
Chapter 21
Markov Processes

Abstract This chapter presents the fundamentals of the theory of general Markov
processes in continuous time. Section 21.1 contains the definitions and a discus-
sion of the Markov property and transition functions, and derives the Chapman–
Kolmogorov equation. Section 21.2 studies Markov processes in countable state
spaces, deriving systems of backward and forward differential equations for tran-
sition probabilities. It also establishes the ergodic theorem and contains examples
illustrating the presented theory. Section 21.3 deals with continuous time branch-
ing processes. Then the elements of the general theory of semi-Markov processes
are presented in Sect. 21.4, including the ergodic theorem and some other related
results for such processes. Section 21.5 discusses the so-called regenerative pro-
cesses, establishing their ergodicity and the Laws of Large Numbers and Central
Limit Theorem for integrals of functions of their trajectories. Section 21.6 is devoted
to diffusion processes. It begins with the classical definition of diffusion, derives the
forward and backward Kolmogorov equations for the transition probability function
of a diffusion process, and gives a couple of examples of using the equations to
compute important characteristics of the respective processes.

21.1 Definitions and General Properties

Markov processes in discrete time (Markov chains) were considered in Chap. 13.
Recall that their main property was independence of the “future” of the process of
its “past” given its “present” is fixed. The same principle underlies the definition of
Markov processes in the general case.

21.1.1 Definition and Basic Properties

Let 〈Ω,F,P〉 be a probability space and {ξ(t) = ξ(t,ω), t ≥ 0} a random process
given on it. Set

F1 := σ
(
ξ(u); u ≤ t

)
, F[t,∞) := σ

(
ξ(u); u ≥ t

)
,
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so that the variable ξ(u) is Ft -measurable for u ≤ t and F[t,∞)-measurable for u ≥ t .
The σ -algebra σ(Ft ,F[t,∞)) is generated by the variables ξ(u) for all u and may
coincide with F in the case of the sample probability space.

Definition 21.1.1 We say that ξ(t) is a Markov process if, for any t , A ∈ Ft , and
B ∈ F[t,∞), we have

P
(
AB

∣
∣ξ(t)

)= P
(
A
∣
∣ξ(t)

)
P
(
B
∣
∣ξ(t)

)
. (21.1.1)

This expresses precisely the fact that the future is independent of the past when the
present is fixed (conditional independence of Ft and F[t,∞) given ξ(t)).

We will now show that the above definition is equivalent to the following.

Definition 21.1.2 We say that ξ(t) is a Markov process if, for any bounded F[t,∞)-
measurable random variable η,

E(η|Ft ) = E
(
η
∣∣ξ(t)

)
. (21.1.2)

It suffices to take η to be functions of the form η = f (ξ(s)) for s ≥ t .

Proof of the equivalence Let (21.1.1) hold. By the monotone convergence theorem
it suffices to prove (21.1.2) for simple functions η. To this end it suffices, in turn,
to prove (21.1.2) for η = IB , the indicator of the set B ∈ F[t,∞). Let A ∈ Ft . Then,
by (21.1.1),

P(AB) = EP
(
AB

∣∣ξ(t)
)= E

[
P
(
A
∣∣ξ(t)

)
P
(
B
∣∣ξ(t)

)]

= EE
[
IAP

(
B
∣
∣ξ(t)

)∣∣ξ(t)
]= E

[
IAP

(
B
∣
∣ξ(t)

)]
. (21.1.3)

On the other hand,

P(AB) = E[IAIB ] = E
[
IAP(B|Ft )

]
. (21.1.4)

Because (21.1.3) and (21.1.4) hold for any A ∈ Ft , this means that P(B|Ft ) =
P(B|ξ(t)).

Conversely, let (21.1.2) hold. Then, for A ∈ Ft and B ∈ F[t,∞), we have

P
(
AB

∣
∣ξ(t)

)= E
[
E(IAIB |Ft )

∣
∣ξ(t)

]= E
[
IAE(IB |Ft )

∣
∣ξ(t)

]

= E
[
IAE

(
IB
∣∣ξ(t)

)∣∣ξ(t)
]= P

(
B
∣∣ξ(t)

)
P
(
A
∣∣ξ(t)

)
. �

It remains to verify that it suffices to take η = f (ξ(s)), s ≥ t , in (21.1.2). In order
to do this, we need one more equivalent definition of a Markov process.

Definition 21.1.3 We say that ξ(t) is a Markov process if, for any bounded function
f and any t1 < t2 < · · · < tn ≤ t ,

E
(
f
(
ξ(t)

)∣∣ξ(t1), . . . , ξ(tn)
)= E

(
f
(
ξ(t)

∣∣ξ(tn)
))

. (21.1.5)
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Proof of the equivalence Relation (21.1.5) follows in an obvious way from (21.1.2).
Now assume that (21.1.5) holds. Then, for any A ∈ σ(ξ(t1), . . . , ξ(tn)),

E
(
f
(
ξ(t)

); A
)= E

[
E
(
f
(
ξ(t)

)∣∣ξ(tn)
); A

]
. (21.1.6)

Both parts of (21.1.6) are measures coinciding on the algebra of cylinder sets. There-
fore, by the theorem on uniqueness of extension of a measure, they coincide on the
σ -algebra generated by these sets, i.e. on Ftn . In other words, (21.1.6) holds for any
A ∈ Ftn , which is equivalent to the equality

E
[
f
(
ξ(t)

)∣∣Ftn

]= E
[
f
(
ξ(t)

)∣∣ξ(tn)
]

for any tn ≤ t . Relation (21.1.2) for η = f (ξ(t)) is proved. �

We now prove that in (21.1.2) it suffices to take η = f (ξ(s)), s ≥ t . Let t ≤ u1 <

· · · < un. We prove that then (21.1.2) is true for

η =
n∏

i=1

fi

(
ξ(ui)

)
. (21.1.7)

We will make use of induction and assume that equality (21.1.2) holds for the
functions

γ =
n−1∏

i=1

fi

(
ξ(ui)

)

(for n = 1 relation (21.1.2) is true). Then, putting g(un−1) := E[fn(ξ(un))|ξ(un−1)],
we obtain

E(η|Ft ) = E
[
E(η|Fun−1)

∣∣Ft

]= E
[
γ E

(
fn

(
ξ(un)

)∣∣Fun−1

)∣∣Ft

]

= E
[
γ E

(
fn

(
ξ(un)

)∣∣ξ(un−1)
)∣∣Ft

]= E
[
γg

(
ξ(un−1)

)∣∣Ft

]
.

By the induction hypothesis this implies that

E(η|Ft ) = E
[
γg

(
ξ(un−1)

)∣∣ξ(t)
]

and, therefore, that E(η|Ft ) is σ(ξ(t))-measurable and

E
(
η
∣∣ξ(t)

)= E
(
E(η|Ft )

∣∣ξ(t)
)= E(η|Ft ).

We proved that (21.1.2) holds for σ(ξ(u1), . . . , ξ(un))-measurable functions of
the form (21.1.7). By passing to the limit we establish first that (21.1.2) holds for
simple functions, and then that it holds for any F[t,∞)-measurable functions. �

21.1.2 Transition Probability

We saw that, for a Markov process ξ(t), the conditional probability

P
(
ξ(t) ∈ B

∣∣Fs

)= P
(
ξ(t) ∈ B

∣∣ξ(s)
)

for t > s
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is a Borel function of ξ(s) which we will denote by

P
(
s, ξ(s); t,B) := P

(
ξ(t) ∈ B

∣∣ξ(s)
)
.

One can say that P(s, x; t,B) as a function of B and x is the conditional distribution
(see Sect. 4.9) of ξ(t) given that ξ(s) = x. By the Markov property, it satisfies the
relation (s < u < t)

P (s, x; t,B) =
∫

P(s, x;u,dy)P (u, y; t,B), (21.1.8)

which follows from the equality

P
(
ξ(t) ∈ B

∣
∣ξ(s) = x

)

= E
[
P
(
ξ(t) ∈ B

∣
∣Fu

)∣∣ξ(s) = x
]= E

[
P
(
u, ξ(u); t,B)∣∣ξ(s) = x

]
.

Equation (21.1.8) is called the Chapman–Kolmogorov equation.
The function P(s, x; t,B) can be used in an analytic definition of a Markov pro-

cess. First we need to clarify what properties a function Px,B(s, t) should possess in
order that there exists a Markov process ξ(t) for which

Px,B(s, t) = P(s, x; t,B).

Let 〈X,BX〉 be a measurable space.

