
Chapter 3
Flux Graphs for 2D Shape Analysis

Morteza Rezanejad and Kaleem Siddiqi

3.1 Introduction

Medial representations, introduced by Blum [2], simultaneously capture properties
of an object’s outline and its interior. Abstractions of medial representations into
graphs have become popular in the computer vision literature and have successfully
been applied to view-based object recognition [12, 14]. Recent extensions and ap-
plications include alterations of medial graphs to capture salient object parts [8] and
the use of medial fragments for perceptual grouping to form object part hypotheses
directly from images [11].

Motivated by the success of medial representations, this chapter revisits a quan-
tity related to medial axis computations—the limiting behavior of the average out-
ward flux (AOF) of the gradient of the Euclidean distance function to the object’s
boundary as the region through which it is computed is shrunk [4]. We exploit the
property that at skeletal points the AOF reveals the object angle and thus can be
viewed as a scalar descriptor from which the complete boundary can be recon-
structed. We then introduce a novel measure of salience for a skeletal point by
combining the AOF with a check on uniqueness of the inscribed medial disk to the
host skeletal branch. The simplified skeletons are used to derive a directed graph-
based representation of the object which we term the flux graph. Our experiments
show that flux graphs are a good deal simpler than competing skeletal graphs such
as shock graphs, by a number of standard complexity measures, with little loss in
representational power. Furthermore, they yield competitive performance in object
recognition experiments.

We begin by discussing mathematical properties of the geometry of the medial
axis of an object and by introducing the appropriate notation.
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Fig. 3.1 Local geometry of a maximal inscribed disk centered at the skeletal point p with radius
r and with object angle θ . The maximal inscribed disk touches the boundary at two points b±1

(Π(p) = {b+1,b−1}) (adapted from [13])

Definition 3.1 Assume an n-dimensional object denoted by Ω with its boundary
given by ∂Ω ∈ R

n. A closed disk D ∈ R
n is a maximal inscribed disk in Ω if

D ⊆ Ω but for any disk D′ such that D ⊂ D′, the relationship D′ ⊆ Ω does not
hold.

Definition 3.2 The Blum medial locus or skeleton, denoted by Sk(Ω), is the locus
of centers of all maximal inscribed disks in ∂Ω .

As illustrated in Fig. 3.1, a skeletal point is characterized by its location p, the
maximal inscribed disk radius r , the object angle θ , the direction of the unit tangent
vector T, and the object angle θ given by arccos(− dr

ds
), where s is the arc length

along a branch of the medial axis. The projection Π(p) is the set of closest points on

the boundary ∂Ω to p, i.e., Π(p)
�= {q ∈ ∂Ω : ‖p − q‖ = min{‖p − q‖∀q ∈ ∂Ω}}.

For a skeletal point p the projection set Π(p) is the set of points on the boundary
touched by the maximal inscribed disk centered at p (the points b±1 in Fig. 3.1).
According to the “Maxwell set” definition of the medial locus [10], each skeletal
point p ∈ Sk(Ω) must have at least two closest boundary points (|ΠΩ(p)| ≥ 2).

Topologically Sk(Ω) consists a set of branches that join to each other at branch
points to form the complete skeleton. A skeletal branch denoted by χ is a set of con-
tiguous regular points from the skeleton that lie between a pair of junction points, a
pair of end points or an end point and a junction point. As shown by Dimitrov et al.
in [4] these three classes of points can be analyzed by considering the behavior of
the average outward flux of the gradient of the Euclidean distance function to the

boundary of a 2D object, given by
∫
∂R〈q̇,N〉ds∫

∂R ds
, when shrunk to a circular neighbor-

hood, where q̇ = ∇D [4], with D the Euclidean distance function to the object’s
boundary. In particular:

1. p is a regular point if the maximal inscribed disk at p touches the boundary at
two corresponding boundary points such that |ΠΩ(p)| = 2. The computed AOF
at a regular point p is given by limε→0

