
Chapter 7
Database Systems for the Smart Grid

Zeyar Aung

Abstract In this chapter, two aspects of database systems, namely database
management and data mining, for the smart grid are covered. The uses of database
management and data mining for the electrical power grid comprising of the
interrelated subsystems of power generation, transmission, distribution, and utili-
zation are discussed.

7.1 Introduction

Since the smart grid rely on modern information and communication technology
(ICT) infrastructure, database systems, which are one of the vital components of
ICT, are indispensable in the smart grid. Database systems allow the data in the
smart grid to be stored in a systematic manner and enable them to be retrieved,
processed, and analyzed either immediately (i.e., online data processing/analysis)
or later (i.e., historical data processing/analysis).

Because of the involvement in database systems, the smart grid is no longer a
business dominated by utility companies and electricity hardware companies
alone. Several big software companies in data-centric business such as Teradata
[1], Oracle [2], SAS [3], SAP [4], IBM [5], Microsoft [6], and Google [7] are
active players in the smart grid arena now.

There are two main aspects of a database system, namely database management
(data storage, transaction processing, and querying) and data mining (analysis of
data to gain certain knowledge or facilitate certain decision making). These two
aspects are naturally interrelated and are like the two sides of a coin. Both are
essential for the business process of the smart grid’s operations.
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In this chapter, we will cover the applications of database management and data
mining in the smart grid for power generation, transmission, distribution, and
utilization (consumption). Again, these four application areas are interrelated and
somewhat overlapping, especially because of the interconnected nature of the
smart grid.

The development of smart grid is an evolutionary process. During the smart
grid’s introduction phase, the two generations of technologies will coexist [8]. For
ICT components (both software and hardware), a majority of legacy systems are
first to be integrated into the smart grid and later phased out and replaced by the
newer technologies. However, for power system components, the introduction of
smart gird will not even drastically change the basic mechanisms of the power
system’s mechanical and electrical equipment (except that they will now be more
intelligent and responsive because of incorporation of ICT). For example, a gas
turbine will still operate just in the same way to convert natural gas into electrical
power as it did in the old non-smart grid — albeit it may now use less amount of
gas because of a more intelligent control system. So, a database recording the
operations of such a gas turbine will be more or less the same in both the tradi-
tional grid and the smart grid.

For the aforementioned reasons, we believe that both the earlier systems for
systematic power grid data management/data mining even before the word smart
grid was coined and the newer systems which were explicitly proposed for the
smart grid are worth covering. As such, in this chapter, we will include the lit-
erature on power grid database systems both before and after the concept of the
smart grid was conceived.

In the following two sections, database management and data mining for power
grids will be, respectively, covered.

7.2 Power Grid Database Management

In this section, we will cover the database management technologies in general and
then the applications of database management for a power grid in its four sub-
systems: generation, transmission, distribution, and utilization.

7.2.1 Database Management Technologies

In modern days, management of data in an ICT system is centered around a proper
database management system (DBMS) or sometimes simply a file system (FS). In
both cases, the basic operations of data management are as follows:

• Schema creation: defining format of data and relationships among data.
• Data insertion: populating the database/files with data.
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• Data maintenance: updating or deleting existing data.
• Querying and reporting: retrieval of stored data as per users’ business

requirements.
• Performance optimization: making the retrieval process faster by using indexes,

etc.
• User account management: defining which user has a right to do which oper-

ations on which data.
• Backup and recovery: preventing accidental loss of data.

For DBMS, relational database (composing of tables which are mathematically
termed ‘‘relations’’) is the most common standard. Some commonly used relational
DBMSs are Oracle (proprietary), Microsoft SQL Server (proprietary), IBM DB2
and Informix (proprietary), SAP Sybase (proprietary), MySQL (open source), and
PostgreSQL (open source). Structured query language (SQL) is a common inter-
face to retrieve data from relational DBMS.

