
Chapter 17
Stochastic Recursive Sequences

Abstract The chapter begins with introducing the concept of stochastic random se-
quences in Sect. 17.1. The idea of renovating events together with the key results
on ergodicity of stochastic random sequences and the boundedness thereof is pre-
sented in Sect. 17.2, whereas the Loynes ergodic theorem for the case of monotone
functions specifying the recursion is proved in Sect. 17.3. Section 17.4 establishes
ergodicity conditions for contracting in mean Lipschitz transformations.

17.1 Basic Concepts

Consider two measurable state spaces 〈X,BX〉 and 〈Y,BY〉, and let {ξn} be a
sequence of random elements taking values in Y. If 〈Ω,F,P〉 is the underlying
probability space, then {ω : ξk ∈ B} ∈ F for any B ∈ BY . Assume, moreover,
that a measurable function f : X × Y → X is given on the measurable space
〈X × Y,BX × BY 〉, where BX × BY denotes the σ -algebra generated by sets
A × B with A ∈ BX and B ∈BY .

For simplicity’s sake, by X and Y we can understand the real line R, and by BX,
BY the σ -algebras of Borel sets.

Definition 17.1.1 A sequence {Xn}, n = 0,1, . . . , taking values in 〈X,BX〉 is said
to be a stochastic recursive sequence (s.r.s.) driven by the sequence {ξn} if Xn satis-
fies the relation

Xn+1 = f (Xn, ξn) (17.1.1)

for all n ≥ 0. For simplicity’s sake we will assume that the initial state X0 is inde-
pendent of {ξn}.

The distribution of the sequence {Xn, ξn} on 〈(X × Y)∞, (BX × BY )∞〉 can be
constructed in an obvious way from finite-dimensional distributions similarly to the
manner in which we constructed on 〈X∞,B∞

X 〉 the distribution of a Markov chain X

with values in 〈X,BX〉 from its transition function P(x,B) = P(X1(x) ∈ B). The
finite-dimensional distributions of {(X0, ξ0), . . . , (Xk, ξk)} for the s.r.s. are given by
the relations
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P(Xl ∈ Al, ξl ∈ Bl; l = 0, . . . , k)

=
∫

B0

· · ·
∫

Bk

P(ξl ∈ dyl, l = 0, . . . , k)

k∏
l=1

I
(
fl(X0, y0, . . . , yl) ∈ Al

)
,

where f1(x, y0) := f (x, y0), fl(x, y0, . . . , yl) := f (fl−1(x, y0, . . . , yl−1), yl).
Without loss of generality, the sequence {ξn} can be assumed to be given for all

−∞ < n < ∞ (as we noted in Sect. 16.1, for a stationary sequence, the required
extension to n < 0 can always be achieved with the help of Kolmogorov’s theorem).

A stochastic recursive sequence is a more general object than a Markov chain. It
is evident that if ξk are independent, then the Xn form a Markov chain. A stronger
assertion is true as well: under broad assumptions about the space 〈X ,BX 〉, for any
Markov chain {Xn} in 〈X,BX〉 one can construct a function f and a sequence of
independent identically distributed random variables {ξn} such that (17.1.1) holds.
We will elucidate this statement in the simplest case when both X and Y coincide
with the real line R. Let P(x,B), B ∈ B, be the transition function of the chain
{Xn}, and Fx(t) = P(x, (−∞, t)) the distribution function of X1(x) (X0 = x). Then
if F−1

x (t) is the function inverse (in t ) to Fx(t) and α ⊂= U0,1 is a random variable,
then, as we saw before (see e.g. Sect. 6.2), the random variable F−1

x (α) will have the
distribution function Fx(t). Therefore, if {αn} is a sequence of independent random
variables uniformly distributed over [0,1], then the sequence Xn+1 = F−1

Xn
(αn) will

have the same distribution as the original chain {Xn}. Thus the Markov chain is an
s.r.s. with the function f (x, y) = F−1

x (y) and driving sequence {αn}, αn ⊂= U0,1.
For more general state spaces X , a similar construction is possible if the σ -

algebra BX is countably-generated (i.e. is generated by a countable collection of
sets from X ). This is always the case for Borel σ -algebras in X = R

d , d ≥ 1 (see
[22]).

One can always consider f (·, ξn) as a sequence of random mappings of the space
X into itself. The principal problem we will be interested in is again (as in Chap. 13)
that of the existence of the limiting distribution of Xn as n → ∞.

In the following sections we will consider three basic approaches to this problem.

17.2 Ergodicity and Renovating Events. Boundedness
Conditions

17.2.1 Ergodicity of Stochastic Recursive Sequences

We introduce the σ -algebras

F
ξ
l,n := σ {ξk; l ≤ k ≤ n},
F

ξ
n := σ {ξk; k ≤ n} = F

ξ
−∞,n,



17.2 Ergodicity and Renovating Events. Boundedness Conditions 509

F
ξ := σ {ξk;−∞ < k < ∞} = F

ξ
−∞,∞.

In the sequel, for the sake of definiteness and simplicity, we will assume the initial
value X0 to be constant unless otherwise stated.

Definition 17.2.1 An event A ∈ F
ξ
n+m, m ≥ 0, is said to be renovating for the s.r.s.

{Xn} on the segment [n,n+m] if there exists a measurable function g : Ym+1 →X
such that, on the set A (i.e. for ω ∈ A),

Xn+m+1 = g(ξn, . . . , ξn+m). (17.2.1)

It is evident that, for ω ∈ A, relations of the form Xn+m+k+1 = gk(ξn, . . . , ξn+m+k)

will hold for all k ≥ 0, where gk is a function depending on its arguments only and
determined by the event A.

The sequence of events {An}, An ∈ F
ξ
n+m, where the integer m is fixed, is said

to be renovating for the s.r.s. {Xn} if there exists an integer n0 ≥ 0 such that, for
n ≥ n0, one has relation (17.2.1) for ω ∈ An, the function g being common for all n.

