
Chapter 7
Characteristic Functions

Abstract Section 7.1 begins with formal definitions and contains an extensive dis-
cussion of the basic properties of characteristic functions, including those related to
the nature of the underlying distributions. Section 7.2 presents the proofs of the in-
version formulas for both densities and distribution functions, and also in the space
of square integrable functions. Then the fundamental continuity theorem relating
pointwise convergence of characteristic functions to weak convergence of the re-
spective distributions is proved in Sect. 7.3. The result is illustrated by proving the
Poisson theorem, with a bound for the convergence rate, in Sect. 7.4. After that,
the previously presented theory is extended in Sect. 7.5 to the multivariate case.
Some applications of characteristic functions are discussed in Sect. 7.6, including
the stability properties of the normal and Cauchy distributions and an in-depth dis-
cussion of the gamma distribution and its properties. Section 7.7 introduces the
concept of generating functions and uses it to analyse the asymptotic behaviour
of a simple Markov discrete time branching process. The obtained results include
the formula for the eventual extinction probability, the asymptotic behaviour of the
non-extinction probabilities in the critical case, and convergence in that case of the
conditional distributions of the scaled population size given non-extinction to the
exponential law.

7.1 Definition and Properties of Characteristic Functions

As a preliminary remark, note that together with real-valued random variables ξ(ω)

we could also consider complex-valued random variables, by which we mean func-
tions of the form ξ1(ω) + iξ2(ω), (ξ1, ξ2) being a random vector. It is natural to
put E(ξ1 + iξ2) = Eξ1 + iEξ2. Complex-valued random variables ξ = ξ1 + iξ2 and
η = η1 + iη2 are independent if the σ -algebras σ(ξ1, ξ2) and σ(η1, η2) generated
by the vectors (ξ1, ξ2) and (η1, η2), respectively, are independent. It is not hard to
verify that, for such random variables,

Eξη = EξEη.

Definition 7.1.1 The characteristic function (ch.f.) of a real-valued random variable
ξ is the complex-valued function
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ϕξ (t) := Eeitξ =
∫

eitx dF (x),

where t is real.

If the distribution function F(x) has a density f (x) then the ch.f. is equal to

ϕξ (t) =
∫

eitxf (x) dx

and is just the Fourier transform of the function f (x).1 In the general case, the ch.f.
is the Fourier–Stieltjes transform of the function F(x).

The ch.f. exists for any random variable ξ . This follows immediately from the
relation

∣∣ϕξ (t)
∣∣ ≤

∫ ∣∣eitx
∣∣dF(x) ≤

∫
1dF(x) = 1.

Ch.f.s are a powerful tool for studying properties of the sums of independent random
variables.

7.1.1 Properties of Characteristic Functions

1. For any random variable ξ ,

ϕξ (0) = 1 and
∣∣ϕξ (t)

∣∣ ≤ 1 for all t.

This property is obvious.

2. For any random variable ξ ,

ϕaξ+b(t) = eitbϕξ (ta).

Indeed,

ϕaξ+b(t) = Eeit (aξ+b) = eitbEeiatξ = eitbϕξ (ta). �

1More precisely, in classical mathematical analysis, the Fourier transform ϕ(t) of a function f (t)

from the space L1 of integrable functions is defined by the equation

ϕ(t) = 1√
2π

∫
eitxf (t) dt

(the difference from ch.f. consists in the factor 1/
√

2π ). Under this definition the inversion formula
has a “symmetric” form: if ϕ ∈ L1 then

f (x) = 1√
2π

∫
e−itxϕ(t) dt.

This representation is more symmetric than the inversion formula for ch.f. (7.2.1) in Sect. 7.2
below.
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3. If ξ1, . . . , ξn are independent random variables then the ch.f. of the sum Sn =
ξ1 + · · · + ξn is equal to

ϕSn(t) = ϕξ1(t) · · ·ϕξn(t).

Proof This follows from the properties of the expectation of the product of inde-
pendent random variables. Indeed,

ϕSn(t) = Eeit (ξ1+···+ξn) = Eeitξ1eitξ2 · · · eitξn

= Eeitξ1Eeitξ2 · · ·Eeitξn = ϕξ1(t)ϕξ2(t) · · ·ϕξn(t). �

Thus to the convolution Fξ1 ∗ Fξ2 there corresponds the product ϕξ1ϕξ2 .

4. The ch.f. ϕξ (t) is a uniformly continuous function.
Indeed, as h → 0,∣∣ϕ(t + h) − ϕ(t)

∣∣ = ∣∣E(
ei(t+h)ξ − eitξ

)∣∣ ≤ E
∣∣eihξ − 1

∣∣ → 0

by the dominated convergence theorem (see Corollary 6.1.2) since |eihξ − 1| p−→ 0
as h → 0, and |eihξ − 1| ≤ 2. �

5. If the k-th moment exists: E|ξ |k < ∞, k ≥ 1, then there exists a continuous k-th
derivative of the function ϕξ (t), and ϕ(k)(0) = ikEξk .

Proof Indeed, since∣∣∣∣
∫

ixeitx dF (x)

∣∣∣∣ ≤
∫

|x|dF(x) = E|ξ | < ∞,

the integral
∫

ixeitx dF (x) converges uniformly in t . Therefore one can differentiate
under the integral sign:

ϕ′(t) = i

∫
xeitx dF (x), ϕ′(0) = iEξ.

Further, one can argue by induction. If, for l < k,

ϕ(l)(t) = il
∫

xleitx dF (x),

then

ϕ(l+1)(t) = il+1
∫

xl+1eitx dF (x)

by the uniform convergence of the integral on the right-hand side. Therefore

ϕ(l+1)(0) = il+1Eξ l+1. �
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Property 5 implies that if E|ξ |k < ∞ then, in a neighbourhood of the point t = 0,
one has the expansion

ϕ(t) = 1 +
k∑

j=1

(it)j

j ! Eξj + o
(∣∣tk∣∣). (7.1.1)

The converse assertion is only partially true:

If a derivative of an even order ϕ(2k) exists then

E|ξ |2k < ∞, ϕ(2k)(0) = (−1)kEξ2k.

We will prove the property for k = 1 (for k > 1 one can employ induction). It
suffices to verify that E|ξ |2 is finite. One has

−2ϕ(0) − ϕ(2h) − ϕ(−2h)

4h2
= E

(
eihξ − e−ihξ

2h

)2

= E
sin2 hξ

h2
.

Since h−2 sin2 hξ → ξ2 as h → 0, by Fatou’s lemma

−ϕ′′(0) = lim
h→0

(
2ϕ(0) − ϕ(2h) − ϕ(−2h)

4h2

)
= lim

h→0
E

sin2 hξ

h2

≥ E lim
h→0

sin2 hξ

h2
= Eξ2. �

6. If ξ ≥ 0 then ϕξ (λ) is defined in the complex plane for Imλ ≥ 0. Moreover,
|ϕξ (λ)| ≤ 1 for such λ, and in the domain Imλ > 0, ϕξ (λ) is analytic and con-
tinuous including on the boundary Imλ = 0.

Proof That ϕ(λ) is analytic follows from the fact that, for Imλ > 0, one can differ-
entiate under the integral sign the right-hand side of

ϕξ (λ) =
∫ ∞

0
eiλx dF (x).

(For Imλ > 0 the integrand decreases exponentially fast as x → ∞.) �

Continuity is proved in the same way as in property 4. This means that for non-
negative ξ the ch.f. ϕξ (λ) uniquely determines the function

ψ(s) = ϕξ (is) = Ee−sξ

of real variable s ≥ 0, which is called the Laplace (or Laplace–Stieltjes) transform
of the distribution of ξ .

The converse assertion also follows from properties of analytic functions: the
Laplace transform ψ(s) on the half-line s ≥ 0 uniquely determines the ch.f. ϕξ (λ).

7. ϕξ (t) = ϕξ (−t) = ϕ−ξ (t), where the bar denotes the complex conjugate.
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Proof The relations follow from the equalities

ϕξ (t) = Eeitξ = Eeitξ = Ee−itξ . �

This implies the following property.

7A. If ξ is symmetric (has the same distribution as −ξ ) then its ch.f. is real (ϕξ (t) =
ϕξ (−t)).

One can show that the converse is also true; to this end one has to make use of
the uniqueness theorem to be discussed below.

Now we will find the ch.f.s of the basic probability laws.

Example 7.1.1 If ξ = a with probability 1, i.e. ξ ⊂= Ia , then ϕξ (t) = eita .

Example 7.1.2 If ξ ⊂= Bp then ϕξ (t) = peit + (1 − p) = 1 + p(eit − 1).

Example 7.1.3 If ξ ⊂= �0,1 then ϕξ (t) = e−t2/2.
Indeed,

ϕ(t) = ϕξ (t) = 1√
2π

∫ ∞

−∞
eitx−x2/2 dx.