Recently, post-relational database systems called NoSQL (Not only SQL) [9]
become more and more common. NoSQL database systems include document-
oriented databases (e.g., MongoDB), XML databases (e.g., BaseX), graph dat-
abases (e.g., InfiniteGraph), key-value stores (e.g., Apache Cassandra), multi-value
databases (e.g., OpenQM), object-oriented databases (e.g., db4o), RDF (resource
description framework) databases (e.g., Meronymy SPARQL), tabular databases
(e.g., BigTable), tuple databases (e.g., Jini), and column-oriented databases (e.g.,
c-store). NoSQL database systems use conventional programming languages like
C++, C#, Java, and Erlang, or XQuery in the case of XML databases in order to
interface and retrieve data from the databases.

In addition to NoSQL databases, parallel and distributed file systems such as
Apache Hadoop [10] and Google MapReduce [11] become increasingly popular.
Since the smart grid by its own nature is distributed and the resources (like smart
meters, meter data concentrators, substation transformers) in it are geographically
scattered, distributed file systems can potentially be very useful for the smart grid.

Generally, databases are stored on centralized or distributed magmatic hard disk
drives. However, new paradigms of databases stored on main memory (such as
voltDB) and solid-state drives (such as [12]) are emerging because of the increased
availability of high-capacity main memory and solid-state equipment at low costs.

Another increasing popular approach nowadays is to store databases in the
cloud. Cloud computing and cloud database [13] are also the emerging trends that
are much relevant to the smart grid. A cloud database can be in the form of either a
virtual machine instance which can be purchased for a limited time or a database
as a service in which the service provider installs and maintains the database, and
application owners pay according to their usage. Amazon’s DynamoDB and
SimpleDB are examples of database as a service.

‘‘Big data’’ (meaning several tera- to petabytes of data) is one of the current hot
topics. Big data is a crucial issue for the smart grid since an enormous volume of
data is expected to be generated from its large number of connected devices and
sensors at every short time interval. IBM Netezza is one of the examples of DBMS
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that can handle big data. The parallel/distributed data management techniques of
Hadoop and MapReduce are also highly relevant to deal with big data because
usually the big data is not centralized but distributed among several computing
resources.

Finally, data integration is an important issue for complex systems with mul-
tiple components like the smart grid. Data from different sources, probably by
different vendors, having different formats and semantics are to be systematically
integrated to form a single uniform data source, which can be either virtual or
physical. Such an integrated data source can facilitate an integrated information
system that streamlines various business processes in a utility company. Most
common data integration techniques are data warehousing, XML, and ontology-
based techniques.

A high-level diagram illustrating the interrelationships among the various
modern database management technologies and their applications in the different
areas of power grid data management is shown in Fig. 7.1.
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7.2.2 Generation Data Management

Power plants generate electrical power from traditional sources such as natural
gas, petroleum, coal, nuclear or hydropower as well as modern renewable sources
such as wind or solar power. Database systems for power plants have different
structures and contents depending on the type of the energy source.

Li et al. [14] describe a database system for a coal-based power plant which
records and processes the data specific to coal-operated stream turbines (such as
main steam pressure, feed water temperature, reheater spray, flue gas temperature,
excess air coefficient, and condenser vacuum).

Huang et al. [15] discuss data management systems for a hydropower plant,
particularly the automatic generator tripping and load shedding system installed at
the Churchill Falls hydropower plant in Labrador, Canada by Hydro-Quebec.

Swartz et al. [16] propose a wireless sensor network-based data collection and
management system for wind farms to provide information about the dynamic
behavior of the wind turbines and their response to loading.

7.2.3 Transmission and Distribution Data Management

After the power has been generated, it is transformed into high-voltage electricity
using step-up transformers and is transmitted along the transmission lines to
multiple substations. At a substation, the electricity’s voltage is transformed again
to a level suitable for consumption by using a step-down transformer. Then, the
electricity is distributed to the consumers for utilization.

