
Chapter 2
An Arbitrary Space of Elementary Events

Abstract The chapter begins with the axiomatic construction of the probability
space in the general case where the number of outcomes of an experiment is not
necessarily countable. The concepts of algebra and sigma-algebra of sets are intro-
duced and discussed in detail. Then the axioms of probability and, more generally,
measure are presented and illustrated by several fundamental examples of measure
spaces. The idea of extension of a measure is discussed, basing on the Carathéodory
theorem (of which the proof is given in Appendix 1). Then the general elementary
properties of probability are discussed in detail in Sect. 2.2. Conditional probability
given an event is introduced along with the concept of independence in Sect. 2.3.
The chapter concludes with Sect. 2.4 presenting the total probability formula and
the Bayes formula, the former illustrated by an example leading to the introduction
of the Poisson process.

2.1 The Axioms of Probability Theory. A Probability Space

So far we have been considering problems in which the set of outcomes had at most
countably many elements. In such a case we defined the probability P(A) using the
probabilities P(ω) of elementary outcomes ω. It proved to be a function defined on
all the subsets A of the space Ω of elementary events having the following proper-
ties:

(1) P(A) ≥ 0.
(2) P(Ω) = 1.
(3) For disjoint events A1,A2, . . .

P
(⋃

Aj

)
=

∑
P(Aj ).

However, as we have already noted, one can easily imagine a problem in which
the set of all outcomes is uncountable. For example, choosing a point at random
from the segment [t1, t2] (say, in an experiment involving measurement of tempera-
ture) has a continuum of outcomes, for any point of the segment could be the result
of the experiment. While in experiments with finite or countable sets of outcomes
any collection of outcomes was an event, this is not the case in this example. We will
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14 2 An Arbitrary Space of Elementary Events

encounter serious difficulties if we treat any subset of the segment as an event. Here
one needs to select a special class of subsets which will be treated as events.

Let the space of elementary events Ω be an arbitrary set, and A be a system of
subsets of Ω .

Definition 2.1.1 A is called an algebra if the following conditions are met:

A1. Ω ∈ A.
A2. If A ∈ A and B ∈A, then

A ∪ B ∈A, A ∩ B ∈A.

A3. If A ∈ A then A ∈A.

It is not hard to see that in condition A2 it suffices to require that only one of the
given relations holds. The second relation will be satisfied automatically since

A ∩ B = A ∪ B.

An algebra A is sometimes called a ring since there are two operations defined
on A (addition and multiplication) which do not lead outside of A. An algebra A is
a ring with identity, for Ω ∈A and AΩ = ΩA = A for any A ∈ A.

Definition 2.1.2 A class of sets F is called a sigma-algebra (σ -algebra, or σ -ring,
or Borel field of events) if property A2 is satisfied for any sequences of sets:

A2′. If {An} is a sequence of sets from F, then

∞⋃
n=1

An ∈ F,

∞⋂
n=1

An ∈ F.

Here, as was the case for A2, it suffices to require that only one of the two rela-
tions be satisfied. The second relation will follow from the equality

⋂
n

An =
⋃
n

An.

Thus an algebra is a class of sets which is closed under a finite number of opera-
tions of taking complements, unions and intersections; a σ -algebra is a class of sets
which is closed under a countable number of such operations.

Given a set Ω and an algebra or σ -algebra F of its subsets, one says that we are
given a measurable space 〈Ω,F〉.

For the segment [0,1], all the sets consisting of a finite number of segments or
intervals form an algebra, but not a σ -algebra.
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Consider all the σ -algebras on [0,1] containing all intervals from that segment
(there is at least one such σ -algebra, for the collection of all the subsets of a given
set clearly forms a σ -algebra). It is easy to see that the intersection of all such σ -
algebras (i.e. the collection of all the sets which belong simultaneously to all the σ -
algebras) is again a σ -algebra. It is the smallest σ -algebra containing all intervals
and is called the Borel σ -algebra. Roughly speaking, the Borel σ -algebra could be
thought of as the collection of sets obtained from intervals by taking countably many
unions, intersections and complements. This is a rather rich class of sets which is
certainly sufficient for any practical purposes. The elements of the Borel σ -algebra
are called Borel sets. Everything we have said in this paragraph equally applies to
systems of subsets of the whole real line.

Along with the intervals (a, b), the one-point sets {a} and sets of the form (a, b],
[a, b] and [a, b) (in which a and b can take infinite values) are also Borel sets. This
assertion follows, for example, from the representations of the form

{a} =
∞⋂

n=1

(a − 1/n, a + 1/n), (a, b] =
∞⋂

n=1

(a, b + 1/n).