Differentiating with respect to t and integrating by parts (xe−x2/2 dx = −de−x2/2),
we get

ϕ′(t) = 1√
2π

∫
ixeitx−x2/2 dx = − 1√

2π

∫
teitx−x2/2 dx = −tϕ(t),

(
lnϕ(t)

)′ = −t, lnϕ(t) = − t2

2
+ c.

Since ϕ(0) = 1, one has c = 0 and ϕ(t) = e−t2/2. �

Now let η be a normal random variable with parameters (a, σ ). Then it can be
represented as η = σξ + a, where ξ is normally distributed with parameters (0,1).
The ch.f. of η can be found using Property 2:

ϕη(t) = eitae−(tσ )2/2 = eita−t2σ 2/2.

Differentiating ϕη(t) for η ⊂= �0,σ 2 , we will obtain that Eηk = 0 for odd k, and
Eηk = σk(k − 1)(k − 3) · · ·1 for k = 2,4, . . . .

Example 7.1.4 If ξ ⊂= �μ then

ϕξ (t) = Eeitξ =
∑

k

eitk μk

k! e−μ = e−μ
∑

k

(μeit )k

k! = e−μeμeit = exp
[
μ

(
eit − 1

)]
.
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Example 7.1.5 If ξ has the exponential distribution �α with density αe−αx for
x ≥ 0, then

ϕξ (t) = α

∫ ∞

0
eitx−αx dx = α

α − it
.

Therefore, if ξ has the “double” exponential distribution with density 1
2e−|x|, −∞ <

x < ∞, then

ϕξ (t) = 1

2

(
1

1 − it
+ 1

1 + it

)
= 1

1 + t2
.

If ξ has the geometric distribution P(ξ = k) = (1 − p)pk , k = 0,1, . . . , then

ϕξ (t) = 1 − p

1 − peit
.

Example 7.1.6 If ξ ⊂= K0,1 (has the density [π(1 + x2)]−1) then ϕξ (t) = e−|t |. The
reader will easily be able to prove this somewhat later, using the inversion formula
and Example 7.1.5.

Example 7.1.7 If ξ ⊂= U0,1, then

ϕξ (t) =
∫ 1

0
eitx dx = eit − 1

it
.

By virtue of Property 3, the ch.f.s of the sums ξ1 + ξ2, ξ1 + ξ2 + ξ3, . . . that we
considered in Example 3.6.1 will be equal to

ϕξ1+ξ2(t) = − (eit − 1)2

t2
, ϕξ1+ξ2+ξ3(t) = − (eit − 1)3

t3
, . . . .

We return to the general case. How can one verify whether one or another func-
tion ϕ is characteristic or not? Sometimes one can do this using the above properties.
We suggest the reader to determine whether the functions (1+ t)−1, 1+ t , sin t , cos t

are characteristic, and if so, to which distributions they correspond.
In the general case the posed question is a difficult one. We state without proof

one of the known results.

Bochner–Khinchin’s Theorem A necessary and sufficient condition for a con-
tinuous function ϕ(t) with ϕ(0) = 1 to be characteristic is that it is nonnegatively
defined, i.e., for any real t1, . . . , tn and complex λ1, . . . , λn, one has

n∑
k,j=1

ϕ(tk − tj )λkλj ≥ 0

(λ is the complex conjugate of λ).
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Note that the necessity of this condition is almost obvious, for if ϕ(t) = Eeitξ

then

n∑
k,j=1

ϕ(tk − tj )λkλj = E
n∑

k,j=1

ei(tk−tj )ξ λkλj = E

∣∣∣∣∣
n∑

k=1

λke
itkξ

∣∣∣∣∣
2

≥ 0.

7.1.2 The Properties of Ch.F.s Related to the Structure of the
Distribution of ξ

8. If the distribution of ξ has a density then ϕξ (t) → 0 as |t | → ∞.
This is a direct consequence of the Lebesgue theorem on Fourier transforms. The

converse assertion is false.
In general, the smoother F(x) is the faster ϕξ (t) vanishes as |t | → ∞. The for-

mulas in Example 7.1.7 are typical in this respect. If the density f (x) has an inte-
grable k-th derivative then, by integrating by parts, we get

ϕξ (t) =
∫

eitxf (x) dx = 1

it

∫
eitxf ′(x) dx = · · · = 1

(it)k

∫
eitxf (k)(x) dx,

which implies that

ϕξ (t) ≤ c

|t |k .

8A. If the distribution of ξ has a density of bounded variation then
∣∣ϕξ (t)

∣∣ ≤ c

|t | .

This property is also validated by integration by parts:

∣∣ϕξ (t)
∣∣ =

∣∣∣∣ 1

it

∫
eitx df (x)

∣∣∣∣ ≤ 1

|t |
∫ ∣∣df (x)

∣∣.
9. A random variable ξ has a lattice distribution with span h > 0 (see Defini-
tion 3.2.3) if and only if ∣∣∣∣ϕξ

(
2π

h

)∣∣∣∣ = 1,

∣∣∣∣ϕξ

(
v

h

)∣∣∣∣ < 1 (7.1.2)

if v is not a multiple of 2π .
Clearly, without loss of generality we can assume h = 1. Moreover, since∣∣ϕξ−a(t)

∣∣ = ∣∣e−itaϕξ (t)
∣∣ = ∣∣ϕξ (t)

∣∣,
the properties (7.1.2) are invariant with respect to the shift by a. Thus we can as-
sume the shift a is equal to zero and thus change the lattice distribution condition
in Property 9 to the arithmeticity condition (see Definition 3.2.3). Since ϕξ (t) is a
periodic function, Property 9 can be rewritten in the following equivalent form:
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The distribution of a random variable ξ is arithmetic if and only if

ϕξ (2π) = 1,
∣∣ϕξ (t)

∣∣ < 1 for all t ∈ (0,2π). (7.1.3)

Proof If ξ has an arithmetic distribution then

ϕξ (t) =
∑

k

P(ξ = k)eitk = 1

for t = 2π . Now let us prove the second relation in (7.1.3). Assume the contrary:
for some v ∈ (0,2π), we have |ϕξ (v)| = 1 or, which is the same,

ϕξ (v) = eibv

for some real b. The last relation implies that

ϕξ−b(v) = 1 = E cosv(ξ − b) + iE sinv(ξ − b), E
[
1 − cosv(ξ − b)

] = 0.

Hence, by Property E4 in Sect. 4.1, cosv(ξ − b) = 1 and v(ξ − b) = 2πk(ω) with
probability 1, where k(ω) is an integer. Thus ξ − b is a multiple of 2π/v > 1.
This contradicts the assumption that the span of the lattice equals 1, and hence
proves (7.1.3).

Conversely, let (7.1.3) hold. As we saw, the first relation in (7.1.3) implies that
ξ takes only integer values. If we assume that the lattice span equals h > 1 then,
by the first part of the proof and the first relation in (7.1.2), we get |ϕ(2π/h)| = 1,
which contradicts the first relation in (7.1.3). Property 9 is proved. �

The next definition looks like a tautology.

Definition 7.1.2 The distribution of ξ is called non-lattice if it is not a lattice distri-
bution.

10. If the distribution of ξ is non-lattice then∣∣ϕξ (t)
∣∣ < 1 for all t �= 0.

Proof Indeed, if we assume the contrary, i.e. that |ϕ(u)| = 1 for some u �= 0, then,
by Property 9, we conclude that the distribution of ξ is a lattice with span h = 2π/u

or with a lesser span. �

11. If the distribution of ξ has an absolutely continuous component of a positive
mass p > 0, then it is clearly non-lattice and, moreover,

lim sup
|t |→∞

∣∣ϕξ (t)
∣∣ ≤ 1 − p.

This assertion follows from Property 8.
Arithmetic distributions occupy an important place in the class of lattice distri-

butions.
For arithmetic distributions, the ch.f. ϕξ (t) is a function of the variable z = eit

and is periodic in t with period 2π . Hence, in this case it is sufficient to know the
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behaviour of the ch.f. on the interval [−π,π] or, which is the same, to know the
behaviour of the function

pξ (z) := Ezξ =
∑

zkP(ξ = k)

on the unit circle |z| = 1.

Definition 7.1.3 The function pξ (z) is called the generating function of the random
variable ξ (or of the distribution of ξ ).

Since pξ (e
it ) = ϕξ (t) is a ch.f., all the properties of ch.f.s remain valid for gener-

ating functions, with the only changes corresponding to the change of variable. For
more on applications of generating functions, see Sect. 7.7.

7.2 Inversion Formulas

Thus for any random variable there exists a corresponding ch.f. We will now show
that the set L of functions eitx is a distribution determining class, i.e. that the dis-
tribution can be uniquely reconstructed from its ch.f. This is proved using inversion
formulas.

7.2.1 The Inversion Formula for Densities

Theorem 7.2.1 If the ch.f. ϕ(t) of a random variable ξ is integrable then the distri-
bution of ξ has the bounded density

f (x) = 1

2π

∫
e−itxϕ(t) dt. (7.2.1)

This fact is known from classical Fourier analysis, but we shall give a proof of a
probabilistic character.