Definition 21.1.4 A function Px,B(s, t) is said to be a transition function on
〈X,BX〉 if it satisfies the following conditions:

(1) As a function of B , Px,B(s, t) is a probability distribution for each s ≤ t , x ∈X.
(2) Px,B(s, t) is measurable in x for each s ≤ t and B ∈BX.
(3) For 0 ≤ s < u < t and all x and B ,

Px,B(s, t) =
∫

Px,dy(s, u)Py,B(u, t)

(the Chapman–Kolmogorov equation).
(4) Px,B(s, t) = IB(x) for s = t .

Here properties (1) and (2) ensure that Px,B(s, t) can be a conditional distribution
(cf. Sect. 4.9).

Now define, with the help of Px,B(s, t), the finite-dimensional distributions of a
process ξ(t) with the initial condition ξ(0) = a by the formula

P
(
ξ(t) ∈ dy1, . . . , ξ(tn) ∈ dyn

)

= Pa,dy1(0, t1)Py1,dy2(t1, t2) · · ·Pyn−1,dyn(tn−1, tn). (21.1.9)

By virtue of properties (3) and (4), these distributions are consistent and therefore
by the Kolmogorov theorem define a process ξ(t) in 〈RT ,BT

R〉, where T = [0,∞).
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By formula (21.1.9) and rule (21.1.5),

P
(
ξ(tn) ∈ Bn

∣∣(ξ(t1), . . . , ξ(tn−1)
)= (y1, . . . , yn−1)

)

= Pyn−1,Bn(tn−1, tn) = P
(
ξ(tn) ∈ Bn

∣∣ξ(tn−1) = yn−1
)

= P(tn−1, yn−1; tn,Bn).

We could also verify this equality in a more formal way using the fact that the
integrals of both sides over the set {ξ(t1) ∈ B1, . . . , ξ(tn−1) ∈ Bn−1} coincide.

Thus, by virtue of Definition 21.1.3, we have constructed a Markov process ξ(t)

for which

P(s, x; t,B) = Px,B(s, t).

This function will also be called the transition function (or transition probability) of
the process ξ(t).

Definition 21.1.5 A Markov process ξ(t) is said to be homogeneous if P(s, x; t,B),
as a function of s and t , depends on the difference t − s only:

P(s, x; t,B) = P(t − s;x,B).

This is the probability of transition during a time interval of length t − s from x

to B . If

P(u; t,B) =
∫

B

p(u; t, y) dy

then the function p(u;x, y) is said to be a transition density.

It is not hard to see that the Wiener and Poisson processes are both homogeneous
Markov processes. For example, for the Wiener process,

P(u;x, y) = 1√
2πu

e−(x−y)2/2u.

21.2 Markov Processes with Countable State Spaces. Examples

21.2.1 Basic Properties of the Process

Assume without loss of generality that the “discrete state space” X coincides with
the set of integers {0,1,2, . . .}. For simplicity’s sake we will only consider homo-
geneous Markov processes.

The transition function of such a process is determined by the collection of
functions P(t; i, j) = pij (t) which form a stochastic matrix P(t) = ‖pij (t)‖ (with
pij (t) ≥ 0,

∑
j pij (t) = 1). Chapman–Kolmogorov’s equation now takes the form

pij (t + s) =
∑

k

pik(t)pkj (s),
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or, which is the same, in the matrix form,

P(t + s) = P(t)P (s) = P(s)P (t). (21.2.1)

In what follows, we consider only stochastically continuous processes for which

ξ(t + s)
p→ ξ(t) as s → 0, which is equivalent in the case under consideration to

each of the following three relations:

P
(
ξ(t + s) �= ξ(t)

)→ 0, P (t + s) → P(t), P (s) → P(0) ≡ E (21.2.2)

as s → 0 (component-wise; E is the unit matrix).
We will also assume that convergence in (21.2.2) is uniform (for a finite X this is

always the case).
According to the separability requirement, we will assume that ξ(t) cannot

change its state in “zero time” more than once (thus excluding the effects illus-
trated in Example 18.1.1, i.e. assuming that if ξ(t) = j then, with probability 1,
ξ(t + s) = j for s ∈ [0, τ ), τ = τ(ω) > 0). In that case, the trajectories of the pro-
cesses will be piece-wise constant (right-continuous for definiteness), i.e. the time
axis is divided into half-intervals [0, τ1), [τ1, τ1 +τ2), . . . , on which ξ(t) is constant.
Put

qj (t) := P
(
ξ(u) = j, 0 ≤ u < t

∣∣ξ(0) = j
)= P(τ1 ≥ t).

Theorem 21.2.1 Under the above assumptions (stochastic continuity and separa-
bility),

qi(t) = e−qi t ,

where qi < ∞; moreover, qi > 0 if pii(t) �≡ 1. There exist the limits

lim
t→0

1 − pii(t)

t
= qi, lim

t→0

pij (t)

t
= qij , i �= j, (21.2.3)

where
∑

j :j �=i qij = qi .

Proof By the Markov property,

qi(t + s) = qi(t)qi(s),

and qi(t) ↓. Therefore there exists a unique solution qi(t) = e−qi t of this equation,
where qi < ∞, since P(τ1 > 0) = 1 and qi > 0, because qi(t) < 1 when pii(t) �≡ 1.

Let further 0 < t0 < t1 · · · < tn < t . Since the events
{
ξ(u) = i for u ≤ tr , ξ(tr+1) = j

}
, r = 0, . . . , n − 1; j �= i,

are disjoint,

pii(t) = qi(t) +
n−1∑

r=0

∑

j :j �=i

qi(tr )pij (tr+1 − tr )pji(t − tr+1). (21.2.4)

Here, by condition (21.2.2), pji(t − tr+1) < εt for all j �= i, and εt → 0 as t → 0,
so that the sum in (21.2.4) does not exceed
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εt

n−1∑

r=0

∑

j :j �=i

qi(tr )pij (tr+1 − tr ) = εtP

(
n⋃

r=1

{
ξ(tr ) �= i

}∣∣ξ(0) = i

)

< εt

(
1 − qi(t)

)
,

pii(t) ≤ qi(t) + εt

(
1 − qi(t)

)
.

Together with the obvious inequality pii(t) ≥ qi(t) this gives

1 − qi(t) ≥ 1 − pii(t) ≥ (
1 − qi(t)

)
(1 + εt )

(i.e. the asymptotic behaviour of 1 − qi(t) and 1 − pii(t) as t → ∞ is identical).
This implies the second assertion of the theorem (i.e., the first relation in (21.2.3)).

Now let tr := rt/n. Consider the transition probabilities

pij (t) ≥
n−1∑

r=0

qi(tr )pij (t/n)qj (t − tr+1)

≥ (1 − εt )pij (t/n)

n−1∑

r=0

e−qi rt/n ≥ (1 − εt )pij (t/n)
(1 − e−qi t )n

qi t
.

This implies that

pij (t) ≥ (1 − εt )

(
1 − e−qi t

qi

)
lim sup

δ→0

pij (δ)

δ
,

and that the upper limit on the right-hand side is bounded. Passing to the limit as
t → 0, we obtain

lim inf
t→0

pij (t)

t
≥ lim sup

δ→0

pij (δ)

δ
.

Since
∑

j :j �=i pij (t) = 1 − pii(t), we have
∑

j :j �=i qij = qi . The theorem is
proved. �

The theorem shows that the quantities

pij = qij

qi

, j �= i, pii = 0

form a stochastic matrix and give the probabilities of transition from i to j during
an infinitesimal time interval Δ given the process ξ(t) left the state i during that
time interval:

P
(
ξ(t + Δ) = j

∣∣ξ(t) = i, ξ(t + Δ) �= i
)= pij (Δ)

1 − pii(Δ)
→ qij

qi

as Δ → 0.
Thus the evolution of ξ(t) can be thought of as follows. If ξ(0) = X0, then ξ(t)

stays at X0 for a random time τ1 ⊂= �qX0
. Then ξ(t) passes to a state X1 with prob-

ability pX0X1 . Further, ξ(t) = X1 over the time interval [τ1, τ1 + τ2), τ2 ⊂= �qX1
,

after which the system changes its state to X2 and so on. It is clear that X0,X1, . . .

is a homogeneous Markov chain with the transition matrix ‖pij‖. Therefore the
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further study of ξ(t) can be reduced in many aspects to that of the Markov chain
{Xn; n ≥ 0}, which was carried out in detail in Chap. 13.

We see that the evolution of ξ(t) is completely specified by the quantities qij and
qi forming the matrix

Q = ‖qij‖ = lim
t→0

P(t) − P(0)

t
, (21.2.5)

where we put qii := −qi , so that
∑

j qij = 0. We can also justify this claim using
an analytical approach. To simplify the technical side of the exposition, we will
assume, where it is needed, that the entries of the matrix Q are bounded and con-
vergence in (21.2.3) is uniform in i.

Denote by eA the matrix-valued function

eA = E +
∞∑

k=1

1

k!A
k.

