
Chapter 5
Sequences of Independent Trials
with Two Outcomes

Abstract The weak and strong laws of large numbers are established for the
Bernoulli scheme in Sect. 5.1. Then the local limit theorem on approximation of
the binomial probabilities is proved in Sect. 5.2 using Stirling’s formula (covering
both the normal approximation zone and the large deviations zone). The same sec-
tion also contains a refinement of that result, including a bound for the relative error
of the approximation, and an extension of the local limit theorem to polynomial dis-
tributions. This is followed by the derivation of the de Moivre–Laplace theorem and
its refinements in Sect. 5.3. In Sect. 5.4, the coupling method is used to prove the
Poisson theorem for sums of non-identically distributed independent random indica-
tors, together with sharp approximation error bounds for the total variation distance.
The chapter ends with derivation of large deviation inequalities for the Bernoulli
scheme in Sect. 5.5.

5.1 Laws of Large Numbers

Suppose we have a sequence of trials in each of which a certain event A can oc-
cur with probability p independently of the outcomes of other trials. Form a se-
quence of random variables as follows. Put ξk = 1 if the event A has occurred in
the k-th trial, and ξk = 0 otherwise. Then (ξk)

∞
k=1 will be a sequence of indepen-

dent random variables which are identically distributed according to the Bernoulli
law: P(ξk = 1) = p, P(ξk = 0) = q = 1 − p, Eξk = p, Var(ξk) = pq . The sum
Sn = ξ1 + · · · + ξn ⊂= Bn

p is simply the number of occurrences of the event A in the
first n trials. Clearly ESn = np and Var(Sn) = npq .

The following assertion is called the law of large numbers for the Bernoulli
scheme.

Theorem 5.1.1 For any ε > 0

P
(∣∣∣∣Sn

n
− p

∣∣∣∣ > ε

)
→ 0 as n → ∞.

This assertion is a direct consequence of Theorem 4.7.5. One can also obtain the
following stronger result:
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Theorem 5.1.2 (The Strong Law of Large Numbers for the Bernoulli Scheme) For
any ε > 0, as n → ∞,

P
(

sup
k≥n

∣∣∣∣Sk

k
− p

∣∣∣∣ > ε

)
→ 0.

The interpretation of this result is that the notion of probability which we intro-
duced in Chaps. 1 and 2 corresponds to the intuitive interpretation of probability
as the limiting value of the relative frequency of the occurrence of the event. In-
deed, Sn/n could be considered as the relative frequency of the event A for which
P(A) = p. It turned out that, in a certain sense, Sn/n converges to p.

Proof of Theorem 5.1.2 One has

P
(

sup
k≥n

∣∣∣∣Sk

k
− p

∣∣∣∣ > ε

)
= P

( ∞⋃
k=n

{∣∣∣∣Sk

k
− p

∣∣∣∣ > ε

})

≤
∞∑

k=n

P
(∣∣∣∣Sk

k
− p

∣∣∣∣ > ε

)
≤

∞∑
k=n

E(Sk − kp)4

k4ε4
.

(5.1.1)

Here we again made use of Chebyshev’s inequality but this time for the fourth mo-
ments. Expanding we find that

E(Sk − kp)4 = E

(
k∑

j=1

(ξj − p)

)4

=
k∑

j=1

E(ξj − p)4 + 6
∑
i<j

(ξi − p)2(ξj − p)2

= k
(
pq4 + qp4) + 3k(k − 1)(pq)2 ≤ k + k(k − 1) = k2. (5.1.2)

Thus the probability we want to estimate does not exceed the sum

ε−4
∞∑

k=n

k−2 → 0 as n → ∞. �

It is not hard to see that we would not have found the required bound if we used
Chebyshev’s inequality with second moments in (5.1.1).

We could also note that one actually has much stronger bounds for
P(|Sk − kp| > εk) than those that we made use of above. These will be derived
in Sect. 5.5.

Corollary 5.1.1 If f (x) is a continuous function on [0,1] then, as n → ∞,

Ef

(
Sn

n

)
→ f (p) (5.1.3)

uniformly in p.
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Proof For any ε > 0,

E

∣∣∣∣f
(

Sn

n

)
− f (p)

∣∣∣∣ ≤ E
(∣∣∣∣f

(
Sn

n

)
− f (p)

∣∣∣∣;
∣∣∣∣Sn

n
− p

∣∣∣∣ ≤ ε

)

+ E
(∣∣∣∣f

(
Sn

n

)
− f (p)

∣∣∣∣;
∣∣∣∣Sn

n
− p

∣∣∣∣ > ε

)

≤ sup
|x|≤ε

∣∣f (p + x) − f (p)
∣∣ + δn(ε),

where the quantity δ(ε) is independent of p by virtue of (5.1.1), (5.1.2), and since
δn(ε) → 0 as n → ∞. �

Corollary 5.1.2 If f (x) is continuous on [0,1], then, as n → ∞,

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1 − x)n−k → f (x)

uniformly in x ∈ [0,1].

This relation is just a different form of (5.1.3) since

P(Sn = k) =
(

n

k

)
pk(1 − p)n−k

(see Chap. 1). This relation implies the well-known Weierstrass theorem on approxi-
mation of continuous functions by polynomials. Moreover, the required polynomials
are given here explicitly—they are Bernstein polynomials.

5.2 The Local Limit Theorem and Its Refinements

5.2.1 The Local Limit Theorem

We know that P(Sn = k) = (
n
k

)
pkqn−k , q = 1 − p. However, this formula becomes

very inconvenient for computations with large n and k, which raises the question
about the asymptotic behaviour of the probability P(Sn = k) as n → ∞.

In the sequel, we will write an ∼ bnfor two number sequences {an} and {bn} if
an/bn → 1 as n → ∞. Such sequences {an} and {bn} will be said to be equivalent.

