
Chapter 22
Processes with Finite Second Moments.
Gaussian Processes

Abstract The chapter is devoted to the classical “second-order theory” of time-
homogeneous processes with finite second moments. Section 22.1 explores the re-
lationships between the covariance function properties and those of the process itself
and proves the ergodic theorem (in quadratic mean) for processes with covariance
functions vanishing at the infinity. Section 22.2 is devoted to the special case of
Gaussian processes, while Sect. 22.3 solves the best linear prediction problem.

22.1 Processes with Finite Second Moments

Let {ξ(t), −∞ < t < ∞} be a random process for which there exist the moments
a(t) = Eξ(t) and R(t, u) = Eξ(t)ξ(u). Since it is always possible to study the pro-
cess ξ(t) − a(t) instead of ξ(t), we can assume without loss of generality that
a(t) ≡ 0.

Definition 22.1.1 The function R(t, u) is said to be the covariance function of the
process ξ(t).

Definition 22.1.2 A function R(t, u) is said to be nonnegative (positive) definite if,
for any k; u1, . . . , uk ; a1, . . . , ak �= 0,

∑

i,j

aiajR(ui, uj ) ≥ 0 (> 0).

It is evident that the covariance function R(t, u) is nonnegative definite, because

∑

i,j

aiajR(ui, uj ) = E
(∑

i,j

aj ξ(ui)

)2

≥ 0.

Definition 22.1.3 A process ξ(t) is said to be unpredictable if no linear combination
of the variables ξ(u1), . . . , ξ(uk) is zero with probability 1, i.e. if there exist no
u1, . . . , uk ; a1, . . . , ak such that

P
(∑

i

aiξ(ui) = 0

)
= 1.
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612 22 Processes with Finite Second Moments. Gaussian Processes

If R(t, u) is the covariance function of an unpredictable process, then R(t, u)

is positive definite. We will see below that the converse assertion is also true in a
certain sense.

Unpredictability means that we cannot represent ξ(tk) as a linear combination of
ξ(tj ), j < k.

Example 22.1.1 The process ξ(t) = ∑N
k=1 ξkgk(t), where gk(t) are linearly inde-

pendent and ξk are independent, is not unpredictable, because from ξ(t1), . . . , ξ(tN )

we can determine the values ξ(t) for all other t .
Consider the Hilbert space L2 of all random variables η on 〈Ω,F,P〉 having

finite second moments, Eη = 0, endowed with the inner product (η1, η2) = Eη1η2
corresponding to the distance ‖η1 − η2‖ = [E(η1 − η2)

2]1/2. Convergence in L2 is
obviously convergence in mean quadratic.

A random process ξ(t) may be thought of as a curve in L2.

Definition 22.1.4 A random process ξ(t) is said to be wide sense stationary if the
function R(t, u) =: R(t − u) depends on the difference t − u only. The function
R(s) is called nonnegative (positive) definite if the function R(t, t + s) is of the re-
spective type. For brevity, we will often call wide sense stationary processes simply
stationary.

For the Wiener process, R(t, u) = Ew(t)w(u) = min(t, u), so that w(t) cannot
be stationary. But the process ξ(t) = w(t + 1) − w(t) will already be stationary.

It is obvious that, for a stationary process, the function R(s) is even and Eξ2(t) =
R(0) = const. For simplicity’s sake, put R(0) = 1. Then, by the Cauchy–Bunja-
kovsky inequality,

∣∣R(s)
∣∣ = ∣∣Eξ(t)ξ(t + s)

∣∣ ≤ [
Eξ2(t)Eξ2(t + s)

]1/2 = R(0) = 1.

Theorem 22.1.1

(1) A process ξ(t) is continuous in mean quadratic (ξ(t + Δ)
(2)−→ ξ(t) as Δ → 0)

if and only if the function R(u) is continuous at zero.
(2) If the function R(u) is continuous at zero, then it is continuous everywhere.

Proof

(1)
∥∥ξ(t + Δ) − ξ(t)

∥∥2 = E
(
ξ(t + Δ) − ξ(t)

)2 = 2R(0) − 2R(Δ).

