
Chapter 3
Random Variables and Distribution Functions

Abstract Section 3.1 introduces the formal definitions of random variable and its
distribution, illustrated by several examples. The main properties of distribution
functions, including a characterisation theorem for them, are presented in Sect. 3.2.
This is followed by listing and briefly discussing the key univariate distributions.
The second half of the section is devoted to considering the three types of distri-
butions on the real line and the distributions of functions of random variables. In
Sect. 3.3 multivariate random variables (random vectors) and their distributions are
introduced and discussed in detail, including the two key special cases: the multi-
nomial and the normal (Gaussian) distributions. After that, the concepts of indepen-
dence of random variables and that of classes of events are considered in Sect. 3.4,
establishing criteria for independence of random variables of different types. The
theorem on independence of sigma-algebras generated by independent algebras of
events is proved with the help of the probability approximation theorem. Then the
relationships between the introduced notions are extensively discussed. In Sect. 3.5,
the problem of existence of infinite sequences of random variables is solved with
the help of Kolmogorov’s theorem on families of consistent distributions, which is
proved in Appendix 2. Section 3.6 is devoted to discussing the concept of integral in
the context of Probability Theory (a formal introduction to Integration Theory is pre-
sented in Appendix 3). The integrals of functions of random vectors are discussed,
including the derivation of the convolution formulae for sums of independent ran-
dom variables.

3.1 Definitions and Examples

Let 〈Ω,F,P〉 be an arbitrary probability space.

Definition 3.1.1 A random variable ξ is a measurable function ξ = ξ(ω) mapping
〈Ω,F〉 into 〈R,B〉, where R is the set of real numbers and B is the σ -algebra of all
Borel sets, i.e. a function for which the inverse image ξ (−1)(B) = {ω : ξ(ω) ∈ B} of
any Borel set B ∈ B is a set from the σ -algebra F.
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32 3 Random Variables and Distribution Functions

For example, when tossing a coin once, Ω consists of two points: heads and tails.
If we put 1 in correspondence to heads and 0 to tails, we will clearly obtain a random
variable.

The number of points showed up on a die will also be a random variable.
The distance between the origin to a point chosen at random in the square [0 ≤

x ≤ 1,0 ≤ y ≤ 1] will also be a random variable, since the set {(x, y) : x2 + y2 < t}
is measurable. The reader might have already noticed that in these examples it is
very difficult to come up with a non-measurable function of ω which would be re-
lated to any real problem. This is often the case, but not always. In Chap. 18, devoted
to random processes, we will be interested in sets which, generally speaking, are not
events and which require special modifications to be regarded as events.

As we have already mentioned above, it follows from the definition of a random
variable that, for any set B from the σ -algebra B of Borel sets on the real line,

ξ (−1)(B) = {
ω : ξ(ω) ∈ B

} ∈ F.

Hence one can define a probability Fξ (B) = P(ξ ∈ B) on the measurable space
〈R,B〉 which generates the probability space 〈R,B,Fξ 〉.

Definition 3.1.2 The probability Fξ (B) is called the distribution of the random
variable ξ .

Putting B = (−∞, x) one obtains the function

Fξ (x) = Fξ (−∞, x) = P(ξ < x)

defined on the whole real line which is called the distribution function1 of the ran-
dom variable ξ .

We will see below that the distribution function of a random variable completely
specifies its distribution and is often used to describe the latter.

Where it leads to no confusion, we will write just F, F(x) instead of Fξ , Fξ (x),
respectively. More generally, in what follows, as a rule, we will be using boldface
letters F, G, I, �, K, �, etc. to denote distributions, and the standard font letters F ,
G, I , Φ, . . . to denote the respective distribution functions.

Since a random variable ξ is a mapping of Ω into R, one has P(|ξ | < ∞) = 1.
Sometimes, it is also convenient to consider along with such random variables ran-
dom variables which can assume the values ±∞ (they will be measurable map-
pings of Ω into R∪ {±∞}). If P(|ξ | = ∞) > 0, we will call such random variables
ξ(ω) improper. Each situation where such random variables appear will be explic-
itly noted.

Example 3.1.1 Consider the Bernoulli scheme with success probability p and sam-
ple size k (see Sect. 3.3). As we know, the set of elementary outcomes Ω in this case

1In the English language literature, the distribution function is conventionally defined as Fξ (x) =
P(ξ ≤ x). The only difference is that, with the latter definition, F will be right-continuous, cf.
property F3 below.
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is the set of all k-tuples of zeros and ones. Take the σ -algebra F to be the system of
all subsets of Ω . Define a random variable on Ω as follows: to each k-tuple of zeros
and ones we relate the number of ones in this tuple.

The probability of r successes is, as we already know,

P(r, k) =
(

k

r

)
pr(1 − p)k−r .

Therefore the distribution function F(x) of our random variable will be defined
as

F(x) =
∑

r<x

P (r, k).

Here the summation is over all integers r which are less than x. If x ≤ 0 then
F(x) = 0, and if x > k then F(x) = 1.

Example 3.1.2 Suppose we choose a point at random from the segment [a, b], i.e.
the probability that the chosen point is in a subset of [a, b] is taken to be proportional
to the Lebesgue measure of this subset. Here, Ω is the segment [a, b], the σ -algebra
F is the class of Borel subsets of [a, b]. Define a random variable ξ by

ξ(ω) = ω, ω ∈ [a, b],
i.e. the value of the random variable is equal to the number from [a, b] we have cho-
sen. It is a measurable function. If x ≤ a, then F(x) = P(ξ < x) = 0. Let x ∈ (a, b].
Then {ξ < x} means that the point is in the interval [a, x). The probability of this
event is proportional to the length of the interval, hence

F(x) = P(ξ < x) = x − a

b − a
.

If x > b, then clearly F(x) = 1. Finally, we find that

F(x) =
⎧
⎨

⎩

0, x < a,
x−a
b−a

, a ≤ x ≤ b,

1, x > b.

(3.1.1)

This distribution function defines the so-called uniform distribution on the interval
[a, b].

If μ(B) is the Lebesgue measure on 〈R,B〉, then, as we will see in the next
section, it is not hard to show that in this case Fξ (B) = μ(B ∩ [a, b])/(b − a).

3.2 Properties of Distribution Functions. Examples

3.2.1 The Basic Properties of Distribution Functions

Let F(x) be the distribution function of a random variable ξ . Then F(x) has the
following properties:
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F1. Monotonicity: if x1 < x2, then F(x1) ≤ F(x2).
F2. limx→−∞ F(x) = 0 and limx→∞ F(x) = 1.
F3. Left-continuity: limx↑x0 F(x) = F(x0).

Proof Since for x1 ≤ x2 one has {ξ < x1} ⊆ {ξ < x2}, F1 immediately follows from
property 3 of probability (see Sect. 3.2.2).

To prove F2, consider two number sequences {xn} and {yn} such that {xn} is
decreasing and xn → −∞, while {yn} is increasing and yn → ∞. Put An = {ξ < xn}
and Bn = {ξ < yn}. Since xn tends monotonically to −∞, the sequence of sets An

decreases monotonically to
⋂

An = ∅. By the continuity axiom (see Sect. 3.2.1),
P(An) → 0 as n → ∞ or, which is the same, limn→∞ F(xn) = 0. This and the
monotonicity of F(x) imply that

lim
x→−∞F(x) = 0.

Since the sequence {yn} tends monotonically to ∞, the sequence of sets Bn in-
creases to

⋃
Bn = Ω , and hence (see property 9 in Sect. 3.2.2) P(Bn) → 1. This

implies, as above, that

lim
n→∞F(yn) = 1, lim

x→∞F(x) = 1.

Property F3 is proved in a similar way. Let {xn} be an increasing sequence with
xn ↑ x0,

A = {ξ < x0}, An = {ξ < xn}.
The sequence of sets An also increases, and

⋃
An = A. Therefore, P(An) → P(A).

This means that

lim
x↑x0

F(x) = F(x0). �

It is not hard to see that the function F would be right-continuous if we put
F(x) = P(ξ ≤ x).

With our definition, the function F is generally speaking not right-continuous,
since by the continuity axiom

F(x + 0) − F(x) = lim
n→∞

(
F

(
x + 1

n

)
− F(x)

)

= lim
n→∞ P

(
x ≤ ξ < x + 1

n

)
= P

( ∞⋂

n=1

{
ξ ∈

[
x, x + 1

n

)})

= P(ξ = x).

This means that F(x) is continuous if and only if P(ξ = x) = 0 for any x. Exam-
ples 3.1.1 and 3.1.2 show that both continuous and discontinuous F(x) are quite
common.

From the above relations it also follows that

P(x ≤ ξ ≤ y) = Fξ

([x, y]) = F(y + 0) − F(x).
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Theorem 3.2.1 If a function F(x) has properties F1, F2 and F3, then there exist a
probability space 〈Ω,F,P〉 and a random variable ξ such that Fξ (x) = F(x).

Proof First we construct a probability space 〈Ω,F,P〉. Take Ω to be the real line R,
F the σ -algebra B of Borel sets. As we already know (see Sect. 3.2.1), to construct
a probability space 〈R,B,P〉 it suffices to define a probability on the algebra A

generated, say, by the semi-intervals of the form [·,·) (then σ(A) = B). An arbitrary
element of the algebra A has the form of a finite union of disjoint semi-intervals:

A =
n⋃

i=1

[ai, bi), ai < bi

(the values of ai and bi can be infinite). We define

P(A) =
n∑

i=1

(
F(bi) − F(ai)

)
.