We will be mainly interested in “positive” renovating events, i.e. renovating
events having positive probabilities P(An) > 0.

The simplest example of a renovating event is the hitting by the sequence Xn of
a fixed point x0 : An = {Xn = x0} (here m = 0), although such an event could be of
zero probability. Below we will consider a more interesting example.

The motivation behind the introduction of renovating events is as follows. After
the trajectory {Xk, ξk}, k ≤ n+m, has entered a renovating set A ∈ F

ξ
n+m, the future

evolution of the process will not depend on the values {Xk}, k ≤ n + m, but will be
determined by the values of ξk, ξk+1, . . . only. It is not a complete “regeneration” of
the process which we dealt with in Chap. 13 while studying Markov chains (first of
all, because the ξk are now, generally speaking, dependent), but it still enables us
to establish ergodicity of the sequence Xn (in approximately the same sense as in
Chap. 13).

Note that, generally speaking, the event A and hence the function g may depend
on the initial value X0. If X0 is random then a renovating event is to be taken from
the σ -algebra F

ξ
n+m × σ(X0).

In what follows it will be assumed that the sequence {ξn} is stationary. The sym-
bol U will denote the measure preserving shift transformation of Fξ -measurable ran-
dom variables generated by {ξn}, so that Uξn = ξn+1, and the symbol T will denote
the shift transformation of sets (events) from the σ -algebra Fξ : ξn+1(ω) = ξn(T ω).
The symbols Un and T n, n ≥ 0, will denote the powers (iterations) of these transfor-
mations respectively (so that U1 = U , T 1 = T ; U0 and T 0 are identity transforma-
tions), while U−n and T −n are transformations inverse to Un and T n, respectively.

A sequence of events {Ak} is said to be stationary if Ak = T kA0 for all k.

Example 17.2.1 Consider a real-valued sequence

Xn+1 = (Xn + ξn)
+, X0 = const ≥ 0, n ≥ 0, (17.2.2)
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where x+ = max(0, x) and {ξn} is a stationary metric transitive sequence. As we
already know from Sect. 12.4, the sequence {Xn} describes the dynamics of waiting
times for customers in a single-channel service system. The difference is that in
Sect. 12.4 the initial value has subscript 1 rather than 0, and that now the sequence
{ξn} has a more general nature. Furthermore, it was established in Sect. 12.4 that
Eq. (17.2.2) has the solution

Xn+1 = max(Sn,n,X0 + Sn), (17.2.3)

where

Sn :=
n∑

k=0

ξk, Sn,k := max
−1≤j≤k

Sn,j , Sn,j :=
n∑

k=n−j

ξk, Sn,−1 := 0

(17.2.4)
(certain changes in the subscripts in comparison to (17.2.4) are caused by different
indexing of the initial values). From representation (17.2.3) one can see that the
event

Bn := {X0 + Sn ≤ 0, Sn,n = 0} ∈ F
ξ
n

implies the event {Xn+1 = 0} and so is renovating for m = 0, g(y) ≡ 0. If Xn+1 = 0
then

Xn+2 = g1(ξn, ξn+1) := ξ+
n+1, Xn+3 = g2(ξn, ξn+1, ξn+2) := (

ξ+
n+1 + ξn+2

)+
,

and so on do not depend on X0.
Now consider, for some n0 > 1 and any n ≥ n0, the narrower event

An :=
{
X0 + sup

j≥n0

Sn,j ≤ 0, Sn,∞ := sup
j≥−1

Sn,j = 0
}

(we assume that the sequence {ξn} is defined on the whole axis). Clearly, An ⊂ Bn ⊂
{Xn+1 = 0}, so An is a renovating event as well. But, unlike Bn, the renovating
event An is stationary: An = T nA0.

We assume now that Eξ0 < 0 and show that in this case P(A0) > 0 for sufficiently
large n0. In order to do this, we first establish that P(S0,∞ = 0) > 0. Since, by the

ergodic theorem, S0,j
a.s.−→ −∞ as j → ∞, we see that S0,∞ is a proper random

variable and there exists a v such that P(S0,∞ < v) > 0. By the total probability
formula,

0 < P(S0,∞ < v) =
∞∑

j=0

P
(
S0,j−1 < S0,j < v, sup

k≥j

(S0,k − S0,j ) = 0
)
.

Therefore there exists a j such that

P
(

sup
k≥j

(S0,k − S0,j ) = 0
)

> 0.
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But the supremum in the last expression has the same distribution as S0,∞. This

proves that p := P(S0,∞ = 0) > 0. Next, since S0,j
a.s.−→ −∞, one also has

supj≥k S0,j
a.s.−→ −∞ as k → ∞. Therefore, P(supj≥k S0,j < −X0) → 1 as k → ∞,

and hence there exists an n0 such that

P
(

sup
j≥n0

S0,j < −X0

)
> 1 − p

2
.

Since P(AB) ≥ P(A)+ P(B)− 1 for any events A and B , the aforesaid implies that
P(A0) ≥ p/2 > 0.

In the assertions below, we will use the existence of stationary renovating events
An with P(A0) > 0 as a condition insuring convergence of the s.r.s. Xn to a station-
ary sequence. However, in the last example such convergence can be established
directly. Let Eξ0 < 0. Then by (17.2.3), for any fixed v,

P(Xn+1 > v) = P(Sn,n > v) + P(Sn,n ≤ v,X0 + Sn > v),

where evidently

P(X0 + Sn > v) → 0, P(Sn,n > v) ↑ P(S0,∞ > v)

as n → ∞. Hence the following limit exists

lim
n→∞ P(Xn > v) = P(S0,∞ > v). (17.2.5)

Recall that in the above example the sequence of events An becomes renovating
for n ≥ n0. But we can define other renovating events Cn along with a number m

and function g : R
m+1 →R as follows:

m := n0, Cn := T mAn, g(y0, . . . , ym) := 0.

