
Chapter 16
Stationary Sequences

Abstract Section 16.1 contains the definitions and a discussion of the concepts
of strictly stationary sequences and measure preserving transformations. It also
presents Poincaré’s theorem on the number of visits to a given set by a stationary se-
quence. Section 16.2 discusses invariance, ergodicity, mixing and weak dependence.
The Birkhoff–Khintchin ergodic theorem is stated and proved in Sect. 16.3.

16.1 Basic Notions

Let 〈Ω,F,P〉 be a probability space and ξ = (ξ0, ξ1, . . .) an infinite sequence of
random variables given on it.

Definition 16.1.1 A sequence ξ is said to be strictly stationary if, for any k, the
distribution of the vector (ξn, . . . , ξn+k) does not depend on n, n ≥ 0.

Along with the sequence ξ , consider the sequence (ξn, ξn+1, . . .). Since the finite-
dimensional distributions of these sequences (i.e. the distributions of the vectors
(ξm, . . . , ξm+k)) coincide, the distributions of the sequences will also coincide (one
has to make use of the measure extension theorem (see Appendix 1) or the Kol-
mogorov theorem (see Sect. 3.5). In other words, for a stationary sequence ξ , for
any n and B ∈B∞ (for notation see Sect. 3.5), one has

P(ξ ∈ B) = P
(
(ξn, ξn+1, . . .) ∈ B

)
.

The simplest example of a stationary sequence is given by a sequence of inde-
pendent identically distributed random variables ζ = (ζ0, ζ1, . . .). It is evident that
the sequence ξk = α0ζk + · · · + αsζk+s , k = 0,1,2, . . . , will also be stationary, but
the variables ξk will no longer be independent. The same holds for sequences of the
form

ξk =
∞∑

j=0

αj ζk+j ,

provided that E|ζj | < ∞,
∑ |αj | < ∞, or if Eζk = 0, Var(ζk) < ∞,

∑
α2

j < ∞ (the
latter ensures a.s. convergence of the series of random variables, see Sect. 10.2). In a
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similar way one can consider stationary sequences ξk = g(ζk, ζk+1, . . .) “generated”
by ζ , where g(x) is an arbitrary measurable functional R∞ �→R.

Another example is given by stationary Markov chains. If {Xn} is a real-valued
Markov chain with invariant measure π and transition probability P(·, ·) then the
chain {Xn} with X ⊂= π will form a stationary sequence, because the distribution

P(Xn ∈ B0, . . . ,Xn+k ∈ Bk) =
∫

B0

π(dx0)

∫

B1

P(x0, dx1) · · ·
∫

Bk

P (xk−1, dxk)

will not depend on n.
Any stationary sequence ξ = (ξ0, ξ1, . . .) can always be extended to a stationary

sequence ξ = (. . . ξ−1, ξ0, ξ1, . . .) given on the “whole axis”.
Indeed, for any n, −∞ < n < ∞, and k ≥ 0 define the joint distributions of

(ξn, . . . , ξn+k) as those of (ξ0, . . . , ξk). These distributions will clearly be consistent
(see Sect. 3.5) and by the Kolmogorov theorem there will exist a unique probabil-
ity distribution on R

∞−∞ = ∏∞
k=−∞ Rk with the respective σ -algebra such that any

finite-dimensional distribution is a projection of that distribution on the correspond-
ing subspace. It remains to take the random element ξ to be the identity mapping
of R∞−∞ onto itself.

In some of the subsequent sections it will be convenient for us to use stationary
sequences given on the whole axis.

Let ξ be such a sequence. Define a transformation θ of the space R∞−∞ onto itself
with the help of the relations

(θx)k = (x)k+1 = xk+1, (16.1.1)

where (x)k is the k-th component of the vector x ∈R
∞−∞, −∞ < k < ∞. The trans-

formation θ clearly has the following properties:
1. It is a one-to-one mapping, θ−1 is defined by

(
θ−1x

)
k
= xk−1.

2. The sequence θξ is also stationary, its distribution coinciding with that of ξ :

P(θξ ∈ B) = P(ξ ∈ B).

It is natural to call the last property of the transformation θ the “measure preserv-
ing” property.

