Chapter 7
Characteristic Functions

Abstract Section 7.1 begins with formal definitions and contains an extensive dis-
cussion of the basic properties of characteristic functions, including those related to
the nature of the underlying distributions. Section 7.2 presents the proofs of the in-
version formulas for both densities and distribution functions, and also in the space
of square integrable functions. Then the fundamental continuity theorem relating
pointwise convergence of characteristic functions to weak convergence of the re-
spective distributions is proved in Sect. 7.3. The result is illustrated by proving the
Poisson theorem, with a bound for the convergence rate, in Sect. 7.4. After that,
the previously presented theory is extended in Sect. 7.5 to the multivariate case.
Some applications of characteristic functions are discussed in Sect. 7.6, including
the stability properties of the normal and Cauchy distributions and an in-depth dis-
cussion of the gamma distribution and its properties. Section 7.7 introduces the
concept of generating functions and uses it to analyse the asymptotic behaviour
of a simple Markov discrete time branching process. The obtained results include
the formula for the eventual extinction probability, the asymptotic behaviour of the
non-extinction probabilities in the critical case, and convergence in that case of the
conditional distributions of the scaled population size given non-extinction to the
exponential law.

7.1 Definition and Properties of Characteristic Functions

As a preliminary remark, note that together with real-valued random variables & (w)
we could also consider complex-valued random variables, by which we mean func-
tions of the form &;(w) + i (w), (£1,&2) being a random vector. It is natural to
put E(&; +i&) = E&| + iE&,. Complex-valued random variables & = & + i&; and
n =mn1 + in are independent if the o-algebras o (&1, &) and o (11, n2) generated
by the vectors (&1, &2) and (171, 172), respectively, are independent. It is not hard to
verify that, for such random variables,

E&n =EEEn.

Definition 7.1.1 The characteristic function (ch.f.) of a real-valued random variable
& is the complex-valued function
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154 7 Characteristic Functions

s (1) :=Ee'' =/e”x dF (x),

where ¢ is real.
If the distribution function F(x) has a density f(x) then the ch.f. is equal to
vi() = [ e fdx

and is just the Fourier transform of the function f(x).! In the general case, the ch.f.
is the Fourier—Stieltjes transform of the function F(x).

The ch.f. exists for any random variable &. This follows immediately from the
relation

A6 §/|ei’x|dF(x)§f1dF(x):1.

Ch.f.s are a powerful tool for studying properties of the sums of independent random
variables.

7.1.1 Properties of Characteristic Functions

1. For any random variable &,
@e(0)=1 and |p:(1)| <1 forallr.

This property is obvious.

2. For any random variable &,

Pas+b(1) = P (1a).
Indeed,

¢a§+b(t) — Eei[(a§+b) — eileeialf — eilb(ps (ta) 0

"More precisely, in classical mathematical analysis, the Fourier transform ¢(¢) of a function f(z)
from the space L of integrable functions is defined by the equation

o(t) = \/% / S fydi

(the difference from ch.f. consists in the factor 1/+/27). Under this definition the inversion formula
has a “symmetric” form: if ¢ € L; then

fx)= I yt) dt.

1
— | e
V2 [
This representation is more symmetric than the inversion formula for ch.f. (7.2.1) in Sect. 7.2
below.
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3. If &1,...,&, are independent random variables then the ch.f. of the sum S, =
&4+ &, is equal to

©s, (1) = @z, (1) - - g, (1).

Proof This follows from the properties of the expectation of the product of inde-
pendent random variables. Indeed,

05, (1) = B! €1H+6) _ it gitkr .. itk
— R 61 Rel52 .. . Reltén — @g, (Dpe, (1) -9, (). [

Thus to the convolution Fg, * Fg, there corresponds the product ¢g, ¢¢, .

4. The ch.f. ¢ (t) is a uniformly continuous function.
Indeed, as h — O,

by the dominated convergence theorem (see Corollary 6.1.2) since lethe — 1 250
as h — 0, and |e'"¢ — 1] < 2. O

5. If the k-th moment exists: E|& |k < 00, k > 1, then there exists a continuous k-th
derivative of the function ¢¢ (t), and (p(k) 0) = ikEEk.

Proof Indeed, since

‘/ixei’xdF(x) 5/|x|dF(x>=E|s| < o0,

the integral [ i xe!™ d F (x) converges uniformly in 7. Therefore one can differentiate
under the integral sign:

o) =i / xe'™ dF(x), ¢'(0) = iEE.
Further, one can argue by induction. If, for [ < k,
<p(1)(t) =il/xleitx dF (%),
then
oD () = I+ /xl+leitx dF ()
by the uniform convergence of the integral on the right-hand side. Therefore

¢(l+1)(0) — iHlEng. 0
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Property 5 implies that if E|£|% < oo then, in a neighbourhood of the point 7 = 0,
one has the expansion

k N '
w(t)=1+Z%Es~’+o(\zk\). (7.1.1)

j=1

The converse assertion is only partially true:

If a derivative of an even order ®*) exists then
Ei* <co,  ¢00) = (~D'EE™.

We will prove the property for k =1 (for k > 1 one can employ induction). It
suffices to verify that E|&|? is finite. One has

20(0) —9h) —9(=2h) _ o elhE — e=ThENZ Esin2 he
4h2 B 2h SR

Since h~2sin? hé — £% as h — 0, by Fatou’s lemma

20(0) — @(2h) — p(—2h in2h
" (0) = lim 90) —¢Qh) —¢(=2n)\ _ . gSin"hé
=0 4h2 h—0 h?
i .2
. sin“h§ 5
2B lim =7 =K -

6. If £ > 0 then @¢ (M) is defined in the complex plane for ImA > 0. Moreover,
lps (M)| < 1 for such A, and in the domain ImA > 0, @ (A) is analytic and con-
tinuous including on the boundary Im A = 0.

Proof That ¢()) is analytic follows from the fact that, for Im A > 0, one can differ-
entiate under the integral sign the right-hand side of

o .
(M) = f e dF (x).
0
(For Im A > O the integrand decreases exponentially fast as x — 00.) O

Continuity is proved in the same way as in property 4. This means that for non-
negative & the ch.f. ¢¢ (1) uniquely determines the function

¥ (s) = e (is) = Ee™**

of real variable s > 0, which is called the Laplace (or Laplace—Stieltjes) transform
of the distribution of &.

The converse assertion also follows from properties of analytic functions: the
Laplace transform s (s) on the half-line s > 0 uniquely determines the ch.f. pg (1).

7. 9 (1) = gz (—1) = ¢_¢ (1), where the bar denotes the complex conjugate.
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Proof The relations follow from the equalities

(1) = Eei’§ = Eeit§ = Ee™'15. 0
This implies the following property.

TA.If & is symmetric (has the same distribution as —§&) then its ch.f. is real (pg (1) =
we (—1)).

One can show that the converse is also true; to this end one has to make use of
the uniqueness theorem to be discussed below.

Now we will find the ch.f.s of the basic probability laws.

Example 7.1.1 If &€ = a with probability 1, i.e. § €1, then ¢ (f) = el
Example 7.1.2 1f £ € B,, then ¢¢ (1) = pe'’ + (1 — p) =1+ p(e'' — 1).