Early examples of database systems for power transmission/distribution sys-
tems in the literature are [17] and [18].

Generally, distributed control system (DCS) and supervisory control and data
acquisition (SCADA) are employed to operate various equipment used in power
transmission and distribution. DCS and SCADA are usually proprietary systems
from big industrial players in the power industry such as GE [19] and Siemens
[20]. Being proprietary systems, they are closed and sometimes can be legacy
systems. In some cases, the data format they provide can be non-standard (espe-
cially for old legacy systems). Thus, acquiring data from all these systems to build
a common database system can be sometimes difficult. In the worst cases, manual
data entry can be required [21].

It is not uncommon to have systems from multiple vendors in a single power
facility. In order to provide a standardized interface and allow easy exchange of
data among different prices of software by different vendors, common information
model (CIM) [22],[23], generic substation events [24], and substation configura-
tion language (SCL) [25] have been proposed.
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Depending on the nature of application, the data generated by various pieces of
power system equipment have to be stored in different formats [26]. They are as
follows:

• Raw waveforms (voltage and currents) sampled at relatively high sampling
frequencies.

• Pre-processed waveforms (e.g., RMS) typically sampled at low sampling
frequencies.

• Status variables (e.g., if a relay is opened or closed) typically sampled at low
sampling frequencies.

A number of white papers and research articles on the database systems for power
transmission/distribution systems exist in the literature. Some examples, which are
by no means complete, are as follows.

Simpson [21] describes a power system database recording transformer name-
plate data, single line diagrams, measured data, protective device coordination,
harmonic analysis, transistent calculation, load flow calculation, and short-circuit
calculation. Martinez et al. [27] give detailed descriptions about comprehensive
archiving and management of power system data for real-time performance mon-
itoring using CERTS (Consortium for Electric Reliability Technology Solutions)
architecture. Qiu et al. [28] propose a system of real-time and historical (archived)
databases to allow operations, controls, and analysis of power transmission and
distribution. An example of a practical database schema to be used for in trans-
mission utility enterprise-wide framework using ArcGIS, ArcSDE, Microsoft SQL
Server, and .NET is given in [29]. In [30] and [31], the issues of data integration in
power systems are discussed. In [32], Zheng et al. propose a cloud computing and
cloud database framework for substations of the smart gird. Rusitschka et al. [33]
discuss the use of cloud data management for outage management [34] and virtual
power plant [35].

A comprehensive list of monitoring subsystems whose measurement data are to
be collected and stored in the database for a modern power transmission/distri-
bution system of the smart grid is provided by Kaplan et al. [36]. These collected
data allow advanced tools to analyze system conditions, perform real-time con-
tingency analysis, and initiate a necessary course of action as needed. These
monitoring subsystems as described in [36] are

• Wide-area monitoring system: GPS (global positioning system)-based phasor
monitoring unit (PMU) that measures the instantaneous magnitude of voltage or
current at a selected grid location. This provides a global and dynamic view of
the power system.

• Dynamic line rating technology: it measures the ampacity of a line in real
time.

• Conductor/ compression connector sensor: it measures conductor temperature
to allow accurate dynamic rating of overhead lines and line sag, thus deter-
mining line rating.
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• Insulation confirmation leakage sensor: it continuously monitors leakage
current and extracts key parameters. This is critical to determining when an
insulator flashover is imminent due to contamination.

• Backscatter radio: it provides improved data and warning of transmission and
distribution component failure.

• Electronic instrument transformer: it replaces precise electromagnetic devi-
ces (such as current transformers and potential transformers) that convert high
voltages and currents to manageable, measurable levels.

• Other monitoring systems:

– Fiber-optic, temperature monitoring system.
– Circuit breaker real-time monitoring system.
– Cable monitor.
– Battery monitor.
– Sophisticated monitoring tool which combines several different temperature

and current measurements.