It is absolutely clear that axioms P1 and P2 are satisfied by virtue of F1 and F2. It
remains to verify the countable additivity, or continuity, of P on the algebra A. Let
Bn ∈ A, Bn+1 ⊂ Bn,

⋂∞
n=1 Bn = B ∈ A. One has to show that P(Bn) → P(B) as

n → ∞ or, which is the same, that P(BnB) → 0 (BnB ∈ A). To this end, it suffices
to prove that, for any fixed N , P(BnBCN) → 0, where CN = [−N,N). Indeed, for
any given ε > 0, by virtue of F2 we can choose an N such that P(CN) < ε. Then
P(BnB CN) ≤ P(CN) < ε and

lim sup
n→∞

P(BnB) ≤ lim sup
n→∞

P(BnBCN) + ε.

Since ε is arbitrary, the convergence P(BnBCN) → 0 as n → ∞ implies the re-
quired convergence P(BnB) → 0. It follows that we can assume that the sets Bn are
bounded (Bn ⊂ [−N,N) for some N < ∞). Moreover, we can assume without loss
of generality that B is the empty set.

By the above remarks, Bn admits the representation

Bn =
kn⋃

i=1

[
an
i , bn

i

)
, kn < ∞,

where an
i , bn

i are finite. Further note that, for a given ε > 0 and any semi-interval
[a, b), one can always find an embedded interval [a, b − δ), δ > 0, such that
P([a, b − δ)) ≥ P([a, b)) − ε. This follows directly from property F3: F(b − δ) →
F(b) as δ ↓ 0. Hence, for a given ε > 0 and set Bn, there exist δn

i > 0, i = 1, . . . , kn,
such that

B̃n =
kn⋃

i=1

[
an
i , bn

i − δn
i

) ⊂ Bn, P(B̃n) > P(Bn) − ε2−n.
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Now add the right end points of the semi-intervals to the set B̃n and consider the
closed bounded set

Kn =
kn⋃

i=1

[
an
i , bn

i − δn
i

]
.

Clearly,

B̃n ⊂ Kn ⊂ Bn, K =
∞⋂

n=1

Kn = ∅,

P(Bn − Kn) = P(BnKn) ≤ ε2−n.

It follows from the relation K = ∅ that Kn = ∅ for all sufficiently large n. Indeed,
all the sets Kn belong to the closure [CN ] = [N,−N ] which is compact. The sets
{Δn = [CN ] − Kn}∞n=1 form an open covering of [CN ], since

⋃

n

Δn = [CN ]
(⋃

n

Kn

)
= [CN ]

(⋂

n

Kn

)
= [CN ].

Thus, by the Heine–Borel lemma there exists a finite subcovering {Δn}n0
n=1, n0 < ∞,

such that
⋃n0

n=1 Δn = [CN ] or, which is the same,
⋂n0

n=1 Kn = ∅. Therefore

P(Bn0) = P

(

Bn0

(
n0⋂

n=1

Kn

))

= P

(

Bn0

(
n0⋃

n=1

Kn

))

= P

(
n0⋃

n=1

Bn0Kn

)

≤ P

(
n0⋃

n=1

BnKn

)

≤
n0∑

n=1

ε2−n < ε.

Thus, for a given ε > 0 we found an n0 (depending on ε) such that P(Bn0) < ε.
This means that P(Bn) → 0 as n → ∞. We proved that axiom P3 holds.

So we have constructed a probability space. It remains to take ξ to be the identity
mapping of R onto itself. Then

Fξ (x) = P(ξ < x) = P(−∞, x) = F(x). �

The model of the sample probability space based on the assertion just proved is
often used in studies of distribution functions.

Definition 3.2.1 A probability space 〈Ω,F,F〉 is called a sample space for a ran-
dom variable ξ(ω) if Ω is a subset of the real line R and ξ(ω) ≡ ω.

The probability F = Fξ is called, in accordance with Definition 3.1.1 from
Sect. 3.1, the distribution of ξ . We will write this as

ξ ⊂= F. (3.2.1)

It is obvious that constructing a sample probability space is always possible. It
suffices to put Ω = R, F = B, F(B) = P(ξ ∈ B). For integer-valued variables
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ξ the space 〈Ω,F〉 can be chosen in a more “economical” way by taking Ω =
{. . . ,−1,0, . . .}.

Since by Theorem 3.2.1 the distribution function F(x) of a random variable ξ

uniquely specifies the distribution F of this random variable, along with (3.2.1) we
will also write ξ ⊂= F .

Now we will give examples of some of the most common distributions.

3.2.2 The Most Common Distributions

1. The degenerate distribution Ia . The distribution Ia is defined by

Ia(B) =
{

0 if a ∈ B,

1 if a /∈ B.

This distribution is concentrated at the point a: if ξ ⊂= Ia , then P(ξ = a) = 1. The
distribution function of Ia has the form

F(x) =
{

0 for x ≤ a,

1 for x > a.

The next two distributions were described in Examples 3.1.1 and 3.1.2 of
Sect. 3.1.

2. The binomial distribution Bn
p . By the definition, ξ ⊂= Bn

p (n > 0 is an integer,

p ∈ (0,1)) if P(ξ = k) = (
n
k

)
pk(1 − p)n−k , 0 ≤ k ≤ n. The distribution B1

p will be
denoted by Bp .

3. The uniform distribution Ua,b . If ξ ⊂= Ua,b , then

P(ξ ∈ B) = μ(B ∩ [a, b])
μ([a, b]) ,

where μ is the Lebesgue measure. We saw that this distribution has distribution
function (3.1.1).

The next distribution plays a special role in probability theory, and we will en-
counter it many times.

4. The normal distribution �α,σ 2 (the normal or Gaussian law). We will write
ξ ⊂= �α,σ 2 if

P(ξ ∈ B) = �α,σ 2(B) = 1

σ
√

2π

∫

B

e−(u−α)2/(2σ 2) du. (3.2.2)

The distribution �α,σ 2 depends on two parameters: α and σ > 0. If α = 0, σ = 1, the
normal distribution is called standard. The distribution function of �0,1 is equal to

Φ(x) = �0,1
(
(−∞, x)

) = 1√
2π

∫ x

−∞
e−u2/2 du.

The distribution function of �α,σ 2 is obviously equal to Φ((x − α)/σ), so that the
parameters α and σ have the meaning of the “location” and “scale” of the distribu-
tion.
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The fact that formula (3.2.2) defines a distribution follows from Theorem 3.2.1
and the observation that the function Φ(x) (or Φ((x − a)/σ )) satisfies properties
F1–F3, since Φ(−∞) = 0, Φ(∞) = 1, and Φ(x) is continuous and monotone. One
could also directly use the fact that the integral in (3.2.2) is a countably additive set
function (see Sect. 3.6 and Appendix 3).

5. The exponential distribution �α . The relation ξ ⊂= �α means that ξ is nonneg-
ative and

P(ξ ∈ B) = �α(B) = α

∫

B∩(0,∞)

e−αu du.

The distribution function of ξ ⊂= �α clearly has the form

P(ξ < x) =
{

1 − e−αx for x ≥ 0,

0 for x < 0.

The exponential distribution is a special case of the gamma distribution �α,λ, to be
considered in more detail in Sect. 7.7.

6. A discrete analogue of the exponential distribution is called the geometric
distribution. It has the form

P(ξ = k) = (1 − p)pk, p ∈ (0,1), k = 0,1, . . .

7. The Cauchy distribution Kα,σ . As was the case with the normal distribution,
this distribution depends on two parameters α and σ which are also location and
scale parameters. If ξ ⊂= Kα,σ then

P(ξ ∈ B) = 1

πσ

∫

B

du

1 + ((u − a)/σ )2
.

The distribution function K(x) of K0,1 is

K(x) = 1

π

∫ x

−∞
du

1 + u2
.

The distribution function of Kα,σ is equal to K((x − α)σ). All the remarks made
for the normal distribution continue to hold here.

Example 3.2.1 Suppose that there is a source of radiation at a point (α,σ ), σ > 0,
on the plane. The radiation is registered by a detector whose position coincides with
the x-axis. An emitted particle moves in a random direction distributed uniformly
over the circle. In other words, the angle η between this direction and the vector
(0,−1) has the uniform distribution U−π,π on the interval [−π,π]. Observation
results are the coordinates ξ1, ξ2, . . . of the points on the x-axis where the particles
interacted with the detector. What is the distribution of the random variable ξ = ξ1?

To find this distribution, consider a particle emitted at the point (α,σ ) given
that the particle hit the detector (i.e. given that η ∈ [−π/2,π/2]). It is clear that
the conditional distribution of η given the last event (of which the probability is
P(η ∈ [−π/2,π/2]) = 1/2) coincides with U−π/2,π/2. Since (ξ − α)/σ = tanη,
one obtains that
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P(ξ < x) = P(α + σ tanη < x)

= P
(

η

π
<

1

π
arctan

x − α

σ

)
= 1

2
+ 1

π
arctan

x − α

σ
.

Recalling that (arctanu)′ = 1/(1 + u2), we have

arctanx =
∫ x

0

du

1 + u2
=

∫ x

−∞
du

1 + u2
− π

2
,

P(ξ < x) = 1

π

∫ (x−α)/σ

−∞
du

1 + u2
= K

(
x − α

σ

)
.

Thus the coordinates of the traces on the x-axis of the particles emitted from the
point (α,σ ) have the Cauchy distribution Kα,σ .

8. The Poisson distribution �λ. We will write ξ ⊂= �λ if ξ assumes nonnegative
integer values with probabilities

P(ξ = m) = λm

m! e
−λ, λ > 0, m = 0,1,2, . . .

The distribution function, as in Example 3.1.1, has the form of a sum:

F(x) =
{∑

m<x
λm

m! e−λ for x > 0,

0 for x ≤ 0.

