
Chapter 13
Sequences of Dependent Trials. Markov Chains

Abstract The chapter opens with in Sect. 13.1 presenting the key definitions and
first examples of countable Markov chains. The section also contains the classifica-
tion of states of the chain. Section 13.2 contains necessary and sufficient conditions
for recurrence of states, the Solidarity Theorem for irreducible Markov chains and
a theorem on the structure of a periodic Markov chain. Key theorems on random
walks on lattices are presented in Sect. 13.3, along with those for a general sym-
metric random walk on the real line. The ergodic theorem for general countable
homogeneous chains is established in Sect. 13.4, along with its special case for fi-
nite Markov chains and the Law of Large Numbers and the Central Limit Theorem
for the number of visits to a given state. This is followed by a short Sect. 13.5 de-
tailing the behaviour of transition probabilities for reducible chains. The last three
sections are devoted to Markov chains with arbitrary state spaces. First the ergod-
icity of such chains possessing a positive atom is proved in Sect. 13.6, then the
concept of Harris Markov chains is introduced and conditions of ergodicity of such
chains are established in Sect. 13.7. Finally, the Laws of Large Numbers and the
Central Limit Theorem for sums of random variables defined on a Markov chain are
obtained in Sect. 13.8.

13.1 Countable Markov Chains. Definitions and Examples.
Classification of States

13.1.1 Definition and Examples

So far we have studied sequences of independent trials. Now we will consider the
simplest variant of a sequence of dependent trials.

Let G be an experiment having a finite or countable set of outcomes {E1,E2, . . .}.
Suppose we keep repeating the experiment G. Denote by Xn the number of the
outcome of the n-th experiment.

In general, the probabilities of different values of EXn can depend on what events
occurred in the previous n−1 trials. If this probability, given a fixed outcome EXn−1

of the (n−1)-st trial, does not depend on the outcomes of the preceding n−2 trials,
then one says that this sequence of trials forms a Markov chain.
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To give a precise definition of a Markov chain, consider a sequence of integer-
valued random variables {Xn}∞n=0. If the n-th trial resulted in outcome Ej , we set
Xn := j .

Definition 13.1.1 A sequence {Xn}∞0 forms a Markov chain if

P(Xn = j |X0 = k0,X1 = k1, . . . ,Xn−2 = kn−2,Xn−1 = i)

P(Xn = j |Xn−1 = i) =: p(n)
ij . (13.1.1)

These are the so-called countable (or discrete) Markov chains, i.e. Markov chains
with countable state spaces.

Thus, a Markov chain may be thought of as a system with possible states
{E1,E2, . . .}. Some “initial” distribution of the variable X0 is given:

P(X0 = j) = p0
j ,

∑
p0

j = 1.

Next, at integer time epochs the system changes its state, the conditional probability
of being at state Ej at time n given the previous history of the system only being
dependent on the state of the system at time n − 1. One can briefly characterise this
property as follows: given the present, the future and the past of the sequence Xn

are independent.
For example, the branching process {ζn} described in Sect. 7.7, where ζn was the

number of particles in the n-th generation, is a Markov chain with possible states
{0,1,2, . . .}.

In terms of conditional expectations or conditional probabilities (see Sect. 4.8),
the Markov property (as we shall call property (13.1.1)) can also be written as

P
(
Xn = j

∣∣ σ(X0, . . . ,Xn−1)
)= P

(
Xn

∣∣ σ(Xn−1)
)
,

where σ(·) is the σ -algebra generated by random variables appearing in the argu-
ment, or, which is the same,

P(Xn = j
∣∣X0, . . . ,Xn−1) = P(Xn | Xn−1).

This definition allows immediate extension to the case of a Markov chain with a
more general state space (see Sects. 13.6 and 13.7).

The problem of the existence of a sequence {Xn}∞0 which is a Markov chain

with given transition probabilities p
(n)
ij (p(n)

ij ≥ 0,
∑

j p
(n)
ij = 1) and a given “initial”

distribution {p0
k} of the variable X0 can be solved in the same way as for independent

random variables. It suffices to apply the Kolmogorov theorem (see Appendix 2) and
specify consistent joint distributions by

P(X0 = k0,X1 = k1, . . . ,Xn = kn) := p0
k0

p
(1)
k0k1

p
(2)
k1k2

· · ·p(n)
kn−1kn

,

which are easily seen to satisfy the Markov property (13.1.1).
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Definition 13.1.2 A Markov chain {Xn}∞0 is said to be homogeneous if the proba-

bilities p
(n)
ij do not depend on n.

We consider several examples.

Example 13.1.1 (Walks with absorption and reflection) Let a > 1 be an integer.
Consider a walk of a particle over integers between 0 and a. If 0 < k < a, then from
the point k with probabilities 1/2 the particle goes to k −1 or k +1. If k is equal to 0
or a, then the particle remains at the point k with probability 1. This is the so-called
walk with absorption. If Xn is a random variable which is equal to the coordinate
of the particle at time n, then the sequence {Xn} forms a Markov chain, since the
conditional expectation of the random variable Xn given X0,X1, . . . ,Xn−1 depends
only on the value of Xn−1. It is easy to see that this chain is homogeneous.

This walk can be used to describe a fair game (see Example 4.2.3) in the case
when the total capital of both gamblers equals a. Reaching the point a means the
ruin of the second gambler.

On the other hand, if the particle goes from the point 0 to the point 1 with prob-
ability 1, and from the point a to the point a − 1 with probability 1, then we have a
walk with reflection. It is clear that in this case the positions Xn of the particle also
form a homogeneous Markov chain.

Example 13.1.2 Let {ξk}∞k=0 be a sequence of independent integer-valued random
variables and d > 0 be an integer. The random variables Xn := ∑n

k=0 ξk (mod d)

obtained by adding ξk modulo d (Xn = ∑n
k=0 ξk − jd , where j is such that 0 ≤

Xn < d) form a Markov chain. Indeed, we have Xn = Xn−1 + ξn (mod d), and
therefore the conditional distribution of Xn given X1,X2, . . . ,Xn−1 depends only
on Xn−1.

If, in addition, {ξk} are identically distributed, then this chain is homogeneous.
Of course, all the aforesaid also holds when d = ∞, i.e. for the conventional

summation. The only difference is that the set of possible states of the system is in
this case infinite.

From the definition of a homogeneous Markov chain it follows that the probabil-
ities p

(n)
ij of transition from state Ei to state Ej on the n-th step do not depend on n.

Denote these probabilities by pij . They form the transition matrix P = ‖pij‖ with
the properties

pij ≥ 0,
∑

j

pij = 1.

The second property is a consequence of the fact that the system, upon leaving the
state Ei , enters with probability 1 one of the states E1,E2, . . . .

Matrices with the above properties are said to be stochastic.
The matrix P completely describes the law of change of the state of the system

after one step. Now consider the change of the state of the system after k steps. We
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introduce the notation pij (k) := P(Xk = j |X0 = i). For k > 1, the total probability
formula yields

pij (k) =
∑

s

P(Xk−1 = s|X0 = i)psj =
∑

s

pis(k − 1)psj .

Summation here is carried out over all states. If we denote by P(k) := ‖pij (k)‖ the
matrix of transition probabilities pij (k), then the above equality means that P(k) =
P(k − 1)P or, which is the same, that P(k) = P k . Thus the matrix P uniquely
determines transition probabilities for any number of steps. It should be added here
that, for a homogeneous chain,

P(Xn+k = j |Xn = i) = P(Xk = j |X0 = i) = pij (k).

We see from the aforesaid that the “distribution” of a chain will be completely de-
termined by the matrix P and the initial distribution p0

k = P(X0 = k).
We leave it to the reader as an exercise to verify that, for an arbitrary k ≥ 1 and

sets B1, . . . ,Bn−k ,

P(Xn = j |Xn−k = i;Xn−k−1 ∈ B1, . . . ,X0 ∈ Bn−k) = pij (k).

To prove this relation one can first verify it for k = 1 and then make use of induction.
It is obvious that a sequence of independent integer-valued identically distributed

random variables Xn forms a Markov chain with pij = pj = P(Xn = j). Here one
has P(k) = P k = P .

13.1.2 Classification of States1

Definition 13.1.3

K1. A state Ei is called inessential if there exist a state Ej and an integer t0 > 0
such that pij (t0) > 0 and pji(t) = 0 for every integer t .

Otherwise the state Ei is called essential.
K2. Essential states Ei and Ej are called communicating if there exist such integers

t > 0 and s > 0 that pij (t) > 0 and pji(s) > 0.

Example 13.1.3 Assume a system can be in one of the four states {E1,E2,E2,E4}
and has the transition matrix

P =

⎛

⎜⎜⎝

0 1/2 1/2 0
1/2 0 0 1/2
0 0 1/2 1/2
0 0 1/2 1/2

⎞

⎟⎟⎠ .

1Here and in Sect. 12.2 we shall essentially follow the paper by A.N. Kolmogorov [23].



13.1 Countable Markov Chains. Definitions and Examples 393

Fig. 13.1 Possible transitions
and their probabilities in
Example 13.1.3

In Fig. 13.1 the states are depicted by dots, transitions from state to state by
arrows, numbers being the corresponding probabilities. In this chain, the states E1

and E2 are inessential while E3 and E4 are essential and communicating.
In the walk with absorption described in Example 13.1.1, the states 1,2, . . . ,

a − 1 are inessential. The states 0 and a are essential but non-communicating, and it
is natural to call them absorbing. In the walk with reflection, all states are essential
and communicating.

Let {Xn}∞n=0 be a homogeneous Markov chain. We distinguish the class S0 of
all inessential states. Let Ei be an essential state. Denote by SEi

the class of states
comprising Ei and all states communicating with it. If Ej ∈ SEi

, then Ej is essential
and communicating with Ei , and Ei ∈ SEj

. Hence SEi
= SEj

. Thus, the whole set
of essential states can be decomposed into disjoint classes of communicating states
which will be denoted by S1, S2, . . .

Definition 13.1.4 If the class SEi
consists of the single state Ei , then this state is

called absorbing.

It is clear that after a system has hit an essential state Ei , it can never leave
the class SEi

.

Definition 13.1.5 A Markov chain consisting of a single class of essential com-
municating states is said to be irreducible. A Markov chain is called reducible if it
contains more than one such class.

If we enumerate states so that the states from S0 come first, next come states
from S1 and so on, then the matrix of transition probabilities will have the form
shown in Fig. 13.2. Here the submatrices marked by zeros have only zero entries.
The cross-hatched submatrices are stochastic.

Each such submatrix corresponds to some irreducible chain. If, at some time, the
system is at a state of such an irreducible chain, then the system will never leave this
chain in the future. Hence, to study the dynamics of an arbitrary Markov chain, it
is sufficient to study the dynamics of irreducible chains. Therefore one of the basic
objects of study in the theory of Markov chains is irreducible Markov chains. We
will consider them now.
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Fig. 13.2 The structure of
the matrix of transition
probabilities of a general
Markov chain. The class S0

consists of all inessential
states, whereas S1, S2, . . . are
closed classes of
communicating states

We introduce the following notation:

fj (n) := P(Xn = j,Xn−1 �= j, . . . ,X1 �= j | X0 = j), Fj :=
∞∑

n=1

fj (n);

fj (n) is the probability that the system leaving the j -th state will return to it for the
first time after n steps. The probability that the system leaving the j -th state will
eventually return to it is equal to Fj .

Definition 13.1.6

K3. A state Ej is said to be recurrent (or persistent) if Fj = 1, and transient if
Fj < 1.

K4. A state Ej is called null if pjj (n) → 0 as n → ∞, and positive otherwise.
K5. A state Ej is called periodic with period dj if the recurrence with this state has

a positive probability only when the number of steps is a multiple of dj > 1,
and dj is the maximum number having such property.

In other words, dj > 1 is the greatest common divisor (g.c.d.) of the set of num-
bers {n : fj (n) > 0}. Note that one can always choose from this set a finite subset
{n1, . . . , nk} such that dj is the greatest common divisor of these numbers. It is also
clear that pjj (n) = fj (n) = 0 if n �= 0 (mod dj ).

Example 13.1.4 Consider a walk of a particle over integer points on the real line
defined as follows. The particle either takes one step to the right or remains on
the spot with probabilities 1/2. Here fj (1) = 1/2, and if n > 1 then fj (n) = 0 for
any point j . Therefore Fj < 1 and all the states are transient. It is easily seen that
pjj (n) = 1/2n → 0 as n → ∞ and hence every state is null.

On the other hand, if the particle jumps to the right with probability 1/2 and with
the same probability jumps to the left, then we have a chain with period 2, since
recurrence to any particular state is only possible in an even number of steps.
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13.2 Necessary and Sufficient Conditions for Recurrence of
States. Types of States in an Irreducible Chain. The
Structure of a Periodic Chain

Recall that the function

a(z) =
∞∑

n=0

anz
n

is called the generating function of the sequence {an}∞n=0. Here z is a complex vari-
able. If the sequence {an} is bounded, then this series converges for |z| < 1.

Theorem 13.2.1 A state Ej is recurrent if and only if Pj =∑∞
n=1 pjj (n) = ∞. For

a transient Ej ,

Fj = Pj

1 + Pj

. (13.2.1)

The assertion of this theorem is a kind of expansion of the Borel–Cantelli lemma
to the case of dependent events An = {Xn = j}. With probability 1 there occur
infinitely many events An if and only if

∞∑

n=1

P(An) = Pj = ∞.

Proof By the total probability formula we have

pjj (n) = fj (1)pjj (n − 1) + fj (2)pjj (n − 2) + · · · + fj (n − 1)pjj (1) + fj (n) · 1.

Introduce the generating functions of the sequences {pjj (n)}∞n=0 and {fj (n)}∞n=0:

Pj (z) :=
∞∑

n=1

pjj (n)zn, Fj (z) :=
∞∑

n=1

fj (n)zn.

Both series converge inside the unit circle and represent analytic functions. The
above formula for pjj (n), after multiplying both sides by zn and summing up over
n, leads (by the rule of convolution) to the equality

Pj (z) = zf1(1)
(
1 + Pj (z)

)+ z2f1(2)
(
1 + Pj (z)

)+ · · · = (
1 + Pj (z)

)
Fj (z).

Thus

Fj (z) = Pj (z)

1 + Pj (z)
, Pj (z) = Fj (z)

1 + Fj (z)
.

Assume that Pj = ∞. Then Pj (z) → ∞ as z ↑ 1 and therefore Fj (z) → 1. Since
Fj (z) < Fj for real z < 1, we have Fj = 1 and hence Ej is recurrent.
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Now suppose that Fj = 1. Then Fj (z) → 1 as z ↑ 1, and so Pj (z) → ∞. There-
fore Pj (z) = ∞.

If Ej is transient, it follows from the above that Pj (z) < ∞, and setting z := 1
we obtain equality (13.2.1). �

The quantity Pj =∑∞
n=1 pjj (n) can be interpreted as the mean number of visits

to the state Ej , provided that the initial state is also Ej . It follows from the fact that
the number of visits to the state Ej can be represented as

∑∞
n=1 I (Xn = j), where,

as before, I (A) is the indicator of the event A. Therefore the expectation of this
number is equal to

E
∞∑

n=1

I (Xn = j) =
∞∑

n=1

EI (Xn = j) =
∞∑

n=1

pjj (n) = Pj .

Theorem 13.2.1 implies the following result.

Corollary 13.2.1 A transient state is always null.

This is obvious, since it immediately follows from the convergence of the series∑
pjj (n) < ∞ that pjj (n) → 0.
Thus, based on definitions K3–K5, we could distinguish, in an irreducible chain,

8 possible types of states (each of the three properties can either be present or not).
But in reality there are only 6 possible types since transient states are automatically
null, and positive states are recurrent. These six types are generated by:

1) Classification by the asymptotic properties of the probabilities pjj (n) (tran-
sient, recurrent null and positive states).

2) Classification by the arithmetic properties of the probabilities pjj (n) or fj (n)

(periodic or aperiodic).