Set

H(x) = x ln
x

p
+ (1 − x) ln

1 − x

1 − p
, p∗ = k

n
. (5.2.1)

Theorem 5.2.1 As k → ∞ and n − k → ∞,

P(Sn = k) = P
(

Sn

n
= p∗

)
∼ 1√

2πnp∗(1 − p∗)
exp

{−nH
(
p∗)}. (5.2.2)
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Proof We will make use of Stirling’s formula according to which n! ∼ √
2πnnne−n

as n → ∞. One has

P(Sn = k) =
(

n

k

)
pkqn−k ∼

√
n

2πk(n − k)

nn

kk(n − k)n−k
pk(1 − p)n−k

= 1√
2πnp∗(1 − p∗)

× exp

{
−k ln

k

n
− (n − k) ln

n − k

n
+ k lnp + (n − k) ln (1 − p)

}

= 1√
2πnp∗(1 − p∗)

exp
{−n

[
p∗ lnp∗ + (

1 − p∗) ln
(
1 − p∗)

− p∗ lnp − (
1 − p∗) ln(1 − p)

]}
= 1√

2πnp∗(1 − p∗)
exp

{
nH

(
p∗)}. �

If p∗ = k/n is close to p, then one can find another form for the right-hand side
of (5.2.2) which is of significant interest. Note that the function H(x) is analytic on
the interval (0,1). Since

H ′(x) = ln
x

p
− ln

1 − x

1 − p
, H ′′(x) = 1

p
+ 1

1 − x
, (5.2.3)

one has H(p) = H ′(p) = 0 and, as p∗ − p → 0,1

H
(
p∗) = 1

2

(
1

p
+ 1

q

)(
p∗ − p

)2 + O
(∣∣p∗ − p

∣∣3)
.

Therefore if p∗ ∼ p and n(p∗ − p)3 → 0 then

P(Sn = k) ∼ 1√
2πpq

exp

{
− n

2pq

(
p∗ − p

)2
}
.

Putting

Δ = 1√
npq

, ϕ(x) = 1√
2π

e−x2/2,

one obtains the following assertion.

Corollary 5.2.1 If z = n(p∗ − p) = k − np = o(n2/3) then

P(Sn = k) = P(Sn − np = z) ∼ ϕ(zΔ)Δ, (5.2.4)

where ϕ = ϕ0,1(x) is evidently the density of the normal distribution with parame-
ters (0,1).

1According to standard conventions, we will write a(z) = o(b(z)) as z → z0 if b(z) > 0 and

limz→z0
a(z)
b(z)

= 0, and a(z) = O(b(z)) as z → z0 if b(z) > 0 and lim supz→z0

|a(z)|
b(z)

< ∞.
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This formula also enables one to estimate the probabilities of the events of the
form {Sn < k}.

If p∗ differs substantially from p, then one could estimate the probabilities of
such events using the results of Sect. 1.3.

Example 5.2.1 In a jury consisting of an odd number n = 2m + 1 of persons, each
member makes a correct decision with probability p = 0.7 independently of the
other members. What is the minimum number of members for which the verdict
rendered by the majority of jury members will be correct with a probability of at
least 0.99?

Put ξk = 1 if the k-th jury member made a correct decision and ξk = 0 otherwise.
We are looking for odd numbers n for which P(Sn ≤ m) ≤ 0.01. It is evident that
such a trustworthy decision can be achieved only for large values of n. In that case,
as we established in Sect. 1.3, the probability P(Sn ≤ m) is approximately equal to

(n + 1 − m)p

(n + 1)p − m
P(Sn = m) ≈ p

2p − 1
P(Sn = m).

Using Theorem 5.2.1 and the fact that in our problem

p∗ ≈ 1

2
, H

(
1

2

)
= −1

2
ln 4p(1 − p), H ′

(
1

2

)
= ln

(
1 − p

p

)
,

we get

P(Sn ≤ m) ≈ p

2p − 1

√
2

πn
exp

{
−nH

(
1

2
− 1

2n

)}

≈ p

2p − 1

√
2

πn
exp

{
−nH

(
1

2

)
+ 1

2
H ′

(
1

2

)}

≈
√

2π(1 − p)

(2p − 1)
√

πn

(√
4p(1 − p)

)n ≈ 0.915
1√
n

(0.84)n/2.

On the right-hand side there is a monotonically decreasing function a(n). Solving
the equation a(n) = 0.01 we get the answer n = 33. The same result will be obtained
if one makes use of the explicit formulae.

5.2.2 Refinements of the Local Theorem

It is not hard to bound the error of approximation (5.2.2). If, in Stirling’s formula
n! = √

2πnnne−n+θ(n), we make use of the well-known inequalities2

1

12n + 1
< θ(n) <

1

12n
,

then the same argument will give the following refinement of Theorem 5.2.1.

2See, e.g., [12], Sect. 2.9.
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Theorem 5.2.2

P(Sn = k) = 1√
2πnp∗(1 − p∗)

exp
{
nH

(
p∗) + θ(k,n)

}
, (5.2.5)

where
∣∣θ(k,n)

∣∣ = ∣∣θ(n) − θ(k)θ(n − k)
∣∣ <

1

12k
+ 1

12(n − k)
= 1

12np∗(1 − p∗)
.

(5.2.6)

Relation (5.2.4) could also be refined as follows.

Theorem 5.2.3 For all k such that |p∗ − p| ≤ 1
2 min(p, q) one has

P(Sn = k) = ϕ(zΔ)Δ
(
1 + ε(k,n)

)
,

where

1 + ε(k,n) = exp

{
ϑ

( |z|3Δ4

3
+

(
|z| + 1

6

)
Δ2

)}
, |ϑ | < 1.

