
Chapter 9
Large Deviation Probabilities for Sums
of Independent Random Variables

Abstract The material presented in this chapter is unique to the present text. After
an introductory discussion of the concept and importance of large deviation prob-
abilities, Cramér’s condition is introduced and the main properties of the Cramér
and Laplace transforms are discussed in Sect. 9.1. A separate subsection is devoted
to an in-depth analysis of the key properties of the large deviation rate function,
followed by Sect. 9.2 establishing the fundamental relationship between large devi-
ation probabilities for sums of random variables and those for sums of their Cramér
transforms, and discussing the probabilistic meaning of the rate function. Then the
logarithmic Large Deviations Principle is established. Section 9.3 presents integro-
local, integral and local theorems on the exact asymptotic behaviour of the large
deviation probabilities in the so-called Cramér range of deviations. Section 9.4 is de-
voted to analysing various types of the asymptotic behaviours of the large deviation
probabilities for deviations at the boundary of the Cramér range that emerge under
different assumptions on the distributions of the random summands. In Sect. 9.5,
the behaviour of the large deviation probabilities is found in the case of heavy-tailed
distributions, namely, when the distributions tails are regularly varying at infinity.
These results are used in Sect. 9.6 to find the asymptotics of the large deviation
probabilities beyond the Cramér range of deviations, under special assumptions on
the distribution tails of the summands.

Let ξ, ξ1, ξ2, . . . be a sequence of independent identically distributed random vari-
ables,

Eξk = 0, Eξ2
k = σ 2 < ∞, Sn =

n∑

k=1

ξk.

Suppose that we have to evaluate the probability P(Sn ≥ x). If x ∼ v
√

n as n → ∞,
v = const, then by the integral limit theorem

P(Sn ≥ x) ∼ 1 − Φ

(
v

σ

)
(9.0.1)

as n → ∞. But if x � √
n, then the integral limit theorem enables one only to

conclude that P(Sn ≥ x) → 0 as n → ∞, which in fact contains no quantitative
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information on the probability we are after. Essentially the same can happen for
fixed but “relatively” large values of v/σ . For example, for v/σ ≥ 3 and the values
of n around 100, the relative accuracy of the approximation in (9.0.1) becomes, gen-
erally speaking, bad (the true value of the left-hand side can be several times greater
or smaller than that of the right-hand side). Studying the asymptotic behaviour of
P(Sn ≥ x) for x � √

n as n → ∞, which is not known to us yet, could fill these
gaps. This problem is highly relevant since questions of just this kind arise in many
problems of mathematical statistics, insurance theory, the theory of queueing sys-
tems, etc. For instance, in mathematical statistics, finding small probabilities of er-
rors of the first and second kind of statistical tests when the sample size n is large
leads to such problems (e.g. see [7]). In these problems, we have to find explicit
functions P(n,x) such that

P(Sn ≥ x) = P(n,x)
(
1 + o(1)

)
(9.0.2)

as n → ∞. Thus, unlike the case of normal approximation (9.0.1), here we are
looking for approximations P(n,x) with a relatively small error rather than an ab-
solutely small error. If P(n,x) → 0 in (9.0.2) as n → ∞, then we will speak of the
probabilities of rare events, or of the probabilities of large deviations of sums Sn.
Deviations of the order

√
n are called normal deviations.

In order to study large deviation probabilities, we will need some notions and
assertions.

9.1 Laplace’s and Cramér’s Transforms. The Rate Function

9.1.1 The Cramér Condition. Laplace’s and Cramér’s Transforms

In all the sections of this chapter, except for Sect. 9.5, the following Cramér condi-
tion will play an important role.

[C] There exists a λ �= 0 such that

Eeλξ =
∫

eλyF(dy) < ∞. (9.1.1)

We will say that the right-side (left-side) Cramér condition holds if λ > 0 (λ < 0)
in (9.1.1). If (9.1.1) is valid for some negative and positive λ (i.e. in a neighbour-
hood of the point λ = 0), then we will say that the two-sided Cramér’s condition is
satisfied.

The Cramér condition can be interpreted as characterising a fast (at least expo-
nentially fast) rate of decay of the tails F±(t) of the distribution F. If, for instance,
we have (9.1.1) for λ > 0, then by Chebyshev’s inequality, for t > 0,

F+(t) := P(ξ ≥ t) ≤ e−λtEeλξ ,
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i.e. F+(t) decreases at least exponentially fast. Conversely, if, for some μ > 0, one
has F+(t) ≤ ce−μt , t > 0, then, for λ ∈ (0,μ),

∫ ∞

0
eλyF(dy) = −

∫ ∞

0
eλy dF+(y) = F+(0) + λ

∫ ∞

0
eλyF+(y) dy

≤ F+(0) + cλ

∫ ∞

0
e(λ−μ)ydy = F+(0) + cλ

μ − λ
< ∞.

Since the integral
∫ 0
−∞ eλyF(dy) is finite for any λ > 0, we have Eeλξ < ∞ for

λ ∈ (0,μ).
The situation is similar for the left tail F−(t) := P(ξ < −t) provided that (9.1.1)

holds for some λ < 0.
Set

λ+ := sup
{
λ : Eeλξ < ∞}

, λ− := inf
{
λ : Eeλξ < ∞}

.

Condition [C] is equivalent to λ+ > λ−. The right-side Cramér condition means
that λ+ > 0; the two-sided condition means that λ+ > 0 > λ−. Clearly, the ch.f.
ϕ(t) = Eeitξ is analytic in the complex plane in the strip −λ+ < Im t < −λ−. This
follows from the differentiability of ϕ(t) in this region of the complex plane, since
the integral

∫ |yeity |F(dy) for the said values of Im t converges uniformly in Re t .
Here and henceforth by the Laplace transform (Laplace–Stieltjes or Laplace–

Lebesgue) of the distribution F of the random variable ξ we shall mean the function

ψ(λ) := Eeλξ = ϕ(−iλ),

which conflicts with Sect. 7.1.1 (and the terminology of mathematical analysis),
according to which the term Laplace’s transform refers to the function Ee−λξ =
ϕ(iλ). The reason for such a slight inconsistency in terminology (only the sign of
the argument differs, this changes almost nothing) is our reluctance to introduce new
notation or to complicate the old notation. Nowhere below will it cause confusion.1

As well as condition [C], we will also assume that the random variable ξ is
nondegenerate, i.e. ξ �≡ const or, which is the same, Var ξ > 0.

The main properties of Laplace’s transform.

As was already noted in Sect. 7.1.1, Laplace’s transform, like the ch.f., uniquely
characterises the distribution F. Moreover, it has the following properties, which
are similar to the corresponding properties of ch.f.s (see Sect. 7.1). Under obvious
conventions of notation,

(Ψ 1) ψa+bξ (λ) = eλaψξ (bλ), if a and b are constant.

1In the literature, the function Eeλξ is sometimes called the “moment generating function”.
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(Ψ 2) If ξ1, . . . , ξn are independent and Sn = ∑n
j=1 ξj , then

ψSn(λ) =
n∏

j=1

ψξj
(λ).

(Ψ 3) If E|ξ |k < ∞ and the right-side Cramér condition is satisfied then the func-
tion ψξ is k-times right differentiable at the point λ = 0,

ψ
(k)
ξ (0) = Eξk =: mk

and, as λ ↓ 0,

ψξ (λ) = 1 +
k∑

j=1

λj

j ! mj + o
(
λk

)
.

This also implies that, as λ ↓ 0, the representation

lnψξ(λ) =
k∑

j=1

γjλ
j

j ! + o
(
λk

)
, (9.1.2)

holds, where γj are the so-called semi-invariants (or cumulants) of order j of the
random variable ξ . One can easily verify that

γ1 = m1, γ2 = m0
2 = σ 2, γ3 = m0

3, . . . , (9.1.3)

where m0
k = E(ξ − m1)

k is the central moment of order k.

Definition 9.1.1 Let condition [C] be met. The Cramér transform at the point λ of
the distribution F is the distribution2

F(λ)(dy) = eλyF(dy)

ψ(λ)
. (9.1.4)

2In some publications the transform (9.1.4) is also called the Esscher transform. However, the
systematic use of transform (9.1.4) for the study of large deviations was first done by Cramér.

If we study the probabilities of large deviations of sums of random variables using the inver-
sion formula, similarly to what was done for normal deviations in Chap. 8, then we will necessarily
come to employ the so-called saddle-point method, which consists of moving the contour of inte-
gration so that it passes through the so-called saddle point, at which the exponent in the integrand
function, as we move along the imaginary axis, attains its minimum (and, along the real axis, at-
tains its maximum; this explains the name “saddle point”). Cramér’s transform does essentially
the same, making such a translation of the contour of integration even before applying the inver-
sion formula, and reduces the large deviation problem to the normal deviation problem, where the
inversion formula is not needed if we use the results of Chap. 8. It is this technique that we will
follow in the present chapter.
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Clearly, the distributions F and F(λ) are mutually absolutely continuous (see
Sect. 3.5 of Appendix 3) with density

F(λ)(dy)

F(dy)
= eλy

ψ(λ)
.

Denote a random variable with distribution F(λ) by ξ(λ).
The Laplace transform of the distribution F(λ) is obviously equal to

Eeμξ(λ) = ψ(λ + μ)

ψ(λ)
. (9.1.5)

Clearly,

Eξ(λ) = ψ ′(λ)

ψ(λ)
= (

lnψ(λ)
)′
, Eξ2

(λ) = ψ ′′(λ)

ψ(λ)
,

Var(ξ(λ)) = ψ ′′(λ)

ψ(λ)
−

(
ψ ′(λ)

ψ(λ

)2

= (
lnψ(λ)

)′′
.

Since ψ ′′(λ) > 0 and Var(ξ(λ)) > 0, the foregoing implies one more important prop-
erty of the Laplace transform.

(Ψ 4) The functions ψ(λ) and lnψ(λ) are strictly convex, and

Eξ(λ) = ψ ′(λ)

ψ(λ)

strictly increases on (λ−, λ+).

The analyticity of ψ(λ) in the strip Reλ ∈ (λ−, λ+) can be supplemented by
the following “extended” continuity property on the segment [λ−, λ+] (in the strip
Reλ ∈ [λ−, λ+]).
(Ψ 5) The function ψ(λ) is continuous “inside” [λ−, λ+], i.e. ψ(λ± ∓ 0) = ψ(λ±)

(where the cases ψ(λ±) = ∞ are not excluded).

Outside the segment [λ−, λ+] such continuity, generally speaking, does not
hold as, for example, is the case when ψ(λ+) < ∞ and ψ(λ+ + 0) = ∞, which
takes place, say, for the distribution F with density f (x) = cx−3e−λ+x for x ≥ 1,
c = const.