3.2.3 The Three Distribution Types

All the distributions considered in the above examples can be divided into two types.

I. Discrete Distributions

Definition 3.2.2 The distribution of a random variable ξ is called discrete if ξ can
assume only finitely or countably many values x1, x2, . . . so that

pk = P(ξ = xk) > 0,
∑

pk = 1.

A discrete distribution {pk} can obviously always be defined on a discrete prob-
ability space. It is often convenient to characterise such a distribution by a table:

Values x1 x2 x3 . . .

Probabilities p1 p2 p3 . . .

The distributions Ia , Bn
p , �λ, and the geometric distribution are discrete. The

derivative of the distribution function of such a distribution is equal to zero every-
where except at the points x1, x2, . . . where F(x) is discontinuous, the jumps being

F(xk + 0) − F(xk) = pk.

An important class of discrete distributions is formed by lattice distributions.
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Definition 3.2.3 We say that random variable ξ has a lattice distribution with span
h if there exist a and h such that

∞∑

k=−∞
P(ξ = a + kh) = 1. (3.2.3)

If h is the greatest number satisfying (3.2.3) and the number a lies in the interval
[0, h) then these numbers are called the span and the shift, respectively, of the lattice.

If a = 0 and h = 1 then the distribution is called arithmetic. The same terms will
be used for random variables.

Obviously the greatest common divisor (g.c.d.) of all possible values of an arith-
metic random variable equals 1.

II. Absolutely Continuous Distributions

Definition 3.2.4 The distribution F of a random variable ξ is said to be absolutely
continuous2 if, for any Borel set B ,

F(B) = P(ξ ∈ B) =
∫

B

f (x)dx, (3.2.4)

where f (x) ≥ 0,
∫ ∞
−∞ f (x)dx = 1.

The function f (x) in (3.2.4) is called the density of the distribution.
It is not hard to derive from the proof of Theorem 3.2.1 (to be more precise, from

the theorem on uniqueness of the extension of a measure) that the above definition
of absolute continuity is equivalent to the representation

Fξ (x) =
∫ x

−∞
f (u)du

for all x ∈ R. Distribution functions with this property are also called absolutely
continuous.

2The definition refers to absolute continuity with respect to the Lebesgue measure. Given a measure
μ on 〈R,B〉 (see Appendix 3), a distribution F is called absolutely continuous with respect to μ

if, for any B ∈B, one has

F(B) =
∫

B

f (x)μ(dx).

In this sense discrete distributions are also absolutely continuous, but with respect to the count-
ing measure m. Indeed, if one puts f (xk) = pk , m(B) = {the number of points from the set
(x1, x2, . . .) which are in B}, then

F(B) =
∑

xk∈B

pk =
∑

xk∈B

f (xk) =
∫

B

f (x)m(dx)

(see Appendix 3).
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Fig. 3.1 The plot shows the
result of the first three steps in
the construction of the Cantor
function

The function f (x) is determined by the above equalities up to its values on a set
of Lebesgue measure 0. For this function, the relation f (x) = dF(x)

dx
holds3 almost

everywhere (with respect to the Lebesgue measure).
The distributions Ua,b , �α,σ 2 , Kα,σ and �α are absolutely continuous. The den-

sity of the normal distribution with parameters αand σ is equal to

φα,σ 2(x) = 1√
2πσ

e−(x−α)2/(2σ 2).

From their definitions, one could easily derive the densities of the distributions Ua,b ,
Kα,σ and �α as well. The density of Kα,σ has a shape resembling that of the normal
density, but with “thicker tails” (it vanishes more slowly as |x| → ∞).

We will say that a distribution F has an atom at point x1 if F({x1}) > 0. We saw
that any discrete distribution consists of atoms but, for an absolutely continuous
distribution, the probability of hitting a set of zero Lebesgue measure is zero. It
turns out that there exists yet a third class of distributions which is characterised
by the negation of both mentioned properties of discrete and absolutely continuous
distributions.

III. Singular Distributions

Definition 3.2.5 A distribution F is said to be singular (with respect to Lebesgue
measure) if it has no atoms and is concentrated on a set of zero Lebesgue measure.

Because a singular distribution has no atoms, its distribution function is continu-
ous. An example of such a distribution function is given by the famous Cantor func-
tion of which the whole variation is concentrated on the interval [0,1]: F(x) = 0
for x ≤ 0, F(x) = 1 for x ≥ 1. It can be constructed as follows (the construction
process is shown in Fig. 3.1).

3The assertion about the “almost everywhere” uniqueness of the function f follows from the
Radon–Nikodym theorem (see Appendix 3).
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Divide the segment [0,1] into three equal parts [0,1/3], [1/3,2/3], and [2/3,1].
On the inner segment put F(x) = 1/2. The remaining two segments are again di-
vided into three equal parts each, and on the inner parts one sets F(x) to be 1/4 and
3/4, respectively. Each of the remaining segments is divided in turn into three parts,
and F(x) is defined on the inner parts as the arithmetic mean of the two already
defined neighbouring values of F(x), and so on. At the points which do not belong
to such inner segments F(x) is defined by continuity. It is not hard to see that the
total length of such “inner” segments on which F(x) is constant is equal to

1

3
+ 2

9
+ 4

27
+ · · · = 1

3

∞∑

k=0

(
2

3

)k

= 1

3

1

1 − 2/3
= 1,

so that the function F(x) grows on a set of measure zero but has no jumps.
From the construction of the Cantor distribution we see that dF(x)/dx = 0 al-

most everywhere.
It turns out that these three types of distribution exhaust all possibilities.
More precisely, there is a theorem belonging to Lebesgue4 stating that any distri-

bution function F(x) can be represented in a unique way as a sum of three compo-
nents: discrete, absolutely continuous, and singular. Hence an arbitrary distribution
function cannot have more than a countable number of jumps (which can also be
observed directly: we will count all the jumps if we first enumerate all the jumps
which are greater than 1/2, then the jumps greater than 1/3, then greater than 1/4,
etc.). This means, in particular, that F(x) is everywhere continuous except perhaps
at a countable or finite set of points.

In conclusion of this section we will list several properties of distribution func-
tions and densities that arise when forming new random variables.

3.2.4 Distributions of Functions of Random Variables

For a given function g(x), to find the distribution of g(ξ) we have to impose some
measurability requirements on the function. The function g(x) is called Borel if the
inverse image

g−1(B) = {
x : g(x) ∈ B

}

of any Borel set B is again a Borel set. For such a function g the distribution function
of the random variable η = g(ξ) equals

Fg(ξ)(x) = P
(
g(ξ) < x

) = P
(
ξ ∈ g−1(−∞, x)

)
.

If g(x) is continuous and strictly increasing on an interval (a, b) then, on the
interval (g(a), g(b)), the inverse function y = g(−1)(x) is defined as the solution to

4See Sect. 3.5 in Appendix 3.
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the equation g(y) = x.5 Since g is a monotone mapping we have
{
g(ξ) < x

} = {
ξ < g(−1)(x)

}
for x ∈ (

g(a), g(b)
)
.

Thus we get the following representation for Fg(ξ) in terms of Fξ : for x ∈
(g(a), g(b)),

Fg(ξ)(x) = P
(
ξ < g−1(x)

) = Fξ

(
g−1(x)

)
. (3.2.5)

Putting g = Fξ we obtain, in particular, that if Fξ is continuous and strictly increas-
ing on (a, b) and F(a) = 0, F(b) = 1 (−a and b may be ∞) then

Fξ

(
g(−1)(x)

) ≡ x

for x ∈ [0,1] and therefore the random variable η = Fξ (ξ) is uniformly distributed
over [0,1].

Definition 3.2.6 The quantile transform F (−1)(f ) of an arbitrary distribution F
with the distribution function F(x) is the “generalised” inverse of the function F

F (−1)(y) := sup
{
x : F(x) < y

}
for y ∈ (0,1];

F (−1)(0) := inf
{
x : F(x) > 0

}
.

In mathematical statistics, the number F (−1)(y) is called the quantile of order y

of the distribution F. The function F (−1) has a discontinuity of size b − a at a point
y if (a, b) is the interval on which F is constant and such that F(x) = y ∈ [0,1).

Roughly speaking, the plot of the function F (−1) can be obtained from that of the
function F(x) on the (x, y) plane in the following way: rotate the (x, y) plane in
the counter clockwise direction by 90°, so that the x-axis becomes the ordinate axis,
but the y-axis becomes the abscissa axis directed to the left. To switch to normal
coordinates, we have to reverse the direction of the new x-axis.

Further, if x is a point of continuity and a point of growth of the function F (i.e.,
F(x) is a point of continuity of F (−1)) then F (−1)(y) is the unique solution of the
equation F(x) = y and the equality F(F (−1)(y)) = y holds.

In some cases the following statement proves to be useful.

Theorem 3.2.2 Let η ⊂= U0,1. Then, for any distribution F,

f (−1)(η) ⊂= F.

Proof If F(x) > y then F (−1)(y) = sup{v : F(v) < y} < x, and vice versa: if
F(x) < y then F (−1)(y) ≥ x (recall that F(x) is left-continuous). Therefore the
following inclusions are valid for the sets in the (x, y) plane:

{
y < F(x)

} ⊂ {
F (−1)(y) < x

} ⊂ {
y ≤ F(x)

}
.

5For an arbitrary non-decreasing function g, the inverse function g(−1)(x) is defined by the equa-
tion

g(−1)(y) := inf
{
x : g(x) ≥ y

} = sup
{
x : g(x) < y

}
.
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Substituting η ⊂= U0,1 in place of y in these relations yields that, for any x, such
inclusions hold for the respective events, and hence

P
(
F (−1)(η) < x

) = P
(
η < F(x)

) = F(x).