Proof First we will establish the following (Parseval’s) identity: for any fixed ε > 0,

pε(t) := 1

2π

∫
e−ituϕ(u)e−ε2u2/2 du

≡ 1√
2πε

∫
exp

{
− (u − t)2

2ε2

}
F(du), (7.2.2)

where F is the distribution of ξ . We begin with the equality

1√
2π

∫
exp

{
ix

ξ − t

ε
− x2

2

}
dx = exp

{
− (ξ − t)2

2ε2

}
, (7.2.3)
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both sides of which being the value of the ch.f. of the normal distribution with
parameters (0,1) at the point (ξ − t)/ε. After changing the variable x = εu, the
left-hand side of this equality can be rewritten as

ε√
2π

∫
exp

{
iu(ξ − t) − ε2u2

2

}
du.

If we take expectations of both sides of (7.2.3), we obtain

ε√
2π

∫
e−iutϕ(u)e− ε2u2

2 du =
∫

exp

{
− (u − t)2

2ε2

}
F(du).

This proves (7.2.2).
To prove the theorem first consider the left-hand side of the equality (7.2.2). Since

e−ε2u2/2 → 1 as ε → 0, |e− ε2u2
2 | ≤ 1 and ϕ(u) is integrable, as ε → 0 one has

pε(t) → 1

2π

∫
e−ituϕ(u)du = p0(t) (7.2.4)

uniformly in t , because the integral on the left-hand side of (7.2.2) is uniformly
continuous in t . This implies, in particular, that

∫ b

a

pε(t) dt →
∫ b

a

p0(t). (7.2.5)

Now consider the right-hand side of (7.2.2). It represents the density of the sum
ξ + εη, where ξ and η are independent and η ⊂= �0,1. Therefore

∫ b

a

pε(t) dt = P(a < ξ + εη ≤ b). (7.2.6)

Since ξ + εη
p→ ξ as ε → 0 and the limit

∫ b

a
pε(t) dt exists for any fixed a and b by

virtue of (7.2.5), this limit (see (7.2.6)) cannot be anything other than F([a, b)).
Thus, from (7.2.5) and (7.2.6) we get

∫ b

a

p0(t) dt = F
([a, b)

)
.

This means that the distribution F has the density p0(t), which is defined by re-
lation (7.2.4). The boundedness of p0(t) evidently follows from the integrability
of ϕ:

p0(t) ≤ 1

2π

∫ ∣∣ϕ(t)
∣∣dt < ∞.

The theorem is proved. �
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7.2.2 The Inversion Formula for Distributions

Theorem 7.2.2 If F(x) is the distribution function of a random variable ξ and ϕ(t)

is its ch.f., then, for any points of continuity x and y of the function F(x),2

F(y) − F(x) = 1

2π
lim
σ→0

∫
e−itx − e−ity

it
ϕ(t)e−t2σ 2

dt. (7.2.7)

If the function ϕ(t)/t is integrable at infinity then the passage to the limit under the
integral sign is justified and one can write

F(y) − F(x) = 1

2π

∫
e−itx − e−ity

it
ϕ(t) dt. (7.2.8)

Proof Suppose first that the ch.f. ϕ(t) is integrable. Then F(x) has a density f (x)

and the assertion of the theorem in the form (7.2.8) follows if we integrate both sides
of Eq. (7.2.1) over the interval with the end points x and y and change the order of
integration (which is valid because of the absolute convergence).3

Now let ϕ(t) be the characteristic function of a random variable ξ with an ar-
bitrary distribution F. On a common probability space with ξ , consider a random
variable η which is independent of ξ and has the normal distribution with parame-
ters (0,2σ 2). As we have already pointed out, the ch.f. of η is e−t2σ 2

.
This means that the ch.f. of ξ +η, being equal to ϕ(t)e−t2σ 2

, is integrable. There-
fore by (7.2.8) one will have

Fξ+η(y) − Fξ+η(x) = 1

2π

∫ ∞

−∞
e−itx − e−ity

it
ϕ(t)e−t2σ 2

dt. (7.2.9)

Since η
p−→ 0 as σ → 0, we have Fξ+η ⇒ F (see Chap. 6). Therefore, if x and y are

points of continuity of F, then F(y) − F(x) = limσ→0(Fξ+η(y) − Fξ+η(x)). This,
together with (7.2.9), proves the assertion of the theorem. �

In the proof of Theorem 7.2.2 we used a method which might be called the
“smoothing” of distributions. It is often employed to overcome technical difficul-
ties related to the inversion formula.

Corollary 7.2.1 (Uniqueness Theorem) The ch.f. of a random variable uniquely
determines its distribution function.

2In the literature, the inversion formula is often given in the form

F(y) − F(x) = 1

2π
lim

A→∞

∫ A

−A

e−itx − e−ity

it
ϕ(t) dt

which is equivalent to (7.2.7).
3Formula (7.2.8) can also be obtained from (7.2.1) without integration by noting that
(F (x) − F(y))/(y − x) is the value at zero of the convolution of two densities: f (x) and the
uniform density over the interval [−y,−x] (see also the remark at the end of Sect. 3.6). The ch.f.

of the convolution is equal to e−itx−e−ity

(y−x)it
ϕ(t).
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The proof follows from the inversion formula and the fact that F is uniquely
determined by the differences F(y) − F(x).

For lattice random variables the inversion formula becomes simpler. Let, for the
sake of simplicity, ξ be an integer-valued random variable.

Theorem 7.2.3 If pξ (z) := Ezξ is the generating function of an arithmetic random
variable then

P(ξ = k) = 1

2πi

∫
|z|=1

pξ (z)z
−k−1 dz. (7.2.10)

Proof Turning to the ch.f. ϕξ (t) = ∑
j eitj P(ξ = j) and changing the variables z =

it in (7.2.10) we see that the right-hand side of (7.2.10) equals

1

2π

∫ π

−π

e−itkϕξ (t) dt = 1

2π

∑
j

P(ξ = j)

∫ π

−π

eit (j−k) dt.

Here all the integrals on the right-hand side are equal to zero, except for the integral
with j = k which is equal to 2π . Thus the right-hand side itself equals P(ξ = k).
The theorem is proved. �

Formula (7.2.10) is nothing else but the formula for Fourier coefficients and has
a simple geometric interpretation. The functions {ek = eitk} form an orthonormal
basis in the Hilbert space L2(−π,π) of square integrable complex-valued functions
with the inner product

(f, g) = 1

2π

∫ π

−π

f (t)g(t) dt

(g is the complex conjugate of g). If ϕξ = ∑
ekP(ξ = k) then it immediately follows

from the equality ϕξ = ∑
ek(ξ , ek) that

P(ξ = k) = (ϕξ , ek) = 1

2π

∫ π

−π

e−itkϕξ (t) dt.

7.2.3 The Inversion Formula in L2. The Class of Functions that
Are Both Densities and Ch.F.s

First consider some properties of ch.f.s related to the inversion formula. As a prelim-
inary, note that, in classical Fourier analysis, one also considers the Fourier trans-
forms of functions f from the space L2 of square-integrable functions. Since in this
case a function f is not necessarily integrable, the Fourier transform is defined as
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the integral in the principal value sense:4

ϕ(t) := lim
N→∞ϕ(N)(t), ϕ(N)(t) :=

∫ N

−N

eitxf (x) dx, (7.2.11)

where the limit is taken in the sense of convergence in L2:∫ ∣∣ϕ(t) − ϕ(N)(t)
∣∣2

dx → 0 as N → ∞.

Since by Parseval’s equality

‖f ‖L2 = 1

2π
‖ϕ‖L2, where ‖g‖L2 =

[∫
|g|2(t) dt

]1/2

,

the Fourier transform maps the space L2 into itself (there is no such isometricity
for Fourier transforms in L1). Here the inversion formula (7.2.1) holds true but the
integral in (7.2.1) is understood in the principal value sense.

Denote by F and H the class of all densities and the class of all ch.f.s, respec-
tively, and by H1,+ ⊂ L1 the class of nonnegative real-valued integrable ch.f.s,
so that the elements of H1,+ are in F up to the normalising factors. Further, let
(H1,+)(−1) be the inverse image of the class H1,+ in F for the mapping f → ϕ,
i.e. the class of densities whose ch.f.s lie in H1,+. It is clear that functions f

from (H1,+)(−1) and ϕ from H1,+ are necessarily symmetric (see Property 7A in
Sect. 7.1) and that f (0) ∈ (0,∞). The last relation follows from the fact that, by the
inversion formula for ϕ ∈H1,+, we have

‖ϕ‖ := ‖ϕ‖L1 =
∫

ϕ(t) dt = 2πf (0).

