
Chapter 15
Martingales

Abstract The definitions, simplest properties and first examples of martingales and
sub/super-martingales are given in Sect. 15.1. Stopping (Markov) times are intro-
duced in Sect. 15.2, which also contains Doob’s theorem on random change of time
and Wald’s identity together with a number of its applications to boundary crossing
problems and elsewhere. This is followed by Sect. 15.3 presenting fundamental mar-
tingale inequalities, including Doob’s inequality with a number of its consequences,
and an inequality for the number of strip crossings. Section 15.4 begins with Doob’s
martingale convergence theorem and also presents Lévy’s theorem and an applica-
tion to branching processes. Section 15.5 derives several important inequalities for
the moments of stochastic sequences.

15.1 Definitions, Simplest Properties, and Examples

In Chap. 13 we considered sequences of dependent random variables X0,X1, . . .

forming Markov chains. Dependence was described there in terms of transition
probabilities determining the distribution of Xn+1 given Xn. That enabled us to
investigate rather completely the properties of Markov chains.

In this chapter we consider another type of sequence of dependent random vari-
ables. Now dependence will be characterised only by the mean value of Xn+1 given
the whole “history” X0, . . . ,Xn. It turns out that one can also obtain rather general
results for such sequences.

Let a probability space 〈Ω,F,P〉 be given together with a sequence of random
variables X0,X1, . . . defined on it and an increasing family (or flow) of σ -algebras
{Fn}n≥0: F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ F.

Definition 15.1.1 A sequence of pairs {Xn,Fn; n ≥ 0} is called a stochastic se-
quence if, for each n ≥ 0, Xn is Fn-measurable. A stochastic sequence is said to
be a martingale (one also says that {Xn} is a martingale with respect to the flow of
σ -algebras {Fn}) if, for every n ≥ 0,

(1)

E|Xn| < ∞, (15.1.1)
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(2) Xn is measurable with respect to Fn,

(3)

E(Xn+1 | Fn) = Xn. (15.1.2)

A stochastic sequence {Xn,Fn; n ≥ 0} is called a submartingale (supermartin-
gale) if conditions (1)–(3) hold with the sign “=” replaced in (15.1.2) with “≥”
(“≤”, respectively).

We will say that a sequence {Xn} forms a martingale (submartingale, super-
martingale) if, for Fn = σ(X0, . . . ,Xn), the pairs {Xn,Fn} form a sequence with
the same name. Submartingales and supermartingales are often called semimartin-
gales.

It is evident that relation (15.1.2) persists if we replace Xn+1 on its left-hand side
with Xm for any m > n. Indeed, by virtue of the properties of conditional expecta-
tions,

E(Xm|Fn) = E
[
E(Xm|Fm−1)

∣∣Fn

] = E(Xm−1|Fn) = · · · = Xn.

A similar assertion holds for semimartingales.
If {Xn} is a martingale, then E(Xn+1|σ(X0, . . . ,Xn)) = Xn, and, by a property

of conditional expectations,

E
(
Xn+1

∣∣σ(Xn)
) = E

[
E

(
Xn+1

∣∣σ(X0, . . . ,Xn)
)∣∣σ(Xn)

] = E
(
Xn

∣∣σ(Xn)
) = Xn.

So, for martingales, as for Markov chains, we have

E
(
Xn+1

∣∣σ(X0, . . . ,Xn)
) = E

(
Xn+1

∣∣σ(Xn)
)
.

The similarity, however, is limited to this relation, because for a martingale, the
equality does not hold for distributions, but the additional condition

E
(
Xn+1

∣∣σ(Xn)
) = Xn

is imposed.

Example 15.1.1 Let ξn, n ≥ 0 be independent. Then Xn = ξ1 + · · · + ξn form a
martingale (submartingale, supermartingale) if Eξn = 0 (Eξn ≥ 0, Eξn ≤ 0). It is
obvious that Xn also form a Markov chain. The same is true of Xn = ∏n

k=0 ξk if
Eξn = 1.

Example 15.1.2 Let ξn, n ≥ 0, be independent. Then

Xn =
n∑

k=1

ξk−1ξk, n ≥ 1, X0 = ξ0,

form a martingale if Eξn = 0, because

E
(
Xn+1

∣∣σ(X0, . . . ,Xn)
) = Xn + E

(
ξnξn+1

∣∣σ(ξn)
) = Xn.
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Clearly, {Xn} is not a Markov chain here. An example of a sequence which is a
Markov chain but not a martingale can be obtained, say, if we consider a random
walk on a segment with reflection at the endpoints (see Example 13.1.1).

As well as {0,1, . . .} we will use other sets of indices for Xn, for example,
{−∞ < n < ∞} or {n ≤ −1}, and also sets of integers including infinite values
±∞, say, {0 ≤ n ≤ ∞}. We will denote these sets by a common symbol N and
write martingales (semimartingales) as {Xn,Fn; n ∈ N}. By F−∞ we will under-
stand the σ -algebra

⋂
n∈N Fn, and by F∞ the σ -algebra σ(

⋃
n∈N Fn) generated by⋃

n∈N Fn, so that F−∞ ⊆ Fn ⊆ F∞ ⊆ F for any n ∈ N.

Definition 15.1.2 A stochastic sequence {Xn,Fn; n ∈ N} is called a martingale
(submartingale, supermartingale), if the conditions of Definition 15.1.1 hold for
any n ∈N.

If {Xn,F; n ∈ N} is a martingale and the left boundary n0 of N is finite (for ex-
ample, N = {0,1, . . .}), then the martingale {Xn,Fn} can be always extended “to the
whole axis” by setting Fn := Fn0 and Xn := Xn0 for n < n0. The same holds for the
right boundary as well. Therefore if a martingale (semimartingale) {Xn,Fn; n ∈N}
is given, then without loss of generality we can always assume that one is actually
given a martingale (semimartingale) {Xn,Fn; −∞ ≤ n ≤ ∞}.

Example 15.1.3 Let {Fn, −∞ ≤ n ≤ ∞} be a given sequence of increasing
σ -algebras, and ξ a random variable on 〈Ω,F,P〉, E|ξ | < ∞. Then {Xn,Fn;
−∞ ≤ n ≤ ∞} with Xn = E(ξ |Fn) forms a martingale.

Indeed, by the property of conditional expectations, for any m ≤ ∞ and m > n,

E(Xm|Fn) = E
[
E(ξ |Fm)

∣∣Fn

] = E(ξ |Fn) = Xn.

Definition 15.1.3 The martingale of Example 15.1.3 is called a martingale gener-
ated by the random variable ξ (and the family {Fn}).

Definition 15.1.4 A set N+ is called the right closure of N if:

(1) N+ =N when the maximal element of N is finite;
(2) N+ =N ∪ {∞} if N is not bounded from the right.

If N = N+ then we say that N is right closed. A martingale (semimartingale)
{Xn,F; n ∈ N} is said to be right closed if N is right closed.

Lemma 15.1.1 A martingale {Xn,F; n ∈ N} is generated by a random variable if
and only if it is right closed.

The Proof of the lemma is trivial. In one direction it follows from Example 15.1.3,
and in the other from the equality

E(XN |Fn) = Xn, N = sup{k; k ∈ N},
which implies that {Xn,F} is generated by XN . The lemma is proved. �
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Now we consider an interesting and more concrete example of a martingale gen-
erated by a random variable.

Example 15.1.4 Let ξ1, ξ2, . . . be independent and identically distributed and as-
sume E|ξ1| < ∞. Set

Sn = ξ1 + · · · + ξn, X−n = Sn/n, F−n = σ(Sn,Sn+1, . . .) = σ(Sn, ξn+1, . . .).

Then F−n ⊂ F−n+1 and, for any 1 ≤ k ≤ n, by symmetry

E(ξk|F−n) = E(ξ1|F−n).

From this it follows that

Sn = E(Sn|F−n) =
n∑

k=1

E(ξk|F−n) = nE(ξ1|F−n),
Sn

n
= E(ξ1|F−n).

This means that {Xn,Fn; n ≤ 1} forms a martingale generated by ξ1.

We will now obtain a series of auxiliary assertions giving the simplest properties
of martingales and semimartingales. When considering semimartingales, we will
confine ourselves to submartingales only, since the corresponding properties of su-
permartingales will follow immediately if one considers the sequence Yn = −Xn,
where {Xn} is a submartingale.

Lemma 15.1.2

(1) The property that {Xn,Fn; n ∈ N} is a martingale is equivalent to invariability
in m ≥ n of the set functions (integrals)

E(Xm; A) = E(Xn;A) (15.1.3)

for any A ∈ Fn. In particular, EXm = const.
(2) The property that {Xn,Fn; n ∈N} is a submartingale is equivalent to the mono-

tone increase in m ≥ n of the set functions

E(Xm;A) ≥ E(Xn;A) (15.1.4)

for every A ∈ Fn. In particular, EXm ↑.

The Proof follows immediately from the definitions. If (15.1.3) holds then, by the
definition of conditional expectation, Xn = E(Xm|Fn), and vice versa. Now let
(15.1.4) hold. Put Yn = E(Xm|Fn). Then (15.1.4) implies that E(Yn;A) ≥ E(Xn;A)

and E(Yn − Xn;A) ≥ 0 for any A ∈ Fn. From this it follows that Yn = E(Xm|Fn) ≥
Xn with probability 1. The converse assertion can be obtained as easily as the direct
one. The lemma is proved. �

Lemma 15.1.3 Let {Xn,Fn; n ∈ N} be a martingale, g(x) be a convex function,
and E|g(Xn)| < ∞. Then {g(Xn),Fn; n ∈ N} is a submartingale.

If, in addition, g(x) is nondecreasing, then the assertion of the theorem remains
true when {Xn,Fn; n ∈N} is a submartingale.
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The Proof of both assertions follows immediately from Jensen’s inequality

E
(
g(Xn+1)

∣∣Fn

) ≥ g
(
E(Xn+1|Fn)

) ≥ g
(
E(Xn|Fn)

)
. �

Clearly, the function g(x) = |x|p for p ≥ 1 satisfies the conditions of the first
part of the lemma, and the function g(x) = eλx for λ > 0 meets the conditions of
the second part of the lemma.

Lemma 15.1.4 Let {Xn,Fn; n ∈ N} be a right closed submartingale. Then, for
Xn(a) = max{Xn,a} and any a, {Xn(a),Fn; n ∈ N} is a uniformly integrable sub-
martingale.

If {Xn,Fn; n ∈N} is a right closed martingale, then it is uniformly integrable.

Proof Let N := sup{k : k ∈ N}. Then, by Lemma 15.1.3, {Xn(a),Fn; n ∈ N} is
a submartingale. Hence, for any c > 0,

cP
(
Xn(a) > c

) ≤ E
(
Xn(a); Xn(a) > c

) ≤ E
(
XN(a); Xn(a) > c

) ≤ EX+
N(a)

(here X+ = max(0,X)) and so

P
(
Xn(a) > c

) ≤ 1

c
E

(
X+

N(a)
) → 0,

uniformly in n as c → ∞. Therefore we get the required uniform integrability:

sup
n

E
(
Xn(a); Xn(a) > c

) ≤ sup
n

E
(
XN(a); Xn(a) > c

) → 0,

since supn P(Xn(a) > c) → 0 as c → ∞ (see Lemma A3.2.3 in Appendix 3; by
truncating at the level a we avoided estimating the “negative tails”).