9.1.2 The Large Deviation Rate Function

Under condition [C], the large deviation rate function will play the determining role
in the description of asymptotics of probabilities P(Sn ≥ x).
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Definition 9.1.2 The large deviation rate function (or, for brevity, simply the rate
function) Λ of a random variable ξ is defined by

Λ(α) := sup
λ

(
αλ − lnψ(λ)

)
. (9.1.6)

The meaning of the name will become clear later. In classical analysis, the right-
hand side of (9.1.6) is known as the Legendre transform of the function lnψ(λ).

Consider the function A(α,λ) = αλ − lnψ(λ) of the supremum appearing
in (9.1.6). The function − lnψ(λ) is strictly concave (see property (Ψ 4)), and hence
so is the function A(α,λ) (note also that A(α,λ) = − lnψα(λ), where ψα(λ) =
e−λαψ(λ) is the Laplace transform of the distribution of the random variable ξ − α

and, therefore, from the “qualitative point of view”, A(α,λ) possesses all the prop-
erties of the function − lnψ(λ)). The foregoing implies that there always exists a
unique point λ = λ(α) (on the “extended” real line [−∞,∞]) at which the supre-
mum in (9.1.6) is attained. As α grows, the value of A(α,λ) for λ > 0 increases
(proportionally to λ), and for λ < 0 it decreases. Therefore, the graph of A(α,λ) as
the function of λ will, roughly speaking, “roll over” to the right as α grows. This
means that the maximum point λ(α) will also move to the right (or stay at the same
place if λ(α) = λ+).

We now turn to more precise formulations. On the interval [λ−, λ+], there exists
the derivative (respectively, the right and the left derivative at the endpoints λ±)

A′
λ(α,λ) = α − ψ ′(λ)

ψ(λ)
. (9.1.7)

The parameters

α± = ψ ′(λ± ∓ 0)

ψ(λ± ∓ 0)
, α− < α+, (9.1.8)

will play an important role in what follows. The value of α+ determines the angle at
which the curve lnψ(λ) “sticks” into the point (λ+, lnψ(λ+)). The quantity α− has
a similar meaning. If α ∈ [α−, α+] then the equation A′

λ(α,λ)=0, or (see (9.1.7))

ψ ′(λ)

ψ(λ)
= α, (9.1.9)

always has a unique solution λ(α) on the segment [λ−, λ+] (λ± can be infinite).
This solution λ(α), being the inverse of an analytical and strictly increasing function
ψ ′(λ)
ψ(λ)

on (λ−, λ+) (see (9.1.9)), is also analytical and strictly increasing on (α−, α+),

λ(α) ↑ λ+ as α ↑ α+; λ(α) ↓ λ− as α ↓ α−. (9.1.10)

The equalities

Λ(α) = αλ(α) − lnψ
(
λ(α)

)
,

ψ ′(λ(α))

ψ(λ(α))
= α (9.1.11)
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yield

Λ′(α) = λ(α) + αλ′(α) − ψ ′(λ(α))

ψ(λ(α))
λ′(α) = λ(α).

Recalling that

ψ ′(0)

ψ(0)
= m1 = Eξ, 0 ∈ [λ−, λ+], m1 ∈ [α−, α+],

we obtain the following representation for the function Λ:

(Λ1) If α0 ∈ [α−, α+], α ∈ [α−, α+] then

Λ(α) = Λ(α0) +
∫ α

α0

λ(v)dv. (9.1.12)

Since λ(m1) = Λ(m1) = 0 (this follows from (9.1.9) and (9.1.11)), we obtain,
in particular, for α0 = m1, that

Λ(α) =
∫ α

m1

λ(v)dv. (9.1.13)

The functions λ(α) and Λ(α) are analytic on (α−, α+).

Now consider what happens outside the segment [α−, α+]. Assume for definite-
ness that λ+ > 0. We will study the behaviour of the functions λ(α) and Λ(α) near
the point α+ and for α > α+. Similar results hold true in the vicinity of the point α−
in the case λ− < 0.

First let λ+ = ∞, i.e. the function lnψ(λ) is analytic on the whole semiaxis
λ > 0, and the tail F+(t) decays as t → ∞ faster than any exponential function.
Denote by

s± = ± sup
{
t : F±(t) > 0

}

the boundaries of the support of F. Without loss of generality, we will assume that

s+ > 0, s− < 0. (9.1.14)

This can always be achieved by shifting the random variable, similarly to our as-
suming, without loss of generality, Eξ = 0 in many theorems of Chap. 8, where we
used the fact that the problem of studying the distribution of Sn is “invariant” with
respect to a shift. (We can also note that Λξ−a(α − a) = Λξ(α), see property (Λ4)

below, and that (9.1.14) always holds provided that Eξ = 0.)

(Λ2) (i) If λ+ = ∞ then α+ = s+.

Hence, for s+ = ∞, we always have α+ = ∞ and so for any α ≥ α− we are
dealing with the already considered “regular” case, where (9.1.12) and (9.1.13) hold
true.
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(ii) If s+ < ∞ then λ+ = ∞, α+ = s+,

Λ(α+) = − ln P(ξ = s+), Λ(α) = ∞ for α > α+.

Similar assertions hold true for s−, α−, λ−.

Proof (i) First let s+ < ∞. Then the asymptotics of ψ(λ) and ψ ′(λ) as λ → ∞ is
determined by the integrals in a neighbourhood of the point s+: for any fixed ε > 0,

ψ(λ) ∼ E
(
eλξ ; ξ > s+ − ε

)
, ψ ′(λ) ∼ E

(
ξeλξ ; ξ > s+ − ε

)

as λ → ∞. Hence

α+ = lim
λ→∞

ψ ′(λ)

ψ(λ)
= lim

λ→∞
E(ξeλξ ; ξ > s+ − ε)

E(eλξ ; ξ > s+ − ε)
= s+.

If s+ = ∞, then lnψ(λ) grows as λ → ∞ faster than any linear function and
therefore the derivative (lnψ(λ))′ increases unboundedly, α+ = ∞.

(ii) The first two assertions are obvious. Further, let p+ = P(ξ = s+) > 0. Then

ψ(λ) ∼ p+eλs+ ,

αλ − lnψ(λ) = αλ − lnp+ − λs+ + o(1) = (α − α+)λ − lnp+ + o(1)

as λ → ∞. This and (9.1.11) imply that

Λ(α) =
{− lnp+ for α = α+,

∞ for α > α+.

If p+ = 0, then the relation ψ(λ) = o(eλs+) as λ → ∞ similarly implies Λ(α+) = ∞.
Property (Λ2) is proved. �

Now let 0 < λ+ < ∞. If α+ < ∞, then necessarily ψ(λ+) < ∞, ψ(λ+ +0) = ∞
and ψ ′(λ+) < ∞ (here we mean the left derivative). If we assume that ψ(λ+) = ∞,
then lnψ(λ+) = ∞, (lnψ(λ))′ → ∞ as λ ↑ λ+ and α+ = ∞, which contradicts the
assumption α+ < ∞. Since ψ(λ) = ∞ for λ > λ+, the point λ(α), having reached
the value λ+ as α grows, will stop at that point. So, for α ≥ α+, we have

λ(α) = λ+, Λ(α) = αλ+ − lnψ(λ+) = Λ(α+) + λ+(α − α+). (9.1.15)

Thus, in this case, for α ≥ α+ the function λ(α) remains constant, while Λ(α) grows
linearly. Relations (9.1.12) and (9.1.13) remain true.

If α+ = ∞, then α < α+ for all finite α ≥ α−, and we again deal with the “regu-
lar” case that we considered earlier (see (9.1.12) and (9.1.13)). Since λ(α) does not
decrease, these relations imply the convexity of Λ(α).

In summary, we can formulate the following property.
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(Λ3) The functions λ(α) and Λ(α) can only be discontinuous at the points s±
and under the condition P(ξ = s±) > 0. These points separate the domain
(s−, s+) where the function Λ is finite and continuous (in the extended sense)
from the domain α /∈ [s−, s+] where Λ(α) = ∞. In the domain [s−, s+] the
function Λ is convex. (If we define convexity in the “extended” sense, i.e.
including infinite values as well, then Λ is convex on the entire real line.)
The function Λ is analytic in the interval (α−, α+). If λ+ < ∞ and α+ < ∞,
then on the half-line (α+,∞) the function Λ(α) is linear with slope λ+; at the
boundary point α+ the continuity of the first derivatives persists. If λ+ = ∞,
then Λ(α) = ∞ on (α+,∞). The function Λ(α) possesses a similar property
on (−∞, α−).

If λ− = 0, then α− = m1 and λ(α) = Λ(α) = 0 for α ≤ m1.
Indeed, since λ(m1) = 0 and ψ(λ) = ∞ for λ < λ− = 0 = λ(m1), as the value

of α decreases to α− = m1, the point λ(α), having reached the value 0, will stop,
and λ(α) = 0 for α ≤ α− = m1. This and the first identity in (9.1.11) also imply that
Λ(α) = 0 for α ≤ m1.

If λ− = λ+ = 0 (condition [C] is not met), then λ(α) = Λ(α) ≡ 0 for all α. This
is obvious, since the value of the function under the sup sign in (9.1.6) equals −∞
for all λ �= 0. In this case the limit theorems presented in the forthcoming sections
will be of little substance.

We will also need the following properties of the function Λ.

(Λ4) Under obvious notational conventions, for independent random variables ξ

and η, we have

Λξ+η(α) = sup
λ

(
αλ − lnψξ (λ) − lnψη(λ)

) = inf
γ

(
Λξ(γ ) + Λη(α − γ )

)
,

Λcξ+b(α) = sup
λ

(
αλ − λb − lnψξ (λc)

) = Λξ

(
α − b

c

)
.

Clearly, infγ in the former relation is attained at the point γ at which λξ (γ ) =
λη(α − γ ). If ξ and η are identically distributed then γ = α/2 and therefore

Λξ+η(α) = Λξ

(
α

2

)
+ Λη

(
α

2

)
= 2Λξ

(
α

2

)
.

(Λ5) The function Λ(α) attains its minimal value 0 at the point α = Eξ = m1. For
definiteness, assume that α+ > 0. If m1 = 0 and E|ξk| < ∞, then

λ(0) = Λ(0) = Λ′(0) = 0, Λ′′(0) = 1

γ2
, Λ′′′(0) = − γ3

γ 2
2

, . . .

(9.1.16)
(In the case α− = 0 the right derivatives are intended.) As α ↓ 0, one has the
representation
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Λ(α) =
k∑

j=2

Λ(j)(0)

j ! αj + o
(
αk

)
. (9.1.17)

The semi-invariants γj were defined in (9.1.2) and (9.1.3).

If the two-sided Cramér condition is satisfied then the series expansion (9.1.17)
of the function Λ(α) holds for k = ∞. This series is called the Cramér series.

Verifying properties (Λ4) and (Λ5) is not difficult, and is left to the reader.