The events Cn ∈ F
ξ
n+m are renovating for {Xn} on the segment [n,n + m] for all

n ≥ 0, so in this case the n0 in the definition of a renovating sequence will be equal
to 0.

A similar argument can also be used in the general case for arbitrary renovat-
ing events. Therefore we will assume in the sequel that the number n0 from the
definition of renovating events is equal to zero.

In the general case, the following assertion is valid.

Theorem 17.2.1 Let {ξn} be an arbitrary stationary sequence and for the s.r.s. {Xn}
there exists a sequence of renovating events {An} such that

P

(
n⋃

j=1

AjT
−sAj+s

)
→ 1 as n → ∞ (17.2.6)
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uniformly in s ≥ 1. Then one can define, on a common probability space with {Xn},
a stationary sequence {Xn := UnX0} satisfying the equations Xn+1 = f (Xn, ξn)

and such that

P
{
Xk = Xk for all k ≥ n

} → 1 as n → ∞. (17.2.7)

If the sequence {ξn} is metric transitive and the events An are stationary, then the
relations P(A0) > 0 and P(

⋃∞
n=0 An) = 1 are equivalent and imply (17.2.6) and

(17.2.7).

Note also that if we introduce the measure π(B) = P(X0 ∈ B) (as we did in
Chap. 13), then (17.2.7) will imply convergence in total variation:

sup
B∈BX

∣∣P(Xn ∈ B) − π(B)
∣∣ → 0 as n → ∞.

Proof of Theorem 17.2.1 First we show that (17.2.6) implies that

P

( ∞⋂
k=0

{
Xn+k �= U−sXn+k+s

}) → 0 as n → ∞ (17.2.8)

uniformly in s ≥ 0. For a fixed s ≥ 1, consider the sequence Xs
j = U−sXs+j . It is

defined forj ≥ −s, and

Xs−s = X0, Xs
−s+1 = f

(
Xs−s , ξ−s

) = f (X0, ξ−s)

and so on. It is clear that the event
{
Xj = Xs

j for some j ∈ [0, n]}

implies the event {
X + n + k = Xs

n+k for all k ≥ 0
}
.

We show that

P

(
n⋃

j=1

{
Xj = Xs

j

}) → 1 as n → ∞.

For simplicity’s sake put m = 0. Then, for the event Xj+1 = Xs
j+1 to occur, it suf-

fices that the events Aj and T −sAj+s occur simultaneously. In other words,

n−1⋃
j=0

AjT
−sAj+s ⊂

n⋃
j=1

{
Xj = Xs

j

} ⊂
∞⋂

k=0

{
Xn+k = Xs

n+k

}
.

Therefore (17.2.6) implies (17.2.8) and convergence

P
(
Xn

k �= Xn+s
k

) → 0 as n → ∞
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uniformly in k ≥ 0 and s ≥ 0. If we introduce the metric ρ putting ρ(x, y) := 1 for
x �= y, ρ(x, x) = 0, then the aforesaid means that, for any δ > 0, there exists an N

such that

P
(
ρ
(
Xn

k ,Xn+s
k

)
> δ

) = P
(
ρ
(
Xn

k ,Xn+s
k

) �= 0
)
< δ

for n ≥ N and any k ≥ 0, s ≥ 0, i.e. Xn
k is a Cauchy sequence with respect to conver-

gence in probability for each k. Because any space X is complete with such a metric,

there exists a random variable Xk such that Xn
k

p−→ Xk as n → ∞ (see Lemma 4.2).
Due to the specific nature of the metric ρ this means that

P
(
Xn

k �= Xk
) → 0 as n → ∞. (17.2.9)

The sequence Xk is stationary. Indeed, as n → ∞,

P
(
Xk+1 �= UXk

) = P
(
Xn

k+1 �= UXn
k

) + o(1) = P
(
Xn

k+1 �= Xn−1
k+1

) + o(1) = o(1).

Since the probability P(Xk+1 �= UXk) does not depend on n, Xk+1 = UXk a.s.
Further, Xn+k+1 = f (Xn+k, ξn+k), and therefore

Xn
k+1 = U−nf (Xn+k, ξn+k) = f

(
Xn

k , ξk

)
. (17.2.10)

The left and right-hand sides here converge in probability to Xk+1 and f (Xk, ξk),
respectively. This means that Xk+1 = f (Xk, ξk).

To prove convergence (17.2.7) it suffices to note that, by virtue of (17.2.10), the
values Xn

k and Xk , after having become equal for some k, will never be different for
greater values of k. Therefore, as well as (17.2.9) one has the relation

P

( ⋃
k≥0

{
Xn

k �= Xk
}) = P

( ⋃
k≥0

{
Xk+n �= Xk+n

}) → 0 as n → ∞,

which is equivalent to (17.2.7).
The last assertion of the theorem follows from Theorem 16.2.5. The theorem is

proved. �

Remark 17.2.1 It turns out that condition (17.2.6) is also a necessary one for con-
vergence (17.2.7) (see [6]). For more details on convergence of stochastic recursive
sequences and their generalisations, and also on the relationship between (17.2.6)
and conditions (I) and (II) from Chap. 13, see [6].

In Example 17.2.1 the sequence Xk was actually found in an explicit form (see
(17.2.3) and (17.2.5)):

Xk = Sk,−∞ = sup
j≥0

S
j

k−1. (17.2.11)
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These random variables are proper by Corollary 16.3.1. It is not hard to also see
that, for X0 = 0, one has (see (17.2.3))

U−1Xn+k ↑ Xk. (17.2.12)

17.2.2 Boundedness of Random Sequences

Consider now conditions of boundedness of an s.r.s. in spaces X = [0,∞) and
X = (−∞,∞). Assertions about boundedness will be stated in terms of existence
of stationary majorants, i.e. stationary sequences Mn such that

Xn ≤ Mn for all n.