Theorem 13.2.2 (Solidarity Theorem) In an irreducible homogeneous Markov
chain all states are of the same type: if one is recurrent then all are recurrent, if
one is null then all are null, if one state is periodic with period d then all states are
periodic with the same period d .

Proof Let Ek and Ej be two different states. There exist numbers N and M such
that

pkj (N) > 0, pjk(M) > 0.

The total probability formula

pkk(N + M + n) =
∑

l,s

pkl(N)pls(n)psk(M)

implies the inequality

pkk(N + M + n) ≥ pkj (N)pjj (n)pjk(M) = αβpjj (n).
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Here n > 0 is an arbitrary integer, α = pjj (N) > 0, and β = pjj (M) > 0. In the
same way one can obtain the inequality

pjj (N + M + n) ≥ αβpkk(n).

Hence

1

αβ
pkk(N + M + n) ≥ pkk(n) ≥ αβpkk(n − M − N). (13.2.2)

We see from these inequalities that the asymptotic properties of pkk(n) and
pjj (n) are the same. If Ek is null, then pkk(n) → 0, therefore pjj (n) → 0 and
Ej is also null. If Ek is recurrent or, which is equivalent, Pk =∑∞

n=1 pkk(n) = ∞,
then

∞∑

n=M+N+1

pjj (n) ≥ αβ

∞∑

n=M+N+1

pkk(n − M − N) = ∞,

and Ej is also recurrent.
Suppose now that Ek is a periodic state with period dk . If pkk(n) > 0, then dk

divides n. We will write this as dk | n. Since pkk(M + N) ≥ αβ > 0, then dk |
(M + N).

We now show that the state Ej is also periodic and its period dj is equal to dk .
Indeed, if pjj (n) > 0 for some n, then by virtue of (13.2.2), pkk(n + M + N) > 0.
Therefore dk | (n + M + N), and since dk | (M + N), dk | n and hence dk ≤ dj . In
a similar way one can prove that dj ≤ dk . Thus dj = dk . �

If the states of an irreducible Markov chain are periodic with period d > 1, then
the chain is called periodic.

We will now show that the study of periodic chains can essentially be reduced to
the study of aperiodic chains.

Theorem 13.2.3 If a Markov chain is periodic with period d , then the set of states
can be split into d subclasses Ψ0,Ψ1, . . . ,Ψd−1 such that, with probability 1, in one
step the system passes from Ψk to Ψk+1, and from Ψd−1 the system passes to Ψ0.

Proof Choose some state, say, E1. Based on this we will construct the subclasses
Ψ0,Ψ1, . . . ,Ψd−1 in the following way: Ei ∈ Ψα , 0 ≤ α ≤ d − 1, if there exists an
integer k > 0 such that p1i (kd + α) > 0.

We show that no state can belong to two subclasses simultaneously. To this end
it suffices to prove that if Ei ∈ Ψα and p1i (s) > 0 for some s, then s = α (mod d).

Indeed, there exists a number t1 > 0 such that pi1(t1) > 0. So, by the definition
of Ψα , we have p11(kd + α + t1) > 0. Moreover, p11(s + t1) > 0. Hence d | (kd +
α + t1) and d | (s + t1). This implies α = s (mod d).

Since starting from the state E1 it is possible with positive probability to enter
any state Ei , the union

⋃
α Ψα contains all the states.
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Fig. 13.3 The structure of
the matrix of transition
probabilities of a periodic
Markov chain: an illustration
to the proof of
Theorem 13.2.3

We now prove that in one step the system goes from Ψα with probability 1 to
Ψα+1 (here the sum α + 1 is modulo d). We have to show that, for Ei ∈ Ψα ,

∑

Ej ∈Ψα+1

pij = 1.

To do this, it suffices to prove that pij = 0 when Ei ∈ Ψα , Ej /∈ Ψα+1.
If we assume the opposite (pij > 0) then, taking into account the inequality
p1i (kd + α) > 0, we have p1j (kd + α + 1) > 0 and consequently Ej ∈ Ψα+1. This
contradiction completes the proof of the theorem. �

We see from the theorem that the matrix of a periodic chain has the form shown
in Fig. 13.3 where non-zero entries can only be in the shaded cells.

From a periodic Markov chain with period d one can construct d new Markov
chains. The states from the subset Ψα will be the states of the α-th chain. Transition
probabilities are given by

pα
ij := pij (d).

By virtue of Theorem 13.2.3,
∑

Ej ∈Ψα
pα

ij = 1. The new chains, to which one can
reduce in a certain sense the original one, will have no subclasses.

13.3 Theorems on Random Walks on a Lattice

1. A random walk on integer points on the line. Imagine a particle moving on
integer points of the real line. Transitions from one point to another occur in equal
time intervals. In one step, from point k the particle goes with a positive probability
p to the point k + 1, and with positive probability q = 1 − p it moves to the point
k − 1. As was already mentioned, to this physical system there corresponds the
following Markov chain:

Xn = Xn−1 + ξn = X0 + Sn,

where ξn takes values 1 and −1 with probabilities p and q , respectively, and Sn =∑n
k=1 ξk . The states of the chain are integer points on the line.
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It is easy to see that returning to a given point with a positive probability is only
possible after an even number of steps, and f0(2) = 2pq > 0. Therefore this chain
is periodic with period 2.

We now establish conditions under which the random walk forms a recurrent
chain.

Theorem 13.3.1 The random walk {Xn} forms a recurrent Markov chain if and only
if p = q = 1/2.

Proof Since 0 < p < 1, the random walk is an irreducible Markov chain. Therefore
by Theorem 13.2.2 it suffices to examine the type of any given point, for example,
zero.

We will make use of Theorem 13.2.1. In order to do this, we have to investigate
the convergence of the series

∑∞
n=1 p00(n). Since our chain is periodic with period

2, one has p00(2k + 1) = 0. So it remains to compute
∑∞

1 p00(2k). The sum Sn is
the coordinate of the walking particle after n steps (X0 = 0). Therefore p00(2k) =
P(S2k = 0). The equality S2k = 0 holds if k of the random variables ξj are equal
to 1 and the other k are equal to −1 (k steps to the right and k steps to the left).
Therefore, by Theorem 5.2.1,

P(S2k = 0) ∼ 1√
πk

e−2kH(1/2) = 1√
πk

(4pq)k.

We now elucidate the behaviour of the function β(p) = 4pq = 4p(1 − p) on the
interval [0,1]. At the point p = 1/2 the function β(p) attains its only extremum,
β(1/2) = 1. At all the other points of [0,1], β(p) < 1. Therefore 4pq < 1 for
p �= 1/2, which implies convergence of the series

∑∞
k=1 p00(2k) and hence the tran-

sience of the Markov chain. But if p = 1/2 then p00(2k) ∼ 1/
√

πk and the series∑∞
k=1 p00(2k) diverges, which implies, in turn, that all the states of the chain are

recurrent. The theorem is proved. �

Theorem 13.3.1 allows us to make the following remark. If p �= 1/2, then the
mean number of recurrences to 0 is finite, as it is equal to

∑∞
k=1 p00(2k). This

means that, after a certain time, the particle will never return to zero. The particle
will “drift” to the right or to the left depending on whether p is greater than 1/2 or
less. This can easily be obtained from the law of large numbers.

If p = 1/2, then the mean number of recurrences to 0 is infinite; the particle
has no “drift”. It is interesting to note that the increase in the mean number of re-
currences is not proportional to the number of steps. Indeed, the mean number of
recurrences over the first 2n steps is equal to

∑n
k=1 p00(2k). From the proof of The-

orem 13.3.1 we know that p00(2k) ∼ 1/
√

πk. Therefore, as n → ∞,

n∑

k=1

p00(2k) ∼
n∑

k=1

1√
πk

∼ 2
√

n√
π

.
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Thus, in the fair game considered in Example 4.2.2, the proportion of ties rapidly
decreases as the number of steps increases, and deviations are growing both in mag-
nitude and duration.

13.3.1 Symmetric Random Walks in R
k , k ≥ 2

Consider the following random walk model in the k-dimensional Euclidean space
R

k . If the walking particle is at point (m1, . . . ,mk), then it can move with prob-
abilities 1/2k to any of the 2k vertices of the cube |xj − mj | = 1, i.e. the points
with coordinates (m1 ± 1, . . . ,mk ± 1). It is natural to call this walk symmetric.
Denoting by Xn the position of the particle after the n-th jump, we have, as before,
a sequence of k-dimensional random variables forming a homogeneous irreducible
Markov chain. We shall show that all states of the walk on the plane are, as in the
one-dimensional case, recurrent. In the three-dimensional space, the states will turn
out to be transient. Thus we shall prove the following assertion.

Theorem 13.3.2 The symmetric random walk is recurrent in spaces of one and two
dimensions and transient in spaces of three or more dimensions.

In this context, W. Feller made the sharp comment that the proverb “all roads
lead to Rome” is true only for two-dimensional surfaces. The assertion of Theo-
rem 13.3.2 is adjacent to the famous theorem of Pólya on the transience of sym-
metric walks in R

k for k > 2 when the particle jumps to neighbouring points along
the coordinate axes (so that ξj assumes 2k values with probabilities 1/2k each). We
now turn to the proof of Theorem 13.3.2.

Proof of Theorem 13.3.2 Let k = 2. It is not difficult to see that our walk Xn can be
represented as a sum of two independent components

Xn = (
X−1

n ,0
)+ (

0,X2
n

)
,

(
X1

0,X
2
0

)= X0,

where Xi
n, i = 1,2, . . . , are scalar (one-dimensional) sequences describing symmet-

ric independent random walks on the respective lines (axes). This is obvious, for the
two-dimensional sequence admits the representation

Xn+1 = Xn + ξn, (13.3.1)

where ξn assumes 4 values (±1,0) + (0,±1) = (±1,±1) with probabilities 1/4
each.

With the help of representation (13.3.1) we can investigate the asymptotic be-
haviour of the transition probabilities pij (n). Let X0 coincide with the origin (0,0).
Then

p00(2n) = P
(
X2n = (0,0)|X0 = (0,0)

)
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= P
(
X1

2n = 0|X1
0 = 0

)
P
(
X2

2n = 0|X2
0 = 0

)∼ (1/
√

πn)2 = 1/(πn).

From this it follows that the series
∑∞

n=0 p00(n) diverges and so all the states of our
chain are recurrent.

The case k = 3 should be treated in a similar way. Represent the sequence Xn as
a sum of three independent components

Xn = (
X1

n,0,0
)+ (

0,X2
n,0

)+ (
0,0,X3

n

)
,

where the Xi
n are, as before, symmetric random walks on the real line. If we set

X0 = (0,0,0), then

p00(2n) = (
P
(
X1

2n = 0| X1
0 = 0

))3 ∼ 1/(πn)3/2.

The series
∑∞

n=1 p00(n) is convergent here, and hence the states of the chain are
transient. In contrast to the straight line and plane cases, a particle leaving the origin
will, with a positive probability, never come back.

It is evident that a similar situation takes place for walks in k-dimensional space
with k ≥ 3, since

∑∞
n=1(πn)−k/2 < ∞ for k ≥ 3. The theorem is proved. �

13.3.2 Arbitrary Symmetric Random Walks on the Line

Let, as before,

Xn = X0 +
n∑

1

ξj , (13.3.2)

but now ξj are arbitrary independent identically distributed integer-valued random
variables. Theorem 13.3.1 may be generalised in the following way:

Theorem 13.3.3 If the ξj are symmetric and the expectation Eξj exists (and hence
Eξj = 0) then the random walk Xn forms a recurrent Markov chain with null states.

Proof It suffices to verify that

∞∑

n=1

P(Sn = 0) = ∞,

where Sn =∑n
1 ξj , and that P(Sn = 0) → 0 as n → ∞. Put

p(z) := Ezξ1 =
∞∑

k=−∞
zkP(ξ1 = k).
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Then the generating function of Sn will be equal to EzSn = pn(z), and by the inver-
sion formula (see Sect. 7.7)

P(Sn = 0) = 1

2πi

∫

|z|=1
pnz−1dz, (13.3.3)

∞∑

n=0

P(Sn = 0) = 1

2πi

∫

|z|=1

dz

z(1 − p(z))
= 1

π

∫ π

0

dt

1 − p(eit )
.

The last equality holds since the real function p(r) is even and is obtained by sub-
stituting z = eit .

Since Eξ1 = 0, one has 1 − p(eit ) = o(t) as t → 0 and, for sufficiently small δ

and 0 ≤ t < δ,

0 ≤ 1 − p
(
eit
)
< t

(the function p(eit ) is real by virtue of the symmetry of ξ1). This implies

∫ π

0

dt

1 − p(eit )
≥
∫ δ

0

dt

t
= ∞.

Convergence P(Sn = 0) → 0 is a consequence of (13.3.3) since, for all z on the
circle |z| = 1, with the possible exclusion of finitely many points, one has p(z) < 1
and hence pn(z) → 0 as n → ∞. The theorem is proved. �

Theorem 13.3.3 can be supplemented by the following assertion.

Theorem 13.3.4 Under the conditions of Theorem 13.3.3, if the g.c.d. of the possi-
ble values of ξj equals 1 then the set of values of {Xn} constitutes a single class of
essential communicating states. This class coincides with the set of all integers.

The assertion of the theorem follows from the next lemma.

Lemma 13.3.1 If the g.c.d. of integers a1 > 0, . . . , ar > 0 is equal to 1, then there
exists a number K such that every natural k ≥ K can be represented as

k = n1a1 + · · · + nrar ,

where ni ≥ 0 are some integers.

Proof Consider the function L(n) = n1a1 + · · · + nrar , where n = (n1, . . . , nr ) is
a vector with integer (possibly negative) components. Let d > 0 be the minimal
natural number for which there exists a vector n0 such that

d = L
(
n0).
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We show that every natural number that can be represented as L(n) is divisible by d .
Suppose that this is not true. Then there exist n, k and 0 < α < d such that

L(n) = kd + α.

But since the function L(n) is linear,

L
(
n − kx0)= kd + α − kd = α < d,

which contradicts the minimality of d in the set of positive integer values of L(n).
The numbers a1, . . . , ar are also the values of the function L(n), so they are

divisible by d . The greatest common divisor of these numbers is by assumption
equal to one, so that d = 1.

Let k be an arbitrary natural number. Denoting by θ < A the remainder after
dividing k by A := a1 + · · · + ar , we can write

k = m(a1 + · · · + ar) + θ = m(a1 + · · · + ar) + θL
(
n0)

= a1
(
m + θn0

1

)+ a2
(
m + θn0

2

)+ · · · + ar

(
m + θn0

r

)
,

where ni := m + θn0
i > 0, i = 1, . . . , r , for sufficiently large k (or m).

The lemma is proved. �

Proof of Theorem 13.3.4 Put qj := P(ξ = aj ) > 0. Then, for each k ≥ K , there
exists an n such that nj ≥ 0,

∑r
j=1 ajnj = k, and hence, for n =∑r

j=1 nj , we have

p0k(n) ≥ q
n1
1 · · ·qnr

r > 0.

In other words, all the states k ≥ K are reachable from 0. Similarly, all the states
k ≤ −K are reachable from 0. The states k ∈ [−K,K] are reachable from the
point −2K (which is reachable from 0). The theorem is proved. �

Corollary 13.3.1 If the conditions of Theorems 13.3.3 and 13.3.4 are satisfied, then
the chain (13.3.2) with an arbitrary initial state X0 visits every state k infinitely
many times with probability 1. In particular, for any X0 and k, the random variable
ν = min{n : Xn = k} will be proper.

If we are interested in investigating the periodicity of the chain (13.3.2), then
more detailed information on the set of possible values of ξj is needed. We leave
it to the reader to verify that, for example, if this set is of the form {a + akd},
k = 1,2, . . . , d ≥ 1, g.c.d. (a1, a2, . . .) = 1, g.c.d. (a, d) = 1, then the chain will be
periodic with period d .
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13.4 Limit Theorems for Countable Homogeneous Chains

13.4.1 Ergodic Theorems

Now we return to arbitrary countable homogeneous Markov chains. We will need
the following conditions:

(I) There exists a state E0 such that the recurrence time τ (s) to Es (P(τ (s) = n) =
fs(n)) has finite expectation Eτ (s) < ∞.

