
Chapter 8
Sequences of Independent Random Variables.
Limit Theorems

Abstract The chapter opens with proofs of Khintchin’s (weak) Law of Large Num-
bers (Sect. 8.1) and the Central Limit Theorem (Sect. 8.2) the case of independent
identically distributed summands, both using the apparatus of characteristic func-
tions. Section 8.3 establishes general conditions for the Weak Law of Large Num-
bers for general sequences of independent random variables and also conditions for
the respective convergence in mean. Section 8.4 presents the Central Limit Theo-
rem in the triangular array scheme (the Lindeberg–Feller theorem) and its corollar-
ies, illustrated by several insightful examples. After that, in Sect. 8.5 an alternative
method of compositions is introduced and used to prove the Central Limit Theo-
rem in the same situation, establishing an upper bound for the convergence rate for
the uniform distance between the distribution functions in the case of finite third
moments. This is followed by an extension of the above results to the multivariate
case in Sect. 8.6. Section 8.7 presents important material not to be found in other
textbooks: the so-called integro-local limit theorems on convergence to the normal
distribution (the Stone–Shepp and Gnedenko theorems), including versions for sums
of random variables depending on a parameter. These results will be of crucial im-
portance in Chap. 9, when proving theorems on exact asymptotic behaviour of large
deviation probabilities. The chapter concludes with Sect. 8.8 establishing integral,
integro-local and local theorems on convergence of the distributions of scaled sums
on independent identically distributed random variables to non-normal stable laws.

8.1 The Law of Large Numbers

Theorem 8.1.1 (Khintchin’s Law of Large Numbers) Let {ξn}∞n=1 be a sequence
of independent identically distributed random variables having a finite expectation
Eξn = a and let Sn := ξ1 + · · · + ξn. Then

Sn

n

p→ a as n → ∞.

The above assertion together with Theorems 6.1.6 and 6.1.7 imply the following.
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Corollary 8.1.1 Under the conditions of Theorem 8.1.1, as well as convergence of
Sn/n in probability, convergence in mean also takes place:

E

∣
∣
∣
∣

Sn

n
− a

∣
∣
∣
∣
→ 0 as n → ∞.

Note that the condition of independence of ξk and the very assertion of the the-
orem assume that all the random variables ξk are given on a common probability
space.

From the physical point of view, the stated law of large numbers is the sim-
plest ergodic theorem which means, roughly speaking, that for random variables
their “time averages” and “space averages” coincide. This applies to an even greater
extent to the strong law of large numbers, by virtue of which Sn/n → a with prob-
ability 1.

Under more strict assumptions (existence of variance) Theorem 8.1.1 was ob-
tained in Sect. 4.7 as a consequence of Chebyshev’s inequality.

Proof of Theorem 8.1.1 We have to prove that, for any ε > 0,

P
(∣
∣
∣
∣

Sn

n
− a

∣
∣
∣
∣
> ε

)

→ 0

as n → ∞. The above relation is equivalent to the weak convergence of distributions
Sn/n ⊂=⇒ Ia . Therefore, by the continuity theorem and Example 7.1.1 it suffices to
show that, for any fixed t ,

ϕSn/n(t) → eiat .

The ch.f. ϕ(t) of the random variable ξk has, in a certain neighbourhood of 0, the
property |ϕ(t) − 1| < 1/2. Therefore for such t one can define the function l(t) =
lnϕ(t) (we take the principal value of the logarithm). Since ξn has finite expectation,
the derivative

l′(0) = ϕ′(0)

ϕ(0)
= ia

exists. For each fixed t and sufficiently large n, the value of l(t/n) is defined and

ϕSn/n(t) = ϕn(t/n) = el(t/n)n.

Since l(0) = 0, one has

el(t/n)n = exp

{

t
l(t/n) − l(0)

t/n

}

→ el′(0)t = eiat

as n → ∞. The theorem is proved. �
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8.2 The Central Limit Theorem for Identically Distributed
Random Variables

Let, as before, {ξn} be a sequence of independent identically distributed random
variables. But now we assume, along with the expectation Eξn = a, the existence
of the variance Var ξn = σ 2. We retain the notation Sn = ξ1 + · · · + ξn for sums of
our random variables and Φ(x) for the normal distribution function with parameters
(0,1). Introduce the sequence of random variables

ζn = Sn − an

σ
√

n
.

Theorem 8.2.1 If 0 < σ 2 < ∞, then P(ζn < x) → Φ(x) uniformly in x (−∞ <

x < ∞) as n → ∞.

In such a case, the sequence {ζn} is said to be asymptotically normal.
It follows from ζn ⇒ ζ ⊂= �0,1, ζ 2

n ≥ 0, Eζ 2
n = Eζ 2 = 1 and from Lemma 6.2.3

that the sequence {ζ 2
n } is uniformly integrable. Therefore, as well as the weak

convergence ζn ⇒ ζ , ζ ⊂= �0,1 (Ef (ζn) → Ef (ζ ) for any bounded continuous
f ), one also has convergence Ef (ζn) → Ef (ζ ) for any continuous f such that
|f (x)| < c(1 + x2) (see Theorem 6.2.3).

Proof of Theorem 8.2.1 The uniform convergence is a consequence of the weak
convergence and continuity of Φ(x). Further, we may assume without loss of gen-
erality that a = 0, for otherwise we could consider the sequence {ξ ′

n = ξn − a}∞n=1
without changing the sequence {ζn}. Therefore, to prove the required convergence,
it suffices to show that ϕζn(t) → e−t2/2 when a = 0. We have

ϕζn(t) = ϕn

(
t

σ
√

n

)

, where ϕ(t) = ϕξk
(t).

Since Eξ2
n exists, ϕ′′(t) also exists and, as t → 0, one has

ϕ(t) = ϕ(0) + tϕ′(0) + t2

2
ϕ′′(0) + o

(

t2)= 1 − t2σ 2

2
+ o

(

t2). (8.2.1)

Therefore, as n → ∞,

lnϕζn(t) = n ln

[

1 − σ 2

2

(
t

σ
√

n

)2

+ o

(
t2

n

)]

= n

[

− t2

2n
+ o

(
t2

n

)]

= − t2

2
+ o(1) → − t2

2
.

The theorem is proved. �
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8.3 The Law of Large Numbers for Arbitrary Independent
Random Variables

Now we proceed to elucidating conditions under which the law of large numbers and
the central limit theorem will hold in the case when ξk are independent but not nec-
essarily identically distributed. The problem will not become more complicated if,
from the very beginning, we consider a more general situation where one is given an
arbitrary series ξ1,n, . . . , ξn,n, n = 1,2, . . . of independent random variables, where
the distributions of ξk,n may depend on n. This is the so-called triangular array
scheme.

Put

ζn :=
n
∑

k=1

ξk,n.

From the viewpoint of the results to follow, we can assume without loss of generality
that

Eξk,n = 0. (8.3.1)

Assume that the following condition is met: as n → ∞,

D1 :=
n
∑

k=1

E min
(|ξk,n|, |ξk,n|2

)→ 0. [D1]

Theorem 8.3.1 (The Law of Large Numbers) If conditions (8.3.1) and [D1] are

satisfied, then ζn ⊂=⇒ I0 or, which is the same, ζn
p→ 0 as n → ∞.

Example 8.3.1 Assume ξk = ξk,n do not depend on n, Eξk = 0 and E|ξk|s ≤ ms <

∞ for 1 < s ≤ 2. For such s, there exists a sequence b(n) = o(n) such that n =
o(bs(n)). Since, for ξk,n = ξk/b(n),

E min
(|ξk,n|, ξ2

k,n

) = E
[∣
∣
∣
∣

ξk

b(n)

∣
∣
∣
∣

2

; |ξk| ≤ b(n)

]

+ E
[ |ξk|
b(n)

; |ξk| > b(n)

]

≤ E
[∣
∣
∣
∣

ξk

b(n)

∣
∣
∣
∣

s

; |ξk| ≤ b(n)

]

+ E
[∣
∣
∣
∣

ξk

b(n)

∣
∣
∣
∣

s

; |ξk| > b(n)

]

= msb
−s(n),

we have

D1 ≤ nmsb
−s(n) → 0,

and hence Sn/b(n)
p→ 0.

A more general sufficient condition (compared to ms < ∞) for the law of large
numbers is contained in Theorem 8.3.3 below. Theorem 8.1.1 is an evident corollary
of that theorem.
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Now consider condition [D1] in more detail. It can clearly also be written in the
form

D1 =
n
∑

k=1

E
(|ξk,n|; |ξk,n| > 1

)+
n
∑

k=1

E
(|ξk,n|2; |ξk,n| ≤ 1

)→ 0.

Next introduce the condition

M1 :=
n
∑

k=1

E|ξk,n| ≤ c < ∞ (8.3.2)

and the condition

M1(τ ) :=
n
∑

k=1

E
(|ξk,n|; |ξk,n| > τ

)→ 0 [M1]

for any τ > 0 as n → ∞. Condition [M1] could be called a Lindeberg type condition
(the Lindeberg condition [M2] will be introduced in Sect. 8.4).

The following lemma explains the relationship between the introduced condi-
tions.

Lemma 8.3.1 1. {[M1] ∩ (3.2)} ⊂ [D1]. 2. [D1] ⊂ [M1].

That is, conditions [M1] and (8.3.2) imply [D1], and condition [D1] implies
[M1].

It follows from Lemma 8.3.1 that under condition (8.3.2), conditions [D1] and
[M1] are equivalent.

Proof of Lemma 8.3.1 1. Let conditions (8.3.2) and [M1] be met. Then, for

τ ≤ 1, g1(x) = min
(|x|, |x|2),

one has

D1 =
n
∑

k=1

Eg1(ξk,n) ≤
n
∑

k=1

E
(|ξk,n|; |ξk,n| > τ

)+
n
∑

k=1

E
(|ξk,n|2; |ξk,n| ≤ τ

)

≤ M1(τ ) + τ

n
∑

k=1

E
(|ξk,n|; |ξk,n| ≤ τ

)≤ M1(τ ) + τM1(0). (8.3.3)

Since M1(0) = M1 ≤ c and τ can be arbitrary small, we have D1 → 0 as n → ∞.
2. Conversely, let condition [D1] be met. Then, for τ ≤ 1,

M1(τ ) ≤
n
∑

k=1

E
(|ξk,n|; |ξk,n| > 1

)
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+ τ−1
n
∑

k=1

E
(|ξk,n|2; τ < |ξk,n| ≤ 1

)≤ τ−1D1 → 0 (8.3.4)

as n → ∞ for any τ > 0. The lemma is proved. �

Let us show that condition [M1] (as well as [D1]) is essential for the law of large
numbers to hold.

Consider the random variables

ξk,n =
{

1 − 1
n

with probability 1
n
,

− 1
n

with probability 1 − 1
n
.

For them, Eξk,n = 0, E|ξk,n| = 2(n−1)

n2 ∼ 2
n

, M1 ≤ 2, condition (8.3.2) is met, but

M1(τ ) = n−1
n

> 1
2 for n > 2, τ < 1/2, and thus condition [M1] is not satisfied. Here

the number νn of positive ξk,n, 1 ≤ k ≤ n, converges in distribution to a random
variable ν having the Poisson distribution with parameter λ = 1. The sum of the

remaining ξk,ns is equal to − (n−νn)
n

p−→ −1. Therefore, ζn + 1 ⊂=⇒ �1 and the law
of large numbers does not hold.

Each of the conditions [D1] and [M1] imply the uniform smallness of E|ξk,n|:
max

1≤k≤n
E|ξk,n| → 0 as n → ∞. (8.3.5)

Indeed, equation [M1] means that there exists a sufficiently slowly decreasing se-
quence τn → 0 such that M1(τn) → 0. Therefore

max
k≤n

E|ξk,n| ≤ max
k≤n

[

τn + E
(|ξk,n|; |ξk,n| > τn

)]≤ τn + M1(τn) → 0. (8.3.6)

In particular, (8.3.5) implies the negligibility of the summands ξk,n.
We will say that ξk,n are negligible, or, equivalently, have property [S], if, for any

ε > 0,

max
k≤n

P
(|ξk,n| > ε

)→ 0 as n → ∞. [S]

Property [S] could also be called uniform convergence of ξk,n in probability to
zero. Property [S] follows immediately from (8.3.5) and Chebyshev’s inequality. It
also follows from stronger relations implied by [M1]:

P
(

max
k≤n

|ξk,n| > ε
)

= P
(
⋃

k≤n

{|ξk,n| > ε
}
)

≤
∑

k≤n

P
(|ξk,n| > ε

)≤ ε−1
∑

k≤n

E
(|ξk,n|; |ξk,n| > ε

)→ 0. [S1]

We now turn to proving the law of large numbers. We will give two versions of
the proof. The first one illustrates the classical method of characteristic functions.
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The second version is based on elementary inequalities and leads to a stronger as-
sertion about convergence in mean.1

Here is the first version.

Proof of Theorem 8.3.12 Put

ϕk,n(t) := Eeitξk,n , Δk(t) := ϕk,n(t) − 1.

One has to prove that, for each t ,

ϕζn(t) = Eeitζn =
n
∏

k=1

ϕk,n(t) → 1,

as n → ∞. By Lemma 7.4.2

∣
∣ϕζn(t) − 1

∣
∣ =

∣
∣
∣
∣
∣

n
∏

k=1

ϕk,n(t) −
n
∏

k=1

1

∣
∣
∣
∣
∣
≤

n
∑

k=1

|Δk(t)|

=
n
∑

k=1

∣
∣Eeitξk,n − 1

∣
∣=

n
∑

k=1

∣
∣E
(

eitξk,n − 1 − itξk,n

)∣
∣.

By Lemma 7.4.1 we have (for g1(x) = min(|x|, x2))
∣
∣eitx − 1 − itx

∣
∣≤ min

(

2|tx|, t2x2/2
)≤ 2g1(tx) ≤ 2h(t)g1(t),

where h(t) = max(|t |, |t |2). Therefore

∣
∣ϕζn(t) − 1

∣
∣≤ 2h(t)

n
∑

k=1

Eg1(ξk,n) = 2h(t)D1 → 0.

The theorem is proved. �

The last inequality shows that |ϕζn(t) − 1| admits a bound in terms of D1. It
turns out that E|ζn| also admits a bound in terms of D1. Now we will give the
second version of the proof that actually leads to a stronger variant of the law of
large numbers.

Theorem 8.3.2 Under conditions (8.3.1) and [D1] one has E|ζn| → 0 (i.e.

ζn
(1)−→ 0).

1The second version was communicated to us by A.I. Sakhanenko.
2There exists an alternative “direct” proof of Theorem 8.3.1 using not ch.f.s but the so-called
truncated random variables and estimates of their variances. However, because of what follows, it
is more convenient for us to use here the machinery of ch.f.s.
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The assertion of Theorem 8.3.2 clearly means the uniform integrability of {ζn};
it implies Theorem 8.3.1, for

P
(|ζn| > ε

)≤ E|ζn|/ε → 0 as n → ∞.

