
Chapter 18
Continuous Time Random Processes

Abstract This chapter presents elements of the general theory of continuous time
processes. Section 18.1 introduces the key concepts of random processes, sample
paths, cylinder sets and finite-dimensional distributions, the spaces of continuous
functions and functions without discontinuities of the second kind, and equivalence
of random processes. Section 18.2 presents the fundamental results on regularity
of processes: Kolmogorov’s theorem on existence of a continuous modification and
Kolmogorov–Chentsov’s theorem on existence of an equivalent process with trajec-
tories without discontinuities of the second kind. The section also contains discus-
sions of the notions of separability, stochastic continuity and continuity in mean.

18.1 General Definitions

Definition 18.1.1 A random process1 is a family of random variables ξ(t) = ξ(t,ω)

given on a common probability space 〈Ω,F,P〉 and depending on a parameter t

taking values in some set T .

A random process will be written as {ξ(t), t ∈ T }.
The sequences of random variables ξ1, ξ2, . . . considered in the previous sec-

tions are random processes for which T = {1,2,3, . . .}. The same is true of the
sums S1, S2, . . . of ξ1, ξ2, . . . Markov chains {Xn, n = 0,1, . . .}, martingales {Xn;
n ∈N}, stationary and stochastic recursive sequences described in previous chapters
are also random processes. The processes for which the set T can be identified with
the whole sequence {. . . ,−1,0,1, . . .} or a part thereof are usually called random
processes in discrete time, or random sequences.

If T coincides with a certain real interval T = [a, b] (this may be the whole real
line −∞ < t < ∞ or the half-line t ≥ 0), then the collection {ξ(t), t ∈ T } is said to
be a process in continuous time.

Simple examples of such objects are renewal processes {η(t), t ≥ 0} described
in Chap. 10.

1As well as the term “random process” one also often uses the terms “stochastic” or “probabilistic”
processes.
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528 18 Continuous Time Random Processes

In the present chapter we will be considering continuous time processes only.
Interpretation of the parameter t as time is, of course, not imperative. It appeared
historically because in most problems from the natural sciences which led to the
concept of random process the parameter t had the meaning of time, and the value
ξ(t) was what one would observe at time t .

The movement of a gas molecule as time passes, the storage level in a water
reservoir, oscillations of an airplane’s wing etc could be viewed as examples of real
world random processes.

The random function

ξ(t) =
∞∑

k=1

2−kξk sinkt, t ∈ [0,2π],

where the ξk are independent and identically distributed, is also an example of a
random process.

Consider a random process {ξ(t), t ∈ T }. If ω ∈ Ω is fixed, we obtain a func-
tion ξ(t), t ∈ T , which is often called a sample function, trajectory or path of the
process. Thus, the random values here are functions. As before, we could consider
here a sample probability space, which can be constructed for example as follows.
Consider the space X of functions x(t), t ∈ T , to which the trajectories ξ(t) belong.
Let, further, BT

X be the σ -algebra of subsets of X generated by the sets of the form

C = {
x ∈X : x(t1) ∈ B1, . . . , x(tn) ∈ Bn

}
(18.1.1)

for any n, any t1, . . . , tn from T , and any Borel sets B1, . . . ,Bn. Sets of this form
are called cylinders; various finite unions of cylinder sets form an algebra generat-
ing BT

X. If a process ξ(t,ω) is given, it defines a measurable mapping of 〈Ω,F〉
into 〈X,BT

X〉, since clearly ξ−1(C) = {ω : ξ(·,ω) ∈ C} ∈ F for any cylinder C, and
therefore ξ−1(B) ∈ F for any B ∈ BT

X. This mapping induces a distribution Pξ on
〈X,BT

X〉 defined by the equalities Pξ (B) = P(ξ−1(B)). The triplet 〈X,BT
X,Pξ 〉 is

called the sample probability space. In that space, an elementary outcome ω is
identified with the trajectory of the process, and the measure Pξ is said to be the
distribution of the process ξ .