Further, denote by (H1,+)‖·‖ the class of normalised functions ϕ
‖ϕ‖ , ϕ ∈ H1,+, so

that (H1,+)‖·‖ ⊂ F, and denote by F(2,∗) the class of convolutions of symmetric
densities from L2:

F(2,∗) := {
f (2)∗(x) : f ∈ L2, f is symmetric

}
,

where

f (2)∗(x)=
∫

f (t)f (x − t) dt.

Theorem 7.2.4 The following relations hold true:

(H1,+)(−1) = (H1,+)‖·‖, F(2,∗) ⊂ (H1,+)‖·‖.

The class (H1,+)‖·‖ may be called the class of densities conjugate to f ∈
(H1,+)(−1). It turns out that this class coincides with the inverse image (H1,+)(−1).
The second statement of the theorem shows that this inverse image is a very rich

4Here we again omit the factor 1√
2π

(cf. the footnote on page 154).
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class and provides sufficient conditions for the density f to have a conjugate. We
will need these conditions in Sect. 8.7.

Proof of Theorem 7.2.4 Let f ∈ (H1,+)(−1). Then the corresponding ch.f. ϕ is in
H1+ and the inversion formula (7.2.1) is applicable. Multiplying its right-hand side
by 2π

‖ϕ‖ , we obtain an expression for the ch.f. (at the point −t ) of the density ϕ
‖ϕ‖

(recall that ϕ ≥ 0 is symmetric if ϕ ∈ H1,+). This means that 2πf
‖ϕ‖ is a ch.f. and,

moreover, that f ∈ (H1,+)‖·‖.
Conversely, suppose that f ∗ := ϕ

‖ϕ‖ ∈ (H1,+)‖·‖. Then f ∗ ∈ F is symmetric, and
the inversion formula can be applied to ϕ:

f (x) = 1

2π

∫
e−itxϕ(t) dt = 1

2π

∫
eitxϕ(t) dt,

2πf (t)

‖ϕ‖ =
∫

eitxf ∗(x) dx.

Since the ch.f. ϕ∗(t) := 2πf (t)
‖ϕ‖ belongs to H1,+, one has f ∗ ∈ (H1,+)(−1).

We now prove the second assertion. Suppose that f ∈ L2. Then ϕ ∈ L2 and
ϕ2 ∈ L1. Moreover, by virtue of the symmetry of f and Property 7A in Sect. 7.1,
the function ϕ is real-valued, so ϕ2 ≥ 0. This implies that ϕ2 ∈ H1,+. Since ϕ2 is
the ch.f. of the density f (2)∗, we have f (2)∗ ∈ (H1,+)(−1). The theorem is proved. �

Note that any bounded density f belongs to L2. Indeed, since the Lebesgue mea-
sure of {x : f (x) ≥ 1} is always less than 1, for f (·) ≤ N we have

‖f ‖2
L2

=
∫

f 2(x) dx ≤
∫

f (x)<1
f (x)dx + N2

∫
f (x)≥1

dx ≤ 1 + N2. �

Thus we have obtained the following result.

Corollary 7.2.2 For any bounded symmetric density f , the convolution f (2)∗ is, up
to a constant factor, the ch.f. of a random variable.

Example 7.2.1 The “triangle” density

g(x) =
{

1 − |x| if |x| ≤ 1,

0 if |x| > 1,

being the convolution of the two uniform distributions on [−1/2,1/2] (cf. Exam-
ple 3.6.1) is also a ch.f. We suggest the reader to verify that the preimage of this
ch.f. is the density

f (x) = 1

2π

sin2 x/2

x2

(the density conjugate to g). Conversely, the density g is conjugate to f , and the
functions 8πf (t) and g(t) will be ch.f.s for g and f , respectively.

These assertions will be useful in Sect. 8.7.
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7.3 The Continuity (Convergence) Theorem

Let {ϕn(t)}∞n=1 be a sequence of ch.f.s and {Fn}∞n=1 the sequence of the respective
distribution functions. Recall that the symbol ⇒ denotes the weak convergence of
distributions introduced in Chap. 6.

Theorem 7.3.1 (The Continuity Theorem) A necessary and sufficient condition for
the convergence Fn ⇒ F as n → ∞ is that ϕn(t) → ϕ(t) for any t , ϕ(t) being the
ch.f. corresponding to F .

The theorem follows in an obvious way from Corollary 6.3.2 (here two of the
three sufficient conditions from Corollary 6.3.2 are satisfied: conditions (2) and (3)).
The proof of the theorem can be obtained in a simpler way as well. This way is
presented in Sect. 7.4 of the previous editions of this book.

In Sect. 7.1, for nonnegative random variables ξ we introduced the notion of
the Laplace transform ψ(s) := Ee−sξ . Let ψn(s) and ψ(s) be Laplace transforms
corresponding to Fn and F . The following analogue of Theorem 7.3.1 holds for
Laplace transforms:

In order that Fn ⇒ F as n → ∞ it is necessary and sufficient that ψn(s) → ψ(s)

for each s ≥ 0.
Just as in Theorem 7.3.1, this assertion follows from Corollary 6.3.2, since the

class {f (x) = e−sx, s ≥ 0} is (like {eitx}) a distribution determining class (see Prop-
erty 6 in Sect. 7.1) and, moreover, the sufficient conditions (2) and (3) of Corol-
lary 6.3.2 are satisfied.

Theorem 7.3.1 has a deficiency: one needs to know in advance that the func-
tion ϕ(t) to which the ch.f.s converge is a ch.f. itself. However, one could have no
such prior information (see e.g. Sect. 8.8). In this connection there arises a natural
question under what conditions the limiting function ϕ(t) will be characteristic.

The answer to this question is given by the following theorem.

Theorem 7.3.2 Let

ϕn(t) =
∫

eitx dFn(x)

be a sequence of ch.f.s and ϕn(t) → ϕ(t) as n → ∞ for any t .
Then the following three conditions are equivalent:

(a) ϕ(t) is a ch.f.;
(b) ϕ(t) is continuous at t = 0;
(c) the sequence {Fn} is tight.

Thus if we establish that ϕn(t) → ϕ(t) and one of the above three conditions is
met, then we can assert that there exists a distribution F such that ϕ is the ch.f. of
F and Fn ⇒ F .
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Proof The equivalence of conditions (a) and (c) follows from Theorem 6.3.2. That
(a) implies (b) is known. It remains to establish that (c) follows from (b). First we
will show that the following lemma is true. �

Lemma 7.3.1 If ϕ is the ch.f. of ξ then, for any u > 0,

P
(

|ξ | > 2

u

)
≤ 1

u

∫ u

−u

[
1 − ϕ(t)

]
dt.

Proof The right-hand side of this inequality is equal to

1

u

∫ u

−u

∫ ∞

−∞
(
1 − e−itx

)
dF(x)dt,

where F is the distribution function of ξ . Changing the order of integration and
noting that

∫ u

−u

(
1 − e−itx

)
dt =

(
t + e−itx

ix

)∣∣∣∣
u

−u

= 2u

(
1 − sinux

ux

)
,

we obtain that

1

u

∫ u

−u

[
1 − ϕ(t)

]
dt = 2

∫ ∞

−∞

(
1 − sinux

ux

)
dF(x)

≥ 2
∫

|x|>2/u

(
1 −

∣∣∣∣ sinux

ux

∣∣∣∣
)

dF(x)

≥ 2
∫

|x|>2/u

(
1 − 1

|ux|
)

dF(x) ≥
∫

|x|>2/u

dF (x).

The lemma is proved. �

Now suppose that condition (b) is met. By Lemma 7.3.1

lim sup
n→∞

∫
|x|>2/u

dFn(x) ≤ lim sup
n→∞

1

u

∫ u

−u

[
1 − ϕn(t)

]
dt = 1

u

∫ u

−u

[
1 − ϕ(t)

]
dt.

Since ϕ(t) is continuous at 0 and ϕ(0) = 1, the mean value on the right-hand side can
clearly be made arbitrarily small by choosing sufficiently small u. This obviously
means that condition (c) is satisfied. The theorem is proved. �

Using ch.f.s one can not only establish convergence of distribution functions but
also estimate the rate of this convergence in the cases when one can estimate how
fast ϕn − ϕ vanishes. We will encounter respective examples in Sect. 7.5.

We will mostly use the machinery of ch.f.s in Chaps. 8, 12 and 17. In the present
chapter we will also touch upon some applications of ch.f.s, but they will only serve
as illustrations.
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7.4 The Application of Characteristic Functions in the Proof
of the Poisson Theorem

Let ξ1, . . . , ξn be independent integer-valued random variables,

Sn =
k∑
1

ξk, P(ξk = 1) = pk, P(ξk = 0) = 1 − pk − qk.

The theorem below is a generalisation of the theorems established in Sect. 5.4.5

Theorem 7.4.1 One has

∣∣P(Sn = k) − �μ

({k})∣∣ ≤
n∑

k=1

p2
k + 2

n∑
k=1

qk, where μ =
n∑

k=1

pk.