The above remarks explain to some extent why historically exploring the prop-
erties of stationary sequences followed the route of studying measure preserving
transforms. Studies in that area constitute a substantial part of the modern analysis.
In what follows, we will relate the construction of stationary sequences to measure
preserving transformations, and it will be more convenient to regard the latter as
“primary” objects.

Definition 16.1.2 Let 〈Ω,F,P〉 be the basic probability space. A transformation T

of Ω into itself is said to be measure preserving if:
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(1) T is measurable, i.e. T −1A = {ω : T ω ∈ A} ∈ F for any A ∈ F; and
(2) T preserves the measure: P(T −1A) = P(A) for any A ∈ F.

Let T be a measure preserving transformation, T n its n-th iteration and ξ = ξ(ω)

be a random variable. Put Uξ(ω) = ξ(T ω), so that U is a transformation of random
variables, and Ukξ(ω) = ξ(T kω). Then

ξ = {
Unξ(ω)

}∞
0 = {

ξ
(
T nω

)}∞
0 (16.1.2)

is a stationary sequence of random variables.

Proof Indeed, let A = {ω; ξ ∈ B}, B ∈ B∞ and A1 = {ω : θξ ∈ B}. We have

ξ = (
ξ(ω), ξ(T ω), . . .

)
, θξ = (

ξ(T ω), ξ
(
T 2ω

)
, . . .

)
.

Therefore ω ∈ A1 if and only if T ω ∈ A, i.e. when A1 = T −1A. But P(T −1A) =
P(A) and hence P(A1) = P(A), so that P(An) = P(A) for any n ≥ 1 as well, where
An = {ω : θnξ ∈ B}. �

Stationary sequences defined by (16.1.2) will be referred to as sequences gener-
ated by the transformation T .

To be able to construct stationary sequences on the whole axis, we will need mea-
sure preserving transformations acting both in “positive” and “negative” directions.

Definition 16.1.3 A transformation T is said to be bidirectional measure preserving
if:

(1) T is a one-to-one transformation, the domain and range of T coincide with the
whole Ω ;

(2) the transformations T and T −1 are measurable, i.e.

T −1A = {ω : T ω ∈ A} ∈ F, T A = {T ω : ω ∈ A} ∈ F

for any A ∈ F;
(3) the transformation T preserves the measure: P(T −1A) = P(A), and therefore

P(A) = P(T A) for any A ∈ F.

For such transformations we can, as before, construct stationary sequences ξ

defined on the whole axis:

ξ = {
Unξ(ω)

}∞
−∞ = {

ξ
(
T nω

)}∞
−∞.

The argument before Definition 16.1.2 shows that this approach “exhausts” all
stationary sequences given on 〈Ω,F,P〉, i.e. to any stationary sequence ξ we can
relate a measure preserving transformation T and a random variable ξ = ξ0 such
that ξk(ω) = ξ0(T

kω). In this construction, we consider the “sample probability
space” 〈R∞,B∞,P〉 for which ξ(ω) = ω, θ = T . The transformation θ = T (that is,
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transformation (16.1.1)) will be called the pathwise shift transformation. It always
exists and “generates” any stationary sequence.

Now we will give some simpler examples of (bidirectional) measure preserving
transformations.

Example 16.1.1 Let Ω = {ω1, . . . ,ωd}, d ≥ 2, be a finite set, F be the σ -algebra of
all its subsets, T ωi = ωi+1, 1 ≤ i ≤ d − 1 and T ωd = ω1. If P(ωi) = 1/d then T

and T −1 are measure preserving transformations.

Example 16.1.2 Let Ω = [0,1), F be the σ -algebra of Borel sets, P the Lebesgue
measure and s a fixed number. Then T ω = ω + s (mod 1) is a bidirectional measure
preserving transformation.

In these examples, the spaces Ω are rather small, which allows one to construct
on them only stationary sequences with deterministic or almost deterministic de-
pendence between their elements. If we choose in Example 16.1.1 the variable ξ so
that all ξ(ωi) are different, then the value ξk(ω) = ξ(T kω) will uniquely determine
T kω and thereby T k+1ω and ξk+1(ω). The same can be said of Example 16.1.2 in
the case when ξ(ω), ω ∈ [0,1), is a monotone function of ω.