(II) The chain is irreducible.
(III) The chain is aperiodic.

We introduce the so-called “taboo probabilities” Pi(n, j) of transition from Ei

to Ej in n steps without visiting the “forbidden” state Ei :

Pi(n, j) := P(Xn = j ;X1 �= i, . . . ,Xn−1 �= i | X0 = i).

Theorem 13.4.1 (The ergodic theorem) Conditions (I)–(III) are necessary and suf-
ficient for the existence, for all i and j , of the positive limits

lim
n→∞pij (n) = πj > 0, i, j = 0,1,2, . . . . (13.4.1)

The sequence of values {πj } is the unique solution of the system

{∑∞
j=0 πj = 1,

πj =∑∞
k=0 πkpkj , j = 0,1,2, . . . ,

(13.4.2)

in the class of absolutely convergent series.
Moreover, Eτ (j) < ∞ for all j , and the quantities πj = (Eτ (j))−1 admit the

representation

πj = (
Eτ (j)

)−1 = (
Eτ (s)

)−1
∞∑

k=1

Ps(k, j) (13.4.3)

for any s.

Definition 13.4.1 A chain possessing property (13.4.1) is called ergodic.

The numbers πj are essentially the probabilities that the system will be in the
respective states Ej after a long period of time has passed. It turns out that these
probabilities lose dependence on the initial state of the system. The system “forgets”
where it began its motion. The distribution {πj } is called stationary or invariant.
Property (13.4.2) expresses the invariance of the distribution with respect to the
transition probabilities pij . In other words, if P(Xn = k) = πk , then P(Xn+1 = k) =∑

πjpjk is also equal to πk .
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Proof of Theorem 13.4.1 Sufficiency in the first assertion of the theorem. Consider
the “trajectory” of the Markov chain starting at a fixed state Es . Let τ1 ≥ 1, τ2 ≥ 1,
. . . be the time intervals between successive returns of the system to Es . Since after
each return the evolution of the system begins anew from the same state, by the
Markov property the durations τk of the cycles (as well as the cycles themselves)

are independent and identically distributed, τk
d= τ (s). Moreover, it is obvious that

P(τk = n) = P
(
τ (s) = n

)= fs(n).

Recurrence of Es means that the τk are proper random variables. Aperiodicity
of Es means that the g.c.d. of all possible values of τk is equal to 1. Since

pss(n) = P
(
γ (n) = 0

)
,

where γ (n) is the defect of level n for the renewal process {Tk},

Tk =
k∑

i=1

τi,

by Theorem 10.3.1 the following limit exists

lim
n→∞pss(n) = lim

n→∞ P
(
γ (n) = 0

)= 1

Eτ1
> 0. (13.4.4)

Now prove the existence of limn→∞ psj (n) for j �= s. If γ (n) is the defect of level
n for the walk {Tk} then, by the total probability formula,

psj (n) =
n∑

k=1

P
(
γ (n) = k

)
P
(
Xn = j |X0 = s, γ (n) = k

)
. (13.4.5)

Note that the second factors in the terms on the right-hand side of this formula do
not depend on n by the Markov property:

P
(
Xn = j |X0 = s,γ (n) = k

)

= P(Xn = j |X0 = s,Xn−1 �= s, . . . ,Xn−k+1 �= s,Xn−k = s)

= P(Xk = j |X0 = s,X1 �= s, . . . ,Xk−1 �= s) = Ps(k, j)

P(τ1 ≥ k)
,

(13.4.6)

since, for a fixed X0 = s,

P(Xk = j |X1 �= s, . . . ,Xk−1 �= s) = P(Xk = j,X1 �= s, . . . ,Xk−1 �= s)

P(X1 �= s, . . . ,Xk−1 �= s)

= Ps(k, j)

P(τ (s) ≥ k)
.
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For the sake of brevity, put P(τ1 > k) = Pk . The first factors in (13.4.5) converge,
as n → ∞, to Pk−1/Eτ1 and, by virtue of the equality

P
(
γ (n) = k

)= P
(
γ (n − k) = 0

)
Pk−1 ≤ Pk−1, (13.4.7)

are dominated by the convergent sequence Pk−1. Therefore, by the dominated con-
vergence theorem, the following limit exists

lim
n→∞psj (n) =

∞∑

k=1

Pk−1

Eτ1

Ps(k, j)

P(τ1 ≥ k)
= 1

Eτ1

∞∑

k=1

Ps(k, j) =: πj , (13.4.8)

and we have, by (13.4.5)–(13.4.7),

psj (n) ≤
n∑

k=1

Ps(k, j) ≤
∞∑

k=1

Ps(k, j) = πj Eτ1. (13.4.9)

To establish that, for any i,

lim
n→∞pij (n) = πj > 0,

we first show that the system departing from Ei will, with probability 1, eventually
reach Es .

In other words, if fis(n) is the probability that the system, upon leaving Ei , hits
Es for the first time on the n-th step then

∞∑

n=1

fis(n) = 1.

Indeed, both states Ei and Es are recurrent. Consider the cycles formed by sub-
sequent visits of the system to the state Ei . Denote by Ak the event that the system
is in the state Es at least once during the k-th cycle. By the Markov property the
events Ak are independent and P(Ak) > 0 does not depend on k. Therefore, by the
Borel–Cantelli zero–one law (see Sect. 11.1), with probability 1 there will occur
infinitely many events Ak and hence P(

⋃
Ak) = 1.

By the total probability formula,

pij (n) =
n∑

k=1

fis(k)psj (n − k),

and the dominated convergence theorem yields

lim
n→∞pij (n) =

∞∑

n=1

fis(k)πj = πj .

Representation (13.4.3) follows from (13.4.8).
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Now we will prove the necessity in the first assertion of the theorem. That con-
ditions (II)–(III) are necessary is obvious, since pij (n) > 0 for every i and j if n

is large enough. The necessity of condition (I) follows from the fact that equalities
(13.4.4) are valid for Es . The first part of the theorem is proved.

It remains to prove the second part of the theorem. Since

∑
psj (n) = 1,

one has
∑

j πj ≤ 1. By virtue of the inequalities psj (n) ≤ πj Eτ1 (see (13.4.9)),
we can use the dominated convergence theorem both in the last equality and in the
equality psj (n + 1) =∑∞

k=0 psk(n)pkj which yields

∑
πj = 1, πj =

∞∑

k=0

πkpkj .

It remains to show that the system has a unique solution. Let the numbers {qj } also
satisfy (13.4.2) and assume the series

∑ |qj | converges. Then, changing the order
of summation, we obtain that

qj =
∑

k

qkpkj =
∑

k

pkj

(∑

l

plkql

)
=
∑

l

ql

∑

k

plkpkj =
∑

l

qlplj (2)

=
∑

l

plj (2)

(∑

m

pmlqm

)
=
∑

m

qmpmj (3) = · · · =
∑

k

qkpkj (n)

for any n. Since
∑

qk = 1, passing to the limit as n → ∞ gives

qj =
∑

k

qkπj = πj .

The theorem is proved. �

If a Markov chain is periodic with period d , then pij (t) = 0 for t �= kd and every
pair of states Ei and Ej belonging to the same subclass (see Theorem 13.2.3). But
if t = kd , then from the theorem just proved and Theorem 13.2.3 it follows that the
limit limk→∞ pij (kd) = πj > 0 exists and does not depend on i.

Verifying conditions (II)–(III) of Theorem 13.4.1 usually presents no serious dif-
ficulties. The main difficulties would be related to verifying condition (I). For finite
Markov chains, this condition is always met.

Theorem 13.4.2 Let a Markov chain have finitely many states and satisfy conditions
(II)–(III). Then there exist c > 0 and q < 1 such that, for the recurrence time τ to
an arbitrary fixed state, one has

P(τ > n) < cqn, n ≥ 1. (13.4.10)
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These equalities clearly mean that condition (I) is always met for finite chains
and hence the ergodic theorem for them holds if and only if conditions (II)–(III) are
satisfied.

Proof Consider a state Es and put

rj (n) := P(Xk �= s, k = 1,2, . . . , n|X0 = j).

Then, if the chain has m states one has rj (m) < 1 for any j . Indeed, rj (n) does
not grow as n increases. Let N be the smallest number satisfying rj (N) < 1. This
means that there exists a sequence of states Ej , Ej1, . . . ,EjN

such that EjN
= Es

and the probability of this sequence pjj1 · · ·pjN−1jN
is positive. But it is easy to

see that N ≤ m, since otherwise this sequence would contain at least two identical
states. Therefore the cycle contained between these states could be removed from
the sequence which could only increase its probability. Thus

rj (m) < 1, r(m) = max
j

rj (m) < 1.

Moreover, rj (n1 + n2) ≤ rj (n1)r(n2) ≤ r(n1)r(n2).
It remains to note that if τ is the recurrence time to Es , then P(τ > nm) =

rs(nm) ≤ r(m)n. The statement of the theorem follows. �

Remark 13.4.1 Condition (13.4.10) implies the exponential rate of convergence of
the differences |pij (n) − πj | to zero. One can verify this by making use of the
analyticity of the function

Fs(z) =
∞∑

n=1

fs(n)zn

in the domain |z| < q−1, q−1 > 1, and of the equality

Ps(z) =
∑

pss(n)zn = 1

1 − Fs(z)
− 1 (13.4.11)

(see Theorem 13.2.1; we assume that the τ in condition (13.4.10) refers to the state
Es , so that fs(n) = P(τ = n)). Since F ′

s(1) = Eτ = 1/πs , one has

Fs(z) = 1 + (z − 1)

πs

+ · · · ,

and from (13.4.11) it follows that the function

Ps(z) − zπs

1 − z
=

∞∑

n=1

(
pss(n) − πs

)
zn

is analytic in the disk |z| ≤ 1 + ε, ε > 0. It evidently follows from this that

|pss(n) − πs | < c(1 + ε)−n, c = const.
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Now we will give two examples of finite Markov chains.

Example 13.4.1 Suppose that the behaviour of two chess players A and B playing
in a multi-player tournament can be described as follows. Independently of the out-
comes of the previous games, player A wins every new game with probability p,
loses with probability q , and makes a tie with probability r = 1−p −q . Player B is
less balanced. He wins a game with probabilities p + ε, p and p − ε, respectively, if
he won, made a tie, or lost in the previous one. The probability that he loses behaves
in a similar way: in the above three cases, it equals q − ε, q and q + ε, respectively.
Which of the players A and B will score more points in a long tournament?

To answer this question, we will need to compute the stationary probabilities
π1, π2, π3 of the states E1, E2, E3 which represent a win, tie, and loss in a game,
respectively (cf. the law of large numbers at the end of this section).

For player A, the Markov chain with states E1,E2,E3 describing his perfor-
mance in the tournament will have the matrix of transition probabilities

PA =
⎛

⎝
p r q

p r q

p r q

⎞

⎠ .

It is obvious that π1 = p, π2 = r , π3 = q here.
For player B , the matrix of transition probabilities is equal to

PB =
⎛

⎝
p + ε r q − ε

p r q

p − ε r q + ε

⎞

⎠ .

Equations for stationary probabilities in this case have the form

π1(p + ε) + π2p + π3(p − ε) = π1,

π1r + π2r + π3r = π2,

π1 + π2 + π3 = 1.

Solving this system we find that

π2 − r = 0, π1 − p = ε
p − q

1 − 2ε
.

Thus, the long run proportions of ties will be the same for both players, and B will
have a greater proportion of wins if ε > 0, p > q or ε < 0, p < q . If p = q , then the
stationary distributions will be the same for both A and B .

Example 13.4.2 Consider the summation of independent integer-valued random
variables ξ1, ξ2, . . . modulo some d > 1 (see Example 13.1.2). Set X0 := 0, X1 :=
ξ1 − 
ξ1/d�d , X2 := X1 + ξ2 − 
(X1 + ξ2)/d�d etc. (here 
x� denotes the integral
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part of x), so that Xn is the remainder of the division of Xn−1 + ξn by d . Such sum-
mation is sometimes also called summation on a circle (points 0 and d are glued
together in a single point). Without loss of generality, we can evidently suppose that
ξk takes the values 0,1, . . . , d − 1 only. If P(ξk = j) = pj then

pij = P(Xn = j |Xn−1 = i) =
{

pj−i if j ≥ i,

pd+j−i if j < i.

Assume that the set of all indices k with pk > 0 has a g.c.d. equal to 1. Then it is
clear that the chain {Xn} has a single class of essential states without subclasses,
and there will exist the limits

lim
n→∞pij (n) = πj

satisfying the system
∑

i πipij = πj ,
∑

πj = 1, j = 0, . . . , d − 1. Now note that
the stochastic matrix of transition probabilities ‖pij‖ has in this case the following
property:

∑

i

pij =
∑

j

pij = 1.

Such matrices are called doubly stochastic. Stationary distributions for them are
always uniform, since πj = 1/d satisfy the system for final probabilities.

Thus summation of arbitrary random variables on a circle leads to the uniform
limit distribution. The rate of convergence of pij (k) to the stationary distribution is
exponential.

It is not difficult to see that the convolution of two uniform distributions under
addition modulo d is also uniform. The uniform distribution is in this sense stable.
Moreover, the convolution of an arbitrary distribution with the uniform distribution
will also be uniform. Indeed, if η is uniformly distributed and independent of ξ1
then (addition and subtraction are modulo d , pj = P(ξ1 = j))

P(ξ1 + η = k) =
d−1∑

j=0

pj P(η = k − j) =
d−1∑

j=0

pj

1

d
= 1

d
.

Thus, if one transmits a certain signal taking d possible values (for example,
letters) and (uniform) “random” noise is superimposed on it, then the received signal
will also have the uniform distribution and therefore will contain no information
about the transmitted signal. This fact is widely used in cryptography.

This example also deserves attention as a simple illustration of laws that appear
when summing random variables taking values not in the real line but in some group
(the set of numbers 0,1, . . . , d − 1 with addition modulo d forms a finite Abelian
group). It turns out that the phenomenon discovered in the example—the uniformity
of the limit distribution—holds for a much broader class of groups.

We return to arbitrary countable chains. We have already mentioned that the main
difficulties when verifying the conditions of Theorem 13.4.1 are usually related to
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condition (I). We consider this problem in Sect. 13.7 in more detail for a wider
class of chains (see Theorems 13.7.2–13.7.3 and corollaries thereafter). Sometimes
condition (I) can easily be verified using the results of Chaps. 10 and 12.

Example 13.4.3 We saw in Sect. 12.5 that waiting times in the queueing system
satisfy the relationships

Xn+1 = max(Xn + ξn+1,0), w1 = 0,

where the ξn are independent and identically distributed. Clearly, Xn form a ho-
mogeneous Markov chain with the state space {0,1, . . .}, provided that the ξk are
integer-valued. The sequence Xn may be interpreted as a walk with a delaying
screen at the point 0. If Eξk < 0 then it is not hard to derive from the theorems
of Chap. 10 (see also Sect. 13.7) that the recurrence time to 0 has finite expectation.
Thus, applying the ergodic theorem we can, independently of Sect. 11.4, come to
the conclusion that there exists a limiting (stationary) distribution for Xn as n → ∞
(or, taking into account what we said in Sect. 11.4, conclude that supk≥0 Sk is finite,

where Sk =∑k
j=1 ξj , which is essentially the assertion of Theorem 10.2.1).

Now we will make several remarks allowing us to state one more criterion for
ergodicity which is related to the existence of a solution to Eq. (13.4.2).

First of all, note that Theorem 13.2.2 (the solidarity theorem) can now be com-
plemented as follows. A state Ej is said to be ergodic if, for any i, pij (n) → πj > 0
as n → ∞. A state Ej is said to be positive recurrent if it is recurrent and non-null
(in that case, the recurrence time τ (j) to Ej has finite expectation Eτ(j) < ∞). It
follows from Theorem 13.4.1 that, for an irreducible aperiodic chain, a state Ej is
ergodic if and only if it is positive recurrent. If at least one state is ergodic, all states
are.