If {Xn,Fn; n ∈N} is a martingale, then its uniform integrability will follow from
the first assertion of the lemma applied to the submartingale {|Xn|,Fn; n ∈ N}.
The lemma is proved. �

The nature of martingales can be clarified to some extent by the following exam-
ple.

Example 15.1.5 Let ξ1, ξ2, . . . be an arbitrary sequence of random variables,
E|ξk| < ∞, Fn = σ(ξ1, . . . , ξn) for n ≥ 1, F0 = (∅,Ω) (the trivial σ -algebra),

Sn =
n∑

k=1

ξk, Zn =
n∑

k=1

E(ξk|Fk−1), Xn = Sn − Zn.

Then {Xn,Fn; n ≥ 1} is a martingale. This is a consequence of the fact that

E(Sn+1 − Zn+1|Fn) = E
(
Xn + ξn+1 − E(ξn+1|Fn)

∣∣Fn

) = Xn.

In other words, for an arbitrary sequence {ξn}, the sequence Sn can be “com-
pensated” by a so-called “predictable” (in the sense that its value is determined by
S1, . . . , Sn−1) sequence Zn so that Sn − Zn will be a martingale.
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15.2 The Martingale Property and Random Change of Time.
Wald’s Identity

Throughout this section we assume that N = {n ≥ 0}. Recall the definition of a stop-
ping time.

Definition 15.2.1 A random variable ν will be called a stopping time or a Markov
time (with respect to an increasing family of σ -algebras {Fn; n ≥ 0}) if, for any
n ≥ 0, {ν ≤ n} ∈ Fn.

It is obvious that a constant ν ≡ m is a stopping time. If ν is a stopping time,
then, for any fixed m, ν(m) = min(ν,m), is also a stopping time, since for n ≥ m

we have

ν(m) ≤ m ≤ n,
{
ν(m) ≤ n

} = Ω ∈ Fn,

and if n < m then
{
ν(m) ≤ n

} = {ν ≤ n} ∈ Fn.

If ν is a stopping time, then

{ν = n} = {ν ≤ n} − {ν ≤ n − 1} ∈ Fn, {ν ≥ n} = Ω − {ν ≤ n − 1} ∈ Fn−1.

Conversely, if {ν = n} ∈ Fn, then {ν ≤ n} ∈ Fn and therefore ν is a stopping time.
Let a martingale {Xn,Fn; n ≥ 0} be given. A typical example of a stopping time

is the time ν at which Xn first hits a given measurable set B:

ν = inf{n ≥ 0 : Xn ∈ B}
(ν = ∞ if all Xn /∈ B). Indeed,

{ν = n} = {X0 /∈ B, . . . ,Xn−1 /∈ B, Xn ∈ B} ∈ Fn.

If ν is a proper stopping time (P(ν < ∞) = 1), then Xν is a random variable,
since

Xν =
∞∑

n=0

XnI{ν=n}.

By Fν we will denote the σ -algebra of sets A ∈ F such that A ∩ {ν = n} ∈ Fn,
n = 0,1, . . . This σ -algebra can be thought of as being generated by the events
{ν ≤ n} ∩ Bn, n = 0,1, . . ., where Bn ∈ Fn. Clearly, ν and Xν are Fν -measurable.
If ν1 and ν2 are two stopping times, then {ν2 ≥ ν1} ∈ Fν1 and {ν2 ≥ ν1} ∈ Fν2 , since
{ν2 ≥ ν1} = ⋃

n[{ν2 = n} ∩ {ν1 ≤ n}].
We already know that if {Xn,Fn} is a martingale then EXn is constant for all n.

Will this property remain valid for EXν if ν is a stopping time? From Wald’s identity
we know that this is the case for the martingale from Example 15.1.1. In the general
case one has the following.
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Theorem 15.2.1 (Doob) Let {Xn,Fn; n ≥ 0} be a martingale (submartingale) and
ν1, ν2 be stopping times such that

E|Xνi
| < ∞, i = 1,2, (15.2.1)

lim inf
n→∞ E

(|Xn|; ν2 ≥ n
) = 0. (15.2.2)

Then, on the set {ν2 ≥ ν1},
E(Xν2 |Fν1) = Xν1 (≥ Xν1). (15.2.3)

This theorem extends the martingale (submartingale) property to random time.

Corollary 15.2.1 If ν2 = ν ≥ 0 is an arbitrary stopping time, then putting ν1 = n

(also a stopping time) we have that, on the set ν ≥ n,

E(Xν |Fn) = Xn, EXν = EX0,

or, which is the same, for any A ∈ Fn ∩ {ν ≥ n},
E(Xν; A) = E(Xn; A).

For submartingales substitute “=” by “≥”.

Proof of Theorem 15.2.1 To prove (15.2.3) it suffices to show that, for any A ∈ Fν1 ,

E
(
Xν2; A ∩ {ν2 ≥ ν1}

) = E
(
Xν1; A ∩ {ν2 ≥ ν1}

)
. (15.2.4)

Since the random variables νi are discrete, we just have to establish (15.2.4) for sets
An = A ∩ {ν1 = n} ∈ Fn, n = 0,1, . . . , i.e. to establish the equality

E
(
Xν2; An ∩ {ν2 ≥ n}) = E

(
Xn; An ∩ {ν2 ≥ n}). (15.2.5)

Thus the proof is reduced to the case ν1 = n. We have

E
(
Xn; An ∩ {ν2 ≥ n}) = E

(
Xn; An ∩ {ν2 = n}) + E

(
Xn; An ∩ {ν2 ≥ n + 1})

= E
(
Xν2; An ∩ {ν2 = n}) + E

(
Xn+1; An ∩ {ν2 ≥ n + 1}).

Here we used the fact that {ν2 ≥ n1} ∈ Fn and the martingale property (15.1.3).
Applying this equality m − n times we obtain that

E
(
Xν2; An ∩ {n ≤ ν2 < m})

= E
(
Xn; An ∩ {ν2 ≥ n}) − E

(
Xm; An ∩ {ν2 ≥ m}). (15.2.6)

By (15.2.2) the last expression converges to zero for some sequence m → ∞.
Since

An,m := An ∩ {n ≤ ν2 < m} ↑ Bn = An ∩ {n ≤ ν2},
by the property of integrals and by virtue of (15.2.6),

E
(
Xν2; An ∩ {n ≤ ν2}

) = lim
m→∞ E(Xν2; An,m) = E

(
Xn; An ∩ {ν2 ≥ n}).
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Thus we proved equality (15.2.5) and hence Theorem 15.2.1 for martingales. The
proof for submartingales can be obtained by simply changing the equality signs in
certain places to inequalities. The theorem is proved. �

The conditions of Theorem 15.2.1 are far from always being met, even in rather
simple cases. Consider, for instance, a fair game (see Examples 4.2.3 and 4.4.5)
versus an infinitely rich adversary, in which z + Sn is the fortune of the first gam-
bler after n plays (given he has not been ruined yet). Here z > 0, Sn = ∑n

k=1 ξk ,
P(ξk = ±1) = 1/2, η(z) = min{k : Sk = −z} is obviously a Markov (stopping)
time, and the sequence {Sn; n ≥ 0}, S0 = 0, is a martingale, but Sη(z) = −z. Hence
ESη(z) = −z �= ESn = 0, and equality (15.2.5) does not hold for ν1 = 0, ν2 = η(z),
z > 0, n > 0. In this example, this means that condition (15.2.2) is not satisfied (this
is related to the fact that Eη(z) = ∞).

Conditions (15.2.1) and (15.2.2) of Theorem 15.2.1 can, generally speaking, be
rather hard to verify. Therefore the following statements are useful in applications.

Put for brevity

ξn := Xn − Xn−1, ξ0 := X0, Yn :=
n∑

k=0

|ξk|, n = 0,1, . . .

Lemma 15.2.1 The condition

EYν < ∞ (15.2.7)

is sufficient for (15.2.1) and (15.2.2) (with νi = ν).

The Proof is almost evident since |Xν | ≤ Yν and

E(|Xn|; ν > n) ≤ E(Yν; ν > n).

Because P(ν > n) → 0 and EYν < ∞, it remains to use the property of integrals by
which E(η; An) → 0 if E|η| < ∞ and P(An) → 0. �

We introduce the following notation:

an := E
(|ξn|

∣∣Fn−1
)
, σ 2

n := E
(
ξ2
n

∣∣Fn−1
)
, n = 0,1,2, . . . ,

where F−1 can be taken to be the trivial σ -algebra.

Theorem 15.2.2 Let {Xn; n ≥ 0} be a martingale (submartingale) and ν be a stop-
ping time (with respect to {Fn = σ(X0, . . . ,Xn)}).
(1) If

Eν < ∞ (15.2.8)

and, for all n ≥ 0, on the set {ν ≥ n} ∈ Fn−1 one has

an ≤ c = const, (15.2.9)

then

E|Xν | < ∞, EXν = EX0 (≥ EX0). (15.2.10)



15.2 The Martingale Property and Random Change of Time. Wald’s Identity 465

(2) If, in addition, Eσ 2
n = Eξ2

n < ∞ then

EX2
ν = E

ν∑

k=1

σ 2
k . (15.2.11)

Proof By virtue of Theorem 15.2.1, Corollary 15.2.1 and Lemma 15.2.1, to prove
(15.2.10) it suffices to verify that conditions (15.2.8) and (15.2.9) imply (15.2.7).
Quite similarly to the proof of Theorem 4.4.1, we have

E|Yν | =
∞∑

n=0

(
n∑

k=0

E
(|ξk|; ν = n

)
)

=
∞∑

k=0

∞∑

n=k

E
(|ξk|; ν = n

) =
∞∑

k=0

E
(|ξk|; ν ≥ k

)
.

Here {ν ≥ k} = Ω \ {ν ≤ k − 1} ∈ Fk−1. Therefore, by condition (15.2.9),

E(|ξk|; ν ≥ k) = E
(
E

(|ξk|
∣
∣Fk−1

); ν ≥ k
) ≤ c P(ν ≥ k).

This means that

EYν ≤ c

∞∑

k=0

P(ν ≥ k) = c Eν < ∞.

Now we will prove (15.2.11). Set Zn := X2
n −∑n

0 σ 2
k . One can easily see that Zn

is a martingale, since

E
(
X2

n+1 − X2
n − σ 2

n+1

∣∣Fn

) = E
(
2Xnξn+1 + ξ2

n+1 − σ 2
n+1

∣∣Fn

) = 0.