Proof of Theorem 8.3.2 Put

ξ ′
k,n :=

{

ξk,n if |ξk,n| ≤ 1,

0 otherwise,

and ξ ′′
k,n := ξk,n − ξ ′

k,n. Then ξk,n = ξ ′
k,n + ξ ′′

k,n and ζn = ζ ′
n + ζ ′′

n with an obvious
convention for the notations ζ ′

n, ζ ′′
n . By the Cauchy–Bunjakovsky inequality,

E|ζn| ≤ E
∣
∣ζ ′

n − Eζ ′
n

∣
∣+ E

∣
∣ζ ′′

n − Eζ ′′
n

∣
∣≤

√

E
(

ζ ′
n − Eζ ′

n

)2 + E
∣
∣ζ ′′

n

∣
∣+ ∣∣Eζ ′′

n

∣
∣

≤
√
∑

Var
(

ξ ′
k,n

)+ 2
∑

E
∣
∣ξ ′′

k,n

∣
∣≤

√
∑

E
(

ξ ′
k,n

)2 + 2
∑

E
∣
∣ξ ′′

k,n

∣
∣

=
[∑

E
(

ξ2
k,n; |ξk,n| ≤ 1

)]1/2

+ 2
∑

E
(|ξk,n|; |ξk,n| > 1

)≤√D1 + 2D1 → 0,

if D1 → 0. The theorem is proved. �

Remark 8.3.1 It can be seen from the proof of Theorem 8.3.2 that the argument will
remain valid if we replace the independence of ξk,n by the weaker condition that
ξ ′
k,n are non-correlated. It will also be valid if ξ ′

k,n are only weakly correlated so that

E
(

ζ ′
n − Eζ ′

n

)2 ≤ c
∑

Var
(

ξ ′
k,n

)

, c < ∞.

If {ξk} is a given fixed (not dependent on n) sequence of independent random
variables, Sn =∑n

k=1 ξk and Eξk = ak , then one looks at the applicability of the law
of large numbers to the sequences

ξk,n = ξk − ak

b(n)
, ζn =

∑

ξk,n = 1

b(n)

(

Sn −
n
∑

k=1

ak

)

, (8.3.7)

where ξk,n satisfy (8.3.1), and b(n) is an unboundedly increasing sequence. In some
cases it is natural to take b(n) = ∑n

k=1 E|ξk| if this sum increases unboundedly.
Without loss of generality we can set ak = 0. The next assertion follows from The-
orem 8.3.2.

Corollary 8.3.1 If, as n → ∞,

D1 := 1

b(n)

∑

E min
(|ξk|, ξ2

k /b(n)
)→ 0
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or, for any τ > 0,

M1(τ ) = 1

b(n)

∑

E
(|ξk|; |ξk| > τb(n)

)→ 0, b(n) =
n
∑

k=1

E|ξk| → ∞, (8.3.8)

then ζn
(1)−→ 0.

Now we will present an important sufficient condition for the law of large num-
bers that is very close to condition (8.3.8) and which explains to some extent its
essence. In addition, in many cases this condition is easier to check. Let bk = E|ξk|,
bn = maxk≤n bk , and, as before,

Sn =
n
∑

k=1

ξk, b(n) =
n
∑

k=1

bk.

The following assertion is a direct generalisation of Theorem 8.1.1 and Corol-
lary 8.1.1.

Theorem 8.3.3 Let Eξk = 0, the sequence of normalised random variables ξk/bk

be uniformly integrable and bn = o(b(n)) as n → ∞. Then

Sn

b(n)

(1)−→ 0.

If bn ≤ b < ∞ then b(n) ≤ bn and Sn

n

(1)−→ 0.

Proof Since

E
(|ξk|; |ξk| > τb(n)

)≤ bkE
(∣
∣
∣
∣

ξk

bk

∣
∣
∣
∣
;
∣
∣
∣
∣

ξk

bk

∣
∣
∣
∣
> τ

b(n)

bn

)

(8.3.9)

and b(n)

bn
→ ∞, the uniform integrability of { ξk

bk
} implies that the right-hand side

of (8.3.9) is o(bk) uniformly in k (i.e. it admits a bound ε(n)bk , where ε(n) → 0 as
n → ∞ and does not depend on k). Therefore

M1(τ ) = 1

b(n)

n
∑

k=1

E
(|ξk|; |ξk| > τb(n)

)→ 0

as n → ∞, and condition (8.3.8) is met. The theorem is proved. �

Remark 8.3.2 If, in the context of the law of large numbers, we are interested in
convergence in probability, only then can we generalise Theorem 8.3.3. In particular,
convergence

Sn

b(n)

p→ 0



194 8 Sequences of Independent Random Variables. Limit Theorems

will still hold if a finite number of the summands ξk (e.g., for k ≤ l, l being fixed)
are completely arbitrary (they can even fail to have expectations) and the sequence
ξ∗
k = ξk+l , k ≥ 1, satisfies the conditions of Theorem 8.3.3, where b(n) is defined for

the variables ξ∗
k and has the property b(n−1)

b(n)
→ 1 as n → ∞.

This assertion follows from the fact that

Sn

b(n)
= Sl

b(n)
+ Sn − Sl

b(n − l)
· b(n − l)

b(n)
,

Sl

b(n)

p−→ 0,
b(n − l)

b(n)
→ 1,

and by Theorem 8.3.3

Sn − Sl

b(n − l)

p−→ 0 as n → ∞.

Now we will show that the uniform integrability condition in Theorem 8.3.3

(as well as condition M1(τ ) → 0) is essential for convergence ζn
p→ 0. Consider a

sequence of random variables

ξj =
{

2s − 1 with probability 2−s ,

−1 with probability 1 − 2−s

for j ∈ Is := (2s−1,2s], s = 1,2, . . . ; ξ1 = 0. Then Eξj = 0, E|ξj | = 2(1 − 2−s) for
j ∈ Is , and, for n = 2k , one has

b(n) =
k
∑

s=1

2
(

1 − 2−s
)|Is |,

where |Is | = 2s − 2s−1 = 2s−1 is the number of points in Ik . Hence, as k → ∞,

b(n) ∼ 2
[(

1 − 2−k
)

2k−1 + (1 − 2−k+1)2k−2 + · · · ]

∼ 2k + 2k−1 + . . . ∼ 2k+1 = 2n.

Observe that the uniform integrability condition is clearly not met here. The distri-
bution of the number ν(s) of jumps of magnitude 2s −1 on the interval Is converges,
as s → ∞, to the Poisson distribution with parameter 1/2 = lims→∞ 2−s |Is |, while
the distribution of 2−s(S2s − S2s−1) converges to the distribution of ν − 1/2, where
ν ⊂= �1/2. Hence, assuming that n = 2k , and partitioning the segment [2, n] into the
intervals (2s−1,2s], s = 1, . . . , k, we obtain that the distribution of Sn/n converges,
as k → ∞, to the distribution of

Sn

n
= 2−k

k
∑

s=1

S2s − S2s−1

2s
2s ⇒

∞
∑

l=0

(νl − 1/2)2−l =: ζ,
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where νl , l = 0,1, . . . , are independent copies of ν. Clearly, ζ �≡ 0, and so conver-

gence Sn

n

p→ 0 fails to take place.
Let us return to arbitrary ξk,n. In order for [D1] to hold it suffices that the follow-

ing condition is met: for some s, 2 ≥ s > 1,

n
∑

k=1

E|ξk,n|s → 0. [Ls]

This assertion is evident, since g1(x) ≤ |x|s for 2 ≥ s > 1. Conditions [Ls] could
be called the modified Lyapunov conditions (cf. the Lyapunov condition [Ls] in
Sect. 8.4).

To prove Theorem 8.3.2, we used the so-called “truncated versions” ξ ′
k,n of the

random variables ξk,n. Now we will consider yet another variant of the law of large
numbers, in which conditions are expressed in terms of truncated random variables.

Denote by ξ (N) the result of truncation of the random variable ξ at level N :

ξ (N) = max
[−N,min(N, ξ)

]

.

Theorem 8.3.4 Let the sequence of random variables {ξk} in (8.3.7) satisfy the
following condition: for any given ε > 0, there exist Nk such that

1

b(n)

n
∑

k=1

E
∣
∣ξk − ξ

(Nk)
k

∣
∣< ε,

1

b(n)

n
∑

k=1

Nk < N < ∞.

Then the sequence {ζn} converges to zero in mean: ζn
(1)−→ 0.

Proof Clearly a
(Nk)
k := Eξ

(Nk)
k → ak as Nk → ∞ and |a(Nk)

k | ≤ Nk . Further, we
have

E|ζn| = 1

b(n)
E
∣
∣
∣

∑

(ξk − ak)

∣
∣
∣ ≤ 1

b(n)

∑

E
∣
∣ξk − ξ

(Nk)
k

∣
∣

+ E

∣
∣
∣
∣

∑ ξ
(Nk)
k − a

(Nk)
k

b(n)

∣
∣
∣
∣
+ 1

b(n)

∑∣
∣a

(Nk)
k − ak

∣
∣.

Here the second term on the right-hand side converges to zero, since the sum under
the expectation satisfies the conditions of Theorem 8.3.1 and is bounded. But the
first and the last terms do not exceed ε. Since the left-hand side does not depend on
ε, we have E|ζn| → 0 as n → ∞. �

Corollary 8.3.2 If b(n) = n and, for sufficiently large N and all k ≤ n,

E
∣
∣ξk − ξ

(N)
k

∣
∣< ε,

then ζn
(1)−→ 0.
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The corollary follows from Theorem 8.3.4, since the conditions of the corollary
clearly imply the conditions of Theorem 8.3.4.

It is obvious that, for identically distributed ξk , the conditions of Corollary 8.3.2
are always met, and we again obtain a generalisation of Theorem 8.1.1 and Corol-
lary 8.1.1.

If E|ξk|r < ∞ for r ≥ 1, then we can also establish in a similar way that

Sn

n

(r)−→ a.

Remark 8.3.3 Condition [D1] (or [M1]) is not necessary for convergence ζn
p→ 0

even when (8.3.2) and (8.3.5) hold, as the following example demonstrates. Let ξk,n

assume the values −n, 0, and n with probabilities 1/n2, 1 − 2/n2, and 1/n2, re-

spectively. Here ζn
p→ 0, since P(ζn �= 0) ≤ P(

⋃{ξk,n �= 0}) ≤ 2/n → 0, E|ξk,n| =
2/n → 0 and M1 = ∑

E|ξk,n| = 2 < ∞. At the same time,
∑

E(|ξk,n|; |ξk,n| ≥
1) = 2 �→ ∞, so that conditions [D1] and [M1] are not satisfied.

However, if we require that

ξk,n ≥ −εk,n, εk,n ≥ 0,

max
k≤n

εk,n → 0,

n
∑

k=1

εk,n ≤ c < ∞,
(8.3.10)

then condition [D1] will become necessary for convergence ζn
p→ 0.

Before proving that assertion we will establish several auxiliary relations that
will be useful in the sequel. As above, put Δk(t) := ϕk,n(t) − 1.

Lemma 8.3.2 One has
n
∑

k=1

∣
∣Δk(t)

∣
∣≤ |t |M1.

If condition [S] holds, then for each t , as n → ∞,

max
k≤n

∣
∣Δk(t)

∣
∣→ 0.

If a random variable ξ with Eξ = 0 is bounded from the left: ξ > −c, c > 0, then
E|ξ | ≤ 2c.

Proof By Lemma 7.4.1,

∣
∣Δk(t)

∣
∣≤ E

∣
∣eitξk,n − 1

∣
∣≤ |t |E|ξk,n|,

∑∣
∣Δk(t)

∣
∣≤ |t |M1.

Further,
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∣
∣Δk(t)

∣
∣≤ E

(∣
∣eitξk,n − 1

∣
∣; |ξk,n| ≤ ε

)+ E
(∣
∣eitξk,n − 1

∣
∣; |ξk,n| > ε

)

≤ |t |ε + 2P
(|ξk,n| > ε

)

.

Since ε is arbitrary here, the second assertion of the lemma now follows from con-
dition [S].

Put

ξ+ := max(0; ξ) ≥ 0, ξ− := −(ξ − ξ+)≥ 0.

Then Eξ = Eξ+ − Eξ− = 0 and E|ξ | = Eξ+ + Eξ− = 2Eξ− ≤ 2c. The lemma is
proved. �

From the last assertion of the lemma it follows that (8.3.10) implies (8.3.2) and
(8.3.5).

Lemma 8.3.3 Let conditions [S] and (8.3.2) be satisfied. A necessary and sufficient
condition for convergence ϕζn(t) → ϕ(t) is that

n
∑

k=1

Δk(t) → lnϕ(t).

Proof Observe that

ReΔk(t) = Re
(

ϕk,n(t) − 1
)≤ 0,

∣
∣eΔk(t)

∣
∣≤ 1,

and therefore, by Lemma 7.4.2,

∣
∣ϕzn(t) − e

∑
Δk(t)

∣
∣ =

∣
∣
∣
∣
∣

n
∏

k=1

ϕk,n(t) −
n
∏

k=1

eΔk(t)

∣
∣
∣
∣
∣

≤
n
∑

k=1

∣
∣ϕk,n(t) − eΔk(t)

∣
∣=

n
∑

k=1

∣
∣eΔk(t) − 1 − Δk(t)

∣
∣

≤ 1

2

n
∑

k=1

Δ2
k(t) ≤ 1

2
max

k

∣
∣Δk(t)

∣
∣

n
∑

k=1

∣
∣Δk(t)

∣
∣.

By Lemma 8.3.2 and conditions [S] and (8.3.2), the expression on the left-hand side
converges to 0 as n → ∞. Therefore, if ϕzn(t) → ϕ(t) then exp{∑Δk(t)} → ϕ(t),
and vice versa. The lemma is proved. �

The next assertion complements Theorem 8.3.1.
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Theorem 8.3.5 Assume that relations (8.3.1) and (8.3.10) hold. Then condition
[D1] (or condition [M1]) is necessary for the law of large numbers.

Proof If the law of large numbers holds then ϕzn(t) → 1 and, hence by Lemma 8.3.3
(recall that (8.3.10) implies (8.3.2), (8.3.5) and [S])

n
∑

k=1

Δk(t) =
n
∑

k=1

E
(

eitξk,n − 1 − itξk,n

)→ 0.

Moreover, by Lemma 7.4.1

n
∑

k=1

E
(∣
∣eitξk,n − 1 − itξk,n

∣
∣; |ξk,n| ≤ εk,n

)

≤ 1

2

n
∑

k=1

E
(|xik,n|2; |ξk,n| ≤ εk,n

)≤
n
∑

k=1

ε2
k,n ≤ max

k
εk,n

n
∑

k=1

εk,n → 0.

Therefore, if the law of large numbers holds, then by virtue of (8.3.10)

n
∑

k=1

E
(

eitξk,n − 1 − itξk,n; ξk,n > εk,n

)→ 0.