Now if, considering the process {ξ(t)}, we fix the time epochs t1, t2, . . . , tn, we
will get a multi-dimensional random variable (ξ(t1,ω), . . . , ξ(tn,ω)). The distri-
butions of such variables are said to be the finite-dimensional distributions of the
process.

The following function spaces are most often considered as spaces X in the the-
ory of random processes with continual sets T .

1. The set of all functions on T :

X = R
T =

∏

t∈T

Rt ,

where Rt are copies of the real line (−∞,∞). This space is usually considered with
the σ -algebra BT

R
of subsets of RT generated by cylinders.
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2. The space C(T ) of continuous functions on T (we will write C(a, b) if
T = [a, b]). In this space, along with the σ -algebra BT

C generated by cylinder sub-
sets of C(T ) (this σ -algebra is smaller that the similar σ -algebra in R

T ), one also
often considers the σ -algebra BC(T ) (the Borel σ -algebra) generated by the sets
open with respect to the uniform distance

ρ(x, y) := sup
t∈T

∣∣y(t) − x(t)
∣∣, x, y ∈ C(T ).

It turns out that, in the space C(T ), we always have BC(T ) =BT
C (see, e.g., [14]).

3. The space D(T ) of functions having left and right limits x(t − 0) and x(t + 0)

at each point t , the value x(t) being equal either to x(t − 0) or to x(t + 0). If
T = [a, b], it is also assumed that x(a) = x(a + 0) and x(b) = x(b − 0). This space
is often called the space of functions without discontinuities of the second kind.2 The
space of functions for which at all other points x(t) = x(t − 0) (x(b) = x(t + 0))
will be denoted by D−(T ) (D+(T )). The space D+(T ) (D−(T )) will be called the
space of right-continuous (left-continuous) functions. For example, the trajectories
of the renewal processes discussed in Chap. 10 belong to D+(0,∞).

In the space D(T ) one can also construct the Borel σ -algebra with respect to
an appropriate metric, but we will restrict ourselves to using the σ -algebra BT

D

of cylindric subsets of D(T ).
Now we can formulate the following equivalent definition of a random process.

Let X be a given function space, and G be the σ -algebra of its subsets containing
the σ -algebra BT

X of cylinders.

Definition 18.1.2 A random process ξ(t) = ξ(t,ω) is a measurable (in ω) mapping
of 〈Ω,F,P〉 into 〈X,G,Pξ 〉 (to each ω one puts into correspondence a function
ξ(t) = ξ(t,ω) so that ξ−1(G) = {ω : ξ(·) ∈ G} ∈ F for G ∈ G). The distribution Pξ

is said to be the distribution of the process.

The condition BT
X ⊂ G is needed to ensure that the probabilities of cylinder

sets and, in particular, the probabilities P(ξ(t) ∈ B), B ∈ BT
X are correctly defined,

which means that ξ(t) are random variables.
So far we have tacitly assumed that the process is given and it is known that

its trajectories lie in X. However, this is rarely the case. More often one tries to
describe the process ξ(t) in terms of some characteristics of its distribution. One
could, for example, specify the finite-dimensional distributions of the process. From
Kolmogorov’s theorem on consistent distributions3 (see Appendix 2), it follows that

2A discontinuity of the second kind is associated with either non-fading oscillations of increasing
frequency or escape to infinity.
3Recall the definition of consistent distributions. Let Rt , t ∈ T , be real lines and Bt the σ -algebras
of Borel subsets of Rt . Let Tn = {t1, . . . , tn} be a finite subset of T . The finite-dimensional dis-
tribution of (ξ(t1,ω), . . . , ξ(tn,ω)) is the distribution PTn on (RTn ,BTn ), where R

Tn = ∏
t∈Tn

Rt

and BTn = ∏
t∈Tn

Bt . Let two finite subsets T ′ and T ′′ of T be given, and (R′,B′) and (R′′,B′′)
be the respective subspaces of (RT ,BT ). The distributions PT ′ and PT ′′ on (R′,B′) and (R′′,B′′)
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finite-dimensional distributions uniquely specify the distribution Pξ of the process
on the space 〈RT ,BT

R
〉. That theorem can be considered as the existence theorem

for random processes in 〈RT ,BT
R
〉 with prescribed finite-dimensional distributions.