As one can easily see from the properties of the Taylor expansion of the func-
tion ex , the order of magnitude of the term ε(k,n) in the above formulae coin-
cides with that of the argument of the exponential. Hence it follows from Theo-
rem 5.2.3 that for z = k − np = o(Δ−4/3) or, which is the same, z = o(n2/3), one
still has (5.2.4).

Proof We will make use of Theorem 5.2.2. In addition to formulae (5.2.3) one can
write:

H(k) = (−1)k(k − 2)!
xk−1

+ (k − 2)!
(1 − x)k−1

, k ≥ 2,

H
(
p∗) = 1

2pq

(
p∗ − p

)2 + R1,

where we can estimate the residual R1 = ∑∞
k=3

H(k)(p)
k! (p∗−p). Taking into account

that

∣∣H(k)(p)
∣∣ ≤ (k − 2)!

(
1

pk−1
+ 1

qk−1

)
, k ≥ 2,

and letting for brevity |p∗ − p| = δ, we get for δ ≤ 1
2 min(p, q) the bounds

|R1| ≤
∞∑

k=3

(k − 2)!
k!

(
1

pk−1
+ 1

qk−1

)
≤ δ3

6

(
1

p2

1

1 − δ
p

+ 1

q2

1

1 − δ
q

)

≤ δ

6

(
2

p2
+ 2

q2

)
<

δ3

3(pq)2
.
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From this it follows that

−nH
(
p∗) = − (k − np)2

2npq
+ ϑ1|k − np|3

3(npq)2
= −z2Δ2

2
+ ϑ1|z|3Δ4

3
, |ϑ1| < 1.

(5.2.7)

We now turn to the other factors in equality (5.2.5) and consider the product
p∗(1 − p∗). Since −p ≤ 1 − p − p∗ ≤ 1 − p, we have

∣∣p∗(1 − p∗) − p(1 − p)
∣∣ = ∣∣(p − p∗)(1 − p − p∗)∣∣ ≤ ∣∣p∗ − p

∣∣max(p, q).

This implies in particular that, for |p∗ − p| < 1
2 min(p, q), one has

∣∣p∗(1 − p∗) − pq
∣∣ <

1

2
pq, p∗(1 − p∗) >

1

2
pq.

Therefore one can write along with (5.2.6) that, for the values of k indicated in
Theorem 5.2.3,

∣∣θ(k,n)
∣∣ <

1

6npq
= Δ2

6
. (5.2.8)

It remains to consider the factor [p∗(1 − p∗)]−1/2. Since for |γ | < 1/2

∣∣ln(1 + γ )
∣∣ =

∣∣∣∣
∫ 1+γ

1

1

x
dx

∣∣∣∣ < 2|γ |,

one has for δ = |p∗ − p| < (1/2)min(p, q) the relations

ln
(
p∗(1 − p∗)) = lnpq + ln

(
1 + p∗(1 − p∗) − pq

pq

)

= ln(pq) + ln

(
1 − ϑ∗δ

pq

)
,

∣∣ϑ∗∣∣ < max(p, q);

ln

(
1 − ϑ∗δ

pq

)
= − 2ϑ2δ

pq
, |ϑ2| < max(p, q),

[
p∗(1 − p∗)]−1/2 = [pq]−1/2 exp

{
ϑ2δ

pq

}
.

(5.2.9)

Using representations (5.2.7)–(5.2.9) and the assertion of Theorem 5.2.2 com-
pletes the proof. �

One can see from the above estimates that the bounds for ϑ in the statement
of Theorem 5.2.3 can be narrowed if we consider smaller deviations |p∗ − p|—if
they, say, do not exceed the value α min(p, q) where α < 1/2.

The relations for P(Sn = k) that we found are the so-called local limit theorems
for the Bernoulli scheme and their refinements.
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5.2.3 The Local Limit Theorem for the Polynomial Distributions

The basic asymptotic formula given in Theorem 5.2.1 admits a natural extension
to the polynomial distribution Bn

p , p = (p1, . . . , pr), when, in a sequence of inde-
pendent trials, in each of the trials one has not two but r ≥ 2 possible outcomes
A1, . . . ,Ar of which the probabilities are equal to p1, . . . , pr , respectively. Let S

(j)
n

be the number of occurrences of the event Aj in n trials,

Sn = (
S(1)

n , . . . , S(r)
n

)
, k = (k1, . . . , kr ), p∗ = k

n
,

and put H(x) = ∑
xi ln (xi/pi), x = (x1, . . . , xr ). Clearly, Sn ⊂= Bn

p . The following
assertion is a direct extension of Theorem 5.2.1.

Theorem 5.2.4 If each of the r variables k1, . . . , kr is either zero or tends to ∞ as
n → ∞ then

P(Sn = k) ∼ (2πn)(1−r0)/2

(
r∏

j=1
p∗

j 
=0

p∗
j

)−1/2

exp
{−nH

(
p∗)},

where r0 is the number of variables k1, . . . , kr which are not equal to zero.

Proof As in the proof of Theorem 5.2.1, we will use Stirling’s formula

n! ∼ √
2πne−nnn

as n → ∞. Assuming without loss of generality that all kj → ∞, j = 1, . . . , r , we
get

P(Sn = k) ∼ (2π)(1−r)/2
(

n∏r
j=1 kj

)1/2 r∏
j=1

(
npj

kj

)kj

= (2πn)(1−r)/2

(
r∏

j=1

p∗
j

)−1/2

exp

{
n

r∑
j=1

kj

n
ln

pjn

kj

}
. �

5.3 The de Moivre–Laplace Theorem and Its Refinements

Let a and b be two fixed numbers and ζn = (Sn − np)/
√

npq . Then

P(a < ζn < b) =
∑

a
√

npq<z<b
√

npq

P(Sn − np = z).