Consider the function α(x) = (eix − 1)/ix. It is not hard to see that the inequality
|α(x)| ≤ 1 proved in Lemma 7.4.1 is strict for x > ε > 0, and hence there exists a
δ(τ ) > 0 for τ > 0 such that Re(1 − α(x)) ≥ δ(τ ) for x > τ . This is equivalent to
Im(1 + ix − eix) ≥ δ(τ )x, so that

x ≤ 1

δ(τ )
Im
(

1 + ix − eix
)

for x > τ.

From this we find that

E1(τ ) =
n
∑

k=1

E
(|ξk,n|; |ξk,n| > τ

)=
n
∑

k=1

E(ξk,n; ξk,n > τ)

≤ 1

δ(τ )
Im

n
∑

k=1

E
(

1 + iξk,n − eiξk,n; ξk,n > εk,n

)→ 0.

Thus condition [M1] holds. Together with relation (8.3.2), that follows from
(8.3.10), this condition implies [D1]. The theorem is proved. �
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There seem to exist some conditions that are wider than (8.3.10) and under which

condition [D1] is necessary for convergence ζn
(1)−→ 0 in mean (condition (8.3.10) is

too restrictive).

8.4 The Central Limit Theorem for Sums of Arbitrary
Independent Random Variables

As in Sect. 8.3, we consider here a triangular array of random variables ξ1,n, . . . , ξn,n

and their sums

ζn =
n
∑

k=1

ξk,n. (8.4.1)

We will assume that ξk,n have finite second moments:

σ 2
k,n := Var(ξk,n) < ∞,

and suppose, without loss of generality, that

Eξk,n = 0,

n
∑

k=1

σ 2
k,n = Var(ζn) = 1. (8.4.2)

We introduce the following condition: for some s > 2,

D2 :=
n
∑

k=1

E min
(

ξ2
k,n, |ξk,n|s

)→ 0 as n → ∞, [D2]

which is to play an important role in what follows. Our arguments related to condi-
tion [D2] and also to conditions [M2] and [Ls] to be introduced below will be quite
similar to the ones from Sect. 8.3 that were related to conditions [D1], [M1] and
[Ls].

We also introduce the Lindeberg condition: for any τ > 0, as n → ∞,

M2(τ ) :=
n
∑

k=1

E
(|ξk,n|2; |ξk,n| > τ

)→ 0. [M2]

The following assertion is an analogue of Lemma 8.3.1.

Lemma 8.4.1 1. {[M2] ∩ (4.2)} ⊂ [D2]. 2. [D2] ⊂ [M2].

That is, conditions [M2] and (8.4.2) imply [D2], and condition [D2] implies
[M2].

From Lemma 8.4.1 it follows that, under condition (8.4.2), conditions [D2] and
[M2] are equivalent.
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Proof of Lemma 8.4.1 1. Let conditions [M2] and (8.4.2) be met. Put

g2(x) := min
(

x2, |x|s), s > 2.

Then (cf. (8.3.3), (8.3.4); τ ≤ 1)

D2 =
n
∑

k=1

Eg2(ξk,n) ≤
n
∑

k=1

E
(

ξ2
k,n; |ξk,n| > τ

)+
n
∑

k=1

E
(|ξk,n|s; |ξk,n| ≤ τ

)

≤ M2(τ ) + τ s−2M2(0) = M2(τ ) + τ s−2.

Since τ is arbitrary, we have D2 → 0 as n → ∞.
2. Conversely, suppose that [D2] holds. Then

M2(τ ) ≤
n
∑

k=1

E
(

ξ2
k,n; |ξk,n| > 1

)+ 1

τ s−2

n
∑

k=1

(|ξk,n|s; τ < |ξk,n| ≤ 1
)≤ 1

τ s−2
D2 → 0

for any τ > 0, as n → ∞. The lemma is proved. �

Lemma 8.4.1 also implies that if (8.4.2) holds, then condition [D2] is “invariant”
with respect to s > 2.

Condition [D2] can be stated in a more general form:

n
∑

k=1

Eξ2
k,nh

(|ξk,n|
)→ 0,

where h(x) is any function for which h(x) > 0 for x > 0, h(x) ↑, h(x) → 0 as
x → 0, and h(x) → c < ∞ as x → ∞. All the key properties of condition [D2] will
then be preserved. The Lindeberg condition clarifies the meaning of condition [D2]
from a somewhat different point of view. In Lindeberg’s condition, h(x) = I(τ,∞),
τ ∈ (0,1). A similar remark may be made with regard to conditions [D1] and [M1]
in Sect. 8.3.

In a way similar to what we did in Sect. 8.3 when discussing condition [M1], one
can easily verify that condition [M2] implies convergence (see (8.3.6))

max
k≤n

Var(ξk,n) → 0 (8.4.3)

and the negligibility of ξk,n (property [S]). Moreover, one obviously has the inequal-
ity

M1(τ ) ≤ 1

τ
M2(τ ).

For a given fixed (independent of n) sequence {ξk} of independent random vari-
ables,

Sn =
∞
∑

k=1

ξk, Eξk = ak, Var(ξk) = σ 2
k , (8.4.4)
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one considers the asymptotic behaviour of the normed sums

ζn = 1

Bn

(

Sn −
∞
∑

k=1

ak

)

, B2
n =

∞
∑

k=1

σ 2
k , (8.4.5)

that are clearly also of the form (8.4.1) with ξk,n = (ξk − ak)/Bn.
Conditions [D1] and [M2] for ξk will take the form

D2 = 1

B2
n

∞
∑

k=1

E min

(

(ξk − ak)
2,

|ξk − ak|s
Bs−2

n

)

→ 0, s > 2;

M2(τ ) = 1

B2
n

∞
∑

k=1

E
(

(ξk − ak)
2; |ξk − ak| > τBn

)→ 0, τ > 0.

(8.4.6)

Theorem 8.4.1 (The Central Limit Theorem) If the sequences of random vari-
ables {ξk,n}∞k=1, n = 1,2, . . . , satisfy conditions (8.4.2) and [D2] (or [M2]) then, as
n → ∞, P(ζn < x) → Φ(x) uniformly in x.

Proof It suffices to verify that

ϕζn(t) =
∞
∏

k=1

ϕk,n(t) → e−t2/2.

By Lemma 7.4.2,

∣
∣ϕζn(t) − e−t2/2

∣
∣ =

∣
∣
∣
∣
∣

n
∏

k=1

ϕk,n(t) −
n
∏

k=1

e
−t2σ 2

k,n/2

∣
∣
∣
∣
∣

≤
n
∑

k=1

∣
∣ϕk,n(t) − e

−t2σ 2
k,n/2∣∣

≤
n
∑

k=1

∣
∣
∣
∣
ϕk,n(t) − 1 + 1

2
t2σ 2

k,n

∣
∣
∣
∣

+
n
∑

k=1

∣
∣
∣
∣
e
−t2σ 2

k,n/2 − 1 + 1

2
t2σ 2

k,n

∣
∣
∣
∣
. (8.4.7)

Since by Lemma 7.4.1, for s ≤ 3,

∣
∣
∣
∣
eix − 1 − ix + x2

2

∣
∣
∣
∣
≤ min

(

x2,
|x3|

6

)

≤ g2(x)
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(see the definition of the function g2 in the beginning of the proof of Lemma 8.4.1),
the first sum on the right-hand side of (8.4.7) does not exceed

∞
∑

k=1

∣
∣
∣
∣
E
(

eitξk,n − 1 − itξk,n + 1

2
t2ξ2

k,n

)∣
∣
∣
∣

≤
∞
∑

k=1

Eg2
(|tξk,n|

)≤ h(t)

∞
∑

k=1

Eg2
(|ξk,n|

)≤ h(t)D2 → 0,

where h(t) = max(t2, |t |3). The last sum in (8.4.7) (again by Lemma 7.4.1) does
not exceed (see (8.4.2) and (8.4.3))

t4

8

n
∑

k=1

σ 4
k,n ≤ t4

8
max

k
σ 2

k,n

n
∑

k=1

σ 2
k,n ≤ t4

8
max

k
σ 2

k,n → 0 as n → ∞.

The theorem is proved. �

If we change the second relation in (8.4.2) to Eζn → σ 2 > 0, then, introducing
the new random variables ξ ′

k,n = ξk,n/
√

Var ζn and using continuity theorems, it is
not hard to obtain from Theorem 8.4.1 (see e.g. Lemma 6.2.2), the following asser-
tion, which sometimes proves to be more useful in applications than Theorem 8.4.1.

Corollary 8.4.1 Assume that Eξk,n = 0, Var(ζn) → σ 2 > 0, and condition [D2] (or
[M2]) is satisfied. Then ζn ⊂=⇒ �0,σ2 .

Remark 8.4.1 A sufficient condition for [D2] and [M2] is provided by the more re-
strictive Lyapunov condition, the verification of which is sometimes easier. Assume
that (8.4.2) holds. For s > 2, the quantity

Ls :=
n
∑

k=1

E|ξk,n|2

is called the Lyapunov fraction of the s-th order. The condition

Ls → 0 as n → ∞ [Ls]
is called the Lyapunov condition.

The quantity Ls is called a fraction since for ξk,n = (ξk −a)/Bn (where ak = Eξk ,
B2

n =∑n
k=1 Var(ξk) and ξk do not depend on n), it has the form

Ls = 1

Bs
n

n
∑

k=1

E|ξk − ak|s .
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If the ξk are identically distributed, ak = a, Var(ξk) = σ 2, and E|ξk − a|s = μ < ∞,
then

Ls = μ

σsn(s−2)/2
→ 0.

The sufficiency of the Lyapunov condition follows from the obvious inequalities
g2(x) ≤ |x|s for any s, D2 ≤ Ls .

In the case of (8.4.4) and (8.4.5) we can give a sufficient condition for the in-
tegral limit theorem that is very close to the Lindeberg condition [M2]; the former
condition elucidates to some extent the essence of the latter (cf. Theorem 8.3.3), and
in many cases it is easier to verify. Put σn = maxk≤n σk . Theorem 8.4.1 implies the
following assertion which is a direct extension of Theorem 8.2.1

Theorem 8.4.2 Let conditions (8.4.4) and (8.4.5) be satisfied, the sequence of
normalised random variables ξ2

k /σ 2
k be uniformly integrable and σn = o(Bn) as

n → ∞. Then ζn ⊂⇒ �0,1.

Proof of Theorem 8.4.2 repeats, to some extent, the proof of Theorem 8.3.3. For
simplicity assume that ak = 0. Then

E
(

ξ2
k ; |ξk| > τBn

)≤ σ 2
k E
(

ξ2
k

σ 2
k

;
∣
∣
∣
∣

ξk

σk

∣
∣
∣
∣
> τ

Bn

σn

)

, (8.4.8)

where Bn/σn → ∞. Hence, it follows from the uniform integrability of { ξ2
k

σ 2
k

} that

the right-hand side of (8.4.8) is o(σ 2
k ) uniformly in k. This means that

M2(τ ) = 1

B2
n

n
∑

k=1

E
(

ξ2
k ; |ξk| > τBn

)→ 0

as n → ∞ and condition (8.4.6) (or condition [M2]) is satisfied. The theorem is
proved. �

Remark 8.4.2 We can generalise the assertion of Theorem 8.4.2 (cf. Remark 8.3.3).
In particular, convergence ζn⊂=⇒�0,1 still takes place if a finite number of summands
ξk (e.g., for k ≤ l, l being fixed) are completely arbitrary, and the sequence ξ∗

k :=
ξk+l , k ≥ 1, satisfies the conditions of Theorem 8.4.2, in which we put σ 2

k = Var(ξ∗
k ),

B2
n =∑n

k=1 σ 2
k , and it is also assumed that Bn−1

Bn
→ 1 as n → ∞.

This assertion follows from the fact that

Sn

Bn

= Sl

Bn

+ Sn − Sl

Bn−l

· Bn−l

Bn

,

where Sl

Bn

p→ 0, Bn−l

Bn
→ 1 and, by Theorem 8.4.2, Sn−Sl

Bn−l
⊂=⇒ �0,1 as n → ∞.
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Remark 8.4.3 The uniform integrability condition that was used in Theorem 8.4.2
can be used for the triangular array scheme as well. In this more general case the
uniform integrability should mean the following: the sequences η1,n, . . . , ηn,n, n =
1,2, . . . , in the triangular array scheme are uniformly integrable if there exists a
function ε(N) ↓ 0 as N ↑ ∞ such that, for all n,

max
j≤n

E
(|ηj,n|; |ηj,n| > N

)≤ ε(N).

It is not hard to see that, with such an interpretation of uniform integrability,
the assertion of Theorem 8.4.2 holds true for the triangular array scheme as well

provided that the sequence { ξ2
j,n

σ 2
j,n

} is uniformly integrable and maxj≤n σj,n = o(1) as

n → ∞.

Example 8.4.1 We will clarify the difference between the Lindeberg condition and

uniform integrability of { ξ2
k

σ 2
k

} in the following example. Let ηk be independent

bounded identically distributed random variables, Eηk = 0, Dηk = 1 and g(k) >
√

2
be an arbitrary function. Put

ξk :=
{

ηk with probability 1 − 2g−2(k),

±g(k) with probability g−2(k).

Then clearly Eξk = 0, σ 2
k := Dξk = 3 − 2g−2(k) ∈ (2,3) and B2

n ∈ (2n,3n). The

uniform integrability of { ξ2
k

σ 2
k

}, or the uniform integrability of {ξ2
k } which means the

same in our case, excludes the case where g(k) → ∞ as k → ∞. The Lindeberg
condition is wider and allows the growth of g(k), except for the case where g(k) >

c
√

k. If g(k) = o(
√

k), then the Lindeberg condition is satisfied because, for any
fixed τ > 0,

E
(

ξ2; |ξk| > τ
√

k
)= 0

for all large enough k.

Remark 8.4.4 Let us show that condition [M2] (or [D2]) is essential for the central
limit theorem. Consider random variables

ξk,n =
{

± 1√
2

with probability 1
n
,

0 with probability 1 − 2
n
.

They satisfy conditions (8.4.2), [S], but not the Lindeberg condition as M2(τ ) = 1
for τ < 1√

2
. The number νk of non-zero summands converges in distribution to

a random variable ν having the Poisson distribution with parameter 2. Therefore, ζn

will clearly converge in distribution not to the normal law, but to
∑ν

j=1 γj , where
γj are independent and take values ±1 with probability 1/2.
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Note also that conditions [D2] or [M2] are not necessary for convergence of
the distributions of ζn to the normal distribution. Indeed, consider the following
example: ξ1,n ⊂= �0,1, ξ2,n = · · · = ξn,n = 0. Conditions (8.4.2) are clearly met,
P(ζn < x) = Φ(x), but the variables ξk,n are not negligible and therefore do not
satisfy conditions [D2] and [M2].

If, however, as well as convergence ζn ⊂=⇒ �0,1 we require that the ξk,n are neg-
ligible, then conditions [D2] and [M2] become necessary.