Thus, if one is given a triangle array ξ1n, ξ2n, . . . , ξnn, n = 1,2, . . . , of indepen-
dent integer-valued random variables,

Sn =
n∑

k=1

ξkn, P(ξkn = 1) = pkn, P(ξkn = 0) = 1 − pkn − qkn,

μ =
n∑

k=1

pkn,

then a sufficient condition for convergence of the difference P(Sn = k) − �μ({k})
to zero is that

n∑
k=1

qkn → 0,

n∑
k=1

p2
kn → 0.

Since
n∑

k=1

p2
kn ≤ μmax

k≤n
pkn,

the last condition is always met if

max
k≤n

pkn → 0, μ ≤ μ0 = const.

5This extension is not really substantial since close results could be established using Theo-
rem 5.2.2 in which ξk can only take the values 0 and 1. It suffices to observe that the probability of
the event A = ⋃

k{ξk �= 0, ξk �= 1} is bounded by the sum
∑

qk and therefore

P(Sn = k) = θ1

∑
qk +

(
1 − θ2

∑
qk

)
P(Sn = k|A), θi ≤ 1, i = 1,2,

where P(Sn = k|A) = P(S∗
n = k) and S∗

n are sums of independent random variables ξ∗
k with

P
(
ξ∗
k = 1

) = p∗
k = pk

1 − qk

, P
(
ξ∗
k = 0

) = 1 − p∗
k .
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To prove the theorem we will need two auxiliary assertions.

Lemma 7.4.1 If Reβ ≤ 0 then∣∣eβ − 1
∣∣ ≤ |β|, ∣∣eβ − 1 − β

∣∣ ≤ |β|2/2,
∣∣eβ − 1 − β − β2/2

∣∣ ≤ |β|3/6.

Proof The first two inequalities follow from the relations (we use here the change
of variables t = βv and the fact that |es | ≤ 1 for Re s ≤ 0)

∣∣eβ − 1
∣∣ =

∣∣∣∣
∫ β

0
et dt

∣∣∣∣ =
∣∣∣∣β

∫ 1

0
eβv dv

∣∣∣∣ ≤ |β|,
∣∣eβ − 1 − β

∣∣ =
∣∣∣∣
∫ β

0

(
et − 1

)
dt

∣∣∣∣ =
∣∣∣∣β

∫ 1

0

(
eβv − 1

)
dv

∣∣∣∣ ≤ |β|2
∫ 1

0
v dv = ∣∣β2

∣∣/2.

The last inequality is proved in the same way. �

Lemma 7.4.2 If |ak| ≤ 1, |bk| ≤ 1, k = 1, . . . , n, then∣∣∣∣∣
n∏

k=1

ak −
n∏

k=1

bk

∣∣∣∣∣ ≤
n∑

k=1

|ak − bk|.

Thus if ϕk(t) and θk(t) are ch.f.s then, for any t ,∣∣∣∣∣
n∏

k=1

ϕk(t) −
n∏

k=1

θk(t)

∣∣∣∣∣ ≤
n∑

k=1

∣∣ϕk(t) − θk(t)
∣∣.

Proof Put An = ∏n
k=1 ak and Bn = ∏n

k=1 bk . Then |An| ≤ 1, |Bn| ≤ 1, and

|An − Bn| = |An−1an − Bn−1bn|
= ∣∣(An−1 − Bn−1)an + (an − bn)Bn−1

∣∣ ≤ |An−1 − Bn−1| + |an − bn|.
Applying this inequality n times, we obtain the required relation. �

Proof of Theorem 7.4.1 One has

ϕk(t) := Eeitξk = 1 + pk

(
eit − 1

) + qk

(
γk(t) − 1

)
,

where γk(t) is the ch.f. of some integer-valued random variable. By independence
of the random variables ξk ,

ϕSn(t) =
n∏

k=1

ϕk(t).

Let further ζ ⊂= �μ. Then

ϕζ (t) = Eeitζ = eμ(eit−1) =
n∏

k=1

θk(t),
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where θk(t) = epk(e
it−1). Therefore the difference between the ch.f.s ϕSn and ϕζ can

be bounded by Lemma 7.4.2 as follows:

∣∣ϕSn(t) − ϕζ (t)
∣∣ =

∣∣∣∣∣
n∏

k=1

ϕk −
n∏

k=1

θk

∣∣∣∣∣ ≤
n∑

k=1

|ϕk − θk|,

where by Lemma 7.4.1 (note that Re(eit − 1) ≤ 0)

∣∣θk(t) − 1 − pk

(
eit − 1

)∣∣ ≤ p2
k |eit − 1|2

2
= p2

k

2

(
sin2 t + (1 − cos t)2)

= p2
k

(
sin2 t

2
+ 2 sin4 t

2

)
, (7.4.1)

n∑
k=1

|ϕk − θk| ≤ 2
n∑

k=1

qk +
n∑

k=1

p2
k

(
sin2 t

2
+ 2 sin4 t

2

)
.

It remains to make use of the inversion formula (7.2.10):

∣∣P(Sn = k) − �μ

({k})∣∣ ≤
∣∣∣∣ 1

2π

∫ π

−π

e−ikt
(
ϕSn(t) − ϕζ (t)

)
dt

∣∣∣∣
≤ 1

π

∫ π

0

[
2

n∑
k=1

qk +
n∑

k=1

p2
k

(
sin2 t

2
+ 2 sin4 t

2

)]
dt

= 2
n∑

k=1

qk +
n∑

k=1

p2
k ,

for
1

2π

∫ π

0
sin2 t dt = 1

4
,

2

π

∫ π

0
sin4 t

2
dt = 3

4
.

The theorem is proved. �

If one makes use of the inequality |eit − 1| ≤ 2 in (7.4.1), the computations will
be simplified, there will be no need to calculate the last two integrals, but the bounds
will be somewhat worse:∑

|ϕk − θk| ≤ 2
(∑

qk +
∑

p2
k

)
,

∣∣P(Sn = k) − �μ

({k})∣∣ ≤ 2
(∑

qk +
∑

p2
k

)
.

7.5 Characteristic Functions of Multivariate Distributions.
The Multivariate Normal Distribution

Definition 7.5.1 Given a random vector ξ = (ξ1, ξ2, . . . , ξd), its ch.f. (the ch.f. of
its distribution) is defined as the function of the vector variable t = (t1, . . . , td) equal
to
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ϕξ (t) := EeitξT = Eei(t,ξ) = E exp

{
i

d∑
k=1

tkξk

}

=
∫

exp

{
i

d∑
k=1

tkxk

}
Fξ1,...,ξd

(dx1, . . . , dxd),

where ξT is the transpose of ξ (a column vector), and (t, ξ) is the inner product.

The ch.f.s of multivariate distributions possess all the properties (with obvious
amendments of their statements) listed in Sects. 7.1–7.3.

It is clear that ϕξ (0) = 1 and that |ϕξ (t)| ≤ 1 and ϕξ (−t) = ϕξ (t) always hold.

Further, ϕξ (t) is everywhere continuous. If there exists a mixed moment Eξ
k1
1 · · · ξkd

d

then ϕξ has the respective derivative of order k1 + · · · + kd :

∂ϕ
k1+···+kd

ξ (t)

∂t
k1
1 . . . ∂t

kd

d

∣∣∣∣
t=0

= ik1+···+kd Eξ
k1
1 · · · ξkd

d .

If all the moments of some order exist, then an expansion of the function ϕξ (t)

similar to (7.1.1) is valid in a neighbourhood of the point t = 0.
If ϕξ (t) is known, then the ch.f. of any subcollection of the random variables

(ξk1 , . . . , ξkj
) can obviously be obtained by setting all tk except tk1, . . . , tkj

to be
equal to 0.

The following theorems are simple extensions of their univariate analogues.

Theorem 7.5.1 (The Inversion Formula) If Δ is a parallelepiped defined by the
inequalities ak < x < bk , k = 1, . . . , d , and the probability P(ξ ∈ Δ) is continuous
on the faces of the parallelepiped, then

P(ξ ∈ Δ) = lim
σ→0

1

(2π)d

∫
· · ·

∫ (
d∏

k=1

e−itkak − e−itkbk

itk
e−t2

k σ 2

)
ϕξ (t) dt1 · · ·dtd .

If the random vector ξ has a density f (x) and its ch.f. ϕξ (t) is integrable, then
the inversion formula can be written in the form

f (x) = 1

(2π)d

∫
e−i(t,x)ϕξ (t) dt.

If a function g(x) is such that its Fourier transform

g̃(t) =
∫

ei(t,x)g(x) dx

is integrable (and this is always the case for sufficiently smooth g(x)) then the Par-
seval equality holds:

Eg(ξ) = E
1

(2π)d

∫
e−i(t,ξ)g̃(t) dt = 1

(2π)d

∫
ϕξ (−t)g̃(t) dt.
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As before, the inversion formula implies the theorem on one-to-one correspon-
dence between ch.f.s and distribution functions and together with it the fact that
{ei(t,x)} is a distribution determining class (cf. Definition 6.3.2).