7.2.4 Utilization Data Management

The distributed electricity is utilized (consumed) at the consumers’ end. Con-
sumers may be of several types: residential (e.g., individual houses and apartment
buildings), commercial (e.g., banks), industrial (e.g., factories), transportation
(e.g., subways), emergency services (e.g., hospitals), and governmental services
(e.g., police), etc. Obviously, power utilization is most visible aspect of a power
grid for the public.

In the old traditional grid, a traditional meter on customer’s premises is read by
a meter reading staff at a regular interval (e.g., once a month), and the meter
readings (utilization data) are manually entered into the database system in the
utility company. These utilization data are quite passive and are mainly used for
the purpose of billing. It has no or little use in real-time monitoring and control of
the power system in operation because of a very long time lag (e.g., up to one
month) between actual power utilization and data gathering.

However, in the era of the smart grid, smart meters are installed in consumers’
premises. Among its many functionalities, the main function of a smart meter is to
record and transmit the utilization data to the utility company at relatively short
time intervals (e.g., every 5, 10, or 15 minutes). The utilization data can be either
fine-grained (separate data for individual appliances or groups of appliances in the
same electrical circuits) or coarse-grained (aggregated data for the whole pre-
mises). A smart meter may be equipped with a small local storage (e.g., SD card)
to store some intermediate utilization data.

The data collection is hierarchical in nature. The power utilization data from a
number of smart meters are first transmitted to a data concentrator, and a number
of data concentrators relay the data to the central server at the utility company
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where the data are stored in the utilization database covering a large number of
consumers.

The above process of data collection is called automatic meter reading (AMR)
[37]. It is a one-way communication process in which the data are transmitted from
the smart meter end to the server end through the data concentrator. Later, AMR is
improved into a more sophisticated system named advanced metering infrastruc-
ture (AMI) [38],[39]. AMI allows two-way communication between the smart
meter and the server end. The server can send messages regarding real-time
pricing, control commands to switch on/off certain appliances, etc. to the smart
meter.

In a smart home environment, where modern technologies such as smart
appliances, intelligent heating, ventilation, air conditioning (HVAC), rooftop solar
generation, and electric/hybrid vehicles coexist, a smart meter alone will not be
able to handle all the data regarding the operations and interactions among those
equipment. In addition to the smart meter, there requires a local PC/server to host
an integrated information management platform. Its purpose is to store, process,
and manage the data from all those smart installations and to communicate with
the utility to exchange the relevant information regarding them. Lui et al. [40]
describe in detail such a platform namely Whirlpool integrated services environ-
ment (WISE), which is a proprietary system.

Since every customer connected to the smart grid is expected to generate a large
volume of data from his/her smart meter as well as from the other multiple smart
equipments, there is a pressing need for the smart grid to handle the big data (as
also discussed above in Sect. 7.2.1). In [41], the application of IBM’s big data
technologies for smart meters is discussed.

Kaplan et al. [36] provide the following detailed list of customer-focused
applications (for each of which the relevant utilization data are needed to be
recorded and processed).

• Consumer gateway:

– Bidirectional communications between service organizations and equipment
on customer premises.

– Advanced meter reading.
– Time-of-use and real-time pricing (RTP).
– Load control.
– Metering information and energy analysis via website.
– Outage detection and notification.
– Metering aggregation for multiple sites and facilities.
– Integration of customer-owned generation.
– Remote power quality monitoring and services.
– Remote equipment performance diagnosis.
– Theft control.
– Building energy management systems.
– Automatic load controls integrated with RTP.
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– Monitoring of electrical consumption of total load and, in some cases, various
load components.

– Functions embodied in meters, cable modems, set-top boxes, thermostats, etc.

• Residential consumer network: subset of consumer gateway concept.

– Reads the meter, connects controllable loads, and communicates with service
providers.

– End users and suppliers monitor and control the use and cost of various
resources (e.g., electricity, gas, water, temperature, air quality, secure access,
and remote diagnostics).