If, instead of P(Sn − np = z), we substitute here the values ϕ(zΔ)Δ (see Corol-
lary 5.2.1), we will get an integral sum

∑
a<zΔ<b ϕ(zΔ)Δ corresponding to the

integral
∫ b

a
ϕ(x) dx.
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Thus relations (5.2.4) make the equality

lim
n→∞ P(a < ζn < b) =

∫ b

a

ϕ(x) dx = Φ(b) − Φ(a) (5.3.1)

plausible, where Φ(x) is the normal distribution function with parameters (0,1):

Φ(x) = 1√
2π

∫ x

−∞
e−t2/2 dt.

This is the de Moivre–Laplace theorem, which is one of the so-called integral limit
theorems that describe probabilities of the form P(Sn < x). In Chap. 8 we will derive
more general integral theorems from which (5.3.1) will follow as a special case.

Theorem 5.2.3 makes it possible to obtain (5.3.1) together with an error bound
or, in other words, with a bound for the convergence rate.

Let A and B be integers,

a = A − np√
npq

, b = B − np√
npq

. (5.3.2)

Theorem 5.3.1 Let b > a, c = max(|a|, |b|), and

ρ = c3 + 3c

3
Δ + Δ2

6
.

If Δ = 1/
√

npq ≤ 1/2 and ρ ≤ 1/2 then

P(A ≤ Sn < B) = P(a ≤ ζn < b) =
∫ b

a

ϕ(t) dt (1 + ϑ1Δc)(1 + 2ϑ2ρ), (5.3.3)

where |ϑi | ≤ 1, i = 1,2.

This theorem shows that the left-hand side in (5.3.3) can be equivalent to Φ(b)−
Φ(a) for growing a and b as well. In that case, Φ(b)−Φ(a) can converge to 0, and
knowing the relative error in (5.3.1) is more convenient since its smallness enables
one to establish that of the absolute error as well, but not vice versa.

Proof First we note that, for all k such that |z| = |k − np| < c
√

npq , the con-
ditions of Theorem 5.2.3 will hold. Indeed, to have the inequality |p∗ − p| <

(1/2)min(p, q) it suffices that |k − np| < npq/2 = 1/(2Δ2). This inequality will
hold if c < 1/(2Δ). But since ρ ≤ 1/2, one has

c(c2 + 3)Δ

3
< 1/2, cΔ < 1/2.

Thus, for each k such that a
√

npq ≤ z < b
√

npq , we can make use of Theorem 5.2.3
to conclude that
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P(A ≤ Sn < B)

=
∑

a
√

npq≤z<b
√

npq

P(Sn = k)

=
∑

a≤zΔ<b

ϕ(zΔ)Δ

[
1 +

(
exp

{
ϑ

( |z|3Δ4

3
+

(
|z| + 1

6

)
Δ2

)}
− 1

)]
,

(5.3.4)

where |ϑ | < 1. Since, for ρ ≤ 1,∣∣∣∣e
p − 1

ρ

∣∣∣∣ < e − 1 < 2,

the absolute value of the correction term in (5.3.4) does not exceed (substituting
there zΔ = c)∣∣∣∣exp

{
ϑ

(
c3Δ

3
+ cΔ + Δ2

6

)}
− 1

∣∣∣∣ ≤ 2ϑ

(
c3Δ

3
+ cΔ + Δ2

6

)
= 2ϑp.

Therefore

P(A ≤ Sn < B) =
∑

a≤zΔ<b

ϕ(zΔ)Δ[1 + 2ϑ1ρ], (5.3.5)

where |ϑ1| < 1.
Now we transform the sum on the right-hand side of the last equality. To this end,

note that, for any smooth function ϕ(x),∣∣∣∣Δϕ(x) −
∫ x+Δ

x

ϕ(t) dt

∣∣∣∣ = Δ2

2
max

x≤t≤x+Δ

∣∣ϕ′(t)
∣∣. (5.3.6)

But for the function ϕ(x) = (2π)−1/2e−x2/2 one has ϕ′(x) = −xϕ(x) and the max-
imum value of ϕ(t) on the segment [x, x + Δ], |x| ≤ c, differs from the minimum
value by not more than the factor exp{cΔ + Δ2/2}. Therefore, for |x| ≤ c, one has
by virtue of (5.3.6)∣∣∣∣Δϕ(x) −

∫ x+Δ

x

ϕ(t) dt

∣∣∣∣
≤ Δ2c

2
ecΔ+Δ2/2 min

x≤t≤x+Δ
ϕ(t) ≤ Δc

2
ecΔ+Δ2/2

∫ x+Δ

x

ϕ(t) dt.

Since cΔ + Δ2/2 < 1/2 + 1/8, ecΔ+Δ2/2 ≤ 2, we have the representation

Δϕ(x) =
∫ x+Δ

x

ϕ(t) dt (1 + ϑ1Δc), |ϑ1| < 1.

Substituting this into (5.3.5) we obtain the assertion of the theorem. �

Thus by Theorem 5.3.1 the difference∣∣P(x ≤ ζn < y) − (
Φ(y) − Φ(x)

)∣∣ (5.3.7)
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can be effectively, yet rather roughly, bounded from above by a quantity of the order
1/

√
npq if x = a, y = b (assuming that a and b are values which can be represented

in the form (k − np)Δ, see (5.3.2)). If x and y do not belong to the mentioned
lattice with the span Δ then the error (5.3.7) will still be of the same order since,
for instance, when y varies, P(x ≤ ζn < y) remains constant on the semi-intervals
of the form (a + kΔ,a + (k + 1)Δ], while the function Φ(y) − Φ(x) increases
monotonically with a bounded derivative. A similar argument holds for the left end
point x. It is important to note that the error order 1/

√
npq cannot be improved, for

the jumps of the distribution function of ζn are just of this order of magnitude by
Theorem 5.2.2.