Example 7.1.3 Tf £ & ®q,; then @z (1) = ¢~"/2.
Indeed,

1 /Oo eitx7x2/2dx'
vV 21 J-o0
Differentiating with respect to ¢ and integrating by parts (xe_xz/ 2dx = —de™*"/ 2),
we get

pt) = ¢s(t) =

1 , 1 .
(p/(t) = E/ixe’tx_xz/zdx = —\/T_n / teltx—xz/de = —f(ﬂ(f),
’ 12
(ln<p(t)) =—t, Inp(t) = — +c.
Since ¢(0) = 1, one has ¢ =0 and ¢ () —e 2, O

Now let n be a normal random variable with parameters (a, o). Then it can be
represented as n = 0§ + a, where £ is normally distributed with parameters (0, 1).
The ch.f. of  can be found using Property 2:

on(t) = eime—(m)z/z _ eita—t202/2_

Differentiating ¢, (¢) for n € ® ,2, we will obtain that En* = 0 for odd k, and
Enf=o*(k —1)(k—3)---1fork=2.4,....

Example 7.1.4 If £ € I1, then

k it\k
pe(1) =B = Y o 3 (1)
k ) k

0= etk = exp[u(e” —1)].
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Example 7.1.5 If & has the exponential distribution I';, with density ae™** for
x >0, then

o

a—it

0 .
§0S(t) — C{/ ell‘X7Ol)C dx =
0

Therefore, if £ has the “double” exponential distribution with density %e“”, —00 <
X < 00, then

(t)—l 1 . 1 1
=\ Ty ) T
If £ has the geometric distribution P(é:k):(l—p)pk,k=0,1,...,then
l-p
)= ———.
e (1) 1= pei

Example 7.1.6 If € € Ko 1 (has the density [z (1 +x%)]7") then ¢ (t) = e |. The
reader will easily be able to prove this somewhat later, using the inversion formula
and Example 7.1.5.

Example 7.1.7 1If £ € Uy 1, then

el —1

it

1
e (1) = / e dx =
0

By virtue of Property 3, the ch.f.s of the sums & + &, & + & + &3, ... that we
considered in Example 3.6.1 will be equal to

(eit_])2 (eit_1)3
Ve +6, (1) = T Pg 45, (1) = —— 5

We return to the general case. How can one verify whether one or another func-
tion ¢ is characteristic or not? Sometimes one can do this using the above properties.
We suggest the reader to determine whether the functions (1 + t)_1 ,141¢,sint, cost
are characteristic, and if so, to which distributions they correspond.

In the general case the posed question is a difficult one. We state without proof
one of the known results.

Bochner—Khinchin’s Theorem A necessary and sufficient condition for a con-
tinuous function ¢(t) with ¢(0) = 1 to be characteristic is that it is nonnegatively
defined, i.e., for any real ty, ..., t, and complex A1, ..., A,, one has

n

D el — 1Mk =0
k,j=1

(X is the complex conjugate of A).
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Note that the necessity of this condition is almost obvious, for if ¢(t) = Eeité
then
2

> 0.

n n
> ot —tpnhj=E Y "5, =E
k,j=1 k. j=1

i )\.keitk'é

k=1

7.1.2 The Properties of Ch.F.s Related to the Structure of the
Distribution of &

8. If the distribution of & has a density then @g (t) — 0 as |t| — oo.

This is a direct consequence of the Lebesgue theorem on Fourier transforms. The
converse assertion is false.

In general, the smoother F(x) is the faster g (f) vanishes as |¢| — oo. The for-
mulas in Example 7.1.7 are typical in this respect. If the density f(x) has an inte-
grable k-th derivative then, by integrating by parts, we get

o= [ fdr= [ pedn == o [P,

which implies that
c
e (1) < W
8A. If the distribution of & has a density of bounded variation then

C
< —.
e ()] < ]

This property is also validated by integration by parts:
1

<o [lareol

|(r>!—1 A f (x)
v ‘Efe FOI=

9. A random variable & has a lattice distribution with span h > 0 (see Defini-
tion 3.2.3) if and only if

(7))

if v is not a multiple of 2.
Clearly, without loss of generality we can assume & = 1. Moreover, since

<1 (7.1.2)

)

lpe—a(®)] = e (1)| = |z ()

the properties (7.1.2) are invariant with respect to the shift by a. Thus we can as-
sume the shift a is equal to zero and thus change the lattice distribution condition
in Property 9 to the arithmeticity condition (see Definition 3.2.3). Since ¢¢(7) is a
periodic function, Property 9 can be rewritten in the following equivalent form:
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The distribution of a random variable & is arithmetic if and only if

@ 2m) =1, lps()| <1 forallt € (0,2m). (7.1.3)

Proof If & has an arithmetic distribution then

ey =) PE=he" =1
k

for t = 2. Now let us prove the second relation in (7.1.3). Assume the contrary:
for some v € (0, 27), we have |¢g (v)| = 1 or, which is the same,

(ps (U) — eibv
for some real b. The last relation implies that
@e—p(v) =1 =Ecosv(§ —b) +iEsinv(§ — b), E[1 —cosv(§ —b)] =0.

Hence, by Property E4 in Sect. 4.1, cosv(§ —b) = 1 and v(§ — b) = 2w k(w) with
probability 1, where k(w) is an integer. Thus & — b is a multiple of 27 /v > 1.
This contradicts the assumption that the span of the lattice equals 1, and hence
proves (7.1.3).

Conversely, let (7.1.3) hold. As we saw, the first relation in (7.1.3) implies that
& takes only integer values. If we assume that the lattice span equals & > 1 then,
by the first part of the proof and the first relation in (7.1.2), we get |27/ h)| =1,
which contradicts the first relation in (7.1.3). Property 9 is proved. U

The next definition looks like a tautology.

Definition 7.1.2 The distribution of & is called non-lattice if it is not a lattice distri-
bution.

10. If the distribution of § is non-lattice then
log ()| <1 forallt #0.

Proof Indeed, if we assume the contrary, i.e. that |¢(u)| = 1 for some u # 0, then,
by Property 9, we conclude that the distribution of £ is a lattice with span h = 2x /u
or with a lesser span. g

11. If the distribution of & has an absolutely continuous component of a positive
mass p > 0, then it is clearly non-lattice and, moreover,
limsup|¢g(t)| <1-—p.
[t]—00
This assertion follows from Property 8.
Arithmetic distributions occupy an important place in the class of lattice distri-
butions.
For arithmetic distributions, the ch.f. ¢g(¢) is a function of the variable z = ¢' !
and is periodic in ¢ with period 27. Hence, in this case it is sufficient to know the
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behaviour of the ch.f. on the interval [—m, ] or, which is the same, to know the
behaviour of the function

pe(2):=Ef =) ZPE=h

on the unit circle |z| = 1.

Definition 7.1.3 The function pe (z) is called the generating function of the random
variable & (or of the distribution of &).

Since pg (e = @¢ (¢) is a ch.f., all the properties of ch.f.s remain valid for gener-

ating functions, with the only changes corresponding to the change of variable. For
more on applications of generating functions, see Sect. 7.7.

7.2 Inversion Formulas
Thus for any random variable there exists a corresponding ch.f. We will now show
that the set £ of functions e'’* is a distribution determining class, i.e. that the dis-

tribution can be uniquely reconstructed from its ch.f. This is proved using inversion
formulas.

7.2.1 The Inversion Formula for Densities

Theorem 7.2.1 Ifthe ch.f. ¢(t) of a random variable & is integrable then the distri-
bution of & has the bounded density

fx)= Lfe—"”‘go(r)arz. (7.2.1)
2

This fact is known from classical Fourier analysis, but we shall give a proof of a
probabilistic character.

