
Chapter 14
Information and Entropy

Abstract Section 14.1 presents the definitions and key properties of information
and entropy. Section 14.2 discusses the entropy of a (stationary) finite Markov chain.
The Law of Large Numbers is proved for the amount of information contained in
a message that is a long sequence of successive states of a Markov chain, and the
asymptotic behaviour of the number of the most common states in a sequence of
successive values of the chain is established. Applications of this result to coding
are discussed.

14.1 The Definitions and Properties of Information and Entropy

Suppose one conducts an experiment whose outcome is not predetermined. The
term “experiment” will have a broad meaning. It may be a test of a new device, a
satellite launch, a football match, a referendum and so on. If, in a football match,
the first team is stronger than the second, then the occurrence of the event A that the
first team won carries little significant information. On the contrary, the occurrence
of the complementary event A contains a lot of information. The event B that a
leading player of the first team was injured does contain information concerning the
event A. But if it was the first team’s doctor who was injured then that would hardly
affect the match outcome, so such an event B carries no significant information
about the event A.

The following quantitative measure of information is conventionally adopted. Let
A and B be events from some probability space 〈Ω,F,P〉.

Definition 14.1.1 The amount of information about the event A contained in the
event (message) B is the quantity

I (A|B) := log
P(A|B)

P(A)
.

The notions of the “amount of information” and “entropy” were introduced by C.E. Shannon in
1948. For some special situations the notion of amount of information had also been considered in
earlier papers (e.g., by R.V.L. Hartley, 1928). The exposition in Sect. 14.2 of this chapter is
substantially based on the paper of A.Ya. Khinchin [21].
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448 14 Information and Entropy

The occurrence of the event B = A may be interpreted as the message that A

took place.

Definition 14.1.2 The number I (A) := I (A|A) is called the amount of information
contained in the message A:

I (A) := I (A|A) = − log P(A).

We see from this definition that the larger the probability of the event A, the
smaller I (A). As a rule, the logarithm to the base 2 is used in the definition of infor-
mation. Thus, say, the message that a boy (or girl) was born in a family carries a unit
of information (it is supposed that these events are equiprobable, and − log2 p = 1
for p = 1/2). Throughout this chapter, we will write just logx for log2 x.

If the events A and B are independent, then I (A|B) = 0. This means that the
event B does not carry any information about A, and vice versa. It is worth noting
that we always have

I (A|B) = I (B|A).

It is easy to see that if the events A and B are independent, then

I (AB) = I (A) + I (B). (14.1.1)

Consider an example. Let a chessman be placed at random on one of the squares
of a chessboard. The information that the chessman is on square number k (the
event A) is equal to I (A) = log 64 = 6. Let B1 be the event that the chessman is in
the i-th row, and B2 that the chessman is in the j -th column. The message A can be
transmitted by transmitting B1 first and then B2. We have

I (B1) = log 8 = 3 = I (B2).

Therefore

I (B1) + I (B2) = 6 = I (A),

so that transmitting the message A “by parts” requires communicating the same
amount of information (which is equal to 6) as transmitting A itself. One could
give other examples showing that the introduced numerical characteristics are quite
natural.

Let G be an experiment with outcomes E1, . . . ,EN occurring with probabilities
p1, . . . , pN .

The information resulting from the experiment G is a random variable
JG = JG(ω) assuming the value − logpj on the set Ej , j = 1, . . . ,N .

Thus, if in the probability space 〈Ω,F,P〉 corresponding to the experiment G,
Ω coincides with the set (E1, . . . ,EN), then JG(ω) = I (ω).

Definition 14.1.3 The expectation of the information obtained in the experiment G,
EJG = −∑

pj logpj , is called the entropy of the experiment. We shall denote it by

Hp = H(G) := −
N∑

j=1

pj logpj ,
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Fig. 14.1 The plot of the
entropy f (p) of a random
experiment with two
outcomes

where p = (p1, . . . , pN). For pj = 0, by continuity we set pj logpj to be equal to
zero.

The entropy of an experiment is, in a sense, a measure of its uncertainty. Let,
for example, our experiment have two outcomes A and B with probabilities p and
q = 1 − p, respectively. The entropy of the experiment is equal to

Hp = −p logp − (1 − p) log(1 − p) = f (p).

The graph of this function is depicted in Fig. 14.1.
The only maximum of f (p) equals log 2 = 1 and is attained at the point p = 1/2.

This is the case of maximum uncertainty. If p decreases, then the uncertainty also
decreases together with Hp, and Hp = 0 for p = (0,1) or (0,1).

The same properties can easily be seen in the general case as well.

The properties of entropy.

1. H(G) = 0 if and only if there exists a j , 1 ≤ j ≤ N , such that pj = P(Ej ) = 1.
2. H(G) attains its maximum when pj = 1/N for all j .