The theorem is proved. �

Thus we have obtained an important method for constructing random variables
with prescribed distributions from uniformly distributed random variables. For in-
stance, if η ⊂= U0,1 then ξ = −(1/α) lnη ⊂= �α .

In another special case, when g(x) = a + bx, b > 0, from (3.2.5) we get Fg(ξ) =
Fξ ((x − a)/b). We have already used this relation to some extent when considering
the distributions �α,σ 2 and Kα,σ .

If a function g is strictly increasing and differentiable (the inverse function g(−1)

is defined in this case), and ξ has a density f (x), then there exists a density for g(ξ)

which is equal to

fg(ξ)(y) = f
(
g(−1)(y)

)(
g(−1)(y)

)′ = f (x)
dx

dy
,

where x = g(−1)(y), y = g(x). A similar argument for decreasing g leads to the
general formula

fg(ξ)(y) = f (x)

∣∣
∣∣
dx

dy

∣∣
∣∣.

For g(x) = a + bx, b �= 0, one obtains

fa+bξ (y) = 1

|b|f
(

y − a

b

)
.

3.3 Multivariate Random Variables

Let ξ1, ξ2, . . . , ξn be random variables given on a common probability space
〈Ω,F,P〉. To each ω, these random variables put into correspondence an n-
dimensional vector ξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξn(ω)).

Definition 3.3.1 A mapping Ω → R
n given by random variables ξ1, ξ2, . . . , ξn is

called a random vector or multivariate random variable.

Such a mapping Ω → R
n is a measurable mapping of the space 〈Ω,F〉 into the

space 〈Rn,Bn〉, where Bn is the σ -algebra of Borel sets in R
n. Therefore, for Borel

sets B , the function Pξ (B) = P(ξ ∈ B) is defined.

Definition 3.3.2 The function Fξ (B) is called the distribution of the vector ξ .
The function

Fξ1...ξn (x1, . . . , xn) = P(ξ1 < x1, . . . , ξn < xn)
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is called the distribution function of the random vector (ξ1, . . . , ξn) or joint distri-
bution function of the random variables ξ1, . . . , ξn.

The following properties of the distribution functions of random vectors, analo-
gous to properties F1–F3 in Sect. 3.2, hold true.

FF1. Monotonicity: “Multiple” differences of the values of the function Fξ1...ξn ,
which correspond to probabilities of hitting arbitrary “open at the right” paral-
lelepipeds, are nonnegative. For instance, in the two-dimensional case this means
that, for any x1 < x2, y1 < y2 (the points (x1, y1) and (x2, y2) being the “extreme”
vertices of the parallelepiped),

Fξ1,ξ2(x2, y2) − Fξ1,ξ2(x2, y1) − (
Fξ1,ξ2(x1, y2) − Fξ1,ξ2(x1, y1)

) ≥ 0.

This double difference is nothing else but the probability of hitting the “semi-open”
parallelepiped [x1, x2) × [y1, y2) by ξ .

In other words, the differences

Fξ1,ξ2(t, y2) − Fξ1,ξ2(t, y1) for y1 < y2

must be monotone in t . (For this to hold, the monotonicity of the function
Fξ1,ξ2(t, y1) is not sufficient.)

FF2. The second property can be called consistency.

lim
xn→∞Fξ1...ξn(x1, . . . , xn) = Fξ1...ξn−1(x1, . . . , xn−1),

lim
xn→−∞Fξ1...ξn(x1, . . . , xn) = 0.

FF3. Left-continuity:

lim
x′
n↑∞

Fξ1...ξn

(
x1, . . . , x

′
n

) = Fξ1...ξn (x1, . . . , xn).

That the limits in properties FF2 and FF3 are taken in the last variable is inessential,
for one can always renumber the components of the vectors.

One can prove these properties in the same way as in the one-dimensional case.
As above, any function F(x1, . . . , xn) possessing this collection of properties will
be the distribution function of a (multivariate) random variable.

As in the one-dimensional case, when considering random vectors ξ =
(ξ1, . . . , ξn), we can make use of the simplest sample model of the probability space
〈Ω,F,P〉. Namely, let Ω coincide with R

n and F = Bn be the σ -algebra of Borel
sets. We will complete the construction of the required probability space if we put
F(B) = Fξ (B) = P(ξ ∈ B) for any B ∈ Bn. It remains to define the random vari-
able as the value of the elementary event itself, i.e. to put ξ(ω) = ω, where ω is a
point in R

n.
It is not hard to see that the distribution function Fξ1...ξn uniquely determines the

distribution Fξ (B). Indeed, Fξ1...ξn defines a probability on the σ -algebra A gener-
ated by rectangles {ai ≤ xi < bi; i = 1, . . . , n}. For example, in the two-dimensional
case
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P(a1 ≤ ξ1 < b1, a2 ≤ ξ2 < b2)

= P(ξ1 < b1, a2 ≤ ξ2 < b2) − P(ξ1 < a1, a2 ≤ ξ2 < b2)

= [
Fξ1,ξ2(b1, b2) − Fξ1,ξ2(b1, a2)

] − [
Fξ1,ξ2(a1, b2) − Fξ1,ξ2(a1, a2)

]
.

But Bn = σ(A), and it remains to make use of the measure extension theorem (see
Sect. 3.2.1).

Thus from a distribution function Fξ1...ξn = F one can always construct a sample
probability space 〈Rn,Bn,Fξ 〉 and a random variable ξ(ω) ≡ ω on it so that the
latter will have the prescribed distribution Fξ .

As in the one-dimensional case, we say that the distribution of a random vector
is discrete if the random vector assumes at most a countable set of values.

The distribution of a random vector will be absolutely continuous if, for any
Borel set B ⊂R

n,

Fξ (B) = P(ξ ∈ B) =
∫

B

f (x)dx,

where clearly f (x) ≥ 0 and
∫
Ω

f (x)dx = 1.
This definition can be replaced with an equivalent one requiring that

Fξ1...ξn (x1, . . . , xn) =
∫ x1

−∞
· · ·

∫ xn

−∞
f (t1, . . . , tn) dt1 · · ·dtn. (3.3.1)

Indeed, if (3.3.1) holds, we define a countably additive set function

Q(B) =
∫

B

f (x) dx

(see properties of integrals in Appendix 3), which will coincide on rectangles
with Fξ . Consequently, Fξ (B) = Q(B).

The function f (x) is called the density of the distribution of ξ or density of the
joint distribution of ξ1, . . . , ξn. The equality

∂n

∂x1 · · ·∂xn

Fξ1...ξn(x1, . . . , xn) = f (x1, . . . , xn)

holds for this function almost everywhere.
If a random vector ξ has density f (x1, . . . , xn), then clearly any “subvector”

(ξk1 . . . ξkn), ki ≤ n, also has a density equal (let for the sake of simplicity ki = i,
i = 1, . . . , s) to

f (x1, . . . , xs) =
∫

f (x1, . . . , xn) dxs+1 · · ·dxn.

Let continuously differentiable functions yi = gi(x1, . . . , xn) be given in a region
A ⊂R

n. Suppose they are univalently resolvable for x1, . . . , xn: there exist functions
xi = g

(−1)
i (y1, . . . , yn), and the Jacobian J = |∂xi/∂yi | �= 0 in A. Denote by B the

image of A in the range of (y1, . . . , yn). Suppose further that a random vector ξ =
(ξ1, . . . , ξn) has a density fξ (x). Then ηi = gi(ξ1, . . . , ξn) will be random variables
with a joint density which, at a point (y1, . . . , yn) ∈ B , is equal to

fn(y1, . . . , yn) = fξ (x1, . . . , xn)|J |; (3.3.2)



3.3 Multivariate Random Variables 47

moreover

P(ξ ∈ A) =
∫

A

fξ (x1, . . . , xn) dx1 · · ·dxn =
∫

B

fξ (x1, . . . , xn)|J |dy1 · · ·dyn

=
∫

B

fη(y1, . . . , yn) dy1 · · ·dyn = P(η ∈ B). (3.3.3)

This is clearly an extension to the multi-dimensional case of the property of densities
discussed at the end of Sect. 3.2. Formula (3.3.3) for integrals is well-known in
calculus as the change of variables formula and could serve as a proof of (3.3.2).

The distribution Fξ of a random vector ξ is called singular if the distribution has
no atoms (Fξ ({x}) = 0 for any x ∈ R

n) and is concentrated on a set of zero Lebesgue
measure.

Consider the following two important examples of multivariate distributions (we
continue the list of the most common distribution from Sect. 3.2).

9. The multinomial distribution Bn
p . We use here the same symbol Bn

p as we used
for the binomial distribution. The only difference is that now by p we understand a
vector p = (p1, . . . , pr), pj ≥ 0,

∑r
j=1 pj = 1, which could be interpreted as the

collection of probabilities of disjoint events Aj ,
⋃

Aj = Ω . For an integer-valued
random vector ν = (ν1, . . . , νr ), we will write ν ⊂= B if for k = (k1, . . . , kr ), kj ≥ 0,∑r

j=1 kj = n one has

P(ν = k) = n!
k1! · · ·kr ! p

k1
1 · · ·pkr

r . (3.3.4)

On the right-hand side we have a term from the expansion of the polynomial (p1 +
· · · + pr)

n into powers of p1, . . . , pr . This explains the name of the distribution. If
p is a number, then evidently Bn

p = Bn
(p,1−p), so that the binomial distribution is a

multinomial distribution with r = 2.
The numbers νj could be interpreted as the frequencies of the occurrence of

events Aj in n independent trials, the probability of occurrence of Aj in a trial
being pj . Indeed, the probability of any fixed sequence of outcomes containing

k1, . . . , kr outcomes A1, . . . ,Ar , respectively, is equal to p
k1
1 · · ·pkr

r , and the number
of different sequences of this kind is equal to n!/k1! · · ·kr ! (of n! permutations we
leave only those which differ by more than merely permutations of elements inside
the groups of k1, . . . , kr elements). The result will be the probability (3.3.4).