It is also clear that E|Zn| < ∞ and ν(n) = min(ν, n) is a stopping time. By virtue of
Lemma 15.2.1, conditions (15.2.1) and (15.2.2) always hold for the pair {Zk}, ν(n).
Therefore, by the first part of the theorem,

EZν(n) = 0, EX2
ν(n) = E

ν(n)∑

k=1

σ 2
k . (15.2.12)

It remains to verify that

lim
n→∞ EX2

ν(n) = EX2
ν, lim

n→∞ E
ν(n)∑

k=1

σ 2
k = E

ν∑

k=1

σ 2
k . (15.2.13)

The second equality follows from the monotone convergence theorem (ν(n) ↑ ν,
σ 2

k ≥ 0). That theorem implies the former equality as well, for X2
ν(n)

a.s.−→ X2
ν and

X2
ν(n)↑. To verify the latter claim, note that {X2

n,Fn; n ≥ 0} is a martingale, and
therefore, for any A ∈ Fn,

E
(
X2

ν(n); A
) = E

(
X2

ν; A ∩ {ν ≤ n}) + E
(
X2

n; A ∩ {ν > n})

≤ E
(
X2

ν; A ∩ {ν ≤ n}) + E
(
E

(
X2

n+1

∣
∣Fn

); A ∩ {ν > n})

= E
(
X2

ν; A ∩ {ν < n + 1}) + E
(
X2

n+1; A ∩ {ν ≥ n + 1})

= E
(
X2

ν(n+1); A
)
.
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Thus (15.2.12) and (15.2.13) imply (15.2.11), and the theorem is completely
proved. �

The main assertion of Theorem 15.2.2 for martingales (submartingales):

EXν = EX0 (≥ EX0) (15.2.14)

was obtained as a consequence of Theorem 15.2.1. However, we could get it directly
from some rather transparent relations which, moreover, enable one to extend it to
improper stopping times ν.

A stopping time ν is called improper if 0 < P(ν < ∞) = 1 − P(ν = ∞) < 1.
To give an example of an improper stopping time, consider independent identically
distributed random variables ξk , a = Eξk < 0, Xn = ∑n

k=1 ξk , and put

ν = η(x) := min{k ≥ 1 : Xk > x}, x ≥ 0.

Here ν is finite only for such trajectories {Xk} that supk Xk > x. If the last inequality
does not hold, we put ν = ∞. Clearly,

P(ν = ∞) = P
(

sup
k

Xk ≤ x
)

> 0.

Thus, for an arbitrary (possibly improper) stopping time, we have

E(Xν; ν < ∞) =
∞∑

k=0

E(Xk; ν = k) =
∞∑

k=0

[
E(Xk; ν ≥ k) − E(Xk; ν ≥ k + 1)

]
.

(15.2.15)

Assume now that changing the order of summation is justified here. Then, by virtue
of the relation {ν ≥ k + 1} ∈ Fk , we get

E(Xν; ν < ∞) = EX0 +
∞∑

k=0

E(Xk+1 − Xk; ν ≥ k + 1)

= EX0 +
∞∑

k=0

EI(ν ≥ k + 1)E(Xk+1 − Xk|Fk). (15.2.16)

Since for martingales (submartingales) the factors E(Xk+1 − Xk|Fk) = 0 (≥ 0), we
obtain the following.

Theorem 15.2.3 If the change of the order of summation in (15.2.15) and (15.2.16)
is legitimate then, for martingales (submartingales),

E(Xν; ν < ∞) = EX0 (≥ EX0). (15.2.17)

Assumptions (15.2.8) and (15.2.9) of Theorem 15.2.2 are nothing else but con-
ditions ensuring the absolute convergence of the series in (15.2.15) (see the proof of
Theorem 15.2.2) and (15.2.16), because the sum of the absolute values of the terms
in (15.2.16) is dominated by

∞∑

k=1

akP(ν ≥ k + 1) ≤ aEν < ∞,
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where, as before, ak = E(|ξk| | Fk−1) with ξk = Xk −Xk−1. This justifies the change
of the order of summation.

There is still another way of proving (15.2.17) based on (15.2.15) specifying a
simple condition ensuring the required justification. First note that identity (15.2.17)
assumes that the expectation E(Xν; ν < ∞) exists, i.e. both values E(X±

ν ; ν < ∞)

are finite, where x± = max(±x,0).

Theorem 15.2.4 1. Let {Xn,Fn} be a martingale. Then the condition

lim
n→∞ E(Xn; ν > n) = 0 (15.2.18)

is necessary and sufficient for the relation

lim
n→∞ E(Xn; ν ≤ n) = EX0. (15.2.19)

A necessary and sufficient condition for (15.2.17) is that (15.2.18) holds and at
least one of the values E(X±

ν ; ν < ∞) is finite.
2. If {Xn,Fn} is a supermartingale and

lim inf
n→∞ E(Xn; ν > n) ≥ 0, (15.2.20)

then

lim sup
n→∞

E(Xn; ν ≤ n) ≤ EX0.

If, in addition, at least one of the values E(X±
ν ; ν < ∞) is finite then

E(Xν; ν < ∞) ≤ EX0.

3. If, in conditions (15.2.18) and (15.2.20), we replace the quantity E(Xn; ν > n)

with E(Xn; ν ≥ n), the first two assertions of the theorem will remain true.
The corresponding symmetric assertions hold for submartingales.

Proof As we have already mentioned, for martingales, E(ξk; ν ≥ k) = 0. Therefore,
by virtue of (15.2.18)

EX0 = lim
n→∞

[

EX0 +
n∑

k=1

E(ξk; ν ≥ k) − E(Xn, ν ≥ n + 1)

]

.

Here

n∑

k=1

E(ξk; ν ≥ k) =
n∑

k=1

E(Xk; ν ≥ k) −
n∑

k=1

E(Xk−1; ν ≥ k)

=
n∑

k=1

E(Xk; ν ≥ k) −
n−1∑

k=1

E(Xk; ν ≥ k + 1).

Hence



468 15 Martingales

EX0 = lim
n→∞

n∑

k=0

[
E(Xk; ν ≥ k) − E(Xk; ν ≥ k + 1)

]

= lim
n→∞

n∑

k=0

E(Xk; ν = k) = lim
n→∞ E(Xν; ν ≤ n).

These equalities also imply the necessity of condition (15.2.18).
If at least one of the values E(X±

ν ; ν < ∞) is finite, then by the monotone con-
vergence theorem

lim
n→∞ E(Xn; ν ≤ n) = lim

n→∞ E
(
X+

n ; ν ≤ n
) − lim

n→∞ E
(
X−

n ; ν ≤ n
)

= E
(
X+

ν ; ν < ∞) − E
(
X−

ν ; ν < ∞) = E(Xν; ν < ∞).

The third assertion of the theorem follows from the fact that the stopping time
ν(n) = min(ν, n) satisfies the conditions of the first part of the theorem (or those of
Theorems 15.2.1 and 15.2.3), and therefore, for the martingale {Xn},

EX0 = EXν(n) = E(Xν; ν < n) + E(Xν; ν ≥ n),

so that (15.2.19) implies the convergence E(Xn; ν ≥ n) → 0 and vice versa.
The proof for semimartingales is similar. The theorem is proved. �

That assertions (15.2.17) and (15.2.19) are, generally speaking, not equivalent
even when (15.2.18) holds (i.e., limn→∞ E(Xν;ν ≤ n) = E(Xν;ν < ∞) is not al-
ways the case), can be illustrated by the following example. Let ξk be independent
random variables with

P
(
ξk = 3k

) = P
(
ξk = −3k

) = 1/2,

ν be independent of {ξk}, and P(ν = k) = 2−k , k = 1,2, . . . . Then X0 = 0, Xk =
Xk−1 + ξk for k ≥ 1 is a martingale,

EXn = 0, P(ν < ∞) = 1, E(Xn; ν > n) = EXnP(ν > n) = 0

by independence, and condition (15.2.18) is satisfied. By virtue of (15.2.19), this
means that limn→∞ P(Xν; ν ≤ n) = 0 (one can also verify this directly). On the
other hand, the expectation E(Xν; ν < ∞) = EXν is not defined, since EX+

ν =
EX−

ν = ∞. Indeed, clearly

Xk−1 ≥ −3k − 3

2
,

{
ξk = 3k

} ⊂
{
Xk ≥ 3k + 3

2

}
, P

(
Xk ≥ 3k + 3

2

)
≥ 1

2
,

EX+
k ≥ 3k + 3

4
, EX+

ν =
∞∑

k=1

2−kEX+
k ≥

∞∑

k=1

2−k−23k = ∞.

By symmetry, we also have EX−
ν = ∞.

Corollary 15.2.2 1. If {Xn,Fn} is a nonnegative martingale, then condition
(15.2.18) is necessary and sufficient for (15.2.17).
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2. If {Xn,Fn} is a nonnegative supermartingale and ν is an arbitrary stopping
time, then

E(Xν; ν < ∞) ≤ EX0. (15.2.21)

Proof The assertion follows in an obvious way from Theorem 15.2.4 since one has
E(X−

ν ; ν < ∞) = 0. �

Theorem 15.2.2 implies the already known Wald’s identity (see Theorem 4.4.3)
supplemented with another useful statement.

Theorem 15.2.5 (Wald’s identity) Let ζ1, ζ2, . . . be independent identically dis-
tributed random variables, Sn = ζ1 + · · · + ζn, S0 = 0, and assume Eζ1 = a. Let,
further, ν be a stopping time with Eν < ∞. Then

ESν = aEν. (15.2.22)

If, moreover, σ 2 = Var ζk < ∞, then

E[Sν − νa]2 = σ 2Eν. (15.2.23)

Proof It is clear that Xn = Sn − na forms a martingale and conditions (15.2.8) and
(15.2.9) are met. Therefore EXν = EX0 = 0, which is equivalent to (15.2.22), and
EX2

ν = Eνσ 2, which is equivalent to (15.2.23). �

Example 15.2.1 Consider a generalised renewal process (see Sect. 10.6) S(t) =
Sη(t), where Sn = ∑n

j=1 ξj (in this example we follow the notation of Chap. 10
and change the meaning of the notation Sn from the above), η(t) = min{k : Tk > t},
Tn = ∑n

j=1 τj and (τj , ξj ) are independent vectors distributed as (τ, ξ), τ > 0. Set

aξ = Eξ , a = Eτ , σ 2
ξ = Var ξ and σ 2 = Var τ . As we know from Wald’s identity in

Sect. 4.4,

Eη(t) = t + Eχ(t)

a
, ES(t) = aξ Eη(t),

where Eχ(t) = o(t) as t → ∞ (see Theorem 10.1.1) and, in the non-lattice case,
Eχ(t) → σ 2+a2

2a2 if σ 2 < ∞ (see Theorem 10.4.3).
We now find Varη(t) and VarS(t). Omitting for brevity’s sake the argument t ,

we can write

a2 Varη(t) = a2 Varη = E(aη − aEη)2 = E(aη − Tη + Tη − aEη)2

= E(Tη − aη)2 + E(Tη − aEη)2 − 2E(Tη − aη)(Tη − aEη).

The first summand on the right-hand side is equal to

σ 2Eη = σ 2t

a
+ O(1)

by Theorem 15.2.3. The second summand equals, by (10.4.8) (χ(t) = Tη(t) − t ),

E
(
t + χ(t) − aEη

)2 = E
(
χ(t) − Eχ(t)

)2 ≤ Eχ2(t) = o(t).
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The last summand, by the Cauchy–Bunjakovsky inequality, is also o(t). Finally, we
get

Varη(t) = σ 2t

a3
+ o(t).