Proof The second derivative of the function β(x) = x logx is positive on [0,1],
so that β(x) is convex. Therefore, for any qi ≥ 0 such that

∑N
i=1 qi = 1, and any

xi ≥ 0, one has the inequality

β

(
N∑

i=1

qixi

)

≤
N∑

i=1

qiβ(xi).

If we take qi = 1/N , xi = pi , then
(

1

N

N∑

i=1

pi

)

log

(
1

N

N∑

i=1

pi

)

≤
N∑

i=1

1

N
pi logpi.

Setting u := ( 1
N

, . . . , 1
N

) we obtain from this that

− log
1

N
= logN = Hu ≥ −

N∑

i=1

pi logpi = Hp. �

Note that if the entropy H(G) equals its maximum value H(G) = logN , then
JG(ω) = logN with probability 1, i.e. the information JG(ω) becomes constant.
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3. Let G1 and G2 be two independent experiments. We write down the outcomes
and their probabilities in these experiments in the following way:

G1 =
(

E1, . . . ,EN

p1, . . . , pN

)

, G2 =
(

A1, . . . ,AM

q1, . . . , qM

)

.

Combining the outcomes of these two experiments we obtain a new experiment

G = G1 × G2 =
(

E1A1,E1A2, . . . ,ENAM

p1q1,p1q2, . . . , pNqM

)

.

The information JG obtained as a result of this experiment is a random variable
taking values − logpiqj with probabilities piqj , i = 1, . . . ,N ; j = 1, . . . ,M . But
the sum JG1 + JG2 of two independent random variables equal to the amounts of
information obtained in the experiments G1 and G2, respectively, clearly has the
same distribution. Thus the information obtained in a sequence of independent ex-
periments is equal to the sum of the information from these experiments. Since in
that case clearly

EJG = EJG1 + EJG2,

we have that for independent G1 and G2 the entropy of the experiment G is equal
to the sum of the entropies of the experiments G1 and G2:

H(G) = H(G1) + H(G2).

4. If the experiments G1 and G2 are dependent, then the experiment G can be
represented as

G =
(

E1A1,E1A2, . . . ,ENAM

q11, q12, . . . , qNM

)

with qij = pipij , where pij is the conditional probability of the event Aj

given Ei , so that

M∑

j=1

qij = pi = P(Ei), i = 1, . . . ,N;

N∑

j=1

qij = qj = P(Ai), j = 1, . . . ,M.

In this case the equality JG = JG1 + JG2 , generally speaking, does not hold. In-
troduce a random variable J ∗

2 which is equal to − logpij on the set EiAj . Then
evidently JG = JG1 + J ∗

2 . Since

P(A|Ei) = pij ,

the quantity J ∗
2 for a fixed i can be considered as the information from the experi-

ment G2 given the event Ei occurred. We will call the quantity

E
(
J ∗

2 |Ei

) = −
M∑

j=1

pij logpij
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the conditional entropy H(G2|E1) of the experiment G2 given Ei , and the quantity

EJ ∗
2 = −

∑

i,j

qij logpij =
∑

i

piH(G2|E1)

the conditional entropy H(G2|G1) of the experiment G2 given G1. In this notation,
we obviously have

H(G) = H(G1) + H(G2|G1).

We will prove that in this equality we always have

H(G2|G1) ≤ H(G2),

i.e. for two experiments G1 and G2 the entropy H(G) never exceeds the sum of the
entropies H(G1) and H(G2):

H(G) = H(G1 × G2) ≤ H(G1) + H(G2).

Equality takes place here only when qij = piqj , i.e. when G1 and G2 are indepen-
dent.

Proof First note that, for any two distributions (u1, . . . , un) and (v1, . . . , vn), one
has the inequality

−
∑

i

ui logui ≤ −
∑

i

ui logvi, (14.1.2)

equality being possible here only if vi = ui , i = 1, . . . , n. This follows from the
concavity of the function logx, since it implies that, for any ai > 0,

∑

i

ui logai ≤ log

(∑

i

uiai

)

,

equality being possible only if a1 = a2 = · · · = an. Putting ai = vi/ui , we obtain
relation (14.1.2).

Next we have

H(G1) + H(G2) = −
∑

i,j

qij (logpi + logqj ) = −
∑

i,j

qij logpiqj ,

and because {piqj } is obviously a distribution, by virtue of (14.1.2)

−
∑

qij logpiqj ≥ −
∑

qij logqij = H(G)

holds, and equality is possible here only if qij = piqj . �

5. As we saw when considering property 3, the information obtained as a result of
the experiment Gn

1 consisting of n independent repetitions of the experiment G1
is equal to

JGn
1
= −

N∑

j=1

νj logpj ,
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where νj is the number of occurrences of the outcome Ej . By the law of large

numbers, νj /n
p→ pj as n → ∞, and hence

1

n
JGn

1

p→ H(G1) = Hp.