(2) R(t + Δ) − R(t) = E
(
ξ(t + Δ)ξ(0) − ξ(t)ξ(0)

)

= (
ξ(0), ξ(t + Δ) − ξ(t)

) ≤ ∥∥ξ(t + Δ) − ξ(t)
∥∥

=
√

2
(
R(0) − R(Δ)

)
. (22.1.1)

The theorem is proved. �

A process ξ(t) continuous in mean quadratic will be stochastically continuous,
as we can see from Chaps. 6 and 18. The continuity in mean quadratic does not,
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however, imply path-wise continuity. The reader can verify this by considering the
example of the process

ξ(t) = η(t + 1) − η(t) − 1,

where η(t) is the Poisson process with parameter 1. For that process, the covariance
function

R(t) =
{

0 for t ≥ 1,

1 − t for 0 ≤ t ≤ 1

is continuous, although the trajectories of ξ(t) are not. If
∣∣R(Δ) − R(0)

∣∣ < cΔ1+ε (22.1.2)

for some ε > 0 then, by the Kolmogorov theorem (see Theorem 18.2.1), ξ(t) has
a continuous modification. From this it follows, in particular, that if R(t) is twice
differentiable at the point t = 0, then the trajectories of ξ(t) may be assumed con-
tinuous. Indeed, in that case, since R(t) is even, one has

R′(0) = 0 and R(Δ) − R(0) ∼ 1

2
R′′(0)Δ2.

As a whole, the smoother the covariance function is at zero, the smoother the
trajectories of ξ(t) are.

Assume that the trajectories of ξ(t) are measurable (for example, belong to the
space D).

Theorem 22.1.2 (The simplest ergodic theorem) If

R(s) → 0 as s → ∞, (22.1.3)

then

ζT := 1

T

∫ T

0
ξ(t) dt

(2)−→ 0.

Proof Clearly,

‖ζT ‖2 = 1

T 2

∫ T

0

∫ T

0
R(t − u)dt du.

Since R(s) is even,

J :=
∫ T

0

∫ T

0
R(t − u)dt du = 2

∫ T

0

∫ T

u

R(t − u)dt du.

Making the orthogonal change of variables v = (t − u)/
√

2, s = (t + u)/
√

2, we
obtain

J ≤ 2
∫ T/

√
2

s=0

∫ T/
√

2

v=0
R(v

√
2) dv ds ≤ 2T

∫ T

0
R(v)dv,

‖ζT ‖2 ≤ 2

T

∫ T

0
R(v)dv → 0.

The theorem is proved. �
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Example 22.1.2 The stationary white noise process ξ(t) is defined as a process
with independent values, i.e. a process such that, for any t1, . . . , tn, the variables
ξ(t1), . . . , ξ(tn) are independent. For such a process,

R(t) =
{

1 for t = 0,

0 for t �= 0,

and thus condition (22.1.3) is met. However, one cannot apply Theorem 22.1.2 here,
for the trajectories of ξ(t) will be non-measurable with probability 1 (for example,
the set B = {t : ξ(t) > 0} is non-measurable with probability 1).

Definition 22.1.5 A process ξ(t) is said to be strict sense stationary if, for any
t1, . . . , tk , the distribution of (ξ(t1 + u), ξ(t2 + u), . . . , ξ(tk + u)) is independent
of u.

It is obvious that if ξ(t) is a strict sense stationary process then

Eξ(t)ξ(u) = Eξ(t − u)ξ(0) = R(t − u),

and ξ(t) will be wide sense stationary. The converse is, of course, not true. However,
there exists a class of processes for which both concepts of stationarity coincide.

22.2 Gaussian Processes

Definition 22.2.1 A process ξ(t) is said to be Gaussian if its finite-dimensional
distributions are normal.

We again assume that Eξ(t) = 0 and R(t, u) = Eξ(t)ξ(u).
The finite-dimensional distributions are completely determined by the ch.f.s (λ =

(λ1, . . . , λk), ξ = (ξ(t1), . . . , ξ(tk)))

Eei(λ,ξ) = Ee
i
∑

j λj ξ(tj ) = e− 1
2 λRλT

,

where R = ‖R(ti, tj )‖ and the superscript T stands for transposition, so that

λRλT =
∑

i,j

λiλjR(ti , tj ).

Thus for a Gaussian process the finite-dimensional distributions are completely
determined by the covariance function R(t, u).

