
Chapter 7
Shape Priors for Image Segmentation

Daniel Cremers

7.1 Image Analysis and Prior Knowledge

The segmentation of images into meaningful regions is among the most studied
problems in image analysis. The term meaningful typically refers to a semantic
partitioning where the computed regions correspond to individual objects in the
observed scene. Unfortunately, generic purely low-level segmentation algorithms
often do not provide the desired segmentation results, because the traditional low
level assumptions like intensity or texture homogeneity and strong edge contrast are
not sufficient to separate objects in a scene.

To stabilize the segmentation process with respect to missing and misleading
low-level information, researchers have proposed to impose prior knowledge into
low-level segmentation methods. In the following, we will review methods which
allow to impose knowledge about the shape of objects of interest into segmentation
processes.

In the literature there exist various definitions of the term shape, from the very
broad notion of shape of Kendall [37] and Bookstein [5] where shape is whatever
remains of an object when similarity transformations are factored out (i.e., a geo-
metrically normalized version of a gray value image) to more specific notions of
shape referring to the geometric outline of an object in 2D or 3D. In this work, we
will adopt the latter view and refer to an object’s silhouette or boundary as its shape.
Intentionally we will leave the exact mathematical definition until later, as different
representations of geometry actually imply different definitions of the term shape
and will require different algorithms. In fact, we will see that the question of how
to represent shapes is closely coupled to the question of finding efficient algorithms
for shape optimization.

One can distinguish three kinds of shape knowledge:
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Table 7.1 Shapes can be represented explicitly or implicitly, in a spatially continuous or a spatially
discrete setting. More recently, researchers have adopted hybrid representations [67], where objects
are represented both in terms of their interior (implicitly) and in terms of their boundary (explicitly)

Spatially continuous Spatially discrete

Explicit polygons [15, 74],
splines [3, 26, 36]

edgel labeling & dyn. progr.
[1, 53, 60, 64, 66]

hybrid repres. LP
relaxation [67]

Implicit level-set methods [27, 51],
convex relaxation [12, 23]

graph cut methods [6, 33]

• Low-level shape priors typically favor shorter boundary length, that is, curves
with shorter boundary have lower shape energy [4, 6, 33, 36, 48].

• Mid-level shape priors characterize a certain class of shapes without specifying
their exact shape. For example, thin and elongated structures can be preferred
to facilitate the segmentation of roads in satellite imagery or of blood vessels in
medical imagery [30, 49, 55]. Similarly one can impose a prior on the low-order
shape moments without otherwise constraining the shape [41].

• High-level shape priors favor similarity to previously observed shapes, such as
hand shapes [15, 26, 34], silhouettes of humans [18, 21] or medical organs like
the heart, the prostate, the lungs or the cerebellum [42, 58, 59, 71].

Among a wealth of works on shape priors for image segmentation we will fo-
cus in this chapter on high-level shape priors. Specifically, we will present a range
of representative works—with many of the examples taken from the author’s own
work—and discuss their advantages and shortcomings.

7.2 Explicit versus Implicit Shape Representation

Among mathematical representations of shape, one can distinguish between explicit
and implicit representations. In the former case, the boundary of the shape is repre-
sented explicitly as a mapping from a chart into the embedding space. Alternatively,
shapes can be represented implicitly in the sense that points in the ambient space are
labeled as part of the interior or the exterior of the object. In the spatially continuous
setting, the optimization of such implicit shape representations is solved by means
of partial differential equations. Among the most popular representatives are the
level-set method [27, 51] or alternative convex relaxation techniques [11, 12]. In the
spatially discrete setting, implicit representations have become popular through the
graph cut methods [7, 33]. More recently, researchers have also advocated hybrid
representations where objects are represented both explicitly and implicitly [67]. Ta-
ble 7.1 provides an overview of a few representative works on image segmentation
using explicit and implicit representations of shape.

Figure 7.1 shows examples of shape representations using an explicit parametric
representation by spline curves (spline control points are marked as black boxes),
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Fig. 7.1 Examples of shape representations by means of a parametric spline curve (1st image),
a signed distance function (2nd image), a binary indicator function (3rd image), and an explicit
discrete representation (4th image)

Fig. 7.2 The linear interpolation of the signed distance functions associated with two human sil-
houettes also gives rise to intermediate shapes, yet it does not constrain the shape’s topology. The
interpolation of signed distance functions is generally no longer a signed distance function

implicit representations by a signed distance function or a binary indicator function
and an explicit discrete representation (4th image).