Thus all countable sets and countable unions of intervals and segments are also
Borel sets.

For a given class B of subsets of Ω , one can again consider the intersection of
all σ -algebras containing B and obtain in this way the smallest σ -algebra contain-
ing B.

Definition 2.1.3 The smallest σ -algebra containing B is called the σ -algebra gen-
erated by B and is denoted by σ(B).

In this terminology, the Borel σ -algebra in the n-dimensional Euclidean space
R

n is the σ -algebra generated by rectangles or balls. If Ω is countable, then the
σ -algebra generated by the elements ω ∈ Ω clearly coincides with the σ -algebra of
all subsets of Ω .

As an exercise, we suggest the reader to describe the algebra and the σ -algebra
of sets in Ω = [0,1] generated by: (a) the intervals (0,1/3) and (1/3,1); (b) the
semi-open intervals (a,1], 0 < a < 1; and (c) individual points.

To formalise a probabilistic problem, one has to find an appropriate measurable
space 〈Ω,F〉 for the corresponding experiment. The symbol Ω denotes the set of
elementary outcomes of the experiment, while the algebra or σ -algebra F specifies a
class of events. All the remaining subsets of Ω which are not elements of F are not
events. Rather often it is convenient to define the class of events F as the σ -algebra
generated by a certain algebra A.

Selecting a specific algebra or σ -algebra F depends, on the one hand, on the
nature of the problem in question and, on the other hand, on that of the set Ω . As
we will see, one cannot always define probability in such a way that it would make
sense for any subset of Ω .
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We have already noted in Chap. 1 that, in probability theory, one uses, along
with the usual set theory terminology, a somewhat different terminology related to
the fact that the subsets of Ω (belonging to F) are interpreted as events. The set Ω

itself is often called the certain event. By axioms A1 and A2, the empty set ∅ also
belongs to F; it is called the impossible event. The event A is called the complement
event or simply the complement of A. If A ∩ B = ∅, then the events A and B are
called mutually exclusive or disjoint.

Now it remains to introduce the notion of probability. Consider a space Ω and a
system A of its subsets which forms an algebra of events.

Definition 2.1.4 A probability on 〈Ω,A〉 is a real-valued function defined on the
sets from A and having the following properties:

P1. P(A) ≥ 0 for any A ∈ A.
P2. P(Ω) = 1.
P3. If a sequence of events {An} is such that AiAj =∅ for i �= j and

⋃∞
1 An ∈ A,

then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An). (2.1.1)

These properties can be considered as an axiomatic definition of probability.
An equivalent to axiom P3 is the requirement of additivity (2.1.1) for finite col-

lections of events Aj plus the following continuity axiom.

P3′. Let {Bn} be a sequence of events such that Bn+1 ⊂ Bn and
⋂∞

n=1 Bn = B ∈ A.
Then P(Bn) → P(B) as n → ∞.

Proof of the equivalence Assume P3 is satisfied and let Bn+1 ⊂ Bn,
⋂

n Bn =
B ∈ A. Then the sequence of the events B , Ck = BkBk+1, k = 1,2, . . . , consists
of disjoint events and Bn = B + ⋃∞

k=n Ck for any n. Now making use of property
P3 we see that the series P(B1) = P(B) + ∑∞

k=n P(Ck) is convergent, which means
that

P(Bn) = P(B) +
∞∑

k=n

P(Ck) → P(B)

as n → ∞. This is just the property P3′.
Conversely, if An is a sequence of disjoint events, then

P

( ∞⋃
k=1

Ak

)
= P

(
n⋃

k=1

Ak

)
+ P

( ∞⋃
k=n+1

Ak

)

and one has

∞∑
k=1

P(Ak) = lim
n→∞

n∑
k=1

P(Ak) = lim
n→∞ P

(
n⋃

k=1

Ak

)



2.1 The Axioms of Probability Theory. A Probability Space 17

= lim
n→∞

{
P

( ∞⋃
k=1

Ak

)
− P

( ∞⋃
k=n+1

Ak

)}
= P

( ∞⋃
k=1

Ak

)
.

The last equality follows from P3′. �

Definition 2.1.5 A triple 〈Ω,A,P〉 is called a wide-sense probability space. If an
algebra F is a σ -algebra (F = σ(F)), then condition

⋃∞
n=1 An ∈ F in axiom P3 (for

a probability on 〈Ω,F〉) will be automatically satisfied.