Results of this kind will be useful for constructing stationary renovating sequences.
Majorants will be constructed for a class of random sequences more general than

stochastic recursive sequences. Namely, we will consider the class of random se-
quences satisfying the inequalities

Xn+1 ≤ (
Xn + h(Xn, ξn)

)+
, (17.2.13)

where the measurable function h will in turn be bounded by rather simple functions
of Xn and ξn. The sequence {ξn} will be assumed given on the whole axis.

Theorem 17.2.2 Assume that there exist a number N > 0 and a measurable func-
tion g1 with Eg1(ξn) < 0 such that (17.2.13) holds with

h(x, y) ≤
{

g1(y) for x > N,

g1(y) + N − x for x ≤ N.
(17.2.14)

If X0 ≤ M < ∞, then the stationary sequence

Mn = max(M,N) + sup
j≥−1

Sn−1,j , (17.2.15)

where Sn,−1 = 0 and Sk,j = g1(ξk)+· · ·+g1(ξk−j ) for j ≥ 0, is a majorant for Xn.

Proof For brevity’s sake, put ζi := g1(ξi), Z := max(M,N), and Zn := Xn − Z.
Then Zn will satisfy the following inequalities:

Zn+1 ≤
{

(Zn + Z + ζn)
+ − Z ≤ (Zn + ζn)

+ for Zn > N − Z,

(N + ζn)
+ − Z ≤ ζ+

n for Zn ≤ N − Z.

Consider now a sequence {Yn} defined by the relations Y0 = 0 and

Yn+1 = (Yn + ζn)
+.
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Assume that Zn ≤ Yn. If Zn > N − Z then

Zn+1 ≤ (Zn + ζn)
+ ≤ (Yn + ζn)

+ = Yn+1.

If Zn ≤ N − Z then

Zn+1 ≤ ζ+
n ≤ (Yn + ζn)

+ = Yn+1.

Because Z0 ≤ 0 = Y0, it is evident that Zn ≤ Yn for all n. But we know the solution
of the equation for Yn and, by virtue of (17.2.11) and (17.2.13),

Xn − Z ≤ sup
j≥−1

Sn−1,j .

The theorem is proved. �

Theorem 17.2.2A Assume that there exist a number N > 0 and measurable func-
tions g1 and g2 such that

Eg1(ξn) < 0, Eg2(ξn) < 0 (17.2.16)

and

h(x, y) ≤
{

g1(y) for x > N,

g1(y) + g2(y) for x ≤ N.
(17.2.17)

If Z0 ≤ M < ∞, then the conditions of Theorem 17.2.2 are satisfied (possibly for
other N and g1) and for Xn there exists a stationary majorant of the form (17.2.15).

Proof We set g := −Eg1(ξn) > 0 and find L > 0 such that E(g2(ξn); g2(ξn) > L) ≤
g/2. Introduce the function

g∗
1(y) := g1(y) + g2(y)I

(
g2(y) > L

)
.

Then Eg∗
1(ξn) ≤ −g/2 < 0 and

h(x, y) ≤ g1(y) + g2(y)I(x ≤ N)

≤ g∗
1(y) + g2(y)I(x ≤ N) − g2(y)I

(
g2(y) > L

)
≤ g∗

1(y) + LI(x ≤ N) ≤ g∗
1(y) + (L + N − x)I(x ≤ N)

≤ g∗
1(y) + (L + N − x)I(x ≤ L + N).

This means that inequalities (17.2.14) hold with N replaced with N∗ = N + L.
The theorem is proved. �

Note again that in Theorems 17.2.2 and 17.2.2A we did not assume that {Xn} is
an s.r.s.
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The reader will notice the similarity of the conditions of Theorems 17.2.2 and
17.2.2A to the boundedness condition in Sect. 15.5, Theorem 13.7.3 and Corol-
lary 13.7.1.

The form of the assertions of Theorems 17.2.2 and 17.2.2A enables one to con-
struct stationary renovating events for a rather wide class of nonnegative stochastic
recursive sequences (so that X = [0,∞)) having, say, a “positive atom” at 0. It is
convenient to write such sequences in the form

Xn+1 = (
Xn + h(Xn, ξn)

)+
. (17.2.18)

Example 17.2.2 Let an s.r.s. (see (17.1.1)) be described by Eq. (17.2.18) and satisfy
conditions (17.2.14) or (17.2.17), where the function h is sufficiently “regular” to
ensure that

Bn,T =
⋂
t≤T

{
h(t, ξn) ≤ −t

}

is an event for any T . (For instance, it is enough to require h(t, v) to have at most
a countable set of discontinuity points t . Then the set Bn,T can be expressed as
the intersection of countably many events

⋂
k{h(tk, ξn) ≤ −tk}, where {tk} form

a countable set dense on [0, T ].) Furthermore, let there exist an L > 0 such that

P(Mn < L,Bn,L) > 0 (17.2.19)

(Mn was defined in (17.2.15)). Then the event An = {Mn < L}Bn,L is clearly a
positive stationary renovating event with the function g(y) = (h(0, y))+, m = 0.
(On the set An ∈ F

ξ
n we have Xn+1 = 0, Xn+2 = h(0, ξn+1)

+ and so on.) Therefore,
an s.r.s. satisfying (17.2.18) satisfies the conditions of Theorem 17.2.1 and is ergodic
in the sense of assertion (17.2.7).

It can happen that, from a point t ≤ L, it would be impossible to reach the
point 0 in one step, but it could be done in m > 1 steps. If B is the set of sequences
(ξn, . . . , ξn+m) that effect such a transition, and P(Mn < L), then An = {Mn < L}B
will also be stationary renovating events.