Proof First we will establish the following (Parseval’s) identity: for any fixed ¢ > 0,

1 ,
pe(t) = —/e_””go(u)e_‘sz"z/2 du

27
1 (u—1)?
= mg/exp{—T}F(du), (7.2.2)

where F is the distribution of £. We begin with the equality

1 L E—t X & —1?
E/exp{le—E}dxzexp{— ¥ } (7.2.3)
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both sides of which being the value of the ch.f. of the normal distribution with
parameters (0, 1) at the point (§ —r)/e. After changing the variable x = su, the
left-hand side of this equality can be rewritten as

2.2
L\/z_/exp{iu(é—t)—gTu}du.
V1

If we take expectations of both sides of (7.2.3), we obtain

£ f ity (p)e= A g / =07
gy e u)e u = €X — u).
2 ¢ P 2¢2
This proves (7.2.2).

To prove the theorem first consider the left-hand side of the equality (7.2.2). Since

2.2 €2M2 . .
e E U/ 5 lase — 0, le” 27| <1 and ¢(u) is integrable, as ¢ — 0 one has

1 .
Pe(t) — g/e_””w(u)du = po(?) (7.2.4)

uniformly in 7, because the integral on the left-hand side of (7.2.2) is uniformly
continuous in ¢. This implies, in particular, that

b b
/ pe(t)dt — / po(t). (7.2.5)

Now consider the right-hand side of (7.2.2). It represents the density of the sum
& + en, where & and n are independent and n € @ 1. Therefore

b
/ pe(t)dt =P(a <& +en<b). (7.2.6)

Since & +¢n LS & as ¢ — 0 and the limit fab pe(t) dt exists for any fixed a and b by
virtue of (7.2.5), this limit (see (7.2.6)) cannot be anything other than F([a, b)).
Thus, from (7.2.5) and (7.2.6) we get

b
f po(t)dt =F([a,b)).
a
This means that the distribution F has the density po(¢), which is defined by re-

lation (7.2.4). The boundedness of po(t) evidently follows from the integrability
of ¢:

1
polt) < E/Iwﬂdr <o0.

The theorem is proved. g
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7.2.2 The Inversion Formula for Distributions

Theorem 7.2.2 If F(x) is the distribution function of a random variable & and ¢(t)
is its ch.f., then, for any points of continuity x and y of the function F(x),>

1 e—itx _ e—ity
F(y)—-Fx)=—1i _
W= Fo=50 alino/ it

If the function @(t)/t is integrable at infinity then the passage to the limit under the
integral sign is justified and one can write

o()e7 dr. (7.2.7)

1 e—itx _ e—ity
FO) = F@) =5 / o W (72.8)

Proof Suppose first that the ch.f. ¢(#) is integrable. Then F(x) has a density f(x)
and the assertion of the theorem in the form (7.2.8) follows if we integrate both sides
of Eq. (7.2.1) over the interval with the end points x and y and change the order of
integration (which is valid because of the absolute convergence).?

Now let ¢(¢) be the characteristic function of a random variable & with an ar-
bitrary distribution F. On a common probability space with &, consider a random
variable n which is independent of £ and has the normal distribution with parame-
ters (O, 202). As we have already pointed out, the ch.f. of 7 is e"z"z.

This means that the ch.f. of & + 1, being equal to ¢(t)e™’ 2"2, is integrable. There-
fore by (7.2.8) one will have

1 00 e—ilx _e—ity ) 9
F, — Feyp(x) = — ——p@)e " dt. 7.2.9
g4y (¥) — Fegp(x) o /_Oo m @(1) (7.2.9)
Since L 0as0 — 0, we have F¢, = F (see Chap. 6). Therefore, if x and y are
points of continuity of F, then F(y) — F(x) =limg_0(Fg4y(y) — Fr1,(x)). This,
together with (7.2.9), proves the assertion of the theorem. O

In the proof of Theorem 7.2.2 we used a method which might be called the
“smoothing” of distributions. It is often employed to overcome technical difficul-
ties related to the inversion formula.

Corollary 7.2.1 (Uniqueness Theorem) The ch.f. of a random variable uniquely
determines its distribution function.

2In the literature, the inversion formula is often given in the form
1 A pitx _ pily
F(y)—F(x)= o Ali)moo » fw(z‘) dt
which is equivalent to (7.2.7).

3Formula (7.2.8) can also be obtained from (7.2.1) without integration by noting that
(F(x) — F(y))/(y — x) is the value at zero of the convolution of two densities: f(x) and the
uniform density over the interva_l [—y, —x] (see also the remark at the end of Sect. 3.6). The ch.f.

L tx_g=ity
of the convolution is equal to e(‘yiix)i;)go(t).
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The proof follows from the inversion formula and the fact that F is uniquely
determined by the differences F'(y) — F(x).

For lattice random variables the inversion formula becomes simpler. Let, for the
sake of simplicity, & be an integer-valued random variable.

Theorem 7.2.3 If p:(z) := Ez° is the generating function of an arithmetic random
variable then

P(E=k) = L/ pe(2)z ¥ dz. (7.2.10)
2mi |z]=1

Proof Turning to the ch.f. ¢ (1) = Zj ¢''/P(& = j) and changing the variables z =
it in (7.2.10) we see that the right-hand side of (7.2.10) equals

L 1 TG
— Hdt=—Y PE=j itG=k gz,
2n/_,,e s (1) Zﬂ; E= e

Here all the integrals on the right-hand side are equal to zero, except for the integral
with j = k which is equal to 2. Thus the right-hand side itself equals P(§ = k).
The theorem is proved. d

Formula (7.2.10) is nothing else but the formula for Fourier coefficients and has
a simple geometric interpretation. The functions {e; = ¢!'*} form an orthonormal
basis in the Hilbert space L, (—m, ) of square integrable complex-valued functions
with the inner product

1 b4
(f.e)=o—[ [fWst)d:
T J-x

(g is the complex conjugate of ). If gz = > e;P(£ = k) then it immediately follows
from the equality ¢z = > e (¢, ex) that

Y

1 .
P(E =h) = (ps,00) = / e R oe (1) dt.

—TT

7.2.3 The Inversion Formula in L,. The Class of Functions that
Are Both Densities and Ch.F.s

First consider some properties of ch.f.s related to the inversion formula. As a prelim-
inary, note that, in classical Fourier analysis, one also considers the Fourier trans-
forms of functions f from the space L, of square-integrable functions. Since in this
case a function f is not necessarily integrable, the Fourier transform is defined as
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the integral in the principal value sense:*

N
(p(t) = lim (p(N)(l‘), (p(N)(t) = / e”xf(x) dx, (7.2.11)
N—o00 -N
where the limit is taken in the sense of convergence in Lj:

/Icp(t) — (p(N)(t)|2dx -0 as N — oo.

Since by Parseval’s equality

1 1/2
Iflle, = Ellwlle, where ||gllz, = [/ Iglz(t)dt} ,

the Fourier transform maps the space L; into itself (there is no such isometricity
for Fourier transforms in L). Here the inversion formula (7.2.1) holds true but the
integral in (7.2.1) is understood in the principal value sense.

Denote by J and I the class of all densities and the class of all ch.f.s, respec-
tively, and by 3| + C L; the class of nonnegative real-valued integrable chf.s,
so that the elements of J{; 4 are in J up to the normalising factors. Further, let
(H1.4)"D be the inverse image of the class 31, in F for the mapping f — ¢,
i.e. the class of densities whose ch.f.s lie in J{; 4. It is clear that functions f
from (H 1,+)(_1) and ¢ from J; 4 are necessarily symmetric (see Property 7A in
Sect. 7.1) and that £(0) € (0, 0o0). The last relation follows from the fact that, by the
inversion formula for ¢ € J; 1, we have

loll = llgllz, = /sv(t)dt — 27 (0).