Theorem 8.4.3 Suppose that the sequences of independent random variables
{ξk,n}nk=1 satisfy conditions (8.4.2) and [S]. Then condition [D1] (or [M2]) is neces-
sary and sufficient for convergence ζn ⊂=⇒ �0,1.

First note that the assertions of Lemmas 8.3.2 and 8.3.3 remain true, up to some
inessential modifications, if we substitute conditions (8.3.2) and [S] with (8.4.2)
and [S].
Lemma 8.4.2 Let conditions (8.4.2) and [S] hold. Then (Δk(t) = ϕk,n(t) − 1)

max
k≤n

∣
∣Δk(t)

∣
∣→ 0,

∑∣
∣Δk(t)

∣
∣≤ t2

2
,

and the assertion of Lemma 8.3.3, that the convergence (8.3.10) is necessary and
sufficient for convergence ϕζn(t) → ϕ(t), remain completely true.

Proof We can retain all the arguments in the proofs of Lemmas 8.3.2 and 8.3.3
except for one place where

∑ |Δk(t)| is bounded. Under the new conditions, by
Lemma 7.4.1, we have

∣
∣Δk(t)

∣
∣= ∣∣ϕk,n(t) − 1 − itEξk,n

∣
∣≤ E

∣
∣eitξk,n − 1 − itξk,n

∣
∣≤ t2

2
E ξ2

k,n,

so that
∑∣
∣Δk(t)

∣
∣≤ t2

2
.

No other changes in the proofs of Lemmas 8.3.2 and 8.3.3 are needed. �

Proof of Theorem 8.4.3 Sufficiency is already proved. To prove necessity, we make
use of Lemma 8.4.1. If ϕζn(t) → e−t2/2, then by virtue of that lemma, for Δk(t) =
ϕk,n(t) − 1, one has

n
∑

k=1

Δk(t) → lnϕ(t) = − t2

2
.

For t = 1 the above relation can be written in the form

Rn :=
n
∑

k=1

E
(

eiξk,n − 1 − iξk,n + 1

2
ξ2
k,n

)

→ 0. (8.4.9)
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Put α(x) := (eix − 1 − ix)/x2. It is not hard to see that the inequality |α(x)| ≤ 1/2
proved in Lemma 7.4.1 is strict for x �= 0, and

sup
|x|≥τ

∣
∣α(x)

∣
∣<

1

2
− δ(τ ),

where δ(τ ) > 0 for τ > 0. This means that, for |x| ≥ τ > 0,

Re

[

α(x) + 1

2

]

≥ δ(τ ) > 0, x2 ≤ 1

δ(τ )
Re

(

eix − 1 − ix + x2

2

)

,

E
(

ξ2
k,n; |ξk,n| > τ

)≤ 1

δ(τ )
Re E

(

eiξk,n − 1 − iξk,n + ξ2
k,n

2

)

,

and hence by virtue of (8.4.9), for any τ > 0,

M2(τ ) ≤ 1

δ(τ )
|Rn| → 0

as n → ∞. The theorem is proved. �

Corollary 8.4.2 Assume that (8.4.2) holds and

max
k≤n

Var(ξk,n) → 0. (8.4.10)

Then a necessary and sufficient condition for convergence ζn ⊂=⇒ �0,1 is that

ηn :=
n
∑

k=1

ξ2
k,n ⊂=⇒ I1

(or that ηn
p→ 1).

Proof Let ηn ⊂=⇒ I1. The random variables ξ ′
k,n = ξ2

k,n − σ 2
k,n satisfy, by virtue of

(8.4.10), condition (8.3.10) and satisfy the law of large numbers:

n
∑

k=1

ξ ′
k,n = ηn − 1

p→ 0.

Therefore, by Theorem 8.3.5, the ξ ′
k,n satisfy condition [M1]: for any τ > 0,

n
∑

k=1

E
(∣
∣ξ2

k,n − σ 2
k,n

∣
∣; ∣∣ξ2

k,n − σ 2
k,n

∣
∣> τ

)→ 0. (8.4.11)

But by (8.4.10) this condition is clearly equivalent to condition [M2] for ξk,n, and
hence ζn ⊂=⇒ �0,1.
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Conversely, if ζn ⊂=⇒�0,1, then [M2] holds for ξk,n which implies (8.4.11). Since,
moreover,

n
∑

k=1

E
∣
∣ξ ′

k,n

∣
∣≤ 2

n
∑

k=1

Var(ξk,n) = 2,

relation (8.3.2) holds for ξ ′
k,n, and by Theorem 8.3.1

n
∑

k=1

ξ ′
k,n = ηn − 1

p→ 0.

The corollary is proved. �

Example 8.4.2 Let ξk , k = 1,2, . . . , be independent random variables with distribu-
tions

P
(

ξk = kα
)= P

(

ξk = −kα
)= 1

2
.

Evidently, ξk can be represented as ξk = kαηk , where ηk
d= η are independent,

P(η = 1) = P(η = −1) = 1

2
, Var(η) = 1, σ 2

k = Var(ξk) = k2α.

Let us show that, for all α ≥ −1/2, the random variables Sn/Bn are asymptoti-
cally normal. Since

ξ2
k

σ 2
k

d= η2

are uniformly integrable, by Theorem 8.4.2 it suffices to verify the condition

σn = max
k≤n

σk = o(Bn).

In our case σn = max(1, n2α) and, for α > −1/2,

B2
n =

n
∑

k=1

k2α ∼
∫ n

0
x2αdα = n2α+1

2α + 1
.

For α = −1/2, one has

B2
n =

n
∑

k=1

k−1 ∼ lnn.

Clearly, in these cases σn = o(Bn) and the asymptotical normality of Sn/n holds.
If α < −1/2 then the sequence Bn converges, condition σn = 1 = o(Bn) is not

satisfied and the asymptotical normality of Sn/Bn fails to take place.
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Note that, for α = −1/2, the random variable

Sn =
n
∑

k=1

ηk√
k

will be “comparable” with
√

lnn with a high probability, while the sums

n
∑

k=1

(−1)k√
k

converge to a constant.

A rather graphical and well-known illustration of the above theorems is the scat-
tering of shells when shooting at a target. The fact is that the trajectory of a shell is
influenced by a large number of independent factors of which the individual effects
are small. These are deviations in the amount of gun powder, in the weight and size
of a shell, variations in the humidity and temperature of the air, wind direction and
velocities at different altitudes and so on. As a result, the deviation of a shell from
the aiming point is described by the normal law with an amazing accuracy.

Similar observations could be made about errors in measurements when their
accuracy is affected by many “small” factors. (There even exists a theory of errors
of which the crucial element is the central limit theorem.)

On the whole, the central limit theorem has a lot of applications in various areas.
This is due to its universality and robustness under small deviations from the as-
sumptions of the theorem, and its relatively high accuracy even for moderate values
of n. The first two noted qualities mean that:

(1) the theorem is applicable to variables ξk,n with any distributions so long as
the variances of ξk,n exist and are “negligible”;

(2) the presence of a “moderate” dependence3 between ξk,n does not change the
normality of the limiting distribution.

To illustrate the accuracy of the normal approximation, consider the following
example. Let Fn(x) = P(Sn/

√
n < x) be the distribution function of the normalised

sum Sn of independent variables ξk uniformly distributed over [−√
3,

√
3], so that

Var(ξk) = 1. Then it turns out that already for n = 5 (!) the maximum of |Fn(x) −
Φ(x)| over the whole axis of x-values does not exceed 0.006 (the maximum is
attained near the points x = ±0.7).

And still, despite the above circumstances, one has to be careful when applying
the central limit theorem. For instance, one cannot expect high accuracy from the
normal approximation when estimating probabilities of rare events, say when study-
ing large deviation probabilities (this issue has already been discussed in Sect. 5.3).

3There exist several conditions characterising admissible dependence of ξk,n. Such considerations
are beyond the scope of the present book, but can be found in the special literature. See e.g. [20].



8.5 Another Approach to Proving Limit Theorems 209

After all, the theorem only ensures the smallness of the difference

∣
∣Φ(x) − P(ζ < x)

∣
∣ (8.4.12)

for large n. Suppose we want to use the normal approximation to find an x0 such
that the event {ζn > x0} would occur on average once in 1000 trials (a problem
of this sort could be encountered by an experimenter who wants to ensure that, in
a single experiment, such an event will not occur). Even if the difference (8.4.12)
does not exceed 0.02 (which can be a good approximation) then, using the normal
approximation, we risk making a serious error. It can turn out, say, that 1 −Φ(x0) =
10−3 while P(ζ < x) ≈ 0.02, and then the event {ζn > x0} will occur much more
often (on average, once in each 50 trials).

In Chap. 9 we will consider the problem of large deviation probabilities that
enables one to handle such situations. In that case one looks for a function P(n,x)

such that P(ζ < x)/P (n, x) → 1 as n → ∞, x → ∞. The function P(n,x) turns
out to be, generally speaking, different from 1−Φ(x). We should note however that
using the approximation P(n,x) requires more restrictive conditions on {ξk,n}.

In Sect. 8.7 we will consider the so-called integro-local and local limit theorems
that establish convergence of the density of ζn to that of the normal law and enables
one to estimate probabilities of rare events of another sort—say, of the form {a <

ζn < b} where a and b are close to each other.

8.5* Another Approach to Proving Limit Theorems. Estimating
Approximation Rates

The approach to proving the principal limit theorems for the distributions of sums of
random variables that we considered in Sects. 8.1–8.4 was based on the use of ch.f.s.
However, this is by far not the only method of proof of such assertions. Nowadays
there exist several rather simple proofs of both the laws of large numbers and the
central limit theorem that do not use the apparatus of ch.f.s. (This, however, does not
belittle that powerful, well-developed, and rather universal tool.) Moreover, these
proofs sometimes enable one to obtain more general results. As an illustration, we
will give below a proof of the central limit theorem that extends, in a certain sense,
Theorems 8.4.1 and 8.4.3 and provides an estimate of the convergence rate (although
not the best one).

Along with the random variables ξk,n in the triangular array scheme under as-
sumption (8.4.2), consider mutually independent and independent of the sequence
{ξk,n}nk=1 random variables ηk,n ⊂= �0,σ 2

k,n
, σk,n := Var(ξk,n), so that

ηn :=
n
∑

k=1

ηk,n ⊂= �0,1.
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Set4

μk,n := E|ξk,n|3, νk,n := E|ηk,n|3 = c3σ
3
k,n ≤ c3μk,n,

μ0
k,n :=

∫

|x|3∣∣d(Fk,n(x) − Φk,n(x)
)∣
∣≤ μk,n + νk,n,

L3 :=
n
∑

k=1

μk,n, N3 :=
n
∑

k=1

νk,n, L0
3 :=

n
∑

k=1

μ0
k,n ≤ L3 + N3 ≤ (1 + c3)L3.

Here Fk,n and Φk,n are the distribution functions of ξk,n and ηk,n, respectively. The
quantities L3 and N3 are the third order Lyapunov fractions for the sequences {ξk,n}
and {ηk,n}. The quantities μ0

k,n are called the third order pseudomoments and L0
s

the Lyapunov fractions for pseudomoments. Clearly, N3 ≤ c3L3 → 0, provided that
the Lyapunov condition holds. As we have already noted, for ξk,n = (ξk − ak)/Bn,
where ak = Eξk , B2

n =∑n
1 Var(ξk), and ξk do not depend on n, one has

L3 = 1

B3
n

n
∑

k=1

μk, μk = E|ξk − ak|3.

If, moreover, ξk are identically distributed, then

L3 = μ1

σ 3
√

n
.

Our first task here is to estimate the closeness of Ef (ζn) to Ef (ηn) for suffi-
ciently smooth f . This problem could be of independent interest. Assume that f

belongs to the class C3 of all bounded functions with uniformly continuous and
bounded third derivatives: supx |f (3)(x)| ≤ f3.

Theorem 8.5.1 If f ∈ C3 then

∣
∣Ef (ζn) − Ef (ηn)

∣
∣≤ f3L

0
3

6
≤ f3

6
(L3 + N3). (8.5.1)

Proof Put, for 1 < l ≤ n,

Xl := ξ1,n + · · · + ξl−1,n + ηl,n + · · · + ηn,n,

Zl := ξ1,n + · · · + ξl−1,n + ηl+1,n + · · · + ηn,n,

X1 := ηn, Xn+1 = ζn.

Then

Xl+1 = Zl + ξl,n, Xl = Zl + ηl,n, (8.5.2)

4If η ⊂= �0,1 then c3 = E|η|3 = 2√
2π

∫∞
0 x3e−x2/2dx = 4√

2π

∫∞
0 te−t dt = 4√

2π
.
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f (ζn) − f (ηn) =
n
∑

l=1

[

f (Xl+1) − f (Xl)
]

. (8.5.3)

Now we will make use of the following lemma.

Lemma 8.5.1 Let f ∈ C3 and Z, ξ and η be independent random variables with

Eξ = Eη = a, Eξ2 = Eη2 = σ 2, μ0 =
∫

|x3|∣∣d(Fξ (x) − Fη(x)
)∣
∣< ∞.

Then

∣
∣Ef (Z + ξ) − Ef (Z + η)

∣
∣≤ f3μ

0

6
. (8.5.4)

Applying this lemma to (8.5.3), we get

∣
∣E
[

f (Xl+1) − f (X1)
]∣
∣≤ f3μ

0

6

which after summation gives (8.5.1). The theorem is proved. �

Thus to complete the argument proving Theorem 8.5.1 it remains to prove
Lemma 8.5.1.

Proof of Lemma 8.5.1 Set g(x) := Ef (Z + x). It is evident that g, being the result
of the averaging of f , has all the smoothness properties of f and, in particular,
|g′′′(x)| ≤ f3. By virtue of the independence of Z, ξ and η, we have

Ef (Z + ξ) − Ef (Z + η) =
∫

g(x)d
(

Fξ (x) − Fη(x)
)

. (8.5.5)

For the integrand, we make use of the expansion

g(x) = g(0) + xg′(0) + x2

2
g′′(0) + x3

6
g′′′(θx), θx ∈ [0, x].

Since the first and second moments of ξ coincide with those of η, we obtain for the
right-hand side of (8.5.5) the bound

∣
∣
∣
∣

1

6
x3g′′′(θx) d

(

Fξ (x) − Fη(x)
)
∣
∣
∣
∣
≤ f3μ

0

6
.

The lemma is proved. �

Remark 8.5.1 In exactly the same way one can establish the representation

∣
∣Ef (ζn) − Ef (ηn)

∣
∣≤ g′′′(0)

6

n
∑

k=1

E
(

ξ3
k,n − η3

k,n

)+ f4L
0
4

24
, (8.5.6)



212 8 Sequences of Independent Random Variables. Limit Theorems

under obvious conventions for the notations f4 and L0
4. This bound can improve

upon (8.5.1) if the differences E(ξ3
k,n − η3

k,n) are small. If, for instance, ξk,n =
(ξk − a)/(σ

√
n), ξk are identically distributed, and the third moments of ξk,n and

ηk,n coincide, then on the right-hand side of (8.5.6) we will have a quantity of the
order 1/n.