Theorem 21.2.2 The transition probabilities pij (t) satisfy the systems of differen-
tial equations

P ′(t) = P(t)Q, (21.2.6)

P ′(t) = QP(t). (21.2.7)

Each of the systems (21.2.6) and (21.2.7) has a unique solution

P(t) = eQt .

It is clear that the solution can be obtained immediately by formally integrating
equation (21.2.6).

Proof By virtue of (21.2.1), (21.2.2) and (21.2.5),

P ′(t) = lim
s→0

P(t + s) − P(t)

s
= lim

s→0
P(t)

P (s) − E

s
= P(t)Q. (21.2.8)

In the same way we obtain, from the equality

P(t + s) − P(t) = (
P(s) − E

)
P(t),

the second equation in (21.2.7). The passage to the limit is justified by the assump-
tions we made.

Further, it follows from (21.2.6) that the function P(t) is infinitely differentiable,
and

P (k)(t) = P(t)Qk,

P (t) − P(0) =
∞∑

k=1

P (k)(0)
tk

k! =
∞∑

k=1

Qktk

k! ,

P (t) = P(0)eQt .

The theorem is proved. �
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Because of the derivation method, (21.2.6) is called the backward Kolmogorov
equation, and (21.2.7) is known as the forward Kolmogorov equation (the time in-
crement is taken after or before the basic time interval).

The difference between these equations becomes even more graphical in the case
of inhomogeneous Markov processes, when the transition probabilities

P
(
ξ(t) = j

∣∣ξ(s) = i
)= pij (s, t), s ≤ t,

depend on two time arguments: s and t . In that case, (21.2.1) becomes the equality
P(s, t + u) = P(s, t)P (t, t + u), and the backward and forward equations have the
form

∂P (s, t)

∂s
= P(s, t)Q(s),

∂P (s, t)

∂t
= Q(t)P (s, t),

respectively, where

Q(t) = lim
u→0

P(t, t + u) − E

u
.

The reader can derive these relations independently.
What are the general conditions for existence of a stationary limiting distribu-

tion? We can use here an approach similar to that employed in Chap. 13.
Let ξ (i)(t) be a process with the initial value ξ (i)(0) = i and right-continuous

trajectories. For a given i0, put

ν(i) := min
{
t ≥ 0 : ξ (i)(t) = i0

}=: ν0,

νk := min
{
t ≥ νk−1 + 1 : ξ (i)(t) = i0

}
, k = 1,2, . . . .

Here in the second formula we consider the values t ≥ νk−1 + 1, since for t ≥ νk−1
we would have νk ≡ νk−1. Clearly, P(νk − νk−1 = 1) > 0, and P(νk − νk−1 ∈
(t, t + h)) > 0 for any t ≥ 1 and h > 0 provided that pi0i0(t) �≡ 1.

Note also that the variables νk , k = 0,1, . . . , are not defined for all elementary
outcomes. We put ν0 = ∞ if ξ (i)(t) �= i0 for all t ≥ 0. A similar convention is used
for νk , k ≥ 1. The following ergodic theorem holds.

Theorem 21.2.3 Let there exist a state i0 such that Eν1 < ∞ and P(ν(i) < ∞) = 1
for all i ∈ X0 ⊂X. Then there exist the limits

lim
t→∞pij (t) = pj (21.2.9)

which are independent of i ∈ X0.

Proof As was the case for Markov chains, the epochs ν1, ν2, . . . divide the time axis
into independent cycles of the same nature, each of them being completed when
the system returns for the first time (after one time unit) to the state i0. Consider
the renewal process generated by the sums νk , k = 0,1, . . . , of independent random
variables ν0, νk − νk−1, k = 1,2, . . . . Let

η(t) := min{k : νk > t}, γ (t) := t − νη(t)−1, H(t) :=
∞∑

k=0

P(νk < t).
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The event Adv := {γ (t) ∈ [v, v + dv)} can be represented as the intersection of the
events

Bdv :=
⋃

k≥0

{
νk ∈ (t − v − dv, t − v]} ∈ F1−v

and Cv := {ξ(u) �= i0 for u ∈ [t − v + 1, t]} ∈ F[t−v,∞). We have

pij (t) =
∫ t

0
P
(
ξ (i)(t) = j, γ (t) ∈ [v, v + dv)

)=
∫ t

0
P
(
ξ (i) = j, BdvCv

)

=
∫ t

0
E
[
IBdv

P
(
ξ (i)(t) = j, Cv

∣∣Ft−v

)]

=
∫ t

0
E
[
IBdv

P
(
ξ (i)(t) = j,Cv

∣∣ξ(t − v)
)]

.

On the set Bdv , one has ξ(t − v) = i0, and hence the probability inside the last
integral is equal to

P
(
ξ (i0)(v) = j, ξ(u) �= i0 for u ∈ [1, v])=: g(v)

and is independent of t and i. Since P(Bdv) = dH(t − v), one has

pij (t) =
∫ t

0
g(v)P(Bdv) =

∫ t

0
g(v) dH(t − v).

By the key renewal theorem, as t → ∞, this integral converges to

1

Eν1

∫ ∞

0
g(v) dv.

The existence of the last integral follows from the inequality g(v) ≤ P(ν1 > v). The
theorem is proved. �

Theorem 21.2.4 If the stationary distribution

P = lim
t→∞P(t)

exists with all the rows of the matrix P being identical, then it is a unique solution
of the equation

PQ = 0. (21.2.10)

It is evident that Eq. (21.2.10) is obtained by setting P ′(t) = 0 in (21.2.6). Equa-
tion (21.2.7) gives the trivial equality QP = 0.

Proof Equation (21.2.10) is obtained by passing to the limit in (21.2.8) first as
t → ∞ and then as s → 0. Now assume that P1 is a solution of (21.2.10), i.e.
P1Q = 0. Then P1P(t) = P1 for t < 1, since

P1
(
P(t) − P(0)

)= P1

∞∑

k=1

Qktk

k! = 0.
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Further, P1 = P1P
k(t) = P1P(kt), P(kt) → P as k → ∞, and hence P1 =

P1P = P . The theorem is proved. �

Now consider a Markov chain {Xn} in discrete time with transition probabil-
ities pij = qij /qi , i �= j , pii = 0. Suppose that this chain is ergodic (see Theo-
rem 13.4.1). Then its stationary probabilities {πj } satisfy Eqs. (13.4.2). Now note
that Eq. (21.2.10) can be written in the form

pj qj =
∑

k

pkqkpkj

which has an obvious solution pj = cπj/qj , c = const. Therefore, if
∑ πj

qj

< ∞ (21.2.11)

then there exists a solution to (21.2.10) given by

pj = πj

qj

(∑ πj

qj

)−1

. (21.2.12)

In Sects. 21.4 and 21.5 we will derive the ergodic theorem for processes of a more
general form than the one in the present section. That theorem will imply, in partic-
ular, that ergodicity of {Xn} and convergence (21.2.11) imply (21.2.9). Recall that,
for ergodicity of {Xn}, it suffices, in turn, that Eqs. (13.4.2) have a solution {πj }.
Thus the existence of solution (21.2.12) implies the ergodicity of ξ(t).

21.2.2 Examples

Example 21.2.1 The Poisson process ξ(t) with parameter λ is a Markov process for
which qi = λ, qi,i+1 = λ, and pi,i+1 = 1, i = 1,0, . . . . For this process, the station-
ary distribution p = (p0,p1, . . .) does not exist (each trajectory goes to infinity).

Example 21.2.2 Birth-and-death processes. These are processes for which, for
i ≥ 1,

pij (Δ) =
⎧
⎨

⎩

λiΔ + o(Δ) for j = i + 1,

μiΔ + o(Δ) for j = i − 1,

o(Δ) for |j − i| ≥ 2,

so that

pij =
{

λi

λi+μi
for j = i + 1,

μi

λi+μi
for j = i − 1

are probabilities of birth and death, respectively, of a particle in a certain population
given that the population consisted of i particles and changed its composition. For
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i = 0 one should put μ0 := 0. Establishing conditions for the existence of a station-
ary regime is a rather difficult problem (related mainly to finding conditions under
which the trajectory escapes to infinity). If the stationary regime exists, then accord-
ing to Theorem 21.2.4 the stationary probabilities pj can be uniquely determined
from the recursive relations (see Eq. (21.2.10), in our case qii = −qi = −(λi +μi))

−p0λ0 + p1μ1 = 0,

p0λ0 − p1(λ1 + μ1) + p2μ2 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
pk−1λk−1 − pk(λk + μk) + pk+1μk+1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(21.2.13)

and condition
∑

pj = 1.