Further, denote by (F(1 ). the class of normalised functions H%\I’ ¢ € Hjp 4,50

that (3,4).) C F, and denote by F>* the class of convolutions of symmetric
densities from Lj:

FQ2%) . {f(z)*(x) fely, fis symmetriC},

where

f<2)*(x):/ F@®) fx —1t)dt.

Theorem 7.2.4 The following relations hold true:
()Y =3O FE C (FHLD-
The class (31 +)).) may be called the class of densities conjugate to f €

(H 1,+)(_1). It turns out that this class coincides with the inverse image (J-CLJF)(_I).
The second statement of the theorem shows that this inverse image is a very rich

4 i i L
Here we again omit the factor T (cf. the footnote on page 154).
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class and provides sufficient conditions for the density f to have a conjugate. We
will need these conditions in Sect. 8.7.

Proof of Theorem 7.2.4 Let f € (31 )™V, Then the corresponding ch.f. ¢ is in
I+ and the inversion formula (7.2.1) is applicable. Multiplying its right-hand side
by ”27"”, we obtain an expression for the ch.f. (at the point —#) of the density ﬁ

(recall that ¢ > 0 is symmetric if ¢ € H; ;). This means that % is a ch.f. and,
moreover, that f € (Fy, ).
Conversely, suppose that f* := £ € (H; 4).|. Then f* € F is symmetric, and

el
the inversion formula can be applied to ¢:

2nf@) _
lell
Since the ch.f. *(¢) := zjﬁéﬁ” belongs to 3y, one has f* e (3, ;) V.

We now prove the second assertion. Suppose that f € L. Then ¢ € L, and
@2 € L1. Moreover, by virtue of the symmetry of f and Property 7A in Sect. 7.1,
the function ¢ is real-valued, so > > 0. This implies that ¢? € JH1,+. Since @2 is
the ch.f. of the density f@*, we have f®* e (31 ). The theorem is proved. [J

fx) = ife—”x(p(t)dm i/e"%(r)dt, /e"”f*(x)dx.
2 2

Note that any bounded density f belongs to L,. Indeed, since the Lebesgue mea-
sure of {x : f(x) > 1} is always less than 1, for f(-) < N we have

||f||%2=/f2(x)dx§/ f(x)dx+N2f dx <1+ N2 0
f)<l f(x)=1

Thus we have obtained the following result.

Corollary 7.2.2 For any bounded symmetric density f, the convolution f®* is, up
to a constant factor, the ch.f. of a random variable.

Example 7.2.1 The “triangle” density
1—|x| if|x] <1,

g(x):{o if x| > 1,

being the convolution of the two uniform distributions on [—1/2, 1/2] (cf. Exam-
ple 3.6.1) is also a ch.f. We suggest the reader to verify that the preimage of this
ch.f. is the density

_Lsinzx/2
f(x)_ 27_’: 2

X

(the density conjugate to g). Conversely, the density g is conjugate to f, and the
functions 8 f (¢) and g(¢) will be ch.f.s for g and f, respectively.
These assertions will be useful in Sect. 8.7.
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7.3 The Continuity (Convergence) Theorem

Let {@,(1)}52; be a sequence of ch.f.s and {F,}7° | the sequence of the respective
distribution functions. Recall that the symbol = denotes the weak convergence of
distributions introduced in Chap. 6.

Theorem 7.3.1 (The Continuity Theorem) A necessary and sufficient condition for
the convergence F, = F as n — 00 is that ¢, (t) — @(t) for any t, ¢(t) being the
ch.f. corresponding to F.

The theorem follows in an obvious way from Corollary 6.3.2 (here two of the
three sufficient conditions from Corollary 6.3.2 are satisfied: conditions (2) and (3)).
The proof of the theorem can be obtained in a simpler way as well. This way is
presented in Sect. 7.4 of the previous editions of this book.

In Sect. 7.1, for nonnegative random variables & we introduced the notion of
the Laplace transform v (s) := Ee~%¢. Let ¥, (s) and ¥ (s) be Laplace transforms
corresponding to F,, and F. The following analogue of Theorem 7.3.1 holds for
Laplace transforms:

In order that F,, = F as n — o0 it is necessary and sufficient that Y, (s) — ¥ (s)
for each s > 0.

Just as in Theorem 7.3.1, this assertion follows from Corollary 6.3.2, since the
class { f(x) = e, s > 0} is (like {€/’*}) a distribution determining class (see Prop-
erty 6 in Sect. 7.1) and, moreover, the sufficient conditions (2) and (3) of Corol-
lary 6.3.2 are satisfied.

Theorem 7.3.1 has a deficiency: one needs to know in advance that the func-
tion ¢(¢) to which the ch.f.s converge is a ch.f. itself. However, one could have no
such prior information (see e.g. Sect. 8.8). In this connection there arises a natural
question under what conditions the limiting function ¢ () will be characteristic.

The answer to this question is given by the following theorem.

Theorem 7.3.2 Let
ont) = / ¢ dFy (x)

be a sequence of ch.f.s and ¢, (t) — ¢(t) asn — oo for any t.
Then the following three conditions are equivalent:

(a) @(t) isachf,;
(b) @(t) is continuous at t = 0;
(c) the sequence {Fy,} is tight.

Thus if we establish that ¢, () — ¢(¢) and one of the above three conditions is
met, then we can assert that there exists a distribution F such that ¢ is the ch.f. of
Fand F,= F.
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Proof The equivalence of conditions (a) and (c) follows from Theorem 6.3.2. That
(a) implies (b) is known. It remains to establish that (c) follows from (b). First we
will show that the following lemma is true. O

Lemma 7.3.1 If ¢ is the ch.f. of & then, for any u > 0,

2 1 u
P(Iél > —) < —/ [1—o®)]at
u uJ_,

Proof The right-hand side of this inequality is equal to

/ f ¢ YdF (x)dt,

where F is the distribution function of £. Changing the order of integration and

noting that
u —itx u :
/ (l—e_ltx)dt:(t—ke‘ > :2u<1_smux)’
—u ix —u ux

we obtain that

l/u[l —(p(t)]dt=2/oo (1 - Sin”)ch(x)
uJ_, oo ux
32/ (1 - )dF(x)
|x|>2/u
22/ <I—L>dF(x)2/ dF(x).
Ix|>2/u lux| Ix|>2/u

The lemma is proved. O

sinux

ux

Now suppose that condition (b) is met. By Lemma 7.3.1

1 u 1 u
limsup/ dF,(x) §limsup—/ [1—@()]dt = —/ [1—o@)]dt
n—o00 J|x|>2/u n—oo U J_y uJ—u

Since ¢(¢) is continuous at 0 and ¢(0) = 1, the mean value on the right-hand side can
clearly be made arbitrarily small by choosing sufficiently small «. This obviously
means that condition (c) is satisfied. The theorem is proved. O

Using ch.f.s one can not only establish convergence of distribution functions but
also estimate the rate of this convergence in the cases when one can estimate how
fast ¢, — ¢ vanishes. We will encounter respective examples in Sect. 7.5.