Example 3.3.1 The simplest model of a chess tournament with two players could
be as follows. In each game, independently of the outcomes of the past games, the
1st player wins with probability p, loses with probability q , and makes a draw with
probability 1 − p − q . In that case the probability that, in n games, the 1st player
wins i and loses j games (i + j ≤ n), is

p(n; i, j) = n!
i!j !(n − i − j)! piqj (1 − p − q)n−i−j .

Suppose that the tournament goes on until one of the players wins N games (and
thereby wins the tournament). If we denote by η the duration of the tournament (the
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number of games played before its end) then

P(η = n) =
N−1∑

i=0

p(n − 1;N − 1, i)p +
N−1∑

i=0

p(n − 1; i,N − 1)q.

10. The multivariate normal (or Gaussian) distribution �α,σ 2 . Let α = (α1,

. . . , αr) be a vector and σ 2 = ‖σij‖, i, j = 1, . . . , r , a symmetric positive definite
matrix, and A = ‖aij‖ the matrix inverse to σ 2 = A−1. We will say that a vector
ξ = (ξ1, . . . , ξr ) has the normal distribution: ξ ⊂= �α,σ 2 , if it has the density

ϕα,σ 2(x) =
√|A|

(2π)r/2
exp

{
−1

2
(x − α)A(x − α)T

}
.

Here T denotes transposition:

xAxT =
∑

aij xixj .

It is not hard to verify that
∫

ϕα,σ 2(x) dx1 · · ·dxr = 1

(see also Sect. 7.6).

3.4 Independence of Random Variables and Classes of Events

3.4.1 Independence of Random Vectors

Definition 3.4.1 Random variables ξ1, . . . , ξn are said to be independent if

P(ξ1 ∈ B1, . . . , ξn ∈ Bn) = P(ξ1 ∈ B1) · · ·P(ξn ∈ Bn) (3.4.1)

for any Borel sets B1, . . . ,Bn on the real line.

One can introduce the notion of a sequence of independent random variables. The
random variables from the sequence {ξn}∞n=1 given on a probability space 〈Ω,F,P〉,
are independent if (3.4.1) holds for any integer n so that the independence of a
sequence of random variables reduces to that of any finite collection of random
variable from this sequence. As we will see below, for a sequence of independent
random variables, any two events related to disjoint groups of random variables
from the sequence are independent.

Another possible definition of independence of random variables follows from
the assertion below.

Theorem 3.4.1 Random variables ξ1, . . . , ξn are independent if and only if

Fξ1...ξn (x1, . . . , xn) = Fξ1(x1) · · ·Fξn(xn).

The proof of the theorem is given in the third part of the present section.
An important criterion of independence in the case when the distribution of ξ =

(ξ1, . . . , ξn) is absolutely continuous is given in the following theorem.
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Theorem 3.4.2 Let random variables ξ1, . . . , ξn have densities f1(x), . . . , fn(x),
respectively. Then for the independence of ξ1, . . . , ξn it is necessary and sufficient
that the vector ξ = (ξ1, . . . , ξn) has a density f (x1, . . . , xn) which is equal to

f (x1, . . . , xn) = f1(x1) · · ·fn(xn).

Thus, if it turns out that the density of ξ equals the product of densities of ξj , that
will mean that the random variables ξj are independent.

We leave it to the reader to verify, using this theorem, that the components of a
normal vector (ξ1, . . . , ξn) are independent if and only if aij = 0, σij = 0 for i �= j .

Proof of Theorem 3.4.2 If the distribution function of the random variable ξi is given
by

Fξi
(xi) =

∫ xi

−∞
fi(ti) dti

and ξi are independent, then the joint distribution function will be defined by the
formula

Fξ1...ξn (x1, . . . , xn) = Fξ1(x1) · · ·Fξn(xn)

=
∫ x1

−∞
f1(t1) dt1 · · ·

∫ xn

−∞
fn(tn) dtn

=
∫ x1

−∞
· · ·

∫ xn

−∞
f1(t1) · · ·fn(tn) dt1 · · ·dtn.

Conversely, assuming that

Fξ1...ξn (x1, . . . , xn) =
∫ x1

−∞
· · ·

∫ xn

−∞
f1(t1) · · ·fn(tn) dt1 · · ·dtn,

we come to the equality

Fξ1...ξn (x1, . . . , xn) = Fξ1(x1) · · ·Fξn(xn).

The theorem is proved. �

Now consider the discrete case. Assume for the sake of simplicity that the com-
ponents of ξ may assume only integral values. Then for the independence of ξj it is
necessary and sufficient that, for all k1, . . . , kn,

P(ξ1 = k1, . . . , ξn = kn) = P(ξ1 = k1) · · ·P(ξn = kn).

Verifying this assertion causes no difficulties, and we leave it to the reader.
The notion of independence is very important for Probability Theory and will be

used throughout the entire book. Assume that we are formalising a practical problem
(constructing an appropriate probability model in which various random variables
are to be present). How can one find out whether the random variables (or events)
to appear in the model are independent? In such situations it is a justified rule to
consider events and random variables with no causal connection as independent.
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The detection of “probabilistic” independence in a mathematical model of a
random phenomenon is often connected with a deep understanding of its physical
essence.

Consider some simple examples. For instance, it is known that the probability
of a new-born child to be a boy (event A) has a rather stable value P(A) = 22/43.
If B denotes the condition that the child is born on the day of the conjunction of
Jupiter and Mars, then, under the assumption that the position of the planets does not
determine individual fates of humans, the conditional probability P(A|B) will have
the same value: P(A|B) = 22/43. That is, the actual counting of the frequency of
births of boys under these specific astrological conditions would give just the value
22/43. Although such a counting might never have been carried out at a sufficiently
large scale, we have no grounds to doubt its results.

Nevertheless, one should not treat the connection between “mathematical” and
causal independence as an absolute one. For instance, by Newton’s law of gravita-
tion the flight of a missile undoubtedly influences the simultaneous flight of another
missile. But it is evident that in practice one can ignore this influence. This example
also shows that independence of events and variables in the concrete and relative
meaning of this term does not contradict the principle of the universal interdepen-
dence of all events.

It is also interesting to note that the formal definition of independence of events or
random variables is much wider than the notion of real independence in the sense of
affiliation to causally unrelated phenomena. This follows from the fact that “math-
ematical” independence can take place in such cases when one has no reason for
assuming no causal relation. We illustrate this statement by the following example.
Let η be a random variable uniformly distributed over [0,1]. Then in the expansion
of η into a binary fraction

η = ξ1

2
+ ξ2

4
+ ξ3

8
+ · · ·

the random variables ξk will be independent (see Example 11.3.1), although they all
have a related origin.

One can see that this circumstance only enlarges the area of applicability of all
the assertions we obtain below under the formal condition of independence.6

The notion of independence of random variables is closely connected with that
of independence of σ -algebras.

3.4.2 Independence of Classes of Events

Let 〈Ω,F,P〉 be a probability space and A1 and A2 classes of events from the σ -
algebra F.

6For a more detailed discussion of connections between causal and probabilistic independence, see
[24], from where we borrowed the above examples.
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Definition 3.4.2 The classes of events A1 and A2 are said to be independent if, for
any events A1 and A2 such that A1 ∈ A1 and A2 ∈A2, one has

P(A1A2) = P(A1)P(A2).

The following definition introduces the notion of independence of a sequence of
classes of events.

Definition 3.4.3 Classes of events {An}∞n=1 are independent if, for any collection of
integers n1, . . . , nk ,

P

(
k⋂

j=1

Anj

)

=
k∏

j=1

P(Anj
)

for any Anj
∈Anj

.

For instance, in a sequence of independent trials, the sub-σ -algebras of events
related to different trials will be independent. The independence of a sequence of
algebras of events also reduces to the independence of any finite collection of alge-
bras from the sequence. It is clear that subalgebras of events of independent algebras
are also independent.

Theorem 3.4.3 σ -algebras A1 and A2 generated, respectively, by independent al-
gebras of events A1 and A2 are independent.

Before proving this assertion we will obtain an approximation theorem which
will be useful for the sequel. By virtue of the theorem, any event A from the σ -
algebra A generated by an algebra A can, in a sense, be approximated by events
from A. To be more precise, we introduce the “distance” between events defined by

d(A,B) = P(AB ∪ AB) = P(AB) + P(AB) = P(A − B) + P(B − A).

This distance possesses the following properties:

d(A,B) = d(A,B),

d(A,C) ≤ d(A,B) + d(B,C),

d(AB,CD) ≤ d(A,C) + d(B,D),
∣∣P(A) − P(B)

∣∣ ≤ d(A,B).

(3.4.2)

The first relation is obvious. The triangle inequality follows from the fact that

d(A,C) = P(AC) + P(AC) = P(ACB) + P(ACB) + P(ACB) + P(ACB)

≤ P(CB) + P(AB) + P(AB) + P(CB) = d(A,B) + d(B,C).