17.3 Ergodicity Conditions Related to the Monotonicity of f

Now we consider ergodicity conditions for stochastic recursive sequences that are
related to the analytic properties of the function f from (17.1.1). As we already
noted, the sequence f (x, ξk), k = 1,2, . . . , may be considered as a sequence of
random transformations of the space X . Relation (17.1.1) shows that Xn+1 is the
result of the application of n + 1 random transformations f (·, ξk), k = 0,1, . . . , n,
to the initial value X0 = x ∈ X . Denoting by ξn+k

n the vector ξn+k
n = (ξn, . . . , ξn+k)
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and by fk the k-th iteration of the function f : f1(x, y1) = f (x, y1), f2(x, y1, y2) =
f (f (x, y1), y2) and so on, we can re-write (17.1.1) for X0 = x in the form

Xn+1 = Xn+1(x) = fn+1
(
x, ξn

0

)
,

so that the “forward” and “backward” equations hold true:

fn+1
(
x, ξn

0

) = f
(
fn

(
x, ξn−1

0

)
, ξn

) = fn

(
f (x, ξ0), ξ

n
1

)
. (17.3.1)

In the present section we will be studying stochastic recursive sequences for
which the function f from representation (17.1.1) is monotone in the first argu-
ment. To this end, we need to assume that a partial order relation “≥” is defined
in the space X . In the space X = R

d of vectors x = (x(1), . . . , x(d)) (or its sub-
spaces) the order relation can be introduced in a natural way by putting x1 ≥ x2 if
x1(k) ≥ x2(k) for all k.

Furthermore, we will assume that, for each non-decreasing sequence x1 ≤ x2 ≤
· · · ≤ xn ≤ . . . , there exists a limit x ∈ X , i.e. the smallest element x ∈ X for which
xk ≤ x for all k. In that case we will write xk ↑ x or limk→∞ xk = x. In X = R

d

such convergence will mean conventional convergence. To facilitate this, we will
need to complete the space R

d by adding points with infinite components.

Theorem 17.3.1 (Loynes) Suppose that the transformation f = f (x, y) and space
X satisfy the following conditions:

(1) there exists an x0 ∈X such that f (x0, y) ≥ x0 for all y ∈ Y ;
(2) the function f is monotone in the first argument: f (x1, y) ≥ f (x2, y) if x1 ≥ x2;
(3) the function f is continuous in the first argument with respect to the above

convergence: f (xn, y) ↑ f (x, y) if xn ↑ x.

Then there exists a stationary random sequence {Xn} satisfying Eq. (17.1.1):
Xn+1 = UXn = f (Xn, ξn), such that

U−nXn+s(x)) ↑ Xs as n → ∞, (17.3.2)

where convergence takes place for all elementary outcomes.

Since the distributions of Xn and U−nXn coincide, in the case where conver-
gence of random variables ηn ↑ η means convergence (in a certain sense) of their
distributions (as is the case when X = R

d ), Theorem 17.2.1 also implies conver-
gence of the distributions of Xn to that of X0 as n → ∞.

Remark 17.3.1 A substantial drawback of this theorem is that it holds only for a
single initial value X0 = x0. This drawback disappears if the point x0 is accessible
with probability 1 from any x ∈ X , and ξk are independent. In that case x0 is likely
to be a positive atom, and Theorem 13.6.1 for Markov chains is also applicable.
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The limiting sequence Xs in (17.3.2) can be “improper” (in spaces X = R
d it

may assume infinite values). The sequence Xs will be proper if the s.r.s. Xn satisfies,
say, the conditions of the theorems of Sect. 15.5 or the conditions of Theorem 17.2.2.

Proof of Theorem 17.3.1 Put

v−k
s := fk+s

(
x0, ξ

s−1
−k

) = U−kfk+s

(
x0, ξ

s+k−1
0

) = U−kXk+s(x0).

Here the superscript −k indicates the number of the element of the driving sequence
{ξn}∞n=−∞ such that the elements of this sequence starting from that number are used
for constructing the s.r.s. The subscript s is the “time epoch” at which we observe
the value of the s.r.s. From the “backward” equation in (17.3.1) we get that

v−k−1
s = fk+s

(
f (x0, ξ−k−1), ξ

s−1
−k

) ≥ fk+s

(
x0, ξ

s−1
−k

) = v−k
s .

This means that the sequence v−k
s increases as k grows, and therefore there exists a

random variable Xs ∈X such that

v−k
s = U−kXk+s(x0) ↑ Xs as k → ∞.

Further, v−k
s is a function of ξ s−1

−k . Therefore, Xs is a function of ξ s−1−∞ :

Xs = G
(
ξ s−1−∞

)
.

Hence

UXs = UG
(
ξ s−1−∞

) = G
(
ξ s−∞

) = Xs+1,

which means that {Xs} is stationary. Using the “forward” equation from (17.3.1),
we obtain that

v−k−1
s = f

(
fk+s

(
x0, ξ

s−2
−k−1

)
, ξs−1

) = f
(
v−k−1
s−1 , ξs−1

)
.

Passing to the limit as k → ∞ gives, since f is continuous, that

Xs = f
(
Xs−1, ξs−1

)
.

The theorem is proved. �

Example 17.2.1 clearly satisfies all the conditions of Theorem 17.3.1 with X =
[0,∞), x0 = 0, and f (x, y) = (x + y)+.

17.4 Ergodicity Conditions for Contracting in Mean Lipschitz
Transformations

In this section we will assume that X is a complete separable metric space with
metric ρ. Consider the following conditions on the iterations Xk(x) = fk(x, ξk−1

0 ).
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Condition (B) (boundedness). For some x0 ∈ X and any δ > 0, there exists an
N = Nδ such that, for all n ≥ 1,

P
(
ρ
(
x0,Xn(x0) > N

)) = P
(
ρ
(
x0, fn

(
x0, ξ

n−1
0

))
> N

)
< δ.