We will mostly use the machinery of ch.f.s in Chaps. 8, 12 and 17. In the present
chapter we will also touch upon some applications of ch.f.s, but they will only serve
as illustrations.
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7.4 The Application of Characteristic Functions in the Proof
of the Poisson Theorem

Let &1, ..., &, be independent integer-valued random variables,
k
Si=Y &  Pa=D=p. PE=0=1-p—q.
1

The theorem below is a generalisation of the theorems established in Sect. 5.4.7

Theorem 7.4.1 One has

n n n
[P(S, =) — T (K)| = 3 pE+2) . wherepn=_ px.
k=1 k=1 k=1

Thus, if one is given a triangle array &1,, &2, ..., &m, n = 1,2, ..., of indepen-
dent integer-valued random variables,

n
Su=Y &, P(&n = 1) = pin, P(&xn =0) =1 — pin — Gin,
k=1

n
n= Zpkn,
k=1

then a sufficient condition for convergence of the difference P(S, = k) — II, ({k})
to zero is that

n

n
qun — 0, Zp,%n—>0.
k=1

k=1

Since

n
E 2
< pmax ,
p lpkn =u k<n Pkn

the last condition is always met if

max py, — 0, U < o = const.
k<n

>This extension is not really substantial since close results could be established using Theo-
rem 5.2.2 in which & can only take the values 0 and 1. It suffices to observe that the probability of
the event A = J, {6k # 0, & # 1} is bounded by the sum ) gx and therefore

PGS =k =01 ac+ (1= a)P(S, =kIA), 6,=1,i=12,

where P(S, = k[A) =P(S} =k) and S} are sums of independent random variables & with

Pk
1 — gk

P =1)=pi =L P =0)=1-p}.
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To prove the theorem we will need two auxiliary assertions.

Lemma 7.4.1 IfRe B <0 then
e —1]<1Bl, [P —1=B|<IB*/2,  |ef —1—B—p*/2| <IBP/6.

Proof The first two inequalities follow from the relations (we use here the change
of variables = Sv and the fact that |¢*| < 1 for Res < 0)

8 1
|eﬁ—1\=’/ e dt =‘/3/ Pdv| <8I,
0 0
B 1 1
lef —1-p|= / (¢ —1)dt :‘,8/ (efV — 1) dv §|ﬂ|2/ vdv=|B%|/2.
0 0 0
The last inequality is proved in the same way. O

Lemma 7.4.2 If|ax| <1, |bx| < 1,k=1,...,n, then

n n n
[Tax =[]0k =Dl —brl.
k=1 k=1 k=1

Thus if o (t) and 0 (t) are ch.f.s then, for any t,

[T =T ]0e0] <D lont) — o).
k=1 k=1 k=1

Proof Put A, =[];_, ax and B, =[[;_, bx. Then |A,| <1, |B,| <1, and
|Ay — Byl =|An—1an — By_1by]
= |(An—l — Bu—1)an + (an _bn)Bn—1| <|An-1 — Bu—1l +|an — byl

Applying this inequality » times, we obtain the required relation. g

Proof of Theorem 7.4.1 One has
oe(1) :=Ee" =1 + pr(e” — 1) + qe (ye(t) — 1),

where y(¢) is the ch.f. of some integer-valued random variable. By independence
of the random variables &,

s, () =] [ ex(®).

k=1
Let further ¢ € II,. Then

n
0 (1) =Eel = ' =1 = l—[ek(t),
k=1
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where 6y (t) = eP¥ (©'=1) Therefore the difference between the ch.f.s @s, and @, can
be bounded by Lemma 7.4.2 as follows:

n n
[Tec— 16
k=1 k=l

where by Lemma 7.4.1 (note that Re(e’’ — 1) < 0)

s, () — @ ()| =

n
<> lex — Ol,
k=1

21,0t _ 112 2
: et —1
|9k(f)—1—Pk(€"—1)|§%=%(sin2t+(l—cost)2)
.2
t t
=pi<SH; +2sin4§>, (7.4.1)

n n n . 2
sin“ ¢ t
— 6 <2 2 2sin* - ).
3 gk — 6l < zqk+zpk( " 2sin 2)
k=1 k=1 k=1
It remains to make use of the inversion formula (7.2.10):

1T
7 /_ i} e (s, (1) — @ (1)) dt

I - " sin? ¢ t
— 2 + 2 +2sin* = ) |dr
77/0 |: ZCIk ;Pk< 5 sin 2)

k=1

n n
= 22% + ZP;%
k=1 k=1

[P(Sy =) — T, (k) |

IA

IA

for
T 1 2 (7 t 3
— sinztdt:—, —/ sin* —dt = .
2 0 4 T Jo 2 4
The theorem is proved. g
If one makes use of the inequality |e! — 1| <2 in (7.4.1), the computations will

be simplified, there will be no need to calculate the last two integrals, but the bounds
will be somewhat worse:

Dlo =l =2(Ya+ Y ).
[P(Sy = k) = T, ({k})| < 2(2% + Zpi)'

7.5 Characteristic Functions of Multivariate Distributions.
The Multivariate Normal Distribution

Definition 7.5.1 Given a random vector & = (&1, &, ..., &y), its ch.f. (the ch.f. of
its distribution) is defined as the function of the vector variable t = (#1, ..., #7) equal
to
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d
(Pi:(t) ::Eeil‘éT :Eei(l'é) = Eexp{l Ztksk}
k=1
d

/exp{ Zthk}Fél ,,,,, g,(dx1, ..., dxg),

k=1

where & T is the transpose of £ (a column vector), and (¢, £) is the inner product.

The ch.f.s of multivariate distributions possess all the properties (with obvious
amendments of their statements) listed in Sects. 7.1-7.3.

It is clear that ¢ (0) = 1 and that |@: ()| <1 and @g(—t) = m always hold.
Further, g¢ (¢) is everywhere continuous. If there exists a mixed moment E£ fl ‘e f;d
then ¢¢ has the respective derivative of order kj + - - - + kg:

ky+--+k
8(p§]+ +d(l)

— jkittkagekt | gka
o o =i Eg - &,
ot ... 0t li=0

If all the moments of some order exist, then an expansion of the function ¢ (¢)
similar to (7.1.1) is valid in a neighbourhood of the point = 0.

If @ (¢) is known, then the ch.f. of any subcollection of the random variables
Cryseees Skj) can obviously be obtained by setting all #; except #,, ..., I; to be
equal to 0.

The following theorems are simple extensions of their univariate analogues.

Theorem 7.5.1 (The Inversion Formula) If A is a parallelepiped defined by the
inequalities ay < x < by, k=1, ...,d, and the probability P(§ € A) is continuous
on the faces of the parallelepiped, then

—llkuk _ e_llkbk t20-2
P A)=1i k t)dt ---dt,
(¢ €4)=lim =5 (Zn)d / / T @e(n)dn

If the random vector & has a density f(x) and its ch.f. g (¢) is integrable, then
the inversion formula can be written in the form

/e_i(t’x)<pg () dt.

If a function g(x) is such that its Fourier transform

g = / ¢V g(x)dx

is integrable (and this is always the case for sufficiently smooth g(x)) then the Par-
seval equality holds:

. - 1 -
Eg(€)=E7 3 f e g dr = G / 9 (—1)Z () dt.
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As before, the inversion formula implies the theorem on one-to-one correspon-
dence between ch.f.s and distribution functions and together with it the fact that
{e!"-*)} is a distribution determining class (cf. Definition 6.3.2).

The weak convergence of distributions F,(B) in the d-dimensional space to a
distribution F(B) is defined in the same way as in the univariate case: F(,) = F if

/f(x)dF(,,)(dx)—>/f(x)dF(dx)

for any continuous and bounded function f(x).
Denote by ¢, (t) and ¢(¢) the ch.f.s of distributions F;, and F, respectively.