Theorem 13.4.3 Suppose a chain is irreducible and aperiodic (satisfies conditions
(II)–(III)). Then only one of the following two alternatives can take place: either all
the states are null or they are all ergodic. The existence of an absolutely convergent
solution to system (13.4.2) is necessary and sufficient for the chain to be ergodic.

Proof The first assertion of the theorem follows from the fact that, by the local
renewal Theorem 10.2.2 for the random walk generated by the times of the chain’s
hitting the state Ej , the limit limn→∞ pjj (n) always exists and equals (Eτ (j))−1.

Therefore, to prove sufficiency in the second assertion (the necessity follows
from Theorem 13.4.1) we have, in the case of the existence of an absolutely con-
vergent solution {πj }, to exclude the existence of null states. Assume the contrary,
pij (n) → 0. Choose j such that πj > 0. Then

0 < πj =
∑

πipij (n) → 0

as n → ∞ by dominated convergence. This contradiction completes the proof of the
theorem. �
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13.4.2 The Law of Large Numbers and the Central Limit Theorem
for the Number of Visits to a Given State

In conclusion of this section we will give two assertions about the limiting be-
haviour, as n → ∞, of the number mj(n) of visits of the system to a fixed state
Ej by the time n. Let τ (j) be the recurrence time to the state Ej .

Theorem 13.4.4 Let the chain be ergodic and, at the initial time epoch, be at an
arbitrary state Es . Then, as n → ∞,

Emj(n)

n
→ πj ,

mj (n)

n

a.s.−→ πj .

If additionally Var(τ (j)) = σ 2
j < ∞ then

P
(

mj(n) − nπj

σj

√
nπ3

j

< x|X0 = s

)
→ Φ(x)

as n → ∞, where Φ(x) is, as before, the distribution function of the normal law
with parameters (0,1).

Proof Note that the sequence mj(n)+ 1 coincides with the renewal process formed
by the random variables τ1, τ2, τ3, . . . , where τ1 is the time of the first visit to the

state Ej by the system which starts at Es and τk
d= τ (j) for k ≥ 2. Clearly, by the

Markov property all τj are independent. Since τ1 ≥ 0 is a proper random variable,
Theorem 13.4.4 is a simple consequence of the generalisations of Theorems 10.1.1,
11.5.1, and 10.5.2 that were stated in Remarks 10.1.1, 11.5.1 and 10.5.1, respec-
tively.

The theorem is proved. �

Summarising the contents of this section, one can note that studying the se-
quences of dependent trials forming homogeneous Markov chains with discrete sets
of states can essentially be carried out with the help of results obtained for sequences
of independent random variables. Studying other types of dependent trials requires,
as a rule, other approaches.

13.5* The Behaviour of Transition Probabilities for Reducible
Chains

Now consider a finite Markov chain of the general type. As we saw, its state space
consists of the class of inessential states S0 and several classes S1, . . . , Sl of es-
sential states. To clarify the nature of the asymptotic behaviour of pij (n) for such
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Fig. 13.4 The structure of
the matrix of transition
probabilities of a periodic
Markov chain with the class
S0 of inessential states: an
illustration to the proof of
Theorem 13.2.3

chains, it suffices to consider the case where essential states constitute a single class
without subclasses (l = 1). Here, the matrix of transition probabilities pij (n) has
the form depicted in Fig. 13.4.

By virtue of the ergodic theorem, the entries of the submatrix L have positive
limits πj . Thus it remains to analyse the behaviour of the entries in the upper part
of the matrix.

Theorem 13.5.1 Let Ei ∈ S0. Then

lim
t→∞pij (t) =

{
0, if Ej ∈ S0,

πj > 0, if Ej ∈ S1.

Proof Let Ej ∈ S0. Set

Aj(t) := max
Ei∈S0

pij (t).

For any essential state Er there exists an integer tr such that pir(tr ) > 0. Since
transition probabilities in L are all positive starting from some step, there exists an s

such that pil(s) > 0 for Ei ∈ S0 and all El ∈ S1. Therefore, for sufficiently large t ,

pij (t) =
∑

Ek∈S0

pik(s)pkj (t − s) ≤ Aj(t − s)
∑

Ek∈S0

pik(s),

where

q(i) :=
∑

Ek∈S0

pik(s) = 1 −
∑

Ek∈S1

pik(s) < 1.

If we put q := maxEi∈S0 q(i), then the displayed inequality implies that

Aj(t) ≤ qAj (t − s) ≤ · · · ≤ q[t/s].

Thus limt→∞ pij (t) ≤ limt→∞ Aj(t) = 0.
Now let Ei ∈ S0 and Ej ∈ S1. One has

pij (t + s) =
∑

k

pik(t)pkj (s) =
∑

Ek∈S0

pik(t)pkj (s) +
∑

Ek∈S1

pik(t)pkj (s).
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Letting t and s go to infinity, we see that the first sum in the last expression is o(1).
In the second sum,

∑

E∈S1

pik(t) = 1 + o(1); pkj (t) = πj + o(1).

Therefore

pij (t + s) = πj

∑

Ek∈S

pik(t) + o(t) = πj + o(1)

as t , s → ∞. The theorem is proved. �

Using Theorem 13.5.1, it is not difficult to see that the existence of the limit

lim
t→∞pij (n) = πj ≥ 0

is a necessary and sufficient condition for the chain to have two classes S0 and S1,
of which S1 contains no subclasses.

13.6 Markov Chains with Arbitrary State Spaces. Ergodicity of
Chains with Positive Atoms

13.6.1 Markov Chains with Arbitrary State Spaces

The Markov chains X = {Xn} considered so far have taken values in the count-
able sets {1,2, . . .} or {0,1, . . .}; such chains are called countable (denumerable)
or discrete. Now we will consider Markov chains with values in an arbitrary set of
states X endowed with a σ -algebra BX of subsets of X. The pair (X,BX) forms
a (measurable) state space of the chain {Xn}. Further let (Ω,F,P) be the underly-
ing probability space. A measurable mapping Y of the space (Ω,F) into (X,BX) is
called an X-valued random element. If X = R and BX is the σ -algebra of Borel sets
on the line, then Y will be a conventional random variable. The mapping Y could
be the identity, in which case (Ω,F) = (X,BX) is also called a sample space.

Consider a sequence {Xn} of X-valued random elements and denote by Fk,m,
m ≥ k, the σ -algebra generated by the elements Xk, . . . ,Xm (i.e. by events of
the form {Xk ∈ Bk}, . . . , {Xm ∈ Bm}, Bi ∈ BX, i = k, . . . ,m). It is evident that
Fn := F0,n form a non-decreasing sequence F0 ⊂ F1 . . . ⊂ Fn . . . . The conditional
expectation E(ξ |Fk,m) will sometimes also be denoted by E(ξ |Xk, . . . ,Xm).

Definition 13.6.1 An X-valued Markov chain is a sequence of X-valued elements
Xn such that, for any B ∈ BX,

P(Xn+1 ∈ B | Fn) = P(Xn+1 ∈ B | Xn) a.s. (13.6.1)



13.6 Chains with Arbitrary State Spaces. Ergodicity 415

In the sequel, the words “almost surely” will, as a rule, be omitted.
By the properties of conditional expectations, relation (13.6.1) is clearly equiva-

lent to the condition: for any measurable function f :X → R, one has

E
(
f (Xn+1) | Fn

)= E
(
f (Xn+1) | Xn

)
. (13.6.2)

Definition 13.6.1 is equivalent to the following.

Definition 13.6.2 A sequence X = {Xn} forms a Markov chain if, for any A ∈
Fn+1,∞,

P(A|Fn) = P(A|Xn) (13.6.3)

or, which is the same, for any Fn+1,∞-measurable function f (ω),

E
(
f (ω)|Fn

)= E
(
f (ω)|Xn

)
. (13.6.4)

Proof of equivalence We have to show that (13.6.2) implies (13.6.3). First take any
B1,B2 ∈BX and let A := {Xn+1 ∈ B1,Xn+2 ∈ B2}. Then, by virtue of (13.6.2),

P(A|Fn) = E
[
I(Xn+1 ∈ B1)P(Xn+2 ∈ B2|Fn+1)|Fn

]

= E
[
I(Xn+1 ∈ B1)P(Xn+2 ∈ B2|Xn+1)|Fn

]

= E(A|Xn).

This implies inequality (13.6.3) for any A ∈ An+1,n+2, where Ak,m is the algebra
generated by sets {Xk ∈ Bk, . . . , Xm ∈ Bm}. It is clear that An+1,n+2 generates
Fn+1,n+2. Now let A ∈ Fn+1,n+2. Then, by the approximation theorem, there exist
Ak ∈ An+1,n+2 such that d(A,Ak) → 0 (see Sect. 3.4). From this it follows that

I(Ak)
p→ I(A) and, by the properties of conditional expectations (see Sect. 4.8.2),

P
(
Ak|F∗) p→ P

(
A|F∗),

where F∗ ⊂ F is some σ -algebra. Put PA = PA(ω) := P(A|Xn). We know that, for
Ak ∈An+1,n+2,

E(PAk
;B) = P(AkB) (13.6.5)

for any B ∈ Fn (this just means that PAk
(ω) = P(Ak|Fn)). Again making use of

the properties of conditional expectations (the dominated convergence theorem, see
Sect. 4.8.2) and passing to the limit in (13.6.5), we obtain that E(PA; B) = P(AB).
This proves (13.6.3) for A ∈ Fn+1,n+2.

Repeating the above argument m times, we prove (13.6.3) for A ∈ Fn+1,m. Using
a similar scheme, we can proceed to the case of A ∈ Fn+1,∞. �

Note that (13.6.3) can easily be extended to events A ∈ Fn,∞. In the above proof
of equivalence, one could work from the very beginning with A ∈ Fn,∞ (first with
A ∈ An,n+2, and so on).

We will give one more equivalent definition of the Markov property.
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Definition 13.6.3 A sequence {Xn} forms a Markov chain if, for any events A ∈ Fn

and B ∈ Fn,∞,

P(AB|Xn) = P(A|Xn)P(B|Xn). (13.6.6)

This property means that the future is conditionally independent of the past given
the present (conditional independence of Fn and Fn,∞ given Xn).

Proof of the equivalence Assume that (13.6.4) holds. Then, for A ∈ Fn and B ∈
Fn,∞,

P(AB|Xn) = E
[
E(IAIB |Fn)|Xn

]= E
[
IAE(IB |Fn)|Xn

]

= E
[
IAE(IB |Xn)|Xn

]= E(IB |Xn)E(IA|Xn),

where IA is the indicator of the event A.
Conversely, let (13.6.6) hold. Then

P(AB) = EP(AB|Xn) = EP(A|Xn)P(B|Xn)

= EE[IAP(B|Xn)|Xn] = EIAP(B|Xn).
(13.6.7)

On the other hand,

P(AB) = EIAIB = EIA P(B|Fn). (13.6.8)

Since (13.6.7) and (13.6.8) hold for any A ∈ Fn, this means that

P(B|Xn) = P(B|Fn). �

Thus, let {Xn} be an X-valued Markov chain. Then, by the properties of condi-
tional expectations,

P(Xn+1 ∈ B|Xn) = P(n)(Xn,B),

where the function Pn(x,B) is, for each B ∈ BX, measurable in x with respect to
the σ -algebra BX. In what follows, we will assume that the functions P(n)(x,B)

are conditional distributions (see Definition 4.9.1), i.e., for each x ∈ X, P(n)(x,B)

is a probability distribution in B . Conditional distributions P(n)(x,B) always exist
if the σ -algebra BX is countably-generated, i.e. generated by a countable collec-
tion of subsets of X (see [27]). This condition is always met if X = R

k and BX

is the σ -algebra of Borel sets. In our case, there is an additional problem that the
“null probability” sets N ⊂ X, on which one can arbitrarily vary P(n)(x,B), can
depend on the distribution of Xn, since the “null probability” is with respect to the
distribution of Xn.

Definition 13.6.4 A Markov chain X = {Xn} is called homogeneous if there ex-
ist conditional distributions P(n)(x,B) = P(x,B) independent of n and the initial
value X0 (or the distributions of Xn). The function P(x,B) is called the transition
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probability (or transition function) of the homogeneous Markov chain. It can be
graphically written as

P(x,B) = P(X1 ∈ B|X0 = x). (13.6.9)

If the Markov chain is countable, X = {1,2, . . .}, then, in the notation of Sect. 13.1,
one has P(i, {j}) = pij = pij (1).

The transition probability and initial distribution (of X0) completely determine
the joint distribution of X0, . . . ,Xn for any n. Indeed, by the total probability for-
mula and the Markov property

P(X0 ∈ B0, . . . ,Xn ∈ Bn)

=
∫

y0∈B0

· · ·
∫

yn∈Bn

P(X0 ∈ dy0)P (y0, dy1) · · ·P(yn−1, dyn).

(13.6.10)

A Markov chain with the initial value X0 = x will be denoted by {Xn(x)}.
In applications, Markov chains are usually given by their conditional distribu-

tions P(x,B) or—in a “stronger form”—by explicit formulas expressing Xn+1
in terms Xn and certain “control” elements (see Examples 13.4.2, 13.4.3, 13.6.1,
13.6.2, 13.7.1–13.7.3) which enable one to immediately write down transition
probabilities. In such cases, as we already mentioned, the joint distribution of
(X0, . . . ,Xn) can be defined in terms of the initial distribution of X0 and the transi-
tion function P(x,B) by formula (13.6.10). It is easily seen that the sequence {Xn}
with so defined joint distributions satisfy all the definitions of a Markov chain and
has transition function P(x,B). In what follows, wherever it is needed, we will as-
sume condition (13.6.10) is satisfied. It can be considered as one more definition of
a Markov chain, but a stronger one than Definitions 13.6.2–13.6.4, for it explicitly
gives (or uses) the transition function P(x,B).

One of the main objects of study will be the asymptotic behaviour of the n step
transition probability:

P (x,n,B) := P
(
Xn(x) ∈ B

)= P(Xn ∈ B|X0 = x).

The following recursive relation, which follows from the total probability formula
(or from (13.6.10)), holds for this function:

P(Xn+1 ∈ B) = EE
(
I(Xn+1 ∈ B)|Fn

)=
∫

P(Xn ∈ dy)P (y,B),

P (x,n + 1,B) =
∫

P(x,n, dy)P (y,B). (13.6.11)

Now note that the Markov property (13.6.3) of homogeneous chains can also be
written in the form

P(Xn+k ∈ Bk|Fn) = P (Xn, k,Bk),
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or, more generally,

P(Xn+1 ∈ B1, . . . ,Xn+k ∈ Bk|Fn) = P
(
Xnew

1 (Xn) ∈ B1, . . . ,X
new
k (Xn) ∈ Bk

)
,

(13.6.12)
where {Xnew

k (x)} is a Markov chain independent of {Xn} and having the same tran-
sition function as {Xn} and the initial value x. Property (13.6.12) can be extended
to a random time n. Recall the definition of a stopping time.

Definition 13.6.5 A random variable ν ≥ 0 is called a Markov or stopping time with
respect to {Fn} if {ν ≤ n} ∈ Fn. In other words, that the event {ν ≤ n} occurred or
not is completely determined by the trajectory segment X0,X1, . . . ,Xn.

Note that, in Definition 13.6.5, by Fn one often understands wider σ -algebras,
the essential requirements being the relations {ν ≤ n} ∈ Fn and measurability of
X0, . . . ,Xn with respect to Fn.

Denote by Fν the σ -algebra of events B such that B ∩ {ν = k} ∈ Fk . In other
words, Fν can be thought of as the σ -algebra generated by the sets {ν = k}Bk ,
Bk ∈ Fk , i.e. by the trajectory of {Xn} until time ν.