We saw that for an unpredictable process ξ(t), the function R(t, u) is positive
definite. A converse assertion may be stated in the following form.

Theorem 22.2.1 If the function R(t, u) is positive definite, then there exists an un-
predictable Gaussian process with the covariance function R(t, u).
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Proof For arbitrary t1, . . . , tk , define the finite-dimensional distribution of the vector
ξ(t1), . . . , ξ(tk) via the density

pt1,...,tk (x1, . . . , xk) =
√|A|

(2π)k/2
exp

{
−1

2
xAxT

}
,

where A is the matrix inverse to the covariance matrix R = ‖R(ti, tj )‖ (see
Sect. 7.6) and |A| is the determinant of A. These distributions will clearly
be consistent, because the covariance matrices are consistent (the matrix for
ξ(t1), . . . , ξ(tk−1) is a submatrix of R). It remains to make use of the Kolmogorov
theorem. The theorem is proved. �

Example 22.2.1 Let w(t) be the standard Wiener process. The process

w0(t) = w(t) − tw(1), t ∈ [0,1],
is called the Brownian bridge (its “ends are fixed”: w0(0) = w0(1) = 0). The co-
variance function of w0(t) is equal to

R(t, u) = E
(
w(t) − tw(1)

)(
w(u) − uw(1)

) = t (1 − u)

for u ≥ t .

A Gaussian wide sense stationary process ξ(t) is strict sense stationary. This
immediately follows from the fact that for R(t, u) = R(t −u) the finite-dimensional
distributions of ξ(t) become invariant with respect to time shift:

pt1,...,tk (x1, . . . , xk) = pt1+u,...,tk+u(x1, . . . , xk)

since ‖R(ti + u, tj + u)‖ = ‖R(ti, tj )‖.
If ξ(t) is a Gaussian process, then conditions ensuring the smoothness of its

trajectories can be substantially relaxed in comparison with (22.1.2).
Let for simplicity’s sake the Gaussian process ξ(t) be stationary.

Theorem 22.2.2 If, for h < 1,

∣∣R(h) − R (0)
∣∣ < c

(
log

1

h

)−α

, α > 3, c < ∞,

then the trajectories of ξ(t) can be assumed continuous.

Proof We make use of Theorem 18.2.2 and put ε(h) = (log 1
h
)−β for 1 < β <

(α − 1)/2 (we take logarithms to the base 2). Then

∞∑

n=1

ε
(
2−n

) =
∞∑

n=1

n−β < ∞,

and, by (22.1.1),
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P
(∣∣ξ(t + h) − ξ(t)

∣∣ > ε(h)
) = 2

[
1 − Φ

(
ε(h)√

2(1 − R(h))

)]

≤ 2

[
1 − Φ

(
cε(h)

(
log

1

h

)α/2)]
= 2

[
1 − Φ

(
c

(
log

1

h

)α/2−β)]
.

(22.2.1)

Since the argument of Φ increases unboundedly as h → 0, γ = α − 2β > 1, and
by (19.3.1)

1 − Φ(x) ∼ 1√
2πx

e−x2/2 as x → ∞,

we see that the right-hand side of (22.2.1) does not exceed

q(h) := c1

(
log

1

h

)β−α/2

exp

{
−c2

(
log

1

h

)α−2β}
,

so that
∞∑

n=1

2nq
(
2−n

) = c1

∞∑

n=1

n−γ /2 exp
{−c2n

γ + n ln 2
}

< ∞,

because c2 > 0 and γ > 1. The conditions of Theorem 18.2.2 are met, and so The-
orem 22.2.2 is proved. �

22.3 Prediction Problem

Suppose the distribution of a process ξ(t) is known, and one is given the trajectory of
ξ(t) on a set B ⊂ (−∞, t], B being either an interval or a finite collection of points.
What could be said about the value ξ(t + u)? Our aim will be to find a random
variable ζ , which is FB = σ(ξ(v), v ∈ B)-measurable (and called a prediction) and
such that E(ξ(t + u) − ζ )2 assumes the smallest possible value. The answer to that
problem is actually known (see Sect. 4.8):

ζ = E
(
ξ(t + u)

∣∣FB

)
.