To conclude this section, we note that the measure of the amount of information
resulting from an experiment we considered here can be derived as the only possible
one (up to a constant multiplier) if one starts with a few simple requirements that
are natural to impose on such a quantity.1

It is also interesting to note the connections between the above-introduced no-
tions and large deviation probabilities. As one can see from Theorems 5.1.2 and
5.2.4, the difference between the “biased” entropy −∑

p∗
j lnpj and the entropy

−∑
p∗

j lnp∗
j (p∗

j = νj /n are the relative frequencies of the outcomes Ej ) is an
analogue of the deviation function (see Sect. 8.8) in the multi-dimensional case.

14.2 The Entropy of a Finite Markov Chain. A Theorem on the
Asymptotic Behaviour of the Information Contained in a
Long Message; Its Applications

14.2.1 The Entropy of a Sequence of Trials Forming a Stationary
Markov Chain

Let {Xk}∞k=1 be a stationary finite Markov chain with one class of essential states
without subclasses, E1, . . . ,EN being its states. Stationarity of the chain means that
P(X1 = j) = πj coincide with the stationary probabilities. It is clear that

P(X2 = j) =
∑

k

πkpkj = πj , P(X3 = j) = πj , and so on.

Let Gk be an experiment determining the value of Xk (i.e. the state the system
entered on the k-th step). If Xk−1 = i, then the entropy of the k-th step equals

H(Gk|Xk−1 = i) = −
∑

j

pij logpij .

By definition, the entropy of a stationary Markov chain is equal to

H = EH(Gk|Xk−1) = H(Gk|Gk−1) = −
∑

i

πi

∑

j

pij logpij .

Consider the first n steps X1, . . . ,Xn of the Markov chain. By the Markov prop-
erty, the entropy of this composite experiment G(n) = G1 × · · · × Gn is equal to

1See, e.g., [11].
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H
(
G(n)

) = H(G1) + H(G2|G1) + · · · + H(Gn|Gn−1)

= −
∑

πj logπj + (n − 1)H ∼ nH

as n → ∞. If Xk were independent then, as we saw, we would have exact equality
here.

14.2.2 The Law of Large Numbers for the Amount of Information
Contained in a Message

Now consider a finite sequence (X1, . . . ,Xn) as a message (event) Cn and denote,
as before, by I (Cn) = − log P(Cn) the amount of information contained in Cn.
The value of I (Cn) is a function on the space of elementary outcomes equal to
the information JG(n) contained in the experiment G(n). We now show that, with
probability close to 1, this information behaves asymptotically as nH , as was the
case for independent Xk . Therefore H is essentially the average information per
trial in the sequence {Xk}∞k=1.

Theorem 14.2.1 As n → ∞,

I (Cn)

n
= − log P(Cn)

n

a.s.−→ H.

This means that, for any δ > 0, the set of all messages Cn can be decomposed into
two classes. For the first class, |I (Cn)/n − H | < δ, and the sum of the probabilities
of the elements of the second class tends to 0 as n → ∞.

Proof Construct from the given Markov chain a new one {Yk}∞k=1 by setting Yk :=
(Xk,Xk+1). The states of the new chain are pairs of states (Ei,Ej ) of the chain
{Xk} with pij > 0. The transition probabilities are obviously given by

p(i,j)(k,l) =
{

0, j 
= k,

pkl, j = k.

Note that one can easily prove by induction that

p(i,j)(k,l)(n) = pjk(n − 1)pkl. (14.2.1)

From the definition of {Yk} it follows that the ergodic theorem holds for this chain.
This can also be seen directly from (14.2.1), the stationary probabilities being

lim
n→∞p(i,j)(k,l)(n) = πkpkl.

Now we will need the law of large numbers for the number of visits m(k,l)(n)

of the chain {Yk}∞k=1 to state (k, l) over time n. By virtue of this law (see Theo-
rem 13.4.4),

m(k,l)(n)

n

a.s.−→ πkpkl as n → ∞.
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Consider the random variable P(Cn):

P(Cn) = P(EX1EX2 · · ·EXn) = P(EX1)P(EX2 |EX1) · · ·P(EXn |EXn−1)

= πX1pX1X2 · · ·pXn−1Xn = πX1

∏

(k,l)

p
m(k,l)(n−1)

kl .

The product here is taken over all pairs (k, l). Therefore (πi = P(X1 = i))

log P(Cn) = logπX1 +
∑

k,l

m(k,l)(n − 1) logpkl,

1

n
log P(Cn)

p→
∑

k,l

πkpkl logpkl = −H. �

14.2.3 The Asymptotic Behaviour of the Number of the Most
Common Outcomes in a Sequence of Trials

Theorem 14.2.1 has an important corollary. Rank all the messages (words) Cn of
length n according to the values of their probabilities in descending order. Next pick
the most probable words one by one until the sum of their probabilities exceeds a
prescribed level α, 0 < α < 1. Denote the number (and also the set) of the selected
words by Mα(n).