Theorem 8.5.1 extends Theorem 8.4.1 in the case when s = 3. The extension
is that, to establish convergence ζn ⊂=⇒ �0,1, one no longer needs the negligibility
of ξk,n. If, for example, ξ1,n ⊂= �0,1/2 (in that case μ0

1,n = 0) and L0
3 → 0, then

Ef (ζn) → Ef (η), η ⊂= �0,1, for any f from the class C3. Since C3 is a distribution
determining class (see Chap. 6), it remains to make use of Corollary 6.3.2.

We can strengthen the above assertion.

Theorem 8.5.2 For any x ∈ R,

∣
∣P(ζn < x) − Φ(x)

∣
∣≤ c

(

L0
3

)1/4
, (8.5.7)

where c is an absolute constant.

Proof Take an arbitrary function h ∈ C3, 0 ≤ h ≤ 1, such that h(x) = 1 for x ≤ 0
and h(x) = 0 for x ≥ 1, and put h3 = supx |h′′′(x)|. Then, for the function f (x) =
h((x − t)/ε), we will have f3 = supx |f ′′′(x)| ≤ h3/ε

3, and by Theorem 8.5.1

P(ζn < t) ≤ Ef (ζn) ≤ Ef (η) + f3L
0
3

6

≤ P(η < t + ε) + h3L
0
3

6ε3
≤ P(η < t) + ε√

2π
+ h3L

0
3

6ε3
.

The last inequality holds since the maximum of the derivative of the normal distri-
bution function Φ(t) = P(η < t) is equal to 1/

√
2π . Establishing in the same way

the converse inequality and putting ε = (L0
3)

1/4, we arrive at (8.5.7). The theorem
is proved. �

The bound in Theorem 8.5.2 is, of course, not the best one. And yet inequality
(8.5.7) shows that we will have a good normal approximation for P(ζn < x) in the
large deviations range (i.e. for |x| → ∞) as well—at least for those x for which

(

1 − Φ
(|x|))(L0

3

)−1/4 → ∞ (8.5.8)

as n → ∞. Indeed, in that case, say, for x = |x| > 0,

∣
∣
∣
∣

P(ζn ≥ x)

1 − Φ(x)
− 1

∣
∣
∣
∣
≤ c(L0

3)
1/4

1 − Φ(x)
→ 0.
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Since by L’Hospital’s rule

1 − Φ(x) = 1√
2π

∫ ∞

x

e−t2/2 dt ∼ 1√
2πx

e−x2/2 as x → ∞,

(8.5.8) holds for |x| < c1

√

− lnL0
3 with an appropriately chosen constant c1.

In Chap. 20 we will obtain an extension of Theorems 8.5.1 and 8.5.2.
The problem of refinements and approximation rate bounds in the central limit

theorem and other limit theorems is one of the most important in probability theory,
because solving it will tell us how precise and efficient the applications of these
theorems to practical problems will be. First of all, one has to find the true order of
the decay of

Δn = sup
x

∣
∣P(ζn < x) − Φ(x)

∣
∣

in n (or, say, in L3 in the case of non-identically distributed variables). There ex-
ist at least two approaches to finding sharp bounds for Δn. The first one, the so-
called method of characteristic functions, is based on the unimprovable bound for
the closeness of the ch.f.s

∣
∣
∣
∣
lnϕζn(t) + t2

2

∣
∣
∣
∣
< cL3

that the reader can obtain by him/herself, using Lemma 7.4.1 and somewhat modify-
ing the argument in the proof of Theorem 8.4.1. The principal technical difficulties
here are in deriving, using the inversion formula, the same order of smallness for Δn.

The second approach, the so-called method of compositions, has been illustrated
in the present section in Theorem 8.5.1 (the idea of the method is expressed, to a
certain extent, by relation (8.5.3)). It will be using just that method that we will
prove in Appendix 5 the following general result (Cramér–Berry–Esseen):

Theorem 8.5.3 If ξk,n = (ξk − ak)/Bn, where ξk do not depend on n, then

sup
x

∣
∣P(ζn < x) − Φ(x)

∣
∣≤ cL3,

where c is an absolute constant.

In the case of identically distributed ξk the right-hand side of the above inequality
becomes cμ1/(σ

3√n). It was established that in this case (2π)−1/2 < c < 0.4774,
while in the case of non-identically distributed summands c < 0.5591.5

One should keep in mind that the above theorems and the bounds for the constant
c are universal and therefore hold under the most unfavourable conditions (from
the point of view of the approximation). In real problems, the convergence rate is
usually much better.

5See [33].
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8.6 The Law of Large Numbers and the Central Limit Theorem
in the Multivariate Case

In this section we assume that ξ1,n, . . . , ξn,n are random vectors in the triangular
array scheme,

Eξk,n = 0, ζn =
n
∑

k=1

ξk,n.

The law of large numbers ζn
p→ 0 follows immediately from Theorem 8.3.1, if

we assume that the components of ξk,n satisfy the conditions of that theorem. Thus
we can assume that Theorem 8.3.1 was formulated and proved for vectors.

Dealing with the central limit theorem is somewhat more complicated. Here we
will assume that E|ξk,n|2 < ∞, where |x|2 = (x, x) is square of the norm of x. Let

σ 2
k,n := E ξT

k,nξk,n, σ 2
n :=

n
∑

k=1

σ 2
k,n

(the superscript T denotes transposition, so that ξT
k,n is a column vector).

Introduce the condition

n
∑

k=1

E min
(|ξk,n|2, |ξk,n|s

)→ 0, s > 2, [D2]

and the Lindeberg condition

n
∑

k=1

E
(|ξk,n|2; |ξk,n| > τ

)→ 0 [M2]

as n → ∞ for any τ > 0. As in the univariate case, we can easily verify that condi-
tions [D2] and [M2] are equivalent provided that trσ 2

n :=∑d
j=1(σ

2
n )jj < c < ∞.

Theorem 8.6.1 If σ 2
n → σ 2, where σ 2 is a positive definite matrix, and condition

[D2] (or [M2]) is met, then

ζn ⊂=⇒ �0,σ 2 .

Corollary 8.6.1 (“The conventional” central limit theorem) If ξ1, ξ2, . . . is a se-
quence of independent identically distributed random vectors, Eξk = 0, σ 2 =
E ξT

k ξk and Sn =∑n
k=1 ξk then, as n → ∞,

Sn√
n

⊂=⇒ �0,σ 2 .
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This assertion is a consequence of Theorem 8.6.1, since the random variables
ξk,n = ξk/

√
n satisfy its conditions.

Proof of Theorem 8.6.1 Consider the characteristic functions

ϕk,n(t) := Eei(t,ξk,n), ϕn(t) := Eei(t,ζn) =
n
∏

k=1

ϕk,n(t).

In order to prove the theorem we have to verify that, for any t , as n → ∞,

ϕn(t) → exp

{

−1

2
tσ 2tT

}

.

We make use of Theorem 8.4.1. We can interpret ϕk,n(t) and ϕn(t) as the ch.f.s

ϕθ
k,n(v) = E exp

(

ivξθ
k,n

)

, ϕθ
n(v) = E exp

(

ivζ θ
n

)

of the random variables ξθ
k,n = (ξk,n, θ), ζ θ

n = (ζn, θ), where θ = t/|t |, v = |t |. Let

us show that the scalar random variables ξθ
k,n satisfy the conditions of Theorem 8.4.1

(or Corollary 8.4.1) for the univariate case. Clearly,

E ξθ
k,n = 0,

n
∑

k=1

E
(

ξθ
k,n

)2 =
n
∑

k=1

E(ξk,n, θ)2 = θσ 2
n θT → θσ 2θT > 0.

That condition [D2] is satisfied follows from the obvious inequalities

(ξk,n, θ)2 = ∣∣ξθ
k,n

∣
∣2 ≤ |ξk,n|2,

n
∑

k=1

Eg2
(

ξθ
k,n

)≤
n
∑

k=1

Eg2
(|ξk,n|

)

,

where g2(x) = min(x2, |x|s), s > 2. Thus, for any v and θ (i.e., for any t), by Corol-
lary 8.4.1 of Theorem 8.4.1

ϕn(t) = E exp
{

ivζ θ
n

}→ exp

{

−1

2
v2θσ 2θT

}

= exp

{

−1

2
tσ 2tT

}

.

The theorem is proved. �

Theorem 8.6.1 does not cover the case where the entries of the matrix σ 2
n grow

unboundedly or behave in such away that the rank of the limiting matrix σ 2 becomes
less than the dimension of the vectors ξk,n. This can happen when the variances of
different components of ξk,n have different orders of decay (or growth). In such a
case, one should consider the transformed sums ζ ′

n = ζnσ
−1
n instead of ζn. Theo-

rem 8.6.1 is actually a consequence of the following more general assertion which,
in turn, follows from Theorem 8.6.1.

Theorem 8.6.2 If the random variables ξ ′
k,n = ξk,nσ

−1
n satisfy condition [D2] (or

[M2]) then ζ ′
n ⊂=⇒ �0,E , where E is the identity matrix.
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8.7 Integro-Local and Local Limit Theorems for Sums of
Identically Distributed Random Variables with Finite
Variance

Theorem 8.2.1 from Sect. 8.2 is called the integral limit theorem. To understand
the reasons for using such a name, one should compare this assertion with (more
accurate) limit theorems of another type, that describe the asymptotic behaviour of
the densities of the distributions of Sn (if any) or the asymptotics of the probabilities
of sums Sn hitting a fixed interval. It is natural to call the theorems for densities local
theorems. Theorems similar to Theorem 8.2.1 can be obtained from the local ones
(if the densities exist) by integrating, and it is natural to call them integral theorems.
Assertions about the asymptotics of the probabilities of Sn hitting an interval are
“intermediate” between the local and integral theorems, and it is natural to call them
integro-local theorems. In the literature, such statements are often also referred to
as local, apparently because they describe the probability of the localisation of the
sum Sn in a given interval.

8.7.1 Integro-Local Theorems

Integro-local theorems describe the asymptotics of

P
(

Sn ∈ [x, x + Δ)
)

as n → ∞ for a fixed Δ > 0. Probabilities of this type for increasing Δ (or for
Δ = ∞) can clearly be obtained by summing the corresponding probabilities for
fixed Δ.

We will derive integro-local and local theorems with the inversion formulas from
Sect. 8.7.2.

For the sake of brevity, put

Δ[x) = [x, x + Δ)

and denote by φ(x) = φ0,1(x) the density of the standard normal distribution. Below
we will restrict ourselves to the investigation of the sums Sn = ξ1 + · · · + ξn of

independent identically distributed random variables ξk
d= ξ .

Theorem 8.7.1 (The Stone–Shepp integro-local theorem) Let ξ be a non-lattice
random variable, E ξ = 0 and E ξ2 = σ 2 < ∞. Then, for any fixed Δ > 0, as
n → ∞,

P
(

Sn ∈ Δ[x)
)= Δ

σ
√

n
φ

(
x

σ
√

n

)

+ o

(
1√
n

)

, (8.7.1)

where the remainder term o(1/
√

n) is uniform in x.
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Remark 8.7.1 Since relation (8.7.1) is valid for any fixed Δ, it will also be valid
when Δ = Δn → 0 slowly enough as n → ∞. If Δ = Δn grows then the asymp-
totics of P(Sn ∈ Δ[x)) can be obtained by summing the right-hand sides of (8.7.1)
for, say, Δ = 1 (if Δn → ∞ is integer-valued). Thus the integral theorem follows
from the integro-local one but not vice versa.

Remark 8.7.2 By virtue of the properties of densities (see Sect. 3.2), the right-hand
side of representation (8.7.1) has the same form as if the random variable ζn =
Sn/(σ

√
n) had the density φ(v) + o(1), although the existence of the density of Sn

(or ζn) is not assumed in the theorem.

Proof of Theorem 8.7.1 First prove the theorem under the simplifying assumption
that condition

lim sup
|t |→∞

∣
∣ϕ(t)

∣
∣< 1 (8.7.2)

is satisfied (the Cramér condition on the ch.f.). Property 11 of ch.f.s (see Sect. 8.7.1)
implies that this condition is always met if the distribution of the sum Sm, for some
m ≥ 1, has a positive absolutely continuous component. The proof of Theorem 8.7.1
in its general form is more complicated and will be given at the end of this section,
in Sect. 8.7.3.

In order to use the inversion formula (7.2.8), we employ the “smoothing method”
and consider, along with Sn, the sums

Zn = Sn + ηδ, (8.7.3)

where ηδ ⊂= U−δ,0. Since the ch.f. ϕηδ (t) of the random variable ηδ , being equal to

ϕηδ (t) = 1 − e−itδ

itδ
, (8.7.4)

possesses the property that the function ϕηδ (t)/t is integrable at infinity, for the
increments of the distribution function Gn(x) of the random variable Zn (its ch.f.
divided by t is integrable, too) we can use formula (7.2.8):

Gn(x + Δ) − Gn(x) = P
(

Zn ∈ Δ[x)
) = 1

2π

∫

e−itx 1 − e−itΔ

it
ϕn(t)ϕηδ (t) dt

= Δ

2π

∫

e−itxϕn(t)ϕ̂(t) dt, (8.7.5)

where ϕ̂(t) = ϕηδ (t)ϕηΔ(t) (cf. (7.2.8)) is the ch.f. of the sum of independent random
variables ηδ and ηΔ. We obtain that the difference Gn(x + Δ) − Gn(x), up to the
factor Δ, is nothing else but the value of the density of the random variable Sn +
ηδ + ηΔ at the point x.

Split the integral on the right-hand side of (8.7.5) into the two subintegrals: one
over the domain |t | < γ for some γ < 1, and the other—over the complementary
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domain. Put x = v
√

n and consider first

I1 :=
∫

|t |<γ

e−itv
√

nϕn(t)ϕ̂(t) dt = 1√
n

∫

|u|<γ
√

n

e−iuvϕn

(
u√
n

)

ϕ̂

(
u√
n

)

du.