The space 〈RT ,BT
R
〉 is, however, not quite convenient for studying random pro-

cesses. The fact is that by no means all relations frequently used in analysis gener-
ate events, i.e. the sets which belong to the σ -algebra BT

R
and whose probabilities

are defined. Based on the definition, we can be sure that only the elements of the
σ -algebra generated by {ξ(t) ∈ B}, t ∈ T , B being Borel sets, are events. The set
{supt∈T ξ(t) < c}, for instance, does not have to be an event, for we only know its
representation in the form

⋂
t∈T {ξ(t) < c}, which is the intersection of an uncount-

able collection of measurable sets when T is an interval on the real line.
Another inconvenience occurs as well: the distribution Pξ on 〈RT ,BT

R
〉 does not

uniquely specify the properties of the trajectories of ξ(t). The reason is that the
space RT is very rich, and if we know that x(·) belongs to a set of the form (18.1.1),
this gives us no information about the behaviour of x(t) at points t different from
t1, . . . , tn. The same is true of arbitrary sets A from BT

R
: roughly speaking, the

relation x(·) ∈ A can determine the values of x(t) at most at a countable set of
points. We will see below that even such a set as {x(t) ≡ 0} does not belong to BT

R
.

To specify the behaviour of the entire trajectory of the process, it is not sufficient to
give a distribution on BT

R
—one has to extend this σ -algebra.

Prior to presenting the respective example, we will give the following definition.

Definition 18.1.3 Processes ξ(t) and η(t) are said to be equivalent (or stochasti-
cally equivalent) if P(ξ(t) = η(t)) = 1 for all t ∈ T . In this case the process η is
called a modification of ξ .

Finite-dimensional distributions of equivalent process clearly coincide, and
therefore the distributions Pξ and Pη on 〈RT ,BT

R
〉 coincide, too.

Example 18.1.1 Put

xa(t) :=
{

0 if t 
= a,

1 if t = a,

and complete BT
R

with the elements xa(t), a ∈ [0,1], and the element x0(t) ≡ 0.
Let γ ⊂= U0,1. Consider two random processes ξ0(t) and ξ1(t) defined as follows:
ξ0(t) ≡ x0(t), ξ1(t) = xγ (t). Then clearly

P
(
ξ0(t) = ξ1(t)

) = P(γ 
= t) = 1,

the processes ξ0 and ξ1 are equivalent, and hence their distributions on 〈RT ,BT
R
〉

coincide. However, we see that the trajectories of the processes are substantially
different.

are said to be consistent if their projections on the common part of subspaces R
′ and R

′′ (if it
exists) coincide.
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It is easy to see from the above example that the set of all continuous functions
C(T ), the set {supt∈[0,1] x(t) < x}, the one-point set {x(t) ≡ 0} and many others
do not belong to BT

R
. Indeed, if we assume the contrary—say, that C(T ) ∈ BT

R
—

then we would get from the equivalence of ξ0 and ξ1 that P(ξ0 ∈ C(0,1)) = P(ξ1 ∈
C(0,1)), while the former of these probabilities is 1 and the latter is 0.

The simplest way of overcoming the above difficulties and inconveniences is to
define the processes in the spaces C(T ) or D(T ) when it is possible. If, for example,
ξ(t) ∈ C(T ) and η(t) ∈ C(T ), and they are equivalent, then the trajectories of the
processes will completely coincide with probability 1, since in that case

⋂

rational t

{
ξ(t) = η(t)

} =
⋂

t∈T

{
ξ(t) = η(t)

} = {
ξ(t) = η(t) for all t ∈ T

}
,

where the probability of the event on the left-hand side is defined (this is the prob-
ability of the intersection of a countable collection of sets) and equals 1. Similarly,
the probabilities, say, of the events

{
sup
t∈T

ξ(t) < c
}

=
⋂

t∈T

{
ξ(t) < c

}

are also defined.
The same argument holds for the spaces D(T ), because each element x(·) of D

is uniquely determined by its values x(t) on a countable everywhere dense set of t

values (for example, on the set of rationals).
Now assume that we have somehow established that the original process ξ(t) (let

it be given on 〈RT ,BT
R
〉) has a continuous modification, i.e. an equivalent process

η(t) such that its trajectories are continuous with probability 1 (or belong to the
space D(T )). The above means, first of all, that we have somehow extended the
σ -algebra BT

R
—adding, say, the set C(T )—and now consider the distribution of ξ

on the σ -algebra B̃T = σ(BT
R
,C(T )) (otherwise the above would not make sense).