Consider now (with r = aξ/a; ζj = ξj − rτj , Eζj = 0)

VarS(t) = E(Sη − aξ Eη)2 = E
[
Sη − rTη + r(Tη − aEη)

]2

= E

(
η∑

j=1

ζj

)2

+ r2E(Tη − aEη)2 + 2rE

(
η∑

j=1

ζj

)

(Tη − aEη).

The first term on the right-hand side is equal to

Eη Var ζ = t Var ζ

a
+ O(1)

by Theorem 15.2.3. The second term has already been estimated above. Therefore,
as before, the sum of the last two terms is o(t). Thus

VarS(t) = t

a
E(ξ − rτ )2 + o(t).

This corresponds to the scaling used in Theorem 10.6.2.

Example 15.2.2 Examples 4.4.4 and 4.5.5 referring to the fair game situation with
P(ζk = ±1) = 1/2 and ν = min{k : Sk = z2 or Sk = −z1} (z1 and z2 being the
capitals of the gamblers) can also illustrate the use of Theorem 15.2.5.

Now consider the case p = P(ζk = 1) �= 1/2. The sequence Xn = (q/p)Sn ,
n ≥ 0, q = 1 − p is a martingale, since

E(q/p)ζk = p(q/p) + q(p/q) = 1.

By Theorem 15.2.5 (the probabilities P1 and P2 were defined in Example 4.4.5),

EXν = EX0 = 1, P1(q/p)z2 + P2(q/p)z1 = 1.

From this relation and equality P1 + P2 = 1 we have

P1 = (q/p)z1 − 1

(q/p)z1 − (q/p)z2
, P2 = 1 − P1.

Using Wald’s identity again, we also obtain that

Eν = ESν

Eζ1
= P1z2 − P2z1

p − q
.

Note that these equalities could have been obtained by elementary methods1 but this
would require lengthy calculations.

1See, e.g., [12].
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In the cases when the nature of Sν is simple enough, the assertions of the type
of Theorems 15.2.1–15.2.2 enable one to obtain (or estimate) the distribution of the
random variable ν itself. In such situations, the following assertion is rather helpful.

Suppose that the conditions of Theorem 15.2.5 are met, but, instead of conditions
on the moments of ζn, the Cramér condition (cf. Chap. 9) is assumed to be satisfied:

ψ(λ) := Eeλζ < ∞
for some λ �= 0.

In other words, if

λ+ := sup
(
λ : ψ(λ) < ∞) ≥ 0, λ− := inf

(
λ : ψ(λ) < ∞) ≤ 0,

then λ+ − λ− > 0. Everywhere in what follows we will only consider the values

λ ∈ B := {
ψ(λ) < ∞} ⊆ [λ−, λ+]

for which ψ ′(λ) < ∞. For such λ, the positive martingale

Xn = eλSn

ψn(λ)
, X0 = 1,

is well-defined so that EXn = 1.

Theorem 15.2.6 Let ν be an arbitrary stopping time and λ ∈ B . Then

E
(

eλSν

ψ(λ)ν
; ν < ∞

)
≤ 1 (15.2.24)

and, for any s > 1 and r > 1 such that 1/r + 1/s = 1,

E
(
eλSν ; ν < ∞) ≤ {

E
[
ψrν/s(λs); ν < ∞]}1/r

. (15.2.25)

A necessary and sufficient condition for

E
(

eλSν

ψ(λ)ν
; ν < ∞

)
= 1 (15.2.26)

is that

lim
n→∞ E

(
eλSn

ψ(λ)n
; ν > n

)
= 0. (15.2.27)

Remark 15.2.1 Relation (15.2.26) is known as the fundamental Wald identity. In the
literature it is usually considered for a.s. finite ν (when P(ν < ∞) = 1) being in that
case an extension of the obvious equality EeλSn = ψn(λ) to the case of random ν.
Originally, identity (15.2.26) was established by A. Wald in the special case where
ν is the exit time of the sequence {Sn} from a finite interval (see Corollary 15.2.3),
and was accompanied by rather restrictive conditions. Later, these conditions were
removed (see e.g. [13]). Below we will obtain a more general assertion for the prob-
lem on the first exit of the trajectory {Sn} from a strip with curvilinear boundaries.
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Remark 15.2.2 The fundamental Wald identity shows that, although the nature of
a stopping time could be quite general, there exists a stiff functional constraint
(15.2.26) on the joint distribution of ν and Sν (the distribution of ζk is assumed
to be known). In the cases where one of these variables can somehow be “com-
puted” or “eliminated” (see Examples 15.2.2–15.2.4) Wald’s identity turns into an
explicit formula for the Laplace transform of the distribution of the other variable.
If ν and Sν prove to be independent (which rarely happens), then (15.2.26) gives the
relationship

EeλSν = [
Eψ(λ)−ν

]−1

between the Laplace transforms of the distributions of ν and Sν .

Proof of Theorem 15.2.6 As we have already noted, for

Xn = eλSnψ−n(λ), Fn = σ(ζ1, . . . , ζn),

{Xn,Fn; n ≥ 0} is a positive martingale with X0 = 1 and EXn = 1. Corollary 15.2.2
immediately implies (15.2.24).

Inequality (15.2.25) is a consequence of Hölder’s inequality and (15.2.24):

E
(
e(λ/s)Sν ;ν < ∞) = E

[(
eλSν

ψν(λ)

)1/s

ψν/s(λ);ν < ∞
]

≤ [
E

(
ψνr/s(λ); ν < ∞)]1/r

.

The last assertion of the theorem (concerning the identity (15.2.26)) follows from
Theorem 15.2.4. �

We now consider several important special cases. Note that ψ(λ) is a convex
function (ψ ′′(λ) > 0), ψ(0) = 1, and therefore there exists a unique point λ0 at
which ψ(λ) attains its minimum value ψ(λ0) ≤ 1 (see also Sect. 9.1).

Corollary 15.2.3 Assume that we are given a sequence g(n) such that

g+(n) := max
(
0, g(n)

) = o(n) as n → ∞.

If Sn ≤ g(n) holds on the set {ν > n}, then (15.2.26) holds for λ ∈ (λ0, λ+] ∩ B ,
B = {λ : ψ(λ) < ∞}.

The random variable ν = νg = inf{k ≥ 1 : Sk > g(k)} for g(k) = o(k) obviously
satisfies the conditions of Corollary 15.2.3. For stopping times νg one could also
consider the case g(n)/n → c ≥ 0 as n → ∞, which can be reduced to the case
g(n) = o(n) by introducing the random variables

ζ ∗
k := ζk − c, S∗

k :=
k∑

j=1

ζ ∗
j ,

for which νg = inf{k ≥ 1 : S∗
k > g(k) − ck}.
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Proof of Corollary 15.2.3 For λ > λ0, λ ∈ B , we have

E
(

eλSn

ψn(λ)
;ν > n

)
≤ ψ−n(λ)E

(
eλSn;Sn ≤ g(n)

)

= ψ−n(λ)E
(
e(λ−λ0)Sn · eλ0Sn;Sn ≤ g(n)

)

≤ ψ−n(λ)e(λ−λ0)g(n)E
(
eλ0Sn;Sn ≤ g(n)

)

≤ ψ−n(λ)e(λ−λ0)g
+(n)Eeλ0Sn =

(
ψ(λ0)

ψ(λ)

)n

e(λ−λ0)g
+(n) → 0

as n → ∞, because (λ − λ0)g
+(n) = o(n). It remains to use Theorem 15.2.6. The

corollary is proved. �

We now return to Theorem 15.2.6 for arbitrary stopping times. It turns out that,
based on the Cramér transform introduced in Sect. 9.1, one can complement its
assertions without using any martingale techniques.

Together with the original distribution P of the sequence {ζk}∞k=1 we introduce the
family of distributions Pλ of this sequence in 〈R∞,B∞〉 (see Sect. 5.5) generated
by the finite-dimensional distributions

Pλ(ζk ∈ dxk) = eλxk

ψ(λ)
P(ζk ∈ dxk),

Pλ(ζk ∈ dx1, . . . , ζn ∈ dxn) =
n∏

k=1

Pλ(ζk ∈ dxk).

This is the Cramér transform of the distribution P.

Theorem 15.2.7 Let ν be an arbitrary stopping time. Then, for any λ ∈ B ,

E
(

eλSν

ψν(λ)
;ν < ∞

)
= Pλ(ν < ∞). (15.2.28)

Proof Since {ν = n} ∈ σ(ζ1, . . . , ζn), there exists a Borel set Dn ⊂R
n, such that

{ν = n} = {
(ζ1, . . . , ζn) ∈ Dn

}
.

Further,

E
(

eλSν

ψν(λ)
;ν < ∞

)
=

∞∑

n=0

E
(

eλSn

ψn(λ)
;ν = n

)
,

where

E
(

eλSn

ψn(λ)
;ν = n

)
=

∫

(x1,...,xn)∈Dn

eλ(x1+···+xn)

ψn(λ)
P(ζ1 ∈ dx1, . . . , ζn ∈ dx)

=
∫

(x1,...,xn)∈Dn

Pλ(ζ1 ∈ dx1, . . . , ζn ∈ dxn) = Pλ(ν = n).

This proves the theorem. �
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For a given function g(n), consider now the stopping time

ν = νg = inf
{
k : Sk ≥ g(k)

}

(cf. Corollary 15.2.3). The assertion of Theorem 15.2.7 can be obtained in that case
in the following way. Denote by Eλ the expectation with respect to the distribu-
tion Pλ.

Corollary 15.2.4 1. If g+(n) = max(0, g(n)) = o(n) as n → ∞ and λ ∈
(λ0, λ+] ∩ B , then one has Pλ(νg < ∞) = 1 in relation (15.2.28).

2. If g(n) ≥ 0 and λ < λ0, then Pλ(νg < ∞) < 1.
3. For λ = λ0, the distribution Pλ0 of the variable ν can either be proper (when

one has Pλ0(νg < ∞) = 1) or improper (Pλ0(νg < ∞) < 1). If λ0 ∈ (λ−, λ+),
g(n) < (1 − ε)σ (2 log logn)1/2 for all n ≥ n0, starting from some n0, and σ 2 =
Eλ0ζ

2
1 , then Pλ(νg < ∞) = 1.

But if λ ∈ (λ−, λ+), g(n) ≥ 0, and g(n) ≥ (1 + ε)σ (2 log logn)1/2 for n ≥ n0,
then Pλ(νg < ∞) < 1 (we exclude the trivial case ζk ≡ 0).

Proof Since Eλζk = ψ ′(λ)
ψ(λ)

, the expectation Eλζk is of the same sign as the differ-
ence λ − λ0, and Eλ0ζk = 0 (ψ ′(λ0) = 0 if λ0 ∈ (λ−, λ+)). Hence the first assertion
follows from the relations

Pλ(ν = ∞) = Pλ

(
Xn < g(n) for all n

)
< P

(
Xn < g+(n)

) → 0

as n → ∞ by the law of large numbers for the sums Xn = ∑n
k=1 ζk , since Eλζk > 0.