– Consumers monitor energy use and determine control strategies in response to
price signals.

• Advanced meter:

– Employs digital technology to measure and record electrical parameters (e.g.,
watts, volts, and kilowatt hours).

– Communication ports link to central control and distributed loads.
– Provides consumption data to both consumer and supplier.
– Switches loads on and off in some cases.

At the utility side, billing is the most important application for the utilization data.
Arenas-Martinez et al. [42] developed a smart grid simulation platform to study
the pros and cons of different database architectures for massive customer billing.
These architectures are single relational database, distributed relational database,
key-value distributed database storage, and hybrid storage (DBMS and FS).

Another utility-side application relying on the utilization data is real-time
pricing to facilitate demand response by having the consumers reduce their
demand at critical times or in response to market prices [43].

7.3 Power Grid Data Mining

In this section, we will cover the data mining technologies in general and then
applications of data mining for a power grid in its four subsystems: generation,
transmission, distribution, and utilization.

7.3.1 Data Mining Technologies

The purpose of data mining is to uncover the knowledge or interesting patterns of
data that lie within a large database and use them for decision support at various
levels (strategic, tactical, or operational). Data mining is also known by other
names such as data analytics, knowledge discovery, and statistical data analysis.
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Data mining is closely related to database management, machine learning, artifi-
cial intelligence, and statistics.

The most common data mining tasks are

• Frequent pattern mining: to discover some subpatterns or motifs that occur
frequently in a dataset. (Note: a dataset means a collection of data organized in
rows and columns. It can be a table in relational DBMS or just a comma-
separated values (CSV) file in FS. A row represents an instance, and a column
represents an attribute.) Some well-known frequent pattern mining algorithms
include a priori, FP-tree, and Eclat.

• Association rule mining: to uncover which causes usually lead to which effects
in a dataset. The association rules can generally be derived from the frequent
patterns described above.

• Classification: to classify instances in a dataset into pre-defined groups (called
class labels). Classification is a supervised learning process in which we first
have to train the classifier with instances whose class labels are known. Then,
we use this training classifier to predict the class labels of the new instances
whose labels are not known yet. Some popular classification algorithms are
decision tree, naive Bayes, artificial neural networks, hidden Markov model,
support vector machine, and k-nearest neighbors.

• Clustering: to organize similar instances in a dataset into groups which are not
pre-defined. Clustering is an unsupervised learning process in which we do not
know the class labels of all the instances in the dataset in advance. The number
of groups (clusters) may or may not be pre-defined, depending on the clustering
algorithm. Some widely used clustering algorithms are k-means, fuzzy c-means,
expectation maximization, DBSCAN, BIRCH, and hierarchical clustering.

• Regression: to predict the value of the target attribute (called dependent vari-
able) of an instance based on the values of other attributes (independent vari-
ables). Regression is also a type of supervised learning which works in the
similar way as classification. Their main difference is that while the outputs of
classification are class labels (discrete values), those of regression are real
numbers (continuous values). Some common regression algorithms are Gauss–
Newton algorithm, logistic regression, neural network regression, support
vector regression, and autoregressive integrated moving average (ARIMA).

• Outlier detection: to identify anomalous instances, which might be interesting,
or indicate errors that require further investigation. It can be supervised, unsu-
pervised, or semi-supervised learning. Some popular methods are local outlier
factor, single-class support vector machine, replicator neural networks, and
cluster analysis.

Data can rarely be mined in their raw forms as originally stored in the DBMS or
FS. We usually need to perform one or more of the following data processing tasks
[44] before performing a data mining task.

• Data cleaning: to fill in missing values, smooth noisy data, identify or remove
outliers, and resolve inconsistencies.
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• Data integration: to integrate multiple databases, data cubes, or files.
• Data reduction: to obtain reduced representation in volume but produces the

same or similar analytical results. It may be in the form of dimensionality
reduction, numerosity reduction, or data compression. Data reduction is usually
done for the sake of efficiency and/or better generalization.