(Λ6) The following inversion formula is valid: for λ ∈ (λ−, λ+),

lnψ(λ) = sup
α

(
αλ − Λ(α)

)
. (9.1.18)

This means that the rate function uniquely determines the Laplace transform ψ(λ)

and hence the distribution F as well. Formula (9.1.18) also means that subsequent
double applications of the Legendre transform to the convex function lnψ(λ) leads
to the same original function.

Proof We denote by T (λ) the right-hand side of (9.1.18) and show that T (λ) =
lnψ(λ) for λ ∈ (λ−, λ+). If, in order to find the supremum in (9.1.18), we equate
to zero the derivative in α of the function under the sup sign, then we will get the
equation

λ = Λ′(α) = λ(α). (9.1.19)

Since λ(α), α ∈ (α−, α+), is the function inverse to (lnψ(λ))′ (see (9.1.9)), for
λ ∈ (λ−, λ+) Eq. (9.1.19) clearly has the solution

α = a(λ) := (
lnψ(λ)

)′
. (9.1.20)

Taking into account the fact that λ(a(λ)) ≡ λ, we obtain

T (λ) = λa(λ) − Λ
(
a(λ)

)
,

T ′(λ) = a(λ) + λa′(λ) − λ
(
a(λ)

)
a′(λ) = a(λ).

Since a(0) = m1 and T (0) = −Λ(m1) = 0, we have

T (λ) =
∫ λ

0
a(u)du = lnψ(λ). (9.1.21)

The assertion is proved, and so is yet another inversion formula (the last equality
in (9.1.21), which expresses lnψ(λ) as the integral of the function a(λ) inverse to
λ(α)). �

(Λ7) The exponential Chebyshev inequality. For α ≥ m1, we have

P(Sn ≥ αn) ≤ e−nΛ(α).
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Proof If α ≥ m1, then λ(α) ≥ 0. For λ = λ(α) ≥ 0, we have

ψn(λ) ≥ E
(
eλSn; Sn ≥ αn

) ≥ eλαnP(Sn ≥ αn);
P(Sn ≥ αn) ≤ e−αnλ(α)+n lnψ(λ(α)) = e−nΛ(α). �

We now consider a few examples, where the values of λ±, α±, and the functions
ψ(λ), λ(α), Λ(α) can be calculated in an explicit form.

Example 9.1.1 If ξ ⊂= �0,1, then

ψ(λ) = eλ2/2, |λ±| = |α±| = ∞, λ(α) = α, Λ(α) = α2

2
.

Example 9.1.2 For the Bernoulli scheme ξ ⊂= Bp , we have

ψ(λ) = peλ + q, |λ±| = ∞, α+ = 1, α− = 0, m1 = Eξ = p,

λ(α) = ln
α(1 − p)

p(1 − α)
, Λ(α) = α ln

α

p
+ (1 − α) ln

1 − α

1 − p
for α ∈ (0,1),

Λ(0) = − ln(1 − p), Λ(1) = − lnp, Λ(α) = ∞ for α /∈ [0,1].

Thus the function H(α) = Λ(α), which described large deviation probabilities for
Sn in the local Theorem 5.2.1 for the Bernoulli scheme, is nothing else but the rate
function. Below, in Sect. 9.3, we will obtain generalisations of Theorem 5.2.1 for
arbitrary arithmetic distributions.

Example 9.1.3 For the exponential distribution �β , we have

ψ(λ) = β

β − λ
, λ+ = β, λ− = −∞, α+ = ∞, α− = 0, m1 = 1

β
,

λ(α) = β − 1

α
, Λ(α) = αβ − 1 − lnαβ for α > 0.

Example 9.1.4 For the centred Poisson distribution with parameter β , we have

ψ(λ) = exp
{
β
[
eλ − 1 − λ

]}
, |λ±| = ∞, α− = −β, α+ = ∞, m1 = 0,

λ(α) = ln
β + α

β
, Λ(α) = (α + β) ln

α + β

β
− α for α > −β.
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9.2 A Relationship Between Large Deviation Probabilities for
Sums of Random Variables and Those for Sums of Their
Cramér Transforms. The Probabilistic Meaning of the Rate
Function

9.2.1 A Relationship Between Large Deviation Probabilities for
Sums of Random Variables and Those for Sums of Their
Cramér Transforms

Consider the Cramér transform of F at the point λ = λ(α) for α ∈ [α−, α+] and
introduce the notation ξ (α) := ξ(λ(α)),

S(α)
n :=

n∑

i=1

ξ
(α)
i ,

where ξ
(α)
i are independent copies of ξ (α). The distribution F(α) := F(λ(α)) of the

random variable ξ (α) is called the Cramér transform of F with parameter α. The
random variables ξ (α) are also called Cramér transforms, but of the original random
variable ξ . The relationship between the distributions of Sn and S

(α)
n is established

in the following assertion.

Theorem 9.2.1 For x = nα, α ∈ (α−, α+), and any t > 0, one has

P
(
Sn ∈ [x, x + t)

) = e−nΛ(α)

∫ t

0
e−λ(α)zP

(
S(α)

n − αn ∈ dz
)
. (9.2.1)

Proof The Laplace transform of the distribution of the sum S
(α)
n is clearly equal to

EeμS
(α)
n =

[
ψ(μ + λ(α))

ψ(λ(α))

]n

(9.2.2)

(see (9.1.5)). On the other hand, consider the Cramér transform (Sn)(λ(α)) of Sn at
the point λ(α). Applying (9.1.5) to the distribution of Sn, we obtain

Eeμ(Sn)(λ(α)) = ψn(μ + λ(α))

ψn(λ(α))
.

Since this expression coincides with (9.2.2), the Cramér transform of Sn at the
point λ(α) coincides in distribution with the sum S

(α)
n of the transforms ξ

(α)
i . In

other words,

P(Sn ∈ dv)eλ(α)v

ψn(λ(α))
= P

(
S(α)

n ∈ dv
)

(9.2.3)



9.2 Large Deviation of Sums of Random Variables and Cramér Transforms 251

or, which is the same,

P(Sn ∈ dv) = e−λ(α)v+n lnψ(λ(α))P
(
S(α)

n ∈ dv
) = e−nΛ(α)+λ(α)(nα−v)P

(
S(α)

n ∈ dv
)
.

Integrating this equality in ν from x to x + t , letting x := nα and making the change
of variables v − nα = z, we get

P
(
Sn ∈ [x, x + t)

) = e−nΛ(α)

∫ x+t

x

eλ(α)(nα−v)P
(
S(α)

n ∈ dv
)

= e−nΛ(α)

∫ t

0
e−λ(α)zP

(
S(α)

n − αn ∈ dz
)
.

The theorem is proved. �

Since for α ∈ [α−, α+] we have

Eξ (α) = ψ ′(λ(α))

ψ(λ(α))
= α

(see (9.1.11)), one has E(S
(α)
n − αn) = 0 and so for t ≤ c

√
n we have probabilities

of normal deviations of S
(α)
n −αn on the right-hand side of (9.2.1). This allows us to

reduce the problem on large deviations of Sn to the problem on normal deviations
of S

(α)
n . If α > α+, then formula (9.2.1) is still rather useful, as will be shown in

Sects. 9.4 and 9.5.

9.2.2 The Probabilistic Meaning of the Rate Function

In this section we will prove the following assertion, which clarifies the probabilistic
meaning of the function Λ(α).

Denote by Δ[α) := [α,α + Δ) the interval of length Δ with the left end at
the point α. The notation Δn[α), where Δn depends on n, will have a similar mean-
ing.

Theorem 9.2.2 For each fixed α and all sequences Δn converging to 0 as n → ∞
slowly enough, one has

Λ(α) = − lim
n→∞

1

n
ln P

(
Sn

n
∈ Δn[α)

)
. (9.2.4)

This relation can also be written as

P
(

Sn

n
∈ Δn[α)

)
= e−nΛ(α)+o(n).
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Proof of Theorem 9.2.2 First let α ∈ (α−, α+). Then

Eξ (α) = α, Var ξ (α) = (
lnψ(λ)

)′′
λ=λ(α)

< ∞

and hence, as n → ∞ and Δn → 0 slowly enough (e.g., for Δn ≥ n−1/3), by the
central limit theorem we have

P
(
S(α)

n − αn ∈ [0,Δnn)
) → 1/2.

Therefore, by Theorem 9.2.1 for t = Δnn, x = αn and by the mean value theorem,

P
(
Sn ∈ [x, x + t)

) =
(

1

2
+ o(1)

)
e−nΛ(α)−λ(α)Δnnθ , θ ∈ (0,1);

1

n
ln P

(
Sn ∈ [x, x + t)

) = −Λ(α) − λ(α)θΔn + o(1) = −Λ(α) + o(1)

as n → ∞. This proves (9.2.4) for α ∈ (α−, α+).
The further proof is divided into three stages.
(1) The upper bound in the general case. Now let α be arbitrary and |λ(α)| < ∞.

By Theorem 9.2.1 for t = nΔn, we have

P
(

Sn

n
∈ Δn[α)

)
≤ exp

{−nΛ(α) + max
(∣∣λ(0)

∣∣,
∣∣λ(α)

∣∣)nΔn

}
.

If Δn → 0 then

lim sup
n→∞

1

n
ln P

(
Sn

n
∈ Δn[α)

)
≤ −Λ(α). (9.2.5)

(This inequality can also be obtained from the exponential Chebyshev’s inequal-
ity (Λ7).)

(2) The lower bound in the general case. Let |λ(α)| < ∞ and |s±| = ∞. Intro-
duce “truncated” random variables (N)ξ with the distribution

P
(
(N)ξ ∈ B

) = P(ξ ∈ B; |ξ | < N)

P(|ξ | < N)
= P

(
ξ ∈ B

∣∣ |ξ | < N
)

and endow all the symbols that correspond to (N)ξ with the left superscript (N).
Then clearly, for each λ,

E
(
eλξ ; |ξ | < N

) ↑ ψ(λ), P
(|ξ | < N

) ↑ 1

as N → ∞, so that

(N)ψ(λ) = E(eλξ ; |ξ | < N)

P(|ξ | < N)
→ ψ(λ).
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The functions (N)Λ(α) and Λ(α) are the upper bounds for the concave functions
αλ − ln (N)ψ(λ) and αλ − lnψ(λ), respectively. Therefore for each α we also have
convergence (N)Λ(α) → Λ(α) as N → ∞.

Further,

P
(

Sn

n
∈ Δn[α)

)
≥ P

(
Sn

n
∈ Δn[α); |ξj | < N,j = 1, . . . ,N

)

= Pn
(|ξ | < N

)
P
(

(N)Sn

n
∈ Δn[α)

)
.