Without loss of generality we can assume σ = 1, and by (8.2.1) obtain that

1 − ϕ(t) = t2

2
+ o

(

t2),

lnϕ(t) = ln
[

1 − (1 − ϕ(t)
)]= − t2

2
+ o

(

t2) as t → 0. (8.7.6)

Hence

n lnϕ

(
u√
n

)

= −u2

2
+ hn(u), (8.7.7)

where hn(u) → 0 for any fixed u as n → ∞. Moreover, for γ small enough, in the
domain |u| < γ

√
n we have

∣
∣hn(u)

∣
∣≤ u2

6
,

so the right-hand side of (8.7.7) does not exceed −u2/3. Now we can rewrite I1 in
the form

I1 = 1√
n

∫

|u|<γ
√

n

exp

{

−iuv − u2

2
+ hn(u)

}

ϕ̂

(
u√
n

)

du, (8.7.8)

where |ϕ̂(u/
√

n)| ≤ 1 and ϕ̂(u/
√

n ) → 1 for any fixed u as n → ∞. Therefore, by
virtue of the dominated convergence theorem,

√
nI1 →

∫

exp

{

−iuv − u2

2

}

du (8.7.9)

uniformly in v, since the integral on the right-hand side of (8.7.8) is uniformly con-
tinuous in v. But the integral on the right-hand side of (8.7.9) is simply (up to the
factor 1/(2π)) the result of applying the inversion formula to the ch.f. of the normal
distribution, so that

lim
n→∞

√
nI1 = √

2π e−v2/2. (8.7.10)

It remains to consider the integral

I2 :=
∫

|t |≥γ

e−itv
√

nϕn(t)ϕ̂(t) dt.
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By virtue of (8.7.2) and non-latticeness of the distribution of ξ ,

q := sup
|t |≥γ

∣
∣ϕ(t)

∣
∣< 1 (8.7.11)

and therefore

|I2| ≤ qn

∫

|t |≥γ

∣
∣ϕ̂(t)

∣
∣dt ≤ qnc(Δ, δ), lim

n→∞
√

nI2 = 0 (8.7.12)

uniformly in v, where c(Δ, δ) depends on Δ and δ only. We have established that,
for x = v

√
n, as n → ∞, the relations

I1 + I2 =
√

2π

n
e−v2/2 + o

(
1√
n

)

,

P
(

Zn ∈ Δ[x)
) = Δ√

2πn
e−x2/(2n) + o

(
1√
n

) (8.7.13)

hold uniformly in v (see (8.7.5)). This means that representation (8.7.13) holds uni-
formly for all x.

Further, by (8.7.3),

{

Zn ∈ [x, x + Δ − δ)
}⊂ {Sn ∈ Δ[x)

}⊂ {Zn ∈ [x − δ, x + Δ)
}

(8.7.14)

and, so, in particular,

P
(

Sn ∈ Δ[x)
)≤ Δ + δ√

2πn
e−(x−δ)2/(2n) + o

(
1√
n

)

= Δ + δ√
2πn

e−x2/(2n) + o

(
1√
n

)

.

By (8.7.14) an analogous converse inequality also holds. Since δ is arbitrary, this
is possible only if

P
(

Sn ∈ Δ[x)
)= Δ√

2πn
e−x2/(2n) + o

(
1√
n

)

. (8.7.15)

The theorem is proved. �

8.7.2 Local Theorems

If the distribution of Sn has a density than we can obtain local theorems on the
asymptotics of this density.

Theorem 8.7.2 Let E ξ = 0, E ξ2 = σ 2 < ∞ and suppose there exists an m ≥ 1
such that at least one of the following three conditions is met:

(a) the distribution of Sm has a bounded density;
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(b) the distribution of Sm has a density from L2;
(c) the ch.f. ϕm(t) of the sum Sm is integrable.

Then, for n ≥ m, the distribution of the sum Sn has density fSn(x) for which the
representation

fSn(x) = 1√
2πnσ

exp

{

− x2

2nσ 2

}

+ o

(
1√
n

)

(8.7.16)

holds uniformly in x as n → ∞.
Conditions (a)–(c) are equivalent to each other (possibly with different values

of m).

Proof We first establish the equivalence of (a)–(c). The fact that a bounded density
belongs to L2 was proved in Sect. 7.2.3. Conversely, if f ∈ L2 then

∣
∣f (2)∗(t)

∣
∣ =

∣
∣
∣
∣

∫

f (u)f (t − u)du

∣
∣
∣
∣

≤
[∫

f 2(u) du ×
∫

f 2(t − u)du

]1/2

=
∫

f 2(u) du < ∞.

Hence the relationship fSm ∈ L2 implies the boundedness of fS2m
, and thus (a) and

(b) are equivalent.
If ϕm is integrable then by Theorem 7.2.2 the density fSm exists and is bounded.

Conversely, if fSm is bounded then fSm ∈ L2, ϕSm ∈ L2 and ϕS2m
∈ L1 (see

Sect. 8.7.2). This proves the equivalence of (a) and (c).
We will now prove (8.7.16). By the inversion formula (7.2.1),

fSn(x) = 1

2π

∫

e−itxϕn(t) dt.

Here the integral on the right-hand side does not “qualitatively” differ from the
integral on the right-hand side of (8.7.5), we only have to put ϕ̂(t) ≡ 1 in the part
I1 of the integral (8.7.5) (the integral over the set |t | < γ ), and, in the part I2 (over
the set |t | ≥ γ ), to replace the integrable function ϕ̂(t) with the integrable function
ϕm(t) and to replace the function ϕn(t) with ϕn−m(t). After these changes the whole
argument in the proof of relation (8.7.13) remains valid, and therefore the same
relation (up to the factor Δ) will hold for

fSn(x) = 1√
2πnσ

exp

{

− x2

2nσ 2

}

+ o

(
1√
n

)

.

The theorem is proved. �

Theorem 8.7.2 implies that the density fζn of the random variable ζn = Sn

σ
√

n

converges to the density φ of the standard normal law:

fζn(v) → φ(v)

uniformly in v as n → ∞.
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For instance, the density of the uniform distribution over [−1,1] satisfies the
conditions of this theorem, and hence the density of Sn at the point x = vσ

√
n

(σ 2 = 1/3) will behave as 1
σ
√

2πn
e−v2/(2σ 2) (cf. the remark to Example 3.6.1).

In the arithmetic case, where the random variable ξ is integer-valued and the
greatest common divisor of all possible values of ξ equals 1 (see Sect. 7.1), it is the
asymptotics of the probabilities P(Sn = x) for integer x that become the subject of
interest for local theorems. In this case we cannot assume without loss of generality
that Eξ = 0.

Theorem 8.7.3 (Gnedenko) Let E ξ = a, E ξ2 = σ 2 < ∞ and ξ have an arithmetic
distribution. Then, uniformly over all integers x, as n → ∞,

P(Sn = x) = 1√
2πnσ

exp

{
(x − an)2

2nσ 2

}

+ o

(
1√
n

)

. (8.7.17)

Proof When proving limit theorems for arithmetic ξ , it is more convenient to use
the generating functions (see Sects. 7.1, 7.7)

p(z) ≡ pξ (z) := E zξ , |z| = 1,

so that p(eit ) = ϕ(t), where ϕ is the ch.f. of ξ .
In this case the inversion formulas take the following form (see (7.2.10)): for

integer x,

P(ξ = x) = 1

2πi

∫

|z|=1
z−x−1p(z)dz,

P(Sn = x) = 1

2πi

∫

|z|=1
z−x−1pn(z) dz = 1

2π

∫ π

−π

e−itxϕn(t) dt.

As in the proof of Theorem 8.7.1, here we split the integral on the right-hand side
into two subintegrals: over the domain |t | < γ and over the complementary set. The
treatment of the first subintegral

I1 :=
∫

|t |<γ

e−itxϕn(t) dt =
∫

|t |<γ

e−ity
[

e−itaϕ(t)
]n

dt

for y = x − an differs from the considerations for I1 in Theorem 8.7.1 only in that
it is simpler and yields (see (8.7.10))

I1 =
√

2π

σ
√

n
exp

{

− y2

2πσ 2

}

+ o

(
1√
n

)

.

Similarly, the treatment of the second subintegral differs from that of I2 in Theo-
rem 8.7.1 in that it becomes simpler, since the range of integration here is compact
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and on that one has
∣
∣ϕ(t)

∣
∣≤ q(γ ) < 1. (8.7.18)

Therefore, as in Theorem 8.7.1,

I2 = o

(
1√
n

)

, P(Sn = x) = 1√
2πnσ

exp

{

− y2

2nσ 2

}

+ o

(
1√
n

)

.

The theorem is proved. �

Evidently, for the values of y of order
√

n Theorem 8.7.3 is a generalisation of
the local limit theorem for the Bernoulli scheme (see Corollary 5.2.1).

8.7.3 The Proof of Theorem 8.7.1 in the General Case

To prove Theorem 8.7.1 in the general case we will use the same approach as in
Sect. 7.1. We will again employ the smoothing method, but now, when specifying
the random variable Zn in (8.7.3), we will take θη instead of ηδ , where θ = const,
η is a random variable with the ch.f. from Example 7.2.1 (see the end of Sect. 7.2)
equal to

ϕη(t) =
{

1 − |t |, |t | ≤ 1;
0, |t | > 1,

so that for Zn = Sn + θη, similarly to (8.7.5), we have

P
(

Zn ∈ Δ[x)
)= Δ

2π

∫

|t |≤ 1
θ

e−itxϕn(t)ϕηΔ(t)ϕθη(t) dt, (8.7.19)

where ϕθη(t) = max(0,1 − θ |t |). As in Sect. 8.7.1, split the integral on the right-
hand side of (8.7.19) into two subintegrals: I1 over the domain |t | < γ and I2 over
the domain γ ≤ |t | ≤ 1/θ . The asymptotic behaviour of these integrals is investi-
gated in almost the same way as in Sect. 8.7.1, but is somewhat simpler, since the
domain of integration in I2 is compact, and so, by the non-latticeness of ξ , one has
on it the upper bound

q := sup
γ≤|t |≤1/θ

∣
∣ϕ(t)

∣
∣< 1. (8.7.20)

Therefore, to bound I2 we no longer need condition (8.7.2).
Thus we have established, as above, relation (8.7.13).
To derive from this fact the required relation (8.7.15) we will need the following.

Lemma 8.7.1 Let f (y) be a bounded uniformly continuous function, η an arbitrary
proper random variable independent of Sn and b(n) → ∞ as n → ∞. If, for any
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fixed Δ > 0 and θ > 0, as n → ∞, we have

P
(

Sn + θη ∈ Δ[x)
)= Δ

b(n)

[

f

(
x

b(n)

)

+ o(1)

]

, (8.7.21)

then

P
(

Sn ∈ Δ[x)
)= Δ

b(n)

[

f

(
x

b(n)

)

+ o(1)

]

. (8.7.22)

In this assertion we can take Sn to be any sequence of random variables satisfying
(8.7.21). In this section we will set b(n) to be equal to

√
n, but later (see the proof

of Theorem A7.2.1 in Appendix 7) we will need some other sequences as well.

Proof Put θ := δ2Δ, where δ > 0 will be chosen later, Δ±:=(1±2δ)Δ, Δ±[x) :=
[x, x + Δ±) and f0 := maxf (y). We first obtain an upper bound for P(Sn ∈ Δ[x)).
We have

P
(

Zn ∈ Δ+[x − Δδ)
)≥ P

(

Zn ∈ Δ+[x − Δδ); |η| < 1/δ
)

.

On the event |η| < 1/δ one has −δΔ < θη < δΔ, and hence on this event

{

Zn ∈ Δ+[x − Δδ)
}⊃ {Sn ∈ Δ[x)

}

.

Thus, by independence of η and Sn,

P
(

Zn ∈ Δ+[x − Δδ)
)≥ P

(

Sn ∈ Δ[x); |η| < 1/δ
)= P

(

Sn ∈ Δ[x)
)(

1 − h(δ)
)

,

where h(δ) := P(|η| ≥ 1/δ) → 0 as δ → 0. By condition (8.7.21) and the uniform
integrability of f we obtain

P
(

Sn ∈ Δ[x)
) ≤ P

(

Zn ∈ Δ+[x − Δδ)
)(

1 − h(δ)
)−1

≤
[

Δ

b(n)
f

(
x

b(n)

)

+ 2δΔf0

b(n)
+ o

(
1

b(n)

)]
(

1 − h(δ)
)−1

.

(8.7.23)

If, for a given ε > 0, we choose δ > 0 such that

(

1 − h(δ)
)−1 ≤ 1 + εΔ

3
, 2δf0 ≤ ε

3
,

then we derive from (8.7.23) that, for all n large enough and ε small enough,

P
(

Sn ∈ Δ[x)
)≤ Δ

b(n)

(

f

(
x

b(n)

)

+ ε

)

. (8.7.24)
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This implies, in particular, that for all x,

P
(

Sn ∈ Δ[x)
)≤ Δ

b(n)
(f0 + ε). (8.7.25)

Now we will obtain a lower bound for P(Sn ∈ Δ[x)). For the event

A := {Zn ∈ Δ−[x + Δδ)
}

we have

P(A) = P
(

A; |η| < 1/δ
)+ P

(

A; |η| ≥ 1/δ
)

. (8.7.26)

On the event |η| < 1/δ we have

{

Zn ∈ Δ−[x + Δδ)
}⊂ {Sn ∈ Δ[x)

}

,

and hence

P
(

A; |η| < 1/δ
)≤ P

(

Sn ∈ Δ[x)
)

. (8.7.27)

Further, by independence of η and Sn and inequality (8.7.25),

P
(

A; |η| ≥ 1/δ
) = E

[

P(A | η); |η| ≥ 1/δ
]

= E
[

P
(

Sn ∈ Δ−[x + θη + Δδ) | η); |η| ≥ 1/δ
]

≤ Δ

b(n)
(f0 + ε)h(δ).

Therefore, combining (8.7.26), (8.7.27) and (8.7.21), we get

P
(

Sn ∈ Δ[x)
)≥ Δ

b(n)
f

(
x

b(n)

)

− 2δΔf0

b(n)
+ o

(
1

b(n)

)

− Δ

b(n)
(f0 + ε)h(δ).

In addition, choosing δ such that

f0h(δ) <
ε

3
, 2δf0 <

ε

3
,

we obtain that, for all n large enough and ε small enough,

P
(

Sn ∈ Δ[x)
)≥ Δ

b(n)

(

f

(
x

b(n)

)

− ε

)

. (8.7.28)

Since ε is arbitrarily small, inequalities (8.7.24) and (8.7.28) prove the required
relation (8.7.22). The lemma is proved. �

To prove the theorem it remains to apply Lemma 8.7.1 in the case (see (8.7.13))
where f = φ and b(n) = √

n. Theorem 8.7.1 is proved. �
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8.7.4 Uniform Versions of Theorems 8.7.1–8.7.3 for Random
Variables Depending on a Parameter

In the next chapter, we will need uniform versions of Theorems 8.7.1–8.7.3, where
the summands ξk depend on a parameter λ. Denote such summands by ξ(λ)k , the
corresponding distributions by F(λ), and put

S(λ)n :=
n
∑

k=1

ξ(λ)k,

where ξ(λ)k are independent copies of ξ(λ) ⊂= F(λ). If λ is only determined by the
number of summands n then we will be dealing with the triangular array scheme
considered in Sects. 8.3–8.6 (the summands there were denoted by ξk,n). In the
general case we will take the segment [0, λ1] for some λ1 > 0 as the parametric set,
keeping in mind that λ ∈ [0, λ1] may depend on n (in the triangular array scheme
one can put λ = 1/n).