Theorem 5.3.1 enables one to use the normal approximation for P(x ≤ ζn < y)

in the so-called large deviations range as well, when both x and y grow in absolute
value and are of the same sign. In that case, both Φ(y) − Φ(x) and the probability
to be approximated tend to zero. Therefore the approximation can be considered
satisfactory only if

P(x ≤ ζn < y)

(Φ(y) − Φ(x))
→ 1. (5.3.8)

As Theorem 5.3.1 shows, this convergence will take place if

c = max
(|x|, |y|) = o

(
Δ−1/3)

or, which is the same, c = o(n1/6). For more details about large deviation probabil-
ities, see Chap. 9.

For larger values of c, as one could verify using Theorem 5.2.1, relation (5.3.8)
will, generally speaking, not hold.

In conclusion we note that since

P
(|ζn| > b

) → 0

as b → ∞, it follows immediately from Theorem 5.3.1 that, for any fixed y,

lim
n→∞ P(ζn < y) = Φ(y).

Later we will show that this assertion remains true under much wider assumptions,
when ζn is a scaled sum of arbitrary distributed random variables having finite vari-
ances.

5.4 The Poisson Theorem and Its Refinements

5.4.1 Quantifying the Closeness of Poisson Distributions to Those
of the Sums Sn

As we saw from the bounds in the last section, the de Moivre–Laplace theorem
gives a good approximation to the probabilities of interest if the number npq (the
variance of Sn) is large. This number will grow together with n if p and q are fixed
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positive numbers. But what will happen in a problem where, say, p = 0.001 and
n = 1000 so that np = 1? Although n is large here, applying the de Moivre–Laplace
theorem in such a problem would be meaningless. It turns out that in this case the
distribution P(Sn = k) can be well approximated by the Poisson distribution �μ

with an appropriate parameter value μ (see Sect. 5.4.2). Recall that

�μ(B) =
∑

0≤k∈B

e−μ μk

k! .

Put np = μ.

Theorem 5.4.1 For all sets B ,

∣∣P(Sn ∈ B) − �μ(B)
∣∣ ≤ μ2

n
.

We could prove this assertion in the same way as the local theorem, making use
of the explicit formula for P(Sn = k). However, we can prove it in a simpler and
nicer way which could be called the common probability space method, or coupling
method. The method is often used in research in probability theory and consists,
in our case, of constructing on a common probability space random variables Sn

and S∗
n , the latter being as close to Sn as possible and distributed according to the

Poisson distribution.
It is also important that the common probability space method admits, without

any complications, extension to the case of non-identically distributed random vari-
ables, when the probability of getting 1 in a particular trial depends on the number of
the trial. Thus we will now prove a more general assertion of which Theorem 5.4.1
is a special case.

Assume that we are given a sequence of independent random variables ξ1, . . . , ξn,
such that ξj ⊂= Bpj

. Put, as above, Sn = ∑n
j=1 ξj . The theorem we state below is

intended for approximating the probability P(Sn = k) when pj are small and the
number μ = ∑n

j=1 pj is “comparable” with 1.

Theorem 5.4.2 For all sets B ,

∣∣P(Sn ∈ B) − �μ(B)
∣∣ ≤

n∑
j=1

p2
j .

To prove this theorem we will need an important “stability” property of the Pois-
son distribution.

Lemma 5.4.1 If η1 and η2 are independent, η2 ⊂= �μ1 and η2 ⊂= �μ2 , then3

η1 + η2 ⊂= �μ1+μ2 .

3This fact will also easily follow from the properties of characteristic functions dealt with in
Chap. 7.
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Proof By the total probability formula,

P(η1 + η2 = k) =
k∑

j=0

P(η1 = j)P(η2 = k − j)

=
k∑

j=0

μ
j

1e
−μ1

j ! · μ
k−j

2 e−μ2

(k − j)! = 1

k!e
−(μ1+μ2)

k∑
j=0

(
k

j

)
μ

j

1μ
k−j

2

= (μ1 + μ2)
ke−(μ1+μ2)

k! . �

Proof of Theorem 5.4.2 Let ω1, . . . ,ωn be independent random variables, each be-
ing the identity function (ξ(ωk) = ωk) on the unit interval with the uniform dis-
tribution. We can assume that the vector ω = (ω1, . . . ,ωn) is given as the identity
function on the unit n-dimensional cube Ω with the uniform distribution.

Now construct the random variables ξj and ξ∗
j on Ω as follows:

ξj (ω) =
{

0 if ωj < 1 − pj ,

1 if ωj ≥ 1 − pj ,
ξ∗
j (ω) =

{
0 if ωj < e−pj ,

k ≥ 1 if ωj ∈ [πk−1,πk),

where πk = ∑
m≤k e−pj

(pj )m

m! , k = 0,1, . . . .
It is evident that the ξj (ω) are independent and ξj (ω) ⊂= Bpj

; ξ∗
j (ω) are also

jointly independent with ξ∗
j (ω) ⊂= �pj

. Now note that since 1 − pj ≤ e−pj one has
ξj (ω) 
= ξ∗

j (ω) only if ωj ∈ [1 − pj , e
−pj ) or ωj ∈ [e−pj + pje

−pj ,1]. Hence

P
(
ξj 
= ξ

j
j

) = (
e−pj − 1 + pj

) + (
1 − e−pj − pje

−pj
) = pj

(
1 − e−pj

) ≤ p2
j

and

P
(
Sn 
= S∗

n

) ≤ P
(⋃

j

∣∣ξj 
= ξ∗
j

∣∣) ≤
∑

p2
j ,

where S∗
n = ∑n

j=1 ξ∗
j ⊂= �μ.