Since s± = ±∞, one has (N)α± = ±N and, for N large enough, we have α ∈
((N)α−, (N)α+). Hence we can apply the first part of the proof of the theorem by
virtue of which, as Δn → 0,

1

n
ln P

(
(N)Sn

n
∈ Δn[α)

)
= −(N)Λ(α) + o(1),

1

n
ln P

(
Sn

n
∈ Δn[α)

)
≥ −(N)Λ(α) + o(1) + ln P

(|ξ | < N
)
.

The right-hand side of the last inequality can be made arbitrarily close to −Λ(α) by
choosing a suitable N . Since the left-hand side of this inequality does not depend
on N , we have

lim inf
n→∞

1

n
ln P

(
Sn

n
∈ Δn[α)

)
≥ −Λ(α). (9.2.6)

Together with (9.2.5), this proves (9.2.4).
(3) It remains to remove the restrictions stated at the beginning of stages (1) and

(2) of the proof, i.e. to consider the cases |λ(α)| = ∞ and min |s±| < ∞. These
two relations are connected with each other since, for instance, the equality λ(α) =
λ+ = ∞ can only hold if α ≥ α+ = s+ < ∞ (see property (Λ2)). For α > s+,
relation (9.2.4) is evident, since P(Sn/n ∈ Δn[α)) = 0 and Λ(α) = ∞. For α =
α+ = s+ and p+ = P(ξ = s+), we have, for any Δ > 0,

P
(

Sn

n
∈ Δ[α+)

)
= P(Sn = nα+) = pn+. (9.2.7)

Since in this case Λ(α+) = − lnp+ (see (Λ2)), the equality (9.2.4) holds true.
The case λ(α) = λ− = −∞ with s− > −∞ is considered in a similar way. How-

ever, due to the asymmetry of the interval Δ[α) with respect to the point α, there
are small differences. Instead of an equality in (9.2.7) we only have the inequality

P
(

Sn

n
∈ Δn[α−)

)
≥ P(Sn = nα−) = pn−, p− = P(ξ = α−). (9.2.8)
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Therefore we also have to use the exponential Chebyshev’s inequality (see (Λ7))
applying it to −Sn for s− = α− < 0:

P
(

Sn

n
∈ Δn[α−)

)
≤ P

(
Sn

n
< α− + Δn

)
≤ e−nΛ(α−+Δn). (9.2.9)

Relations (9.2.8), (9.2.9), the equality Λ(α−) = − lnp−, and the right continuity of
Λ(α) at the point α− imply (9.2.4) for α = α−. The theorem is proved. �

9.2.3 The Large Deviations Principle

It is not hard to derive from Theorem 9.2.2 a corollary on the asymptotics of the
probabilities of Sn/n hitting an arbitrary Borel set. Denote by (B) and [B] the
interior and the closure of B , respectively ((B) is the union of all open intervals
contained in B). Put

Λ(B) := inf
α∈B

Λ(α).

Theorem 9.2.3 For any Borel set B , the following inequalities hold:

lim inf
n→∞

1

n
ln P

(
Sn

n
∈ B

)
≥ −Λ

(
(B)

)
, (9.2.10)

lim sup
n→∞

1

n
ln P

(
Sn

n
∈ B

)
≤ −Λ

([B]). (9.2.11)

If Λ((B)) = Λ([B]), then the following limit exists:

lim
n→∞

1

n
ln P

(
Sn

n
∈ B

)
= −Λ(B). (9.2.12)

This assertion is called the large deviation principle. It is one of the so-called
“rough” (“logarithmic”) limit theorems that describe the asymptotic behaviour of
ln P(Sn/n ∈ B). It is usually impossible to derive from this assertion the asymp-
totics of the probability P(Sn/n ∈ B) itself. (In the equality P(Sn/n ∈ B) =
exp{−nΛ(B) + o(n)}, the term o(n) may grow in absolute value.)

Proof Without losing generality, we can assume that B ⊂ [s−, s+] (since Λ(α) = ∞
outside that domain).

We first prove (9.2.10). Let α(B) be such that

Λ
(
(B)

) ≡ inf
α∈(B)

Λ(α) = Λ(α(B))

(recall that Λ(α) is continuous on [s−, s+]). Then there exist a sequence of points
αk and a sequence of intervals (αk − δk,αk + δk), where δk → 0, lying in (B) and
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converging to the point α(B), such that

Λ
(
(B)

) = inf
k

Λ
(
(αk − δk,αk + δk)

)
.

Here clearly

inf
k

Λ
(
(αk − δk,αk + δk)

) = inf
k

Λ(αk),

and for a given ε > 0, there exists a k = K such that Λ(αK) < Λ((B)) + ε.
Since Δn[αk) ⊂ (αk − δk,αk + δk) for large enough n (here Δn[αk) is from Theo-
rem 9.2.2), we have by Theorem 9.2.2 that, as n → ∞,

1

n
ln P

(
Sn

n
∈ B

)
≥ 1

n
ln P

(
Sn

n
∈ (B)

)

≥ 1

n
ln P

(
Sn

n
∈ (αK − δK,αK + δK)

)

≥ 1

n
ln P

(
Sn

n
∈ Δn[αK)

)
≥ −Λ(αK) + o(1)

≥ −Λ
(
(B)

) − ε + o(1).

As the left-hand side of this inequality does not depend on ε, inequality (9.2.10) is
proved.

We now prove inequality (9.2.11). Denote by α[B] the point at which
infα∈[B] Λ(α) = Λ(α[B]) is attained (this point always belongs to [B] since [B]
is closed). If Λ(α[B]) = 0, then the inequality is evident. Now let Λ(α[B]) > 0. By
convexity of Λ the equation Λ(α) = Λ(α[B]) can have a second solution α′[B]. As-
sume it exists and, for definiteness, α′[B] < α[B]. The relation Λ([B]) = Λ(α[B])
means that the set [B] does not intersect with (α′[B], α[B]) and

P
(

Sn

n
∈ B

)
≤ P

(
Sn

n
∈ [B]

)
≤ P

(
Sn

n
≤ α′[B]

)
+ P

(
Sn

n
≥ α[B]

)
. (9.2.13)

Moreover, in this case m1 ∈ (α′[B], α[B]) and each of the probabilities on the right-
hand side of (9.2.13) can be bounded using the exponential Chebyshev’s inequality
(see (Λ7)) by the value e−nΛ(α[B]). This implies (9.2.11).

If the second solution α′[B] does not exist, then one of the summands on the right-
hand side of (9.2.13) equals zero, and we obtain the same result.

The second assertion of the theorem (Eq. (9.2.12)) is evident.
The theorem is proved. �

Using Theorem 9.2.3, we can complement Theorem 9.2.2 with the following
assertion.
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Corollary 9.2.1 The following limit always exists

lim
Δ→0

lim
n→∞

1

n
ln P

(
Sn

n
∈ Δ[α)

)
= −Λ(α). (9.2.14)

Proof Take the set B in Theorem 9.2.3 to be the interval B = Δ[α). If α /∈ [s−, s+]
then the assertion is obvious (since both sides of (9.2.14) are equal to −∞). If
α = s± then (9.2.14) is already proved in (9.2.7), (9.2.8) and (9.2.9).

It remains to consider points α ∈ (s−, s+). For such α, the function Λ(α) is con-
tinuous and α + Δ is also a point of continuity of Λ for Δ small enough, and hence

Λ
(
(B)

) = Λ
([B]) → Λ(α)

as Δ → 0. Therefore by Theorem 9.2.3 the inner limit in (9.2.14) exists and con-
verges to −Λ(α) as Δ → 0.

The corollary is proved. �

Note that the assertions of Theorems 9.2.2 and 9.2.3 and their corollaries are
“universal”—they contain no restrictions on the distribution F.

9.3 Integro-Local, Integral and Local Theorems on Large
Deviation Probabilities in the Cramér Range

9.3.1 Integro-Local and Integral Theorems

In this subsection, under the assumption that the Cramér condition λ+ > 0 is met,
we will find the asymptotics of probabilities P(Sn ∈ Δ[x)) for scaled deviations α =
x/n from the so-called Cramér (or regular) range, i.e. for the range α ∈ (α−, α+)

in which the rate function Λ(α) is analytic.
In the non-lattice case, in addition to the condition λ+ > 0, we will assume with-

out loss of generality that Eξ = 0. In this case necessarily

α− ≤ 0, α+ = ψ ′(λ+)

ψ(λ+)
> 0, λ(0) = 0.

The length Δ of the interval may depend on n in some cases. In such cases, we will
write Δn instead of Δ, as we did earlier. The value

σ 2
α = ψ ′′(λ(α))

ψ(λ(α))
− α2 (9.3.1)

is clearly equal to Var(ξ (α)) (see (9.1.5) and the definition of ξ (α) in Sect. 9.2).
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Theorem 9.3.1 Let λ+ > 0, α ∈ [0, α+), ξ be a non-lattice random variable,
Eξ = 0 and Eξ2 < ∞. If Δn → 0 slowly enough as n → ∞, then

P
(
Sn ∈ Δn[x)

) = Δn

σα

√
2πn

e−nΛ(α)
(
1 + o(1)

)
, (9.3.2)

where α = x/n, and, for each fixed α1 ∈ (0, α+), the remainder term o(1) is uniform
in α ∈ [0, α1] for any fixed α1 ∈ (0, α+).

A similar assertion is valid in the case when λ− < 0 and α ∈ (α−,0].

Proof The proof is based on Theorems 9.2.1 and 8.7.1A. Since the conditions of
Theorem 9.2.1 are satisfied, we have

P
(
Sn ∈ Δn[x)

) = e−nΛ(α)

∫ Δn

0
e−λ(α)zP

(
S(α)

n − αn ∈ dz
)
.

As λ(α) ≤ λ(α+ − ε) < ∞ and Δn → 0, one has e−λ(α)z → 1 uniformly in
z ∈ Δn[0) and hence, as n → ∞,

P
(
Sn ∈ Δn[x)

) = e−nΛ(α)P
(
S(α)

n − αn ∈ Δn[0)
)(

1 + o(1)
)

(9.3.3)

uniformly in α ∈ [0, α+ − ε].
We now show that Theorem 8.7.1A is applicable to the random variables ξ (α) =

ξ(λ(α)). That σα = σ(λ(α)) is bounded away from 0 and from ∞ for α ∈ [0, α1] is
evident. (The same is true of all the theorems in this section.) Therefore, it remains
to verify whether conditions (a) and (b) of Theorem 8.7.1A are met for λ = λ(α) ∈
[0, λ1], λ1 := λ(α1) < λ+ and ϕ(λ)(t) = ψ(λ+it)

ψ(λ)
(see (9.1.5)). We have

ψ(λ + it) = ψ(λ) + itψ ′(λ) − t2

2
ψ ′′(λ) + o

(
t2)

as t → 0, where the remainder term is uniform in λ if the function ψ ′′(λ + iu) is
uniformly continuous in u. The required uniform continuity can easily be proved
by imitating the corresponding result for ch.f.s (see property 4 in Sect. 7.1). This
proves condition (a) in Theorem 8.7.1A with

a(λ) = ψ ′(λ)

ψ(λ)
, m2(λ) = ψ ′′(λ)

ψ(λ)
.