The third relation in (3.4.2) can be obtained in a similar way by enlarging events
under the probability sign. Finally, the last inequality in (3.4.2) is a consequence of
the relations

P(A) = P(AB) + P(AB) = P(B) − P(BA) + P(AB).
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Theorem 3.4.4 (The approximation theorem) Let 〈Ω,F,P〉 be a probability space
and A the σ -algebra generated by an algebra A of events from F. Then, for any
A ∈A, there exists a sequence An ∈A such that

lim
n→∞d(A,An) = 0. (3.4.3)

By the last inequality from (3.4.2), the assertion of the theorem means that
P(A) = limn→∞ P(An) and that each event A ∈A can be represented, up to a set of
zero probability, as a limit of a sequence of events from the generating algebra A

(see also Appendix 1).

Proof 7 We will call an event A ∈ F approximable if there exists a sequence An ∈ A

possessing property (3.4.3), i.e. d(An,A) → 0.
Since d(A,A) = 0, the class of approximable events A∗ contains A. Therefore

to prove the theorem it suffices to verify that A∗ is a σ -algebra.
The fact that A∗ is an algebra is obvious, for the relations A ∈ A∗ and

B ∈ A∗ imply that A, A ∪ B , A ∩ B ∈ A. (For instance, if d(A,An) → 0 and
d(B,Bn) → 0, then by the third inequality in (3.4.2) one has d(AB,AnBn) ≤
d(A,An) + d(B,Bn) → 0, so that AB ∈ A∗.)

Now let C = ⋂∞
k=1 Ck where Ck ∈ A∗. Since A∗ is an algebra, we have Dn =⋃n

k=1 Ck ∈A∗; moreover,

d(Dn,C) = P(C − Dn) = P(C) − P(Dn) → 0.

Therefore one can choose An ∈ A so that d(Dn,An) < 1/n, and consequently by
virtue of (3.4.2) we have

d(C,An) ≤ d(C,Dn) + d(Dn,An) → 0.

Thus C ∈ A∗ and hence A∗ forms a σ -algebra. The theorem is proved. �

Proof of Theorem 3.4.3 is now easy. If A1 ∈A1 and A2 ∈A2, then by Theorem 3.4.4
there exist sequences A1n ∈ A1 and A2n ∈ A2 such that d(Ai,Ain) → 0 as n → ∞,
i = 1,2. Putting B = A1A2 and Bn = A1nA2n, we obtain that

d(B,Bn) ≤ d(A1,A1n) + d(A2,A2n) → 0

as n → ∞ and

P(A1A2) = lim
n→∞ P(Bn) = lim

n→∞ P(A1n)P(A2n) = P(A1)P(A2). �

3.4.3 Relations Between the Introduced Notions

We will need one more definition. Let ξ be a random variable (or vector) given on a
probability space 〈Ω,F,P〉.

7The theorem is also a direct consequence of the lemma from Appendix 1.
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Definition 3.4.4 The class Fξ of events from F of the form A = ξ−1(B) =
{ω : ξ(ω) ∈ B}, where B are Borel sets, is called the σ -algebra generated by the
random variable ξ .

It is evident that Fξ is a σ -algebra since to each operation on sets A there corre-
sponds the same operation on the sets B = ξ(A) forming a σ -algebra.

The σ -algebra Fξ generated by the random variable ξ will also be denoted by
σ(ξ).

Consider, for instance, a probability space 〈Ω,B,P〉, where Ω = R is the real
line and B is the σ -algebra of Borel sets. If

ξ = ξ(ω) =
{

0, ω < 0,

1, ω ≥ 0,

then Fξ clearly consists of four sets: R, ∅, {ω < 0} and {ω ≥ 0}. Such a random
variable ξ cannot distinguish “finer” sets from B. On the other hand, it is obvious
that ξ will be measurable ({ξ ∈ B} ∈ B1) with respect to any other “richer” sub-σ -
algebra B1, such that σ(ξ) ⊂ B1 ⊂ B.

If ξ = ξ(ω) = �ω� is the integral part of ω, then Fξ will be the σ -algebra of sets
composed of the events {k ≤ ω < k + 1}, k = . . . ,−1,0,1, . . .

Finally, if ξ(ω) = ϕ(ω) where ϕ is continuous and monotone, ϕ(∞) = ∞ and
ϕ(−∞) = −∞, then Fξ coincides with the σ -algebra of Borel sets B.

Lemma 3.4.1 Let ξ and η be two random variables given on 〈Ω,F,P〉, the variable
ξ being measurable with respect to σ(η). Then ξ and η are functionally related, i.e.
there exists a Borel function g such that ξ = g(η).

Proof By assumption,

Ak,n =
{
ξ ∈

[
k

2n
,
k + 1

2n

)}
∈ σ(η).

Denote by Bk,n = {η(ω) : ω ∈ Ak,n} the images of the sets Ak,n on the line R under
the mapping η(ω) and put gn(x) = k/2n for x ∈ Bk,n. Then gn(η) = [2nε]/2n and
because Ak,n ∈ σ(η), Bk,n ∈ B and gn is a Borel function. Since gn(x) ↑ for any x,
the limit limn→∞ gn(x) = g(x) exists and is also a Borel function. It remains to
observe that ε = limn→∞ gn(η) = g(η) by the very construction. �

Now we formulate an evident proposition relating independence of random vari-
ables and σ -algebras.

Random variables ξ1, . . . , ξn are independent if and only if the σ -algebras
σ(ξ1), . . . , σ (ξn) are independent.

This is a direct consequence of the definitions of independence of random vari-
ables and σ -algebras.

Now we can prove Theorem 3.4.1. First note that finite unions of semi-intervals
[·,·) (perhaps with infinite end points) form a σ -algebra generating the Borel σ -alge-
bra on the line: B= σ(A).
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Proof of Theorem 3.4.1 Since in one direction the assertion of the theorem is ob-
vious, it suffices to verify that the equality F(x1, . . . , xn) = Fξ1(x1) · · ·Fξn(xn) for
the joint distribution function implies the independence of σ(ξ1), . . . , σ (ξn). Put for
simplicity n = 2 and denote by Δ and Λ the semi-intervals [x1, x2) and [y1, y2),
respectively. The following equalities hold:

P(ξ1 ∈ Δ,ξ2 ∈ Λ) = P
(
ξ1 ∈ [x1, x2), ξ2 ∈ [y1, y2)

)

= F(x2, y2)F (x1, y2) − F(x2, y1) + F(x1, y1)

= (
Fξ1(x2) − Fξ1(x1)

)(
Fξ2(y2) − Fξ2(y1)

)

= P{ξ1 ∈ Δ}P{ξ2 ∈ Λ}.
Consequently, if Δi , i = 1, . . . , n, and Λj , j = 1, . . . ,m, are two systems of

disjoint semi-intervals, then

P

(

ξ1 ∈
n⋃

i=1

Δi, ξ2 ∈
m⋃

j=1

Λj

)

=
∑

i,j

P(ξ1 ∈ Δi, ξ2 ∈ Λj)

=
∑

i,j

P(ξ1 ∈ Δi)P(ξ2 ∈ Λj)

= P

(

ξ1 ∈
n⋃

i=1

Δi

)

P

(

ξ2 ∈
m⋃

j=1

λj

)

. (3.4.4)

But the class of events {ω : ξ(ω) ∈ A} = ξ−1(A), where A ∈A, forms, along with A,
an algebra (we will denote it by α(ξ)), and one has σ(α(ξ)) = σ(ξ). In (3.4.4)
we proved that α(ξ1) and α(ξ2) are independent. Therefore by Theorem 3.4.3 the
σ -algebras σ(ξ1) = σ(α(ξ1)) and σ(ξ2) = σ(α(ξ1)) are also independent. The the-
orem is proved. �

It is convenient to state the following fact as a theorem.

Theorem 3.4.5 Let ϕ1 and ϕ2 be Borel functions and ξ1 and ξ2 be independent
random variables. Then η1 = ϕ1(ξ1) and η2 = ϕ2(ξ2) are also independent random
variables.

Proof We have to verify that, for any Borel sets B1 and B2,

P
(
ϕ1(ξ1) ∈ B1, ϕ2(ξ2) ∈ B2

) = P
(
ϕ1(ξ1) ∈ B1

)
P
(
ϕ2(ξ2) ∈ B2

)
. (3.4.5)

But the sets {x : ϕi(x) ∈ Bi} = ϕ−1(Bi) = B∗
i , i = 1,2, are again Borel sets. There-

fore
{
ω : ϕi(ξi) ∈ Bi

} = {
ω : ξi ∈ B∗

i

}
,

and the required multiplicativity of probability (3.4.5) follows from the indepen-
dence of ξi . The theorem is proved. �
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Let {ξn}∞n=1 be a sequence of independent random variables. Consider the random
variables ξk, ξk+1, . . . , ξm where k < m ≤ ∞. Denote by σ(ξk, . . . , ξm) (for m = ∞
we will write σ(ξk, ξk+1, . . .)) the σ -algebra generated by the events

⋂m
i=k Ai ,

where Ai ∈ σ(ξi).

Definition 3.4.5 The σ -algebra σ(ξk, . . . , ξm) is said to be generated by the random
variables ξk, . . . , ξm.

In the sequel we will need the following proposition.

Theorem 3.4.6 For any k ≥ 1, the σ -algebra σ(ξn+k) is independent of
σ(ξ1, . . . , ξn).

Proof To prove the assertion, we make use of Theorem 3.4.3. To this end we have
to verify that the algebra A generated by sets of the form B = ⋂n

i=1 Ai , where
Ai ∈ σ(ξi), is independent of σ(ξn+k). Let A ∈ σ(ξn+k), then it follows from the
independence of the σ -algebras σ(ξ1), σ (ξ2), . . . , σ (ξn), σ (ξn+k) that

P(AB) = P(A)P(A1) · · ·P(An) = P(A) · P(B).