Fε(p)
2πε

= − 2
π

sin θ .
2. p is an end point if there exists δ (0 < δ < r) such that for any ε (0 < ε < δ) the

circle centered at p with radius ε intersects Sk(Ω) just at a single point (r is the
radius of the maximal inscribed disk at p). The computed AOF at an end point p
is given by limε→0

Fε(P )
2πε

= − 1
π
(sin θP − θP ).
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Fig. 3.2 Different types of skeletal points are illustrated using segments of the skeleton Sk(Ω)

of a given shape Ω . Left: A regular skeletal point. Middle: An end point. Right: A junction point.
(Adapted from [4])

3. p is a junction point if ΠΩ(p) has three or more corresponding closest boundary
points. Generically a junction point has degree 3. All other branch points are
unstable. The computed AOF at a junction point p is given by limε→0

Fε(P )
2πε

=
− 1

π

∑n
i=1 sin θi .

These different classes of skeletal points are shown in Fig. 3.2.
We now enumerate the main contributions of this chapter. First, previous ap-

proaches to compute flux-based skeletons and use them for boundary representation
are not entirely complete. Section 3.2 addresses these limitations and presents a
method that gives more complete boundary reconstruction results. Second, a new
method for skeletal simplification which in turn leads to a simplified graph repre-
sentation is presented in Sect. 3.3. Underlying this simplification is a measure of
saliency that combines a notion of uniqueness of the inscribed medial disk to the
host branch with the limiting AOF value.

3.2 Full Boundary Reconstruction

According to the Maxwell set definition of the medial axis, each point on the skele-
ton has two or more corresponding boundary points. Therefore, given a mapping
between boundary points to skeletal points, it is possible to invert that mapping to
reconstruct the boundary purely from skeletal points and their properties. Dimitrov
et al. [4] attempted to do this by exploiting the relationship between regular points
of the medial axis and the object angle. In this section, we will review the basic
algorithm for doing this and then extend it to obtain a more complete boundary
reconstruction by adding the cases of end points and junction points.

3.2.1 Boundary Representation Through Regular Points
with First-Order Approximation of the Tangent Vector

Taking a regular point p on the skeleton, Dimitrov et al. outlined the reverse trans-
form to obtain corresponding boundary points by b±1 = p+rRot(±θ)Tp. To recon-
struct b±1 from a regular point on a parametrized skeleton, the following parameters
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Fig. 3.3 Top row: Outlines of binary images of a dog, a profile and a hand object, along with their
derived skeletons using flux based skeletonization. Bottom row: Reconstructed boundary points
(filled black disks) overlayed on the original outlines, using the method of Dimitrov et al. [4]

of a skeletal point ought to be numerically computed: the coordinates of the point
p, the radius value r , the object angle θ , and the unit tangent vector Tp. During the
skeletonization process, a parametrized discrete skeleton is computed where each
skeletal point includes its position p, the radius at that point r , and the limiting AOF
value. For the object angle θ , a numerical estimate is obtained based on the rela-
tionship for regular skeletal points: θ = arcsin

(−Fε(P )
4ε

)
. Finally, the tangent vector

is estimated as the slope of the line that connects the prior (discrete) skeletal point
p−1 to the subsequent (discrete) skeletal point p+1, i.e., Tp = p+1−p−1

‖p+1−p−1‖ . Figure 3.3
shows results from these skeletonization and boundary reconstruction algorithms,
using the original implementations.

3.2.2 Full Boundary Reconstruction

As is evident from the results in Fig. 3.3, the reconstruction of regular points, though
promising, does not provide a complete representation of the boundary. In this sub-
section, we extend this approach by considering all types of skeletal points and pro-
viding a better numerical approximation of the parameters required for reconstruc-
tion. To achieve this aim, three limitations of the boundary reconstruction method
are considered and addressed:

1. Sensitivity of first-order approximation of tangent estimation: The two point
stencil computation of the tangent vector is very sensitive to discretization ef-
fects along the skeleton, and can often fail at regular points. To mitigate these
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Fig. 3.4 Top row: Along with the reconstructed points in Fig. 3.3 shown with black disks, newly
reconstructed points resulting from the improved tangent estimation are shown with blue disks.
Second row: Along with the reconstructed points in Fig. 3.3 shown with black disks, newly re-
constructed boundary circular segments corresponding to end points are shown with green disks.
Third row: Along with the reconstructed points in Fig. 3.3 shown with black disks, newly recon-
structed boundary points corresponding to junction points are shown with violet disks. Bottom row:
Along with reconstructed points in Fig. 3.3 shown with black disks, all the additional reconstructed
boundary points are shown in orange

numerical errors, we deploy higher order methods for approximating the unit
tangent. For those medial loci for which the two point method fails, we use a
four point (discrete) stencil approximation [1] given by Tp = 2

3

( p+1−p−1
‖p+1−p−1‖

) +
1
3

( P+2−P−2
‖P+2−P−2‖

)
where p+2 and p−2 represent the subsequent and the previous

skeletal points to p+1 and p−1, respectively. Using the second-order of approxi-
mation of tangent estimation results in a number of newly reconstructed bound-
ary points (see Fig. 3.4, top row).
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2. Boundary points that map to an end point: The boundary reconstruction method
by Dimitrov et al. [3] does not explicitly consider the other two types of skeletal
points (end points and junction points). This decision results in a number of
circular segments missing from the boundary, which map to the end points. We
present a numerical approach to recover such missing boundary points. Assume
p is an end point such as the one shown in Fig. 3.2. Then, there would be a
circular arc segment from the boundary corresponding to this skeletal point. The
osculating disk at p touches the boundary along that circular segment, and the
limiting tangent vector to the skeleton at that point bisects the angle that subtends
the circular arc. Let γ represent the curve of that circular arc segment, then

γ : I → Ω (3.1)

γ (θ) = p + r Rot(θ)Tp (3.2)

where I is an interval I = [−θp, θp]. The coordinates of the point p, and the ra-
dius value r are parameters that are computed during the skeletonization process.
To compute γ , the following parameters need to be computed numerically other
than p, and r : the object angle θp, and the unit tangent vector Tp. To compute
the object angle, we use the end point equation Fε(P )

2πε
= − 1

π
(sin θp − θp). For

the tangent vector TP , we simply use the tangent estimation of the (discrete)
skeletal point prior to the end point, i.e., Tp = Tp−1 . Figure 3.4 (second row)
shows boundary reconstruction results with the newly found circular boundary
segments corresponding to end points shown in green.

3. Boundary points that map to a junction point: Junction points are also not in-
cluded in the initial boundary reconstruction method by Dimitrov et al. [3]. We
compute the corresponding boundary points of a junction point the same way that
we compute the corresponding boundary points of a regular point, with the dif-
ference that the tangent vectors near junction points are approximated by those at
the prior points on the skeleton. The rest of the procedure is the same as that for
computing boundary points for a regular point. Figure 3.4 (third row) shows the
improvement with the newly found boundary points corresponding to junction
points shown in violet.

The contribution of this approach to reconstructing boundary points is threefold:
improved approximation of tangents for many regular points of the skeleton, the
computing of circular segments that correspond to end points of the skeleton, and
the computing of extra boundary points from junction points. In Fig. 3.4 (bottom
row), the additional skeletal points added by these steps are shown in orange, which
together with the original reconstructed points demonstrate a far more complete rep-
resentation of the boundary (compare with Fig. 3.3). The remaining gaps between
the reconstructed boundary points can be attributed to the fact that they are map-
pings of discretely sampled skeletal points.
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Fig. 3.5 A part of the dog shape is shown with maximal inscribed disks corresponding to unique
and non-unique skeletal points. The maximal inscribed disk centered at p1(∈ χ1) does not intersect
with any maximal inscribed disk from branches other than χ1 so p1 is a unique skeletal point. In
contrast, p2(∈ χ1) is not a unique skeletal point because the maximal inscribed disk centered at
p2(∈ χ1) intersects with the maximal inscribed disk centered at p3(∈ χ2)

3.3 Salient Parts of the Medial Axis

We now build on the previous results to obtain a novel measure of saliency for
medial axis points that combines two criteria: (1) The object angle, which by the
characterization of [4] is obtained directly from the computation of the AOF and
(2) A notion of uniqueness of the maximal inscribed disk at a skeletal point to the
host branch.