Now we will verify condition (b) in Theorem 8.7.1A. Assume the contrary: there
exists a sequence λk ∈ [0, λ1] such that

qλk
:= sup

θ1≤|t |≤θ2

|ψ(λk + it)|
ψ(λk)

→ 1
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as k → ∞. By the uniform continuity of ψ in that domain, there exist points
tk ∈ [θ1, θ2] such that, as k → ∞,

ψ(λk + itk)

ψ(λk)
→ 1.

Since the region λ ∈ [0, λ1], |t | ∈ [θ1, θ2] is compact, there exists a subsequence
(λk′ , tk′) → (λ0, t0) as k′ → ∞. Again using the continuity of ψ , we obtain the
equality

|ψ(λ0 + it0)|
ψ(λ0)

= 1, (9.3.4)

which contradicts the non-latticeness of ξ(λ0). Property (b) is proved.
Thus we can now apply Theorem 8.7.1A to the probability on the right-hand side

of (9.3.3). Since Eξ (α) = α and E(ξ (α))2 = ψ ′′(λ(α))
ψ(λ(α))

, this yields

P
(
Sn ∈ Δn[x)

) = e−nΛ(α)

(
Δn

σα

√
n
φ(0) + o

(
1√
n

))

= Δn

σα

√
2πn

e−nΛ(α)
(
1 + o(1)

)
(9.3.5)

uniformly in α ∈ [0, α1] (or in x ∈ [0, α1n]), where the values of

σ 2
α = E

(
ξ (α) − α

)2 = ψ ′′(λ(α))

ψ(λ(α))
− α2

are bounded away from 0 and from ∞. The theorem is proved. �

From Theorem 9.3.1 we can now derive integro-local theorems and integral the-
orems for fixed or growing Δ. Since in the normal deviation range (when x is com-
parable with

√
n) we have already obtained such results, to simplify the exposition

we will consider here large deviations only, when x � √
n or, which is the same,

α = x/n � 1/
√

n. To be more precise, we will assume that there exists a function
N(n) → ∞, N(n) = o(

√
n) as n → ∞, such that x ≥ N(n)

√
n (α ≥ N(n)/

√
n).

Theorem 9.3.2 Let λ+ > 0, α ∈ [0, α+), ξ be non-lattice, Eξ = 0 and Eξ2 < ∞.
Then, for any Δ ≥ Δ0 > 0, x ≥ N(n) = o(

√
n ), N(n) → ∞ as n → ∞, one has

P
(
Sn ∈ Δ[x)

) = e−nΛ(α)

σαλ(α)
√

2πn

(
1 − e−λ(α)Δ

)(
1 + o(1)

)
, (9.3.6)

o(1) being uniform in α = x/n ∈ [N(n)/
√

n,α1] and Δ ≥ Δ0 for each fixed
α1 ∈ (0, α+).

In particular (for Δ = ∞),

P(Sn ≥ x) = e−nΛ(α)

σαλ(α)
√

2πn

(
1 + o(1)

)
. (9.3.7)
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Proof Partition the interval Δ[x) into subintervals Δn[x + kΔn), k = 0, . . . ,

Δ/Δn − 1, where Δn → 0 and, for simplicity, we assume that M = Δ/Δn is an
integer. Then, by Theorem 9.2.1, as Δn → 0,

P
(
Sn ∈ Δn[x + kΔn)

)

= P
(
Sn ∈ [

x, x + (k + 1)Δn

)) − P
(
Sn ∈ [x, x + kΔn)

)

= e−nΛ(α)

∫ (k+1)Δn

kΔn

e−λ(α)zP
(
S(α)

n − αn ∈ dz
)

= e−nΛ(α)−λ(α)kΔnP
(
S(α)

n − αn ∈ Δn[kΔn)
)(

1 + o(1)
)

(9.3.8)

uniformly in α ∈ [0, α1]. Here, similarly to (9.3.5), by Theorem 8.7.1A we have

P
(
S(α)

n − αn ∈ Δn[kΔn)
) = Δn

σα

√
n
φ

(
kΔn

σα

√
n

)
+ o

(
1√
n

)
(9.3.9)

uniformly in k and α. Since

P
(
Sn ∈ Δ[x)

) =
M−1∑

k=0

P
(
Sn ∈ Δn[x + kΔ)

)
,

substituting the values (9.3.8) and (9.3.9) into the right-hand side of the last equality,
we obtain

P
(
Sn ∈ Δ[x)

) = e−nΛ(α)

σα

√
n

M−1∑

k=0

Δne
−λ(α)kΔn

(
φ

(
kΔn

σα

√
n

)
+ o(1)

)

= e−nΛ(α)

σα

√
n

∫ Δ−Δn

0
e−λ(α)z

(
φ

(
z

σα

√
n

)
+ o(1)

)
dz.

(9.3.10)

After the variable change λ(α)z = u, the right-hand side can be rewritten as

e−nλ(α)

σαλ(α)
√

n

∫ (Δ−Δn)λ(α)

0
e−u

(
φ

(
u

σαλ(α)
√

n

)
+ o(1)

)
du, (9.3.11)

where the remainder term o(1) is uniform in α ∈ [0, α1], Δ ≥ Δ0, and u from the
integration range. Since λ(α) ∼ α/σ 2 for small α (see (9.1.12) and (9.1.16)), for
α ≥ N(n)/

√
n we have

λ(α) >
N(n)

σ 2
√

n

(
1 + o(1)

)
, σαλ(α)

√
n >

σαN(n)

σ 2
→ ∞.

Therefore, for any fixed u, one has

φ

(
u

σαλ(α)
√

n

)
→ φ(0) = 1√

2π
.
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Moreover, φ(v) ≤ 1/
√

2π for all v. Hence, by (9.3.10) and (9.3.11),

P
(
Sn ∈ Δ[x)

) = e−nΛ(α)

σαλ(α)
√

2πn

∫ λ(α)Δ

0
e−udu

(
1 + o(1)

)

= e−nΛ(α)

σαλ(α)
√

2πn

(
1 − e−λ(α)Δ

)(
1 + o(1)

)

uniformly in α ∈ [0, α1] and Δ ≥ Δ0. Relation (9.3.7) clearly follows from (9.3.6)
with Δ = ∞. The theorem is proved. �

Note that if E|ξ |k < ∞ (for λ+ > 0 this is a restriction on the rate of decay of the
left tails P(ξ < −t), t > 0), then expansion (9.1.17) is valid and, for deviations x =
o(n) (α = o(1)) such that nαk = xk/nk−1 ≤ c = const, we can change the exponent
nΛ(α) in (9.3.6) and (9.3.7) to

nΛ(α) = n

k∑

j=2

Λ(j)(0)

j ! αj + o
(
nαk

)
, (9.3.12)

where Λ(j)(0) are found in (9.1.16). For k = 3, the foregoing implies the following.

Corollary 9.3.1 Let λ+ > 0, E|ξ |3 < ∞, ξ be non-lattice, Eξ = 0, Eξ2 = σ 2,
x�√

n and x = o(n2/3) as n → ∞. Then

P(Sn ≥ x) ∼ σ
√

n

x
√

2π
exp

{
− x2

2nσ 2

}
∼ Φ

(
− x

σ
√

n

)
. (9.3.13)

In the last relation we used the symmetry of the standard normal law, i.e. the
equality 1 − Φ(t) = Φ(−t). Assertion (9.3.13) shows that in the case λ+ > 0 and
E|ξ |3 < ∞ the asymptotic equivalence

P(Sn ≥ x) ∼ Φ

(
− x

σ
√

n

)

persists outside the range of normal deviations as well, up to the values
x = o(n2/3). If Eξ3 = 0 and Eξ4 < ∞, then this equivalence holds true up to the
values x = o(n3/4). For larger x this equivalence, generally speaking, no longer
holds.

Proof of Corollary 9.3.1 The first relation in (9.3.13) follows from Theorem 9.3.2
and (9.3.12). The second follows from the asymptotic equivalence

∫ ∞

x

e− u2
2 du ∼ e−x2/2

x
,

which is easy to establish, using, for example, l’Hospital’s rule. �
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9.3.2 Local Theorems

In this subsection we will obtain analogues of the local Theorems 8.7.2 and 8.7.3 for
large deviations in the Cramér range. To simplify the exposition, we will formulate
the theorem for densities, assuming that the following condition is satisfied:

[D] The distribution F has a bounded density f (x) such that

f (x) = e−λ+x+o(x) as x → ∞, if λ+ < ∞; (9.3.14)

f (x) ≤ ce−λx for any fixed λ > 0, c = c(λ), if λ+ = ∞. (9.3.15)

Since inequalities of the form (9.3.14) and (9.3.15) always hold, by the exponen-
tial Chebyshev inequality, for the right tails

F+(x) =
∫ ∞

x

f (u)du,

condition [D] is not too restrictive. It only eliminates sharp “bursts” of f (x) as
x → ∞.

Denote by fn(x) the density of the distribution of Sn.

Theorem 9.3.3 Let

Eξ = 0, Eξ2 < ∞, λ+ > 0, α = x

n
∈ [0, α+),

and condition [D] be met. Then

fn(x) = e−nΛ(α)

σα

√
2π n

(
1 + o(1)

)
,

where the remainder term o(1) is uniform in α ∈ [0, α1] for any fixed α1 ∈ (0, α+).

Proof The proof is based on Theorems 9.2.1 and 8.7.2A. Denote by f
(α)
n (x) the

density of the distribution of S
(α)
n . Relation (9.2.3) implies that, for x = αn, α ∈

[α−, α+], we have

fn(x) = e−λ(α)xψn
(
λ(α)

)
f (α)

n (x) = e−nΛ(α)f (α)
n (x). (9.3.16)

Since Eξ (α) = α, we see that E(S
(α)
n − x) = 0 and the density value f

(α)
n (x)

coincides with the density of the distribution of the sum S
(α)
n − αn at the point 0. In

order to use Theorems 8.7.1A and 8.7.2A, we have to verify conditions (a) and (b)
for θ2 = ∞ in these theorems and also the uniform boundedness in α ∈ [0, α1] of

∫ ∣∣ϕ(λ(α))(t)
∣∣mdt (9.3.17)
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for some integer m ≥ 1, where ϕ(λ(α)) is the ch.f. of ξ (α) (the uniform version of
condition (c) in Theorem 8.7.2). By condition [D] the density

f (α)(v) = eλ(α)vf (v)

ψ(λ(α))

in bounded uniformly in α ∈ [0, α1] (for such α one has λ(α) ∈ [0, λ1], λ1 =
λ(α1) < λ+). Hence the integral

∫ (
f (α)(v)

)2
dv

is also uniformly bounded, and so, by virtue of Parseval’s identity (see Sect. 7.2), is
the integral

∫ ∣∣ϕ(λ(α))(t)
∣∣2

dt.