It is not hard to see that condition (B) holds (possibly with a different N ) as soon as
we can establish that, for some m ≥ 1, the above inequality holds for all n ≥ m.

Condition (B) is clearly met for stochastic random sequences satisfying the con-
ditions of Theorems 17.2.2 and 17.2.2A or the theorems of Sect. 15.5.

Condition (C) (contraction in mean). The function f is continuous in the first
argument and there exist m ≥ 1, β > 0 and a measurable function q : Rm → R such
that, for any x1 and x2,

ρ
(
fm

(
x1, ξ

m−1
0

)
, fm

(
x2, ξ

m−1
0

)) ≤ q
(
ξm−1

0

)
ρ(x1, x2),

m−1E lnq
(
ξm−1

0

) ≤ −β < 0.

Observe that conditions (B) and (C) are, generally speaking, not related to each
other. Let, for instance, X = R, X0 ≥ 0, ξn ≥ 0, ρ(x, y) = |x − y|, and f (x, y) =
bx + y, so that

Xn+1 = bXn + ξn.

Then condition (C) is clearly satisfied for 0 < b < 1, since

∣∣f (x1, y) − f (x2, y)
∣∣ = b|x1 − x2|.

At the same time, condition (B) will be satisfied if and only if E ln ξ0 < ∞. Indeed, if
E ln ξ0 = ∞, then the event {ln ξk > −2k lnb} occurs infinitely often a.s. But Xn+1

has the same distribution as

bn+1X0 +
n∑

k=0

bkξk = bn+1X0 +
n∑

k=0

exp{k lnb + ln ξk},

where, in the sum on the right-hand side, the number of terms exceeding exp{−k lnb}
increases unboundedly as n grows. This means that X(n+ 1)

p→ ∞ as n → ∞. The
case E ln ξ0 < ∞ is treated in a similar way. The fact that (B), generally speaking,
does not imply (C) is obvious.

As before, we will assume that the “driving” stationary sequence {ξn}∞n=−∞ is
given on the whole axis. Denote by U the respective distribution preserving shift
operator.

Convergence in probability and a.s. of a sequence of X -valued random vari-

ables ηn ∈ X (ηn
p−→ η, ηn

a.s.−→ η) is defined in the natural way by the rela-
tions P(ρ(ηn, η) > δ) → 0 as n → ∞ and P(ρ(ηk, η) > δ for some k ≥ n) → 0
as n → ∞ for any δ > 0, respectively.
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Theorem 17.4.1 Assume that conditions (B) and (C) are met. Then there exists a
stationary sequence {Xn} satisfying (17.1.1):

Xn+1 = UXn = f
(
Xn, ξn

)

such that, for any fixed x,

U−nXn+s(x)
a.s.−→ Xs as n → ∞. (17.4.1)

This convergence is uniform in x over any bounded subset of X .

Theorem 17.2.2 implies the weak convergence, as n → ∞, of the distributions
of Xn(x) to that of X0. Condition (B) is clearly necessary for ergodicity. As the
example of a generalised autoregressive process below shows, condition (C) is also
necessary in some cases.

Set Yn := UnXn(x0), where x0 is from condition (B). We will need the following
auxiliary result.

Lemma 17.4.1 Assume that conditions (B) and (C) are met and the stationary se-
quence {q(ξkm+m−1

km )}∞k=−∞ is ergodic. Then, for any δ > 0, there exists an nδ such
that, for all k ≥ 0,

sup
k≥0

P
(
ρ(Yn+k, Yn) < δ for all n ≥ nδ

) ≥ 1 − δ. (17.4.2)

For ergodicity of {q(ξkm+m−1)}∞k=−∞ it suffices that the transformation T m is met-
ric transitive.

The lemma means that, with probability 1, the distance ρ(Yn+k, Yn) tends to zero
uniformly in k as n → ∞. Relation (17.4.2) can also be written as P(Aδ) ≤ δ, where

Aδ :=
⋃
n≥nδ

{
ρ(Yn+k, Yn) ≥ δ

}
.

Proof of Lemma 17.4.1 By virtue of condition (B), there exists an N = Nδ such
that, for all k ≥ 1,

P
(
ρ
(
x0,Xk(x0)

)
> N

) ≤ δ

4
.

Hence

P(Aδ) ≤ δ/3 + P
(
Aδ;ρ(x0, θn,k) ≤ N

)
.

The random variable θn,k := U−n−kXk(x0) has the same distribution as Xk(x0).
Next, by virtue of (C),

ρ(Yn+k, Yn) ≤ ρ
(
fn+k

(
x0, ξ

−1
−n−k

)
, fn

(
x0, ξ

−1−n

))
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≤ q
(
ξ−1−m

)
ρ
(
fn+k−m

(
x0, ξ

−m−1
−n−k

)
, fn−m

(
x0, ξ

−m−1−n

))

= q
(
ξ−1−m

)
ρ
(
U−n−kXn+k−m(x0),U

−nXn−m(x0)
)
. (17.4.3)

Denote by Bs the set of numbers n of the form n = lm + s, l = 0,1,2, . . . ,
0 ≤ s < m, and put

λj := lnq
(
ξ

−jm+m−1
−jm

)
, j = 1,2, . . . .

Then, for n ∈ Bs , we obtain from (17.4.3) and similar relations that

ρ(Yn+k, Yn) ≤ exp

{
l∑

j=1

λj

}
ρ
(
U−n−kXk+s(x0),U

−nXs(x0)
)
, (17.4.4)

where the last factor (denote it just by ρ) is bounded from above:

ρ ≤ ρ
(
x0,U

−n−kXk+s(x0)
) + ρ

(
x0,U

−nXs(x0)
)
.

The random variables U−nXj (x0) have the same distribution as Xj(x0). By virtue
of (B), there exists an N = Nδ such that, for all j ≥ 1,

P
(
ρ
(
x0,Xj (x0)

)
> N

) ≤ δ

4m
.