The weak convergence of distributions Fn(B) in the d-dimensional space to a
distribution F(B) is defined in the same way as in the univariate case: F(n) ⇒ F if∫

f (x)dF(n)(dx) →
∫

f (x)dF(dx)

for any continuous and bounded function f (x).
Denote by ϕn(t) and ϕ(t) the ch.f.s of distributions Fn and F, respectively.

Theorem 7.5.2 (Continuity Theorem) A necessary and sufficient condition for the
weak convergence F(n) ⇒ F is that, for any t , ϕn(t) → ϕ(t) as n → ∞.

In the case where one can establish convergence of ϕn(t) to some function ϕ(t),
there arises the question of whether ϕ(t) will be the ch.f. of some distribution, or,
which is the same, whether the sequence F(n) will converge weakly to some distri-
bution F. Answers to these questions are given by the following assertion. Let ΔN

be the cube defined by the inequality maxk |xk| < N .

Theorem 7.5.3 (Continuity Theorem) Suppose a sequence ϕn(t) of ch.f.s converges
as n → ∞ to a function ϕ(t) for each t . Then the following three conditions are
equivalent:

(a) ϕ(t) is a ch.f.;
(b) ϕ(t) is continuous at the point t = 0;
(c) lim supn→∞

∫
x /∈ΔN

F(n)(dx) → 0 as N → ∞.

All three theorems from this section can be proved in the same way as in the
univariate case.

Example 7.5.1 The multivariate normal distribution is defined as a distribution with
density (see Sect. 3.3)

fξ (x) = |A|1/2

(2π)d/2
e−Q(x)/2,

where

Q(x) = xAxT =
d∑

i,j=1

aij xixj ,

and |A| is the determinant of a positive definite matrix A = ‖aij‖.
This is a centred normal distribution for which Eξ = 0. The distribution of the

vector ξ + a for any constant vector a is also called normal.
Find the ch.f. of ξ . Show that

ϕξ (t) = exp

{
− tσ 2tT

2

}
, (7.5.1)
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where σ 2 = A−1 is the matrix inverse to A and coinciding with the covariance
matrix ‖σij‖ of ξ :

σij = Eξiξj .

Indeed,

ϕξ (t) =
√|A|

(2π)d/2

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

{
itxT − xAxT

2

}
dx1 · · ·dxd. (7.5.2)

Choose an orthogonal matrix C such that CACT = D is a diagonal matrix, and
denote by μ1, . . . ,μn the values of its diagonal elements. Change the variables by
putting x = yC and t = vC. Then

|A| = |D| =
d∏

k=1

μk,

itxT − 1

2
xAxT = ivyT − 1

2
yDyT = i

d∑
k=1

vkyk − 1

2

n∑
k=1

μky
2
k ,

and, by Property 2 of ch.f.s of the univariate normal distributions,

ϕξ (t) =
√|A|

(2π)d/2

d∏
k=1

∫ ∞

−∞
exp

{
ivkyk − μky

2
k

2

}
dyk = √|A|

d∏
k=1

1√
μk

exp

{
− v2

k

2μk

}

= exp

{
−vD−1vT

2

}
= exp

{
− tCT D−1CtT

2

}
= exp

{
− tA−1tT

2

}
.

On the other hand, since all the moments of ξ exist, in a neighbourhood of the point
t = 0 one has

ϕξ (t) = 1 − 1

2
tA−1tT + o

(∑
t2
k

)
= 1 + itEξT + 1

2
tσ 2tT + o

(∑
t2
k

)
.

From this it follows that Eξ = 0, A−1 = σ 2.

Formula (7.5.1) that we have just proved implies the following property of nor-
mal distributions: the components of the vector (ξ1, . . . , ξd) are independent if and
only if the correlation coefficients ρ(ξi, ξj ) are zero for all i �= j . Indeed, if σ 2 is a
diagonal matrix, then A = σ−2 is also diagonal and fξ (x) is equal to the product of
densities. Conversely, if (ξ1, . . . , ξd) are independent, then A is a diagonal matrix,
and hence σ 2 is also diagonal.
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7.6 Other Applications of Characteristic Functions.
The Properties of the Gamma Distribution

7.6.1 Stability of the Distributions �α,σ 2 and Kα,σ

The stability property means, roughly speaking, that the distribution type is pre-
served under summation of random variables (this description of stability is not
exact, for more detail see Sect. 8.8).

The sum of independent normally distributed random variables is also normally
distributed. Indeed, let ξ1 and ξ2 be independent and normally distributed with pa-
rameters (a1, σ

2
1 ) and (a2, σ

2
2 ), respectively. Then the ch.f. of ξ1 + ξ2 is equal to

ϕξ1+ξ2(t) = ϕξ1(t)ϕξ2(t) = exp

{
ita1 − t2σ 2

1

2

}
exp

{
ita2 − t2σ 2

2

2

}

= exp

{
it (a1 + a2) − t2

2

(
σ 2

1 + σ 2
2

)}
.

Thus the sum ξ1 + ξ2 is again a normal random variable, with parameters (a1 +
a2, σ

2
1 + σ 2

2 ).
Normality is also preserved when taking sums of dependent random variables

(components of an arbitrary normally distributed random vector). This immediately
follows from the form of the ch.f. of the multivariate normal law found in Sect. 7.5.
One just has to note that to get the ch.f. of the sum ξ1 + · · · + ξn it suffices to put
t1 = · · · = tn = t in the expression

ϕ(ξ1,...,ξn)(t1, . . . , tn) = E exp{it1ξ1 + · · · + itnξn}.
The sum of independent random variables distributed according to the Poisson

law also has a Poisson distribution. Indeed, consider two independent random vari-
ables ξ1 ⊂= �λ1 and ξ2 ⊂= �λ2 . The ch.f. of their sum is equal to

ϕξ1+ξ2(t) = exp
{
λ1

(
eit − 1

)}
exp

{
λ2

(
eit − 1

)} = exp
{
(λ1 + λ2)

(
eit − 1

)}
.

Therefore ξ1 + ξ2 ⊂= �λ1+λ2 .
The sum of independent random variables distributed according to the Cauchy

law also has a Cauchy distribution. Indeed, if ξ1 ⊂= Kα1,σ1 and ξ2 ⊂= Kα2,σ2 , then

ϕξ1+ξ2(t) = exp
{
iα1t − σ1|t |

}
exp

{
iα2t − σ2|t |

}
= exp

{
i(α1 + α2)t − (σ1 + σ2)|t |

};
ξ1 + ξ2 ⊂= Kα1+α2,σ1+σ2 .

The above assertions are closely related to the fact that the normal and Poisson
laws are, as we saw, limiting laws for sums of independent random variables (the
Cauchy distribution has the same property, see Sect. 8.8). Indeed, if S2n/

√
2n con-

verges in distribution to a normal law (where Sk = ∑k
j=1 ξj , ξj are independent

and identically distributed) then it is clear that Sn/
√

n and (S2n − Sn)/
√

n will also
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converge to a normal law so that the sum of two asymptotically normal random
variables also has to be asymptotically normal.

Note, however, that due to its arithmetic structure the random variable ξ ⊂= �λ

(as opposed to ξ ⊂= �a,σ 2 or ξ ⊂= Kα,σ ) cannot be transformed by any normalisation
(linear transformation) into a random variable again having the Poisson distribution
but with another parameter. For this reason the Poisson distribution cannot be stable
in the sense of Definition 8.8.2.

It is not hard to see that the other distributions we have met do not possess the
above-mentioned property of preservation of the distribution type under summa-
tion of random variables. If, for instance, ξ1 and ξ2 are uniformly distributed over
[0,1] and independent then Fξ1 and Fξ1+ξ2 are substantially different functions (see
Example 3.6.1).

7.6.2 The �-distribution and its properties

In this subsection we will consider one more rather wide-spread type of distribution
closely related to the normal distribution and frequently used in applications. This
is the so-called Pearson gamma distribution �α,λ. We will write ξ ⊂= �α,λ if ξ has
density

f (x;α,λ) =
{

αλ

Γ (λ)
xλ−1e−αx, x ≥ 0,

0, x < 0,

depending on two parameters α > 0 and λ > 0, where Γ (λ) is the gamma function

Γ (λ) =
∫ ∞

0
xλ−1e−x dx, λ > 0.

It follows from this equality that
∫

f (x;α,λ)dx = 1 (one needs to make the variable
change αx = y). If one differentiates the ch.f.

ϕ(t) = ϕ(t;α,λ) = αλ

Γ (λ)

∫ ∞

0
xλ−1eitx−αx dx

with respect to t and then integrates by parts, the result will be

ϕ′(t) = αλ

Γ (λ)

∫ ∞

0
ixλeitx−αx dx = αλ

Γ (λ)

iλ

α − it

∫ ∞

0
xλ−1eitx−αx dx

= iλ

α − it
ϕ(t);

(
lnϕ(t)

)′ = (−λ ln(α − it)
)′
, ϕ(t) = c(α − it)−λ.