The second assertion is a consequence of the strong law of large numbers since
Eλζk < 0 and hence Pλ(ν = ∞) = P(supn Xn ≤ 0) > 0.

The last assertion of the corollary follows from the law of the iterated logarithm
which we prove in Sect. 20.2. The corollary is proved. �

The condition g(n) ≥ 0 of part 2 of the corollary can clearly be weakened to the
condition g(n) = o(n), P(ν > n) > 0 for any n > 0. The same is true for part 3.

An assertion similar to Corollary 15.2.4 is also true for the (stopping) time νg−,g+
of the first passage of one of the two boundaries g±(n) = o(n):

νg−,g+ := inf
{
k ≥ 1 : Sk ≥ g+(k) or Sk ≤ g−(k)

}
.

Corollary 15.2.5 For λ ∈ B\{λ0}, we have Pλ(νg−,g+ < ∞) = 1.
If λ = λ0 ∈ (λ−, λ+), then the Pλ-distribution of ν may be either proper or im-

proper.
If, for some n0 > 2,

g±(n) ≶±(1 − ε)σ
√

2 ln lnn

for n ≥ n0 then Pλ0(νg−,g+ < ∞) = 1.
If g±(n)≷ 0 and, additionally,

g±(n) ≷±(1 + ε)σ
√

2 ln lnn

for n ≥ n0 then Pλ0(νg−,g+ < ∞) < 1.
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Proof The first assertion follows from Corollary 15.2.4 applied to the sequences
{±Xn}. The second is a consequence of the law of the iterated logarithm from
Sect. 20.2. �

We now consider several relations following from Corollaries 15.2.3, 15.2.4
and 15.2.5 (from identity (15.2.26)) for the random variables ν = νg and ν = νg−,g+ .

Let a < 0 and ψ(λ+) ≥ 1. Since ψ ′(0) = a < 0 and the function ψ(λ) is convex,
the equation ψ(λ) = 1 will have a unique root μ > 0 in the domain λ > 0. Setting
λ = μ in (15.2.26) we obtain the following.

Corollary 15.2.6 If a < 0 and ψ(λ+) ≥ 1 then, for the stopping times ν = νg and
ν = νg−,g+ , we have the equality

E
(
eμSν ; ν < ∞) = 1.

Remark 15.2.3 For an x > 0, put (as in Chap. 10) η(x) := inf{k : Sk > 0}. Since
Sη(x) = x +χ(x), where χ(x) := Sη(x) −x is the value of overshoot over the level x,
Corollary 15.2.6 implies

E
(
eμ(x+χ(x)); η(x) < ∞) = 1. (15.2.29)

Note that P(η(x) < ∞) = P(S > x), where S = supk≥0 Sk . Therefore, Theo-
rem 12.7.4 and (15.2.29) imply that, as x → ∞,

eμxP
(
η(x) < ∞) = [

E
(
eμχ(x)

∣
∣η(x) < ∞)]−1 → c. (15.2.30)

The last convergence relation corresponds to the fact that the limiting condi-
tional distribution (as x → ∞) G of χ(x) exists given η(x) < ∞. If we denote
by χ a random variable with the distribution G then (15.2.30) will mean that
c = [E eμχ ]−1 < 1. This provides an interpretation of the constant c that is different
from the one in Theorem 12.7.4.

In Corollary 15.2.6 we “eliminated” the “component” ψν(λ) in identity (15.2.26).
“Elimination” of the other component eλSν is possible only in some special cases of
random walks, such as the so-called skip-free walks (see Sect. 12.8) or walks with
exponentially (or geometrically) distributed ζ+

k = max(0, ζk) or ζ−
k = −min(0, ζk).

We will illustrate this with two examples.

Example 15.2.3 We return to the ruin problem discussed in Example 15.2.2. In that
case, Corollary 15.2.4 gives, for g−(n) := −z1 and g+(n) = z2, that

eλz2E
(
ψ(λ)−ν; Sν = z2

) + e−λz1 E
(
ψ(λ)−ν; Sν = −z1

) = 1.

In particular, for z1 = z2 = z and p = 1/2, we have by symmetry that

E
(
ψ(λ)−ν; Sν = z

) = 1

eλz + e−λz
, E

(
ψ(λ)−ν

) = 2

eλz + e−λz
. (15.2.31)
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Let λ(s) be the unique positive solution of the equation sψ(λ) = 1, s ∈ (0,1). Since
here ψ(λ) = 1

2 (eλ + e−λ), solving the quadratic equation yields

eλ(s) = 1 + √
1 − s2

s
.

Identity (15.2.31) now gives

Esν = 2
(
eλ(s)z + e−λ(s)z

)
.

We obtain an explicit form of the generating function of the random variable ν,
which enables us to find the probabilities P(ν = n), n = 1,2, . . . by expanding ele-
mentary functions into series.

Example 15.2.4 Simple explicit formulas can also be obtained from Wald’s identity
in the problem with one boundary, where ν = νg , g(n) = z. In that case, the class of
distributions of ζk could be wider than in Example 15.2.3. Suppose that one of the
two following conditions holds (cf. Sect. 12.8).

1. The transform walk is arithmetic and skip-free, i.e. ζk are integers, P(ξk = 1) > 0
and P(ζk ≥ 2) = 0.

2. The walk is right exponential, i.e.

P(ζk > t) = ce−αt (15.2.32)

either for all t > 0 or for t = 0,1,2, . . . if the walk is integer-valued (the geo-
metric distribution).

The random variable νg will be proper if and only if Eξk = ψ ′(0) ≥ 0 (see
Chaps. 9 and 12). For skip-free random walks, Wald’s identity (15.2.26) yields
(g(n) = z > 0, Sν = z)

eλzEψ−ν(λ) = 1, λ > λ0. (15.2.33)

For s ≤ 1, the equation ψ(λ) = s−1 (cf. Example 15.2.3) has in the domain λ > λ0
a unique solution λ(s). Therefore identity (15.2.33) can be written as

Esν = e−zλ(s). (15.2.34)

This statement implies a series of results from Chaps. 9 and 12. Many properties
of the distribution of ν := νz can be derived from this identity, in particular, the
asymptotics of P(νz = n) as z → ∞, n → ∞. We already know one of the ways to
find this asymptotics. It consists of using Theorem 12.8.4, which implies

P(νz = n) = x

n
P(Sn = z), (15.2.35)

and the local Theorem 9.3.4 providing the asymptotics of P(Sn = z). Using rela-
tion (15.2.34) and the inversion formula is an alternative approach to studying the
asymptotics of P(νz = n). If we use the inversion formula, there will arise an integral
of the form

∫

|s|=1
s−ne−zμ(s) ds, (15.2.36)
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where the integrand s−ne−zμ(s), after the change of variable μ(s)=λ (or s =
ψ(λ)−1), takes the form

exp−{
zλ − n lnψ(λ)

}
.

The integrand in the inversion formula for the probability P(Sn = z) has the same
form. This probability has already been studied quite well (see Theorem 9.3.4); its
exponential part has the form e−nΛ(α), where α = z/n, Λ(α) = supλ(αλ − lnψ(λ))

is the large deviation rate function (see Sect. 9.1 and the footnote for Defini-
tion 9.1.1). A more detailed study of the inversion formula (15.2.36) allows us to
obtain (15.2.35).

Similar relations can be obtained for random walks with exponential right dis-
tribution tails. Let, for example, (15.2.32) hold for all t > 0. Then the conditional
distribution P(Sν > t |ν = n,Sn−1 = x) coincides with the distribution

P(ζn > z − x + t |ζn > z − x) = e−αt

and clearly depends neither on n nor on x. This means that ν and Sν are independent,
Sν = z + γ , γ ⊂= �α ,

Eψ(λ)−ν = 1

Ee(z+γ )λ
= e−λz α − λ

α
, λ0 < λ < α; Esν = e−zλ(s) α − λ(s)

α
,

where λ(s) is, as before, the only solution to the equation ψ(λ) = s−1 in the domain
λ > λ0. This implies the same results as (15.2.34).

If P(ζk > t) = c1e
−αt and P(ζk < −t) = c2e

−βt , t > 0, then, in the problem with
two boundaries, we obtain for ν = νg−,g+ , g+(n) = z2 and g−(n) = −z1 in exactly
the same way from (15.2.26) that

αeλz2

α − λ
E

(
ψ−ν(λ); Sν ≥ z2

) + βe−λz1

β + λ
E

(
ψ−ν(λ); Sν ≤ −z1

) = 1, λ ∈ (−β,α).

15.3 Inequalities

15.3.1 Inequalities for Martingales

First of all we note that the property EXn ≤ 1 of the sequence Xn = eλSnψ0(λ)−n

forming a supermartingale for an appropriate function ψ0(λ) remains true when we
replace n with a stopping time ν (an analogue of inequality (15.2.24)) in a much
more general case than that of Theorem 15.2.6. Namely, ζk may be dependent.

Let, as before, {Fn} be an increasing sequence of σ -algebras, and ζn be
Fn-measurable random variables. Suppose that a.s.

E
(
eλζn

∣∣Fn−1
) ≤ ψ0(λ). (15.3.1)

This condition is always met if a.s.

P(ζn ≥ x|Fn−1) ≤ G(x), ψ0(λ) = −
∫

eλx dG(x) < ∞.
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In that case the sequence Xn = eλSnψ−n
0 (λ) forms a supermartingale:

E(Xn|Fn−1) ≤ Xn−1, EXn ≤ 1.

Theorem 15.3.1 Let (15.3.1) hold and ν be a stopping time. Then inequalities
(15.2.24) and (15.2.25) will hold true with ψ replaced by ψ0.

The Proof of the theorem repeats almost verbatim that of Theorem 15.2.6. �

Now we will obtain inequalities for the distribution of

Xn = max
k≤n

Xk and X∗
n = max

k≤n
|Xk|,

Xn being an arbitrary submartingale.

Theorem 15.3.2 (Doob) Let {Xn,Fn; n ≥ 0} be a nonnegative submartingale.
Then, for all x ≥ 0 and n ≥ 0,

P(Xn > x) ≤ 1

x
EXn.

Proof Let

ν = η(x) := inf{k ≥ 0 : Xk > x}, ν(n) := min(ν, n).

It is obvious that n and ν(n) are stopping times, ν(n) ≤ n, and therefore, by Theo-
rem 15.2.1 (see (15.2.3) for ν2 = n, ν1 = ν(n)),

EXn ≥ EXν(n).

Observing that {Xn > x} = {Xν(n) > x}, we have from Chebyshev’s inequality that

P(Xn > x) = P(Xν(n) > x) ≤ 1

x
EXν(n) ≤ 1

x
EXn.

The theorem is proved. �

Theorem 15.3.2 implies the following.

Theorem 15.3.3 (The second Kolmogorov inequality) Let {Xn,Fn; n ≥ 0} be a
martingale with a finite second moment EX2

n. Then {X2
n,Fn; n ≥ 0} is a submartin-

gale and by Theorem 15.3.2

P
(
X∗

n > x
) ≤ 1

x2
EX2

n.