Lemma 13.6.1 (The Strong Markov Property) For any k ≥ 1 and B1, . . . ,Bk ∈BX ,

P(Xν+1 ∈ B1, . . . ,Xν+k ∈ Bk|Fν) = P
(
Xnew

1 (Xν) ∈ B1, . . . ,X
new
k (Xν) ∈ Bk

)
,

where the process {Xnew
k } is defined in (13.6.12).

Thus, after a random stopping time ν, the trajectory Xν+1, Xν+2, . . . will evolve
according to the same laws as X1,X2, . . . , but with the initial condition Xν . This
property is called the strong Markov property. It will be used below for the first
hitting times ν = τV of certain sets V ⊂ X by {Xn}. We have already used this
property tacitly in Sect. 13.4, when the set V coincided with a point, which allowed
us to cut the trajectory of {Xn} into independent cycles.

Proof of Lemma 13.6.1 For the sake of simplicity, consider one-dimensional distri-
butions. We have to prove that

P(Xν+1 ∈ B1|Fν) = P(Xν,B1).

For any A ∈ Fν ,

E
(
P(Xν,B1);A

) =
∑

n

E
(
P(Xn,B1);A{ν = n})

=
∑

n

EE
(
I
(
A{ν = n}{Xn+1 ∈ B1}

)|Fn

)

=
∑

n

P
(
A{ν = n}{Xn+1 ∈ B1}

)= P
(
A{Xν+1 ∈ B1}

)
.
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But this just means that P(Xν,B1) is the required conditional expectation. The case
of multi-dimensional distributions is dealt with in the same way, and we leave it to
the reader. �

Now we turn to consider the asymptotic properties of distributions P(x,n,B) as
n → ∞.

Definition 13.6.6 A distribution π(·) on (X,BX) is called invariant if it satisfies
the equation

π(B) =
∫

π(dy)P (y,B), B ∈BX . (13.6.13)

It follows from (13.6.11) that if Xn ⊂= π , then Xn+1 ⊂= π . The distribution π is
also called stationary.

For Markov chains in arbitrary state spaces X, a simple and complete classifica-
tion similar to the one carried out for countable chains in Sect. 13.1 is not possible,
although some notions can be extended to the general case.

Such natural and important notions for countable chains as, say, irreducibility of
a chain, take in the general case another form.

Example 13.6.1 Let Xn+1 = Xn + ξn (mod 1) (Xn+1 is the fractional part of
Xn + ξn), ξn be independent and identically distributed and take with positive prob-
abilities the two values 0 and

√
2. In this example, the chain “splits”, according

to the initial state x, into a continual set of “subchains” with state spaces of the
form Mx = {x + k

√
2 (mod 1), k = 0,1,2 . . .}. It is evident that if x1 − x2 is not a

multiple of
√

2 (mod 1), then Mx1 and Mx2 are disjoint, P(Xn(x1) ∈ Mx2) = 0 and
P(Xn(x2) ∈ Mx1) = 0 for all n. Thus the chain is clearly reducible. Nevertheless, it
turns out that the chain is ergodic in the following sense: for any x, Xn(x) ⊂=⇒ U0,1
(P(x,n, [0, t]) → t ) as n → ∞ (see, e.g., [6], [18]). For the most commonly used
irreducibility conditions, see Sect. 13.7.

Definition 13.6.7 A chain is called periodic if there exist an integer d ≥ 2 and a
set X1 ⊂ X such that, for x ∈ X1, one has P(x,n,X1) = P(Xn(x) ∈ X1) = 1 for
n = kd , k = 1,2, . . . , and P(x,n,X1) = 0 for n �= kd .

Periodicity means that the whole set of states X is decomposed into subclasses
X1, . . . ,Xd , such that P(X1(x) ∈ Xk+1) = 1 for x ∈ Xk , k = 1, . . . , d , Xd+1 = X1.
In the absence of such a property, the chain will be called aperiodic.

A state x0 ∈ X is called an atom of the chain X if, for any x ∈X,

P

( ∞⋃

n=1

{
Xn(x) = x0

}
)

= 1.

Example 13.6.2 Let X0 ≥ 0 and, for n ≥ 0,

Xn+1 =
{

(Xn + ξn+1)
+ if Xn > 0,

ηn+1 if Xn = 0,
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where ξn and ηn ≥ 0, n = 1,2, . . . , are two sequences of independent random vari-
ables, identically distributed in each sequence. It is clear that {Xn} is a Markov chain
and, for Eξk < 0, by the strong law of large numbers, this chain has an atom at the
point x0 = 0:

P

( ∞⋃

n=1

{
Xn(x) = 0

}
)

= P
(

inf
k

Sk ≤ −x
)

= 1,

where Sk = ∑k
j=1 ξj . This chain is a generalisation of the Markov chain from Ex-

ample 13.4.3.
Markov chains in an arbitrary state space X are rather difficult to study. However,

if a chain has an atom, the situation may become much simpler, and the ergodic
theorem on the asymptotic behaviour of P(x,n,B) as n → ∞ can be proved using
the approaches considered in the previous sections.

13.6.2 Markov Chains Having a Positive Atom

Let x0 be an atom of a chain {Xn}. Set

τ := min
{
k > 0 : Xk(x0) = x0

}
.

This is a proper random variable (P(τ < ∞) = 1).

Definition 13.6.8 The atom x0 is said to be positive if Eτ < ∞.

In the terminology of Sect. 13.4, x0 is a recurrent non-null (positive) state.
To characterise convergence of distributions in arbitrary spaces, we will need the

notions of the total variation distance and convergence in total variation. If P and Q
are two distributions on (X,BX), then the total variation distance between them is
defined by

‖P − Q‖ = 2 sup
B∈BX

∣∣P(B) − Q(B)
∣∣.

One says that a sequence of distributions Pn on (X,BX) converges in total variation

to P (Pn
T V−→ P) if ‖Pn − P‖ → 0 as n → ∞. For more details, see Sect. 3.6.2 of

Appendix 3.
As in Sect. 13.4, denote by Px0(k,B) the “taboo probability”

Px0(k,B) := P
(
Xk(x0) ∈ B,X1(x0) �= x0, . . . ,Xk−1(x0) �= x0

)

of transition from x0 into B in k steps without visiting the “forbidden” state x0.

Theorem 13.6.1 If the chain {Xn} has a positive atom and the g.c.d. of the possible
values of τ is 1, then the chain is ergodic in the convergence in total variation sense:
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there exists a unique invariant distribution π such that, for any x ∈X, as n → ∞,

∥∥P(x,n, ·) − π(·)∥∥→ 0. (13.6.14)

Moreover, for any B ∈BX,

π(B) = 1

Eτ

∞∑

k=1

Px0(k,B). (13.6.15)

If we denote by Xn(μ0) a Markov chain with the initial distribution μ0 (X0 ⊂=μ0)
and put

P(μ0, n,B) := P
(
Xn(μ0) ∈ B

)=
∫

μ0(dx)P (x,n,B),

then, as well as (13.6.14), we will also have that, as n → ∞,

∥∥P(μ0, n, ·) − π(·)∥∥→ 0 (13.6.16)

for any initial distribution μ0.

The condition that there exists a positive atom is an analogue of conditions (I)
and (II) of Theorem 13.4.1. A number of conditions sufficient for the finiteness of
Eτ can be found in Sect. 13.7. The condition on the g.c.d. of possible values of τ is
the aperiodicity condition.

Proof We will effectively repeat the proof of Theorem 13.4.1. First let X0 = x0. As
in Theorem 13.4.1 (we keep the notation of that theorem), we find that

P(x0, n,B)

=
n∑

k=1

P
(
γ (n) = k

)
P(Xn ∈ B|Xn−k = x0,Xn−k+1 �= x0, . . . ,Xn−1 �= x0)

=
n∑

k=1

P(γ (n) = k)

P(τ ≥ k)
P(τ ≥ k)P(Xk ∈ B|X0 = x0,X1 �= x0, . . . ,Xk−1 �= x0)

=
n∑

k=1

P(γ (n) = k)

P(τ ≥ k)
Px0(k,B).

For the measure π defined in (13.6.15) one has

P(x0, n,B) − π(B)

=
n∑

k=1

(
P(γ (n) = k)

P(τ ≥ k)
− 1

Eτ

)
Px0(k,B) − 1

Eτ

∑

k>n

Px0(k,B).
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Since P(γ (n) = k) ≤ P(τ ≥ k) and Px0(k,B) ≤ P(τ ≥ k) (see the proof of Theo-
rem 13.4.1), one has, for any N ,

sup
B

∣∣P (x0, n,B) − π(B)
∣∣≤

N∑

k=1

(
P(γ (n) = k)

P(τ ≥ k)
− 1

Eτ

)
+ 2

∑

k>N

P(τ ≥ k).

(13.6.17)
Further, since

P
(
γ (n) = k

)→ P(τ ≥ k)/Eτ,

∞∑

k=1

P(τ ≥ k) = Eτ < ∞,

the right-hand side of (13.6.17) can be made arbitrarily small by choosing N and
then n. Therefore,

lim
n→∞ sup

B

∣∣P(x0, n,B) − π(B)
∣∣= 0.

Now consider an arbitrary initial state x ∈ X, x �= x0. Since x0 is an atom, for the
probabilities

F(x, k, x0) := P
(
Xk(x) = x0, X1 �= x0, . . . ,Xk−1 �= x0

)

of hitting x0 for the first time on the k-th step, one has

∑

k

F (x, k, x0) = 1, P (x,n,B) =
n∑

k=1

F(x, k, x0)P (x0, n − k,B),

∥∥P(x,n, ·) − π(·)∥∥

≤
∑

k≤n/2

F(x, k, x0)
∥∥P(x0, n − k, ·) − π(·)∥∥+ 2

∑

k>n/2

F(x, k, x0) → 0

as n → ∞.
Relation (13.6.16) follows from the fact that

∥∥P(μ0, n, ·) − π(·)∥∥≤
∫

μ0(dx)
∥∥P(x,n, ·) − π(·)∥∥→ 0

by the dominated convergence theorem.
Further, from the convergence of P(x,n, ·) in total variation it follows that

∫
P(x,n, dy)P (y,B) →

∫
π(dy)P (y,B).

Since the left hand-side of this relation is equal to P(x,n + 1,B) by virtue of
(13.6.11) and converges to π(B), one has (13.6.13), and hence π is an invariant
measure.
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Now assume that π1 is another invariant distribution. Then

π1(·) = P(π1, n, ·) T V−→ π(·), π1 = π .

The theorem is proved. �

Returning to Example 13.6.2, we show that the conditions of Theorem 13.6.1 are
met provided that Eξk < 0 and Eηk < ∞. Indeed, put

η(−x) := min

{
k ≥ 1 : Sk =

k∑

j=1

ξj ≤ −x

}
.

By the renewal Theorem 10.1.1,

H(x) = Eη(−x) ∼ x

|Eξ1| as x → ∞

for Eξ1 < 0, and therefore there exist constants c1 and c2 such that H(x) < c1 + c2x

for all x ≥ 0. Hence, for the atom x0 = 0, we obtain that

Eτ =
∫ ∞

0
P(η1 ∈ dx)H(x) ≤ c1 + c2

∫ ∞

0
xP(η1 ∈ dx) = c1 + c2Eη1 < ∞.

13.7* Ergodicity of Harris Markov Chains

13.7.1 The Ergodic Theorem

In this section we will consider the problem of establishing ergodicity of Markov
chains in arbitrary state spaces (X,BX). A lot of research has been done on this
problem, the most important advancements being associated with the names of
W. Döblin, J.L. Doob, T.E. Harris and E. Omey. Until recently, this research area
had been considered as a rather difficult one, and not without reason. However, the
construction of an artificial atom suggested by K.B. Athreya, P.E. Ney and E. Num-
melin (see, e.g. [6, 27, 29]) greatly simplified considerations and allowed the proof
of ergodicity by reducing the general case to the special case discussed in the last
section.

In what follows, the notion of a “Harris chain” will play an important role. For a
fixed set V ∈BX, define the random variable

τV (x) = min
{
k ≥ 1 : Xk(x) ∈ V

}
,

the time of the first hitting of V by the chain starting from the state x (we put
τV (x) = ∞ if all Xk(x) /∈ V ).
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Definition 13.7.1 A Markov chain X = {Xn} in (X,BX) is said to be a Harris
chain (or Harris irreducible) if there exists a set V ∈ BX, a probability measure μ

on (X,BX), and numbers n0 ≥ 1, p ∈ (0,1) such that

(I0) P(τV (x) < ∞) = 1 for all x ∈X; and
(II) P(x,n0,B) ≥ pμ(B) for all x ∈ V , B ∈ BX.

Condition (I0) plays the role of an irreducibility condition: starting from any
point x ∈ X, the trajectory of Xn will sooner or later visit the set V . Condition (II)
guarantees that, after n0 steps since hitting V , the distribution of the walking particle
will be minorised by a common “distribution” pμ(·). This condition is sometimes
called a “mixing condition”; it ensures a “partial loss of memory” about the trajec-
tory’s past. This is not the case for the chain from Example 13.6.1 for which con-
dition (II) does not hold for any V , μ or n0 (P (x, ·) form a collection of mutually
singular distributions which are singular with respect to Lebesgue measure).

If a chain has an atom x0, then conditions (I0) and (II) are always satisfied for
V = {x0}, n0 = 1, p = 1, and μ(·) = P(x0, ·), so that such a chain is a Harris chain.

The set V is usually chosen to be a “compact” set (if X = R
k , it will be a bounded

set), for otherwise one cannot, as a rule, obtain inequalities in (II). If the space X

is “compact” itself (a finite or bounded subset of R
k), condition (II) can be met

for V = X (condition (I0) then always holds). For example, if {Xn} is a finite, ir-
reducible and aperiodic chain, then by Theorem 13.4.2 there exists an n0 such that
P (i, n0, j) ≥ p > 0 for all i and j . Therefore condition (II) holds for V = X if one
takes μ to be a uniform distribution on X.

One could interpret condition (II) as that of the presence, in all distributions
P (x,n0, ·) for x ∈ V , of a component which is absolutely continuous with respect
to the measure μ:

inf
x∈V

P (x,n0, dy)

μ(dy)
≥ p > 0.

We will also need a condition of “positivity” (positive recurrence) of the set V

(or that of “positivity” of the chain):

(I) supx∈V EτV (x) < ∞,

and the aperiodicity condition which will be written in the following form. Let
Xk(μ) be a Markov chain with an initial value X0 ⊂= μ, where μ is from condi-
tion (II). Put

τV (μ) := min
{
k ≥: Xk(μ) ∈ V

}
.

It is evident that τV (μ) is, by virtue of (I0), a proper random variable. Denote by
n1, n2, . . . the possible values of τV (μ), i.e. the values for which

P
(
τV (μ) = nk

)
> 0, k = 1,2, . . . .

Then the aperiodicity condition will have the following form.
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(III) There exists a k ≥ 1 such that

g.c.d.{n0 + n1, n0 + n2, . . . , n0 + nk} = 1,

where n0 is from condition (II).
Condition (III) is always satisfied if (II) holds for n0 = 1 and μ(V ) > 0 (then

n1 = 0, n0 + n1 = 1).
Verifying condition (I) usually requires deriving bounds for EτV (x) for x /∈ V

which would automatically imply (I0) (see the examples below).

Theorem 13.7.1 Suppose conditions (I0), (I), (II) and (III) are satisfied for a
Markov chain X, i.e. the chain is an aperiodic positive Harris chain. Then there
exists a unique invariant distribution π such that, for any initial distribution μ0, as
n → ∞,

∥∥P(μ0, n, ·) − π(·)∥∥→ 0. (13.7.1)

The proof is based on the use of the above-mentioned construction of an “arti-
ficial atom” and reduction of the problem to Theorem 13.6.1. This allows one to
obtain, in the course of the proof, a representation for the invariant measure π simi-
lar to (13.6.15) (see (13.7.5)).

A remarkable fact is that the conditions of Theorem 13.7.1 are necessary for
convergence (13.7.1) (for more details, see [6]).