Both explicit and implicit shape representations can be used for statistical shape
learning where one can generalize a family of plausible shapes from a few sample
shapes—see Fig. 7.2.

In the following, we will give an overview of some of the developments in the
domain of shape priors for image segmentation. In Sect. 7.3, we will discuss meth-
ods to impose statistical shape priors based on explicit shape representations. In
Sect. 7.4, we discuss methods to impose statistical shape priors in level-set based
image segmentation including the concept of dynamical shape priors to learn tem-
poral models of shape evolution as priors for image sequence segmentation. And
lastly, in Sect. 7.5, we will present a method to compute polynomial-time optimal
segmentations with elastic shape priors.

7.3 Statistical Shape Priors for Explicit Shape Representations

Over the last decades Bayesian inference has become an established paradigm to
tackle the problem of image segmentation—see [22, 76], for example. Given an
input image I : Ω → R on a domain Ω ⊂ R

2, a segmentation C of the image
plane Ω can be computed by maximizing the posterior probability P(C | I ) ∝
P(I |C) P(C), where P(I |C) denotes the data likelihood for a given segmenta-
tion C and P(C) denotes the prior probability which allows to impose knowledge
about which segmentations are a priori more or less likely.
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Maximizing the posterior distribution can be performed equivalently by mini-
mizing its negative logarithm given by a cost function of the form

E(C) = Edata(C) + Eshape(C), (7.1)

where Edata(C) = − logP(I |C) and Eshape(C) = − logP(C) are typically re-
ferred to as data fidelity term and regularizer or shape prior. By maximizing the
posterior, one aims at computing the most likely solution given data and prior.

Over the years various data terms have been proposed. In the following, we will
simply use a piecewise-constant approximation of the input intensity I [48]. More
sophisticated data terms based on color likelihoods [8, 40, 50, 75] or texture likeli-
hoods [2, 22] are conceivable.

7.3.1 Linear Shape Priors

Among the most straightforward ways to represent a shape is to model its outline
as a parametric curve, for example a spline curve of degree k [14, 26, 29, 46]. For
k = 1, we simply have a polygonal shape [74]. Such parametric representations are
quite compact in the sense that very detailed silhouettes can be represented by a few
control points. This representation can be made invariant to translation, rotation and
scale by appropriate normalizations often called procrustes analysis [28].

With this contour representation, the image segmentation problem boils down
to computing an optimal spline control point vector for a given image. The seg-
mentation process can be constrained to familiar shapes by imposing a statistical
shape prior computed from the set of training shapes. The most popular shape prior
is based on the assumption that the training shapes are Gaussian distributed—see
for example [15, 26, 38]. One can define a shape prior that is invariant to simi-
larity transformations (translation, rotation and scaling) by applying the Gaussian
assumption to the similarity-normalized control point vector [26]. Since the space
of similarity-normalized shapes is no longer a vector-space, however, the resulting
distribution will not be exactly Gaussian.

Figure 7.3 shows several intermediate steps in a gradient descent evolution on
the energy (7.1) combining the piecewise constant intensity model with a Gaussian
shape prior constructed from a set of sample hand shapes. Note how the similarity-
invariant shape prior constrains the evolving contour to hand-like shapes without
constraining its translation, rotation or scaling. We refer to this as a linear shape
prior since admissible shapes are linear combinations of respective eigen-shapes.

Figure 7.4 shows the gradient descent evolution with the same shape prior for
an input image of a partially occluded hand. Here the missing part of the silhouette
is recovered through the statistical shape prior. The curve converges to the desired
segmentation over rather large spatial distance.
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Fig. 7.3 Evolution of a parametric spline curve during gradient descent on the energy (7.1) com-
bining a piecewise constant intensity data term model with a Gaussian shape prior constructed
from a set of sample hand shapes [26]. Since the shape prior is by construction invariant to simi-
larity transformations, the contour easily undergoes translation, rotation and scaling during energy
minimization

Fig. 7.4 Gradient descent evolution of a parametric curve with similarity invariant shape prior.
The statistical shape prior permits a reconstruction of the hand silhouette in places where it is
occluded

7.3.2 Nonlinear Shape Priors

In general, a given set of shapes—say the various projections of a 3D object ob-
served from different view points or the various silhouettes of a walking person—
will not be Gaussian-distributed. There are many ways to go beyond the Gaussian
distribution—using mixtures of Gaussians, kernel density estimators or manifold
learning techniques. Alternatively one can introduce nonlinearity by means of Mer-
cer kernel methods. In [20], it was proposed to model the shape prior not by a
Mahalanobis distance in the input space (arising from the Gaussian model), but by a
corresponding distance upon a transformation ψ : Rn → Y of the control point vec-
tor z ∈ R

n to some generally higher-dimensional feature space Y . This gives rise to
a Mahalanobis distance of the form:

E(z) = (
ψ(z) − ψ0

)t
�−1

ψ

(
ψ(z) − ψ0

)
(7.2)

with ẑ being the similarity-normalized control point vector. Here ψ0 and �ψ denote
the mean and covariance matrix computed for the transformed shapes:

ψ0 = 1

m

m∑

i=1

ψ(zi), �ψ = 1

m

m∑

i=1

(
ψ(zi) − ψ0

)(
ψ(zi) − ψ0

)�
. (7.3)

As shown in [20], the energy E(z) above can be evaluated without explicitly
specifying the nonlinear transformation ψ . It suffices to define the corresponding
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Fig. 7.5 Tracking a familiar object over a long image sequence with a nonlinear statistical shape
prior constructed from a set of sample silhouettes. In contrast to commonly used Gaussian shape
priors, the nonlinear prior allows the emergence of a multitude of familiar shapes which are not
merely a linear combination of familiar shapes

Mercer kernel [17, 47]:

k(x, y) := 〈
ψ(x),ψ(y)

〉
, ∀x, y ∈R

n, (7.4)

representing the scalar product of pairs of transformed points ψ(x) and ψ(y).
A popular choice of k is a Gaussian kernel function: k(x, y) ∝ exp(− 1

2σ 2 ‖x − y‖2).
It was shown in [20], that the resulting energy is related to the classical Parzen-
Rosenblatt density estimators. As shown in Fig. 7.5, this nonlinear shape prior al-
lows the emergence of multiple very different shapes and therefore better preserves
small-scale shape details.

7.4 Statistical Priors for Level-Set Representations

Parametric representations of shape such as those presented above have numerous
favorable properties. In particular, they allow the representation of rather complex
shapes with few parameters, resulting in low memory requirements and low compu-
tation time. Nevertheless, the explicit representation of shape has several drawbacks:
Firstly, explicit shapes require a specific choice of curve (or surface) parameteriza-
tion. To factor out this dependency in the representation and in respective algorithms
gives rise to computationally challenging problems of regridding or reparameteriza-
tion. This becomes particularly difficult for higher-dimensional shapes. Secondly,
parametric representations are difficult to adapt to varying topology of the rep-
resented shape. Numerically topology changes require sophisticated splitting and
remerging procedures. Thirdly, the commonly used energies are not convex with
respect to a parametric boundary representation. Gradient descent algorithms will
therefore only determine locally optimal solutions.

A mathematical representation of shape which is independent of parameteriza-
tion was pioneered in the analysis of random shapes by Fréchet [31] and in the
school of mathematical morphology founded by Matheron and Serra [45, 70]. The
level-set method [27, 51] provides a means of propagating contours C (indepen-
dent of parameterization) by evolving associated embedding functions φ via partial
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differential equations—see Fig. 7.2 for a visualization of the level-set function as-
sociated with a human silhouette. It has been adapted to segment images based on
numerous low-level criteria such as edge consistency [10, 39, 44], intensity homo-
geneity [13, 73], texture information [9, 35, 52, 57] and motion information [24].

7.4.1 Nonparametric Shape Priors

For level-set based shape representations, researchers have fit a linear sub-space to
the sampled signed distance functions [43, 59, 72]. These approaches were shown
to capture some shape variability. Yet, they exhibit two limitations: Firstly, they rely
on the assumption of a Gaussian distribution which is not well suited to approximate
shape distributions encoding more complex shape variation—see above. Secondly,
they work under the assumption that shapes are represented by signed distance func-
tions. Yet, the space of signed distance functions is not a linear space. Therefore, in
general, neither the mean nor the linear combination of a set of signed distance
functions will correspond to a signed distance function.

In the following, we will propose an alternative approach for generating a sta-
tistical shape dissimilarity measure for level-set based shape representations. It is
based on classical methods of (so-called non-parametric) kernel density estimation
and overcomes the above limitations.

Given a set of training shapes {φi}i=1,...,N , one can introduce a nonparametric
shape prior on the space of signed distance functions [25] by means of a Parzen-
Rosenblatt kernel density estimator [54, 56]:

P(φ) ∝ 1

N

N∑

i=1

exp

(
− 1

2σ 2
d2(φ,φi)

)
, (7.5)

with an appropriate distance d to measure the dissimilarity of two given level-set
functions. The kernel density estimator is among the theoretically most studied den-
sity estimation methods. In the finite-dimensional case, it was shown to converge to
the true distribution in the limit of infinite samples (and σ → 0).