As our argument at the beginning of the section shows, the space Ω = R
∞ is

large enough to construct on it any stationary sequence.
Thus, we see that the concept of a measure preserving transformation arises in

a natural way when studying stationary processes. But not only in that case. It also
arises, for instance, while studying the dynamics of some physical systems. Indeed,
the whole above argument remains valid if we consider on 〈Ω,F〉 an arbitrary mea-
sure μ instead of the probability P. For example, for Ω = R

∞, the value μ(A),
A ∈ F, could be the Lebesgue measure (volume) of the set A. The measure preserv-
ing property of the transformation T will mean that any set A, after the transform T

has acted on it (which, say, corresponds to the change of the physical system’s state
in one unit of time), will retain its volume. This property is rather natural for incom-
pressible liquids. Many laws to be established below will be equally applicable to
such physical systems.

Returning to probabilistic models, i.e. to the case when the measure is a proba-
bility distribution, it turns out that, in that case, for any set A with P(A) > 0, the
“trajectory” T nω will visit A infinitely often for almost all (with respect to the mea-
sure P) ω ∈ A.

Theorem 16.1.1 (Poincaré) Let T be a measure preserving transformation and
A ∈ F. Then, for almost all ω ∈ A, the relation T nω ∈ A holds for infinitely many
n ≥ 1.

Proof Put N := {ω ∈ A : T nω /∈ A for all n ≥ 1}. Because {ω : T nω ∈ A} ∈ F, it is
not hard to see that N ∈ F. Clearly, N ∩ T −nN = ∅ for any n ≥ 1, and T −mN ∩
T −(m+n)N = T −m(N ∩ T −nN) = ∅. This means that we have infinitely many sets
T −nN , n = 0,1,2, . . . , which are disjoint and have one and the same probability.
This evidently implies that P(N) = 0.
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Thus, for each ω ∈ A \ N , there exists an n1 = n1(ω) such that T n1ω ∈ A. Now
we apply this assertion to the measure preserving mapping Tk = T k , k ≥ 1. Then, for
each ω ∈ A \Nk , P(Nk) = 0, there exists an nk = nk(ω) ≥ 1 such that (T k)nkω ∈ A.
Since knk ≥ k, the theorem is proved. �

Corollary 16.1.1 Let ξ(ω) ≥ 0 and A = {ω : ξ(ω) > 0}. Then, for almost all ω ∈ A,

∞∑

n=0

ξ
(
T nω

) = ∞.

Proof Put Ak = {ω : ξ(ω) ≥ 1/k} ⊂ A. Then by Theorem 16.1.1 the above series
diverges for almost all ω ∈ Ak . It remains to notice that A = ⋃

k Ak . �

Remark 16.1.1 Formally, one does not need condition P(A) > 0 in Theorem 16.1.1
and Corollary 16.1.1. However, in the absence of that condition, the assertions may
become meaningless, since the set A\N in the proof of Theorem 16.1.1 can turn out
to be empty. Suppose, for example, that in the conditions of Example 16.1.2, A is a
one-point set: A = {ω}, ω ∈ [0,1). If s is irrational, then T kω will never be in A for
k ≥ 1. Indeed, if we assume the contrary, then we will infer that there exist integers
k and m such that ω + sk − m = ω, s = m/k, which contradicts the irrationality
of s.

16.2 Ergodicity (Metric Transitivity), Mixing and Weak
Dependence

Definition 16.2.1 A set A ∈ F is said to be invariant (with respect to a measure
preserving transformation T ) if T −1A = A. A set A ∈ F is said to be almost in-
variant if the sets T −1A and A differ from each other by a set of probability zero:
P(A ⊕ T −1A) = 0, where A ⊕ B = AB ∪ AB is the symmetric difference.

It is evident that the class of all invariant (almost invariant) sets forms a σ -algebra
which will be denoted by I (I∗).

Lemma 16.2.1 If A is an almost invariant set then there exists an invariant set B

such that P(A ⊕ B) = 0.

Proof Put B = lim supn→∞ T −nA (recall that lim supn→∞ An = ⋂∞
n=1

⋃∞
k=n Ak is

the set of all points which belong to infinitely many sets Ak). Then

T −1B = lim sup
n→∞

T −(n+1)A = B,
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i.e. B ∈ I. It is not hard to see that

A ⊕ B ⊂
∞⋃

k=0

(
T −kA ⊕ T −(k+1)A

)
.