We will be interested in what conditions must be imposed on a family of dis-
tributions F(λ) for the assertions of Theorems 8.7.1–8.7.3 to hold uniformly in
λ ∈ [0, λ1]. We introduce the following notation:

a(λ) = Eξ(λ), σ 2(λ) = Var(ξ(λ)), ϕ(λ)(t) = Eeitξ(λ) .

The next assertion is an analogue of Theorem 8.7.1.

Theorem 8.7.1A Let the distributions F(λ) satisfy the following properties: 0 <

σ1 < σ(λ) < σ2 < ∞, where σ1 and σ2 do not depend on λ:

(a) the relation

ϕ(λ)(t) − 1 − ia(λ)t + t2m2(λ)

2
= o

(

t2), m2(λ) := E ξ2
(λ), (8.7.29)

holds uniformly in λ ∈ [0, λ1] as t → 0, i.e. there exist a t0 > 0 and a function
ε(t) → 0 as t → 0, independent of λ, such that, for all |t | ≤ t0, the absolute
value of the left-hand side of (8.7.29) does not exceed ε(t)t2;

(b) for any fixed 0 < θ1 < θ2 < ∞,

q(λ) := sup
θ1≤|t |≤θ2

∣
∣ϕ(λ)(t)

∣
∣≤ q < 1, (8.7.30)

where q does not depend on λ.

Then, for each fixed Δ > 0,

P
(

S(λ)n − na(λ) ∈ Δ[x)
)= Δ

σ(λ)
√

n
φ

(
x

σ(λ)
√

n

)

+ o

(
1√
n

)

, (8.7.31)

where the remainder term o(1/
√

n) is uniform in x and λ ∈ [0, λ1].
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Proof Going through the proof of Theorem 8.7.1 in its general form (see Sect. 7.3),
we see that, to ensure the validity of all the proofs of the intermediate assertions in
their uniform forms, it suffices to have uniformity in the following two places:

(a) the uniformity in λ of the estimate o(t2) as t → 0 in relation (8.7.6) for the
expansion of the ch.f. of the random variable ξ = ξ(λ)−a(λ)

σ (λ)
;

(b) the uniformity in relation (8.7.20) for the same ch.f.
We verify the uniformity in (8.7.6). For ϕ(t) = E eitξ , we have by (8.7.29)

lnϕ(t) = − ita(λ)

σ (λ)
+ lnϕ(λ)

(
t

σ (λ)

)

= − t2(m2(λ) − a2(λ))

2σ 2(λ)
+ o

(

t2)= − t2

2
+ o

(

t2),

where the remainder term is uniform in λ.
The uniformity in relation (8.7.20) clearly follows from condition b), since σ(λ)

is uniformly separated from both 0 and ∞. The theorem is proved. �

Remark 8.7.3 Conditions (a) and (b) of Theorem 8.7.1A are essential for (8.7.31)
to hold. To see this, consider random variables ξ and η with fixed distributions,
E ξ = Eη = 0 and Eξ2 = Eη2 = 1. Let λ ∈ [0,1] and the random variable ξ(λ) be
defined by

ξ(λ) :=
{

ξ with probability 1 − λ,
η√
λ

with probability λ,
(8.7.32)

so that E ξ(λ) = 0 and Var(ξ(λ)) = 2 − λ (in the case of the triangular array scheme
one can put λ = 1/n). Then, under the obvious notational conventions, for λ = t2,
t → 0, we have

ϕ(λ)(t) = (1 − λ)ϕξ (t) + λϕη

(
t√
λ

)

= 1 − 3t2

2
+ o

(

t2)+ t2ϕη(1).

This implies that (8.7.29) does not hold and hence condition a) is not met for the
values of λ in the vicinity of zero. At the same time, the uniform versions of relation
(8.7.31) and the central limit theorem will fail to hold. Indeed, putting λ = 1/n, we
obtain the triangular array scheme, in which the number νn of the summands of the
form ηi/

√
λ in the sum S(λ)n =∑n

i=1 ξ(λ)i converges in distribution to ν ⊂= �1 and

1√
n(2 − λ)

S(λ)n
d= Sn−νn√

2n − 1
+ Hνn√

2 − 1/n
, where Hk =

k
∑

i=1

ηi.

The first term on the right-hand side weakly converges in distribution to ζ ⊂=�0,1/2,
while the second term converges to Hν/

√
2. Clearly, the sum of these independent

summands is, generally speaking, not distributed normally with parameters (0,1).
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To see that condition (b) is also essential, consider an arithmetic random variable
ξ with E ξ = 0 and Var(ξ) = 1, take η to be a random variable with the uniform
distribution U−1,1, and put

ξ(λ) :=
{

ξ with probability 1 − λ,

η with probability λ.

Here the random variable ξ(λ) is non-lattice (its distribution has an absolutely con-
tinuous component), but

ϕ(λ)(2π) = (1 − λ) + λϕη(2π), q(λ) ≥ 1 − 2λ.

Again putting λ = 1/n, we get the triangular array scheme for which condition (b)
is not met. Relation (8.7.31) does not hold either, since, in the previous notation, the
sum S(λ)n is integer-valued with probability P(νn = 0) = e−1, so that its distribution
will have atoms at integer points with probabilities comparable, by Theorem 8.7.3,
with the right-hand side of (8.7.31). This clearly contradicts (8.7.31).

If we put λ = 1/n2 then the sum S(λ)n will be integer-valued with probability
(1 − 1/n2)n → 1, and the failure of relation (8.7.31) becomes even more evident.

Uniform versions of the local Theorems 8.7.2 and 8.7.3 are established in a com-
pletely analogous way.

Theorem 8.7.2A Let the distributions F(λ) satisfy the conditions of Theorem 8.7.1A
with θ2 = ∞ and the conditions of Theorem 8.7.2, in which conditions (a)–(c) are
understood in the uniform sense (i.e., maxx fS(λ)m

(x) or the norm of fS(λ)m
in L2 or

∫ |ϕm
(λ)(t)|dt are bounded uniformly in λ ∈ [0, λ1]).

Then representation (8.7.16) holds for fS(λ)n
(x) uniformly in x and λ, provided

that on its right-hand side we replace σ by σ(λ).

Proof The conditions of Theorem 8.7.2A are such that they enable one to obtain
the proof of the uniform version without any noticeable changes in the arguments
proving Theorems 8.7.1A and 8.7.2. �

The following assertion is established in the same way.

Theorem 8.7.3A Let the arithmetic distributions F(λ) satisfy the conditions of The-
orem 8.7.1A for θ2 = π . Then representation (8.7.17) holds uniformly in x and λ,
provided that a and σ on its right-hand side are replaced with a(λ) and σ(λ), re-
spectively.

Remark 8.7.3 applies to Theorems 8.7.2A and 8.7.3A as well.

8.8 Convergence to Other Limiting Laws

As we saw in previous sections, the normal law occupies a special place among all
distributions—it is the limiting law for normed sums of arbitrary distributed random
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variables. There arises the natural question of whether there exist any other limiting
laws for sums of independent random variables.

It is clear from the proof of Theorem 8.2.1 for identically distributed random
variables that the character of the limiting law is determined by the behaviour of the
ch.f. of the summands in the vicinity of 0. If Eξ = 0 and Eξ2 = σ 2 = −ϕ′′(0) exist,
then

ϕ

(
1√
n

)

= 1 + ϕ′′(0)t2

2n
+ o

(
1

n

)

,

and this determines the asymptotic behaviour of the ch.f. of Sn/
√

n, equal to
ϕn(t

√
n), which leads to the normal limiting law. Therefore, if one is looking for

different limiting laws for the sums Sn = ξ1 + · · · + ξn, it is necessary to renounce
the condition that the variance is finite or, which is the same, that ϕ′′(0) exists. In
this case, however, we will have to impose some conditions on the regular variation
of the functions F+(x) = P(ξ ≥ x) and/or F−(x) = P(ξ < −x) as x → ∞, which
we will call the right and the left tail of the distribution of ξ , respectively. We will
need the following concepts.

Definition 8.8.1 A positive (Lebesgue) measurable function L(t) is called a slowly
varying function (s.v.f.) as t → ∞, if, for any fixed v > 0,

L(vt)

L(t)
→ 1 as t → ∞. (8.8.1)

A function V (t) is called a regularly varying function (r.v.f.) (of index −β) as t →
∞ if it can be represented as

V (t) = t−βL(t), (8.8.2)

where L(t) is an s.v.f. as t → ∞.

One can easily see that, similarly to (8.8.1), the characteristic property of regu-
larly varying functions is the convergence

V (vt)

V (t)
→ v−β as t → ∞ (8.8.3)

for any fixed v > 0. Thus an s.v.f. is an r.v.f. of index zero.
Among typical representatives the class of s.v.f.s are the logarithmic function and

its powers lnγ t , γ ∈ R, linear combinations thereof, multiple logarithms, functions
with the property that L(t) → L = const �= 0 as t → ∞ etc. As an example of a
bounded oscillating s.v.f. we mention

L0(t) = 2 + sin(ln ln t), t > 1.

The main properties of r.v.f.s are given in Appendix 6.
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As has already been noted, for Sn/b(n) to converge to a “nondegenerate” limiting
law under a suitable normalisation b(n), we will have to impose conditions on the
regular variation of the distribution tails of ξ . More precisely, we will need a regular
variation of the “two-sided tail”

F0(t) = F−(t) + F+(t) = P
(

ξ /∈ [−t, t)
)

.

We will assume that the following condition is satisfied for some β ∈ (0,2],
ρ ∈ [−1,1]:

[Rβ,ρ] The two-sided tail F0(x) = F−(x) + F+(x) is an r.v.f. as x → ∞, i.e. it
can be represented as

F0(x) = t−βLF0(x), β ∈ (0,2], (8.8.4)

where LF0(x) is an s.v.f., and the following limit exists

ρ+ := lim
x→∞

F+(x)

F0(x)
∈ [0,1], ρ := 2ρ+ − 1. (8.8.5)

If ρ+ > 0, then clearly the right tail F+(x) is an r.v.f. like F0(x), i.e. it can be
represented as

F+(x) = V (x) := x−βL(x), β ∈ (0,2], L(x) ∼ ρ+LF0(x).

(Here, and likewise in Appendix 6, we use the symbol V to denote an r.v.f.) If
ρ+ = 0, then the right tail F+(x) = o(F0(x)) is not assumed to be regularly varying.

Relation (8.8.5) implies that the following limit also exists

ρ− := lim
x→∞

F−(x)

F0(x)
= 1 − ρ+.

If ρ− > 0, then, similarly to the case of the right tail, the left tail F−(x) can be
represented as

F−(x) = W(x) := x−βLW(x), β ∈ (0,2], LW (x) ∼ ρ−LF0(x).

If ρ− = 0, then the left tail F−(x) = o(F0(x)) is not assumed to be regularly varying.
The parameters ρ± are related to the parameter ρ in the notation [Rβ,ρ] through

the equalities

ρ = ρ+ − ρ− = 2ρ+ − 1 ∈ [−1,1].
Clearly, in the case β < 2 we have Eξ2 = ∞, so that the representation

ϕ(t) = 1 − t2σ 2

2
+ o

(

t2) as t → 0

no longer holds, and the central limit theorem is not applicable. If Eξ exists and is
finite then everywhere in what follows it will be assumed without loss of generality
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that

Eξ = 0.

Since F0(x) is non-increasing, there always exists the “generalised” inverse function
F

(−1)
0 (u) understood as

F
(−1)
0 (u) := inf

{

x : F0(x) < u
}

.

If the function F0 is strictly monotone and continuous then b = F
(−1)
0 (u) is the

unique solution to the equation

F0(b) = u, u ∈ (0,1).

Set

ζn := Sn

b(n)
,

wherein the case β > 2 we define the normalising factor b(n) by

b(n) := F
(−1)
0 (1/n). (8.8.6)

For β = 2 put

b(n) := Y (−1)(1/n), (8.8.7)

where

Y(x) := 2x−2
∫ x

0
yF0(y) dy = 2x−2

[∫ x

0
yF+(y) dy +

∫ x

0
yF−(y) dy

]

= x−2E
(

ξ2; −x ≤ ξ < x
)= x−2LY (x), (8.8.8)

LY is an s.v.f. (see Theorem A6.2.1(iv) in Appendix 6). It follows from Theo-
rem A6.2.1(v) in Appendix 6 that, under condition (8.8.4), we have

b(n) = n1/βLb(n), β ≤ 2,

where Lb is an s.v.f.
We introduce the functions

VI (x) =
∫ x

0
V (y)dy, V I (x) =

∫ ∞

x

V (y) dy.

8.8.1 The Integral Theorem

Theorem 8.8.1 Let condition [Rβ,ρ] be satisfied. Then the following assertions hold
true.
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(i) For β ∈ (0,2), β �= 1 and the normalising factor (8.8.6), as n → ∞,

ζn ⇒ ζ (β,ρ). (8.8.9)

The distribution Fβ,ρof the random variable ζ (β,ρ) depends on parameters β

and ρ only and has a ch.f. ϕ(β,ρ)(t), given by

ϕ(β,ρ)(t) := Eeitζ (β,ρ) = exp
{|t |βB(β,ρ,ϑ)

}

, (8.8.10)

where ϑ = sign t ,

B(β,ρ,ϑ) = Γ (1 − β)

[

iρϑ sin
βπ

2
− cos

βπ

2

]

(8.8.11)

and, for β ∈ (1,2), we put Γ (1 − β) = Γ (2 − β)/(1 − β).
(ii) When β = 1, for the sequence ζn with the normalising factor (8.8.6) to con-

verge to a limiting law, the former, generally speaking, needs to be centred.
More precisely, as n → ∞, the following convergence takes place:

ζn − An ⇒ ζ (1,ρ), (8.8.12)

where

An = n

b(n)

[

VI

(

b(n)
)− WI

(

b(n)
)]− ρ C, (8.8.13)

C ≈ 0.5772 is the Euler constant, and

ϕ(1,ρ)(t) = Eeitζ (1,ρ) = exp

{

−π |t |
2

− iρt ln |t |
}

. (8.8.14)

If n[VI (b(n)) − WI(b(n))] = o(b(n)), then ρ = 0 and we can put An = 0.
If Eξ exists and equals zero then

An = n

b(n)

[

WI
(

b(n)
)− V I

(

b(n)
)]− ρ C.

If Eξ = 0 and ρ �= 0 then ρAn → −∞ as n → ∞.
(iii) For β = 2 and the normalising factor (8.8.7), as n → ∞,

ζn ⇒ ζ (2,ρ), ϕ(2,ρ)(t) := Eeitζ (2,ρ) = e−t2/2,

so that ζ (2,ρ) has the standard normal distribution that is independent of ρ.

The Proof of Theorem 8.8.1 is based on the same considerations as the proof of
Theorem 8.2.1, i.e. on using the asymptotic behaviour of the ch.f. ϕ(t) in the vicinity
of zero. But here it will be somewhat more difficult from the technical viewpoint.
This is why the proof of Theorem 8.8.1 appears in Appendix 7. �
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Remark 8.8.1 The last assertion of the theorem (for β = 2) shows that the limiting
distribution may be normal even in the case of infinite variance of ξ .