As in the case of parametric curves, segmentation can be cast as a problem of
maximum aposteriori inference which boils down to an energy minimization prob-
lem of the form

E(φ) = Edata(φ) + Eshape(φ), (7.6)

with Eshape(φ) = − logP(φ) and an appropriate data term Edata.
Figure 7.6 shows a direct comparison of a level-set segmentation process without

and with the non-parametric shape prior in (7.5). The shape prior permits the accu-
rate reconstruction of an entire set of fairly different shapes. Since the shape prior is
defined on the level-set function φ, it can easily handle topological changes of the
represented curve.
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Fig. 7.6 By extending a purely data driven level set segmentation (top row) with a nonparamet-
ric shape prior (bottom row) the resulting segmentation method is robust to misleading low-level
information such as shadows or partial occlusion

7.4.2 Dynamical Shape Priors for Implicit Shapes

Although the above shape priors can be applied to tracking objects in image se-
quences, they are not suited for this task, because they neglect the temporal coher-
ence of silhouettes which characterizes many deforming shapes. In the following,
we will present temporal statistical shape models for implicitly represented shapes
that were first introduced in [18]. At any given time, the shape probability depends
on the shapes observed at previous time steps. The integration of such dynamical
shape models into the segmentation process can be formulated within a Bayesian
framework for image sequence segmentation: Let It : Ω → R denote the input im-
age at time t and let φ̂1:t−1 := (φ̂1, . . . , φ̂t−1) denote the segmentations obtained for
the previous frames. Under the assumption that these segmentations are correct and
that no knowledge about future data is available, the most likely segmentation at
time t can be computed as follows:

φ̂t = arg max
φt

P(φt | It , φ̂1:t−1) = arg max
φt

P(It |φt )P(φt | φ̂1:t−1). (7.7)

Under certain assumptions, it is even possible to reinterpret the past observations in
closed form [61]. The intuition is then to find the segmentation which best partitions
the current image and all past images (when propagated backward in time with the
dynamical model). Similarly one could take into account future observations (if
available) by propagating the model forward in time.

Again, one can equivalently minimize the negative logarithm of the above ex-
pression. Gradient descent induces an evolution of the level set function which is
driven both by the intensity information of the current image as well as by a dy-
namical shape prior which relies on the segmentations obtained for the preceding
frames. Experimental evaluation demonstrates that the resulting segmentations are
not only similar to previously learned shapes, but they are also consistent with the
temporal correlations estimated from sample sequences. The resulting segmentation



7 Shape Priors for Image Segmentation 111

Fig. 7.7 Variational image sequence segmentation with a dynamical shape prior on noisy and
partially occluded data. 90 % noise means that nine out of ten intensity values were replaced by
a random intensity. The statistically learned dynamical model allows for reliable segmentation
results despite large amounts of noise (above) and prominent occlusion (below)

process can cope with large amounts of noise and occlusion because it exploits prior
knowledge about temporal shape consistency and because it aggregates information
from the input images over time (rather than treating each image independently).

As in the case of static shape priors, one can consider linear [18] or nonlinear
[19] dynamical shape priors. As shown in Fig. 7.7, a linear dynamical shape prior
allows reliable tracking of a walking person in an image sequence degraded by large
amounts of noise and prominent occlusion.

7.5 Parametric Representations Revisited: Combinatorial
Solutions for Segmentation with Shape Priors

In previous sections, we saw that shape priors improve the segmentation and track-
ing of familiar deformable objects, biasing the segmentation process to favor fa-
miliar shapes or even familiar shape evolutions. Unfortunately these approaches are
based on locally minimizing the respective energies via gradient descent. Since these
energies are generally non-convex, the computed locally optimal solutions typically
depend on an initialization and may be suboptimal in practice. One exception based
on implicit shape representations as binary indicator functions and convex relaxation
techniques was proposed in [23]. Yet, the linear interpolation of shapes represented
by binary indicator functions will generally not give rise to plausible intermediate
shapes: For example, linearly interpolating two human silhouettes with one arm in
different locations will fade out the arm in one location and make it emerge again in
the other location. It will not translate the arm from one location to the other which
would be desirable. In this sense, there is no generalization to plausible intermediate
shapes.