Definition 3.3 A unique skeletal point has the property that the maximal inscribed
disk centered at it does not intersect the maximal inscribed disk associated with any
skeletal point on any other branch.

Whereas the object angle has often been used as a criterion for saliency [13], the
second notion is novel. The intuition here is that unique skeletal points are salient
because without them a significant portion of the object’s area would not be repre-
sented. Examples of unique and non-unique skeletal points are shown in Fig. 3.5.

As explained in Sect. 3.1, the limiting average outward flux at a regular skeletal
point p is computed by: limε→0

Fε(p)
2πε

= − 2
π

sinα. This equation determines a rela-
tionship between the AOF and the object angle. The bigger the AOF, the higher the
object angle and the more likely the shape silhouette is to be elongated locally. Since
elongated parts admit a simple and stable medial axis structure, skeletal points with
high AOF are salient.

3.3.1 Simplifying the Skeleton

We combine these two measures of saliency to simplify flux based skeletons using
the following procedure: when the considered skeletal point is unique or its nor-
malized AOF is greater than a certain threshold, the skeletal point is retained. In
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Fig. 3.6 Left: The skeletal points found to be unique are shown in black on the medial axis of a dog
example. Middle: Normalized flux values of a skeleton are shown in a range starting from white
(minimum AOF) and ending in black (maximum AOF). Right: Several salient segments labeled as
ti are shown as the result of simplifying the medial axis by retaining only those skeletal points that
are unique or have AOF above a threshold

our experiments, we use the threshold τ = 0.9045 for the AOF, which means that
all non-unique skeletal points with object angle α greater than about 60° will be
retained in the simplified skeleton. Figure 3.6 illustrates the result of applying this
simplification procedure on the dog shape.

3.4 Flux Graphs

Our main motivation for simplifying the flux-based skeleton is to extract a graph
representation which is simpler than but otherwise as complete and effective as pop-
ular existing approaches such as the shock graph [14] and the bone graph [8]. We
propose a “Flux Graph” that uses the simplification process to describe a shape as a
set of connected parts while preserving the topology of the original skeleton.

3.4.1 Nodes and Edges

The simplification process can result in a number of skeletal fragments, as illustrated
by the example in Fig. 3.6. Not all these fragments described distinct parts, rather,
those that share a significant portion of their volumes (obtained as the union of the
associated medial disks) and are in close proximity of one another can be combined
via a merging process. The segments which remain at the end of the merging process
are treated as the nodes of a flux graph. The results of merging fragmented parts
associated with the simplified skeleton of the dog shape are shown in Fig. 3.7 (left).
The set of edges between nodes are then determined based on their connectivities on
the original medial axis. To direct edges, we consider the average radii of inscribed
disks associated with two adjacent nodes and compare them. The one with larger
magnitude is chosen as the parent and the other as the child. The resulting directed
flux graph for the dog shape is shown in Fig. 3.7 (right).
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Fig. 3.7 The flux graph of the dog shape. Left: The set of nodes is shown with the distinct parts
depicted in different colors, each representing a union of medial disks. Right: The directed flux
graph. The dummy node  carries no geometrical information but serves as a parent to all the top
level nodes

Fig. 3.8 Top row: A view of a dog (middle) with adjacent views obtained by rotating around it in
the clockwise and anti-clockwise directions. For each view, the parts reconstructed by each node
of the flux graph are shown as a colored union of disks. Middle row: The flux graph corresponding
to the view in the top row. Bottom row: The shock graph corresponding to the view in the top row

3.4.2 Qualitative Stability with Viewpoint Changes

We provide a qualitative demonstration that flux graphs remain stable under small
changes in viewpoint, while providing an intuitive part structure. We consider a
view of the dog (Fig. 3.8 (top row, middle)) and adjacent views obtained by rotating
around it in clockwise and anti-clockwise directions. For each view the top row