Besides with the normal distribution, we also note “extreme” limit distributions,
corresponding to the ρ = ±1 where the ch.f. ϕ(β,ρ) (or the respective Laplace trans-
form) takes a very simple form. Let, for example, ρ = −1. Since eiπϑ/2 = ϑi, then,
for β �= 1,2,

B(β,−1, ϑ) = −Γ (1 − β)

[

i sin
βπϑ

2
+ cos

βπϑ

2

]

= −Γ (1 − β)eiβπϑ/2 = −Γ (1 − β)(iϑ)β,

ϕ(β,−1)(t) = exp
{−Γ (1 − β)(it)β

}

,

E eλζ (β,−1) = exp
{−Γ (1 − β)λβ

}

, Reλ ≥ 0.

Similarly, for β = 1, by (8.8.14) and the equalities −πϑ
2 = i iπϑ

2 = i ln iϑ we have

lnϕ(1,−1)(t) = −πϑt

2
+ it ln |t | = it ln iϑ + it ln |t | = it ln it,

E eλζ (1,−1) = exp{λ lnλ}, Reλ ≥ 0.

A similar formula is valid for ρ = 1.

Remark 8.8.2 If β < 2, then by virtue of the properties of s.v.f.s (see Theo-
rem A6.2.1(iv) in Appendix 6), as x → ∞,

∫ x

0
yF0(y) dy =

∫ x

0
y1−βLF0(y) dy ∼ 1

2 − β
x2−βLF0(x) = 1

2 − β
x2F0(x).

Therefore, for β < 2, we have Y(x) ∼ 2(2 − β)−1F0(x),

Y (−1)(1/n) ∼ F
(−1)
0

(
2 − β

2n

)

∼
(

2

2 − β

)1/β

F
(−1)
0 (1/n)

(cf. (8.8.6)). On the other hand, for β = 2 and σ 2 := Eξ2 < ∞ one has

Y(x) ∼ x−2σ 2, b(n) = Y (−1)(1/n) ∼ √
σn.

Thus normalisation (8.8.7) is “transitional” from normalisation (8.8.6) (up to the
constant factor (2/(2 − β))1/β ) to the standard normalisation σ

√
n in the cen-

tral limit theorem in the case where Eξ2 < ∞. This also means that normalisa-
tion (8.8.7) is “universal” and can be used for all β ≤ 2 (as it is done in many
textbooks on probability theory). However, as we will see below, in the case β < 2
normalisation (8.8.6) is easier and simpler to deal with, and therefore we will use
that scaling.
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Recall that Fβ,ρ denotes the distribution of the random variable ζ (β,ρ). The pa-
rameter β takes values in the interval (0,2], the parameter ρ = ρ+ −ρ− can assume
any value from [−1,1]. The role of the parameters β and ρ will be clarified below.

Theorem 8.8.1 implies that each of the laws Fβ,ρ , 0 < β ≤ 2 and −1 ≤ ρ ≤ 1 is
limiting for the distributions of suitably normalised sums of independent identically
distributed random variables. It follows from the law of large numbers that the de-
generate distribution Ia concentrated at the point a is also a limiting one. Denote the
set of all such distributions by S0. Furthermore, it is not hard to see that if F is a dis-
tribution from the class S0 then the law that differs from F by scaling and shifting,
i.e. the distribution F{a,b} defined, for some fixed b > 0 and a, by the relation

F{a,b}(B) := F
(

B − a

b

)

, where
B − a

b
= {u ∈ R : ub + a ∈ B},

is also limiting for the distributions of sums of random variables (Sn − an)/bn as
n → ∞ for appropriate {an} and {bn}.

It turns out that the class of distributions S obtained by the above extension from
S0 exhausts all the limiting laws for sums of identically distributed independent
random variables.

Another characterisation of the class of limiting laws S is also possible.

Definition 8.8.2 We call a distribution F stable if, for any a1, a2, b1 > 0, b2 > 0,
there exist a and b > 0 such that

F{a1,b1} ∗ F{a2,b2} = F{a,b}.

This definition means that the convolution of a stable distribution F with itself
again yields the same distribution F, up to a scaling and shift (or, which is the
same, for independent random variables ξi ⊂= F we have (ξ1 + ξ2 − a)/b ⊂= F for
appropriate a and b).

In terms of the ch.f. ϕ, the stability property has the following form: for any
b1 > 0 and b2 > 0, there exist a and b > 0 such that

ϕ(tb1)ϕ(tb2) = eitaϕ(tb), t ∈ R. (8.8.15)

Denote the class of all stable laws by SS . The remarkable fact is that the class of all
limiting laws S (for (Sn − an)/bn for some an and bn) and the class of all stable
laws SS coincide.

If, under a suitable normalisation, as n → ∞,

ζn ⇒ ζ (β,ρ),

then one says that the distribution F of the summands ξ belongs to the domain of
attraction of the stable law Fβ,ρ .

Theorem 8.8.1 means that, if F satisfies condition [Rβ,ρ], then F belongs to the
domain of attraction of the stable law Fβ,ρ .
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One can prove the converse assertion (see e.g. Chap. XVII, § 5 in [30]): if F
belongs to the domain of attraction of a stable law Fβ,ρ for β < 2, then [Rβ,ρ] is
satisfied.

As for the role of the parameters β and ρ, note the following. The parameter β

characterises the rate of convergence to zero as x → ∞ for the functions

Fβ,ρ,−(x) := Fβ,ρ

(

(−∞,−x)
)

and Fβ,ρ,+(x) := Fβ,ρ

([x,∞)
)

.

One can prove that, for ρ+ > 0, as t → ∞,

Fβ,ρ,+(t) ∼ ρ+t−β, (8.8.16)

and, for ρ− > 0, as t → ∞,

Fβ,ρ,−(t) ∼ ρ−t−β. (8.8.17)

Note that, for ξ ⊂= Fβ,ρ , the asymptotic relations in Theorem 8.8.1 turn into pre-
cise equalities provided that we replace in them b(n) with bn := n1/β . In particular,

P
(

Sn

bn

≥ t

)

= Fβ,ρ,+(t). (8.8.18)

This follows from the fact that [ϕ(β,ρ)(t/bn)]n coincides with ϕ(β,ρ)(t) (see (8.8.10))
and hence the distribution of the normalised sum Sn/bn coincides with the distribu-
tion of the random variable ξ .

The parameter ρ taking values in [−1,1] is the measure of asymmetry of the dis-
tribution Fβ,ρ . If, for instance, ρ = 1 (ρ− = 0), then, for β < 1, the distribution Fβ,1

is concentrated entirely on the positive half-line. This is evident from the fact that in
this case Fβ,1 can be considered as the limiting distribution for the normalised sums
of independent identically distributed random variables ξk ≥ 0 (with F−(0) = 0).
Since all the prelimit distributions are concentrated on the positive half-line, so is
the limiting distribution.

Similarly, for ρ = −1 and β < 1, the distribution Fβ,−1 is entirely concentrated
on the negative half-line. For ρ = 0 (ρ+ = ρ− = 1/2) the ch.f. of the distribution
Fβ,0 will be real, and the distribution Fβ,0 itself is symmetric.

As we saw above, the ch.f.s ϕ(β,ρ)(t) of stable laws Fβ,ρ admit closed-form rep-
resentations. They are clearly integrable over R, and the same is true for the func-
tions tkϕ(β,ρ)(t) for any k ≥ 1. Therefore all the stable distributions have densities
that are differentiable arbitrarily many times (see e.g. the inversion formula (7.2.1)).
As for explicit forms of these densities, they are only known for a few laws. Among
them are:
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1. The normal law F2,ρ (which does not depend on ρ).
2. The Cauchy distribution F1,0 with density 2/(π2 +4x2), −∞ < x < ∞. Scal-

ing the x-axis with a factor of π/2 transforms this density into the form 1/π(1+x2)

corresponding to K0,1.
3. The Lévy distribution. This law can be obtained from the explicit form for

the distribution of the maximum of the Wiener process. This will be the distribution
F1/2,1 with parameters 1/2,1 and density (up to scaling; cf. (8.8.16))

f (1/2,1)(x) = 1√
2πx3/2

e−1/(2x), x > 0

(this density has a first hitting time of level 1 by the standard Wiener process, see
Theorem 19.2.2).

8.8.2 The Integro-Local and Local Theorems

Under the conditions of this section we can also obtain integro-local and local the-
orems in the same way as in Sect. 8.7 in the case of convergence to the normal law.
As in Sect. 8.7, integro-local theorems deal here with the asymptotics of

P
(

Sn ∈ Δ[x)
)

, Δ[x) = [x, x + Δ)

as n → ∞ for a fixed Δ > 0.
As we can see from Theorem 8.8.1, the ch.f. ϕ(β,ρ)(t) of the stable law Fβ,ρ is

integrable, and hence, by the inversion formula, there exists a uniformly continuous
density f (β,ρ)of the distribution Fβ,ρ . (As has already been noted, it is not difficult
to show that f (β,ρ) is differentiable arbitrarily many times, see Sect. 7.2.)

Theorem 8.8.2 (The Stone integro-local theorem) Let ξ be a non-lattice random
variable and the conditions of Theorem 8.8.1 be met. Then, for any fixed Δ > 0, as
n → ∞,

P
(

Sn ∈ Δ[x)
)= Δ

b(n)
f (β,ρ)

(
x

b(n)

)

+ o

(
1

b(n)

)

, (8.8.19)

where the remainder term o( 1
b(n)

) is uniform over x.
If β = 1 and E|ξ | does not exist then, on the right-hand side of (8.8.20), we must

replace f (β,ρ)( x
b(n)

) with f (β,ρ)( x
b(n)

− An), where An is defined in (8.8.13).

All the remarks to the integro-local Theorem 8.7.1 hold true here as well, with
evident changes.

If the distribution of Sn has a density then we can find the asymptotics of that
density.
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Theorem 8.8.3 Let there exist an m ≥ 1 such that at least one of conditions (a)–(c)
of Theorem 8.7.2 is satisfied. Moreover, let the conditions of Theorem 8.8.1 be met.
Then for the density fSn(x) of the distribution of Sn one has the representation

fSn(x) = 1

b(n)
f (β,ρ)

(
x

b(n)

)

+ o

(
1

b(n)

)

(8.8.20)

which holds uniformly in x as n → ∞.
If β = 1 and E|ξ | does not exist then, on the right-hand side of (8.8.20), we must

replace f (β,ρ)( x
b(n)

) with f (β,ρ)( x
b(n)

− An), where An is defined in (8.8.13).

The assertion of Theorem 8.8.3 can be rewritten for ζn = Sn

b(n)
− An as

fζn(v) → f (β,ρ)(v)

for any v as n → ∞.
For integer-valued ξk the following theorem holds true.

Theorem 8.8.4 Let the distribution of ξ be arithmetic and the conditions of Theo-
rem 8.8.1 be met. Then, uniformly for all integers x, as n → ∞,

P(Sn = x) = 1

b(n)
f (β,ρ)

(
x − an

b(n)

)

+ o

(
1√
n

)

, (8.8.21)

where a = E ξ if E |ξ | exists and a = 0 if E |ξ | does not exist, β �= 1. If β = 1
and E|ξ | does not exist then, on the right-hand side of (8.8.21), we must replace
f (β,ρ)( x−an

b(n)
) with f (β,ρ)( x

b(n)
− An).

The proofs of Theorems 8.8.2–8.8.4 mostly repeat those of Theorems 8.7.1–8.7.3
and can be found in Appendix 7.

8.8.3 An Example

In conclusion we will consider an example.
In Sect. 12.8 we will see that in the fair game considered in Example 4.2.3 the

ruin time η(z) of a gambler with an initial capital of z units satisfies the relation
P(η(z) ≥ n) ∼ z

√
2/πn as n → ∞. In particular, for z = 1,

P
(

η(1) ≥ n
)∼√2/πn. (8.8.22)

It is not hard to see (for more detail, see also Chap. 12) that η(z) has the same
distribution as η1 +η2 +· · ·+ηz, where ηj are independent and distributed as η(1).



8.8 Convergence to Other Limiting Laws 237

Thus for studying the distribution of η(z) when z is large, by virtue of (8.8.22), one
can make use of Theorem 8.8.4 (with β = 1/2, b(n) = 2n2/π ), by which

lim
z→∞ P

(
2πη(x)

z2
< x

)

= F1/2,1(x) (8.8.23)

is the Lévy stable law with parameters β = 1/2 and ρ = 1. Moreover, for integer x

and z → ∞,

P
(

η(z) = x
)= π

2z2
f (1/2,1)

(
xπ

2z2

)

+ o

(
1

z2

)

.

These assertions enable one to obtain the limiting distribution for the number of
crossings of an arbitrary strip [u,v] by the trajectory S1, . . . , Sn in the case where

P(ξk = −1) = P(ξk = −1) = 1/2.

Indeed, let for simplicity u = 0. By the first positive crossing of the strip [0, v] we
will mean the Markov time

η+ := min{k : Sk = v}.
The first negative crossing of the strip is then defined as the time η+ + η−, where

η− := min{k : Sη++k = 0}.
The time η1 = η+ + η− will also be the time of the “double crossing” of [0, v]. The
variables η± are distributed as η(v) and are independent, so that η1 has the same
distribution as η(2v). The variable Hk = η1(2v) + · · · + ηk(2v), where ηi(2v) have
the same distribution as η(2v) and are independent, is the time of the k-th double
crossing. Therefore

ν(n) := max{k : Hk ≤ n} = min{k : Hk > n} − 1

is the number of double crossings of the strip [0, v] by time n. Now we can prove
the following assertion:

lim
n→∞ P

(
ν(n)√

n
≥ x

)

= F1/2,1

(
π

2v2x2

)

. (8.8.24)

To prove it, we will make use of the following relation (which will play, in its
more general form, an important role in Chap. 10):

{

ν(n) ≥ k
}= {Hk ≤ n},

where Hk is distributed as η(2vk). If n/k2 → s2 as n → ∞, then by virtue of
(8.8.23)

P(Hk ≤ n) = P
(

2πHk

(2vk)2
≤ 2πn

(2vk)2

)

→ F1/2,1

(
πs2

2v2

)

,
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and therefore

P
(

ν(n)√
n

≥ x

)

= P
(

ν(n) ≥ x
√

n
)= P(H�x√

n� ≤ n) → F1/2,1

(
π

2v2x2

)

.

(Here for k = �x√
n� one has n/k2 → s2 = 1/x2.) Relation (8.8.24) is proved. �

Assertion (8.8.24) will clearly remain true for the number of crossings of the
strip [u,v], u �= 0; one just has to replace v with v − u on the right-hand side of
(8.8.24). It is also clear that (8.8.24) enables one to find the limiting distribution of
the number of “simple” (not double) crossings of [u,v] since the latter is equal to
2ν(n) or 2ν(n)+1.
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