But the extension of the distribution of ξ from 〈RT ,BT
R
〉 to 〈RT , B̃T 〉 may not be

unique. (We saw this in Example 18.1.1; the extension can be given by, say, putting
P(ξ ∈ C(T )) = 0.) What we said above about the process η means that there exists
an extension Pη such that Pη(C(T )) = P(η ∈ C(T )) = 1.

Further, it is often better not to deal with the inconvenient space 〈RT ,BT
R
〉 at all.

To avoid it, one can define the distribution of the process η on the restricted space
〈C(T ),BT

C〉. It is clear that

B
T
C ⊂ B̃

T = σ
(
B

T
R
,C(T )

)
, B

T
C = B̃

T ∩ C(T )

(the former σ -algebra is generated by sets of the form (18.1.1) intersected with
C(T )). Therefore, considering the distribution of η concentrated on C(T ), we can
deal with the restriction of the space 〈RT , B̃T 〉 to 〈C(T ),BT

C〉 and define the proba-
bility on the latter as Pη(A) = P(η ∈ A), A ∈ BT

C ⊂ B̃T . Thus we have constructed
a process η with continuous trajectories which is equivalent to the original process
ξ (if we consider their distributions in 〈RT ,BT

R
〉).

To realise this construction, one has now to learn how to find from the distribution
of a process ξ whether it has a continuous modification η or not.
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Before stating and proving the respective theorems, note once again that the
above-mentioned difficulties are mainly of a mathematical character, i.e. related
to the mathematical model of the random process. In real life problems, it is usually
clear in advance whether the process under consideration is continuous or not. If it
is “physically” continuous, and we want to construct an adequate model, then, of
course, of all modifications of the process we have to take the continuous one.

The same argument remains valid if, instead of continuous trajectories, one con-
siders trajectories from D(T ). The problem essentially remains the same: the diffi-
culties are eliminated if one can describe the entire trajectory of the process ξ(·) by
the values ξ(t) on some countable set of t values. Processes possessing this property
will be called regular.

18.2 Criteria of Regularity of Processes

First we will find conditions under which a process has a continuous modification.
Without loss of generality, we will assume that T is the segment T = [0,1].

A very simple criterion for the existence of a continuous modification is based
on the knowledge of two-dimensional distributions of ξ(t) only.

Theorem 18.2.1 (Kolmogorov) Let ξ(t) be a random process given on 〈RT ,BT
R
〉

with T = [0,1]. If there exist a > 0, b > 0 and c < ∞ such that, for all t and t + h

from the segment [0,1],
E

∣∣ξ(t + h) − ξ(t)
∣∣a ≤ c|h|1+b, (18.2.1)

then ξ(·) has a continuous modification.

We will obtain this assertion as a consequence of a more general theorem, of
which the conditions are somewhat more difficult to comprehend, but have essen-
tially the same meaning as (18.2.1).

Theorem 18.2.2 Let for all t , t + h ∈ [0,1],
P
(∣∣ξ(t + h) − ξ(t)

∣∣ > ε(h)
) ≤ q(h),

where ε(h) and q(h) are decreasing even functions of h such that
∞∑

n=1

ε
(
2−n

)
< ∞,

∞∑

n=1

2nq
(
2−n

)
< ∞.

Then ξ(·) has a continuous modification.