Hence, for all n, k and s, we have P(ρ > 2N) < δ/(2m), and the right-hand side
of (17.4.4) does not exceed 2N exp{∑l

j=1 λj } on the complement set {ρ ≤ 2N}.
Because Eλj ≤ −mβ < 0 and the sequence {λj } is metric transitive, by the er-

godic Theorem 16.3.1 we have

l∑
j=1

λj < −mβl/2

for all l ≥ l(ω), where l(ω) is a proper random variable. Choose l1 and l2 so that the
inequalities

−mβl1

2
< ln δ − ln 2N, P

(
l(ω) > l2

)
<

δ

2
hold. Then, putting

lδ := max(l1, l2), nδ := mlδ, As
δ :=

⋃
n≥nδ, n∈Bs

{
ρ(Yn+k, Yn) ≥ δ

}
,

we obtain that

P
(
As

δ

) ≤ P(ρ > 2N)+P
(
As

δ;ρ ≤ N
) ≤ δ

2m
+P

( ⋃
l≥lδ

{
2N exp

{
−

l∑
j=0

λj

}
≥ δ

})
.
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But the intersection of the events from the term with {lδ ≥ l(ω)} is empty. Therefore,
the former event is a subset of the event {l(ω) > lδ}, and

P
(
As

δ

) ≤ δ

m
, P(Aδ) ≤

m−1∑
s=0

P
(
As

δ

) ≤ δ.

The lemma is proved. �

Lemma 17.4.2 (Completeness of X with respect to convergence in probability) Let
X be a complete metric space. If a sequence of X -valued random elements ηn is
such that, for any δ > 0,

Pn := sup
k≥0

P
(
ρ(ηn+k, ηn) > δ

) → 0

as n → ∞, then there exists a random element η ∈ X such that η
p→ η (that is,

P(ρ(ηn, η) > δ) → 0 as n → ∞).

Proof For given ε and δ choose nk , k = 0,1, . . . , such that

sup
s

P
(
ρ(ηnk+s , ηnk

) > 2−kδ
)
< ε2−k,

and, for the sake of brevity, put ζk := ηnk
. Consider the set

D :=
∞⋂

k=0

Dk, Dk := {
ω ρ(ζk+1, ζk) ≤ 2−kδ

}
.

Then P(D) > 1 − 2ε and, for any ω ∈ D, one has ρ(ζk+s(ω), ζk(ω)) < δ2k−1 for
all s ≥ 1. Hence ζk(ω) is a Cauchy sequence in X and there exists an η = η(ω) ∈X
such that ζk(ω) → η(ω). Since ε is arbitrary, this means that ζk

a.s.−→ η as k → ∞,
and

P
(
ρ(ζ0, η) > 2δ

) ≤ P

( ∞⋃
k=0

ρ(ζk+1, ζk) > 2−kδ

)

≤
∞∑

k=0

P
(
ρ(ζk+1, ζk) > 2−kδ

) ≤ 2ε.

Therefore, for any n ≥ n0,

P
(
ρ(ηn, η) > 3δ

) ≤ P
(
ρ(ηn, ηn0) > δ

) + P
(
ρ(ζ0, η) > 2δ

) ≤ 3ε.

Since ε and δ are arbitrary, the lemma is proved. �
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Proof of Theorem 17.4.1 From Lemma 17.4.1 it follows that

sup
k

P
(
ρ(Yn+k, Yn) > δ

) → 0 as n → ∞.

This means that Yn is a Cauchy sequence with respect to convergence in probability,
and by Lemma 17.4.2 there exists a random variable X0 such that

Yn
p−→ X0,

U−nXn+s(x0) = Us
(
U−n−sXn+s(x0)

) = UsYn+s → UsX0 ≡ Xs.
(17.4.5)

By continuity of f ,

U−nXn+s+1(x0) = U−nf
(
Xn+s(x0), ξn+s

)

= f
(
U−nXn+s(x0), ξs

) p−→ f
(
Xs, ξs

) = Xs+1.

We proved the required convergence for a fixed initial value x0. For an arbitrary
x ∈ Cn = {z : ρ(x0, z) ≤ N}, one has

ρ
(
U−nXn(x),X0) ≤ ρ

(
U−nXn(x),U−nXn(x0)

) + ρ
(
U−nXn(x0),X

0), (17.4.6)

where the first term on the right-hand side converges in probability to 0 uniformly
in x ∈ CN . For n = lm this follows from the inequality (see condition (C))

ρ
(
U−nXn(x),U−nXn(x0)

) ≤ N exp

{
l∑

j=1

λj

}
(17.4.7)

and the above argument. Similar relations hold for n = lm + s, m > s > 0. This,
together with (17.4.5) and (17.4.6), implies that

U−nXn+s(x)
p−→ Xs = UsX0

uniformly in x ∈ CN . This proves the assertion of the theorem in regard to conver-
gence in probability.

We now prove convergence with probability 1. To this end, one should repeat
the argument proving Lemma 17.4.1, but bounding ρ(X0,U−nXn(x)) rather than
ρ(Yn+k, Yn). Assuming for simplicity’s sake that s = 0 (n is a multiple of m), we
get (similarly to (17.4.4)) that, for any x,

ρ
(
X0,U−nXn(x)

) ≤ ρ
(
x,U−nX0) exp

{
l∑

j=1

λj

}
. (17.4.8)

The rest of the argument of Lemma 17.4.1 remains unchanged. This implies that,
for any δ > 0 and sufficiently large nδ ,

P
( ⋃

n≥nδ

{
ρ
(
X0,U−nXn(x)

)
> δ

})
< δ.
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Theorem 17.4.1 is proved. �

Example 17.4.1 (Generalised autoregression) Let X = R. A generalised autoregres-
sion process is defined by the relations

Xn+1 = G
(
ζnF (Xn) + ηn

)
, (17.4.9)

where F and G are functions mapping R �→ R and ξn = (ζn, ηn) is a stationary
ergodic driving sequence, so that {Xn} is an s.r.s. with the function

f (x, y) = G
(
y1,F (x) + y2

)
, y = (y1, y2) ∈ Y = R

2.