Now we can write

P(Sn ∈ B) = P
(
Sn ∈ B,Sn = S∗

n

) + P
(
Sn ∈ B,Sn 
= S∗

n

)
= P

(
S∗

n ∈ B
) − P

(
S∗

n ∈ B,Sn 
= S∗
n

) + P
(
Sn ∈ B,Sn 
= S∗

n

)
,

so that ∣∣P(Sn ∈ B) − P
(
S∗

n ∈ B
)∣∣

≤ ∣∣P(
S∗

n ∈ B,Sn 
= S∗
n

) − P
(
Sn ∈ B,Sn 
= S∗

n

)∣∣ ≤ P
(
Sn 
= S∗

n

)
. (5.4.1)

The assertion of the theorem follows from this in an obvious way. �

Remark 5.4.1 One can give other common probability space constructions as well.
One of them will be used now to show that there exists a better Poisson approxima-
tion to the distribution of Sn.
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Namely, let ξ∗
j (ω) be independent random variables distributed according to the

Poisson laws with parameters rj = − ln(1 − pj ) ≥ pj , so that P(ξ∗
j = 0) = e−rj =

1 − pj . Then ξj (ω) = min{1, ξ∗
j (ω)} ⊂= Bpj

and, moreover,

P

(
n⋃

j=1

{
ξj (ω) 
= ξ∗

j (ω)
}) ≤

n∑
j=1

P
(
ξ∗
j (ω) ≥ 2

) =
n∑

j=1

(
1 − e−rj − rj e

−rj
)
.

But for r = − ln(1 − p) one has the inequality

1 − e−r − re−r = p + (1 − p) ln(1 − p) ≤ p + (1 − p)

(
−p − p2

2

)

= p2

2
(1 + p).

Hence for the new Poisson approximation we have

P
(
S∗

n 
= Sn

) ≤ 1

2

n∑
j=1

p2
j (1 + pj ).

Putting λ = −∑n
j=1 ln(1 − pj ) ≥ ∑n

j=1 pj , the same argument as above will lead
to the bound

sup
B

∣∣P(Sn ∈ B) − �λ(B)
∣∣ ≤ 1

2

n∑
j=1

p2
j (1 + pj ).

This bound of the rate of approximation given by the Poisson distribution with a
“slightly shifted” parameter is better than that obtained in Theorem 5.4.2. Moreover,
one could note that, in the new construction, ξj ≤ ξ∗

j , Sn ≤ S∗
n , and consequently

P(Sn ≥ k) ≤ P
(
S∗

n ≥ k
) = �λ

([k,∞)
)
.

5.4.2 The Triangular Array Scheme. The Poisson Theorem

Now we will return back to the case of identically distributed ξk . To obtain from
Theorem 5.4.2 a limit theorem of the type similar to that of the de Moivre–Laplace
theorem (see (5.3.1)), one needs a somewhat different setup. In fact, to ensure
that np remains bounded as n increases, p = P(ξk = 1) needs to converge to zero
which cannot be the case when we consider a fixed sequence of random variables
ξ1, ξ2, . . . .

We introduce a sequence of rows (of growing length) of random variables:

ξ
(1)
1 ;

ξ
(2)
1 , ξ

(2)
2 ;

ξ
(3)
1 , ξ

(3)
2 , ξ

(1)
1 ;

. . . . . . . . . . . . . . .

ξ
(n)
1 , ξ

(n)
2 , ξ

(n)
3 , . . . , ξ

(n)
n .
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This is the so-called triangular array scheme. The superscript denotes the row num-
ber, while the subscript denotes the number of the variable in the row.

Assume that the variables ξ
(n)
k in the n-th row are independent and ξ

(n)
k ⊂= Bpn ,

k = 1, . . . , n.

Corollary 5.4.1 (The Poisson theorem) If npn → μ > 0 as n → ∞ then, for each
fixed k,

P(Sn = k) → �μ

({k}), (5.4.2)

where Sn = ξ
(n)
1 + · · · + ξ

(n)
n .

Proof This assertion is an immediate corollary of Theorem 5.4.1. It can also be
obtained directly, by noting that it follows from the equality

P(Sn = k) =
(

n

k

)
pk(1 − p)n−k

that

P(Sn = 0) = en ln(1−p) ∼ e−μ,
P(Sn = k + 1)

P(Sn = k)
= n − k

k + 1

p

1 − p
∼ μ

k + 1
. �

Theorem 5.4.2 implies an analogue of the Poisson theorem in a more general
case as well, when the ξ

(n)
j are not necessarily identically distributed4 and can take

values different from 0 and 1.

Corollary 5.4.2 Assume that pjn = P(ξ
(n)
j = 1) depend on n and j so that

max
j

pjn → 0,

n∑
j=1

pjn → μ > 0, P
(
ξ

(n)
j = 0

) = 1 − pjn + o(pjn).

Then (5.4.2) holds.

Proof To prove the corollary, one has to use Theorem 5.4.2 and the fact that

P

(
n⋃

j=1

{
ξ

(n)
j 
= 0, ξ

(n)
j 
= 1

}) ≤
n∑

j=1

o(pjn) = o(1),

which means that, with probability tending to 1, all the variables ξ
(n)
j assume the

values 0 and 1 only. �

One can clearly obtain from Theorems 5.4.1 and 5.4.2 somewhat stronger asser-
tions than the above. In particular,

sup
B

∣∣P(Sn ∈ B) − �μ(B)
∣∣ → 0 as n → ∞.

4An extension of the de Moivre–Laplace theorem to the case of non-identically distributed random
variables is contained in the central limit theorem from Sect. 8.4.
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Note that under the assumptions of Theorem 5.4.1 this convergence will also
take place in the case where np → ∞ but only if np2 → 0. At the same time, the
refinement of the de Moivre–Laplace theorem from Sect. 5.3 shows that the normal
approximation for the distribution of Sn holds if np → ∞ (for simplicity we assume
that p ≤ q so that npq ≥ 1

2np → ∞).
Thus there exist sequences p ∈ {p : np → ∞, np2 → 0} such that both the

normal and the Poisson approximations are valid. In other words, the domains of
applicability of the normal and Poisson approximations overlap.