Since ϕ(0) = 1 one has c = αλ and ϕ(t) = (1 − it/α)−λ.
It follows from the form of the ch.f. that the subfamily of distributions �α,λ for

a fixed α also has a certain stability property: if ξ1 ⊂= �α,λ1 and ξ2 ⊂= �α,λ2 are
independent, then ξ1 + ξ2 ⊂= �α,λ1+λ2 .
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An example of a particular gamma distribution is given, for instance, by the dis-
tribution of the random variable

χ2
n =

n∑
i=1

ξ2
i ,

where ξi are independent and normally distributed with parameters (0,1). This is the
so-called chi-squared distribution with n degrees of freedom playing an important
role in statistics.

To find the distribution of χ2
n it suffices to note that, by virtue of the equality

P
(
χ2

1 < x
) = P

(|ξ1| < √
x

) = 2√
2π

∫ √
x

0
e−u2/2 du,

the density of χ2
1 is equal to

1√
2π

e−x/2x−1/2 = f (x;1/2,1/2), χ2
1 ⊂= �1/2,1/2.

This means that the ch.f. of χ2
n is

ϕn(t;1/2,1/2) = (1 − 2it)−n/2 = ϕ(t;1/2, n/2)

and corresponds to the density f (t;1/2, n/2).
Another special case of the gamma distribution is the exponential distribution

�α = �α,1 with density

f (x;α,1) = αe−αx, x ≥ 0,

and characteristic function

ϕ(x;α,1) =
(

1 − it

α

)−1

.

We leave it to the reader to verify with the help of ch.f.s that if ξj ⊂= �αj
and are

independent, αj �= αl for j �= l, then

P

(
n∑

j=1

ξj > x

)
=

n∑
j=1

e−αj x
n∏

l=1
l �=j

(
1 − αj

αl

)−1

.

In various applications (in particular, in queueing theory, cf. Sect. 12.4), the so-
called Erlang distribution is also of importance. This is a distribution with density
f (x;α,λ) for integer λ. The Erlang distribution is clearly a λ-fold convolution of
the exponential distribution with itself.

We find the expectation and variance of a random variable ξ that has the gamma
distribution with parameters (α,λ):

Eξ = −iϕ′(0;α,λ) = λ

α
, Eξ2 = −iϕ′′(0;α,λ) = λ(λ + 1)

α2
,

Var(ξ) = λ(λ + 1)

α2
−

(
λ

α

)2

= λ

α2
.
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Distributions from the gamma family, and especially the exponential ones, are
often (and justifiably) used to approximate distributions in various applied problems.
We will present three relevant examples.

Example 7.6.1 Consider a complex device. The failure of at least one of n parts
comprising the device means the breakdown of the whole device. The lifetime dis-
tribution of any of the parts is usually well described by the exponential law. (The
reasons for this could be understood with the help of the Poisson theorem on rare
events. See also Example 2.4.1 and Chap. 19.)

Thus if the lifetimes ξj of the parts are independent, and for the part number j

one has

P(ξj > x) = e−αj x, x > 0,

then the lifetime of the whole device will be equal to ηn = min(ξ1, . . . , ξn) and we
will get

P(ηn > x) = P

(
n⋂

j=1

{ξj > x}
)

=
n∏

j=1

P(ξj > x) = exp

{
−x

n∑
i=1

αi

}
.

This means that ηn will also have the exponential distribution, and since

Eξj = 1/αj ,

the mean failure-free operation time of the device will be equal to

Eηn =
(

n∑
i=1

1

Eξi

)−1

.

Example 7.6.2 Now turn to the distribution of ζn = max(ξ1, . . . , ξn), where ξi are
independent and all have the �-distribution with parameters (α,λ). We could con-
sider, for instance, a queueing system with n channels. (That could be, say, a mul-
tiprocessor computer solving a problem using the complete enumeration algorithm,
each of the processors of the machine checking a separate variant.) Channel number
i is busy for a random time ξi . After what time will the whole system be free? This
random time will clearly have the same distribution as ζn.

Since the ξi are independent, we have

P(ζn < x) = P

(
n⋂

j=1

{ξj < x}
)

= [
P(ξ1 < x)

]n
. (7.6.1)

If n is large, then for approximate calculations we could find the limiting distri-
bution of ζn as n → ∞. Note that, for any fixed x, P(ζn < x) → 0 as n → ∞.

Assuming for simplicity that α = 1 (the general case can be reduced to this one
by changing the scale), we apply L’Hospital’s rule to see that, as x → ∞,

P(ξj < x) =
∫ ∞

x

1

Γ (λ)
yλ−1e−y dy ∼ xλ−1

Γ (λ)
e−x.



7.6 Other Applications of Characteristic Functions 179

Letting n → ∞ and

x = x(n) = ln
[
n(lnn)λ−1/Γ (λ)

] + u, u = const,

we get

P(ξj > x) ∼ (lnn)λ−1

Γ (λ)

Γ (λ)

n(lnn)λ−1
e−u = e−u

n
.

Therefore for such x and n → ∞ we obtain by (7.6.1) that

P(ζn < x) =
(

1 − e−u

n

(
1 + o(1)

))n

→ e−e−u

.

Thus we have established the existence of the limit

lim
n→∞ P

(
ζn − ln

[
n(lnn)λ−1

Γ (λ)

]
< u

)
= e−e−u

,

or, which is the same, that

ζn − ln

[
n(lnn)λ−1

Γ (λ)

]
⊂⇒ F0, F0(u) = e−e−u

.

In other words, for large n the variable ζn admits the representation

ζn ≈ ln

[
n(lnn)λ−1

Γ (λ)

]
+ ζ 0, where ζ 0 ⊂= F0.

Example 7.6.3 Let ξ1 and ξ2 be independent with ξ1 ⊂= �α,λ1 and ξ2 ⊂= �α,λ2 . What
is the distribution of ξ1/(ξ1 + ξ2)? We will make use of Theorem 4.9.2. Since the
joint density f (x, y) of ξ1 and η = ξ1 + ξ2 is equal to

f (x, y) = f (x;α,λ1)f (y − x;α,λ2),

the density of η is

q(y) = f (y;α,λ1 + λ2),

and the conditional density f (x | y) of ξ1 given η = y is equal to

f (x | y) = f (x, y)

q(y)
= Γ (λ1 + λ2)

Γ (λ1)Γ (λ2)

xλ1−1(y − x)λ2−1

yλ1+λ2−1
, x ∈ [0, y].

By the formulas from Sect. 3.2 the conditional density of ξ1/y = ξ1/(ξ1 +ξ2) (given
the same condition ξ1 + ξ2 = y) is equal to

yf (yx | y) = Γ (λ1 + λ2)

Γ (λ1)Γ (λ2)
xλ1−1(1 − x)λ2−1, x ∈ [0,1].

This distribution does not depend on y (nor on α). Hence the conditional density
of ξ1/(ξ1 + ξ2) will have the same property, too. We obtain the so-called beta distri-
bution Bλ1,λ2 with parameters λ1 and λ2 defined on the interval [0,1]. In particular,
for λ1 = λ2 = 1, the distribution is uniform: B1,1 = U0,1.
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7.7 Generating Functions. Application to Branching Processes.
A Problem on Extinction

7.7.1 Generating Functions

We already know that if a random variable ξ is integer-valued, i.e.

P
(⋃

k

{ξ = k}
)

= 1,

then the ch.f. ϕξ (t) will actually be a function of z = eit , and, along with its ch.f.,
the distribution of ξ can be specified by its generating function

pξ (z) := Ezξ =
∑

k

zkP(ξ = k).

The inversion formula can be written here as

P(ξ = k) = 1

2π

∫ π

−π

e−itkϕξ (t) dt = 1

2πi

∫
|z|=1

z−k−1pξ (z) dz. (7.7.1)

As was already noted (see Sect. 7.2), relation (7.7.1) is simply the formula for
Fourier coefficients (since eitk = cos tk + i sin tk).

If ξ and η are independent random variables, then the distribution of ξ + η will
be given by the convolution of the sequences P(ξ = k) and P(η = k):

P(ξ + η = n) =
∞∑

k=−∞
P(ξ = k)P(η = n − k)

(the total probability formula). To this convolution there corresponds the product of
the generating functions:

pξ+η(z) = pξ (z)pη(z).

It is clear from the examples considered in Sect. 7.1 that the generating functions of
random variables distributed according to the Bernoulli and Poisson laws are

pξ (z) = 1 + p(z − 1), pξ (z) = exp
{
μ(z − 1)

}
,

respectively.
One can see from the definition of the generating function that, for a nonnegative

random variable ξ ≥ 0, the function pξ (z) is defined for |z| ≤ 1 and is analytic in
the domain |z| < 1.