Example 21.2.3 The telephone lines problem from queueing theory. Suppose we
are given a system consisting of infinitely many communication channels which
are used for telephone conversations. The probability that, for a busy channel, the
transmitted conversation terminates during a small time interval (t, t + Δ) is equal
to λΔ + o(Δ). The probability that a request for a new conversation (a new call)
arrives during the same time interval is μΔ + o(Δ). Thus the “arrival flow” of calls
is nothing else but the Poisson process with parameter λ, and the number ξ(t) of
busy channels at time t is the value of the birth-and-death process for which λi = λ

and μi = iμ.
In that case, it is not hard to verify with the help of Theorem 21.2.3 that there

always exists a stationary limiting distribution, for which Eqs. (21.2.13) have the
form

λp0 = μp1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(λ + μk)pk = λpk−1 + (k + 1)μpk+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(21.2.14)

From this we get that

p1 = p0
λ

μ
, p2 = p0

2

(
λ

μ

)2

, . . . , pk =
(

λ

μ

)k
p0

k! , (21.2.15)

so that p0 = e−λ/μ, and the limiting distribution will be the Poisson law with pa-
rameter λ/μ.

If the number of channels n is finite, the calls which find all the lines busy will
be rejected, and in (21.2.13) one has to put λn = 0, pn+1 = pn+2 = · · · = 0. In
that case, the last equation in (21.2.14) will have the form μnpn = λpn−1. Since
the formulas (21.2.15) will remain true for k ≤ n, we obtain the so-called Erlang
formulas for the stationary distribution:

pk =
(

λ

μ

)k 1

k!

[
n∑

j=0

1

j !
(

λ

μ

)j
]−1

(the truncated Poisson distribution).
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The next example will be considered in a separate section.

21.3 Branching Processes

The essence of the mathematical model describing a branching process remains
roughly the same as in Sect. 7.7.2. A continuous time branching process can be
defined as follows. Let ξ (i)(t) denote the number of particles at time t with the
initial condition ξ (i)(0) = i. Each particle, independently of all others, splits during
the time interval (t, t +Δ) with probability μΔ+o(Δ) into a random number η �= 1
of particles (if η = 0, we say that the particle dies). Thus,

ξ (i)(t) = ξ
(1)
1 (t) + · · · + ξ

(1)
i (t), (21.3.1)

where ξ
(1)
k (t) are independent and distributed as ξ (1)(t). Moreover,

pij (Δ) = iμΔhj−i+1 + o(Δ), j �= i; hk = P(η = k); h1 = 0;
pii(Δ) = 1 − iμΔ + o(Δ), (21.3.2)

so that here qij = iμhj−i+1, qii = −iμ.
By formula (21.3.2), iμΔ is the principal part of the probability that at least

one particle will split. Clearly, the state 0 is absorbing. It will not be absorbing any
more if one considers processes with immigration when a Poisson process (with
intensity λ) of “outside” particles is added to the process ξ (i)(t). Then

pij (Δ) = iμΔhj−i+1 + o(Δ) for j − i �= 0,1,

pi,i+1(Δ) = Δ(iμh2 + λ) + o(Δ).

We return to the branching process (21.3.1), (21.3.2). By (21.3.1) we have

r(i)(t, z) := Ezξ(i)(t) = [
Ezξ(1)(t)

]i = ri(t, z) =
∞∑

k=0

zkpik(t),

where

r(t, z) := Ezξ(1)(t) =
∞∑

k=0

zkp1k(t). (21.3.3)

Equation (21.2.7) implies

p′
1k(t) =

∞∑

l=0

q1lplk(t).

Therefore, differentiating (21.3.3) with respect to t , we find that

r ′
t (t, z) =

∞∑

k=0

zkp′
1k(t) =

∞∑

k=0

∞∑

l=0

q1lplk(t)z
k

=
∞∑

l=0

q1l

∞∑

k=0

zkplk(t) =
∞∑

l=0

q1lr
l(t, z). (21.3.4)
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Fig. 21.1 The form of the
plot of the function f1. The
smaller root of the equation
f1(q) = q gives the
probability of the eventual
extinction of the branching
process

But q1l = μpl for l �= 1, q11 = −μ, and putting

f (s) :=
∞∑

l=0

q1ls
l = μ

(
Esη − s

)= μ

( ∞∑

l=0

hls
l − s

)

,

we can write (21.3.4) in the form

r ′
t (t, z) = f

(
r(t, z)

)
.

We have obtained a differential equation for r = r(t, z) (equivalent to (21.3.2))
which is more convenient to write in the form

dr

f (r)
= dt, t =

∫ r(t,z)

r(0,z)

dy

f (y)
=
∫ r(t,z)

z

dy

f (y)
.

Consider the behaviour of the function f1(y) = Eyη − y on [0,1]. Clearly,
f1(0) = P(η = 0), f1(1) = 0, and

f ′
1(1) = Eη − 1, f ′′

1 (y) = Eη(η − 1)yη−2 > 0.

Consequently, the function f1(y) is convex and has no zeros in (0,1) if Eη ≤ 1.
When Eη > 1, there exists a point q ∈ (0,1) such that f1(q) = 0, f ′

1(q) < 0 (see
Fig. 21.1), and f1(y) = (y − q)f ′

1(q) + O((y − q)2) in the vicinity of this point.
Thus if Eη > 1, z < q and r ↑ q , then, by virtue of the representation

1

f1(y)
= 1

(y − q)f ′
1(q)

+ O(1),

we obtain

t =
∫ r

z

dy

f (y)
= 1

μf ′
1(q)

ln

(
r − q

z − q

)
+ O(1).

This implies that, as t → ∞,

r(t, z) − q = (z − q)eμtf ′
1(q)+O(1) ∼ (z − q)eμtf ′

1(q),

r(t, z) = q + O
(
e−αt

)
, α = −μf ′

1(q) > 0.
(21.3.5)

In particular, the extinction probability

p10(t) = r(t,0) = q + O
(
e−αt

)

converges exponentially fast to q , p10(∞) = q . Comparing our results with those
from Sect. 7.7, the reader can see that the extinction probability for a discrete time
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branching process had the same value (we could also come to this conclusion di-
rectly). Since pk0(t) = [p10(t)]k , one has pk0(∞) = qk .

It follows from (21.3.5) that the remaining “probability mass” of the distribution
of ξ(t) quickly moves to infinity as t → ∞.

If Eη < 1, the above argument remains valid with q replaced with 1, so that the
extinction probability is p10(∞) = pk0(∞) = 1.

If Eη = 1, then

f1(y) = (y − 1)2

2
f ′′

1 (1) + O
(
(y − 1)3),

t =
∫ r

z

dy

f (y)
∼ − 2

μf ′′
1 (1)

· 1

r − 1
, r(t, z) − 1 ∼ − 2

μtf ′′
1 (1)

.

Thus the extinction probability r(t,0) = p10(t) also tends to 1 in this case.

21.4 Semi-Markov Processes

21.4.1 Semi-Markov Processes on the States of a Chain

Semi-Markov processes can be described as follows. Let an aperiodic discrete time
irreducible Markov chain {Xn} with the state space X = {0,1,2, . . .} be given. To
each state i we put into correspondence the distribution Fi(t) of a positive random
variable ζ (i):

Fi(t) = P
(
ζ (i) < t

)
.

Consider independent of the chain {Xn} and of each other the sequences ζ
(i)
1 ,

ζ
(i)
2 , . . . ; ζ

(i)
j

d= ζ (i), of independent random variables with the distribution Fi . Let,
moreover, the distribution of the initial random vector (X0, ζ0), X0 ∈ X, ζ0 ≥ 0, be
given. The evolution of the semi-Markov process ξ(u) is described as follows:

ξ(u) = X0 for 0 ≤ u < ζ0,

ξ(u) = X1 for ζ0 ≤ u < ζ0 + ζ
(X1)
1 ,

ξ(u) = X2 for ζ0 + ζ
(X1)
1 ≤ u < ζ0 + ζ

(X1)
1 + ζ

(X2)
2 ,

· · · ,
ξ(u) = Xn for Zn−1 ≤ u < Zn, Zn = ζ0 + ζ

(X1)
1 + · · · + ζ (Xn)

n ,

(21.4.1)

and so on. Thus, upon entering state Xn = j , the trajectory of ξ(u) remains in that
state for a random time ζ

(Xn)
n = ζ

(j)
n , then switches to state Xn+1 and so on. It

is evident that such a process is, generally speaking, not Markovian. It will be a
Markov process only if

1 − Fi(t) = e−qi t , qi > 0,

and will then coincide with the process described in Sect. 21.2.
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Fig. 21.2 The trajectories of the semi-Markov process ξ(t) and of the residual sojourn time pro-
cess χ(t)