This means that the required uniform boundedness of integral (9.3.17) is proved
for m = 2.

Conditions (a) and (b) for θ2 < ∞ were verified in the proof of Theorem 9.3.1. It
remains to extend the verification of condition (b) to the case θ2 = ∞. This can be
done by following an argument very similar to the one used in the proof of Theo-
rem 9.3.1 in the case of finite θ2. Let θ2 = ∞. If we assume that there exist sequences
λk ∈ [0, λ+,ε] and |tk| ≥ θ1 such that

|ψ(λk + itk)|
ψ(λk)

→ 1,

then, by compactness of [0, λ+,ε], there will exist sequences λ′
k → λ0 ∈ [0, λ+,ε]

and t ′k such that

|ψ(λ′
k + it ′k)|

ψ(λ0)
→ 1. (9.3.18)

But by virtue of condition [D] the family of functions ψ(λ + it), t ∈ R, is equicon-
tinuous in λ ∈ [0, λ+,ε]. Therefore, along with (9.3.18), we also have convergence

|ψ(λ0 + it ′k)|
ψ(λ0)

→ 1, |tk| ≥ θ1 > 0,

which contradicts the inequality

sup
|t |≥θ1

|ψ(λ0 + it)|
ψ(λ0)

< 1

that follows from the existence of density.
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Thus property (b) is proved for θ2 = ∞, and we can use Theorem 8.7.2A, which
implies that

f (α)
n (x) = 1

σ(λ(α))
√

2π n

(
1 + o(1)

)
.

This, together with (9.3.16), proves Theorem 9.3.3. �

Remark 9.3.1 We can see from the proof that, in Theorem 9.3.3, as a more gen-
eral condition instead of condition [D] one could also consider the integrability of
ψm(λ + it) for any fixed λ ∈ [0, λ1], λ1 < λ+, or condition [D] imposed on Sm for
some m ≥ 1.

For arithmetic distributions we cannot assume without loss of generality that
m1 = Eξ = 0, but that does not change much in the formulations of the assertions.
If λ+ > 0, then α+ = ψ ′(λ+)/ψ(λ+) > m1 and the scaled deviations α = x/n for
the Cramér range must lie in the region [m1, α+).

Theorem 9.3.4 Let λ+ > 0, Eξ2 < ∞ and the distribution of ξ be arithmetic. Then,
for integer x,

P(Sn = x) = e−nΛ(α)

σα

√
2πn

(
1 + o(1)

)
,

where the remainder term o(1) is uniform in α = x/n ∈ [m1, α1] for any fixed α1 ∈
(m1, α+).

A similar assertion is valid in the case when λ− < 0 and α ∈ (α−,m1].

Proof The proof does not differ much from that of Theorem 9.3.1. By (9.2.3),

P(Sn = x) = e−λ(α)xψ−n
(
λ(α)

)
P
(
S(α)

n = x
) = e−nΛ(α)P

(
S(α)

n = x
)
,

where Eξ (α) = α for α ∈ [m1, α+). In order to compute P(S
(α)
n = x) we have to

use Theorem 8.7.3A. The verification of conditions (a) and (b) of Theorem 8.7.1A,
which are assumed to hold in Theorem 8.7.3A, is done in the same way as in the
proof of Theorem 9.3.1, the only difference being that relation (9.3.4) for t0 ∈ [θ1,π]
will contradict the arithmeticity of the distribution of ξ . Since a(λ(α)) = Eξ (α) = α,
by Theorem 8.7.3A we have

P
(
S(α)

n = x
) = 1

σα

√
2πn

(
1 + o(1)

)

uniformly in α = x/n ∈ [m1, α1]. The theorem is proved. �
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9.4 Integro-Local Theorems at the Boundary of the Cramér
Range

9.4.1 Introduction

In this section we again assume that Cramér’s condition λ+ > 0 is met. If α+ = ∞
then the theorems of Sect. 9.3 describe the large deviation probabilities for any
α = x/n. But if α+ < ∞ then the approaches of Sect. 9.3 do not enable one to
find the asymptotics of probabilities of large deviations of Sn for scaled deviations
α = x/n in the vicinity of the point α+.

In this section we consider the case α+ < ∞. If in this case λ+ = ∞, then, by
property (Λ2)(i), we have α+ = s+ = sup{t : F+(t) > 0}, and therefore the ran-
dom variables ξk are bounded from above by the value α+, P(Sn ≥ x) = 0 for
α = x/n > α+. We will not consider this case in what follows. Thus we will study
the case α+ < ∞, λ+ < ∞.

In the present and the next sections, we will confine ourselves to considering
integro-local theorems in the non-lattice case with Δ = Δn → 0 since, as we saw in
the previous section, local theorems differ from the integro-local theorems only in
that they are simpler. As in Sect. 9.3, the integral theorems can be easily obtained
from the integro-local theorems.

9.4.2 The Probabilities of Large Deviations of Sn in an
o(n)-Vicinity of the Point α+n; the Case ψ ′′(λ+) < ∞

In this subsection we will study the asymptotics of P(Sn ∈ Δ[x)), x = αn, when α

lies in the vicinity of the point α+ < ∞ and, moreover, ψ ′′(λ+) < ∞. (The case of
distributions F, for which λ+ < ∞, α+ < ∞ and ψ ′′(λ+) < ∞, will be illustrated
later, in Lemma 9.4.1.) Under the above-mentioned conditions, the Cramér trans-
form F(λ+) is well defined at the point λ+, and the random variable ξ (α+) with the
distribution F(λ+) has mean α+ and a finite variance:

Eξ (α+) = ψ ′(λ+)

ψ(λ+)
= α+, Var

(
ξ (α+)

) = σ 2
α+ = ψ ′′(λ+)

ψ(λ+)
− α2+ (9.4.1)

(cf. (9.3.1)).

Theorem 9.4.1 Let ξ be a non-lattice random variable,

λ+ ∈ (0,∞), ψ ′′(λ+) < ∞, y = x − α+n = o(n).

If Δn → 0 slowly enough as n → ∞ then

P
(
Sn ∈ Δn[x)

) = Δn

σα+
√

2πn
e−nΛ(α+)−λ+y

(
exp

{
− y2

σ 2
α+n

}
+ o(1)

)
,
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where

α = x

n
, σ 2

α+ = ψ ′′(λ+)

ψ(λ+)
− α2+,

and the remainder term o(1) is uniform in y.

Proof As in the proof of Theorem 9.3.1, we use the Cramér transform, but now at
the fixed point λ+, so there will be no triangular array scheme when analysing the
sums S

(α+)
n . In this case the following analogue of Theorem 9.2.1 holds true.

Theorem 9.2.1A Let λ+ ∈ (0,∞), α+ < ∞ and y = x − nα+. Then, for x = nα

and any fixed Δ > 0, the following representation is valid:

P
(
Sn ∈ Δ[x)

) = e−nΛ(α+)−λ+y

∫ Δ

0
e−λ+zP

(
S

(α+)
n − αn ∈ dz

)
. (9.4.2)

Proof of Theorem 9.2.1A repeats that of Theorem 9.2.1 the only difference being
that, as was already noted, the Cramér transform is now applied at the fixed point λ+
which does not depend on α = x/n. In this case, by (9.2.3),

P(Sn ∈ dv) = e−λ+v+n lnψ(λ+)P
(
S

(α+)
n ∈ dv

) = e−nΛ(α+)+λ+(α+n−v)P
(
S

(α+)
n ∈ dv

)
.

Integrating this equality in v from x to x + Δ, changing the variable v = x + z

(x = nα), and noting that α+n − v = −y − z, we obtain (9.4.2).
The theorem is proved. �

Let us return to the proof of Theorem 9.4.1. Assuming that Δ = Δn → 0, we
obtain, by Theorem 9.2.1A, that

P
(
Sn ∈ Δn[x)

) = e−nΛ(α+)−λ+y P
(
S

(α+)
n − α+n ∈ Δn[y)

)(
1 + o(1)

)
. (9.4.3)

By virtue of (9.4.1), we can apply Theorem 8.7.1 to evaluate the probability on
the right-hand side of (9.4.3). This theorem implies that, as Δn → 0 slowly enough,

P
(
S

(α+)
n − α+n ∈ Δn[y)

) = Δn

σα+
√

n
φ

(
y

σα+
√

n

)
+ o

(
1√
n

)

= Δn

σα+
√

2πn
exp

{
− y2

σ 2
α+n

}
+ o

(
1√
n

)

uniformly in y. This, together with (9.4.3), proves Theorem 9.4.1. �
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9.4.3 The Class of Distributions ER. The Probability of Large
Deviations of Sn in an o(n)-Vicinity of the Point α+n for
Distributions F from the Class ER in Case ψ ′′(λ+)=∞

When studying the asymptotics of P(Sn ≥ αn) (or P(Sn ∈ Δ[αn))) in the case where
ψ ′′(λ+) = ∞ and α is in the vicinity of the point α+ < ∞, we have to impose
additional conditions on the distribution F similarly to what was done in Sect. 8.8
when studying convergence to stable laws.

To formulate these additional conditions it will be convenient to introduce certain
classes of distributions. If λ+ < ∞, then it is natural to represent the right tails F+(t)

as

F+(t) = e−λ+tV (t), (9.4.4)

where, by the exponential Chebyshev inequality, V (t) = eo(t) as t → ∞.

Definition 9.4.1 We will say that the distribution F of a random variable ξ (or the
random variable ξ itself) belongs to the class R if its right tail F+(t) is a regularly
varying function, i.e. can be represented as

F+(t) = t−βL(t), (9.4.5)

where L is a slowly varying function as t → ∞ (see also Sect. 8.8 and Appendix 6).

We will say that the distribution F (or the random variable ξ ) belongs to the
class ER if, in the representation (9.4.4), the function V is regularly varying (which
will also be denoted as V ∈R).

Distributions from the class R have already appeared in Sect. 8.8.
The following assertion explains which distributions from ER correspond to the

cases α+ = ∞, α+ < ∞, ψ ′′(λ+) = ∞ and ψ ′′(λ+) < ∞.

Lemma 9.4.1 Let F ∈ ER. For α+ to be finite it is necessary and sufficient that

∫ ∞

1
tV (t) dt < ∞.

For ψ ′′(λ+) to be finite, it is necessary and sufficient that

∫ ∞

1
t2V (t) dt < ∞.