Proof We will make use of approximations of ξ(t) by continuous processes. Put

tn,r := r2−n, r = 0,1, . . . ,2n,

ξn(t) := ξ(tn,r ) + 2n(t − tn,r )
[
ξ(tn,r+1) − ξ(tn,r )

]
for t ∈ [tn,r , tn,r+1].
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Fig. 18.1 Illustration to the
proof of Theorem 18.2.2:
construction of piece-wise
linear approximations to the
process ξ(t)

From Fig. 18.1 we see that
∣∣ξn+1(t) − ξn(t)

∣∣ ≤
∣∣∣∣ξ(tn+1,2r+1) − 1

2

[
ξ(tn+1,2r ) + ξ(tn+1,2r+2)

]∣∣∣∣ ≤ 1

2
(α + β),

where α := |ξ(tn+1,2r+1)− ξ(tn+1,2r )|, β := |ξ(tn+1,2r+1)− ξ(tn+1,2r+2)|. This im-
plies that

Zn := max
t∈[tn,r ,tn,r+1]

∣∣ξn+1(t) − ξn(t)
∣∣ ≤ 1

2
(α + β),

P
(
Zn > ε

(
2−n

)) ≤ P
(
α > ε

(
2−n

)) + P
(
β > ε

(
2−n

)) ≤ 2q
(
2−n

)

(note that since the trajectories of ξn(t) are continuous, {Zn > ε(2−n)} ∈BT
R , which

is not the case in the general situation). Since here we have altogether 2n segments
of the form [tn,r , tn,r+1], r = 0,1, . . . ,2n − 1, one has

P
(

max
t∈[0,1]

∣∣ξn+1(t) − ξn(t)
∣∣ > ε(2−n)

)
≤ 2n+1q(2−n).

Because
∑∞

n=1 2nq(2−n) < ∞, by the Borel–Cantelli criterion, for almost all ω (i.e.
for ω ∈ A, P(A) = 1), there exists an n(ω) such that, for all n ≥ n(ω),

max
t∈[0,1]

∣∣ξn+1(t) − ξn(t)
∣∣ ≡ ρ(ξn+1, ξn) < ε

(
2−n

)
.

From this it follows that ξn is a Cauchy sequence a.s., since

ρ(ξn, ξm) ≤ εn :=
∞∑

n

ε(2−k) → 0

as n → ∞ for all m > n, ω ∈ A. Therefore, for ω ∈ A, there exists the limit
η(t) = limn→∞ ξn(t), and |ξn(t) − η(t)| ≤ εn, so that convergence ξn(t) → η(t) is
uniform. Together with continuity of ξn(t) this implies that η(t) is also continuous
(this argument actually shows that the space C(0,1) is complete).

It remains to verify that ξ and η are equivalent. For t = tn,r one has ξn+k(t) =
ξ(t) for all k ≥ 0, so that η(t) = ξ(t). If t 
= tn,r for all n and r , then there exists a
sequence rn such that tt,rn → t and 0 < t − tt,rn < 2−n, and hence

P
(∣∣ξ(tt,rn) − ξ(t)

∣∣ > ε(t − tt,rn)
) ≤ q(t − tt,rn),

P
(∣∣ξ(tt,rn) − ξ(t)

∣∣ > ε(2−n)
) ≤ q

(
2−n

)
.

By the Borel–Cantelli criterion this means that ξn,rn → ξ with probability 1. At
the same time, by virtue of the continuity of η(t) one has η(tt,rn) → η(t). Because
ξ(tt,rn) = η(tt,rn), we have ξ(t) = η(t) with probability 1.

The theorem is proved. �
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Corollary 18.2.1 If

E
∣∣ξ(t + h) − ξ(t)

∣∣a ≤ c|h|
| log |h||1+b

(18.2.2)

for some b > a > 0 and c < ∞, then the conditions of Theorem 18.2.2 are satisfied
and hence ξ(t) has a continuous modification.

Condition (18.2.2) will certainly be satisfied if (18.2.1) holds, so that Kol-
mogorov’s theorem is a consequence of Theorem 18.2.2.