50 M. Rezanejad and K. Siddiqi

Table 3.1 Efficiency of flux graphs over shock graphs. The measures in the first six columns are
obtained by taking the ratios of the average values of these complexity measures for flux graphs and
shock graphs, subtracting these ratios from 1, and then averaging over all the 1664 silhouettes in
the database. The last column indicates the percentage of area of the original object reconstructed
by flux graphs

Nodes Edges Σ deg(v)d Depth Skeletal point TSV Coverage

Efficiency % 49.87 % 56.08 % 59.99 % 26.38 % 24.08 % 48.52 % 99

depicts the parts represented by each node of the flux graph, the second row the
flux graph and the bottom row the shock graph. Changes to the flux graph typically
occur when new parts, such as the tail, come into view (or disappear) but the overall
graph structure is much simpler than that of the shock graph. This is essentially
because the shock graph utilizes and hence represents the entire skeleton, without
any simplification. The experimental results in Table 3.1 which shows averages over
1664 view-based silhouettes of objects used in [8] demonstrate that the flux graph
representation is essentially complete, reconstructing 99 % of an object’s area. This
will be discussed in further detail in Sect. 3.5.3.

3.5 Flux Graphs for Matching

A skeletal graph abstraction can be used as a tool in many visual shape problems
including view-based object recognition. We now examine the potential of using
flux graphs for matching, in comparison against the well established shock graphs.
To carry out a comparative experiment against shock graphs, we used the same
graph matching setup and database used for shock graphs in [5, 14].

3.5.1 Topological and Geometrical Similarity

Given two flux graphs, which are directed acyclic graphs (DAGs) a bipartite graph
is constructed between their nodes in a hierarchical manner. Each edge is weighted
based on the structural similarity between nodes; the weight is the normalized length
of difference of the topological signature vectors (TSVs) introduced in [14]. The
best matching of a maximum weighted bipartite matching is when the sum of the
values of the edges is maximized. In a DAG representation, the TSV is defined as
the vector of eigenvalue-sums derived from the corresponding adjacency matrix for
the sub-DAG of the considered node. The matching algorithm used is a greedy algo-
rithm [5] which has the benefit of finding a largest maximal matching in polynomial
time. The similarity is computed by matching a query with a model node and then
normalizing by the number of matched nodes according to the order of the model
graph.
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3.5.2 The DAG Matcher

To match a query shape with other shapes, we must develop a DAG matcher. The
DAG matcher receives two DAGs as input and computes a value representing their
similarity, as well as a list of corresponding nodes in the two DAGs. This analysis
considers both topological structure (Γ ) and geometric information (Δ) associated
with a flux graph’s vertices. Each of these two measures returns a value normalized
in the interval [0 1]. The final similarity score is a weighted combination of these
two S(G1,G2) = ωΓ (G1,G2) + (1 − ω)Δ(G1,G2), where S(G1,G2) represents
the similarity between DAGs derived from two given shapes, and ω is a tuning
weight in the interval [0 1]. At the end of the process, a list of corresponding nodes
and a similarity measure are obtained.

3.5.3 The Dataset and Experimental Results

The matching problem we consider is to recognize unseen 2-D query views of 3-D
objects by matching a query view against all the available silhouettes (reviewed in
Sect. 3.5). We compare results of these experiments with those obtained using shock
graphs in [6, 8].

The dataset used for our experiments is the same dataset used for experiments
carried out for Bone Graphs in [7, 9] and Shock Graphs [5] and has 13 3-D models.
Perspective projection of each 3-D object is computed onto the image plane where
each model is centered in a uniformly tessellated view sphere. With 128 uniformly
sampled views per object, the data set contains a total of 1664 2-D projected views.