Definition 2.1.6 A triple 〈Ω,F,P〉, where F is a σ -algebra, is called a probability
space.

A probability P on 〈Ω,F〉 is also sometimes called a probability distribution on
Ω or just a distribution on Ω (on 〈Ω,F〉).

Thus defining a probability space means defining a countably additive nonneg-
ative measure on a measurable space such that the measure of Ω is equal to one.
In this form the axiomatics of Probability Theory was formulated by A.N. Kol-
mogorov. The system of axioms we introduced is incomplete and consistent.

Constructing a probability space 〈Ω,F,P〉 is the basic stage in creating a math-
ematical model (formalisation) of an experiment.

Discussions on what should one understand by probability have a long history
and are related to the desire to connect the definition of probability with its “phys-
ical” nature. However, because of the complexity of the latter, such attempts have
always encountered difficulties not only of mathematical, but also of philosophical
character (see the Introduction). The most important stages in this discussion are re-
lated to the names of Borel, von Mises, Bernstein and Kolmogorov. The emergence
of Kolmogorov’s axiomatics separated, in a sense, the mathematical aspect of the
problem from all the rest. With this approach, the “physical interpretation” of the
notion of probability appears in the form of a theorem (the strong law of large num-
bers, see Chaps. 5 and 7), by virtue of which the relative frequency of the occurrence
of a certain event in an increasingly long series of independent trials approaches (in
a strictly defined sense) the probability of this event.

We now consider examples of the most commonly used measurable and proba-
bility spaces.

1. Discrete measurable spaces. These are spaces 〈Ω,F〉 where Ω is a finite or
countably infinite collection of elements, and the σ -algebra F usually consists of
all the subsets of Ω . Discrete probability spaces constructed on discrete measurable
spaces were studied, with concrete examples, in Chap. 1.

2. The measurable space 〈R,B〉, where R is the real line(or a part of it) and B

is the σ -algebra of Borel sets. The necessity of considering such spaces arises in
situations where the results of observations of interest may assume any values in R.

Example 2.1.1 Consider an experiment consisting of choosing a point “at random”
from the interval [0,1]. By this we will understand the following. The set of elemen-
tary outcomes Ω is the interval [0,1]. The σ -algebra F will be taken to be the class
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of subsets B for which the notion of length (Lebesgue measure) μ(B) is defined—
for example, the σ -algebra B of Borel measurable sets. To “conduct a trial” means
to choose a point ω ∈ Ω = [0,1], the probability of the event ω ∈ B being μ(B). All
the axioms are clearly satisfied for the probability space 〈[0,1],B,μ〉. We obtain
the so-called uniform distribution on [0,1].

Why did we take the σ -algebra of Borel sets B to be our F in this example? If we
considered on Ω = [0,1] the σ -algebra generated by “individual” points of the in-
terval, we would get the sets of which the Lebesgue measure is either 0 or 1. In other
words, the obtained sets would be either very “dense” or very “thin” (countable), so
that the intervals (a, b) for 0 < b − a < 1 do not belong to this σ -algebra.

On the other hand, if we considered on Ω = [0,1] the σ -algebra of all subsets of
Ω , it would be impossible to define a probability measure on it in such a way that
P([a, b]) = b − a (i.e. to get the uniform distribution).1

Turning back to the uniform distribution P on Ω = [0,1], it is easy to see that
it is impossible to define this distribution using the same approach as we used to
define a probability on a discrete space of elementary events (i.e. by defining the
probabilities of elementary outcomes ω). Since in this example the ωs are individual
points from [0,1], we clearly have P(ω) = 0 for any ω.

3. The measurable space 〈Rn,Bn〉 is used in the cases when observations are
vectors. Here R

n is the n-dimensional Euclidean space(Rn =R1 × · · · ×R
n, where

R1, . . . ,Rn are n copies of the real line), Bn is the σ -algebra of Borel sets in R
n,

i.e. the σ -algebra generated by the sets B = B1 ×· · ·×Bn, where Bi ⊂Ri are Borel
sets on the line. Instead of Rn we could also consider some measurable part Ω ∈ Bn

(for example a cube or ball), and instead of Bn the restriction of Bn onto Ω . Thus,
similarly to the last example one can construct a probability space for choosing a
point at random from the cube Ω = [0,1]n. We put here P(ω ∈ B) = μ(B), where
μ(B) is the Lebesgue measure (volume) of the set B . Instead of the cube [0,1]n we
could consider any other cube, for example [a, b]n, but in this case we would have
to put

P(ω ∈ B) = μ(B)/μ(Ω) = μ(B)/(b − a)n.