Since

P
(
T −kA ⊕ T −(k+1)A

) = P
(
A ⊕ T −1A

) = 0,

we have P(A ⊕ B) = 0. The lemma is proved. �

Definition 16.2.2 A measure preserving transformation T is said to be ergodic (or
metric transitive) if each invariant set has probability zero or one.

A stationary sequence {ξk} associated with such T (i.e. the sequence which gen-
erated T or was generated by T ) is also said to be ergodic (metric transitive).

Lemma 16.2.2 A transformation T is ergodic if and only if each almost invariant
set has probability 0 or 1.

Proof Let T be ergodic and A ∈ I∗. Then by Lemma 16.2.1 there exists an invariant
set B such that P(A⊕B) = 0. Because P(B) = 0 or 1, the probability P(A) = 0 or 1.
The converse assertion is obvious. �

Definition 16.2.3 A random variable ζ = ζ(ω) is said to be invariant (almost in-
variant) if ζ(ω) = ζ(T ω) for all ω ∈ Ω (for almost all ω ∈ Ω).

Theorem 16.2.1 Let T be a measure preserving transformation. The following
three conditions are equivalent:

(1) T is ergodic;
(2) each almost invariant random variable is a.s. constant;
(3) each invariant random variable is a.s. constant.

Proof (1) ⇒ (2). Assume that T is ergodic and ξ is almost invariant, i.e. ξ(ω) =
ξ(T ω) a.s. Then, for any v ∈ R, we have Av := {ω : ξ(ω) ≤ v} ∈ I∗ and, by
Lemma 16.2.2, P(Av) equals 0 or 1. Put V := sup{v : P(Av) = 0}. Since Av ↑ Ω as
v ↑ ∞ and Av ↓∅ as v ↓ −∞, one has |V | < ∞ and

P
(
ξ(ω) < V

) = P

( ∞⋃

n=1

{
ξ(ω) < V − 1

n

})

= 0.

Similarly, P(ξ(ω) > V ) = 0. Therefore P(ξ(ω) = V ) = 1.
(2) ⇒ (3). Obvious.
(3) ⇒ (1). Let A ∈ I. Then the indicator function IA is an invariant random

variable, and since it is constant, one has either IA = 0 or IA = 1 a.s. This implies
that P(A) equals 0 or 1. The theorem is proved. �
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The assertion of the theorem clearly remains valid if one considers in (3) only
bounded random variables. Moreover, if ξ is invariant, then the truncated variable
ξ(N) = min(ξ,N) is also invariant.

Returning to Examples 16.1.1 and 16.1.2, in Example 16.1.1,

Ω = (ω1, . . . ,ωd), T ωi = ωi+1 (mod d), P(ωi) = 1/d.

The transformation T is obviously metric transitive.
In Example 16.1.2, Ω = [0,1), T ω = ω + s (mod 1), and P is the Lebesgue

measure. We will now show that T is ergodic if and only if s is irrational.
Consider a square integrable random variable ξ = ξ(ω) : Eξ2(ω) < ∞. Then by

the Parseval equality, the Fourier series

ξ(ω) =
∞∑

n=0

ane
2πinω

for this function has the property
∑∞

n=0 |c2
n| < ∞. Assume that s is irrational, while

ξ is invariant. Then

an = Eξ(ω)e−2πinω = Eξ(T ω)e−2πinT ω

= e−2πinsEξ(T ω)e−2πinω = e−2πinsEξ(ω)e−2πinω = e−2πinsan.

For irrational s, this equality is only possible when an = 0, n ≥ 1, and ξ(ω) = a0 =
const. By Theorem 16.2.1 this means that T is ergodic.

Now let s = m/n be rational (m and n are integers). Then the set

A =
n−1⋃

k=0

{
ω : 2k

2n
≤ ω <

2k + 1

2n

}

will be invariant and P(A) = 1/2. This means that T is not ergodic. �

Definition 16.2.4 A measure preserving transformation T is called mixing if, for
any A1,A2 ∈ F, as n → ∞,

P
(
A1 ∩ T −nA2

) → P(A1)P(A2). (16.2.1)

Now consider the stationary sequence ξ = (ξ0, ξ1, . . .) generated by the transfor-
mation T : ξk(ω) = ξ0(T

kω).