If the distribution Fi is not exponential, then, given the value ξ(t) = i, the time
between t and the next jump epoch will depend on the epoch of the preceding jump
of ξ(·), because

P
(
ζ (i) > v + u

∣∣ζ (i) > v
)= 1 − Fi(v + u)

1 − Fi(v)

for non-exponential Fi depends on v. It is this property that means that the process
is non-Markovian, for fixing the “present” (i.e. the value of ξ(t)) does not make the
“future” of the process ξ(u) independent of the “past” (i.e. of the trajectory of ξ(u)

for u < t).
The process ξ(t) can be “complemented” to a Markov one by adding to it the

component χ(t) of which the value gives the time u for which the trajectory ξ(t +u),
u ≥ 0, will remain in the current state ξ(t). In other words, χ(t) is the excess of
level t for the random walk Z0,Z1, . . . (see Fig. 21.2):

χ(t) = Zν(t)+1 − t, ν(t) = max{k : Zk ≤ t}.
The process χ(t) is Markovian and has “saw-like” trajectories deterministic in-

side the intervals (Zk,Zk+1). The process X(t) = (ξ(t),χ(t)) is obviously Marko-
vian, since the value of X(t) uniquely determines the law of evolution of the process
X(t + u) for u ≥ 0 whatever the “history” X(v), v < t , is. Similarly, we could con-
sider the Markov process Y(t) = (ξ(t), γ (t)), where γ (t) is the defect of level t for
the walk Z0,Z1, . . . :

γ (t) = t − Zν(t).

21.4.2 The Ergodic Theorem

In the sequel, we will distinguish between the following two cases.
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(A) The arithmetic case when the possible values of ζ (i), i = 0,1, . . ., are mul-
tiples of a certain value h which can be assumed without loss of generality to be
equal to 1. In that case we will also assume that the g.c.d. of the possible values of
the sums of the variables ζ (i) is also equal to h = 1. This is clearly equivalent to
assuming that the g.c.d. of the possible values of recurrence times θ(i) of ξ(t) to the
state i is equal to 1 for any fixed i.

(NA) The non-arithmetic case, when condition (A) does not hold.
Put ai := Eζ (i).

Theorem 21.4.1 Let the Markov chain {Xn} be ergodic (satisfy the conditions of
Theorem 13.4.1) and {πj } be the stationary distribution of that chain. Then, in the
non-arithmetic case (NA), for any initial distribution (ζ0,X0) there exists the limit

lim
t→∞ P

(
ξ(t) = i, χ(t) > v

)= πi∑
πjaj

∫ ∞

v

P
(
ζ (i) > u

)
du. (21.4.2)

In the arithmetic case (A), (21.4.2) holds for integer-valued v (the integral be-
comes a sum in that case). It follows from (21.4.2) that the following limit exists

lim
t→∞ P

(
ξ(t) = i

)= πiai∑
πjaj

.

Proof For definiteness we restrict ourselves to the non-arithmetic case (NA). In
Sect. 13.4 we considered the times τ (i) between consecutive visits of {Xn} to state i.
These times could be called “embedded”, as well as the chain {Xn} itself in regard
to the process ξ(t). Along with the times τ (i), we will need the “real” times θ(i)

between the visits of the process ξ(t) to the state i. Let, for instance, X1 = 1. Then

θ(1) d= ζ
(X1)
1 + ζ

(X2)
2 + · · · + ζ (Xτ )

τ ,

where τ = τ (1). For definiteness and to reduce notation, we fix for the moment the
value i = 1 and put θ(1) =: θ . Let first

ζ0
d= ζ (1), X0 = 1. (21.4.3)

Then the whole trajectory of the process X(t) for t ≥ 0 will be divided into iden-
tically distributed independent cycles by the epochs when the process hits the state
ξ(t) = 1. We denote the lengths of these cycles by θ1, θ2 . . . ; they are independent
and identically distributed. We show that

Eθ = 1

π1

∑
ajπj . (21.4.4)

Denote by θ(n) the “real” time spent on n transitions of the governing
chain {Xn}. Then

θ1 + · · · + θη(n)−1 ≤ θ(n) ≤ θ1 + · · · + θη(n), (21.4.5)

where η(n) := min{k : Tk > n}, Tk = ∑k
j=1 τj , τj are independent and distributed

as τ . We prove that, as n → ∞,

Eθ(n) ∼ nπ1Eθ. (21.4.6)
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By Wald’s identity and (21.4.5),

Eθ(n) ≤ EθEη(n), (21.4.7)

where Eη(n) ∼ n/Eτ = nπ1.
Now we bound from below the expectation Eθ(n). Put m := �nπ1 − εn�, Θn :=∑n
j=1 θj . Then

Eθ(n) ≥ E
(
θ(n); η(n) > m

)

≥ E
(
Θm; η(n) > m

)= mEθ − E
(
Θm; η(n) ≤ m

)
. (21.4.8)

Here the random variable Θm/m ≥ 0 possesses the properties

Θm/m
p→ Eθ as m → ∞, E(Θm/m) = Eθ.

Therefore it satisfies the conditions of part 4 of Lemma 6.1.1 and is uniformly in-
tegrable. This, in turn, by Lemma 6.1.2 and convergence P(η(n) ≤ m) → 0 means
that the last term on the right-hand side of (21.4.8) is o(m). By virtue of (21.4.8),
since ε > 0 is arbitrary, we obtain that

lim inf
n→∞ n−1Eθ(n) ≥ π1Eθ.

This together with (21.4.7) proves (21.4.6).
Now we will calculate the value of Eθ(n) using another approach. The variable

θ(n) admits the representation

θ(n) =
∑

j

(
ζ

(j)

1 + · · · + ζ
(j)

N(j,n)

)
,

where N(j,n) is the number of visits of the trajectory of {Xk} to the state j during
the first n steps. Since {ζ (j)

k }∞k=1 and N(j,n) are independent for each j , we have

Eθ(n) =
∑

j

aj EN(j,n), EN(j,n) =
n∑

k=1

p1j (k).

Because p1j (k) → πj as k → ∞, one has

lim
n→∞n−1EN(j,n) = πj .

Moreover,

πj =
∑

πlplj (k) ≥ π1p1j (k)

and, therefore,

p1j (k) ≤ πj/π1.

Hence

n−1EN(j,n) ≤ πj/π1,
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and in the case when
∑

j ajπj < ∞, the series
∑

j ajn
−1EN(j,n) converges uni-

formly in n. Consequently, the following limit exists

lim
n→∞n−1Eθ(n) =

∑

j

ajπj .

Comparing this with (21.4.6) we obtain (21.4.4). If Eθ = ∞ then clearly
Eθ(n) = ∞ and

∑
j ajπj = ∞, and vice versa, if

∑
j ajπj = ∞ then Eθ = ∞.

Consider now the random walk {Θk}. To the k-th cycle there correspond Tk tran-
sitions. Therefore, by the total probability formula,

P
(
ξ(t) = 1, χ(t) > v

)=
∞∑

k=1

∫ t

0
P
(
Θk ∈ du, ζ

(1)
Tk+1 > t − u + v

)
,

where ζ
(1)
Tk+1

is independent of Θk and distributed as ζ (1) (see Lemma 11.2.1 or

the strong Markov property). Therefore, denoting by Hθ(u) := ∑∞
k=1 P(Θk < u)

the renewal function for the sequence {Θk}, we obtain for the non-arithmetic case
(NA), by virtue of the renewal theorem (see Theorem 10.4.1 and (10.4.2)), that, as
t → ∞,

P
(
ξ(t) = 1, χ(t) > v

)

=
∫ t

0
dHθ(u)P

(
ζ (1) > t − u + v

)

→ 1

Eθ

∫ ∞

0
P
(
ζ (1) > u + v

)
dv = 1

Eθ

∫ ∞

v

P
(
ζ (1) > u

)
du. (21.4.9)

We have proved assertion (21.4.2) for i = 1 and initial conditions (21.4.3). The
transition to arbitrary initial conditions is quite obvious and is done in exactly the
same way as in the proof of the ergodic theorems of Chap. 13.

If
∑

aiπi = ∞ then, as we have already observed, Eθ = ∞ and, by the renewal
theorem and (21.4.9), one has P(ξ(t) = 1, χ(t) > v) → 0 as t → ∞. It remains to
note that instead of i = 1 we can fix any other value of i. The theorem is proved. �

In the same way we could also prove that

lim
t→∞ P

(
ξ(t) = i, γ (t) > v

)= πi∑
ajπj

∫ ∞

v

P
(
ζ (i) > y

)
dy,

lim
t→∞ P

(
ξ(t) = i, χ(t) > u, γ (t) > v

)= πi∑
ajπj

∫ ∞

u+v

P
(
ζ (i) > y

)
dy

(see Theorem 10.4.3).