This is the uniform distribution on a cube.
In Probability Theory one also needs to deal with more complex probability

spaces. What to do if the result of the experiment is an infinite random sequence? In
this case the space 〈R∞,B∞〉 is often the most appropriate one.

4. The measurable space 〈R∞,B∞〉, where

R
∞ =

∞∏
j=1

Rj

1See e.g. [28], p. 80.
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is the space of all sequences (x1, x2, . . .) (the direct product of the spaces Rj ), and
B∞ the σ -algebra generated by the sets of the form

(
N∏

k=1

Bjk

)
×

( ∏
j �=jk
k≤N

Rj

)
; Bjk

∈Bjk
,

for any N,j1, . . . , jN , where Bj is the σ -algebra of Borel sets from Rj .
5. If an experiment results, say, in a continuous function on the interval [a, b]

(a trajectory of a moving particle, a cardiogram of a patient, etc.), then the probabil-
ity spaces considered above turn out to be inappropriate. In such a case one should
take Ω to be the space C(a, b) of all continuous functions on [a, b] or the space
R

[a,b] of all functions on [a, b]. The problem of choosing a suitable σ -algebra here
becomes somewhat more complicated and we will discuss it later in Chap. 18.

Now let us return to the definition of a probability space.
Let a triple 〈Ω,A,P〉 be a wide-sense probability space (A is an algebra). As

we have already seen, to each algebra A there corresponds a σ -algebra F = σ(A)

generated by A. The following question is of substantial interest: does the proba-
bility measure P on A define a measure on F = σ(A)? And if so, does it define
it in a unique way? In other words, to construct a probability space 〈Ω,A,P〉, is
it sufficient to define the probability just on some algebra A generating F (i.e. to
construct a wide-sense probability space 〈Ω,A,P〉, where σ(A) = F)? An answer
to this important question is given by the Carathéodory theorem.

The measure extension theorem Let 〈Ω,A,P〉 be a wide-sense probability space.
Then there exists a unique probability measure Q defined on F= σ(A) such that

Q(A) = P(A) for all A ∈A.

Corollary 2.1.1 Any wide-sense probability space 〈Ω,A,P〉 automatically defines
a probability space 〈Ω,F,P〉 with F = σ(A).

We will make extensive use of this fact in what follows. In particular, it implies
that to define a probability measure on the measurable space 〈R,B〉, it suffices to
define the probability on intervals.

The proof of the Carathéodory theorem is given in Appendix 1.
In conclusion of this section we will make a general comment. Mathematics dif-

fers qualitatively from such sciences as physics, chemistry, etc. in that it does not
always base its conclusions on empirical data with the help of which a naturalist
tries to answer his questions. Mathematics develops in the framework of an initial
construction or system of axioms with which one describes an object under study.
Thus mathematics and, in particular, Probability Theory, studies the nature of the
phenomena around us in a methodologically different way: one studies not the phe-
nomena themselves, but rather the models of these phenomena that have been cre-
ated based on human experience. The value of a particular model is determined by
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the agreement of the conclusions of the theory with our observations and therefore
depends on the choice of the axioms characterising the object.

In this sense axioms P1, P2, and the additivity of probability look indisputable
and natural (see the remarks in the Introduction on desirable properties of probabil-
ity). Countable additivity of probability and the property A2′ of σ -algebras are more
delicate and less easy to intuit (as incidentally are a lot of other things related to the
notion of infinity). Introducing the last two properties was essentially brought about
by the possibility of constructing a meaningful mathematical theory. Numerous ap-
plications of Probability Theory developed from the system of axioms formulated
in the present section demonstrate its high efficiency and purposefulness.

2.2 Properties of Probability

1. P(∅) = 0. This follows from the equality ∅+ Ω = Ω and properties P2 and P3
of probability.

2. P(A) = 1 − P(A), since A + A = Ω and A ∩ A = ∅.
3. If A ⊂ B , then P(A) ≤ P(B). This follows from the relation P(A) + P(AB) =

P(B).
4. P(A) ≤ 1 (by properties 3 and P2).
5. P(A∪B) = P(A)+ P(B)− P(AB), since A∪B = A+ (B −AB) and P(B −

AB) = P(B) − P(AB).
6. P(A ∪ B) ≤ P(A) + P(B) follows from the previous property.
7. The formula

P

(
n⋃

j=1

Aj

)
=

n∑
k=1

P(Ak) −
∑
k<l

P(AkAl)

+
∑

k<l<m

P(AkAlAm) − · · · + (−1)n−1P(A1 . . .An)

has already been proved and used for discrete spaces Ω . Here the reader can prove
it in exactly the same way, using induction and property 5.