7.7.2 The Simplest Branching Processes

Now we turn to sequences of random variables which describe the so-called branch-
ing processes. We have already encountered a simple example of such a process
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when describing a chain reaction scheme in Example 4.4.4. Consider a more general
scheme of a branching process. Imagine particles that can produce other particles
of the same type; these could be neutrons in chain reactions, bacteria reproducing
according to certain laws etc. Assume that initially there is a single particle (the
“null generation”) that, as a result of a “division” act, transforms with probabilities
fk , k = 0,1,2, . . . , into k particles of the same type,

∞∑
k=0

fk = 1.

The new particles form the “first generation”. Each of the particles from that gen-
eration behaves itself in the same way as the initial particle, independently of what
happened before and of the other particles from that generation. Thus we obtain the
“second generation”, and so on. Denote by ζn the number of particles in the n-th
generation. To describe the sequence ζn, introduce, as we did in Example 4.4.4,
independent sequences of independent identically distributed random variables

{
ξ

(1)
j

}∞
j=1,

{
ξ

(2)
j

}∞
j=1, . . . ,

where ξ
(n)
j have the distribution

P
(
ξ

(n)
j = k

) = fk, k = 0,1, . . . .

Then the sequence ζn can be represented as

ζ0 = 1,

ζ1 = ξ
(1)
1 ,

ζ2 = ξ
(2)
1 + · · · + ξ

(2)
ζ1

,

· · · · · · · · · · · · · · · · · ·
ζn = ξ

(n)
1 + · · · + ξ

(n)
ζn−1

.

These are sums of random numbers of random variables. Since ξ
(n)
1 , ξ

(n)
2 , . . . do not

depend on ζn−1, for the generating function f(n)(z) = Ezζn we obtain by the total
probability formula that

f(n)(z) =
∞∑

k=0

P(ζn−1 = k)Ezξ
(n)
1 +···+ξ

(n)
k

=
∞∑

k=0

P(ζn−1 = k)f k(z) = f(n−1)

(
f (z)

)
, (7.7.2)

where

f (z) := f(1)(z) = Ezξ
(n)
1 =

∞∑
k=0

fkz
k.
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Fig. 7.1 Finding the
extinction probability of a
branching process: it is given
by the smaller of the two
solutions to the equation
z = f (z)

Denote by fn(z) the n-th iterate of the function f (z), i.e. f1(z) = f (z), f2(z) =
f (f (z)), f3(z) = f (f2(z)) and so on. Then we conclude from (7.7.2) by induction
that the generating function of ζn is equal to the n-th iterate of f (z):

Ezζn = f(n)(z).

From this one can easily obtain, by differentiating at the point z = 1, recursive rela-
tions for the moments of ζn.

How can one find the extinction probability of the process? By extinction we will
understand the event that all ζn starting from some n will be equal to 0. (If ζn = 0
then clearly ζn+1 = ζn+2 = · · · = 0, because P(ζn+1 = 0| ζn = 0) = 1. ) Set Ak =
{ζk = 0}. Then extinction is the event

⋃∞
k=1 Ak . Since An ⊂ An+1, the extinction

probability q is equal to q = limn→∞ P(An).

Theorem 7.7.1 The extinction probability q is equal to the smallest nonnegative
solution of the equation q = f (q).

Proof One has P(An) = fn(0) ≤ 1, and this sequence is non-increasing. Passing in
the equality

fn+1(0) = f
(
fn(0)

)
(7.7.3)

to the limit as n → ∞, we obtain

q = f (q), q ≤ 1.

This is an equation for the extinction probability. Let us analyse its solutions. The
function f (z) is convex (as f ′′(z) ≥ 0) and non-decreasing in the domain z ≥ 0
and f ′(1) = m is the mean number of offspring of a single particle. First assume
that P(ξ

(1)
1 = 1) < 1. If m ≤ 1 then f (z) > z for z < 1 and hence q = 1. If m > 1

then by convexity of f the equation q = f (q) has exactly two solutions on the
interval [0,1]: q1 < 1 and q2 = 1 (see Fig. 7.1). Assume that q = q2 = 1. Then the
sequence δn = 1 − fn(0) will monotonically converge to 0, and f (1 − δn) < 1 − δn

for sufficiently large n. Therefore, for such n,

δn+1 = 1 − f (1 − δn) > δn,
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which is a contradiction as δn is a decreasing sequence. This means that q = q1 < 1.
Finally, in the case P(ξ

(1)
1 = 1) = f1 = 1 one clearly has f (z) ≡ z and q = 0. The

theorem is proved. �

Now consider in more detail the case m = 1, which is called critical. We know
that in this case the extinction probability q equals 1. Let qn = P(An) = fn(0) be
the probability of extinction by time n. How fast does qn converge to 1? By (7.7.3)
one has qn+1 = f (qn). Therefore the probability pn = 1 − qn of non-extinction of
the process by time n satisfies the relation

pn+1 = g(pn), g(x) = 1 − f (1 − x).

It is also clear that γn = pn − pn+1 is the probability that extinction will occur
on step n.

Theorem 7.7.2 If m = f ′(1) = 1 and 0 < b := f ′′(1) < ∞ then γn ∼ 2
bn2 and

pn ∼ 2
bn

as n → ∞.

Proof If the second moment of the number of offspring of a single particle is finite
(b < ∞) then the derivative g′′(0) = −b exists and therefore, since g(0) = 0 and
g′(0) = f ′(1) = 1, one has

g(x) = x − b

2
x2 + o

(
x2), x → ∞.

Putting x = pn → 0, we find for the sequence an = 1/pn that

an+1 − an = pn − pn+1

pnpn+1
= bp2

n(1 + o(1))

2p2
n(1 − bpn/2 + o(pn))

→ b

2
,

an = a1 +
n−1∑
k=1

(ak+1 − ak) ∼ bn

2
, pn ∼ 2

bn
.

The theorem is proved. �

Now consider the problem on the distribution of the number ζn of particles given
ζn > 0.

Theorem 7.7.3 Under the assumptions of Theorem 7.7.2, the conditional distribu-
tion of pnξn (or 2ζn/(bn)) given ζn > 0 converges as n → ∞ to the exponential
distribution:

P(pnζn > x|ζn > 0) → e−x, x > 0.

The above statement means, in particular, that given ζn > 0, the number of parti-
cles ζn is of order n as n → ∞.



184 7 Characteristic Functions

Proof Consider the Laplace transform (see Property 6 in Sect. 7.1) of the condi-
tional distribution of pnζn (given ζn > 0):

E
(
e−spnζn |ζn > 0

) = 1

pn

∞∑
k=1

e−skpnP(ζn = k). (7.7.4)

We will make use of the fact that, if we could find an N such that e−spn = 1 − pN ,
which is the probability of extinction by time N , then the right-hand side of (7.7.4)
will give, by the total probability formula, the conditional probability of the extinc-
tion of the process by time n+N given its non-extinction at time n. We can evaluate
this probability using Theorem 7.7.2.

Since pn → 0, for any fixed s > 0 one has

e−spn − 1 ∼ −spn ∼ − 2s

bn
.

Clearly, one can always choose N ∼ n/s, sn ∼ s, sn ↓ s such that e−snpn −1 = −pN .
Therefore e−snpnk = (1 − pN)k and the right-hand side of (7.7.4) can be rewritten
for s = sn as

1

pn

∞∑
k=1

P(ζn = k)(1 − pN)k = 1

pn

P(ζn > 0, ζn+N = 0)

= pn−pn+N

pn

= 1−pn+N

pn

∼ 1− n

n + N
= N

n + N
→ 1

1 + s
.

Now note that

E
(
e−spnζn

∣∣ζn > 0
) − E

(
e−snpnζn

∣∣ζn > 0
) = E

[
e−spnζn

(
1 − e−(sn−s)pnζn

∣∣ζn > 0
)]

.

Since e−α ≤ 1 and 1 − e−α ≤ α for α ≥ 0, and Eζn = 1, E(ζn|ζn > 0) = 1/pn, it is
easily seen that the positive (since sn > s) difference of the expectations in the last
formula does not exceed

(sn − s)pnE(ζn|ζn > 0) = sn − s → 0.

Therefore the Laplace transform (7.7.4) converges, as n → ∞, to 1/(1 + s).
Since 1/(1 + s) is the Laplace transform of the exponential distribution:∫ ∞

0
e−sx−x dx = 1

1 + s
,

we conclude by the continuity theorem (see the remark after Theorem 7.3.1 in
Sect. 7.3) that the conditional distribution of interest converges to the exponential
law.6

In Sect. 15.4 (Example 15.4.1) we will obtain, as consequences of martingale
convergence theorems, assertions about the behaviour of ζn as n → ∞ for branching
processes in the case μ > 1 (the so-called supercritical processes). �

6The simple proof of Theorem 7.7.3 that we presented here is due to K.A. Borovkov.
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