21.4.3 Semi-Markov Processes on Chain Transitions

Along with the semi-Markov processes ξ(t) described at the beginning of the
present section, one sometimes considers semi-Markov processes “given on the
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transitions” of the chain {Xn}. In that case, the distributions Fij of random variables
ζ (ij) > 0 are given and, similarly to (21.4.1), for the initial condition (X0,X1, ζ0)

one puts

ξ(u) := (X0,X1) for 0 ≤ u < ζ0

ξ(u) := (X1,X2) for ζ0 ≤ u < ζ0 + ζ
(X0,X1)
1

ξ(u) := (X2,X3) for ζ0 + ζ
(X0,X1)
1 ≤ u < ζ0 + ζ

(X0,X1)
1 + ζ

(X1,X2)
2 ,

(21.4.10)

and so on. Although at first glance this is a very general model, it can be com-
pletely reduced to the semi-Markov processes (21.4.1). To that end, one has to notice
that the “two-dimensional” sequence Yn = (Xn,Xn+1), n = 0,1, . . . , also forms a
Markov chain. Its transition probabilities have the form

p(ij)(kl) =
{

pjl for k = j,

0 for k �= j,

p(ij)(kl)(n) = pjk(n)pkl for n > 1,

so that if the chain {Xn} is ergodic, then {Yn} is also ergodic and

p(ij)(kl)(n) → πkpkl.

This enables one to restate Theorem 21.4.1 easily for the semi-Markov pro-
cesses (21.4.10) given on the transitions of the Markov chain {Xn}, since the process
(21.4.10) will be an ordinary semi-Markov process given on the chain {Yn}.
Corollary 21.4.1 If the chain {Xn} is ergodic then, in the non-arithmetic case,

lim
t→∞ P

(
ξ(t) = (i, j), χ(t) > v

)

= πipij∑
k,l aklπkpkl

∫ ∞

v

P
(
ζ (ij) > u

)
du, akl = Eζ (kl).

In the arithmetic case v must be a multiple of the lattice span.

We will make one more remark which could be helpful when studying semi-
Markov processes and which concerns the so-called semi-Markov renewal functions
Hij (t). Denote by Tij (n) the epoch (in the “real time”) of the n-th jump of the
process ξ(t) from state i to j . Put

Hij (t) :=
∞∑

n=1

P
(
Tij (n) < t

)
.

If νij (t) is the number of jumps from state i to j during the time interval [0, t),
then clearly Hij (t) = Eνij (t).

Set Δf (t) := f (t + Δ) − f (t), Δ > 0.

Corollary 21.4.2 In the non-arithmetic case,

lim
t→∞ΔHij (t) = πipijΔ∑

l alπl

. (21.4.11)

In the arithmetic case v must be a multiple of the lattice span.



21.4 Semi-Markov Processes 599

Proof Denote by ν
(k)
ij (u) the number of transitions of the process ξ(t) from i to j

during the time interval (0, u) given the initial condition (k,0). Then, by the total
probability formula,

EΔνij (t) =
∫ Δ

0

∞∑

k=0

P
(
ξ(t) = k, χ(t) ∈ du

)
Eν

(k)
ij (Δ − u).

Since ν
(k)
ij (u) ≤ ν

(i)
ij (u), by Theorem 21.4.1 one has

hij (Δ) := lim
t→∞ EΔνij (t) = 1

∑
l alπl

∞∑

k=0

πk

∫ Δ

0
P
(
ζ (k) > u

)
Eν

(k)
ij (Δ − u)du.

(21.4.12)

Further,

P
(
ζ (i) < Δ − u

)≤ Fi(Δ) → 0

as Δ → 0, and

P
(
ν

(k)
ij (Δ − u) = s

)≤ (
pijFi(Δ)

)s
, k �= i,

P
(
ν

(i)
ij (Δ − u) = s + 1

)≤ (
pijFi(Δ)

)s
, s ≥ 1,

P
(
ν

(i)
ij (Δ − u) = 1

)= pij + o
(
Fi(Δ)

)
.

It follows from the aforesaid that

Eν
(k)
ij (Δ − u) = o

(
Fi(Δ)

)
, Eν

(i)
ij (Δ − u) = pij + o

(
Fi(Δ)

)
.

Therefore,

hij (Δ) = πipijΔ∑
l alπl

+ o(Δ). (21.4.13)

Further, from the equality

Hij (t + 2Δ) − Hij (t) = ΔHij (t) + ΔHij (t + Δ)

we obtain that hij (2Δ) = 2hij (Δ), which means that hij (Δ) is linear. Together with
(21.4.13) this proves (21.4.11). The corollary is proved. �

The class of processes for which one can prove ergodicity using the same meth-
ods as the one used for semi-Markov processes and also in Chap. 13, can be some-
what extended. For this broader class of processes we will prove in the next section
the ergodic theorem, and also the laws of large numbers and the central limit theo-
rem for integrals of such processes.
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21.5 Regenerative Processes

21.5.1 Regenerative Processes. The Ergodic Theorem

Let X(t) and X0(t); t ≥ 0, be processes given in the space D(0,∞) of functions
without discontinuities of the second type (the state space of these processes could
be any metric space, not necessarily the real line). The process X(t) is said to be
regenerative if it possesses the following properties:

(1) There exists a state x0 which is visited by the process X with probability 1.
After each such visit, the evolution of the process starts anew as if it were the original
process X(t) starting at the state X(0) = x0. We will denote this new process by
X0(t) where X0(0) = x0. To state this property more precisely, we introduce the
time τ0 of the first visit to x0 by X:

τ0 := inf
{
t ≥ 0 : X(t) = x0

}
.

However, it is not clear from this definition whether τ0 is a random variable. For
definiteness, assume that the process X is such that for τ0 one has

{τ0 > t} =
⋃

n

⋂

tk∈S

{∣∣X(tk) − x0
∣∣> 1/n

}
,

where S is a countable set everywhere dense in [0, t]. In that case the set {τ0 > t}
is clearly an event and τ0 is a random variable. The above stated property means
that τ0 is a proper random variable: P(τ0 < ∞) = 1, and that the distribution of
X(τ0 +u), u ≥ 0, coincides with that of X0(u), u ≥ 0, whatever the “history” of the
process X(t), t ≤ τ0.

(2) The recurrence time τ of the state x0 has finite expectation Eτ < ∞,
τ := inf{t : X0(t) = x0}.

The aforesaid means that the evolution of the process is split into independent
identically distributed cycles by its visits to the state x0. The visit times to x0 are
called regeneration times. The behaviour of the process inside the cycles may be
arbitrary, and no further conditions, including Markovity, are imposed.

We introduce the so-called “taboo probability”

P(t,B) := P
(
X0(t) ∈ B, τ > t

)
.

We will assume that, as a function of t , P(t,B) is measurable and Riemann inte-
grable.

Theorem 21.5.1 Let X(t) be a regenerative process and the random variable τ be
non-lattice. Then, for any Borel set B , as t → ∞,

P
(
X(t) ∈ B

)→ π(B) = 1

Eτ

∫ ∞

0
P(u,B)du.

If τ is a lattice variable (which is the case for processes X(t) in discrete time), the
assertion holds true with the following obvious changes: t → ∞ along the lattice
and the integral is replaced with a sum.
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Proof Let T0 := 0, Tk := τ1 + · · · + τk be the epoch of the k-th regeneration of the
process X0(t), and

H(u) :=
∞∑

k=0

P(τk < u)

(τk
d= τ are independent). Then, using the total probability formula and the key

renewal theorem, we obtain, as t → ∞,

P
(
X0(t) ∈ B

)=
∞∑

k=0

∫ t

0
P(Tk ∈ du)P (t − u,B)

=
∫ t

0
dH(u)P (t − u,B) → 1

Eτ

∫ ∞

0
P(u,B)du = π(B).

For the process X(t) one gets

P
(
X(t) ∈ B

)=
∫ t

0
P(t0 ∈ du)P

(
X0(t − u) ∈ B

)→ π(B).

The theorem is proved. �

21.5.2 The Laws of Large Numbers and Central Limit Theorem
for Integrals of Regenerative Processes

Consider a measurable mapping f : X → R of the state space X of a process X(t)

to the real line R. As in Sect. 21.4.2, for the sake of simplicity, we can assume that
X = R and the trajectories of X(t) lie in the space D(0,∞) of functions without
discontinuities of the second kind. In this case the paths f (X(u)), u ≥ 0, will be
measurable functions, for which the integral

S(t) =
∫ t

0
f
(
X(u)

)
du

is well defined. For such integrals we have the following law of large numbers. Set

ζ :=
∫ τ

0
f
(
X0(u)

)
du, a := Eτ.