Denote the sums on the right hand side of the last formula by Z1, Z2, . . . ,Zn,
respectively. Then statement 7 for the event Bn = ⋃n

j=1 Aj can be rewritten as

P(Bn) = ∑n
j=1(−1)j−1Zj .

8. An important addition to property 7 is that the sequence
∑k

j=1(−1)j−1Zj

approximates P(Bn) by turns from above and from below as k grows, i.e.

P(Bn) −
2k−1∑
j=1

(−1)j−1Zj ≤ 0,

P(Bn) −
2k∑

j=1

(−1)j−1Zj ≥ 0, k = 1,2, . . .

(2.2.1)
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This property can also be proved by induction on n. For n = 2 this property is
ascertained in 5. Let (2.2.1) be valid for any events A1, . . . ,An−1 (i.e. for any Bn−1).
Then by 5 we have

P(Bn) = P(Bn−1 ∪ An) = P(Bn−1) + P(An) − P

(
k−1⋃
j=1

AjAn

)
,

where, in view of (2.2.1) for k = 1,

n=1∑
j=1

P(Aj ) −
n−1∑
i<j

P(AiAj ) ≤ P(Bn−1) ≤
n−1∑
j=1

P(Aj ),

P

(
n−1⋃
j=1

AjAn

)
≤

n−1∑
j=1

P(AjAn).

Hence, for Bn = Bn−1 ∪ An, we get

P(Bn) ≤
n∑

j=1

P(Aj ),

P(Bn) = P(Bn−1) + P(An) − P(Bn−1An)

≥
n∑

j=1

P(Aj ) −
n−1∑
i<j

P(AiAj ) −
n−1∑
i=1

P(AiAn) =
n∑

j=1

P(An) −
n∑

i<j

P(AiAj ).

This proves (2.2.1) for k = 1. For k = 2,3, . . . the proof is similar.
9. If An is a monotonically increasing sequence of sets (i.e. An ⊂ An+1) and

A = ⋃∞
n=1 An, then

P(A) = lim
n→∞ P(An). (2.2.2)

This is a different form of the continuity axiom equivalent to P3′.
Indeed, introducing the sets Bn = A−An, we get Bn+1 ⊂ Bn and

⋂∞
n=1 Bn = ∅.

Therefore, by the continuity axiom,

P(A − An) = P(A) − P(An) → 0

as n → ∞. The converse assertion that (2.2.2) implies the continuity axiom can be
obtained in a similar way. �

2.3 Conditional Probability. Independence of Events and Trials

We will start with examples. Let an experiment consist of three tosses of a fair
coin. The probability that heads shows up only once, i.e. that one of the elementary
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events htt , tht , or t th occurs, is equal in the classical scheme to 3/8. Denote
this event by A. Now assume that we know in addition that the event B =
{the number of heads is odd} has occurred.

What is the probability of the event A given this additional information? The
event B consists of four elementary outcomes. The event A is constituted by three
outcomes from the event B . In the framework of the classical scheme, it is natural
to define the new probability of the event A to be 3/4.

Consider a more general example. Let a classical scheme with n outcomes be
given. An event A consists of r outcomes, an event B of m outcomes, and let the
event AB have k outcomes. Similarly to the previous example, it is natural to define
the probability of the event A given the event B has occurred as

P(A|B) = k

m
= k/n

m/n
.

The ratio is equal to P(AB)/P(B), for

P(A|B) = k

n
, P(B) = m

n
.

Now we can give a general definition.

Definition 2.3.1 Let 〈Ω,F,P〉 be a probability space and A and B be arbitrary
events. If P(B) > 0, the conditional probability of the event A given B has occurred
is denoted by P(A|B) and is defined by

P(A|B) := P(AB)

P(B)
.

Definition 2.3.2 Events A and B are called independent if

P(AB) = P(A)P(B).

Below we list several properties of independent events.
1. If P(B) > 0, then the independence of A and B is equivalent to the equality

P(A|B) = P(A).

The proof is obvious.
2. If A and B are independent, then A and B are also independent.
Indeed,

P(AB) = P(B − AB)

= P(B) − P(AB) = P(B)
(
1 − P(A)

) = P(A)P(B).