Definition 16.2.5 A stationary sequence ξ is said to be weakly dependent if ξk and
ξk+n are asymptotically independent as n → ∞, i.e. for any B1,B2 ∈ B

P(ξk ∈ B1, ξk+n ∈ B2) → P(ξ0 ∈ B1)P(ξ0 ∈ B2). (16.2.2)

Theorem 16.2.2 A measure preserving transformation T is mixing if and only if
any stationary sequence ξ generated by T is weakly dependent.
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Proof Let T be mixing. Put Ai := ξ−1
0 (Bi), i = 1,2, and set k = 0 in (16.2.2). Then

P(ξ0 ∈ B1, ξn ∈ B2) = P
(
A1 ∩ T −nA2

) → P(A1)P(A2).

Now assume any sequence generated by T is weakly dependent. For any given
A1,A2 ∈ F, define the random variable

ξ(ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if ω /∈ A1 ∪ A2;
1 if ω ∈ A1A2;
2 if ω ∈ A1A2;
3 if ω ∈ A1A2;

and put ξk(ω) := ξ(T kω). Then, as n → ∞,

P
(
A1 ∩ T −nA2

) = P(0 < ξ0 < 3, ξn > 2) → P(0 < ξ0 < 3)P(ξ0 > 2)

= P(A1)P(A2).

The theorem is proved. �

Let {Xn} be a stationary real-valued Markov chain with an invariant distribution
π that satisfies the conditions of the ergodic theorem, i.e. such that, for any B ∈ B

and x ∈ R, as n → ∞,

P(Xn ∈ B | X0 = x) → π(B).

Then {Xn} is weakly dependent, and therefore, by Theorem 16.2.2, the respective
transformation T is mixing. Indeed,

P(X0 ∈ B1,Xn ∈ B2) = EI(X0 ∈ B1)P(Xn ∈ B2 | X0),

where the last factor converges to π(B2) for each X0. Therefore the above proba-
bility tends to π(B2)π(B1).

Further characterisations of the mixing property will be given in Theorems 16.2.4
and 16.2.5.

Now we will introduce some notions that are somewhat broader than those from
Definitions 16.2.4 and 16.2.5.

Definition 16.2.6 A transformation T is called mixing on the average if, as n → ∞,

1

n

n∑

k=1

P
(
A1 ∩ T −kA2

) → P(A1)P(A2). (16.2.3)

A stationary sequence ξ is said to be weakly dependent on the average if

1

n

n∑

k=1

P(ξ0 ∈ B1, ξk ∈ B2) → P(ξ0 ∈ B1)P(ξ0 ∈ B2). (16.2.4)
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Theorem 16.2.3 A measure preserving transformation T is mixing on the average
if and only if any stationary sequence ξ generated by T is weakly dependent on the
average.

The Proof is the same as for Theorem 16.2.2, and is left to the reader. �

If {Xn} is a periodic real-valued Markov chain with period d such that each
of the embedded sub-chains {Xi+nd}∞n=0, i = 0, . . . , d − 1, satisfies the ergodicity
conditions with invariant distributions π (i) on disjoint sets X0, . . . ,Xd−1, then the
“common” invariant distribution π will be equal to d−1 ∑d−1

i=0 π (i), and the chain
{Xn} will be weakly dependent on the average. At the same time, it will clearly not
be weakly dependent for d > 1.

Theorem 16.2.4 A measure preserving transformation T is ergodic if and only if it
is mixing on the average.

Proof Let T be mixing on the average, and A1 ∈ F, A2 ∈ I. Then A2 = T −kA2

and hence P(A1 ∩ T −kA2) = P(A1A2) for all k ≥ 1. Therefore, (16.2.3) means that
P(A1A2) = P(A1)P(A2). For A1 = A2 we get P(A2) = P2(A2), and consequently
P(A2) equals 0 or 1.

We postpone the proof of the converse assertion until the next section. �

Now we will give one more important property of ergodic transforms.

Theorem 16.2.5 A measure preserving transformation T is ergodic if and only if,
for any A ∈ F with P(A) > 0, one has

P

( ∞⋃

n=0

T −nA

)

= 1. (16.2.5)

Note that property (16.2.5) means that the sets T −nA, n = 0,1, . . . , “exhaust”
the whole space Ω , which associates well with the term “mixing”.