Theorem 21.5.2 Let the conditions of Theorem 21.5.1 be satisfied and there exist
aζ := Eζ . Then, as t → ∞,

S(t)

t

p→ aζ

a
.

For conditions of existence of Eζ , see Theorem 21.5.4 below.
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Proof The proof of the theorem largely repeats that of the similar assertion (The-
orem 13.8.1) for sums of random variables defined on a Markov chain. Divide the
domain u ≥ 0 into half-intervals

(0, T0], (Tk−1, Tk], k ≥ 1, T0 = τ0,

where Tk are the epochs of hitting the state x0 by the process X(t), τk = Tk − Tk−1

for k ≥ 1 are independent and distributed as τ . Then the random variables

ζk =
∫ Tk

Tk−1

f
(
X(u)

)
du, k ≥ 1

are independent, distributed as ζ , and have finite expectation aζ . The integral S(t)

can be represented as

S(t) = z0 +
ν(t)∑

k=1

ζk + zt ,

where

ν(t) := max{k : Tk ≤ t}, z0 :=
∫ T0

0
f
(
X(u)

)
du, zt :=

∫ t

Tν(t)

f
(
X(u)

)
du.

Since τ0 is a proper random variable, z0 is a proper random variable as well, and
hence z0/t

a.s.−→ 0 as t → ∞. Further,

zt
d=
∫ γ (t)

0
f
(
X0(u)

)
du,

where γ (t) = t − Tν(t) has a proper limiting distribution as t → ∞ (see Chap. 10),

so zt/t
p→ 0 as t → ∞. The sum Sν(t) =∑ν(t)

k=1 ζk is nothing else but the generalised
renewal process studied in Chaps. 10 and 11. By Theorem 11.5.2, as t → ∞,

Sν(t)

t

p→ aζ

a
.

The theorem is proved. �

In order to prove the strong law of large numbers we need a somewhat more
restrictive condition than that in Theorem 21.5.2. Put

ζ ∗ :=
∫ τ

0

∣
∣f
(
X0(u)

)∣∣du.

Theorem 21.5.3 Let the conditions of Theorem 21.5.1 be satisfied and Eζ ∗ < ∞.
Then

S(t)

t

a.s.−→ aζ

a
.
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The proof essentially repeats (as was the case for Theorem 21.5.2) that of the law
of large numbers for sums of random variables defined on a Markov chain (see
Theorem 13.8.3). One only needs to use, instead of (13.8.18), the relation

sup
Tk≤u≤Tk+1

∣∣∣∣

∫ u

Tk

f
(
X(v)

)
dv

∣∣∣∣≤ ζ ∗
k =

∫ Tk+1

Tk

∣∣f
(
X(v)

)∣∣dv

and the fact that E ζ ∗
k < ∞. The theorem is proved. �

Here an analogue of Theorem 13.8.2, in which the conditions of existence of
E ζ ∗ and Eζ are elucidated, is the following.

Theorem 21.5.4 (Generalisation of Wald’s identity) Let the conditions of Theo-
rem 21.5.1 be met and there exist

E
∣
∣f
(
X(∞)

)∣∣=
∫ ∣
∣f (x)

∣
∣π(dx),

where X(∞) is a random variable with the stationary distribution π . Then there
exist

Eζ ∗ = EτE
∣∣f
(
X(∞)

)∣∣, Eζ = EτEf
(
X(∞)

)
.

The proof of Theorem 21.5.4 repeats, with obvious changes, that of The-
orem 13.8.2. �

Theorem 21.5.5 (The central limit theorem) Let the conditions of Theorem 21.5.1
be met and Eτ 2 < ∞, Eζ 2 < ∞. Then

S(t) − rt

d
√

t/a
⊂⇒ �0,1, t → ∞,

where r = aζ /a, d2 = D(ζ − rτ ).

The proof, as in the case of Theorems 21.5.2–21.5.4, repeats, up to evident
changes, that of Theorem 13.8.4. �

Here an analogue of Theorem 13.8.5 (on the conditions of existence of variance
and on an identity for a−1d2) looks more complicated than under the conditions of
Sect. 13.8 and is omitted.

21.6 Diffusion Processes

Now we will consider an important class of Markov processes with continuous tra-
jectories.

Definition 21.6.1 A homogeneous Markov process ξ(t) with state space 〈R,B〉
and the transition function P(t, x,B) is said to be a diffusion process if, for some
finite functions a(x) and b2(x) > 0,
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(1) limΔ→0
1
Δ

∫
(y − x)P (Δ,x, dy) = a(x),

(2) limΔ→0
1
Δ

∫
(y − x)2P(Δ,x, dy) = b2(x),

(3) for some δ > 0 and c < ∞,
∫

|y − x|2+δP (Δ,x, dy) < cΔ1+δ/2.

Put Δξ(t) := ξ(t + Δ) − ξ(t). Then the above conditions can be written in the
form:

E
[
Δξ(t)

∣∣ξ(t) = x
]∼ a(x)Δ,

E
[(

Δξ(t)
)2∣∣ξ(t) = x

]∼ b2(x)Δ,

E
[∣∣Δξ(t)

∣∣2+δ∣∣ξ(t) = x
]
< cΔ1+δ/2 as Δ → 0.

The coefficients a(x) and b(x) are called the shift and diffusion coefficients, re-
spectively. Condition (3) is an analogue of the Lyapunov condition. It could be re-
placed with a Lindeberg type condition:

(3a) E[(Δξ(t))2; |Δξ(t)| > ε] = o(Δ) for any ε > 0 as Δ → 0.

It follows immediately from condition (3) and the Kolmogorov theorem that a
diffusion process ξ(t) can be thought of as a process with continuous trajectories.

The standard Wiener process w(t) is a diffusion process, since in that case

P(t;x,B) = 1√
2πt

∫

B

e−(x−y)2/(2t) dy,

EΔw(t) = 0, E
[
Δw(t)

]2 = Δ, E
[
Δw(t)

]4 = 3Δ2.

Therefore the Wiener process has zero shift and a constant diffusion coefficient.
Clearly, the process w(t) + at will have shift a and the same diffusion coefficient.

We saw in Sect. 21.2 that the “local” characteristic Q of a Markov process ξ(t)

with a discrete state space X specifies uniquely the evolution law of the process.
A similar situation takes place for diffusion processes: the distribution of the process
is determined uniquely by the coefficients a(x) and b(x). The way to establishing
this fact again lies via the Chapman–Kolmogorov equation.

Theorem 21.6.1 If the transition probability P(t;x,B) of a diffusion process is
twice continuously differentiable with respect to x, then P(t;x,B) is differentiable
with respect to t and satisfies the equation

∂P

∂t
= a

∂P

∂x
+ b2

2

∂2P

∂x2
(21.6.1)

with the initial condition

P(0;x,B) = IB(x). (21.6.2)

Remark 21.6.1 The conditions of the theorem on smoothness of the transition func-
tion P can actually be proved under the assumption that a and b are continuous,
b ≥ b0 > 0, |a| ≤ c(|x| + 1) and b2 ≤ c(|x| + 1).
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Proof of Theorem 21.6.1 For brevity’s sake denote by P ′
t , P ′

x , and P ′′
x the partial

derivatives ∂P
∂t

, ∂P
∂x

and ∂2P

∂x2 , respectively, and make use of the relation

P(t;y,B) − P(t;x,B)

= (y − x)P ′
x + (y − x)2

2
P ′′

x + (y − x)2

2

[
P ′′

x (t;yx,B) − P ′′
x (t;x,B)

]
,

yx ∈ (x, y). (21.6.3)

Then by the Chapman–Kolmogorov equation

P(t + Δ;x,B) − P(t;x,B) =
∫

P(Δ;x, dy)
[
P(t;y,B) − P(t;x,B)

]

= a(x)P ′
xΔ + b2(x)

2
P ′′

x Δ + o(Δ) + R, (21.6.4)

where

R =
∫

(y − x)2

2

[
P ′′

x (t;yx,B) − P ′′
x (t;x,B)

]
P(Δ;x, dy) =

∫

|y−x|≤ε

+
∫

|y−x|>ε

.

The first integral, by virtue of the continuity of P ′′
x , does not exceed

δ(ε)

[
b2(x)

2
Δ + o(Δ)

]
,

where δ(ε) → 0 as ε → 0; the second integral is o(Δ) by condition (3a). Since ε is
arbitrary, one has R = o(Δ) and it follows from the above that

P ′
t = lim

Δ→0

P(t + Δ;x,B) − P(t;x,B)

Δ
= a(x)P ′

x + b2(x)

2
P ′′

x .