If the functions F and G are nondecreasing and left continuous, G(x) ≥ 0 for all
x ∈ R, and the elements ζn are nonnegative, then the process (17.4.9) satisfies the
condition of Theorem 17.3.1, and therefore U−n+sXn(0) ↑ Xs with probability 1 (as
n → ∞). To establish convergence to a proper stationary sequence Xs , one has to
prove uniform boundedness in probability (in n) of the sequence Xn(0) (see below).

Now we will establish under what conditions the sequence (17.4.9) will satisfy
the conditions of Theorem 17.4.1. Suppose that the functions F and G satisfy the
Lipschitz condition:

∣∣G(x1) − G(x2)
∣∣ ≤ cG|x1 − x2|,

∣∣F(x1) − F(x2)
∣∣ ≤ cF |x1 − x2|.

Then

∣∣f (x1, ξ0) − f (x2, ξ0)
∣∣ ≤ cG

∣∣ζ0
(
F(x1) − F(x2)

)∣∣ ≤ cF cG|ζ0||x1 − x2|. (17.4.10)

Theorem 17.4.2 Under the above assumptions, the sequence (17.4.9) will satisfy
condition (C) if

ln cGcF + E ln |ζ0| < 0. (17.4.11)

The sequence (17.4.9) will satisfy condition (B) if (17.4.11) holds and, moreover,

E
(
ln |η0|

)+
< ∞. (17.4.12)

When (17.4.11) and (17.4.12) hold, the sequence (17.4.9) has a stationary majorant,
i.e. there exists a stationary sequence Mn (depending on X0) such that |Xn| ≤ Mn

for all n.

Proof That condition (C) for ρ(x1, x2) = |x1 − x2| follows from (17.4.10) is obvi-
ous. We prove (B). To do this, we will construct a stationary majorant for |Xn|. One
could do this using Theorems 17.2.2 and 17.2.2A. In our case, it is simpler to prove
it directly, making use of the inequalities

∣∣G(x)
∣∣ ≤ ∣∣G(0)

∣∣ + cG|x|, ∣∣F(x)
∣∣ ≤ ∣∣F(0)

∣∣ + cF |x|,
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where we assume, for simplicity’s sake, that G(0) and F(0) are finite. Then

|Xn+1| ≤
∣∣G(0)

∣∣ + cG|ζn| ·
∣∣F(Xn)

∣∣ + cG|ηn|
≤ ∣∣G(0)

∣∣ + cGcF |ζn| · |Xn| + cG|ζn| ·
∣∣F(0)

∣∣ + cG|ηn| = βn

∣∣X(n)
∣∣ + γn,

where

βn := cGcF |ζn| ≥ 0, γn := ∣∣G(0)
∣∣ + cG|ζn| ·

∣∣F(0)
∣∣ + cG|ηn|

E lnβn < 0, E(lnγn)
+ < ∞.

From this we get that, for X0 = x,

|Xn+1| ≤ |x|
n∏

j=0

βj +
n−1∑
l=0

(
n∏

j=n−l

βj

)
γn−l−1 + γn,

U−n|Xn+1| ≤ |x|
0∏

j=−n

βj +
∞∑
l=0

(
0∏

j=−l

βj

)
γ−l−1 + γ0.

(17.4.13)

Put

αi := lnβj , Sl :=
0∑

j=−l

αj .

By the strong law of large numbers, there are only finitely many positive values
Sl − al, where 2a = Eαj < 0. Therefore, for all l except for those with Sl − al > 0,

0∏
j=−l

βj < eal.

On the other hand, γ−l−1 exceeds the level l only finitely often. This means that the
series in (17.4.13) (denote it by R) converges with probability 1. Moreover,

S = sup
k≥0

Sk ≥ Sn

is a proper random variable. As result, we obtain that, for all n,

U−n|Xn+1| ≤ |x|eS + R + γ0,

where all the terms on the right-hand side are proper random variables. The required
majorant

Mn := Un−1(|x|eS + R + γ0
)

is constructed. This implies that (B) is met. The theorem is proved. �
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The assertion of Theorem 17.4.2 can be extended to the multivariable case
X =R

d , d > 1, as well (see [6]).
Note that conditions (17.4.11) and (17.4.12) are, in a certain sense, necessary not

only for convergence U−n+sXn(x) → Xs , but also for the boundedness of Xn(x)

(or of X0) only. This fact can be best illustrated in the case when F(t) ≡ G(t) ≡ t .
In that case, U−nXn+s+1(x) and Xs+1 admit explicit representations

U−nXn+s+1(x) = x

s∏
j=−n

ζj +
n+s∑
l=0

s∏
j=s−l

ζj ηs−l−1 + ηs,

Xs+1 =
∞∑
l=0

s∏
j=s−l

ζj ηs−l−1 + ηs.

Assume that E ln ζ ≥ 0, η ≡ 1, and put

s := 0, zj := ln ζj , Zl :=
0∑

j=−l

zj .

Then

X1 = 1 +
∞∑
l=0

eZl , where
∞∑
l=0

I(Zl ≥ 0) = ∞

with probability 1, and consequently X1 = ∞ and Xn → ∞ with probability 1.
If E[lnη]+ = ∞ and ζ = b < 1 then

X1 = η0 + b

∞∑
l=0

exp{y−l−1 + l lnb},

where yj = lnηj ; the event {y−l−1 > −l lnb} occurs infinitely often with probabil-
ity 1. This means that X1 = ∞ and Xn → ∞ with probability 1.
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