• Data transformation and discretization: to normalize data, aggregate data,
and generate concept hierarchy.

After the data mining task has been performed, the result can be optionally pre-
sented in a visual format in order to better facilitate decision making by the user.

Some popular data mining software are SAS Enterprise Miner (proprietary),
IBM SPSS Modeler (proprietary), Oracle Data Mining (proprietary), Microsoft
Analysis Services (proprietary), Weka (open source), RapidMiner (open source),
and ELKI (open source).

In addition to the traditional data mining paradigm on static and centralized
data, the new paradigms of distributed data mining [45], data stream mining [46],
and time series data mining [47] are much relevant to the smart grid because of its
very nature of distributiveness and having to deal with numerous data streams and
time series data from various data sources: smart meters, sensors, and power
system machinery.

Privacy is one of the top concerns in the smart grid’s deployment, especially
from consumer’s perspective [48]. Thus, privacy-preserving data mining tech-
niques [49] are much relevant for mining the data in the smart grid. An example of
a proposed framework for privacy-preserving data integration and subsequent
analysis for the smart grid is [50].

A high-level diagram depicting the interrelationships among the various data
mining technologies and their applications in the different subsystems of power
grids is shown in Fig. 7.2.

7.3.2 Data Mining for Generation

In a similar manner as discussed above in Sect. 7.2.2, the data mining applications
for power generation can be quite diverse because of the different natures of power
sources. Li et al. [14] propose a fault diagnosis system for a coal-based power
plant using association rule mining. In [51], the operational performance and the
efficiency characteristics for photovoltaic power generation are analyzed against
various environmental conditions using statistical analysis.

For fossil fuel-based power plants where the amount of power produced can be
fully controlled, the amount of generation (supply) is much dependent on the
amount of electricity load (demand). So, forecasting the future load enables them
to plan for the required fuel accordingly, and consequently, accurate forecasting
can save utility companies millions of dollars a year [52]. Also, for renewable
energy generations, load forecasting can help the utilities to plan ahead to shave
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the peak load by means of demand response mechanisms [43] so that the demand
will not exceed the available power output from the renewable source.

Load forecasting can be for very-short term (24 hours ahead of the present time),
short term (� 2 weeks), medium term (� 3 years), and long term (� 30 years)
[54]. Some examples of load forecasting methods in the literature are Deng and
Jirutitijaroen [53] using the time series models of multiplicative decomposition and
seasonal ARIMA, Hong [54] using multiple linear regression, Zhang et al. [55]
using artificial neural network, and Aung et al. [56] using least square support
vector regression. Taylor [57] provides a good survey and evaluation of several
existing load forecasting methods.

7.3.3 Data Mining for Transmission and Distribution

The prospects and challenges of data mining for the smart grid, particularly in the
areas of transmission, distribution, and utilization, are highlighted in [58]. Simi-
larly, Ramchurn et al. [59] discuss the uses of artificial intelligence and data
mining solutions to provide ‘‘smartness’’ to the smart grid.

Fig. 7.2 Data mining technologies and their applications in power grids
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There exists a number of papers in the literature regarding the application of
data mining for power transmission and distribution systems. Some examples,
which are by no means exhaustive, are as follows.

Dissolved gas analysis (DGA) [60] is the study of dissolved gases in trans-
former oil (insulating oil which is stable at high temperatures and possesses
excellent electrical insulating properties). The information about the gases being
generated by a particular transformer unit can be very useful in fault detection and
maintenance. Sharma et al. [61] provide a survey on artificial intelligence and data
mining techniques for DGA.

Power system state estimation provides an estimate for all metered and un-
metered quantities throughout the whole power system. It is useful in ensuring the
stability of the grid and preventing blackouts. Chen et al. [62] describe compu-
tation of power system state estimation using weighted least square method on a
high-performance computing platform. Zhong et al. [63] try to solve a more
specific problem of state assessment for transformer equipment using association
rule mining and fuzzy logic.