Proof of Theorem 13.7.1 For simplicity’s sake, assume that n0 = 1. First we will
construct an “extended” Markov chain X∗ = {X∗

n} = {X̃n,ω(n)}, ω(n) being a se-
quence of independent identically distributed random variables with

P
(
ω(n) = 1

)= p, P
(
ω(n) = 0

)= 1 − p.

The joint distribution of (X̃(n),ω(n)) in the state space

X∗ := X× {0,1} = {
x∗ = (x, δ) : x ∈X; δ = 0,1

}

and the transition function P ∗ of the chain X∗ are defined as follows (the notation
X∗

n(x
∗) has the same meaning as Xn(x)):

P
(
X∗

1

(
x∗) ∈ (B, δ)

)=: P ∗(x∗, (B, δ)
)= P(x,B) P

(
ω(1) = δ

)
for x /∈ V

(i.e., for X̃n /∈ V , the components of X∗
n+1 are “chosen at random” indepen-

dently with the respective marginal distributions). But if x ∈ V , the distribution of
X∗(x∗,1) is given by

P(X∗
1

(
(x,1) ∈ (B, δ)

)= P ∗((x,1), (B, δ)
)= μ(B)P

(
ω(1) = δ

)
,

P(X∗
1

(
(x,0) ∈ (B, δ)

)= P ∗((x,0), (B, δ)
)= Q(x,B)P

(
ω(1) = δ

)
,
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where

Q(x,B) := (
P(x,B) − pμ(B)

)
/(1 − p),

so that, for any B ∈ BX,

pμ(B) + (1 − p)Q(x,B) = P(x,B). (13.7.2)

Thus P(ω(n + 1) = 1|X∗
n) = p for any values of X∗

n. However, when “choosing”
the value X̃n+1 there occurs (only when X̃n ∈ V ) a partial randomisation (or split-
ting): for X̃n ∈ V , we let P(X̃n+1 ∈ B|X∗

n) be equal to the value μ(B) (not depend-
ing on X̃n ∈ V !) provided that ω(n) = 1. If ω(n) = 0, then the value of the probabil-
ity is taken to be Q(X̃n,B). It is evident that, by virtue of condition (II) (for n0 = 1),
μ(B) and Q(x,B) are probability distributions, and by equality (13.7.2) the first
component X̃n of the process X∗

n has the property P(X̃n+1 ∈ B| X̃n) = P(X̃n,B),
and therefore the distributions of the sequences X and X̃ coincide.

As we have already noted, the “extended” process X∗(n) possesses the fol-
lowing property: the conditional distribution P(X∗

n+1 ∈ (B, δ)|X∗
n) does not de-

pend on X∗(n) on the set X∗
n ∈ V ∗ := (V ,1) and is there the known distribution

μ(B)P(ω(1) = δ). This just means that visits of the chain X∗ to the set V ∗ divide
the trajectory of X∗ into independent cycles, in the same way as it happens in the
presence of a positive atom.

We described above how one constructs the distribution of X∗ from that of X.
Now we will give obvious relations reconstructing the distribution of X from that
of the chain X∗:

P
(
Xn(x) ∈ B

)= p P(X∗
n

(
(x,1) ∈ B∗)+ (1 − p)P

(
X∗

n(x,0) ∈ B∗), (13.7.3)

where B∗ := (B,0)∪ (B,1). Note also that, if we consider Xn = X̃n as a component
of X∗

n, we need to write it as a function Xn(x
∗) of the initial value x∗ ∈X∗.

Put

τ ∗ := min
{
k ≥ 1 : X∗

k

(
x∗) ∈ V ∗}, x∗ ∈ V ∗ = (V ,1).

It is obvious that τ ∗ does not depend on the value x∗ = (x,1), since X1(x
∗) has

the distribution μ for any x ∈ V . This property allows one to identify the set V ∗
with a single point. In other words, one needs to consider one more state space X∗∗
which is obtained from X∗ if we replace the set V ∗ = (V ,1) by a point to be denoted
by x0. In the new state space, we construct a chain X∗∗ equivalent to X∗ using the
obvious relations for the transition probability P ∗∗:

P ∗∗(x∗, (B, δ)
) := P ∗(x∗, (B, δ)

)
for x∗ �= (V ,1) = V ∗, (B, d) �= V ∗,

P ∗∗(x0, (B, δ)
) := pμ(B), P ∗∗(x∗, x0

) := P ∗(x∗,V ∗).

Thus we have constructed a chain X∗∗ with the transition function P ∗∗, and this
chain has atom x0. Clearly, τ ∗ = min{k ≥ 1 : X∗∗

k (x0) = x0}. We now prove that this
atom is positive. Put

E := sup
x∈V

EτV (x).
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Lemma 13.7.1 Eτ ∗ ≤ 2
p
E.

Proof Consider the evolution of the first component Xk(x
∗) of the process X∗

k (x
∗),

x∗ ∈ V ∗. Partition the time axis k ≥ 0 into intervals by hitting the set V by Xk(x
∗).

Let τ1 ≥ 1 be the first such hitting time (recall that X1(x
∗) d= X0(μ) has the dis-

tribution μ, so that τ1 = 1 if μ(V ) = 1). Prior to time τ1 (in the case τ1 > 1)
transitions of Xk(x

∗), k ≥ 2, were governed by the transition function P(y,B),
y ∈ V c = X \ V . At time τ1, according to the definition of X∗, one carries out a
Bernoulli trial independent of the past history of the process with success (which
is the event ω(τ1) = 1) probability p. If ω(τ1) = 1 then τ ∗ = τ1. If ω(τ1) = 0 then
the transition from Xτ1(x

∗) to Xτ1+1(x
∗) is governed by the transition function

Q(y,B) = (P (y,B) − pμ(B))/(1 − p), y ∈ V . The further evolution of the chain
is similar: if τ1 + τ2 is the time of the second visit of X(x∗, k) to V (in the case
ω(τ1) = 0) then in the time interval [τ1 +1, τ2] transitions of X(x∗, k) occur accord-
ing to the transition function P(y,B), y ∈ V c. At time τ1 + τ2 one carries out a new
Bernoulli trial with the outcome ω(τ1 + τ2). If ω(τ1 + τ2) = 1, then τ ∗ = τ1 + τ2.
If ω(τ1 + τ2) = 0, then the transition from X(x∗, τ1 + τ2) to X(x∗, τ1 + τ2 + 1) is
governed by Q(y,B), and so on.

In other words, the evolution of the component Xk(x
∗) of the process X∗

k (x
∗) is

as follows. Let X̃ = {X̃k}, k = 1,2, . . . , be a Markov chain with the distribution μ

at time k = 1 and transition probability Q(x,B) at times k ≥ 2,

Q(x,B) =
{

(P (x,B) − pμ(B))/(1 − p) if x ∈ V,

P (x,B) if x ∈ V c.

Define Ti as follows:

T0 := 0, T1 = τ1 = min{k ≥ 1 : X̃k ∈ V },
Ti := τ1 + · · · + τi = min{k > Ti−1 : X̃k ∈ V }, i ≥ 2.

Let, further, ν be a random variable independent of X̃ and having the geometric
distribution

P(ν = k) = (1 − p)k−1p, k ≥ 1, ν = min
{
k ≥ 1 : ω(Tk) = 1

}
. (13.7.4)

Then it follows from the aforesaid that the distribution of X1(x
∗), . . . ,Xτ∗(x∗) co-

incides with that of X̃1, . . . , X̃ν ; in particular, τ ∗ = Tν , and

Eτ ∗ =
∞∑

k=1

p(1 − p)k−1ETk.

Further, since μ(B) ≤ P(x,B)/p for x ∈ V , then, for any x ∈ V ,

Eτ1 = μ(V ) +
∫

V c

μ(du)
(
1 + EτV (u)

)
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≤ 1

p

[
P(x,V ) +

∫

V c

P (x, du)
(
1 + EτV (u)

)]= EτV (x)

p
≤ E

p
.

To bound Eτi for i ≥ 2, we note that Q(x,B) ≤ (1 − p)−1P(x,B) for x ∈ V .
Therefore, if we denote by F(i) the σ -algebra generated by {X̃k, ω(τk)} for k ≤ Ti ,
then

E(τi |F(i−1)) ≤ sup
x∈V

[
Q(x,V ) +

∫

V c

Q(x, du)
(
1 + EτV (u)

)]

≤ 1

1 − p
sup
x∈V

[
P(x,V ) +

∫

V c

P (x, du)
(
1 + EτV (u)

)]

= (1 − p)−1 sup
x∈V

EτV (x) = E(1 − p)−1.

This implies the inequality ETk ≤ E(1/p + (k −1)/(1−p)), from which we obtain
that

Eτ ∗ ≤ E

(
1/p + p

∞∑

k=1

(k − 1)(1 − p)k−2

)
= 2E/p.

The lemma is proved. �

We return to the proof of the theorem. To make use of Theorem 13.6.1, we now
have to show that P(τ ∗(x∗) < ∞) = 1 for any x∗ ∈ X∗, where

τ ∗(x∗) := min
{
k ≥ 1 : X∗

k

(
x∗) ∈ V ∗}.

But the chain X visits V with probability 1. After ν visits to V (ν was defined in
(13.7.4)), the process X∗ = (X(n),ω(n)) will be in the set V ∗.

The aperiodicity condition for n0 = 1 will be met if μ(V ) > 0. In that case we
obtain by virtue of Theorem 13.6.1 that there exists a unique invariant measure π∗
such that, for any x∗ ∈ X∗,

∥∥P ∗(x∗, n, ·)− π∗(·)∥∥→ 0, π∗((B, δ)
)= 1

Eτ ∗
∞∑

k=1

P ∗
V ∗
(
k, (B,d)

)
,

P ∗
V ∗
(
k, (B, δ)

)= P
(
X∗

k

(
x∗) ∈ (B, δ),X∗

1

(
x∗) /∈ V ∗, . . . ,X∗

k−1

(
x∗) /∈ V ∗).

(13.7.5)

In the last equality, we can take any point x∗ ∈ V ∗; the probability does not depend
on the choice of x∗ ∈ V ∗.

From this and the “inversion formula” (13.7.3) we obtain assertion (13.7.1) and
a representation for the invariant measure π of the process X.

The proof of the convergence ‖P(μ0, n, ·) − π(·)‖ → 0 and uniqueness of the
invariant measure is exactly the same as in Theorem 13.6.1 (these facts also follow
from the respective assertions for X∗).
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Verifying the conditions of Theorem 13.6.1 in the case where n0 > 1 or μ(V ) = 0
causes no additional difficulties and we leave it to the reader.

The theorem is proved. �

Note that in a way similar to that in the proof of Theorem 13.4.1, one could also
establish the uniqueness of the solution to the integral equation for the invariant
measure (see Definition 13.6.6) in a wider class of signed finite measures.

The main and most difficult to verify conditions of Theorem 13.7.1 are undoubt-
edly conditions (I) and (II). Condition (I0) is usually obtained “automatically”, in
the course of verifying condition (I), for the latter requires bounding EτV (x) for
all x. Verifying the aperiodicity condition (III) usually causes no difficulties. If, say,
recurrence to the set V is possible in m1 and m2 steps and g.c.d. (m1,m2) = 1, then
the chain is aperiodic.

13.7.2 On Conditions (I) and (II)

Now we consider in more detail the main conditions (I) and (II). Condition (II) is
expressed directly in terms of local characteristics of the chain (transition probabili-
ties in one or a fixed number of steps n0 > 1), and in this sense it could be treated as
a “final” one. One only needs to “guess” the most appropriate set V and measure μ

(of course, if there are any). For example, for multi-dimensional Markov chains in
X = R

d , condition (II) will be satisfied if at least one of the following two conditions
is met.

(IIa) The distribution of Xn0(x) has, for some n0 and N > 0 and all x ∈ VN :=
{y : |y| ≤ N}, a component which is absolutely continuous with respect to Lebesgue
measure (or to the sum of the Lebesgue measures on R

d and its “coordinate” sub-
spaces) and is “uniformly” positive on the set VM for some M > 0. In this case, one
can take μ to be the uniform distribution on VM .

(IIl) X = Z
d is the integer lattice in R

d . In this case the chain is countable and
everything simplifies (see Sect. 13.4).

We have already noted that, in the cases when a chain has a positive atom, which
is the case in Example 13.6.2, no assumptions about the structure (smoothness) of
the distribution of Xn0(x) are needed.

The “positivity” condition (I) is different. It is given in terms of rather compli-
cated characteristics EτV (x) requiring additional analysis and a search for condi-
tions in terms of local characteristics which would ensure (I). The rest of the section
will mostly be devoted to this task.

First of all, we will give an “intermediate” assertion which will be useful for the
sequel. We have already made use of such an assertion in Example 13.6.2.

Theorem 13.7.2 Suppose there exists a nonnegative measurable function
g : X →R such that the following conditions (Ig) are met:

(Ig)1 EτV (x) ≤ c1 + c2g(x) for x ∈ V c = X \ V , c1, c2 = const.
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(Ig)2 supx∈V Eg(X1(x)) < ∞.
Then conditions (I0) and (I) are satisfied.

The function g from Theorem 13.7.2 is often called the test, or Lyapunov, func-
tion. For brevity’s sake, put τV (x) := τ(x).

Proof If (Ig) holds then, for x ∈ V ,

Eτ(x) ≤ 1 + E
[
τ
(
X1(x)

);X1(x) ∈ V c
]

≤ 1 + E
(
E
[
τ
(
X1(x)

)|X1(x)
];X1(x) ∈ V c

)

≤ 1 + E
(
c1 + c2g

(
X1(x)

);X1(x) ∈ V c
)

≤ 1 + c1 + c2 sup
x∈V

Eg
(
X1(x)

)
< ∞.

The theorem is proved. �

Note that condition (Ig)2, like condition (II), refers to “local” characteristics of
the system, and in that sense it can also be treated as a “final” condition (up to the
choice of function g).

We now consider conditions ensuring (Ig)1. The processes

{Xn} = {
Xn(x)

}
, X0(x) = x,

to be considered below (for instance, in Theorem 13.7.3) do not need to be Marko-
vian. We will only use those properties of the processes which will be stated in
conditions of assertions.

We will again make use of nonnegative trial functions g : X → R and consider a
set V “induced” by the function g and a set U which in most cases will be a bounded
interval of the real line:

V := g−1(U) = {
x ∈ X : g(x) ∈ U

}
.

The notation τ(x) = τU (x) will retain its meaning:

τ(x) := min
{
k ≥ 1 : g(Xk(x)

) ∈ U
}= min

{
k ≥ 1 : Xk(x) ∈ V

}
.

The next assertion is an essential element of Lyapunov’s (or the test functions)
approach to the proof of positive recurrence of a Markov chain.

Theorem 13.7.3 If {Xn} is a Markov chain and, for x ∈ V c ,

Eg
(
X1(x)

)− g(x) ≤ −ε, (13.7.6)

then Eτ(x) ≤ g(x)/ε and therefore (Ig)1 holds.

To prove the theorem we need
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Lemma 13.7.2 If, for some ε > 0, all n = 0,1,2, . . . , and any x ∈ V c,

E
(
g(Xn+1) − g(Xn)|τ(x) > n

)≤ −ε, (13.7.7)

then

Eτ(x) ≤ g(x)

ε
, x ∈ V c,

and therefore (Ig)1 holds.

Proof Put τ(x) := τ for brevity and set

τ(N) := min(τ,N), Δ(n) := g(Xn+1) − g(Xn).

We have

−g(x) = −Eg(X0) ≤ E
(
g(Xτ(N)

) − g(X0)
)

= E
τ(N)−1∑

n=0

Δ(n) =
N∑

n=0

EΔ(n)I (τ > n)

=
N∑

n=0

P(τ > n)E
(
Δ(n)|τ > n

)≤ −ε

N∑

n=0

P(τ > n).

This implies that, for any N ,

N∑

n=0

P(τ > n) ≤ g(x)

ε
.