Proof of Corollary 18.2.1 Put ε(h) := | log2 |h||−β , 1 < β < b/a. Then

∞∑

n=1

ε
(
2−n

) =
∞∑

n=1

n−β < ∞,

and from Chebyshev’s inequality we have

P
(∣∣ξ(t + a) − ξ(t)

∣∣ > ε(h)
) ≤ c|h|

| log2 |h||1+b

(
ε(h)

)−a = c|h|
| log2 |h||1+δ

=: q(h),

where δ = b − aβ > 0. It remains to note that

∞∑

n=1

2nq
(
2−n

) =
∞∑

n=1

∣∣log2 2−n
∣∣−1−δ

< ∞.

The corollary is proved. �

The criterion for ξ(t) to have a modification belonging to the space D(T ) is more
complicated to formulate and prove, and is related to weaker conditions imposed on
the process. We confine ourselves here to simply stating the following assertion.

Theorem 18.2.3 (Kolmogorov–Chentsov) If, for some α ≥ 0, β ≥ 0, b > 0, and all
t , h1 ≤ t ≤ 1 − h2, h1 ≥ 0, h2 ≥ 0,

E
∣∣ξ(t) − ξ(t − h1)

∣∣α∣∣ξ(t + h2) − ξ(t)β
∣∣ < ch1+b, h = h1 + h2, (18.2.3)

then there exists a modification of ξ(t) in D(0,1).4

Condition (18.2.3) admits the following extension:

P
(∣∣ξ(t + h2) − ξ(t)

∣∣ · ∣∣ξ(t) − ξ(t − h1)
∣∣ ≥ ε(h)

) ≤ q(h), (18.2.4)

where ε(h) and q(h) have the same meaning as in Theorem 18.2.2. Under condition
(18.2.4) the assertion of the theorem remains valid.

The following two examples illustrate, to a certain extent, the character of the
conditions of Theorems 18.2.1–18.2.3.

4For more details, see, e.g., [9].
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Example 18.2.1 Assume that a random process ξ(t) has the form

ξ(t) =
r∑

k=1

ξkϕk(t),

where ϕk(t) satisfy the Hölder condition
∣∣ϕk(t + h) − ϕk(t)

∣∣ ≤ c |h|α,

α > 0, and (ξ1, . . . , ξr ) is an arbitrary random vector such that all E|ξk|l are finite
for some l > 1/α. Then the process ξ(t) (which is clearly continuous) satisfies con-
dition (18.2.1). Indeed,

E
∣∣ξ(t + h) − ξ(t)

∣∣l ≤ c1

r∑

k=1

E|ξk|lcl |h|αl ≤ c2|hαl |, al > 1.

Example 18.2.2 Let γ ⊂= U0,1, ξ(t) = 0 for t < γ , and ξ(t) = 1 for t ≥ γ . Then

E
∣∣ξ(t + h) − ξ(t)

∣∣l = P
(
γ ∈ (t, t + h)

) = h

for any l > 0. Here condition (18.2.1) is not satisfied, although |ξ(t +h)−ξ(t)| p→ 0
as h → 0. Condition (18.2.3) is clearly met, for

E
∣∣ξ(t) − ξ(t − h1)

∣∣ · ∣∣ξ(t + h2) − ξ(t)
∣∣ = 0. (18.2.5)

We will get similar results if we take ξ(t) to be the renewal process for a sequence
γ1, γ2, . . . , where the distribution of γj has a density. In that case, instead of (18.2.5)
one will obtain the relation

E
∣∣ξ(t) − ξ(t − h1)

∣∣ · ∣∣ξ(t + h2) − ξ(t)
∣∣ ≤ ch1h2 ≤ ch2.

In the general case, when we do not have data for constructing modifications
of the process ξ in the spaces C(T ) or D(T ), one can overcome the difficulties
mentioned in Sect. 18.1 with the help of the notion of separability.

Definition 18.2.1 A process ξ(t) is said to be separable if there exists a countable
set S which is everywhere dense in T and

P
(

lim sup
u→t
u∈S

ξ(u) ≥ ξ(t) ≥ lim inf
u→t
u∈S

ξ(u) for all t ∈ T
)

= 1. (18.2.6)

This is equivalent to the property that, for any interval I ⊂ T ,

P
(

sup
u∈l∩S

ξ(u) = sup
u∈I

ξ(u); inf
u∈l∩S

ξ(u) = inf
u∈I

ξ(u)
)

= 1.