Islanding detection is also important for the stability of a grid in which multiple
small distributed renewable energy generation sources are integrated into the main
grid. Islanding occurs when part of the network becomes disconnected from the
grid and is powered by one or more distributed generations only. Such an event
can potentially lead to problems in the grid. Samantaray et al. [64] proposed an
islanding detection system using a rule-based approach that employs fuzzy
membership functions. In [65], naive Bayes classifier is used to solve the problem
of islanding detection.

Again, fault identification and fault cause identification are obviously important
problems for power systems. Calderaro et al. [66] uses Petri Nets to solve the fault
identification problem. Xu et al. [67] try to identify fault causes in a power dis-
tribution system using a fuzzy classification algorithm.

Contingency analytics is to understand the impact of potential component
failures and assess the power system’s capability to tolerate them. Adolf et al. [68]
develop a filtering technique based on multi-criteria optimization to address it.

Power quality is another important issue in the power system, especially in the
smart grid era. Common problems that can disturb the quality of power are sags
(undervoltages), harmonics, spikes, and imbalances [36]. He et al. [69] propose a
self-organizing learning array system for power quality classification based on
wavelet transform. Hongke and Linhai [70] describe a practical data analysis
platform for power quality using Microsoft SQL Server and OLAP (online ana-
lytical processing).

The reliability of the power distribution network is an important issue, espe-
cially for the old networks that were first setup nearly a century ago. Gross
et al. [71] develop a support vector machine–based model to rate the feeder lines
in New York City for their reliability and identify the ones that need maintenance
or replacement.

Morais et al. [26] present a good survey of 13 research articles on data mining
for power systems for various purposes such as fault classification and location,
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detection and diagnosis of transient faults, power quality detection for power
system disturbances. Similarly, Mori [72] provides a list of 42 research papers on
various applications of data mining for power systems.

Apart from the physical power system, the logical energy market draws much
attention recently, especially after its deregulation. Price forecasting is an indis-
pensable tool for both the energy wholesaler and the retailer in such a market.
Arenas-Martinez et al. [73] present a price forecasting model using local sequence
patterns, while Neupane et al. [74] tackle price forecasting by means of artificial
neural networks.

7.3.4 Data Mining for Utilization

At the power utilization (demand) side, load forecasting for large commercial and
residential buildings plays a crucial role. Building load forecasting is an integral
part of a building management system. It enables the building operator to plan
ahead, shave loads if required, and carry out fault identification and diagnosis in
the building’s electrical system if necessary. Fernandez et al. [75] present a study
on building load forecasting using autoregressive model, polynomial model, neural
network, and support vector machine. Edwards et al. [76] compare the perfor-
mance of seven machine learning/data mining methods for load forecasting in
buildings.

Customer profiling is also related to the demand-side load forecasting task
mentioned above. It is useful both for customer behavior prediction for appliance
scheduling automation and for dynamic pricing of electricity to suit individual
customers’ usage patterns. Proposed research works for customer profiling using
data mining techniques include [77, 78], and [79].

Finally, security is one of the major concerns for the smart grid’s deployment at
the customer side [80]. To partially address this problem, Faisal et al. [81] present
an intrusion detection system for advance metering infrastructure (AMI) using data
stream mining methods. Fatemieh et al. [82] apply classification techniques to
improve the attack resilience of TV spectrum data fusion for AMI
communications.

7.4 Conclusion

Database systems are one of the keystones of the ICT infrastructure that provides
smartness to the smart gird. In this chapter, we have discussed both the conven-
tional and the state-of-the-art database system technologies regarding database
management and data mining and their applications to the smart grid. We hope our
chapter to be useful as a reference material for both the researchers and the
practitioners of the smart grid.
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