In a similar way we verify that

P

(
n⋃

i=1

AiA

)

= P

(
n⋃

i=1

Ai

)

P(A)

(one just has to represent
⋃n

i=1 Ai as a union of disjoint events from A). Thus the
algebra A is independent of σ(ξn+k). Hence σ(ξ1, . . . , ξn) and σ(ξn+k) are inde-
pendent. The theorem is proved. �

It is not hard to see that similar conclusions can be made about vector-valued
random variables ξ1, ξ2, . . . defining their independence using the relation

P(ξ1 ∈ B1, . . . , ξn ∈ Bn) =
∏

P(ξj ∈ Bj ),

where Bj are Borel sets in spaces of respective dimensions.
In conclusion of this section note that one can always construct a probability

space 〈Ω,F,P〉 (〈Rn,Bn,Pξ 〉) on which independent random variables ξ1, . . . , ξn

with prescribed distribution functions Fξj
are given whenever these distributions

Fξj
are known. This follows immediately from Sect. 3.3, since in our case the joint

distribution function Fξ (x1, . . . , xn) of the vector ξ = (ξ1, . . . , ξn) is uniquely deter-
mined by the distribution functions Fξj

(x) of the variables ξj :

Fξ (x1, . . . , xn) =
n∏

1

Fξj
(xj ).
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3.5 ∗ On Infinite Sequences of Random Variables

We have already mentioned infinite sequences of random variables. Such sequences
will repeatedly be objects of our studies below. However, there arises the question
of whether one can define an infinite sequence on a probability space in such a way
that its components possess certain prescribed properties (for instance, that they will
be independent and identically distributed).

As we saw, one can always define a finite sequence of independent random vari-
ables by choosing for the “compound” random variable (ξ1, . . . , ξn) the sample
space R1 ×R2 × · · · ×Rn = R

n and σ -algebra B1 ×B1 × · · · ×Bn = Bn gener-
ated by sets of the form B1 × B2 × · · · × Bn ⊂ R

n, Bi being Borel sets. It suffices
to define probability on the algebra of these sets. In the infinite-dimensional case,
however, the situation is more complicated. Theorem 3.2.1 and its extensions to the
multivariate case are insufficient here. One should define probability on an algebra
of events from R

∞ = ∏∞
k=1 Rk so that its closure under countably many operations

∪ and ∩ form the σ -algebra B∞ generated by the products
⋂

Bjk
, Bjk

∈Bjk
.

Let N be a subset of integers. Denote by R
N = ∏

k∈N Rk the direct product of
the spaces Rk over k ∈ N , BN = ∏

k∈N Bk . We say that distributions PN ′ and PN ′′

on 〈RN ′
,BN ′ 〉 and 〈RN ′′

,BN ′′ 〉, respectively, are consistent if the measures induced
by PN ′ and PN ′′ on the intersection R

N =R
N ′ ∩R

N ′′
(here N = N ′ ∩ N ′′) coincide

with each other. The measures on R
N are said to be the projections of PN ′ and PN ′′ ,

respectively, on R
N . An answer to the above question about the existence of an

infinite sequence of random variables is given by the following theorem (the proof
of which is given in Appendix 2).

Theorem 3.5.1 (Kolmogorov) Specifying a family of consistent distributions PN

on finite-dimensional spaces R
N defines a unique probability measure P∞ on

〈R∞,B∞〉 such that each probability PN is the projection of P∞ onto R
N .

It follows from this theorem, in particular, that one can always define on an appro-
priate space an infinite sequence of arbitrary independent random variables. Indeed,
direct products of measures given on R1,R2, . . . for different products RN ′

and R
N ′′

are always consistent.

3.6 Integrals

3.6.1 Integral with Respect to Measure

As we have already noted, defining a probability space includes specifying a finite
countably additive measure. This enables one to consider integrals with respect to
the measure,

∫
g
(
ξ(ω)

)
P(dω) (3.6.1)
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over the set Ω for a Borel function g and any random variable ξ on 〈Ω,F,P〉 (recall
that g(x) is said to be Borel if, for any t , {x : g(x) < t} is a Borel set on the real
line).

The definition, construction and basic properties of the integral with respect to a
measure are assumed to be familiar to the reader. If the reader feels his or her back-
ground is insufficient in this aspect, we recommend Appendix 3 which contains all
the necessary information. However, the reader could skip this material if he/she is
willing to restrict him/herself to considering only discrete or absolutely continuous
distributions for which integrals with respect to a measure become sums or conven-
tional Riemann integrals. It would also be useful for the sequel to know the Stieltjes
integral; see the comments in the next subsection.

We already know that a random variable ξ(ω) induces a measure Fξ on the real
line which is specified by the equality

Fξ

([x, y)
) = P(x ≤ ξ ≤ y) = Fξ (y) − Fξ (x).

Using this measure, one can write the integral (3.6.1) as
∫

g
(
ξ(ω)

)
P(dω) =

∫
g(x)Fξ (dx).

This is just the result of the substitution x = ξ(ω). It can be proved simply by
writing down the definitions of both integrals. The integral on the right hand side
is called the Lebesgue–Stieltjes integral of the function g(x) with respect to the
measure Pξ and can also be written as

∫
g(x)dFξ (x). (3.6.2)

3.6.2 The Stieltjes Integral

The integral (3.6.2) is often just called the Stieltjes integral, or the Riemann–Stieltjes
integral which is defined in a somewhat different way and for a narrower class of
functions.

If g(x) is a continuous function, then the Lebesgue–Stieltjes integral coincides
with the Riemann–Stieltjes integral which is equal by definition to

∫
g(x)dF (x) = lim

b→∞
a→−∞

lim
N→∞

N∑

k=0

g(̃xk)
[
F(xk+1) − F(xk)

]
, (3.6.3)

where the limit on the right-hand side does not depend on the choice of parti-
tions x0, x1, . . . , xN of the semi-intervals [a, b) and points x̃k ∈ Δk = [xk, xk+1).
Partitions x0, x1, . . . , xN are different for different N ’s and have the property that
maxk(xk+1 − xk) → 0 as N → ∞.

Indeed, as we know (see Appendix 3), the Lebesgue–Stieltjes integral is
∫

g(x)dF (x) = lim
b→∞

a→−∞
lim

N→∞

∫ b

a

gN(x)Fξ (dx), (3.6.4)
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where gN is any sequence of simple functions (assuming finitely many values) con-
verging monotonically to g(x). We see from these definitions that it suffices to show
that the integrals

∫ b

a
with finite integration limits coincide. Since the Lebesgue–

Stieltjes integral
∫ b

a
g dF of a continuous function g always exists, we could obtain

its value by taking the sequence gN to be any of the two sequences of simple func-
tions g∗

N and g∗∗
N which are constant on the semi-intervals Δk and equal on them to

g∗
N(xk) = sup

x∈Δk

g(x) and g∗∗
N (xk) = inf

x∈Δk

g(x),

respectively. Both sequences in (3.6.4) constructed from g∗
N and g∗∗

N will clearly
converge monotonically from different sides to the same limit equal to the
Lebesgue–Stieltjes integral

∫ b

a

g(x) dF (x).

But for any x̃k ∈ Δk , one has

g∗∗
N (xk) ≤ g(̃xk) ≤ g∗

N(xk),

and therefore the integral sum in (3.6.3) will be between the bounds

∫ b

a

g∗∗
N dF(x) ≤

N∑

k=0

g(X̃k)
[
F(xk+1) − F(xk)

] ≤
∫ b

a

g∗
N dF(x).

These inequalities prove the required assertion about the coincidence of the inte-
grals.

It is not hard to verify that (3.6.3) and (3.6.4) will also coincide when F(x) is
continuous and g(x) is a function of bounded variation. In that case,

∫ b

a

g(x) dF (x) = g(x)F (x)|ba −
∫ b

a

F (x) dg(x).

Making use of this fact, we can extend the definition of the Riemann–Stieltjes in-
tegral to the case when g(x) is a function of bounded variation and F(x) is an
arbitrary distribution function. Indeed, let F(x) = Fc(x) + Fd(x) be a representa-
tion of F(x) as a sum of its continuous and discrete components, and y1, y2, . . . be
the jump points of Fd(x):

pk = Fd(yk + 0) − Fd(yk) > 0.

Then one has to put by definition
∫

g(x)dF (x) =
∑

pkg(yk) +
∫

g(x)dFc(x),

where the Riemann–Stieltjes integral
∫

g dFc(x) can be understood, as we have
already noted, in the sense of definition (3.6.3).

We will say, as is generally accepted, that
∫

g dF exists if the integral
∫ |g|dF

is finite. It is easy to see from the definition of the Stieltjes integral that, for step
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functions F(x) (the distribution is discrete), the integral becomes the sum
∫

g(x)dF (x) =
∑

k

g(xk)
(
F(xk + 0) − F(xk)

) =
∑

k

g(xk)P(ξ = xk),

where x1, x2, . . . are jump points of F(x). If

F(x) =
∫ x

−∞
p(x)dx

is absolutely continuous and p(x) and g(x) are Riemann integrable, then the Stielt-
jes integral

∫
g(x)dF (x) =

∫
g(x)p(x)dx

becomes a conventional Riemann integral.
We again note that for a reader who is not familiar with Stieltjes integral tech-

niques and integration with respect to measures, it is possible to continue reading
the book keeping in mind only the last two interpretations of the integral. This would
be quite sufficient for an understanding of the exposition. Moreover, most of the
distributions which are important from the practical point of view are just of one of
these types: either discrete or absolutely continuous.