Proof Let T be ergodic. Put B := ⋃∞
n=0 T −nA. Then T −1B ⊂ B . Because T is

measure preserving, one also has that P(T −1B) = P(B). From this it follows that
T −1B = B up to a set of measure 0 and therefore B is almost invariant. Since T is
ergodic, P(B) equals 0 or 1. But P(B) ≥ P(A) > 0, and hence P(B) = 1.

Conversely, if T is not ergodic, then there exists an invariant set A such that
0 < P(A) < 1 and, therefore, for this set T −nA = A holds and

P(B) = P(A) < 1.

The theorem is proved. �
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Remark 16.2.1 In Sects. 16.1 and 16.2 we tacitly or explicitly assumed (mainly for
the sake of simplicity of the exposition) that the components ξk of the stationary
sequence ξ are real. However, we never actually used this, and so we could, as
we did while studying Markov chains, assume that the state space X , in which
ξk take their values, is an arbitrary measurable space. In the next section we will
substantially use the fact that ξk are real- or vector-valued.

16.3 The Ergodic Theorem

For a sequence ξ1, ξ2, . . . of independent identically distributed random variables
we proved in Chap. 11 the strong law of large numbers:

Sn

n

a.s.−→ Eξ1, where Sn =
n−1∑

k=0

ξk.

Now we will prove the same assertion under much broader assumptions—for sta-
tionary ergodic sequences, i.e. for sequences that are weakly dependent on the aver-
age.

Let {ξk} be an arbitrary strictly stationary sequence, T be the associated measure
preserving transformation, and I be the σ -algebra of invariant sets.

Theorem 16.3.1 (Birkhoff–Khintchin) If E|ξ0| < ∞ then

1

n

n−1∑

k=0

ξk
a.s.−→ E(ξ0 | I). (16.3.1)

If the sequence {ξk} (or transformation T ) is ergodic, then

1

n

n−1∑

k=0

ξk
a.s.−→ Eξ0. (16.3.2)

Below we will be using the representation ξk = ξ(T kω) for ξ = ξ0. We will need
the following auxiliary result.

Lemma 16.3.1 Set

Sn(ω) :=
n−1∑

k=0

ξ
(
T kω

)
, Mk(ω) := max

{
0, S1(ω), . . . , Sk(ω)

}
.

Then, under the conditions of Theorem 16.3.1,

E
[
ξ(ω)I{Mn>0}(ω)

] ≥ 0

for any n ≥ 1.
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Proof For all k ≤ n, one has Sk(T ω) ≤ Mn(T ω), and hence

ξ(ω) + Mn(T ω) ≥ ξ(ω) + Sk(T ω) = Sk+1(ω).

Because ξ(ω) ≥ S1(ω) − Mn(T ω), we have

ξ(ω) ≥ max
{
max(S1(ω), . . . , Sn(ω)

} − Mn(T ω).

Further, since

{
Mn(ω) > 0

} = {
max

(
S1(ω), . . . , Sn(ω)

)
> 0

}
,

we obtain that

E
[
ξ(ω)I{Mn>0}(ω)

] ≥ E
(
max

(
S1(ω), . . . , Sn(ω)

) − Mn(T ω)
)

I{Mn>0}(ω)

≥ E
(
Mn(ω) − Mn(T ω)

)
I{Mn>0}(ω)

≥ E
(
Mn(ω) − Mn(T ω)

) = 0.

The lemma is proved. �

Proof of Theorem 16.3.1 Assertion (16.3.2) is an evident consequence of (16.3.1),
because, for ergodic T , the σ -algebra I is trivial and E(ξ |I) = Eξ a.s. Hence, it
suffices to prove (16.3.1).

Without loss of generality, we can assume that E(ξ |I) = 0, for one can always
consider ξ − E(ξ |I) instead of ξ .

Let S := lim supn→∞ n−1Sn and S := lim infn→∞ n−1Sn. To prove the theorem,
it suffices to establish that

0 ≤ S ≤ S ≤ 0 a.s. (16.3.3)

Since S(ω) = S(T ω), the random variable S is invariant and hence the set A − ε =
{S(ω) > ε} is also invariant for any ε > 0. Introduce the variables

ξ∗(ω) := (
ξ(ω) − ε

)
IAε(ω),

S∗
k (ω) := ξ∗(ω) + · · · + ξ∗(T k−1ω

)
,

M∗
k (ω) := max

(
0, S∗

1 , . . . , S∗
k

)
.

