning algorithms. Figure 8.22 shows that PART algorithm is the best choice
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among the rule based learning algorithms. J48 was the second choice within the
rule based learning algorithms. In the Kappa statistics measure of Fig. 8.23, PART
was again shown as the most superior. However, in terms of computational
complexity measure, REPTree is the best choice as shown in Fig. 8.21. J48 was
the second best choice comparing among these four rule based learning
algorithms.

Fig. 8.19 DoS attack classification accuracies of statistical based learning algorithms

Fig. 8.20 DoS attack classification Kappa statistic of statistical based learning algorithms
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From the above discussions, it can be concluded that PART algorithm is the
best choice to prevent any type of DoS attack in the Smart Grid network. This was
not only the fastest algorithm but also in terms of attack classification measures, it
appears to be the most accurate. Basically, it uses separate-and-conquer method to
build a model. It generates a partial C4.5 decision tree (which is implemented as
J48 in Weka) in each iteration and makes the ‘‘best’’ leaf into a rule.

Fig. 8.21 DoS attack classification model building time of statistical based learning algorithms

Fig. 8.22 DoS attack classification accuracies of rule based learning algorithms
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8.10 Discussions

Use of machine learning algorithms to foil DoS attack by means of a simple data-
based approach for the Smart Grid network is comparatively a novel technique. In
this chapter, the authors put forward a rule based learning approach, PART, for
DoS attack classification problem. Unlike other rule based learners, it is easier to
visualize the rules during the PART algorithm learning process. PART

Fig. 8.23 DoS attack classification Kappa statistic of rule based learning algorithms

Fig. 8.24 DoS attack classification model building time of rule based learning algorithms
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performance on the real life data were tested for preventing the Dos attack in the
Smart Grid network and its performance was compared with that of other rule
based learning algorithms. In addition, performance of PART was also tested
against a group of statistical based learning algorithms. It is evident that PART
outperforms other approaches on both prediction accuracy and the Kappa statistics
measure. In terms of computational complexity measure, PART is not the best
choice for preventing DoS attack, although its computational complexity is
comparable to that of other rule-based algorithms. Further testing on other types of
attack in the Smart Grid network is in progress in order to study the robustness of
PART algorithm. The classification performance could be improved by adopting
the best suited feature selection algorithm inside the PART implementation.
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