We recall some other properties of the Stieltjes integral (following immediately
from definitions (3.6.4) or (3.6.3) and (3.6.5)):

∫ b

a

dF = F(b) − F(a);
∫ b

a

g dF =
∫ c

a

g dF +
∫ b

c

g dF if g or F is continuous at the point c;
∫

(g1 + g2) dF =
∫

g1 dF +
∫

g2 dF ;
∫

cg dF = c

∫
g dF for c = const;

∫ b

a

g dF = gF |ba −
∫ b

a

F dg

if g is a function of bounded variation.

3.6.3 Integrals of Multivariate Random Variables.
The Distribution of the Sum of Independent
Random Variables

Integrals with respect to measure (3.6.1) make sense for multivariate variables
ξ(ω) = (ξ1(ω), . . . , ξn(ω)) as well (one cannot say the same about Riemann–
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Stieltjes integrals (3.6.3)). We mean here the integral
∫

Ω

g
(
ξ1(ω), . . . , ξn(ω)

)
P(dω), (3.6.5)

where g is a measurable function mapping R
n into R, so that g(ξ1(ω), . . . , ξn(ω))

is a measurable mapping of Ω into R.
If 〈Rn,Bn,Fξ 〉 is a sample probability space for ξ , then the integral (3.6.5) can

be written as
∫

Rn

g(x)Fξ (dx), x = (x1, . . . , xn) ∈ R
n.

Now turn to the case when the components ξ1, . . . , ξn of the vector ξ are independent
and assume first that n = 2. For sets

B = B1 × B2 = {
(x1, x2) : x1 ∈ B1, x2 ∈ B2

} ⊂R
2,

where B1 and B2 are measurable subsets of R, one has the equality

P(ξ ∈ B) = P(ξ1 ∈ B1, ξ2 ∈ B2) = P(ξ1 ∈ B1)P(ξ2 ∈ B2). (3.6.6)

In that case one says that the measure Fξ1,ξ2(dx1, dx2) = P(ξ1 ∈ dx1, ξ2 ∈ dx2)

on R
2, corresponding to (ξ1, ξ2), is a direct product of the measures

Fξ1(dx1) = P(ξ1 ∈ dx1) and Fξ2(dx2) = P(ξ2 ∈ dx2).

As we already know, equality (3.6.6) uniquely specifies a measure on 〈R2,B2〉
from the given distributions of ξ1 and ξ2 on 〈R,B〉. It turns out that the integral

∫
g(x1, x2)Fξ1ξ2(dx1, dx2) (3.6.7)

with respect to the measure Fξ1,ξ2 can be expressed in terms of integrals with respect
to the measures Fξ1 and Fξ2 . Namely, Fubini’s theorem holds true (for the proof see
Appendix 3 or property 5A in Sect. 4.8).

Theorem 3.6.1 (Theorem on iterated integration) For a Borel function g(x, y) ≥ 0
and independent ξ1 and ξ2,

∫
g(x1, x2)Fξ1ξ2(dx1, dx2) =

∫ [∫
g(x1, x2)Fξ2(dx2)

]
Fξ1(dx1). (3.6.8)

If g(x, y) can assume values of different signs, then the existence of the integral
on the left-hand side of (3.6.8) is required for the equality (3.6.8). The order of
integration on the right-hand side of (3.6.8) may be changed.

It is shown in Appendix 3 that the measurability of g(x, y) implies that of the
integrands on the right-hand side of (3.6.8).

Corollary 3.6.1 Let g(x1, x2) = g1(x1)g2(x2). Then, if at least one of the following
three conditions is met:

(1) g1 ≥ 0, g2 ≥ 0,
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(2)
∫

g1(x1)g2(x2)Fξ1ξ2(dx1, dx2) exists,
(3)

∫
gj (xj )Fξj

(dxj ), j = 1,2, exist,

then
∫

g1(x1)g2(x2)Fξ1ξ2(dx1, dx2) =
∫

g1(x1)Fξ1(dx1)

∫
g2(x2)Fξ2(dx2). (3.6.9)

To avoid trivial complications, we assume that P(gj (ξj ) = 0) �= 1, j = 1,2.

Proof Under any of the first two conditions, the assertion of the corollary follows
immediately from Fubini’s theorem. For arbitrary g1, g2, put gj = g+

j −g−
j , g±

j ≥ 0,

j = 1,2. If
∫

g±
j dFξ < ∞ (we will use here the abridged notation for integrals),

then
∫

g1g2 dFξ1 dFξ2 =
∫

g+
1 g+

2 dFξ1 dFξ2 −
∫

g+
1 g−

2 dFξ1 dFξ2

−
∫

g−
1 g+

2 dFξ1 dFξ2 +
∫

g−
1 g−

2 dFξ1 dFξ2

=
∫

g+
1 dFξ1

∫
g+

2 dFξ2 −
∫

g+
1 dFξ1

∫
g+

2 dFξ2

−
∫

g−
1 dFξ1

∫
g+

2 dFξ2 +
∫

g−
1 dFξ1

∫
g−

2 dFξ2

=
∫

g1 dFξ1

∫
g2 dFξ2 . �

Corollary 3.6.2 In the special case when g(x1, x2) = IB(x1, x2) is the indicator
of a set B ∈ B2, we obtain the formula for sequential computation of the measure
of B:

P
(
(ξ1, ξ2) ∈ B

) =
∫

P
(
(x1, ξ2) ∈ B

)
Fξ1(dx1).

The probability of the event {(x1, ξ2) ∈ B} could also be written as P(ξ2 ∈ Bx1) =
Pξ2(Bx1) where Bx1 = {x2 : (x1, x2) ∈ B} is the “section” of the set B at the point x1.

If B = {(x1, x2) : x1 + x2 < x}, we get

P
(
(ξ1, ξ2) ∈ B

) = P(ξ1 + ξ2 < x) ≡ Fξ1+ξ2(x)

=
∫

P(x1 + ξ2 < x)Fξ1(dx1)

=
∫

Fξ2(x − x1) dFξ1(x1). (3.6.10)

We have obtained a formula for the distribution function of the sum of independent
random variables expressing Fξ1+ξ2 in terms of Fξ1 and Fξ2 . The integral on the
right-hand side of (3.6.10) is called the convolution of the distribution functions
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Fξ1(x) and Fξ2(x) and is denoted by Fξ1 ∗ Fξ2(x). In the same way one can obtain
the equality

P(ξ1 + ξ2 < x) =
∫ ∞

−∞
Fξ1(x − t) dFξ2(t).

Observe that the right-hand side here could also be considered as a result of inte-
grating

∫
dFξ1(t)Fξ2(x − t)

by parts.
If at least one of the distribution functions has a density, the convolution also

has a density. This follows immediately from the formulas for convolution. Let, for
instance,

Fξ2(x) =
∫ x

−∞
fξ2(u) du.

Then

Fξ1+ξ2(x) =
∫ ∞

−∞
Fξ1(dt)

∫ x

−∞
fξ2(u − t) du

=
∫ x

−∞

(∫ ∞

−∞
Fξ1(dt)fξ2(u − t)

)
du,

so that the density of the sum ξ1 + ξ2 equals

fξ1+ξ2(x) =
∫ ∞

−∞
Fξ1(dt)fξ2(x − t) =

∫ ∞

−∞
fξ2(x − t) dFξ1(t).

Example 3.6.1 Let ξ1, ξ2, . . . be independent random variables uniformly dis-
tributed over [0,1], i.e. ξ1, ξ2, . . . have the same distribution function with density

f (x) =
{

1, x ∈ [0,1],
0, x /∈ [0,1]. (3.6.11)

Then the density of the sum ξ1 + ξ2 is

fξ1+ξ2(x) =
∫ 1

0
f (x − t) dt =

⎧
⎨

⎩

0, x /∈ [0,2],
x, x ∈ [0,1],
2 − x, x ∈ [1,2].

(3.6.12)

The integral present here is clearly the length of the intersection of the segments
[0,1] and [x − 1, x]. The graph of the density of the sum ξ1 + ξ2 + ξ3 will consist
of three pieces of parabolas:

fξ1+ξ2+ξ3(x) =
∫ 1

0
fξ1+ξ2(x − t) dt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x /∈ [0,3],
x2

2 , x ∈ [0,1],
1 − (2−x)2

2 − (x−1)2

2 , x ∈ [1,2],
(3−x)2

2 , x ∈ [2,3].
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Fig. 3.2 Illustration to Example 3.6.1. The upper row visualizes the computation of the convolu-
tion integral for the density of ξ1 + ξ2 + ξ3. The lower row displays the densities of ξ1, ξ1 + ξ2,
and ξ1 + ξ2 + ξ3, respectively

The computation of this integral is visualised in Fig. 3.2, where the shaded areas
correspond to the values of fξ1+ξ2+ξ3(x) for different x. The shape of the densities
of ξ1, ξ1 + ξ2 and ξ1 + ξ2 + ξ3 is shown in Fig. 3.2b. The graph of the density of the
sum ξ1 + ξ2 + ξ3 + ξ4 will consist of four pieces of cubic parabolas and so on. If
we shift the origin to the point n/2, then, as n increases, the shape (up to a scaling
transformation) of the density of the sum ξ1 + · · · + ξn will be closer and closer to
that of the function e−x2

. We will see below that this is not due to chance.
In connection with this example we could note that if ξ and η are two independent

random variables, ξ having the distribution function F(x) and η being uniformly
distributed over [0,1], then the density of the sum ξ + η at the point x is equal to

fξ+η(x) =
∫

dF(t)fη(x − t) =
∫ x

x−1
dF(t) = F(x) − F(x − 1).
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