Theorem 14.2.2 For each 0 < α < 1, there exists one and the same limit

lim
n→∞

logMα(n)

n
= H.

Proof Let δ > 0 be a number, which can be arbitrarily small. We will say that Cn

falls into category K1 if its probability P(Cn) > 2−n(H−δ), and into category K2 if

2−n(H+δ) < P(Cn) ≤ 2−n(H−δ).

Finally, Cn belongs to the third category K3 if

P(Cn) ≤ 2−n(H+δ).

Since, by Theorem 14.2.1, P(Cn ∈ K1 ∪K3) → 0 as n → ∞, the set Mα(n) contains
only the words from K1 and K2, and the last word from Mα(n) (i.e. having the
smallest probability)—we denote it by Cα,n—belongs to K2. This means that

Mα(n)2−n(H+δ) <
∑

Cn∈Mα(n)

P(Cn) < α + P(Cα,n) < α + 2−n(H−δ).

This implies

logMα(n)

n
<

(α + 2−n(H−δ))

n
+ H + δ.
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Since δ is arbitrary, we have

lim sup
n→∞

logMα(n)

n
≤ H.

On the other hand, the words from K2 belonging to Mα(n) have total probability
≥ α − P(K1). If M

(2)
α (n) is the number of these messages then

M(2)
α (n)2−n(H−δ) ≥ α − P(K1),

and, consequently,

Mα(n)2−n(H−δ) ≥ α − P(K1).

Since P(K1) → 0 as n → ∞, for sufficiently large n one has

logMα(n)

n
≥ H − δ + 1

n
log

α

2
.

It follows that

lim sup
n→∞

logMα(n)

n
≥ H.

The theorem is proved. �

Now one can obtain a useful interpretation of this theorem. Let N be the number
of the chain states. Suppose for simplicity’s sake that N = 2m. Then the number of
different words of length n (chains Cn) will be equal to Nn = 2nm. Suppose, further,
that these words are transmitted using a binary code, so that m binary symbols
are used to code every state. Thus, with such transmission method—we will call it
direct coding—the length of the messages will be equal to nm. (For example, one
can use Markov chains to model the Russian language and take N = 32, m = 5.)
The assertion of Theorem 14.2.2 means that, for large n, with probability 1 − ε,
ε > 0, only 2nH of the totality of 2nm words will be transmitted. The probability
of transmitting all the remaining words will be small if ε is small. From this it is
easy to establish the existence of another more economical code requiring, with a
large probability, a smaller number of digits to transmit a word. Indeed, one can
enumerate the selected 2nH most likely words using, say, a binary code again, and
then transmit only the number of the word. This clearly requires only nH digits.
Since we always have H ≤ logN = m, the length of the message will be m/H ≥ 1
times smaller.

This is a special case of the so-called basic coding theorem for Markov chains:
for large n, there exists a code for which, with a high probability, the original mes-
sage Cn can be transmitted by a sequence of signals which is m/H times shorter
than in the case of the direct coding.

The above coding method is rather an oversimplified example than a recipe for
efficiently compressing the messages. It should be noted that finding a really ef-
ficient coding method is a rather difficult task. For example, in Morse code it is
reasonable to encode more frequent letters by shorter sequences of dots and dashes.
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However, the text reduction by m/H times would not be achieved. Certain compres-
sion techniques have been used in this book as well. For example, we replaced the
frequently encountered words “characteristic function” by “ch.f.” We could achieve
better results if, say, shorthand was used. The structure of a code with a high com-
pression coefficient will certainly be very complicated. The theorems of the present
chapter give an upper bound for the results we can achieve.

Since H = ∑ 1
n

logN = m, for a sequence of independent equiprobable sym-
bols, such a text is incontractible. This is why the proximity of “new” messages
(encoded using a new alphabet) to a sequence of equiprobable symbols could serve
as a criterion for constructing new codes.

It should be taken into account, however, that the text “redundancy” we are
“fighting” with is in many cases a useful and helpful phenomenon. Without such
redundancy, it would be impossible to detect misprints or reconstruct omissions as
easily as we, say, restore the letter “r” in the word “info · mation”.

The reader might know how difficult it is to read a highly abridged and formalised
mathematical text. While working with an ideal code no errors would be admissible
(even if we could find any), since it is impossible to reconstruct an omitted or dis-
torted symbol in a sequence of equiprobable digits. In this connection, there arises
one of the basic problems of information theory: to find a code with the smallest
“redundancy” which still allows one to eliminate the transmission noise.
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