3. Let the events A and B1 and the events A and B2 each be independent, and
assume B1B2 = ∅. Then the events A and B1 + B2 are independent.
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Fig. 2.1 Illustration to
Example 2.3.2: the dashed
rectangles represent the
events A and B

The property is proved by the following chain of equalities:

P
(
A(B1 + B2)

) = P(AB1 + AB2) = P(AB1) + P(AB2)

= P(A)
(
P(B1) + P(B2)

) = P(A)P(B1 + B2).

As we will see below, the requirement B1B2 = ∅ is essential here.

Example 2.3.1 Let event A mean that heads shows up in the first of two tosses of a
fair coin, and event B that tails shows up in the second toss. The probability of each
of these events is 1/2. The probability of the intersection AB is

P(AB) = 1

4
= 1

2
· 1

2
= P(A)P(B).

Therefore the events A and B are independent.

Example 2.3.2 Consider the uniform distribution on the square [0,1]2 (see Sect. 2.1).
Let A be the event that a point chosen at random is in the region on the right of an
abscissa a and B the event that the point is in the region above an ordinate b.

Both regions are hatched in Fig. 2.1. The event AB is squared in the figure.
Clearly, P(AB) = P(A)P(B), and hence the events A and B are independent.

It is also easy to verify that if B is the event that the chosen point is inside the
triangle FCD (see Fig. 2.1), then the events A and B will already be dependent.

Definition 2.3.3 Events B1,B2, . . . ,Bn are jointly independent if, for any 1 ≤ i1 <

i2 < · · · < ir ≤ n, r = 2,3, . . . , n,

P

(
r⋂

k=1

Bjk

)
=

r∏
k=1

P(Bik ).

Pairwise independence is not sufficient for joint independence of n events, as one
can see from the following example.
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Example 2.3.3 (Bernstein’s example) Consider the following experiment. We roll a
symmetric tetrahedron of which three faces are painted red, blue and green respec-
tively, and the fourth is painted in all three colours. Event R means that when the
tetrahedron stops, the bottom face has the red colour on it, event B that it has the
blue colour, and G the green. Since each of the three colours is present on two faces,
P(R) = P(B) = P(G) = 1/2. For any two of the introduced events, the probability
of the intersection is 1/4, since any two colours are present on one face only. Since
1
4 = 1

2 × 1
2 , this implies the pairwise independence of all three events. However,

P(RGB) = 1

4
�= P(R)P(B)P(G) = 1/8. �

Now it is easy to construct an example in which property 3 of independent events
does not hold when B1B2 �=∅.

An example of a sequence of jointly independent events is given by the series of
outcomes of trials in the Bernoulli scheme.

If we assume that each outcome was obtained as a result of a separate trial, then
we will find that any event related to a fixed trial will be independent of any event
related to other trials. In such cases one speaks of a sequence of independent trials.

To give a general definition, consider two arbitrary experiments G1 and G2 and
denote by 〈Ω1,F1,P1〉 and 〈Ω2,F2,P2〉 the respective probability spaces. Consider
also the “compound” experiment G with the probability space 〈Ω,F,P〉, where
Ω = Ω1 ×Ω2 is the direct product of the spaces Ω1 and Ω2, and the σ -algebra F is
generated by the direct product F1 × F2 (i.e. by the events B = B1 × B2, B1 ∈ F1,
B2 ∈ F2).

Definition 2.3.4 We will say that the trials G1 and G2 are independent if, for any
B = B1 × B2, B1 ∈ F1, B2 ∈ F2 one has

P(B) = P1(B1)P2(B2) = P(B1 × Ω2)P(Ω1 × B2).

Independence of n trials G1, . . . ,Gn is defined in a similar way, using the equal-
ity

P(B) = P1(B1) · · ·Pn(Bn),

where B = B1 × · · · × Bn, Bk ∈ Fk , and 〈Ωk,Fk,Pk〉 is the probability space corre-
sponding to the experiment Gk , k = 1, . . . , n.

In the Bernoulli scheme, the probability of any sequence of outcomes consisting
of r zeros and ones and containing k ones is equal to pk(1 − p)r−k . Therefore the
Bernoulli scheme may be considered as a result of r independent trials in each of
which one has 1 (success) with probability p and 0 (failure) with probability 1 − p.
Thus, the probability of k successes in r independent trials equals

(
r
k

)
pk(1 − p)r−k .

The following assertion, which is in a sense converse to the last one, is also
true: any sequence of identical independent trials with two outcomes makes up a
Bernoulli scheme.