We see further from Theorem 5.4.1 that the convergence rate in Corollary 5.4.1
is determined by a quantity of the order of n−1. Since, as n → ∞,

P(Sn = 0) − �μ

({0}) = en ln(1−p) − e−μ ∼ μ2

2π
e−μ,

this estimate cannot be substantially improved. However, for large k (in the large
deviations range, say) such an estimate for the difference

P(Sn = k) − �μ

({k})
becomes rough. (This is because, in (5.4.1), we neglected not only the different signs
of the correction terms but also the rare events {Sn = k} and {S∗

n = k} that appear in
the arguments of the probabilities.) Hence we see, as in Sect. 5.4, the necessity for
having approximations of which both absolute and relative errors are small.

Now we will show that the asymptotic equivalence relations

P(Sn = k) ∼ �μ

({k})
remain valid when k and μ grow (along with n) in such a way that

k = o
(
n2/3), μ = o

(
n2/3), |k − μ| = o(

√
n ).

Proof Indeed,

P(Sn = k) =
(

n

k

)
pk(1 − p)n−k = n(n − 1) · · · (n − k + 1)

k! pk(1 − p)n−k

= (nk)k

k! e−pn

(
1 − 1

n

)
· · ·

(
1 − k − 1

n

)
(1 − p)n−kepn

= �μ

({k})eε(k,n).

Thus we have to prove that, for values of k and μ from the indicated range,

ε(k,n) := ln

[(
1 − 1

n

)
· · ·

(
1 − k − 1

n

)
(1 − p)n−kepn

]
= o(1). (5.4.3)

We will obtain this relation together with the form of the correction term. Namely,
we will show that

ε(k,n) = k − (k − μ)2

2n
+ O

(
k3 + μ3

n2

)
, (5.4.4)
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and hence

P(Sn = k) =
(

1 + k − (k − μ)2

2n
+ O

(
k3 + μ3

n2

))
�μ

({k}).
We make use of the fact that, as α → 0,

ln(1 − α) = −α − α2

2
+ O

(
α3).

Then relations (5.4.3) and (5.4.4) will follow from the equalities

k−1∑
j=1

ln

(
1 − j

n

)
= −

k−1∑
j=1

j

n
+ O

(
k3

n2

)
= −k(k − 1)

2n
+ O

(
k3

n2

)
,

(n − k) ln(1 − p) + pn = (n − k)

(
−p − p2

2
+ O

(
p3)) + pn

= −μ2

2n
+ kμ

n
+ O

(
μ3

n2

)
. �

In conclusion we note that the approximate Poisson formula

P(Sn = k) ≈ μk

k! e−μ

is widely used in various applications and has, as experience and the above estimates
show, a rather high accuracy even for moderate values of n.

Now we consider several examples of the use of the de Moivre–Laplace and
Poisson theorems for approximate computations.

Example 5.4.1 Suppose we are given 104 packets of grain. It is known that there are
5000 tagged grains in the packets. What is the probability that, in a particular fixed
packet, there is at least one tagged grain? We can assume that the tagged grains are
distributed to packets at random. Then the probability that a particular tagged grain
will be in the chosen packet is p = 10−4. Since there are 5000 such grains, this
will be the number of trials, i.e. n = 5000. Define a random variable ξk as follows:
ξk = 1 if the k-th grain is in the chosen packet, and ξk = 0 otherwise. Then

S5000 =
5000∑
k=1

ξk

will be the number of tagged grains in our packet. By Theorem 5.4.1, P(S5000 =
0) ≈ e−np = e−0.5 so that the desired probability is approximately equal to 1 −
e−0.5. The accuracy of this relation turns out to be rather high (by Theorem 5.4.1,
the error does not exceed 2−1 × 10−4). If we used the Poisson theorem instead of
Theorem 5.4.1, we would have to imagine a triangular array of Bernoulli random
variables, our ξk constituting the 5000-th row of the array. Moreover, we would
assume that, for the n-th row, one has npn = 0.5. Thus the conditions of the Poisson
theorem would be met and we could make use of the limit theorem to find the
approximate equality we have already obtained.
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Example 5.4.2 A similar argument can be used in the following problem. There are
n dangerous bacteria in a reservoir of capacity V from which we take a sample of
volume v � V . What is the probability that we will find the bacteria in the test
sample?

One usually assumes that the probability p that any given bacterium will be in the
test sample is equal to the ratio v/V . Moreover, it is also assumed that the presence
of a given bacterium in the sample does not depend on whether the remaining n − 1
bacteria are in the test sample or not. In other words, one usually postulates that the
mechanism of bacterial transfer into the test sample is equivalent to a sequence of n

independent trials with “success” probability equal to p = v/V in each trial.
Introducing random variables ξk as above, we obtain a description of the number

of bacteria in the test sample by the sum Sn = ∑n
k=1 ξk in the Bernoulli scheme.

If nv is comparable in magnitude with V then by the Poisson theorem the desired
probability will be equal to

P(Sn > 0) ≈ 1 − e−nv/V .

Similar models are also used to describe the number of visible stars in a certain
part of the sky far away from the Milky Way. Namely, it is assumed that if there are
n visible stars in a region R then the probability that there are k visible stars in a
subregion r ⊂ R is

(
n

k

)
pk(1 − p)k,

where p is equal to the ratio S(r)/S(R) of the areas of the regions r and R respec-
tively.

Example 5.4.3 Suppose that the probability that a newborn baby is a boy is constant
and equals 0.512 (see Sect. 3.4.1).

Consider a group of 104 newborn babies and assume that it corresponds to a
series of 104 independent trials of which the outcomes are the events that either a
boy or girl is born. What is the probability that the number of boys among these
newborn babies will be greater than the number of girls by at least 200?