Theorem 7.5.2 (Continuity Theorem) A necessary and sufficient condition for the
weak convergence F ;) = F is that, for any t, ¢, (1) — ¢(t) as n — oo.

In the case where one can establish convergence of ¢, (¢) to some function ¢(),
there arises the question of whether ¢(¢) will be the ch.f. of some distribution, or,
which is the same, whether the sequence F(,) will converge weakly to some distri-
bution F. Answers to these questions are given by the following assertion. Let Ay
be the cube defined by the inequality maxy |xi| < N.

Theorem 7.5.3 (Continuity Theorem) Suppose a sequence ¢, (t) of ch.f.s converges
as n — oo to a function ¢(t) for each t. Then the following three conditions are
equivalent:

(@) @) isachf;
(b) @(t) is continuous at the point t = 0;
(c) limsup,,_, o foN Fiy(dx) — 0 as N — oo.

All three theorems from this section can be proved in the same way as in the
univariate case.

Example 7.5.1 The multivariate normal distribution is defined as a distribution with
density (see Sect. 3.3)

where

d
Ox) =xAxT = Z ajjxixj,
i,j=1
and |A| is the determinant of a positive definite matrix A = ||a;;||.
This is a centred normal distribution for which E£€ = 0. The distribution of the

vector £ 4 a for any constant vector a is also called normal.
Find the ch.f. of £. Show that

to2tT
) (7.5.1)

@e (1) = eXP{ -
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where 02 = A~! is the matrix inverse to A and coinciding with the covariance
matrix [|o;;| of &:

oij = E&;§;.

Indeed,

JIAT [ 00 o xAxT
¢g(t)=W[w~~-[wexp itx' — > dxy---dxg. (7.5.2)

Choose an orthogonal matrix C such that CACT = D is a diagonal matrix, and
denote by u1, ..., i, the values of its diagonal elements. Change the variables by
putting x = yC and t = vC. Then

d
|Al=|D| =[] ms.
k=1

d n
1 1 1
itx’ — SxAx’ =ivy’ —SyDy =i kE_] VkVk ~ 5 kz_l Kk Ve

and, by Property 2 of ch.f.s of the univariate normal distributions,

d 2 d 2
VIA] o . Mk, 1 v
gosm:—(zﬂ)d/z]'[f expiiviye — - tdyie=IAl [ [ ——=expj -5 &
k=1Y" k=1

Mk 21k
vD~ LT tCTD-1ceT AT
= eX —— ¢ = €X i =eX - .
P 2 P 2 P 2

On the other hand, since all the moments of & exist, in a neighbourhood of the point
t =0 one has

1 1
pe(t)=1— EzA*‘tT +O<Z tkz) =1+itEgT + Etoth - O(Z t,f)
From this it follows that E€ =0, Al =02,

Formula (7.5.1) that we have just proved implies the following property of nor-
mal distributions: the components of the vector (€1, ..., &q) are independent if and
only if the correlation coefficients p(&;,&;) are zero for all i # j. Indeed, if olisa
diagonal matrix, then A = o~ is also diagonal and fe(x) is equal to the product of
densities. Conversely, if (&1, ..., &) are independent, then A is a diagonal matrix,
and hence o is also diagonal.
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7.6 Other Applications of Characteristic Functions.
The Properties of the Gamma Distribution

7.6.1 Stability of the Distributions ®, ;2 and Ky,

The stability property means, roughly speaking, that the distribution type is pre-
served under summation of random variables (this description of stability is not
exact, for more detail see Sect. 8.8).

The sum of independent normally distributed random variables is also normally
distributed. Indeed, let §; and &> be independent and normally distributed with pa-
rameters (aj, 012) and (ay, 0'22), respectively. Then the ch.f. of &1 + &; is equal to

ol [ e}
0+6 (1) = 95 (Ve (1) = explitar — — 1 texpyitay — —=

2
t
= exp{it(al +ay) — 5(012 —i—azz)}.

Thus the sum &1 + &> is again a normal random variable, with parameters (a; +
ar, 012 + 022).

Normality is also preserved when taking sums of dependent random variables
(components of an arbitrary normally distributed random vector). This immediately
follows from the form of the ch.f. of the multivariate normal law found in Sect. 7.5.
One just has to note that to get the ch.f. of the sum & + --- 4 &, it suffices to put
ty =---=t, =t in the expression

Oyt s - tn) = Eexplitigy +--- + ity &),

The sum of independent random variables distributed according to the Poisson
law also has a Poisson distribution. Indeed, consider two independent random vari-
ables &1 € IT;, and & € II,,. The ch.f. of their sum is equal to

Ps+6 (1) =exp{r (e — 1)} exp{rz(e’ — 1)} =exp{ (1 +22) (e — N}

Therefore &1 + & € I 43,.
The sum of independent random variables distributed according to the Cauchy
law also has a Cauchy distribution. Indeed, if §; € Ky, o, and & € Ky, ,, then

9z +5 (1) = explioit — oy |t]} expliaat — o2 t]}
= expli(e1 +a2)t — (o1 + o)t };
§1+6 Ky 1a5,0140-
The above assertions are closely related to the fact that the normal and Poisson
laws are, as we saw, limiting laws for sums of independent random variables (the

Cauchy distribution has the same property, see Sect. 8.8). Indeed, if S»,/+/2n con-
verges in distribution to a normal law (where S; = lef:l &j, &; are independent

and identically distributed) then it is clear that S, /</n and (S2, — S,,)/+/n will also
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converge to a normal law so that the sum of two asymptotically normal random
variables also has to be asymptotically normal.

Note, however, that due to its arithmetic structure the random variable & € II,
(as opposed to § € @, 2 or § € Ky ) cannot be transformed by any normalisation
(linear transformation) into a random variable again having the Poisson distribution
but with another parameter. For this reason the Poisson distribution cannot be stable
in the sense of Definition 8.8.2.

It is not hard to see that the other distributions we have met do not possess the
above-mentioned property of preservation of the distribution type under summa-
tion of random variables. If, for instance, £&; and &; are uniformly distributed over
[0, 1] and independent then F%, and Fg, 1¢, are substantially different functions (see
Example 3.6.1).

7.6.2 The T -distribution and its properties

In this subsection we will consider one more rather wide-spread type of distribution
closely related to the normal distribution and frequently used in applications. This
is the so-called Pearson gamma distribution Ty . We will write § € Iy if & has
density

A—le—ax x> 07

oc)‘
fian) =1 T ’
, x <0,

depending on two parameters « > 0 and A > 0, where I"(A) is the gamma function
o
) :/ e dx, A>0.
0

It follows from this equality that f f(x; o, &) dx = 1 (one needs to make the variable
change ax = y). If one differentiates the ch.f.

A Bl
‘P(t)=¢(t;a,k)=—/ Al gitx—ax g
() Jo

with respect to ¢ and then integrates by parts, the result will be

gz)/(t) = aA /Ooixkeitx—ax dx = Ol)L l)\‘ \/Oox)»—leilx—ax dx
I'(x) Jo W a—it )
i
= —(1);
o — 1t
(Ing() = (=rIn(@—in), @) =cla—in~*.

Since ¢(0) =1 one has ¢ = o* and ot)y=(010-— it/a)_)‘.