In Chap. 3 several remarks will be given on the relationship between the notions
of independence we introduced here and the common notion of causality.
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Let A be an event and B1,B2, . . . ,Bn be mutually exclusive events having positive
probabilities such that

A ⊂
n⋃

j=1

Bj .

The sequence of events B1,B2, . . . can be infinite, in which case we put n = ∞. The
following total probability formula holds true:

P(B) =
n∑

j=1

P(Bj )P(A|Bj ).

Proof It follows from the assumptions that

A =
n⋃

j=1

BjA.

Moreover, the events AB1, AB2, . . . ,ABn are disjoint, and hence

P(A) =
n∑

j=1

P(ABj ) =
n∑

j=1

P(Bj )P(A|Bj ).
�

Example 2.4.1 In experiments with colliding electron-positron beams, the probabil-
ity that during a time unit there will occur j collisions leading to the birth of new
elementary particles is equal to

pj = e−λλj

j ! , j = 0,1, . . . ,

where λ is a positive parameter (this is the so-called Poisson distribution, to be con-
sidered in more detail in Chaps. 3, 5 and 19). In each collision, different groups of
elementary particles can appear as a result of the interaction, and the probability of
each group is fixed and does not depend on the outcomes of other collisions. Con-
sider one such group, consisting of two μ-mesons, and denote by p the probability
of its appearance in a collision. What is the probability of the event Ak that, during
a time unit, k pairs of μ-mesons will be born?

Assume that the event Bj that there were j collisions during the time unit has
occurred. Given this condition, we will have a sequence of j independent trials, and
the probability of having k pairs of μ-mesons will be

(
j
k

)
pk(1 − p)j−k . Therefore

by the total probability formula,

P(Ak) =
∞∑

j=k

P(Bj )P(Ak|Bj ) =
∞∑

j=k

e−λλj

j !
j !

k!(j − k)!p
k(1 − p)j−k
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= e−λpkλk

k!
∞∑

j=0

(λ(1 − p))j

j ! = e−λp(λp)k

k! .

Thus we again obtain a Poisson distribution, but this time with parameter λp.
The solution above was not formalised. A formal solution would first of all

require the construction of a probability space. The space turns out to be rather
complex in this example. Denote by Ωj the space of elementary outcomes in the
Bernoulli scheme corresponding to j trials, and let ωj denote an element of Ωj .
Then one could take Ω to be the collection of all pairs {(j,ωj )}∞j=0, where the
number j indicates the number of collisions, and ωj is a sequence of “successes”
and “failures” of length j (“success” stands for the birth of two μ-mesons). If ωj

contains k “successes”, one has to put

P
(
(j,ωj )

) = pjp
k(1 − p)j−k.

To get P(Ak), it remains to sum up these probabilities over all ωj containing k

successes and all j ≥ k (the idea of the total probability formula is used here tacitly
when splitting Ak into the events (j,ωj )).

The fact that the number of collisions is described here by a Poisson distribution
could be understood from the following circumstances related to the nature of the
physical process. Let Bj (t, u) be the event that there were j collisions during the
time interval [t, t + u). Then it turns out that:

(a) the pairs of events Bj (v, t) and Bk(v + t, u) related to non-overlapping time
intervals are independent for all v, t, u, j , and k;

(b) for small Δ the probability of a collision during the time Δ is proportional to Δ:

P
(
B1(t,Δ)

) = λΔ + o(Δ),

and, moreover, P(Bk(t,Δ)) = o(Δ) for k ≥ 2.

Again using the total probability formula with the hypotheses Bj (v, t), we obtain
for the probabilities pk(t) = P(Bk(v, t)) the following relations:

pk(t + Δ) =
k∑

j=0

pj (t)P
(
Bk(v, t + Δ)

∣∣ Bj (v, t)
)

=
k∑

j=0

pj (t)P
(
Bk−j (v + t,Δ)

) = o(Δ) + pk−1(t)
(
λΔ + o(Δ)

)

= pk(t)
(
1 − λΔ − o(Δ)

)
, k ≥ 1;

p0(t + Δ) = p0(t)
(
1 − λΔ − o(Δ)

)
.

Transforming the last equation, we find that

p0(t + Δ) − p0(t)

Δ
= −λp0(t) + o(1).
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Therefore the derivative of p0 exists and is given by

p′
0(t) = −λp0(t).