Therefore this inequality will also hold for N = ∞, so that Eτ ≤ g(x)/ε. The lemma
is proved. �

Proof of Theorem 13.7.3 The proof follows in an obvious way from the fact that, by
(13.7.6) and the homogeneity of the chain, E(g(Xn+1)−g(Xn)|Xn) ≤ −ε holds on
{Xn ∈ V c}, and from inclusion {τ > n} ⊂ {Xn ∈ V c}, so that

E
(
g(Xn+1)−g(Xn); τ > n

)= E
[
E
(
g(Xn+1)−g(Xn)|Xn

); τ > n
]≤ −εP(τ > n).

The theorem is proved. �

Theorem 13.7.3 is a modification of the positive recurrence criterion known as
the Foster–Moustafa–Tweedy criterion (see, e.g., [6, 27]).

Consider some applications of the obtained results. Let X be a Markov chain on
the real half-axis R+ = [0,∞). For brevity’s sake, put ξ(x) := X1(x) − x. This is
the one-step increment of the chain starting at the point x; we could also define ξ(x)

as a random variable with the distribution

P
(
ξ(x) ∈ B

)= P(x,B − x)
(
B − x = {y ∈X : y + x ∈ B}).
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Corollary 13.7.1 If, for some N ≥ 0 and ε > 0,

sup
x≤N

Eξ(x) < ∞, sup
x>N

Eξ(x) ≤ −ε, (13.7.8)

then conditions (I0) and (I) hold for V = [0,N].

Proof Make use of Theorems 13.7.2, 13.7.3 and Corollary 13.3.1 with g(x) ≡ x,
V = [0,N ]. Conditions (Ig)2 and (13.7.6) are clearly satisfied. �

Thus the presence of a “negative drift” in the region x > N guarantees positivity
of the chain. However, that condition (I) is met could also be ensured when the
“drift” Eξ(x) vanishes as x → ∞.

Corollary 13.7.2 Let supx Eξ2(x) < ∞ and

Eξ2(x) ≤ β, Eξ(x) ≤ − c

x
for x > N.

If 2c > β then conditions (I0) and (I) hold for V = [0,N].

Proof We again make use of Theorems 13.7.2 and 13.7.3, but with g(x) = x2. We
have for x > N :

Eg
(
X1(x)

)− g(x) = E
(
2xξ(x) + ξ2(x)

)≤ −2c + β < 0. �

Before proceeding to examples related to ergodicity we note the following. The
“larger” the set V the easier it is to verify condition (I), and the “smaller” that set,
the easier it is to verify condition (II). In this connection there arises the question
of when one can consider two sets: a “small” set W and a “large” set V ⊃ W such
that if (I) holds for V and (II) holds for W then both (I) and (II) would hold for W .
Under conditions of Sect. 13.6 one can take W to be a “one-point” atom x0.

Lemma 13.7.3 Let sets V and W be such that the condition

(IV ) E := sup
x∈V

EτV (x) < ∞

holds and there exists an m such that

inf
x∈V

P

(
m⋃

j=1

{
Xj(x) ∈ W

}
)

≥ q > 0.

Then the following condition is also met:

(IW) sup
x∈W

EτW (x) ≤ sup
x∈V

EτW (x) ≤ mE

q
.
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Thus, under the assumptions of Lemma 13.7.3, if condition (I) holds for V and
condition (II) holds for W , then conditions (I) and (II) hold for W .

To prove Lemma 13.7.3, we will need the following assertion extending (in the
form of an inequality) the well-known Wald identity.

Assume we are given a sequence of nonnegative random variables τ1, τ2, . . .

which are measurable with respect to σ -algebras U1 ⊂ U2 ⊂ · · · , respectively, and
let Tn := τ1 + · · · + τn. Furthermore, let ν be a given stopping time with respect to
{Un}: {ν ≤ n} ∈ Un.

Lemma 13.7.4 If E(τn|Un−1) ≤ a then ETν ≤ aEν.

Proof We can assume without loss of generality that Eν < ∞ (otherwise the in-
equality is trivial). The proof essentially repeats that of Theorem 4.4.1. One has

Eτν =
∞∑

k=1

E(Tk;ν = k) =
∞∑

k=1

E(τk, ν ≥ k). (13.7.9)

Changing the summation order here is well-justified, for the summands are nonneg-
ative. Further, {ν ≤ k − 1} ∈ Uk−1 and hence {ν ≥ k} ∈ Uk−1. Therefore

E(τk;ν ≥ k) = EI(ν ≥ k)E(τk|Uk−1) ≤ aP(ν ≥ k).

Comparing this with (13.7.9) we get

ETν ≤ a

∞∑

k=1

P(ν ≥ k) = aEnu.

The lemma is proved. �

Proof of Lemma 13.7.3 Suppose the chain starts at a point x ∈ V . Consider the
times T1, T2, . . . of successive visits of X to V , T0 = 0. Put Y0 := x, Yk := XTk

(x),
k = 1,2, . . . . Then, by virtue of the strong Markov property, the sequence (Yk, Tk)

will form a Markov chain. Set Uk := σ(T1, . . . , Tk;Y1, . . . , Yk), τk := Tk − Tk−1,
k = 1,2 . . . . Then ν := min{k : Yk ∈ W } is a stopping time with respect to {Uk}. It is
evident that E(τk|Uk−1) ≤ E. Bound Eν. We have

pk := P(ν ≥ km) ≤ P

(
Tkm⋂

j=1

{Xj /∈ W }
)

= EI

( T(k−1)m⋂

j=1

{Xj /∈ W }
)

E

(
I

(
Tkm⋂

j=T(k−1)m+1

{Xj /∈ W }
)∣∣∣U(k−1)m

)
.
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Since τj ≥ 1, the last factor, by the assumptions of the lemma and the strong
Markov property, does not exceed

P

(
m⋂

j=1

{
Xnew

j (XT(k−1)m
) /∈ W

}
)

≤ (1 − q),

where, as before, Xnew
k (x) is a chain with the same distribution as Xk(x) but in-

dependent of the latter chain. Thus pk ≤ (1 − q)pk−1 ≤ (1 − q)k , Eν ≤ m/q , and
by Lemma 13.7.4 we have ETν ≤ Em/q . It remains to notice that τW (x) = Tν . The
lemma is proved. �

Example 13.7.1 A random walk with reflection. Let ξ1, ξ2, . . . be independent iden-
tically distributed random variables,

Xn+1 := |Xn + ξn+1|, n = 0,1, . . . . (13.7.10)

If the ξk and hence the Xk are non-arithmetic, then the chain X has, generally
speaking, no atoms. If, for instance, ξk have a density f (t) with respect to Lebesgue
measure then P(Xk(x) = y) = 0 for any x, y, k ≥ 1. We will assume that a broader
condition (A) holds:

(A). In the decomposition

P(ξk < t) = pa Fa(t) + pc Fc(t)

of the distribution of ξk into the absolutely continuous (Fa) and singular (Fc) (in-
cluding discrete) components, one has pa > 0.

Corollary 13.7.3 If condition (A) holds, a = Eξk < 0, and E|ξk| < ∞, then the
Markov chain defined in (13.7.10) satisfies the conditions of Theorem 13.7.2 and
therefore is ergodic in the sense of convergence in total variation.

Proof We first verify that the chain satisfies the conditions of Corollary 13.7.1.
Since in our case |X1(x) − x| ≤ |ξ1|, the first of conditions (13.7.8) is satisfied.
Further,

Eξ(x) = E|x + ξ1| − x = E(ξ1; ξ1 ≥ −x) − E(2x + ξ1; ξ1 < −x) → Eξ1

as x → ∞, since

xP(ξ1 < −x) ≤ E
(|ξ1|, |ξ1| > x

)→ 0.

Hence there exists an N such that Eξ(x) ≤ a/2 < 0 for x ≥ N . This proves that
conditions (I0) and (I) hold for V = [0,N].

Now verify that condition (II) holds for the set W = [0, h] with some h. Let f (t)

be the density of the distribution Fa from condition (A). There exist an f0 > 0 and
a segment [t1, t2], t2 > t1, such that f (t) > f0 for t ∈ [t1, t2]. The density of x + ξ1
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will clearly be greater than f0 on [x + t1, x + t2]. Put h := (t2 − t1)/2. Then, for
0 ≤ x ≤ h, one will have [t2 − h, t2] ⊂ [x + t1, x + t2].

Suppose first that t2 > 0. The aforesaid will then mean that the density of x + ξ1
will be greater than f0 on [(t2 − h)+, t2] for all x ≤ h and, therefore,

inf
x≤h

P
(
X1(x) ∈ B

)≥ p1

∫

B

f0(t) dt,

where

f0(t) =
{

f0 ift ∈ [(t2 − h)+, t2],
0 otherwise.

This means that condition (II) is satisfied on the set W = [0, h]. The case t2 ≤ 0 can
be considered in a similar way.

It remains to make use of Lemma 13.7.3 which implies that condition (I) will
hold for the set W . The condition of Lemma 13.7.3 is clearly satisfied (for suffi-
ciently large m, the distribution of Xm(x), x ≤ N , will have an absolutely continu-
ous component which is positive on W ). For the same reason, the chain X cannot be
periodic. Thus all conditions of Theorem 13.7.2 are met. The corollary is proved. �

Example 13.7.2 An oscillating random walk. Suppose we are given two indepen-
dent sequences ξ1, ξ2, . . . and η1, η2, . . . of independent random variables, identi-
cally distributed in each of the sequences. Put

Xn+1 :=
{

Xn + ξn+1 if Xn ≥ 0,

Xn + ηn+1 if Xn < 0.
(13.7.11)

Such a random walk is called oscillating. It clearly forms a Markov chain in the
state space X = (−∞,∞).

Corollary 13.7.4 If at least one of the distributions of ξk or ηk satisfies condition
(A) and −∞ < Eξk < 0, ∞ > Eηk > 0, then the chain (13.7.11) will satisfy the
conditions of Theorem 13.7.2 and therefore will be ergodic.

Proof The argument is quite similar to the proof of Corollary 13.7.3. One just needs
to take, in order to verify condition (I), g(x) = |x| and V = [−N,N ]. After that it
remains to make use of Lemma 13.7.3 with W = [0, h] if condition (A) is satisfied
for ξk (and with W = [−h,0) if it is met for ηk). �

Note that condition (A) in Examples 13.7.1 and 13.7.2 can be relaxed to that of
the existence of an absolutely continuous component for the distribution of the sum∑m

j=1 ξj (or
∑m

j=1 ηj ) for some m. On the other hand, if the distributions of these
sums are singular for all m, then convergence of distributions P(x,n, ·) in total vari-
ation cannot take place. If, for instance, one has P(ξk = −√

2) = P(ξk = 1) = 1/2 in
Example 13.7.1, then Eξk < 0 and condition (I) will be met, while condition (II) will
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not. Convergence of P(x,n, ·) in total variation to the limiting distribution π is also
impossible. Indeed, it follows from the equation for the invariant distribution π that
this distribution is necessarily continuous. On the other hand, say, the distributions
P(0, n, ·) are concentrated on the countable set N of the numbers | − k

√
2 + l|;

k, l = 1,2, . . . . Therefore P(0, n,N) = 1 for all n, π(N) = 0. Hence only weak
convergence of the distributions P(x,n, ·) to π(·) may take place. And although this
convergence does not raise any doubts, we know no reasonably simple proof of this
fact.

Example 13.7.3 (continuation of Examples 13.4.2 and 13.6.1) Let X = [0,1],
ξ1, ξ2, . . . be independent and identically distributed, and Xn+1 := Xn + ξn+1
(mod 1) or, which is the same, Xn+1 := {Xn + ξn+1}, where {x} denotes the frac-
tional part of x. Here, condition (I) is clearly met for V =X = [0,1]. If the ξk satisfy
condition (A) then, as was the case in Example 13.7.1, condition (II) will be met for
the set W = [0, h] with some h > 0, which, together with Lemma 13.7.3, will mean,
as before, that the conditions of Theorem 13.7.2 are satisfied. The invariant distri-
bution π will in this example be uniform on [0,1]. For simplicity’s sake, we can
assume that the distribution of ξk has a density f (t), and without loss of generality
we can suppose that ξk ∈ [0,1] (f (t) = 0 for t /∈ [0,1]). Then the density p(x) ≡ 1
of the invariant measure π will satisfy the equation for the invariant measure:

p(x) = 1 =
∫ x

0
dy f (x − y) +

∫ 1

x

dy f (x − y + 1) =
∫ 1

0
f (y)dy.

Since the stationary distribution is unique, one has π = U0,1. Moreover, by The-
orem A3.4.1 of Appendix 3, along with convergence of P(x,n, ·) to U0,1 in total
variation, convergence of the densities P(x,n, dt)/dt to 1 in (Lebesgue) measure
will take place.

The fact that the invariant distribution is uniform remains true for arbitrary
non-lattice distributions of ξk . However, as we have already mentioned in Exam-
ple 13.6.1, in the general case (without condition (A)) only weak convergence of
the distributions P(x,n, ·) to the uniform distribution is possible (see [6, 18]).

13.8 Laws of Large Numbers and the Central Limit Theorem for
Sums of Random Variables Defined on a Markov Chain

13.8.1 Random Variables Defined on a Markov Chain

Let, as before, X = {Xn} be a Markov Chain in an arbitrary measurable state space
〈X ,BX 〉 defined in Sect. 13.6, and let a measurable function f : X → R be given
on 〈X ,BX 〉. The sequence of sums

Sn :=
n∑

k=1

f (Xk) (13.8.1)
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is a generalisation of the random walks that were studied in Chaps. 8 and 11. One
can consider an even more general problem on the behaviour of sums of random
variables defined on a Markov chain. Namely, we will assume that a collection
of distributions {Fx} is given which depend on the parameter x ∈ X . If F

(−1)
x (t)

is the quantile transform of Fx and ω ⊂= U0,1, then ξx := F
(−1)
x (ω) will have the

distribution Fx (see Sect. 3.2.4).
The mapping Fx of the space X into the set of distributions is assumed to be such

that the function ξx(t) = F
(−1)
x (t) is measurable on X ×R with respect to BX ×B,

where B is the σ -algebra of Borel sets on the real line. In this case, ξx(ω) will be a
random variable such that the moments

Eξ s
x =

∫ ∞

−∞
vsdFx(v) =

∫ 1

0

[
F (−1)

x (u)
]s

du

are measurable with respect to BX (and hence will be random variables themselves
if we set a distribution on 〈X ,BX 〉).
Definition 13.8.1 If ωi ⊂= U0,1 are independent then the sequence

ξXn := F
(−1)
Xn

(ωn), n = 0,1, . . . ,

is called a sequence of random variables defined on the Markov chain {Xn}.
The basic objects of study in this section are the asymptotic properties of the

distributions of the sums

Sn :=
n∑

k=0

ξXk
. (13.8.2)

If the distribution Fx is degenerate and concentrated at the point f (x) then
(13.8.2) turns into the sum (13.8.1). If the chain X is countable with states
E0,E1, . . . and f (x) = I(Ej ) then Sn = mj(n) is the number of visits to the state
Ej by the time n considered in Theorem 13.4.4.

13.8.2 Laws of Large Numbers

In this and the next subsection we will confine ourselves to Markov chains satis-
fying the ergodicity conditions from Sects. 13.6 and 13.7. As was already noticed,
ergodicity conditions for Harris chains mean, in essence, the existence of a positive
atom (possibly in the extended state space). Therefore, for the sake of simplicity, we
will assume from the outset that the chain X has a positive atom at a point x0 and
put, as before,

τ(x) := min
{
k ≥ 0 : Xk(x) = x0

}
, τ (x0) = τ.

Summing up the conditions sufficient for (I0) and (I) to hold (the finiteness of τ(x)

and Eτ ) studied in Sect. 13.7, we obtain the following assertion in our case.
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Corollary 13.8.1 Let there exist a set V ∈ BX such that, for the stopping time
τV (x) := min{k : Xk(x) ∈ V }, we have

E := sup
x∈V

EτV (x) < ∞. (13.8.3)

Furthermore, let there exist an m ≥ 1 such that

inf
x∈V

P

(
m⋃

j=1

{
Xj(x) = x0

}
)

≥ q > 0.