Define random variables as follows: ξk = 1 if the k-th baby is a boy and ξk = 0

otherwise. Then Sn = ∑104

k=1 ξk is the number of boys in the group. The quantity
npq ∼ 2.5 × 103 is rather large here, hence applying the integral limit (de Moivre–
Laplace) theorem we obtain for the desired probability the value

P(Sn ≥ 5100) = 1 − P
(

Sn − np√
npq

<
5100 − 5120√

2500

)

≈ 1 − Φ(−20/50) = 1 − Φ(−0.4) ≈ 0.66.

To find the numerical values of Φ(x) one usually makes use of suitable statistical
computer packages or calculators.
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In our example, Δ = 1/
√

npq ≈ 1/50, and a satisfactory approximation by the de
Moivre–Laplace formula will certainly be ensured (see Theorem 5.3.1) for c ≤ 2.5.

If, however, we have to estimate the probability that the proportion of boys ex-
ceeds 0.55, we will be dealing with large deviation probabilities when to estimate
P(Sn > 5500) one would rather use the approximate relation obtained in Sect. 1.3
by virtue of which (k = 0.45n, q = 0.488) one has

P(Sn > 5500) ≈ (n + 1 − k)q

(n + 1)q − k
P(Sn = 5500).

Applying Theorem 5.2.1 we find that

P(Sn > 5500) ≈ 0.55q

q − 0.45

1√
2πn0.25

e−nH(0.55) ≤ 1

5
e−25 < 10−11.

Thus if we assume for a moment that 100 million babies are born on this planet
each year and group them into batches of 10 thousand, then, to observe a group in
which the proportion of boys exceeds the mean value by just 3.8 % we will have to
wait, on average, 10 million years (see Example 4.1.1 in Sect. 4.1).

It is clear that the normal approximation can be used for numerical evaluation of
probabilities for the problems from Example 5.4.3 provided that the values of np

are large.

5.5 Inequalities for Large Deviation Probabilities in the
Bernoulli Scheme

In conclusion of the present chapter we will derive several useful inequalities for the
Bernoulli scheme. In Sect. 5.2 we introduced the function

H(x) = x ln
x

p
+ (1 − x) ln

1 − x

1 − p
,

which plays an important role in Theorems 5.2.1 and 5.2.2 on the asymptotic be-
haviour of the probability P(Sn = k). We also considered there the basic properties
of this function.

Theorem 5.5.1 For z ≥ 0,

P(Sn − np ≥ z) ≤ exp
{−nH(p + z/n)

}
,

P(Sn − np ≤ −z) ≤ exp
{−nH(p − z/n)

}
.

(5.5.1)

Moreover, for all p,

H(p + x) ≥ 2x2, (5.5.2)

so that each of the probabilities in (5.5.1) does not exceed exp{−2z2/n} for any p.
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To compare it with assertion (5.2.2) of Theorem 5.2.1, the first inequality from
Theorem 5.5.1 can be re-written in the form

P
(

Sn

n
≥ p∗

)
≤ exp

{−nH
(
p∗)}.

The inequalities (5.5.1) are close, to some extent, to the de Moivre–Laplace theorem
since, for z = o(n2/3),

−nH

(
p + z

n

)
= − z2

2npq
+ o(1).

The last assertion, together with (5.5.2), can be interpreted as follows: deviating by
z or more from the mean value np has the maximum probability when p = 1/2.

If z/
√

n → ∞, then both probabilities in (5.5.1) converge to zero as n → ∞ for
they correspond to large deviations of the sum Sn from the mean np. As we have
already said, they are called large deviation probabilities.

Proof of Theorem 5.5.1 In Corollary 4.7.2 of the previous chapter we established
the inequality

P(ξ ≥ x) ≤ e−λxEeλξ .

Applying it to the sum Sn we get

P(Sn ≥ np + z) ≤ e−λ(np+z)EeλSn .

Since EeλSn = ∏n
k=1 Eeλξk and the random variables eλξk are independent,

EeλSn =
n∏

k=1

Eeλξk = (
peλ + q

)n = (
1 + p

(
eλ − 1

))n
,

P(Sn ≥ np + z) ≤ [(
1 + p

(
eλ − 1

))
e−λ(p+α)

]n
, α = z/n.

The expression in brackets is equal to

Ee−λ[ξk−(p+α)] = peλ(1−p−α) + (1 − p)e−λ(p+α).

Therefore, being the sum of two convex functions, it is a convex function of λ. The
equation for the minimum point λ(α) of the function has the form

−(p − α)
(
1 + p

(
eλ − 1

)) + peλ = 0,

from which we find that

eλ(α) = (p + α)q

p(q − α)
,

(
1 + p

(
eλ(α) − 1

))
e−λ(α)(p+α) = q

q − α

[
p(q − α)

(p + α)q

]p+α

= pp+αqq−α

(p + α)p+α(q − α)q−α

= exp

{
−(p + α) ln

p + α

p
− (q − α) ln

q − α

q

}

= exp
{−H(p + α)

}
.
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The first of the inequalities (5.5.1) is proved. The second inequality follows from
the first if we consider the latter as the inequality for the number of zeros.

It follows further from (5.2.1) that H(p) = H ′(p) = 0 and H ′′(x) = 1/x(1 − x).
Since the function x(1 − x) attains its maximum value on the interval [0,1] at the
point x = 1/2, one has H ′′(x) ≥ 4 and hence

H(p + α) ≥ α2

2
· 4 = 2α2. �

For analogues of Theorem 5.5.1 for sums of arbitrary random variables, see
Chap. 9 and Appendix 8. Example 9.1.2 shows that the function H(α) is the so-
called deviation function for the Bernoulli scheme. This function is important in
describing large deviation probabilities.
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