Originally A.N. Kolmogorov established this inequality for sums Xn = ξ1 +
· · ·+ξn of independent random variables ξn. Theorem 15.3.3 extends Kolmogorov’s
proof to the case of submartingales and refines Chebyshev’s inequality.

The following generalisation of Theorem 15.3.3 is also valid.
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Theorem 15.3.4 If {Xn,Fn; n ≥ 0} is a martingale and E|Xn|p < ∞, p ≥ 1, then
{|Xn|p,Fn; n ≥ 0} forms a nonnegative submartingale and, for all x > 0,

P
(
X∗

n ≥ x
) ≤ 1

xp
E|Xn|p.

If {Xn,Fn; n ≥ 0} is a submartingale, EeλXn < ∞, λ > 0, then {eλXn,Fn; n ≥ 0}
also forms a nonnegative submartingale,

P(Xn ≥ x) ≤ e−λxEeλXn.

Both Theorem 15.3.4 and Theorem 15.3.3 immediately follow from Lem-
ma 15.1.3 and Theorem 15.3.2.

If Xn = Sn = ∑n
k=1 ζk , where ζk are independent, identically distributed and

satisfy the Cramér condition: λ+ = sup{λ : ψ(λ) < ∞} > 0, then, with the help of
the fundamental Wald identity, one can obtain sharper inequalities for P(Xn > x) in
the case a = Eξk < 0.

Recall that, in the case a = ψ ′(0) < 0, the function ψ(λ) = Eeλζk decreases in a
neighbourhood of λ = 0, and, provided that ψ(λ+) ≥ 1, the equation ψ(λ) = 1 has
a unique solution μ in the domain λ > 0.

Let ζ be a random variable having the same distribution as ζk . Put

ψ+ := sup
t>0

E
(
eμ(ζ−t)

∣∣ζ > t
)
, ψ− := inf

t>0
E

(
eμ(ζ−t)

∣∣ζ > t
)
.

If, for instance, P(ζ > t) = ce−αt for t > 0 (in this case necessarily α > μ in
(15.2.32)), then

P(ζ − t > v|ζ > t) = P(ζ > t + v)

P(ζ > t)
= e−αv, ψ+ = ψ− = α

α − μ
.

A similar equality holds for integer-valued ξ with a geometric distribution.
For other distributions, one has ψ+ > ψ−.
Under the above conditions, one has the following assertion which supplements

Theorem 12.7.4 for the distribution of the random variable S = supk Sk .

Theorem 15.3.5 If a = Eζ < 0 then

ψ−1+ e−μx ≤ P(S > x) ≤ ψ−1− e−μx, x > 0. (15.3.2)

This theorem implies that, in the case of exponential right tails of the distribution
of ζ (see (15.2.32)), inequalities (15.3.2) become the exact equality

P(S > x) = α − μ

α
e−μx.

(The same result was obtained in Example 12.5.1.) This means that inequalities
(15.3.2) are unimprovable. Since Sn = maxk≤n Sk ≤ S, relation (15.3.2) implies
that, for any n,

P(Sn > x) ≤ ψ−1− e−μx.
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Proof of Theorem 15.3.5 Set ν := ∞ if S = supk≥0 Sk ≤ x, and put ν := η(x) =
min{k : Sk > x} otherwise. Further, let χ(x) := Sη(x) − x be the excess of the
level x. We have

P
(
χ(x) > v; ν < ∞) =

∞∑

k=1

∫ x

−∞
P(Sk−1 ≤ x, Sk−1 ∈ du, ζk > x − u + v)

=
∞∑

k=1

∫ x

−∞
P(Sk−1 ≤ x, Sk−1 ∈ du, ζk > x − u)

× P(ζk > x − u + v|ζk > x − u),

E
(
eμχ(x); ν < ∞) ≤

∞∑

k=1

∫ x

−∞
P(Sk−1 ≤ x, Sk−1 ∈ du, ζk > x − u)ψ+

= ψ+
∞∑

k=1

P(ν = k) = ψ+P(ν < ∞).

Similarly,

E
(
eμχ(x); ν < ∞) ≥ ψ−P(ν < ∞).

Next, by Corollary 15.2.6,

1 = E
(
eμSν ; ν < ∞) = eμxE

(
eμχ(x); ν < ∞) ≤ eμxψ+ P(ν < ∞).

Because P(ν < ∞) = P(S > x), we get from this the right inequality of The-
orem 15.3.5. The left inequality is obtained in the same way. The theorem is
proved. �

Remark 15.3.1 We proved Theorem 15.3.5 with the help of the fundamental Wald
identity. But there is a direct proof based on the following relations:

ψn(λ) = EeλSn ≥
n∑

k=1

E
(
e(Sk+Sn−Sk)λ; ν = k

)

=
n∑

k=1

E
(
e(x+χ(x))λe(Sn−Sk)λ; ν = k

)
. (15.3.3)

Here the random variables eλχ(x)I(ν = k) and Sn − Sk are independent and, as be-
fore,

E
(
eλχ(x); ν = k

) ≥ ψ− P(ν = k).

Therefore, for all λ such that ψ(λ) ≤ 1,

ψn(λ) ≥ eλxψ−
n∑

k=1

ψn−k(λ)P(ν = k) ≥ ψ−eλxψn(λ)P(ν ≤ n).

Hence we obtain

P(Sn > x) = P(ν ≤ n) ≤ ψ−1− e−λx.
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Since the right-hand side does not depend on n, the same inequality also holds for
P(S > x). The lower bound is obtained in a similar way. One just has to show that,
in the original equality (cf. (15.3.3))

ψn(λ) =
n∑

k=1

E
(
eλSn; ν = k

) + E
(
eλSn; ν > n

)
,

one has E(eλSn; ν > n) = o(1) as n → ∞ for λ = μ, which we did in Sect. 15.2.

15.3.2 Inequalities for the Number of Crossings of a Strip

We now return to arbitrary submartingales Xn and prove an inequality that will be
necessary for the convergence theorems of the next section. It concerns the number
of crossings of a strip by the sequence Xn. Let a < b be given numbers. Set ν0 = 0,

ν1 :=min{n > 0 : Xn ≤ a}, ν2 :=min{n > ν1 : Xn ≥ b},
. . . . . . . . . . . . . . . . . . . . . .

ν2k−1 :=min{n > ν2k−2 : Xn ≤ a}, ν2k :=min{n > ν2k−1 : Xn ≥ b}.
We put νm := ∞ if the path {Xn} for n ≥ νm−1 never crosses the corresponding
level. Using this notation, one can define the number of upcrossings of the strip
(interval) [a, b] by the trajectory X0, . . . ,Xn as the random variable

ν(a, b;n) :=
{

max{k : ν2k ≤ n} if ν2 ≤ n,

0 if ν2 > n.

Set (a)+ = max(0, a).

Theorem 15.3.6 (Doob) Let {Xn,Fn; n ≥ 0} be a submartingale. Then, for all n,

Eν(a, b;n) ≤ E(Xn − a)+

b − a
. (15.3.4)

It is clear that inequality (15.3.4) assumes by itself that only the submartingale
{Xn,Fn;0 ≤ k ≤ n} is given.

Proof The random variable ν(a, b; n) coincides with the number of upcrossings of
the interval [0, b − a] by the sequence (Xn − a)+. Now {(Xn − a)+,Fn; n ≥ 0}
is a nonnegative submartingale (see Example 15.1.4) and therefore, without loss of
generality, one can assume that a = 0 and Xn ≥ 0, and aim to prove that

Eν(0, b; n) ≤ EXn

b
.

Let

ηj :=
{

1 if νk < j ≤ νk+1 for some odd k,

0 if νk < j ≤ νk+1 for some even k.
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Fig. 15.1 Illustration to the
proof of Theorem 15.3.6
showing the locations of the
random times ν1, ν2, and ν3
(here a = 0)

In Fig. 15.1, ν1 = 2, ν2 = 5, ν3 = 8; ηj = 0 for j ≤ 2, ηj = 1 for 3 ≤ j ≤ 5 etc.
It is not hard to see (using the Abel transform) that (with X0 = 0, η0 = 1)

η0X0 +
n∑

1

ηj (Xj − Xj−1) =
n−1∑

0

Xj(ηj − ηj+1) + ηnXn ≥ bν(0, b;n).

Moreover (here N1 denotes the set of odd numbers),

{ηj = 1} =
⋃

k∈N1

{νk < j ≤ νk+1} =
⋃

k∈N1

[{νk ≤ j − 1} − {νk+1 ≤ j − 1}] ∈ Fj−1.

Therefore, by virtue of the relation E(Xj |Fj−1) − Xj−1 ≥ 0, we obtain

bEν(0, b; n) ≤ E
n∑

1

ηj (Xj − Xj−1) =
n∑

1

E(Xj − Xj−1; ηj = 1)

=
n∑

1

E
[
E(Xj − Xj−1|Fj−1); ηj = 1

] =
n∑

1

E
[
E(Xj |Fj−1) − Xj−1; ηj = 1

]

≤
n∑

1

E
[
E(Xj |Fj−1) − Xj−1

] =
n∑

1

E(Xj − Xj−1) = EXn.

The theorem is proved. �

15.4 Convergence Theorems

Theorem 15.4.1 (Doob’s martingale convergence theorem) Let

{Xn,Fn; −∞ < n < ∞}
be a submartingale. Then

(1) The limit X−∞ := limn→−∞ Xn exists a.s., EX+−∞ < ∞, and the process
{Xn,Fn; −∞ ≤ n < ∞} is a submartingale.

(2) If supn EX+
n < ∞ then X∞ := limn→∞ Xn exists a.s. and EX+∞ < ∞. If, more-

over, supn E|Xn| < ∞ then E|X∞| < ∞.
(3) The random sequence {Xn,Fn; −∞ ≤ n ≤ ∞} forms a submartingale if and

only if the sequence {X+
n } is uniformly integrable.
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Proof (1) Since

{lim supXn > lim infXn} =
⋃

rational
a,b

{lim supXn > b > a > lim infXn}

(here the limits are taken as n → −∞), the assumption on divergence with positive
probability

P(lim supXn > lim infXn) > 0

means that there exist rational numbers a < b such that

P(lim supXn > b > a > lim infXn) > 0. (15.4.1)

Let ν(a, b; m) be the number of upcrossings of the interval [a, b] by the sequence
Y1 = X−m, . . . , Ym = X−1 and ν(a, b) = limm→∞ ν(a, b;m). Then (15.4.1) means
that

P
(
ν(a, b) = ∞)

> 0. (15.4.2)

By Theorem 15.3.6 (applied to the sequence Y1, . . . , Ym),

Eν(a, b; m) ≤ E(X−1 − a)+

b − a
≤ EX+

−1 + |a|
b − a

, (15.4.3)

Eν(a, b) ≤ EX+
−1 + |a|
b − a

. (15.4.4)

Inequality (15.4.4) contradicts (15.4.2) and hence proves that

P(lim supXn = lim infXn) = 1.