The assertion of the lemma means that α+ < ∞ if β > 2 in the representation
V (t) = t−βL(t), where L is an s.v.f. and α+ = ∞ if β < 2. For β = 2, the finiteness
of α+ is equivalent to the finiteness of

∫ ∞
1 t−1L(t) dt . The same is true for the

finiteness of ψ ′′(λ+).
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Proof of Lemma 9.4.1 We first prove the assertion concerning α+. Since

α+ = ψ ′(λ+)

ψ(λ+)
,

we have to estimate the values of ψ ′(λ+) and ψ(λ+). The finiteness of ψ ′(λ+) is
equivalent to that of

−
∫ ∞

1
teλ+t dF+(t) =

∫ ∞

1
t
(
λ+V (t) dt − dV (t)

)
, (9.4.6)

where, for V (t) = o(1/t),

−
∫ ∞

1
t dV (t) = V (1) +

∫ ∞

1
V (t) dt.

Hence the finiteness of the integral on the left-hand side of (9.4.6) is equivalent to
that of the sum

λ+
∫ ∞

1
tV (t) dt +

∫ ∞

1
V (t) dt

or, which is the same, to the finiteness of the integral
∫ ∞

1 tV (t) dt . Similarly we see
that the finiteness of ψ(λ+) is equivalent to that of

∫ ∞
1 V (t) dt . This implies the

assertion of the lemma in the case
∫ ∞

1 V (t) dt < ∞, where one has V (t) = o(1/t).
If

∫ ∞
1 V (t) dt = ∞, then ψ(λ+) = ∞, lnψ(λ) → ∞ as λ ↑ λ+ and hence α+ =

limλ↑λ+(lnψ(λ))′ = ∞.
The assertion concerning ψ ′′(λ+) can be proved in exactly the same way. The

lemma is proved. �

The lemma implies the following:

(a) If β < 2 or β = 2 and
∫ ∞

1 t−1L(t) = ∞, then α+ = ∞ and the theorems of the
previous section are applicable to P(Sn ≥ x).

(b) If β > 3 or β = 3 and
∫ ∞

1 t−1L(t) dt < ∞, then α+ < ∞, ψ ′′(λ+) < ∞ and
we can apply Theorem 9.4.1.

It remains to consider the case

(c) β ∈ [2,3], where the integral
∫ ∞

1 t−1L(t) dt is finite for β = 2 and is infinite for
β = 3.

It is obvious that in case (c) we have α+ < ∞ and ψ ′′(λ+) = ∞.
Put

V+(t) := λ+tV (t)

βψ(λ+)
, b(n) := V

(−1)
+

(
1

n

)
,

where V
(−1)
+ (1/n) is the value of the function inverse to V+ at the point 1/n.
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Theorem 9.4.2 Let ξ be a non-lattice random variable, F ∈ ER and condition (c)
hold. If Δn → 0 slowly enough as n → ∞, then, for y = x−α+n = o(n),

P
(
Sn ∈ Δn[x)

) = Δne
−nΛ(α+)−λ+y

b(n)

(
f (β−1,1)

(
y

b(n)

)
+ o(1)

)
,

where f (β−1,1) is the density of the stable law F(β−1,1) with parameters β − 1,1,
and the remainder term o(1) is uniform in y.

We will see from the proof of the theorem that studying the probabilities of large
deviations in the case where α+ < ∞ and ψ ′′(λ+) = ∞ is basically impossible
outside the class ER, since it is impossible to find theorems on the limiting distribu-
tion of Sn in the case Var(ξ) = ∞ without the conditions [Rγ,ρ] of Sect. 8.8 being
satisfied.

Proof of Theorem 9.4.2 Condition (c) implies that α+ = Eξ (α+) < ∞ and
Var(ξ (α+)) = ∞. We will use Theorem 9.2.1A. For Δn → 0 slowly enough we will
obtain, as in the proof of Theorem 9.4.1, that relation (9.4.3) holds true. But now,
in contrast to Theorem 9.4.1, in order to calculate the probability on the right-hand
side of (9.4.3), we have to employ the integro-local Theorem 8.8.3 on convergence
to a stable law. In our case, by the properties of r.v.f.s, one has

P
(
ξ (α+) ≥ t

) = − 1

ψ(λ+)

∫ ∞

t

eλ+udF+(u) = 1

ψ(λ+)

∫ ∞

t

(
λ+V (u)du − dV (u)

)

= λ+
βψ(λ+)

t−β+1L+(t) ∼ V+(t), (9.4.7)

where L+(t) ∼ L(t) is a slowly varying function. Moreover, the left tail of the distri-
bution F(α+) decays at least exponentially fast. By virtue of the results of Sect. 8.8,
this means that, for b(n) = V

(−1)
+ (1/n), we have convergence of the distributions

of S
(α+)
n −α+n

b(n)
to the stable law Fβ−1,1 with parameters β − 1 ∈ [1,2] and 1. It re-

mains to use representation (9.4.3) and Theorem 8.8.3 which implies that, provided
Δn → 0 slowly enough, one has

P
(
S

(α+)
n − α+n ∈ Δn[y)

) = Δn

b(n)
f (β−1,1)

(
y

b(n)

)
+ o

(
1

b(n)

)

uniformly in y. The theorem is proved. �

Theorem 9.4.2 concludes the study of probabilities of large deviations of Sn/n

in the vicinity of the point α+ for distributions from the class ER.
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9.4.4 On the Large Deviation Probabilities in the Range α > α+
for Distributions from the Class ER

Now assume that the deviations x of Sn are such that α = x/n > α+, and y = x −
α+n grows fast enough (faster than

√
n under the conditions of Theorem 9.4.1 and

faster than b(n) under the conditions of Theorem 9.4.2). Then, for the probability

P
(
S(α+) − α+n ∈ Δn[y)

)
, (9.4.8)

the deviations y (see representation (9.4.3)) will belong to the zone of large devi-
ations, so applying Theorems 8.7.1 and 8.8.3 to evaluate such probabilities does
not make much sense. Relation (9.4.7) implies that, in the case F ∈ ER, we have
F(α+) ∈ R. Therefore, we will know the asymptotics of the probability (9.4.8) (and
hence also of the probability P(Sn ∈ Δn[x)), see (9.4.3)) if we obtain integro-local
theorems for the probabilities of large deviations of the sums Sn, in the case where
the summands belong to the class R. Such theorems are also of independent inter-
est in the present chapter, and the next section will be devoted to them. After that,
in Sect. 9.6 we will return to the problem on large deviation probabilities in the
class ER mentioned in the title of this section.

9.5 Integral and Integro-Local Theorems on Large Deviation
Probabilities for Sums Sn when the Cramér Condition Is not
Met

If Eξ = 0 and the right-side Cramér condition is not met (λ+ = 0), then the rate
function Λ(α) degenerates on the right semiaxis: Λ(α) = λ(α) = 0 for α ≥ 0, and
the results of Sects. 9.1–9.4 on the probabilities of large deviations of Sn are of little
substance. In this case, in order to find the asymptotics of P(Sn ≥ x) and P(Sn ∈
Δ[x)), we need completely different approaches, while finding these asymptotics is
only possible under additional conditions on the behaviour of the tail F+(t) of the
distribution F, similarly to what happened in Sect. 8.8 when studying convergence
to stable laws.

The above-mentioned additional conditions consist of the assumption that the tail
F+(t) behaves regularly enough. In this section we will assume that F+(t) = V (t) ∈
R, where R is the class of regularly varying functions introduced in the previous
section (see also Appendix 6). To make the exposition more homogeneous, we will
confine ourselves to the case β > 2, Var(ξ) < ∞, where −β is the power exponent
in the function V ∈R (see (9.4.5)). Studying the case β ∈ [1,2] (Var(ξ) = ∞) does
not differ much from the exposition below, but it would significantly increase the
volume of the exposition and complicate the text, and therefore is omitted. Results
for the case β ∈ (0,2] can be found in [8, Chap. 3].
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9.5.1 Integral Theorems

Integral theorems for probabilities of large deviations of Sn and maxima Sn =
maxk≤n Sk in the case Eξ = 0, Var(ξ) < ∞, F ∈R, β > 2, follow immediately from
the bounds obtained in Appendix 8. In particular, Corollaries A8.2.1 and A8.3.1 of
Appendix 8 imply the following result.

Theorem 9.5.1 Let Eξ = 0, Var(ξ) < ∞, F ∈ R and β > 2. Then, for x � √
n lnn,

P(Sn ≥ x) ∼ P(Sn ≥ x) ∼ nV (x). (9.5.1)

Under an additional condition [D0] to be introduced below, the assertion of this
theorem will also follow from the integro-local Theorem 9.5.2 (see below).

Comparing Theorem 9.5.1 with the results of Sects. 9.2–9.4 shows that the nature
of the large deviation probabilities is completely different here. Under the Cramér
condition and for α = x/n ∈ (0, α+), the large deviations of Sn are, roughly speak-
ing, “equally contributed to by all the summands” ξk , k ≤ n. This is confirmed by
the fact that, for a fixed α, the limiting conditional distribution of ξk , k ≤ n, given
that Sn ∈ Δ[x) (or Sn ≥ x) for x = αn, Δ = 1, as n → ∞ coincides with the distri-
bution F(α) of the random variable ξ (α). The reader can verify this himself/herself
using Theorem 9.3.2. In other words, the conditions {Sn ∈ Δ[x)} (or {Sn ≥ x}),
x = αn, change equally (from F to F(α)) the distributions of all the summands.

However, if the Cramér condition is not met, then under the conditions of The-
orem 9.5.1 the large deviations of Sn are essentially due to one large (comparable
with x) jump. This is seen from the fact that the value of nV (x) on the right-hand
side of (9.5.1) is nothing else but the main term of the asymptotics for P(ξn ≥ x),
where ξn = maxk≤n ξk . Indeed, if nV (x) → 0 then

P(ξn < x) = (
1 − V (x)

)n = 1 − nV (x) + O
((

nV (x)
)2)

,

P(ξn ≥ x) = nV (x) + O
((

nV (x)
)2) ∼ nV (x).

In other words, the probabilities of large deviations of Sn, Sn and ξn are asymp-
totically the same. The fact that the probabilities of the events {ξj ≥ y} for y ∼ x

play the determining role in finding the asymptotics of P(Sn ≥ x) can easily be
discovered in the bounds from Appendix 8.

Thus, while the asymptotics of P(Sn ≥ x) for x = αn � √
n in the Cramér case

is determined by “the whole distribution F” (as the rate function Λ(α) depends on
the “the whole distribution F”), these asymptotics in the case F ∈R are determined
by the right tail F+(t) = V (t) only and do not depend on the “remaining part” of
the distribution F (for the fixed value of Eξ = 0).
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9.5.2 Integro-Local Theorems

In this section we will study the asymptotics of P(Sn ∈ Δ[x)) in the case where

Eξ = 0, Var ξ2 < ∞, F ∈R, β > 2, x � √
n lnn. (9.5.2)

These asymptotics are of independent interest and are also useful, for example, in
finding the asymptotics of integrals of type E(g(Sn); Sn ≥ x) for x � √

n lnn for
a wide class of functions g. As was already noted (see Subsection 4.4), in the next
section we will use the results from the present section to obtain integro-local theo-
rems under the Cramér condition (for summands from the class ER) for deviations
outside the Cramér zone.