Moreover, while implicit representations like the level-set method circumvent the
problem of computing correspondences between points on either of two shapes, it
is well-known that the aspect of point correspondences plays a vital role in human
notions of shape similarity. For matching planar shapes, there is abundant literature
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Fig. 7.8 A polynomial-time solution for matching shapes to images: matching a template curve
C : S1 →R

2 (left) to the image plane Ω ⊂ R
2 is equivalent to computing an orientation-preserving

cyclic path Γ : S1 → Ω × S
1 in the product space spanned by the image domain and the template

domain. The latter problem can be solved in polynomial time—see [66] for details

on how to solve this correspondence problem in polynomial time using dynamic
programming techniques [32, 62, 69].

Similar concepts of dynamic programming can be employed to localize deformed
template curves in images. Coughlan et al. [16] detected open boundaries by shortest
path algorithms in higher-dimensional graphs. Felzenszwalb et al. used dynamic
programming in chordal graphs to localize shapes, albeit not on a pixel level.

Polynomial-time solutions for localizing deformable closed template curves in
images using minimum ratio cycles or shortest circular paths were proposed in [66],
with a further generalization presented in [65]. There the problem of determining
a segmentation of an image I : Ω → R that is elastically similar to an observed
template cc : S1 → R

2 is computed as a cycle

Γ : S1 → Ω × S
1 (7.8)

of minimum ratio in the product space spanned by the image domain Ω and template
domain S

1. See Fig. 7.8 for a schematic visualization. All points along this circular
path provide a pair of corresponding template point and image pixel. In this manner,
the matching of template points to image pixels is equivalent to the estimation of
orientation-preserving cyclic paths, which can be solved in polynomial time using
dynamic programming techniques such as ratio cycles [63] or shortest circular paths
[68].

Figure 7.9 shows an example result obtained with this approach: The algorithm
determines a deformed version (right) of a template curve (left) in an image (cen-
ter) in globally optimal manner. An initialization is no longer required and the best
conceivable solution is determined in polynomial time.

Figure 7.10 shows further examples of tracking objects: Over long sequences of
hundreds of frames the objects of interest are tracked reliably—despite low contrast,
camera shake, bad visibility and illumination changes. For further details, we refer
to [66].
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Fig. 7.9 Segmentation with a single template: despite significant deformation and translation, the
initial template curve is accurately matched to the low-contrast input image. The globally optimal
correspondence between template points and image pixels is computed in polynomial time by
dynamic programming techniques [66]

Fig. 7.10 Tracking of various objects in challenging real-world sequences [66]. Despite bad vis-
ibility, camera shake and substantial lighting changes, the polynomial-time algorithm allows to
reliably track objects over hundreds of frames. Image data taken from [66]

7.6 Conclusion

In the previous sections, we have discussed various ways to include statistical shape
priors in image segmentation methods. We have made several observations:

• By imposing statistically learned shape information one can generate segmenta-
tion processes which favor the emergence of familiar shapes—where familiarity
is based on one or several training shapes.

• Statistical shape information can be elegantly combined with the input image data
in the framework of Bayesian maximum aposteriori estimation. Maximizing the
posterior distribution is equivalent to minimizing a sum of two energies represent-
ing the data term and the shape prior. A further generalization allows to impose
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dynamical shape priors so as to favor familiar deformations of shape in image
sequence segmentation.

• While linear Gaussian shape priors are quite popular, the silhouettes of typical ob-
jects in our environment are generally not Gaussian distributed. In contrast to lin-
ear Gaussian priors, nonlinear statistical shape priors based on Parzen-Rosenblatt
kernel density estimators or based on Gaussian distributions in appropriate fea-
ture spaces [20] allow to encode a large variety of rather distinct shapes in a single
shape energy.

• Shapes can be represented explicitly (as points on the object’s boundary or sur-
face) or implicitly (as the indicator function of the interior of the object). They
can be represented in a spatially discrete or a spatially continuous setting.

• The choice of shape representation has important consequences regarding the
tractability of the resulting optimization problem. Moreover, different notions of
shape similarity and shape interpolation are more easily expressed with respect to
one or the other shape representation. As a result, there is no single ideal represen-
tation of shape. In fact, a good compromise between desirable and tractable cost
functions may be obtained using hybrid representations such as the one proposed
in [67]. It is an overcomplete shape representation which combines an explicit (al-
beit not parametric) and an implicit representation coupled via linear constraints.
As a consequence, properties of both the object’s interior and its boundary can
be directly accessed in the respective cost function. If this cost function is linear
then LP relaxation can provide minimizers of bounded optimality.
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