It follows from the form of the ch.f. that the subfamily of distributions I'y , for
a fixed « also has a certain stability property: if §| € Iy, and & € I'y 3, are
independent, then & + & & Ty 5 12,-
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An example of a particular gamma distribution is given, for instance, by the dis-
tribution of the random variable

n
2 2
Xn = ZEZ ’
i=1

where &; are independent and normally distributed with parameters (0, 1). This is the
so-called chi-squared distribution with n degrees of freedom playing an important
role in statistics.

To find the distribution of X,% it suffices to note that, by virtue of the equality

P(y2 _ _ 2 vE —u?/2
(12 <x) = P(&1] < Vx) _Efo e du,
the density of X12 is equal to
Ee—*”x—”z =f(x:1/2,1/2),  xi €Tipap.
This means that the ch.f. of x? is
9" (1:1/2,1/2) = (1 = 2in)™"? = ¢(t; 1/2,n/2)

and corresponds to the density f(¢; 1/2,n/2).
Another special case of the gamma distribution is the exponential distribution
I'y =T, 1 with density

fx; o, ) =ae™*, x>0,

NS |
(p(x;cx,l):(l—z) .
o

We leave it to the reader to verify with the help of ch.f.s thatif §; € I'y; and are
independent, «j # oy for j # 1, then

n n n . —1
p(zsj >x) -y e (-2
= = = o
J

and characteristic function

In various applications (in particular, in queueing theory, cf. Sect. 12.4), the so-
called Erlang distribution is also of importance. This is a distribution with density
f(x; o, A) for integer A. The Erlang distribution is clearly a A-fold convolution of
the exponential distribution with itself.

We find the expectation and variance of a random variable £ that has the gamma
distribution with parameters (o, A):

A A+ 1
EE =—i¢'(0;a, 1) = —, E&2=—ip"(0;a, 1) = w,
o

Ol2
AL+ 1 AMN\2 A
vare) = 2 (2) -
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Distributions from the gamma family, and especially the exponential ones, are
often (and justifiably) used to approximate distributions in various applied problems.
We will present three relevant examples.

Example 7.6.1 Consider a complex device. The failure of at least one of n parts
comprising the device means the breakdown of the whole device. The lifetime dis-
tribution of any of the parts is usually well described by the exponential law. (The
reasons for this could be understood with the help of the Poisson theorem on rare
events. See also Example 2.4.1 and Chap. 19.)

Thus if the lifetimes &; of the parts are independent, and for the part number j
one has

PEj>x)=e %", x>0,

then the lifetime of the whole device will be equal to n, = min(y, ..., &,) and we
will get

P(n, > x) :P(ﬂ{gi >x}> = HP(éj > X) :exp{—x Za[}.
j=l1 j=1 i=1

This means that 7, will also have the exponential distribution, and since

Eé;:j = l/Otj,

the mean failure-free operation time of the device will be equal to

n —1
1
i = (Z. ﬁ) |

i=1

Example 7.6.2 Now turn to the distribution of ¢, = max(&y, ..., &,), where &; are
independent and all have the I'-distribution with parameters (¢, A). We could con-
sider, for instance, a queueing system with n channels. (That could be, say, a mul-
tiprocessor computer solving a problem using the complete enumeration algorithm,
each of the processors of the machine checking a separate variant.) Channel number
i is busy for a random time &;. After what time will the whole system be free? This
random time will clearly have the same distribution as &,.
Since the &; are independent, we have

P({, <x)=P(ﬂ{sj <x}> =[P <0)]". (7.6.1)
j=1

If n is large, then for approximate calculations we could find the limiting distri-
bution of ¢, as n — oo. Note that, for any fixed x, P(¢, < x) — 0asn — oo.
Assuming for simplicity that « = 1 (the general case can be reduced to this one
by changing the scale), we apply L'Hospital’s rule to see that, as x — oo,
P

. _ * 1 A—1_—y ~ —x
P($j<)c)_/)C F()L)y e Vdy F(A)e .
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Letting n — oo and
x=x(m)=In[n(nn)*"' /T (M)] +u, u=const,
we get

(mm)*~' oy, e

() n(lnn))‘*le T on

Therefore for such x and n — oo we obtain by (7.6.1) that

PE;>x)~

—u

e " _elt
" (1+0(1))> —>e

Pl <x)= (1 -

Thus we have established the existence of the limit

=1
lim P<§n - ln[ni(hm) i| < u) =",
n—00 ()

or, which is the same, that

| n(lnn)*~1
Cn — n[ir()\)

In other words, for large n the variable ¢, admits the representation

|:n(lnn)k_]
an| SR

} S Fo, Fo(u)=e*"

0 0
o ]—i—{, where ¢° € Fp.

Example 7.6.3 Let & and &; be independent with §&; €'y 3, and & € Ty, ;,. What
is the distribution of &1 /(&1 + &)? We will make use of Theorem 4.9.2. Since the
joint density f(x,y) of & and n =& + & is equal to

fx, )= fx o) f(y—x5a,A2),

the density of 7 is

q(y) = f(yio, A1+ 22),
and the conditional density f(x | y) of &1 given n =y is equal to

f(x| )= f(x,y) i I'(AM + ) x}tl_l(y—x))tz—l
y)= q(y) T () ST

By the formulas from Sect. 3.2 the conditional density of &1 /y = &1 /(&1 + &2) (given
the same condition &1 + & = y) is equal to

(A +22) el
')Ir ()

This distribution does not depend on y (nor on «). Hence the conditional density
of &1 /(&1 + &) will have the same property, too. We obtain the so-called beta distri-
bution By, ;, with parameters A1 and A, defined on the interval [0, 1]. In particular,
for A = Ay = 1, the distribution is uniform: B; ; =Up ;.

, x€[0,y].

x|y = (1—x)271 xelo,1].
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7.7 Generating Functions. Application to Branching Processes.
A Problem on Extinction

7.7.1 Generating Functions

We already know that if a random variable £ is integer-valued, i.e.
P<U{$ = k}) =1,
k

then the ch.f. g () will actually be a function of z = ¢'!, and, along with its ch.f.,
the distribution of £ can be specified by its generating function

pe(x):=Ezf =) P& =k).
k
The inversion formula can be written here as
1 [T _. 1
P =k) = —/ e e (1) dt = — 7 1 pe(2) dz. (7.7.1)
2 7 2mi lzl=1

As was already noted (see Sect. 7.2), relation (7.7.1) is simply the formula for
Fourier coefficients (since ¢!’k = costk + i sintk).

If & and 7 are independent random variables, then the distribution of § + n will
be given by the convolution of the sequences P(§ = k) and P(n = k):

oo
PE+n=n)= Y PE=kPh=n—k)
k=—00

(the total probability formula). To this convolution there corresponds the product of
the generating functions:

Pe+n(2) = pe(2) py(2).

It is clear from the examples considered in Sect. 7.1 that the generating functions of
random variables distributed according to the Bernoulli and Poisson laws are

pe@=1+pz—1.,  pe@)=exp{uz -1},

respectively.

One can see from the definition of the generating function that, for a nonnegative
random variable & > 0, the function pg(z) is defined for |z] < 1 and is analytic in
the domain |z] < 1.