Moreover, by the Fatou–Lebesgue theorem (X+−∞ := lim infX+
n ),

EX+−∞ ≤ lim infX+
n ≤ EX+

−1 < ∞. (15.4.5)

Here the second inequality follows from the fact that {X+
n ,Fn} is also a submartin-

gale (see Lemma 15.1.3) and therefore EX+
n ↑.

By Lemma 15.1.2, to prove that {Xn,Fn; −∞ ≤ n < ∞} is a submartingale, it
suffices to verify that, for any A ∈ F−∞ ⊂ F,

E(X−∞; A) ≤ E(Xn; A). (15.4.6)

Set Xn(a) := max(Xn, a). By Lemma 15.1.4, {Xn(a),Fn; n ≤ 0} is a uniformly
integrable submartingale. Therefore, for any −∞ < k < n,

E
(
Xk(a); A

) ≤ E
(
Xn(a); A

)
,

E
(
X−∞(a); A

) = lim
k→−∞ E

(
Xk(a); A

) ≤ E
(
Xn(a); A

)
.

(15.4.7)

Letting a → −∞ we obtain (15.4.6) from the monotone convergence theorem.
(2) The second assertion of the theorem is proved in the same way. One just has

to replace the right-hand sides of (15.4.3) and (15.4.4) with EX+
n and supn EX+

n ,
respectively. Instead of (15.4.5) we get (the limits here are as n → ∞)

EX+∞ ≤ lim inf EX+
n < ∞,
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and if supn E|Xn| < ∞ then

E|X∞| ≤ lim inf E|Xn| < ∞.

(3) The last assertion of the theorem is proved in exactly the same way as the
first one—the uniform integrability enables us to deduce along with (15.4.7) that,
for any A ∈ Fn,

E
(
X∞(a); A

) = lim
k→∞ E

(
Xk(a); A

) ≥ E
(
Xn(a); A

)
.

The converse part of the third assertion of the theorem follows from Lemma 15.1.4.
The theorem is proved. �

Now we will obtain some consequences of Theorem 15.4.1.
So far (see Sect. 4.8), while studying convergence of conditional expectations,

we dealt with expectations of the form E(Xn|F). Now we can obtain from Theo-
rem 15.4.1 a useful theorem on convergence of conditional expectations of another
type.

Theorem 15.4.2 (Lévy) Let a nondecreasing family F1 ⊆ F2 ⊆ · · · ⊆ F of σ -
algebras and a random variable ξ , with E|ξ | < ∞, be given on a probability space
〈Ω,F,P〉. Let, as before, F∞ := σ(

⋃
n Fn) be the σ -algebra generated by events

from F1,F2, . . . . Then, as n → ∞,

E(ξ |Fn)
a.s.−→ E(ξ |F∞). (15.4.8)

Proof Set Xn := E(ξ |Fn). We already know (see Example 15.1.3) that the sequence
{Xn,Fn; 1 < n ≤ ∞} is a martingale and therefore, by Theorem 15.4.1, the limit
limn→∞ Xn = X(∞) exists a.s. It remains to prove that X(∞) = E(ξ |F∞) (i.e., that
X(∞) = X∞). Since {Xn,Fn; 1 ≤ n ≤ ∞} is by Lemma 15.1.4 a uniformly inte-
grable martingale,

E(X(∞); A) = lim
n→∞ E(Xn; A) = lim

n→∞ E
(
E(ξ |Fn); A

) = E(ξ ; A)

for A ∈ Fk and any k = 1,2, . . . This means that the left- and right-hand sides of
the last relation, being finite measures, coincide on the algebra

⋃∞
n=1 Fn. By the

theorem on extension of a measure (see Appendix 1), they will coincide for all
A ∈ σ(

⋃∞
n=1 Fn) = F∞. Therefore, by the definition of conditional expectation,

X(∞) = E(ξ |F∞) = X∞.

The theorem is proved. �

We could also note that the uniform integrability of {Xn,Fn; 1 ≤ n ≤ ∞} implies

that
a.s.−→ in (47) can be replaced by

(1)−→.
Theorem 15.4.1 implies the strong law of large numbers. Indeed, turn to our Ex-

ample 15.1.4. By Theorem 15.4.1, the limit X−∞ = limn→−∞ Xn = limn→∞ n−1Sn

exists a.s. and is measurable with respect to the tail (trivial) σ -algebra, and therefore
it is constant with probability 1. Since EX−∞ = Eξ1, we have n−1Sn

a.s.−→ Eξ1.
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One can also obtain some extensions of the theorems on series convergence of
Chap. 11 to the case of dependent variables. Let

Xn = Sn =
n∑

k=1

ξk

and Xn form a submartingale (E(ξn+1|Fn) ≥ 0). Let, moreover, E|Xn| < c for all
n and for some c < ∞. Then the limit S∞ = limn→∞ Sn exists a.s. (As well as
Theorem 15.4.1, this assertion is a generalisation of the monotone convergence the-
orem. The crucial role is played here by the condition that E|Xn| is bounded.) In
particular, if ξk are independent, Eξk = 0, and the variances σ 2

k of ξk are such that∑∞
k=1 σ 2

k < σ 2 < ∞, then

E|Xn| ≤
(
EX2

n

)1/2 ≤
(

n∑

k=1

σ 2
k

)1/2

≤ σ < ∞,

and therefore Sn
a.s.−→ S∞. Thus we obtain, as a consequence, the Kolmogorov theo-

rem on series convergence.

Example 15.4.1 Consider a branching process {Zn} (see Sect. 7.7). We know that
Zn admits a representation

Zn = ζ1 + · · · + ζZn−1 ,

where the ζk are identically distributed integer-valued random variables independent
of each other and of Zn−1, ζk being the number of descendants of the k-th particle
from the (n − 1)-th generation. Assuming that Z0 = 1 and setting μ := Eζk , we
obtain

E(Zn|Zn−1) = μZn−1, EZn = μEZn−1 = μn.

This implies that Xn = Zn/μ
n is a martingale, because

E(Xn|Xn−1) = μ1−nZn−1 = Xn−1.

For branching processes we have the following.

Theorem 15.4.3 The sequence Xn = μ−nZn converges almost surely to a proper
random variable X with EX < ∞. The ch.f. ϕ(λ) of the random variable X satisfies
the equation

ϕ(μλ) = p
(
ϕ(λ)

)
,

where p(v) = Evζk .

Theorem 15.4.3 means that μ−nZn has a proper limiting distribution as n → ∞.

Proof Since Xn ≥ 0 and EXn = 1, the first assertion follows immediately from
Theorem 15.4.1.
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Since EzZn is equal to the n-th iteration of the function f (z), for the ch.f. of Zn

we have (ϕη(λ) := Eeiλη)

ϕZn(λ) = p
(
ϕZn−1(λ)

)
,

ϕXn(λ) = ϕZn

(
μ−nλ

) = p
(
ϕZn−1

(
μ−nλ

)) = p

(
ϕXn−1

(
λ

μ

))
.

Because Xn ⇒ X and the function p is continuous, from this we obtain the equation
for the ch.f. of the limiting distribution X:

ϕ(λ) = p

(
ϕ

(
λ

μ

))
.

The theorem is proved. �

In Sect. 7.7 we established that in the case μ ≤ 1 the process Zn becomes extinct
with probability 1 and therefore P(X = 0) = 1. We verify now that, for μ > 1, the
distribution of X is nondegenerate (not concentrated at zero). It suffices to prove
that {Xn,0 ≤ n ≤ ∞} forms a martingale and consequently

EX = EXn �= 0.

By Theorem 15.4.1, it suffices to verify that the sequence Xn is uniformly integrable.
To simplify the reasoning, we suppose that Var(ζk) = σ 2 < ∞ and show that then
EX2

n < c < ∞ (this certainly implies the required uniform integrability of Xn, see
Sect. 6.1). One can directly verify the identity

Z2
n − μ2n =

n∑

k=1

[
Z2

k − (μZk−1)
2]μ2n−2k.

Since E[Z2
k − (μZk−1)

2|Zk−1] = σ 2Zk−1 (recall that Var(η) = E(η2 − (Eη)2)), we
have

Var(Zn) = E
(
Z2

n − μ2n
) =

n∑

k=1

μ2n−2kσ 2EZk−1

= μ2nσ 2
n∑

k=1

μ−k−1 = σ 2μn(μn − 1)

μ(μ − 1)
,

EX2
n = μ−2nEZ2

n = 1 + σ 2(1 − μ−n)

μ(μ − 1)
≤ 1 + σ 2

μ(μ − 1)
.

Thus we have proved that X is a nondegenerate random variable,

EX = 1, Var(Xn) → σ 2

μ(μ − 1)
.

From the last relation one can easily obtain that Var(X) = σ 2

μ(μ−1)
. To this end one

can, say, prove that Xn is a Cauchy sequence in mean quadratic and hence (see

Theorem 6.1.3) Xn
(2)−→ X.
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15.5 Boundedness of the Moments of Stochastic Sequences

When one uses convergence theorems for martingales, conditions ensuring bound-
edness of the moments of stochastic sequences {Xn,Fn} are of significant interest
(recall that the boundedness of EXn is one of the crucial conditions for convergence
of submartingales). The boundedness of the moments, in turn, ensures that Xn is
stochastically bounded, i.e., that supn P(Xn > N) → 0 as N → ∞. The last bound-
edness is also of independent interest in the cases where one is not able to prove, for
the sequence {Xn}, convergence or any other ergodic properties.

For simplicity’s sake, we confine ourselves to considering nonnegative sequences
Xn ≥ 0. Of course, if we could prove convergence of the distributions of Xn to a
limiting distribution, as was the case for Markov chains or submartingales in The-
orem 15.4.1, then we would have a more detailed description of the asymptotic
behaviour of Xn as n → ∞. This convergence, however, requires that the sequence
Xn satisfies stronger constraints than will be used below.

The basic and rather natural elements of the boundedness conditions to be con-
sidered below are: the boundedness of the moments of ξn = Xn − Xn−1 of the re-
spective orders and the presence of a negative “drift” E(ξn|Fn−1) in the domain
Xn−1 > N for sufficiently large N . Such a property has already been utilised for
Markov chains; see Corollary 13.7.1 (otherwise the trajectory of Xn may go to ∞).

Let us begin with exponential moments. The simplest conditions ensuring the
boundedness of supn EeλXn for some λ > 0 are as follows: for all n ≥ 1 and some
λ > 0 and N < ∞,

E
(
eλξn

∣∣Fn−1
)

I(Xn−1 > N) ≤ β(λ) < 1, (15.5.1)

E
(
eλξn

∣∣Fn−1
)

I(Xn−1 ≥ N) ≤ ψ(λ) < ∞. (15.5.2)

Theorem 15.5.1 If conditions (15.5.1) and (15.5.2) hold then

E
(
eλXn

∣∣F0
) ≤ β(λ)eλX0 + ψ(λ) eλN

1 − β(λ)
. (15.5.3)

Proof Denote by An the left-hand side of (15.5.3). Then, by virtue of (15.5.1) and
(15.5.2), we obtain

An = E
{
E

[
eλXn

(
I(Xn−1 > N) + I(Xn−1 ≤ N)

)∣∣Fn−1
]∣∣F0

}

≤ E
[
eλXn−1

(
β(λ) I(Xn−1 > N) + ψ(λ) I(Xn−1 ≤ N)

)∣∣F0
]

≤ β(λ)An−1 + eλNψ(λ).