In order to obtain integro-local theorems in this section, we will need additional
conditions. Besides condition F ∈ R, we will also assume that the following holds:

Condition [D0] For each fixed Δ, as t → ∞,

V (t) − V (t + Δ) = v(t)
(
Δ + o(1)

)
, v(t) = βV (t)

t
.

It is clear that if the function L(t) in representation (9.4.5) (or the function V (t))
is differentiable for t large enough and L′(t) = o(L(t)/t) as t → ∞ (all sufficiently
smooth s.v.f.s possess this property; cf. e.g., polynomials of ln t etc.), then condi-
tion [D0] will be satisfied, and the derivative −V ′(t) ∼ v(t) will play the role of the
function v(t).

Theorem 9.5.2 Let conditions (9.5.2) and [D0] be met. Then

P
(
Sn ∈ Δ[x)

) = Δnv(x)
(
1 + o(1)

)
, v(x) = βV (x)

x
,

where the remainder term o(1) is uniform in x ≥ N
√

n lnn and Δ ∈ [Δ1,Δ2] for
any fixed Δ2 > Δ1 > 0 and any fixed sequence N→∞.

Note that in Theorems 9.5.1 and 9.5.2 we do not assume that n→∞. The as-
sumption that x → ∞ is contained in (9.5.2).

Proof For y < x, introduce the events

Gn := {
Sn ∈ Δ[x)

}
, Bj := {ξj < y}, B :=

n⋂

j=1

Bj . (9.5.3)

Then

P(Gn) = P(GnB) + P(GnB), B =
n⋃

j=1

Bj , (9.5.4)
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where

n∑

j=1

P(GnBj ) ≥ P(GnB) ≥
n∑

j=1

P(GnBj ) −
∑

i<j≤n

P(GnBiBj ) (9.5.5)

(see property 8 in Sect. 9.2.2).
The proof is divided into three stages: the bounding of P(GnB), that of

P(GnBiBj ), i �= j , and the evaluation of P(GnBj ).
(1) A bound on P(GnB). We will make use of the rough inequality

P(GnB) ≤ P(Sn ≥ x;B) (9.5.6)

and Theorem A8.2.1 of Appendix 8 which implies that, for x = ry with a fixed
r > 2, any δ > 0, and x ≥ N

√
n lnn, N → ∞, we have

P(Sn ≥ x;B) ≤ (
nV (y)

)r−δ
. (9.5.7)

Here we can always choose r such that

(
nV (x)

)r−δ � nΔv(x) (9.5.8)

for x � √
n. Indeed, putting n := x2 and comparing the powers of x on the right-

hand and left-hand sides of (9.5.8), we obtain that for (9.5.8) to hold it suffices to
choose r such that

(2 − β)(r − δ) < 1 − β,

which is equivalent, for β > 2, to the inequality.

r >
β − 1

β − 2
.

For such r , we will have that, by (9.5.6)–(9.5.8),

P(GnB) = o
(
nΔv(x)

)
. (9.5.9)

Since r − δ > 1, we see that, for n � x2, relations (9.5.8) and (9.5.9) will hold true
all the more.

(2) A bound for P(GnBiBj ). It is sufficient to bound P(GnBn−1Bn). Set

δ := 1

r
<

1

2
, Hk := {

v : v < (1 − kδ)x + Δ
}
, k = 1,2.

Then

P(GnBn−1Bn) =
∫

H2

P(Sn−2 ∈ dz)
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×
∫

H1

P(z + ξ ∈ dv, ξ ≥ δx)P
(
v + ξ ∈ Δ[x), ξ ≥ δx

)
.

(9.5.10)

Since in the domain H1 we have x − v > δx − Δ, the last factor on the right-hand
side of (9.5.10) has, by condition [D0], the form Δv(x − v)(1 + o(1)) ≤ cΔv(x) as
x → ∞, so the integral over H1 in (9.5.10), for x large enough, does not exceed

cΔv(x)P(z + ξ ∈ H1; ξ ≥ δx) ≤ cΔv(x)V (δx).

The integral over the domain H2 in (9.5.10) evidently allows a similar bound. Since
nV (x) → 0, we obtain that

∑

i<j≤n

P(GnBiBj ) ≤ c1Δn2v(x)V (x) = o
(
Δnv(x)

)
. (9.5.11)

(3) The evaluation of P(GnBj ) is based on the relation

P(GnBn) =
∫

H1

P(Sn−1 ∈ dz)P
(
ξ ∈ Δ[x − z), ξ ≥ δx

)

≤
∫

H1

P(Sn−1 ∈ dz)P
(
ξ ∈ Δ[x − z)

)

= Δ

∫

H1

P(Sn−1 ∈ dz)v(x − z)
(
1 + o(1)

)
, (9.5.12)

which yields

P(GnBn) ≤ ΔE
[
v(x − Sn−1);Sn−1 < (1 − δ)x + Δ

](
1 + o(1)

)

= Δv(x)
(
1 + o(1)

)
. (9.5.13)

The last relation is valid for x � √
n, since, by Chebyshev’s inequality, E[v(x −

Sn−1); |Sn−1| ≤ M
√

n] ∼ v(x) as M → ∞, M
√

n = o(x) and, moreover, the fol-
lowing evident bounds hold:

E
[
v(x − Sn−1);Sn−1 ∈ (

M
√

n, (1 − δ)x + Δ
)] = o

(
v(x)

)
,

E
[
v(x − Sn−1); Sn−1 ∈ (−∞,−M

√
n )

] = o
(
v(x)

)

as M → ∞.
Similarly, by (virtue of (9.5.12)) we get

P(GnBn) ≥
∫ (1−δ)x

−∞
P(Sn−1 ∈ dz)P

(
ξ ∈ Δ[x − z)

) ∼ Δv(x). (9.5.14)
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From (9.5.13) and (9.5.14) we obtain that

P(GnBn) = Δv(x)
(
1 + o(1)

)
.

This, together with (9.5.4), (9.5.9) and (9.5.11), yields the representation

P(Gn) = Δnv(x)
(
1 + o(1)

)
.

The required uniformity of the term o(1) clearly follows from the preceding argu-
ment. The theorem is proved. �

Theorem 9.5.2 implies the following

Corollary 9.5.1 Let the conditions of Theorem 9.5.2 be satisfied. Then there exists
a fixed sequence ΔN converging to zero slowly enough as N → ∞ such that the
assertion of Theorem 9.5.2 remains true when the segment [Δ1,Δ2] is replaced in
it with [ΔN,Δ2].

9.6 Integro-Local Theorems on the Probabilities of Large
Deviations of Sn Outside the Cramér Range (Under the
Cramér Condition)

We return to the case where the Cramér condition is met. In Sects. 9.3 and 9.4
we obtained integro-local theorems for deviations inside and on the boundary of
the Cramér range. It remains to study the asymptotics of P(Sn ∈ Δ[x)) outside
the Cramér range, i.e. for α = x/n > α+. Preliminary observations concerning this
problem were made in Sect. 9.4.4 where it was reduced to integro-local theorems
for the sums Sn when Cramér’s condition is not satisfied. Recall that in that case we
had to restrict ourselves to considering distributions from the class ER defined in
Sect. 9.4.3 (see (9.4.4)).

Theorem 9.6.1 Let F ∈ ER, β > 3, α = x/n > α+ and y = x − α+n � √
n. Then

there exists a fixed sequence ΔN converging to zero slowly enough as N → ∞, such
that

P
(
Sn ∈ ΔN [x)

) = e−nΛ(α+)−λ+ynΔNv+(y)
(
1 + o(1)

)

= e−nΛ(α)nΔNv+(y)
(
1 + o(1)

)
,

where v+(y) = λ+V (y)/ψ(λ+), the remainder term o(1) is uniform in x and n such
that y � N

√
n lnn, N being an arbitrary fixed sequence tending to ∞.

Proof By Theorem 9.2.1A there exists a sequence ΔN converging to zero slowly
enough such that (cf. (9.4.3))

P
(
Sn ∈ ΔN [x)

) = e−nΛ(α+)−λ+y P
(
S

(α+)
n − α+n ∈ ΔN [y)

)
. (9.6.1)
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Since by properties (Λ1) and (Λ2) the function Λ(α) is linear for α > α+:

Λ(α) = Λ(α+) + (α − α+)λ+,

the exponent in (9.6.1) can be rewritten as

−nΛ(α+) − λ+y = −nΛ(α).

The right tail of the distribution of ξ (α+) has the form (see (9.4.7))

P
(
ξ (α+) ≥ t

) = λ+
ψ(λ+)

∫ ∞

t

V (u)du + V (t).

By the properties of regularly varying functions (see Appendix 6),

V (t) − V (t − u) = o(
(
V (t)

)

as t → ∞ for any fixed u. This implies that condition [D0] of Sect. 9.5 is satisfied
for the distribution of ξ (α+).

This means that, in order to calculate the probability on the right-hand side
of (9.6.1), we can use Theorem 9.5.2 and Corollary 9.5.1, by virtue of which, as
ΔN → 0 slowly enough,

P
(
S

(α+)
n − α+n ∈ ΔN [y)

) = nΔNv+(y)
(
1 + o(1)

)
,

where the remainder term o(1) is uniform in all x and n such that y � N
√

n lnn,
N → ∞.

The theorem is proved. �

Since P(Sn ∈ ΔN [x)) decreases exponentially fast as x (or y) grows (note the
factor e−λ+y in (9.6.1)), Theorem 9.6.1 immediately implies the following integral
theorem.

Corollary 9.6.1 Under the conditions of Theorem 9.6.1,

P(Sn ≥ x) = e−nΛ(α) nV (y)

ψ(λ+)

(
1 + o(1)

)
.

Proof Represent the probability P(Sn ≥ x) as the sum

P(Sn ≥ x) =
∞∑

k=0

P
(
Sn ∈ ΔN [x + kΔN)

)

∼ e−nΛ(α) nλ+
ψ(λ+)

∞∑

k=0

ΔNV (y + ΔNk)e−λ+ΔNk.
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Here the series on the right-hand side is asymptotically equivalent, as N → ∞, to
the integral

V (y)

∫ ∞

0
e−λ+t dt = V (y)

λ+
.

The corollary is proved. �

Note that a similar corollary (i.e. the integral theorem) can be obtained under the
conditions of Theorem 9.4.2 as well.

In the range of deviations α = x
n

> α+, only the case F ∈ ER, β ∈ [2,3] (recall
that α+ = ∞ for β < 2) has not been considered in this text. As we have already
said, it could also be considered, but that would significantly increase the length and
complexity of the exposition. Results dealing with this case can be found in [8]; one
can also find there a more complete study of large deviation probabilities.
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