This proves (21.6.1). The theorem is proved. �

It is known from the theory of differential equations that, under wide assumptions
about the coefficients a and b and for B = (−∞, z), the Cauchy problem (21.6.1)–
(21.6.2) has a unique solution P which is infinitely many times differentiable with
respect to t , x and z. From this it follows that P(t;x,B) has a density p(t;x, z)

which is the fundamental solution of (21.6.1).
It is also not difficult to derive from Theorem 21.6.1 that, along with P(t;x,B),

the function

u(t, x) =
∫

g(z)P (t;x, dz) = E
[
g
(
ξ (x)(t)

)]

will also satisfy Eq. (21.6.1) for any smooth function g with a compact support,
ξ (x)(t) being the diffusion process with the initial value ξ (x)(0) = x.

In the proof of Theorem 21.6.1 we considered (see (21.6.4)) the time increment
Δ preceding the main time interval. In this connection Eqs. (21.6.1) are called back-
ward Kolmogorov equations. Forward equations can be derived in a similar way.
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Theorem 21.6.2 (Forward Kolmogorov equations) Let the transition density
p(t;x, y) be such that the derivatives

∂

∂y

[
a(y)p(t;x, y)

]
and

∂2

∂y2

[
b2(y)p(t;x, y)

]

exist and are continuous. Then p(t, x, y) satisfies the equation

Dp := ∂p

∂t
+ ∂

∂y

[
a(y)p(t;x, y)

]− 1

2

∂2

∂y2

[
b2(y)p(t;x, y)

]= 0. (21.6.5)

Proof Let g(y) be a smooth function with a bounded support,

u(t, x) := Eg
(
ξ (x)(t)

)=
∫

g(y)p(x; t, y) dy.

Then

u(t + Δ,x) − u(t, x)

=
∫

p(t;x, z)

[
p(Δ; z, y)g(y) dy −

∫
p(Δ,z, y)g(z) dy

]
dz. (21.6.6)

Expanding the difference g(y) − g(z) into a series, we obtain in the same way as in
the proof of Theorem 21.4.1 that, by virtue of properties (1)–(3), the expression in
the brackets is

[
a(z)g′(z) + b2(z)

2
g′′(z)

]
Δ + o(Δ).

This implies that there exists the derivative

∂u

∂t
=
∫

p(t;x, z)

[
a(z)g′(z) dz + 1

2

b2(z)

2
g′′(z)

]
dz.

Integrating by parts we get

∂u

∂t
=
∫ {

− ∂

∂z

[
a(z)p(t;x, z)

]+ 1

2

∂

∂z2

[
b2(z)p(t;x, z)

]}
g(z) dz = 0

or, which is the same,
∫

Dp(t;x, z)g(z) dz = 0.

Since g is arbitrary, (21.6.5) follows. The theorem is proved. �

As in the case of discrete X, the difference between the forward and backward
Kolmogorov equations becomes more graphical for non-homogeneous diffusion
processes, when the transition probabilities P(s, x; t,B) depend on two time vari-
ables, while a and b in conditions (1)–(3) are functions of s and x. Then the back-
ward Kolmogorov equation (for densities) will relate the derivatives of the transition
densities p(s, x; t, y) with respect to the first two variables, while the forward equa-
tion will hold for the derivatives with respect to the last two variables.



21.6 Diffusion Processes 607

We return to homogeneous diffusion processes. One can study conditions ensur-
ing the existence of the limiting stationary distribution of ξ (x)(t) as t → ∞ which
is independent of x using the same approach as in Sect. 21.2. Theorem 21.2.3 will
remain valid (one simply has to replace i0 in it with x0, in agreement with the no-
tation of the present section). The proof of Theorem 21.2.3 also remains valid, but
will need a somewhat more precise argument (in the new situation, on the event Bdv

one has ξ(t − v) ∈ dx0 instead of ξ(t − v) = x0).
If the stationary distribution density

lim
t→∞p(t;x, y) = p(y) (21.6.7)

exists, how could one find it? Since the dependence of p(t;x, y) of t and x van-
ishes as t → ∞, the backward Kolmogorov equations turn into the identity 0 = 0 as
t → ∞. Turning to the forward equations and passing in (21.6.6) to the limit first as
t → ∞ and then as Δ → 0, we come, using the same argument as in the proof of
Theorem 21.2.3, to the following conclusion.

Corollary 21.6.1 If (21.6.7) and the conditions of Theorem 21.6.2 hold, then the
stationary density p(y) satisfies the equation

−[
a(y)p(y)

]′ + 1

2

[
b2(y)p(y)

]′′ = 0

(which is obtained from (21.6.5) if we put ∂p
∂t

= 0).

Example 21.6.1 The Ornstein–Uhlenbeck process

ξ (x)(t) = xeat + σeatw

(
1 − e−2at

2a

)
,

where w(u) is the standard Wiener process, is a homogeneous diffusion process
with the transition density

p(t;x, y) = 1√
2πσ(t)

exp

{
− (y − xeat )2

2σ 2(t)

}
, σ 2(t) = σ 2

2a

(
e2at − 1

)
.

(21.6.8)

We leave it to the reader to verify that this process has coefficients a(x) = ax,
b(x) = σ = const, and that function (21.6.8) satisfies the forward and backward
equations. For a < 0, there exists a stationary process (the definition is given in the
next chapter)

ξ(t) = σeatw

(
e−2at

2a

)
,

of which the density (which does not depend on t) is equal to

p(y) = lim
t→∞p(x; t, y) = 1√

2πσ(∞)
exp

{
− y2

2σ 2(∞)

}
, σ (∞) = −σ 2

2a
.
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In conclusion of this section we will consider the problem, important for various
applications, of finding the probability that the trajectory of a diffusion process will
not leave a given strip. For simplicity’s sake we confine ourselves to considering
this problem for the Wiener process. Let c > 0 and d < 0.

Put

U(t;x,B) := P
(
w(x)(u) ∈ (d, c) for all u ∈ [0, t]; w(x)(t) ∈ B

)

= P
(

sup
u≤t

w(x)(u) < c, inf
u≤t

w(x)(u) > d, w(x)(t) ∈ B
)
.

Leaving out the verification of the fact that the function U is twice continuously
differentiable, we will only prove the following proposition.

Theorem 21.6.3 The function U satisfies Eq. (21.6.1) with the initial condition

U(0;x,B) = IB(x) (21.6.9)

and boundary conditions

U(t; c,B) = U(t;d,B) = 0. (21.6.10)

Proof First of all note that the function U(t;x,B) for x ∈ (d, c) satisfies conditions
(1)–(3) imposed on the transition function P(t;x,B). Indeed, consider, for instance,
property (1).

We have to verify that
∫ c

d

(y − x)U(Δ;x, dy) = Δa(x) + o(Δ) (21.6.11)

(with a(x) = 0 in our case). But U(t, x,B) = P(t;x,B) − V (t;x,B), where

V (t;x,B) = P
({

sup
u≤t

w(x)(u) ≥ c or inf
u≤t

w(x)(u) ≤ d
}

∩ {
w(x)(t) ∈ B

})
,

and
∫ c

d

(y − x)V (Δ;x, dy)

≤ max(c,−d)
[
P
(

sup
u≤Δ

w(x)(u) ≥ c
)

+ P
(

inf
u≤Δ

w(x)(u) ≤ d
)]

.

The first probability in the brackets is given, as we know (see (20.2.1) and Theo-
rem 19.2.2), by the value

2P
(
w(x)(Δ) > c

)= 2P
(

w(1) >
c − x√

Δ

)
∼ 2√

2πz
e−z2/2, z = c − x√

Δ
.

For any x < c and k > 0, it is o(Δk). The same holds for the second probability.
Therefore (21.6.11) is proved. In the same way one can verify properties (2) and (3).

Further, because by the total probability formula, for x ∈ (d, c),

U(t + Δ;x,B) =
∫ c

d

U(Δ;x, dy)U(t;y,B),
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using an expansion of the form (21.6.3) for the function U , we obtain in the same
way as in (21.6.4) that

U(t + Δ;x,B) − U(t;x,B) =
∫

U(Δ;x, dy)
[
U(t;y,B) − U(t;x,B)

]

= a(x)
∂U

∂x
Δ + b2(x)

2

∂2U

∂x2
Δ + o(Δ).

This implies that ∂U
∂t

exists and that Eq. (21.6.1) holds for the function U .
That the boundary and initial conditions are met is obvious. The theorem is

proved. �

The reader can verify that the function

u(t;x, y) := ∂

∂y
U
(
t;x, (−∞, y)

)
, y ∈ (d, c),

playing the role of the fundamental solution to the boundary problem (21.6.9)–
(21.6.10) (the function u satisfies (21.6.1) with the boundary conditions (21.6.10)
and the initial conditions degenerating into the δ-function), is equal to
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2πt
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−
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−
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}]

.

This expression can also be obtained directly from probabilistic considerations (see,
e.g., [32]).
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