7.7.2 The Simplest Branching Processes

Now we turn to sequences of random variables which describe the so-called branch-
ing processes. We have already encountered a simple example of such a process
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when describing a chain reaction scheme in Example 4.4.4. Consider a more general
scheme of a branching process. Imagine particles that can produce other particles
of the same type; these could be neutrons in chain reactions, bacteria reproducing
according to certain laws etc. Assume that initially there is a single particle (the
“null generation”) that, as a result of a “division” act, transforms with probabilities
Je, k=0,1,2,...,into k particles of the same type,

ka =1
k=0

The new particles form the “first generation”. Each of the particles from that gen-
eration behaves itself in the same way as the initial particle, independently of what
happened before and of the other particles from that generation. Thus we obtain the
“second generation”, and so on. Denote by ¢, the number of particles in the n-th
generation. To describe the sequence ¢, introduce, as we did in Example 4.4.4,
independent sequences of independent identically distributed random variables

g, g7

where E](.”) have the distribution

P(g](_”)zk)sz, k=0,1,....
Then the sequence ¢, can be represented as
%=1
1
‘1= %'1( ),
2
o=67 -+ E

Go= 6"+ g

2)
1 9

These are sums of random numbers of random variables. Since & 1("), 52("), ... donot

depend on ¢,_1, for the generating function f(,)(z) = Ez% we obtain by the total
probability formula that

o
) )
Joy(@) = ZP((,,,I —kE5 Tt
k=0

=Y Pl =k f @) = fu1)(f ). (1.7.2)
k=0
where

F@ = fo@ =E&" =3 fidk.
k=0
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Fig. 7.1 Finding the ,
extinction probability of a f(2) )
branching process: it is given .
by the smaller of the two 1 /-
solutions to the equation -

z=f(2) -

[SSNY

Denote by f,(z) the n-th iterate of the function f(z), i.e. f1(2) = f(2), f»(2) =
f(f(@), f3(z) = f(f2(2)) and so on. Then we conclude from (7.7.2) by induction
that the generating function of ¢, is equal to the n-th iterate of f(z):

Ez" = fi)(2).

From this one can easily obtain, by differentiating at the point z = 1, recursive rela-
tions for the moments of ¢,.

How can one find the extinction probability of the process? By extinction we will
understand the event that all ¢, starting from some n will be equal to 0. (If ¢, =0
then clearly ¢,4+1 = {40 = -+ - =0, because P(§,41 =0/, =0) =1.) Set Ay =
{¢x = 0}. Then extinction is the event U,fil Ag. Since A, C A,+1, the extinction
probability g is equal to g = lim, .o P(A;,).

Theorem 7.7.1 The extinction probability q is equal to the smallest nonnegative
solution of the equation g = f(q).

Proof One has P(A,) = f,(0) <1, and this sequence is non-increasing. Passing in
the equality

Fa100) = f(fn(0)) (7.7.3)

to the limit as n — oo, we obtain

qg=f(@, q=1

This is an equation for the extinction probability. Let us analyse its solutions. The
function f(z) is convex (as f”(z) > 0) and non-decreasing in the domain z > 0
and f’(1) = m is the mean number of offspring of a single particle. First assume
that P(El(l) =1)<l1.Ifm<1then f(z) >zforz<1andhenceg=1.If m > 1
then by convexity of f the equation ¢ = f(q) has exactly two solutions on the
interval [0, 1]: g1 < 1 and g2 = 1 (see Fig. 7.1). Assume that ¢ = go = 1. Then the
sequence &, = 1 — f,,(0) will monotonically converge to 0, and f(1 —4§,) <1 -4,
for sufficiently large n. Therefore, for such n,

8n+1:1_f(1_5n)>8n,



7.7 Generating Functions. Application to Branching Processes 183

which is a contradiction as §, is a decreasing sequence. This means that ¢ = g1 < 1.
Finally, in the case P(gl(l) =1) = f1 = 1 one clearly has f(z) =z and ¢ = 0. The
theorem is proved. g

Now consider in more detail the case m = 1, which is called critical. We know
that in this case the extinction probability ¢ equals 1. Let g, = P(A,) = f,,(0) be
the probability of extinction by time n. How fast does g, converge to 1? By (7.7.3)
one has g, 41 = f(g,). Therefore the probability p, = 1 — g, of non-extinction of
the process by time n satisfies the relation

Pnt1=8(Pn), g)y=1—f(1-x).

It is also clear that ¥, = p, — pn+1 is the probability that extinction will occur
on step n.

Theorem 7.7.2 If m = f'(1) =1 and 0 < b := f"(1) < oo then y, ~ # and

pnN%asneoo.

Proof If the second moment of the number of offspring of a single particle is finite
(b < 00) then the derivative g”(0) = —b exists and therefore, since g(0) = 0 and
g'(0)= f’(1) =1, one has

gx)=x— §x2 +o(x2), X — 0.

Putting x = p,, — 0, we find for the sequence a,, = 1/p,, that

Pn = Pn+1 bpa(1+o(1) b

Ap+1 —an = =53 - =,

PnPn+1 2pn(1 —bpu/2+0(py)) 2
n—1

bn 2
a=ar+) (@i —a)~ o P
k=1
The theorem is proved. d

Now consider the problem on the distribution of the number ¢, of particles given
&n > 0.

Theorem 7.7.3 Under the assumptions of Theorem 7.7.2, the conditional distribu-
tion of pn&, (or 2¢,/(bn)) given &, > 0 converges as n — o0 to the exponential
distribution:

X

P(putn > x>0 — e, x>0.

The above statement means, in particular, that given ¢, > 0, the number of parti-
cles ¢, is of order n as n — oo.
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Proof Consider the Laplace transform (see Property 6 in Sect. 7.1) of the condi-
tional distribution of p, ¢, (given &, > 0):

o
E(e*P" (g, > 0) = L Z e~Skemp (g, = k). (7.7.4)

" k=1
We will make use of the fact that, if we could find an N such that e 757" =1 — py,
which is the probability of extinction by time N, then the right-hand side of (7.7.4)
will give, by the total probability formula, the conditional probability of the extinc-
tion of the process by time n 4+ N given its non-extinction at time n. We can evaluate

this probability using Theorem 7.7.2.
Since p, — 0, for any fixed s > 0 one has

2s
—SPn _ |~ — ~—
e s .
Pn .
Clearly, one can always choose N ~n/s, s, ~ s,s, | s suchthate™P» —1 = —py.

Therefore e %Pk = (1 — px)¥ and the right-hand side of (7.7.4) can be rewritten
fors =s, as

1 & 1
— Y PG =k(1-py)= P >0, Gy =0)

™ k=1
__ Pn—Pn+N
Pn
Pn+N n N 1
=1- ~1- = — .
Pn n+N n+N 1+s

Now note that
E(e_spnfn ;n > 0) — E(e_snpnfn |§n > O) — E[e_spnfn (l _ e_(sn_s)pnfn |Cn > 0)]

Sincee ™ <land 1 —e ™ ® <afora>0,and E¢, =1, E(¢,|¢, > 0) = 1/p,, it is
easily seen that the positive (since s, > s) difference of the expectations in the last
formula does not exceed

(sn — ) puEn|n > 0) =5, —5s — 0.

Therefore the Laplace transform (7.7.4) converges, as n — oo, to 1/(1 + s).
Since 1/(1 + s) is the Laplace transform of the exponential distribution:

° 1
e X dx = ,
/O 145

we conclude by the continuity theorem (see the remark after Theorem 7.3.1 in
Sect. 7.3) that the conditional distribution of interest converges to the exponential
law.5

In Sect. 15.4 (Example 15.4.1) we will obtain, as consequences of martingale
convergence theorems, assertions about the behaviour of ¢, as n — oo for branching
processes in the case p > 1 (the so-called supercritical processes). O

The simple proof of Theorem 7.7.3 that we presented here is due to K.A. Borovkov.
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