It is known (Doob’s theorem5) that any random process has a separable modifi-
cation.

5See [14, 26].
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Constructing a separable modification of a process, as well as constructing mod-
ifications in spaces C(T ) and D(T ), means extending the σ -algebra BT

R
, to which

one adds uncountable intersections of the form

A =
⋂

u∈I

{
ξ(u) ∈ [a, b]} =

{
sup
u∈I

ξ(u) ≤ b, inf
u∈I

ξ(u) ≥ a
}
,

and extending the measure P to the extended σ -algebra using the equalities

P(A) = P
( ⋂

u∈I∩S

{ξ(u) ∈ [a, b]
)

,

where in the probability on the right-hand side we already have an element of BT
R

.
For separable processes, such sets as the set of all nondecreasing functions, the

sets C(T ), D(T ) and so on, are events. Processes from C(T ) or D(T ) are automat-
ically separable. And vice versa, if a process is separable and admits a continuous
modification (modification from D(T )) then it will be continuous (belong to D(T ))
itself. Indeed, if η is a continuous modification of ξ then

P
(
ξ(t) = η(t) for all t ∈ S

) = 1.

From this and (18.2.6) we obtain

P
(

lim sup
u→t
u∈S

η(u) ≥ ξ(t) ≥ lim inf
u→t
u∈S

η(u) for all t ∈ T
)

= 1.

Since lim supu→t η(u) = lim infu→t η(u) = η(t), one has

P
(
ξ(t) = η(t) for all t ∈ T

) = 1.

In Example 18.1.1, the process ξ1(t) is clearly not separable. The process ξ0(t)

is a separable modification of ξ1(t).
As well as pathwise continuity, there is one more way of characterising the con-

tinuity of a random process.

Definition 18.2.2 A random process ξ(t) is said to be stochastically continuous if,
for all t ∈ T , as h → 0,

ξ(t + h)
p→ ξ(t)

(
P
(∣∣ξ(t + h) − ξ(t)

∣∣ > ε
) → 0

)
.

Here we deal with the two-dimensional distributions of ξ(t) only.
It is clear that all processes with continuous trajectories are stochastically con-

tinuous. But not only them. The discontinuous processes from Examples 18.1.1
and 18.2.2 are also stochastically continuous. A discontinuous process is not
stochastically continuous if, for a (random) discontinuity point τ (ξ(τ + 0) 
=
ξ(τ − 0)), the probability P(τ = t0) is positive for some fixed point t0.

Definition 18.2.3 A process ξ(t) is said to be continuous in mean of order r (in
mean when r = 1; in mean quadratic when r = 2) if, for all t ∈ T , as h → 0,

ξ(t + h)
(r)−→ ξ(t) or, which is the same, E

∣∣ξ(t + h) − ξ(t)
∣∣r → 0.
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The discontinuous process ξ(t) from Example 18.2.2 is continuous in mean of
any order. Therefore the continuity in mean and stochastic continuity do not say
much about the pathwise properties (they only say that a jump in a neighbour-
hood of any fixed point t is unlikely). As Kolmogorov’s theorem shows, in or-
der to characterise the properties of trajectories, one needs quantitative bounds for
E|ξ(t + h) − ξ(t)|r or for P(|ξ(t + h) − ξ(t)| > ε).

Continuity theorems for moments imply that, for a stochastically continuous pro-
cess ξ(t) and any continuous bounded function g(x), the function Eg(ξ(t)) is con-
tinuous. This assertion remains valid if we replace the boundedness of g(x) with the
condition that

sup
t

E
∣∣g

(
ξ(t)

)∣∣α < ∞ for some α > 1.

The consequent Chaps. 19, 21 and 22 will be devoted to studying random pro-
cesses which can be given by specifying the explicit form of their finite-dimensional
distributions. To this class belong:

1. Processes with independent increments.
2. Markov processes.
3. Gaussian processes.

In Chap. 22 we will also consider some problems of the theory of processes with
finite second moments. Chapter 20 contains limit theorems for random processes
generated by partial sums of independent random variables.
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