Then

Eτ ≤ mE

q
.

This assertion follows from Lemma 13.7.2. One can justify conditions (I0) and
(13.8.3) by the following assertion.

Corollary 13.8.2 Let there exist an ε > 0 and a nonnegative measurable function
g : X →R such that

sup
x∈V

Eg
(
X1(x)

)
< ∞

and, for x ∈ V c,

Eg
(
X1(x)

)− g(x) ≤ −ε.

Then conditions (I0) and (13.8.3) are met.

In order to formulate and prove the law of large numbers for the sums (13.8.2), we
will use the notion of the increment of the sums (13.8.2) on a cycle between conse-
quent visits of the chain to the atom x0. Divide the trajectory X0,X1,X2, . . . ,Xn of
the chain X on the time interval [0, n] into segments of lengths τ1 := τ(x), τ2, τ3, . . .

(τj
d= τ for j ≥ 2) corresponding to the visits of the chain to the atom x0. Denote

the increment of the sum Sn on the k-th cycle (on (Tk−1, Tk]) by ζk :

ζ1 :=
τ1∑

j=0

ξXj
,

ζk :=
Tk∑

j=Tk−1+1

ξXj
, k ≥ 2, where Tk :=

k∑

j=1

τj , k ≥ 1, T0 = 0.

(13.8.4)

The vectors (τk, ζk), k ≥ 2, are clearly independent and identically distributed. For

brevity, the index k will sometimes be omitted: (τk, ζk)
d= (τ, ζ ) for k ≥ 2.

Now we can state the law of large numbers for the sums (13.8.2).
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Theorem 13.8.1 Let P(τ (x) < ∞) = 1 for all x, Eτ < ∞, E|ζ | < ∞, and the g.c.d.
of all possible values of τ equal 1. Then

Sn

n
= 1

n

n∑

k=1

ξXk

p→ Eζ

Eτ
as n → ∞.

Proof Put

ν(n) := max{k : Tk ≤ n}.
Then the sum Sn can be represented as

Sn = ζ1 + Zν(n) + zn, (13.8.5)

where

Zk :=
k∑

j=2

ζj , zn :=
n∑

j=Tν(n)+1

ξXj
.

Since τ1 and ζ1 are proper random variables, we have, as n → ∞,

ζ1

n

a.s.−→ 0. (13.8.6)

The sum zn consists of γ (n) := n − Tν(n) summands. Theorem 10.3.1 implies that
the distribution of γ (n) converges to a proper limiting distribution, and the same is
true for zn. Hence, as n → ∞,

zn

n

p→ 0. (13.8.7)

The sums Zν(n), being the main part of (13.8.5), are nothing else but a generalised
renewal process corresponding to the vectors (τ, ζ ) (see Sect. 10.6).

Since Eτ < ∞, by Theorem 11.5.2, as n → ∞,

Zν(n)

n

p→ Eζ

Eτ
. (13.8.8)

Together with (13.8.6) and (13.8.7) this means that

Sn

n

p→ Eζ

Eτ
. (13.8.9)

The theorem is proved. �

As was already noted, sufficient conditions for P(τ (x) < ∞) = 1 and Eτ < ∞ to
hold are contained in Corollaries 13.8.1 and 13.8.2. It is more difficult to find con-
ditions sufficient for Eζ < ∞ that would be adequate for the nature of the problem.

Below we will obtain certain relations which clarify, to some extent, the con-
nection between the distributions of ζ and τ and the stationary distribution of the
chain X.
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Theorem 13.8.2 (A generalisation of the Wald identity) Assume Eτ < ∞, the g.c.d.
of all possible values of τ be 1, π be the stationary distribution of the chain X, and

Eπ E|ξx | :=
∫

E|ξx |π(dx) < ∞. (13.8.10)

Then

Eζ = EτEπ Eξx. (13.8.11)

The value of Eπ Eξx is the “doubly averaged” value of the random variable ξx :
over the distribution Fx and over the stationary distribution π .

Theorem 13.8.2 implies that the condition supx E|ξx | < ∞ is sufficient for the
finiteness of E|ζ |.

Proof [of Theorem 13.8.2] First of all, we show that condition (13.8.10) implies
the finiteness of E|ζ |. If ξx ≥ 0 then Eζ is always well-defined. If we assume that
Eζ = ∞ then, repeating the proof of Theorem 13.8.1, we would easily obtain that,

in this case, Sn/n
p→ ∞, and hence necessarily ESn/n → ∞ as n → ∞. But

ESn =
n∑

j=0

EξXj
=

n∑

j=0

∫
(Eξx)P(Xj ∈ dx),

where the distribution P(Xj ∈ ·) converges in total variation to π(·) as j → ∞,

∫
(Eξx)P(Xj ∈ dx) →

∫
(Eξx)π(dx),

and hence

1

n
ESn → Eπ Eξx < ∞. (13.8.12)

This contradicts the above assumption, and therefore Eζ < ∞. Applying the above
argument to the random variables |ξx |, we conclude that condition (13.8.10) implies
E|ζ | < ∞.

Let, as above, η(n) := ν(n) + 1 = min{k : Tk > n}. We will need the following.

Lemma 13.8.5 If E|ζ | < ∞ then

Eζη(n) = o(n). (13.8.13)

If Eζ 2 < ∞ then

Eζ 2
η(n) = o(n) (13.8.14)

as n → ∞.
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Proof Without losing generality, assume that ξx ≥ 0 and ζ ≥ 0. Since τj ≥ 1, we
have

h(k) :=
k∑

j=0

P(Tj = k) ≤ 1 for all k.

Therefore,

P(ζη(n) > v) =
n∑

k=0

h(k)P(ζ > v, τ > n − k) ≤
n∑

k=0

P(ζ > v, τ > k).

If Eζ < ∞ then

Eζη(n) ≤
n∑

k=0

∫ ∞

0
P(ζ > v; τ > k)dv =

n∑

k=0

E(ζ ; τ > k), (13.8.15)

where E(ζ ; τ > k) → 0 as k → ∞. This follows from Lemma A3.2.3 of Ap-
pendix 3. Together with (13.8.15) this proves (13.8.13).

Similarly, for Eζ 2 < ∞,

Eζ 2
η(n) ≤ 2

n∑

k=0

∫ ∞

0
vP(ζ > v, τ > k)dv =

n∑

k=0

E
(
ζ 2, τ > k

)= o(n).

The lemma is proved. �

Now we continue the proof of Theorem 13.8.2. Consider representation (13.8.5)
for X0 = x0 and assume again that ξx ≥ 0. Then ζ1 = ξx0 ,

Sn = ζ1 + Zη(n) + zn − ζη(n),

where by the Wald identity

EZη(n) = Eη(n)Eζ ∼ n
Eζ

Eτ
.

Since π({x0}) = 1/Eτ > 0, we have, by (13.8.10), E|ξx0 | < ∞. Moreover, for
ξx ≥ 0,

|ζη(n) − zn| < ζη(n).

Hence, by Lemma 13.8.5,

ESn = n
Eζ

Eτ
+ o(n). (13.8.16)

Combining this with (13.8.12), we obtain the assertion of the theorem.
It remains to consider the case where ξx can take values of both signs. Introduce

new random variables ξ∗
x on the chain X, defined by the equalities ξ∗

x := |ξx |, and
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endow with the superscript ∗ all already used notations that will correspond to the
new random variables. Since all ξ∗

x ≥ 0, by condition (13.8.10) we can apply to them
all the above assertions and, in particular, obtain that

Eζ ∗ < ∞, Eζ ∗
η(n) = o(n). (13.8.17)

Since

|ζ | ≤ ζ ∗, |ζη(n)| ≤ ζ ∗
η(n), |ζη(n) − zn| < ζ ∗

η(n),

it follows from (13.8.17) that

E|ζ | < ∞, E|ζη(n) − zn| = o(n)

and relation (13.8.16) is valid along with identity (13.8.11).
The theorem is proved. �

Now we will prove the strong law of large numbers.

Theorem 13.8.3 Let the conditions of Theorem 13.8.1 be satisfied. Then

Sn

n

a.s.−→ Eπ Eξx as n → ∞.

Proof Since in representation (13.8.5) one has ζ1/n
a.s.−→ 0 as n → ∞, we can ne-

glect this term in (13.8.5).
The strong laws of large numbers for {Zk} and {Tk} mean that, for a given ε > 0,

the trajectory of {STk
} will lie within the boundaries kEζ(1 ± ε) and Eζ

Eτ
Tk(1 ± 2ε)

for all k ≥ n and n large enough. (We leave a more formal formulation of this to the
reader.)

We will prove the theorem if we verify that the probability of the event that, be-
tween the times Tk , k ≥ n, the trajectory of Sj will cross at least once the boundaries

rj (1 ± 3ε), where r = Eζ

Eτ
, tends to zero as n → ∞. Since

max
Tk−1<j≤Tk

|Sj − STk
| ≤ ζ ∗

k (13.8.18)

(in the notation of the proof of Theorem 13.8.1), it is sufficient to verify that
P(An) → 0 as n → ∞, where An :=⋃∞

k=n{ζ ∗
k > εrTk}. But

P(An) = P(AnBn) + P(AnBn), (13.8.19)

where

Bn =
∞⋂

k=n

{
Tk > kEτ(1 − ε)

}
, P(Bn) → 0 as n → ∞,
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so the second summand in (13.8.19) tends to zero. The first summand on the right-
hand side of (13.8.19) does not exceed (for c = ε(1 − ε)Eζ )

P

( ∞⋃

k=n

{
ζ ∗
k > εEζk(1 − ε)

}
)

≤
∞∑

k=n

P
(
ζ ∗
k > ck

)→ 0

as n → ∞, since Eζ ∗ < ∞ (see (13.8.17)). The theorem is proved. �

13.8.3 The Central Limit Theorem

As in Theorem 13.8.1, first we will prove the main assertion under certain condi-
tions on the moments of ζ and τ , and then we will establish a connection of these
conditions to the stationary distribution of the chain X. Below we retain the notation
of the previous section.

Theorem 13.8.4 Let P(τ (x) < ∞) = 1 for any x, Eτ 2 < ∞, the g.c.d. of all possi-
ble values of τ is 1, and Eζ 2 < ∞. Then, as n → ∞,

Sn − rn

d
√

n/a
⊂=⇒ �0,1,

where r := aζ /a, aζ := Eζ , a := Eτ and d2 := D(ζ − rτ ).

Proof We again make use of representation (13.8.5), where clearly

ζ1√
n

p→ 0,
zn√
n

p→ 0

(see the proof of Theorem 13.8.1). This means that the problem reduces to that of
finding the limiting distribution of Zν(n) = Zη(n) − ζη(n), where by Lemma 10.6.1

ζη(n) has a proper limiting distribution, and so ζη(n)/
√

n
p→ 0 as n → ∞. Further-

more, by Theorem 10.6.3,

Zη(n)

σS

√
n

⊂=⇒ �0,1,

where σ 2
S := a−1D(ζ − rτ ), r = Eζ

Eτ
. The theorem is proved. �

Now we will establish relations between the moment characteristics used for
normalising Sn and the stationary distribution π . The answer for the number r was
given in Theorem 13.8.2: r = Eπ Eξx . For the number σ 2

S we have the following
result.
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Theorem 13.8.5 Let

σ 2 :=
∫

Dξxπ(dx) + 2
∞∑

j=1

E(ξX0 − r)(ξXj
− r)

be well-defined and finite, where X0 ⊂= π . Then

σ 2
S := a−1d2 = σ 2.

Note that here the expectation under the sum sign is a “triple averaging”: over
the distribution π(dy)P(y, j, dz) and the distributions of ξy and ξz.

Proof We have

E(Sn − rn)2 = E

[
n∑

k=0

(ξXk
− r)

]2

=
n∑

k=0

E(ξXk
− r)2 + 2

∑

k<j

E(ξXk
− r)(ξXj

− r), (13.8.20)

where

n∑

k=0

E(ξXk
− r)2 =

n∑

k=0

E(ξXk
− EξXk

)2 +
n∑

k=0

(EξXk
− r)2. (13.8.21)

The summands in the first sum on the right-hand side of (13.8.21) converge to σ 2
ξ :=∫

Dξxπ(dx), the summands in the second sum converging to zero. Therefore, the
left-hand side of (13.8.21) is asymptotically equivalent to nσ 2

ξ .
Further,

∑

k<j

E(ξXk
− r)(ξXj

− r) =
n∑

k=0

∑

j≥k+1

E(ξXk
− r)(ξXj

− r), (13.8.22)

where the distribution of Xk converges in total variation to the stationary distribu-
tion π of the chain. Hence the inner sums on the right-hand side of (13.8.22), for
large k and n − k (say, for

√
n < k < n − √

n when n → ∞), will be close to

E :=
∞∑

j=1

E(ξX0 − r)(ξXj
− r),

where X0 = π and the whole sum on the right-hand side of (13.8.22) is asymptoti-
cally equivalent, as n → ∞, to nE (or will be o(n) if E = 0).

Thus
1

n
E(Sn − rn)2 ∼ σ 2

ξ + 2E. (13.8.23)
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We now show that the existence of σ 2
ξ and E implies the finiteness of d2 = E(ζ −

rτ )2.
Consider the truncated random variables

ξ (N)
x :=

⎧
⎨

⎩

ξx if ξx ∈ [−N,N ],
N if ξx > N,

−N if ξx < −N.

Since σ 2
ξ < ∞, we have Eξ2

x < ∞ (a.e. with respect to the measure π ) and

r(N) → r,
(
σ

(N)
ξ

)2 → σ 2
ξ , E(N) → E as N → ∞,

where the superscript (N) means that the notation corresponds to the truncated ran-
dom variables. By virtue of Theorem 13.8.4,

lim inf
n→∞

1

n
E
(
S(N)

n − r(N)
)2 ≥ a−1(d(N)

)2
.

If we assume that d = ∞ then we will get that the lim inf on the left-hand side of this
relation is infinite. But this contradicts relation (13.8.23), by which the above lim inf
equals (σ

(N)
ξ )2 + 2E(N) and remains bounded. We have obtained a contradiction,

which shows that d < ∞.
On the other hand, for d < ∞, Eζ 2 < ∞ and, for the initial value x0, by (13.8.5)

we have

E(Sn − rn)2 = E(Zν(n) + zn − rn)2

= E(Zη(n) − rn)2 + 2E(Zη(n) − rn)(zn − ζη(n)) + E(zn − ζη(n))
2,

(13.8.24)

where n = Tη(n) − χ(n). Therefore, putting Yn := Zn − rTn =∑n
k=1(ζk − rτk), we

obtain

E(Zη(n) − rn)2 = EY 2
η(n) − 2EYη(n)χ(n) + Eχ2(n).

By virtue of (10.4.7), Eχ2(n) = o(n). By (10.6.4) (with a somewhat different nota-
tion),

EY 2
η(n) = d2Eη(n),

where d2 := D(ζ − rτ ), Eη(n) ∼ n/a and a = Eτ . Hence, applying the Cauchy–
Bunjakovsky inequality, we get

∣∣EYη(n)χ(n)
∣∣= o(n), E(Zη(n) − rn)2 ∼ nd2a−1. (13.8.25)

It remains to estimate the last two terms on the right-hand side of (13.8.24). But
∣∣ζη(n) − zn

∣∣≤ ζ ∗
η(n),
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where ζ ∗ corresponds to the summands ξ∗
Xk

= |ξXk
| and where, by Lemma 13.8.5

applied to ξ∗
x = |ξx |, we have

E
(
ζ ∗
η(n)

)2 = o(n).

Therefore E(ζη(n) − zn) = o(n) and, by the Cauchy–Bunjakovsky inequality and
relation (13.8.25), the same relation is valid for the shifted moment in (13.8.24).
Thus,

E(Sn − rn)2 ∼ a−1d2n.

Combining this relation with (13.8.23), we obtain the assertion of the theorem. �
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