In a similar way we establish the existence of

p′
k(t) = λpk−1(t) − λpk(t), k ≥ 1. (2.4.1)

Now note that since the functions pk(t) are continuous, one should put p0(0) = 1,
pk(0) = 0 for k ≥ 1. Hence

p0(t) = e−λt .

Using induction and substituting into (2.4.1) the function pk−1(t) = (λt)k−1e−λt

(k−1)! , we

establish (it is convenient to make the substitution pk = e−λtuk , which turns (2.4.1)

into u′
k = λ(λt)k−1

(k−1)! ) that

pk(t) = (λt)ke−λt

k! , k = 0,1, . . .

This is the Poisson distribution with parameter λt .
To understand the construction of the probability space in this problem, one

should consider the set Ω of all non-decreasing step-functions x(t) ≥ 0, t ≥ 0, tak-
ing values 0,1,2, . . . . Any such function can play the role of an elementary out-
come: its jump points indicate the collision times, the value x(t) itself will be the
number of collisions during the time interval (0, t). To avoid a tedious argument re-
lated to introducing an appropriate σ -algebra, for the purposes of our computations
we could treat the probability as given on the algebra A (see Sect. 2.1) generated
by the sets {x(t) = k}, t ≥ 0; k = 0,1, . . . (note that all the events considered in this
problem are just of such form). The above argument shows that one has to put

P
(
x(v + t) − x(v) = k

) = (λt)ke−λt

k! .

(See also the treatment of Poisson processes in Chap. 19.) �

By these examples we would like not only to illustrate the application of the total
probability formula, but also to show that the construction of probability spaces in
real problems is not always a simple task.

Of course, for each particular problem, such constructions are by no means nec-
essary, but we would recommend to carry them out until one acquires sufficient
experience.

Assume that events A and B1, . . . ,Bn satisfy the conditions stated at the begin-
ning of this section. If P(A) > 0, then under these conditions the following Bayes’
formula holds true:

P(Bj |A) = P(Bj )P(A|Bj )∑n
k=1 P(Bk)P(A|Bk)

.
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This formula is simply an alternative way of writing the equality

P(Bj |A) = P(BjA)

P(A)
,

where in the numerator one should make use of the definition of conditional prob-
ability, and in the denominator, the total probability formula. In Bayes’ formula we
can take n = ∞, just as for the total probability formula.

Example 2.4.2 An item is manufactured by two factories. The production volume
of the first factory is k times the production of the second one. The proportion of
defective items for the first factory is P1, and for the second one P2. Now assume
that the items manufactured by the factories during a certain time interval were
mixed up and then sent to retailers. What is the probability that you have purchased
an item produced by the second factory given the item proved to be defective?

Let B1 be the event that the item you have got came from the first factory, and
B2 from the second. It easy to see that

P(B1) = 1

1 + k
, P(B2) = k

1 + k
.

These are the so-called prior probabilities of the events B1 and B2. Let A be the
event that the purchased item is defective. We are given conditional probabilities
P(A|B1) = P1 and P(A|B2) = P2. Now, using Bayes’ formula, we can answer the
posed question:

P(B2|A) =
k

1+k
P2

1
1+k

P1 + k
1+k

P2
= kP2

P1 + kP2
.

Similarly, P(B1|A) = P1
P1+kP2

. �

The probabilities P(B1|A) and P(B2|A) are sometimes called posterior proba-
bilities of the events B1 and B2 respectively, after the event A has occurred.

Example 2.4.3 A student is suggested to solve a numerical problem. The answer to
the problem is known to be one of the numbers 1, . . . , k. Solving the problem, the
student can either find the correct way of reasoning or err. The training of the student
is such that he finds a correct way of solving the problem with probability p. In
that case the answer he finds coincides with the right one. With the complementary
probability 1 − p the student makes an error. In that case we will assume that the
student can give as an answer any of the numbers 1, . . . , k with equal probabilities
1/k.

We know that the student gave a correct answer. What is the probability that his
solution of the problem was correct?

Let B1 (B2) be the event that the student’s solution was correct (wrong).
Then, by our assumptions, the prior probabilities of these events are P(B1) = p,
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P(B2) = 1 − p. If the event A means that the student got a correct answer, then

P(A|B1) = 1, P(A|B2) = 1/k.

By Bayes’ formula the desired posterior probability P(B1|A) is equal to

P(B1|A) = P(B1)P(A|B1)

P(B1)P(A|B1) + P(B2)P(A|B2)
= p

p + 1−p
k

= 1

1 + 1−p
kp

.

Clearly, P(B1|A) > P(B1) = p and P(B1|A) is close to 1 for large k.
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