Then, by Lemma 16.3.1, for any n ≥ 1, one has

Eξ∗I{M∗
n>0} ≥ 0.

But, as n → ∞,

{
M∗

n > 0
} =

{
max

1≤k≤n
S∗

k > 0
}

↑
{

sup
k≥1

S∗
k > 0

}
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=
{

sup
k≥1

S∗
k

k
> 0

}
=

{
sup
k≥1

Sk

k
> ε

}
∩ Aε = Aε.

The last equality follows from the observation that

Aε = {S > ε} ⊂
{

sup
k≥1

Sk

k
> ε

}
.

Further, E|ξ∗| ≤ E|ξ | + ε. Hence, by the dominated convergence theorem,

0 ≤ Eξ∗I{M∗
n>0} → Eξ∗IAε .

Consequently,

0 ≤ Eξ∗IAε = E(ξ − ε)IAε = Eξ IAε − εP(Aε)

= EIAε E(ξ | I) − εP(Aε) = −εP(Aε).

This implies that P(Aε) = 0 for any ε > 0, and therefore P(S ≤ 0) = 1.
In a similar way, considering the variables −ξ instead of ξ , we obtain that

lim sup
n→∞

(
−Sn

n

)
= − lim inf

n→∞
Sn

n
= −S,

and P(−S ≤ 0) = 1, P(S ≥ 0) = 1. The required inequalities (16.3.3), and therefore
the theorem itself, are proved. �

Now we can complete the

Proof of Theorem 16.2.4 It remains to show that the ergodicity of T implies mixing
on the average. Indeed, let T be ergodic and A1,A2 ∈ F. Then, by Theorem 16.3.1,
we have

ζn = 1

n

n∑

k=1

I
(
T −kA2

) a.s.−→ P(A2), I(A1)ζn
a.s.−→ I(A1)P(A2).

Since ζnI(A1) are bounded, one also has the convergence

EζnI(A1) → P(A2) · P(A1).

Therefore

1

n

n∑

k=1

P
(
A1 ∩ T −kA2

) = EI(A1)ζn → P(A1)P(A2).

The theorem is proved. �

Now we will show that convergence in mean also holds in (16.3.1) and (16.3.2).
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Theorem 16.3.2 Under the assumptions of Theorem 16.3.1, one has along with
(16.3.1) and (16.3.2) that, respectively,

E

∣∣∣∣
1

n

n−1∑

k=0

ξk − E(ξ0|I)

∣∣∣∣ → 0 (16.3.4)

and

E

∣
∣
∣
∣
1

n

n−1∑

k=0

ξk − Eξ0

∣
∣
∣
∣ → 0 (16.3.5)

as n → ∞.

Proof The assertion of the theorem follows in an obvious way from Theo-
rems 16.3.1, 6.1.7 and the uniform integrability of the sums

1

n

n−1∑

k=0

ξk,

which follows from Theorem 6.1.6. �

Corollary 16.3.1 If {ξk} is a stationary metric transitive sequence and a = Eξk < 0,
then S(ω) = supk≥0 Sk(ω) is a proper random variable.

The proof is obvious since, for 0 < ε < −a, one has Sk < (a + ε)k < 0 for all
k ≥ n(ω) < ∞. �

An unusual feature of Theorem 16.3.1 when compared with the strong law of
large numbers from Chap. 11 is that the limit of

1

n

n−1∑

k=0

ξk

can be a random variable. For instance, let T ωk := ωk+2 and d = 2l be even in the
situation of Example 16.1.1. Then the transformation T will not be ergodic, since
the set A = {ω1,ω3, . . . ,ωd−1} will be invariant, while P(A) = 1/2.

On the other hand, it is evident that, for any function ξ(ω), the sum

1

n

n−1∑

k=0

ξ
(
T kω

)

will converge with probability 1/2 to

2

d

l−1∑

j=0

ξ(ω2j+1)
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(if ω = ωi and i is odd) and with probability 1/2 to

2

d

l∑

j=1

ξ(ω2j )

(if ω = ωi and i is even). This limiting distribution is just the distribution of E(ξ |I).
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