Let ξ(t) be a Gaussian process, B = {t1, . . . , tk}, t1 < t2 < · · · < tk < t0 = t + u,
A = (σ 2)−1 = ‖aij‖ and σ 2 = ‖Eξ (ti) ξ (tj )‖i,j=1,...,k,0. Then the distribution of
the vector (ξ(t1), . . . , ξ(t0)) has the density

f (x1, . . . , xk, x0) =
√|A|

(2π)(k+1)/2
exp

{
−1

2

∑

i,j

xixj aij

}
,

and the conditional distribution of ξ(t0) given ξ(t1), . . . , ξ(tk) has density equal to
the ratio

f (x1, . . . , xk, x0)∫ ∞
−∞ f (x1, . . . , xk, x0) dx0

.
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The exponential part of this ratio has the form

exp

{
−a00x

2
0

2
−

k∑

j=1

x0xjaj0

}
.

This means that the conditional distribution under consideration is the normal
law �α,d2 , where

α = −
∑

j

xj aj0

a00
, d2 = 1

a00
.

Thus, in our case the best prediction ζ is equal to

ζ = −
k∑

j=1

ξ(tj )a0j

a00
.

The mean quadratic error of this prediction equals
√

1/a00.
We have obtained a linear prediction. In the general case, the linearity property

is usually violated.
Consider now the problem of the best linear prediction in the case of an arbitrary

process ξ(t) with finite second moments. For simplicity’s sake we assume again that
B = {t1, . . . , tk}.

Denote by H(ξ) the subspace of L2 generated by the random variables ξ(t),
−∞ < t < ∞, and by HB(ξ) the subspace of H(ξ) generated (or spanned by)
ξ(t1), . . . , ξ(tk). Elements of HB(ξ) have the form

k∑

j=1

aj ξ(tj ).

The existence and the form of the best linear prediction in this case are estab-
lished by the following assertion.

Theorem 22.3.1 There exists a unique point ζ ∈ HB(ξ) (the projection of ξ(t + u)

onto HB(ξ), see Fig. 22.1) such that

ξ(t + u) − ζ ⊥ HB(ξ). (22.3.1)

Relation (22.3.1) is equivalent to
∥∥ξ(t + u) − ζ

∥∥ = min
θ∈HB(ξ)

∥∥ξ(t + u) − θ
∥∥. (22.3.2)

Explicit formulas for the coefficients aj in the representation ζ = ∑
aj ξ(tj ) are

given in the proof.

Proof Relation (22.3.1) is equivalent to the equations
(
ξ(t + u) − ζ, ξ(tj )

) = 0, j = 1, . . . , k.
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Fig. 22.1 Illustration to
Theorem 22.3.1: the point ζ

is the projection of ξ(t + u)

onto HB(ξ)

Substituting here

ζ =
k∑

l=1

alξ(tl) ∈ HB(ξ),

we obtain

R(t + u, tj ) =
k∑

l=1

alR(tj , tl), j = 1, . . . , k, (22.3.3)

or, in vector form, Rt+u = aR, where

a = (a1, . . . , ak),

Rt+u = (
R(t + u, t1), . . . ,R(t + u, tk)

)
, R = ∥∥R(ti, tj )

∥∥.

If the process ξ(t) is unpredictable, then the matrix R is non-degenerate and
Eq. (22.3.3) has a unique solution:

a = Rt+uR
−1. (22.3.4)

If ξ(t) is not unpredictable, then either R−1 still exists and then (22.3.4) holds, or
R is degenerate. In that case, one has to choose from the collection ξ(t1), . . . , ξ(tk)

only l < k linearly independent elements for which all the above remains true after
replacing k with l.

The equivalence of (22.3.1) and (22.3.2) follows from the following considera-
tions. Let θ be any other element of HB(ξ). Then

η := θ − ζ ∈ HB(ξ), η ⊥ ξ(t + u) − ζ,

so that
∥∥ξ(t + u) − θ

∥∥ = ∥∥ξ(t + u) − ζ
∥∥ + ‖η‖ ≥ ∥∥ξ(t + u) − ζ

∥∥.

The theorem is proved. �

Remark 22.3.1 It can happen (in the case where the process ξ(t) is not unpre-
dictable) that ξ(t + u) ∈ HB(ξ). Then the error of the prediction ζ will be equal
to zero.
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