3.5.4 Flux Graphs versus Shock Graphs

We begin by demonstrating that by a number of complexity measures the flux graph
is simpler and hence more efficient than the shock graph, while essentially providing
a complete reconstruction of the original object. To do this, in Table 3.1, for each of
the 1664 views we compare: the count of graph vertices, the count of graph edges,
the cumulative sum of number of nodes at each depth multiplied by the depth, the
depth, total number of skeletal points on the graph, and the average of the TSV
(topological signature vectors) values. The numbers reported in the table reflect the
efficiency gained by using flux graphs over shock graphs, e.g., flux graphs have 50 %
fewer nodes, 56 % fewer edges and 24 % fewer skeletal points. The last column
shows the fraction of the area of the original object reconstructed by flux graphs
(99 %), indicating that there is essentially no less in representational power.
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Fig. 3.9 Using the
experimental set up of [6, 8],
we compare the use of flux
graphs versus shock graphs in
a view-based object
recognition experiment
involving a total of 128 views
of each of 13 3-D graphical
objects (1664 silhouettes in
total). The flux graphs, which
are considerably simpler,
provide recognition results
that are a few percentage
points below those of shock
graphs

3.5.5 Matching 2-D Views of 3-D Models

We now evaluate the flux graph against the shock graph in a set of view-based object
recognition experiments. This comparison follow the matching framework of [7].
The recognition task is performed by: (a) Each view removed sequentially from the
database (1664 2-D view-based shapes), and compared to all other remaining views
(b) if the class of the closest matching view is the same as that of the query, then the
recognition is interpreted as being correct. In the next set of trials, in each step 25 %
of the total views are removed randomly from the database. The same experiment is
then carried out with further subsampled databases. Figure 3.9 plots the recognition
estimation success rates for both shock graphs and flux graphs, averaged over all
views of all objects in the database. See [6] for a more detailed explanation of the
experimental set up. We also note that the results reported in [6, 8] show that the use
of bone graphs, which require a more elaborate construction process, outperforms
shock graphs in this experiment.

Flux graphs offer the advantage of efficiency in terms of fewer nodes, edges,
depth levels and skeletal points than shock graphs, while still allowing for intuitive
hierarchical part-to-part correspondences. However, in terms of the quantitative re-
sults, shock graphs outperform flux graphs slightly in this experiment. This could be
in part because the matcher used has been tuned to shock graphs and their detailed
features and has not been changed in any way to exploit the simplicity of flux graphs.
A particular issue is that the geometric node similarity measure used in the matcher
[6] implicitly assumes that a node contains a continuous locus of skeletal points.
This assumption fails for flux graph nodes that arise from the simplification pro-
cess we have outlined because the underlying skeletal segments maybe fragmented.
The greedy matching approach may also suffer from some limitations and alternate
hierarchical matching algorithms could be explored.
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3.6 Conclusion

We have presented a novel skeletal shape representation that can be used to faithfully
reconstruct the original object’s boundary from medial entities. The comprehensive
recovery of the object’s boundary supports the integrity of using the average outward
flux at skeletal points for shape analysis. In addition, a complete representation sug-
gests a way of directly relating medial quantities to boundary features, because the
medial features are easier to handle, to store and to compare with other represented
objects than the shape boundaries directly.

We have suggested the use of the uniqueness of an inscribed disk to the host
skeletal branch as a novel measure of saliency. Combining this measure with the
limiting AOF leads to simplified skeletons which can be abstracted as graphs that
are simpler than popular skeletal graphs in the literature such as shock graphs. In
contrast with methods that carry out ligature analysis for simplification based on the
limited number of configurations of the placement of ligature and non-ligature parts,
such as the bone graph in [8], our investigation has the advantage that the notion of
saliency is defined for each skeletal point separately. The flux graph representation
has been evaluated using a matching framework designed for shock graphs ([8, 9])
to recognize 2D views of 3D objects and the results show that flux graphs are almost
as good as shock graphs for matching. However, more work could be done to im-
prove the robustness of the merging process of fragments left by our simplification
method, which is presently based on a heuristic.

To advance the use of flux graphs for matching, a number of directions could be
explored including the use of appropriate node similarity measures, the incorpora-
tion of a notion of types for nodes (those resulting from simplification, and those
not) and the use of alternate hierarchical matching algorithms. The qualitative sim-
plicity and stability of flux graphs with changes in viewpoint suggests their potential
for view-based partitioning of the view sphere and view abstraction.
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