This immediately implies that

An ≤ A0β
n(λ) + eλNψ(λ)

n−1∑

k=0

βk(λ) ≤ A0β
n(λ) + eλNψ(λ)

1 − β(λ)
.

The theorem is proved. �
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The conditions

E(ξn|Fn−1) ≤ −ε < 0 on the ω-set {Xn−1 > N}, (15.5.4)

E
(
eλ|ξn|∣∣Fn−1

) ≤ ψ1(λ) < ∞ for some λ > 0 (15.5.5)

are sufficient for (15.5.1) and (15.5.2).
The first condition means that Yn := (Xn + εn) I(Xn−1 > N) is a supermartin-

gale.
We now prove sufficiency of (15.5.4) and (15.5.5). That (15.5.2) holds is clear.

Further, make use of the inequality

ex ≤ 1 + x + x2

2
e|x|,

which follows from the Taylor formula for ex with the remainder in the Cauchy
form:

ex = 1 + x + x2

2
eθx, θ ∈ [0,1].

Then, on the set {Xn−1 > N}, one has

E
(
eλξn

∣∣Fn−1
) ≤ 1 − λε + λ2

2
E

(
ξ2
neλ|ξn|∣∣Fn−1

)
.

Since x2 < eλx/2 for sufficiently large x, by the Hölder inequality it follows that,
together with (15.5.5), we will have

E
(
ξ2
neλ|ξn|/2

∣∣Fn−1
) ≤ ψ2(λ) < ∞.

This implies that, for sufficiently small λ, one has on the set {Xn−1 > N} the in-
equality

E
(
eλξn

∣∣Fn−1
) ≤ 1 − λε + λ2

2
ψ2(λ) =: β(λ) ≤ 1 − λε

2
< 1.

This proves (15.5.1). �

Corollary 15.5.1 If, in addition to the conditions of Theorem 15.5.1, the distribution
of Xn converges to a limiting distribution: P(Xn < t) ⇒ P(X < t), then

EeλX ≤ eλNψ(λ)

1 − β(λ)
.

The corollary follows from the Fatou–Lebesgue theorem (see also Lemma 6.1.1):

EeλX ≤ lim inf
n→∞ EeλXn. �

We now obtain bounds for “conventional” moments. Set

Ml(n) := EXl
n,

m(0) := 1, m(1) := sup
n≥1

sup
ω∈{Xn−1>N}

E(ξn|Fn−1),

m(l) := sup
n≥1

sup
ω

E
(|ξn|l

∣∣Fn−1
)
, l > 1.
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Theorem 15.5.2 Assume that EXs
0 < ∞ for some s > 1 and there exist N ≥ 0 and

ε > 0 such that

m(1) ≤ −ε, (15.5.6)

m(s) < c < ∞. (15.5.7)

Then

lim inf
n→∞ Ms−1(n) < ∞. (15.5.8)

If, moreover,

Ms(n + 1) > Ms(n) − c1 (15.5.9)

for some c1 > 0, then

sup
n

Ms−1(n) < ∞. (15.5.10)

Corollary 15.5.2 If conditions (15.5.6) and (15.5.7) are met and the distribution
of Xn converges weakly to a limiting distribution: P(Xn < t) ⇒ P(X < t), then
EXs−1 < ∞.

This assertion follows from the Fatou–Lebesgue theorem (see also Lemma 6.1.1),
which implies

EXs−1 ≤ lim inf
n→∞ EXs−1

n . �

The assertion of Corollary 15.5.2 is unimprovable. One can see this from the

example of the sequence Xn = (Xn−1 + ζn)
+, where ζk

d= ζ are independent and
identically distributed. If Eζk < 0 then the limiting distribution of Xn coincides with
the distribution of S = supk Sk (see Sect. 12.4). From factorisation identities one can
derive that ESs−1 is finite if and only if E(ζ+)s < ∞. An outline of the proof is as
follows. Theorem 12.3.2 implies that ESk = c E(χk+; η+ < ∞), c = const < ∞. It
follows from Corollary 12.2.2 that

1 − E
(
eiλχ+; η+ < ∞) = (

1 − Eeiλζ
)∫ ∞

0
e−iλx dH(x),

where H(x) is the renewal function for the random variable −χ0− ≥ 0. Since

a1 + b1x ≤ H(x) ≤ a2 + b2x

(see Theorem 10.1.1 and Lemma 10.1.1; ai , bi are constants), integrating the con-
volution

P(χ+ > x, η+ < ∞) =
∫ ∞

0
P(ζ > v + x)dH(v)

by parts we verify that, as x → ∞, the left-hand side has the same order of magni-
tude as

∫ ∞
0 P(ζ > v + x)dv. Hence the required statement follows.
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We now return to Theorem 15.5.2. Note that in all of the most popular problems
the sequence Ms−1(n) behaves “regularly”: either it is bounded or Ms−1(n) → ∞.
Assertion (15.5.8) means that, under the conditions of Theorem 15.5.2, the sec-
ond possibility is excluded. Condition (15.5.9) ensuring (15.5.10) is also rather
broad.

Proof of Theorem 15.5.2 Let for simplicity’s sake s > 1 be an integer. We have

E
(
Xs

n; Xn−1 > N
) =

∫ ∞

N

E
(
(x + ξn)

s; Xn−1 ∈ dx
)

=
s∑

l=0

(
s

l

)∫ ∞

N

xlE
(
ξ s−l
n ; Xn−1 ∈ dx

)
.

If we replace ξ s−l
n for s − l ≥ 2 with |ξn|s−l then the right-hand side can only in-

crease. Therefore,

E
(
Xs

n; Xn−1 > N
) ≤

s∑

l=0

(
s

l

)
m(s − l)Ml

N(n − 1),

where

Ml
N(n) = E

(
Xl

n; Xn > N
)
.

The moments Ms(n) = EXs
n satisfy the inequalities

Ms(n) ≤ E
[(

N + |ξn|
)s; Xn−1 ≤ N

] +
s∑

l=0

(
s

l

)
m(s − l)Ml

N(n − 1)

≤ 2s
[
Ns + c

] +
s∑

l=0

(
s

l

)
m(s − l)Ml

N(n − 1). (15.5.11)

Suppose now that (15.5.8) does not hold: Ms−1(n) → ∞. Then all the more
Ms(n) → ∞ and there exists a subsequence n′ such that Ms(n′) > Ms(n′ − 1).
Since Ml(n) ≤ [Ml+1(n)]l/ l+1, we obtain from (15.5.6) and (15.5.11) that

Ms
(
n′) ≤ const + Ms

(
n′ − 1

) + sMs−1(n′ − 1
)
m(1) + o

(
Ms−1(n′ − 1

))

≤ Ms
(
n′ − 1

) − 1

2
sεMs−1(n′ − 1

)

for sufficiently large n′. This contradicts the assumption that Ms(n) → ∞ and hence
proves (15.5.8).

We now prove (15.5.10). If this relation is not true then there exists a sequence
n′ such that Ms−1(n′) → ∞ and Ms(n′) > Ms(n′ − 1)− c1. It remains to make use
of the above argument.

We leave the proof for a non-integer s > 1 to the reader (the changes are elemen-
tary). The theorem is proved. �



15.5 Boundedness of the Moments of Stochastic Sequences 491

Remark 15.5.1 (1) The assertions of Theorems 15.5.1 and 15.5.2 will remain valid
if one requires inequalities (15.5.4) or E(ξn + ε|Fn−1) I(Xn−1 > N) ≤ 0 to hold not
for all n, but only for n ≥ n0 for some n0 > 1.

(2) As in Theorem 15.5.1, condition (15.5.6) means that the sequence of random
variables (Xn + εn) I(Xn−1 > N) forms a supermartingale.

(3) The conditions of Theorems 15.5.1 and 15.5.2 may be weakened by replac-
ing them with “averaged” conditions. Consider, for instance, condition (15.5.1). By
integrating it over the set {Xn−1 > x > N} we obtain

E
(
eλξn; Xn−1 > x

) ≤ β(λ)P(Xn−1 > x)

or, which is the same,

E
(
eλξn

∣∣Xn−1 > x
) ≤ β(λ). (15.5.12)

The converse assertion that (15.5.12) for all x > N implies relation (15.5.1) is obvi-
ously false, so that condition (15.5.12) is weaker than (15.5.1). A similar remark is
true for condition (15.5.4).

One has the following generalisations of Theorems 15.5.1 and 15.5.2 to the case
of “averaged conditions”.

Theorem 15.5.1A Let, for some λ > 0, N > 0 and all x ≥ N ,

E
(
eλξn

∣∣Xn−1 > x
) ≤ β(λ) < 1, E

(
eλξn; Xn−1 ≤ N

) ≤ ψ(λ) < ∞.

Then

EeλXn ≤ βn(λ)EeλX(0) + eλNψ(λ)

1 − β(λ)
.

Put

m(1) := sup
n≥1

sup
x≥N

E(ξn|Xn−1 > x),

m(l) := sup
n≥1

sup
x≥N

E
(|ξn|l

∣∣X(n) > x
)
, l > 1.

Theorem 15.5.2A Let EXs
0 < ∞ and there exist N ≥ 0 and ε > 0 such that

m(1) ≤ −ε, m(s) < ∞, E
(|ξn|s; Xn−1 ≤ N

)
< c < ∞.

Then (15.5.8) holds true. If, in addition, (15.5.9) is valid, then (15.5.10) is true.

The proofs of Theorems 15.5.1A and 15.5.2A are quite similar to those of Theo-
rems 15.5.1 and 15.5.2. The only additional element in both cases is integration by
parts. We will illustrate this with the proof of Theorem 15.5.1A. Consider
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E
(
eλXn; Xn−1 > N

) =
∫ ∞

N

eλxE
(
eλξn; Xn−1 ∈ dx

)

= E
(
eλ(N+ξn); Xn−1 > N

) +
∫ ∞

N

λeλxE
(
eλξn; Xn−1 > x

)
dx

≤ E
(
eλ(N+ξn); Xn−1 > N + β(λ)

)∫ ∞

N

λeλxP(Xn−1 > x)dx

= eλN E
(
eλξn − β(λ); Xn−1 > N

) + β(λ)

∫ ∞

N

eλxP(Xn−1 ∈ dx)

≤ β(λ)E
(
eλXn−1; Xn−1 > N

)
.

From this we find that

βn(λ) := EeλXn ≤ E
(
eλ(Xn−1+ξn); Xn−1 ≤ N

) + E
(
eλXn;Xn−1 > N

)

≤ eλNψ(λ) + β(λ)E
(
eλXn−1; Xn−1 > N

)

≤ eλNψ(λ) − P(Xn−1 ≤ N)β(λ) + β(λ)βn(λ);
βn(λ) ≤ βn(λ)β0(λ) + eλNψ(λ)

1 − β(λ)
. �

Note that Theorem 13.7.2 and Corollary 13.7.1 on “positive recurrence” can also
be referred to as theorems on boundedness of stochastic sequences.
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