
Chapter 28
Schema-Driven Influences in Recovering 3-D
Shape from Motion in Human and Computer
Vision

Thomas V. Papathomas and Doug DeCarlo

28.1 Introduction

One of the fundamental questions in vision is how the visual system recovers a
nearly veridical representation of the world, given that the retinal optic flow has an
infinite number of possible interpretations, especially if one considers that there are
moving objects in the environment. This one-to-many mapping from retinal optic
flow onto the real-world surfaces and objects that provide the stimulation is known
as the inverse problem in optics [35, 40, 45–47].

There is a long-standing debate in vision on whether visual perception, which is
based on the solution to the inverse problem in optics, is influenced by schema-
driven processes or it is entirely stimulus-driven and automatic. Helmholtz [26]
was among the first researchers to hypothesize that perception is a process that
involves “unconscious inference” at a time when it was commonly believed that
perception was a purely data-driven process. This view has been adopted and ex-
tended by more recent formulations based on experimental evidence [11, 20, 22–
24, 42, 52]. This view is also adopted by researchers who use a Bayesian formula-
tion [8, 15, 19, 34, 71]; according to this view, the visual system uses “priors”, such
as the convexity bias [39, 60] or the “light-from-above” assumption [1, 6, 7, 36], to
arrive at the most probable interpretation of the visual input, given the ambiguity of
the solution to the inverse problem in optics. Proponents of this view posit that, in
addition to the “bottom-up” processing that starts with data-driven sensory signals
and activates progressively higher brain areas, there are also schema-driven “top-
down” cognitive influences (such as experience, memory, suggestions, knowledge,
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etc.) that start at higher brain areas that “interpret” their input and modulate the acti-
vation of lower brain areas ([3, 17, 30, 32, 41]; but see [18] for an argument against
top-down influences).

One approach to studying the interaction of bottom-up (data-driven) and top-
down (prior-knowledge-driven) processes is to select stimuli in which these two
processes compete against each other, such that the percept elicited by the bottom-up
signals is quite different from—and often opposite from—the percept that is favored
by the top-down processes. Specifically, the value of visual illusions in this effort
has long been recognized [5, 22–24, 52, 69]. Illusions have been used extensively
to study normal brain mechanisms and stages of processing [2, 16, 20, 38, 49]. In
particular, there is a fascinating class of three-dimensional (3-D) stimuli in which the
data-driven cues elicit one depth percept while the schema-driven processes elicit a
strong depth-inversion illusion. Two members of this class that produce very reliable
illusions are the hollow mask [21, 27–29, 43, 70] and the reverse perspective [9, 42,
43, 55, 61, 67]. In this chapter, we will consider the role of top-down influences
on the hollow-mask illusion both for human and machine vision. We observe that
a face-tracking algorithm that recovers the 3-D shape from animation sequences of
moving faces is susceptible to the hollow-mask illusion just as humans are, when
it incorporates a top-down schema of convex faces, even though the data-driven
motion parallax signals are adequate to recover the veridical concave 3-D shape.
We discuss the implications of this observation.

28.2 The Hollow-Mask Illusion for Humans

The hollow-mask illusion, along with reverse perspectives, is one of the best-known
depth inversion illusions, where one can distinguish cues and processes that give
rise to competing percepts. In the case of the hollow mask, the prior knowledge of
faces being convex, based on life-long exposure to faces, is the only schema-driven
influence in favor of the illusion. It would be instructive to summarize briefly the ba-
sic data-driven influences that provide cues for the true depth structure, against the
illusion, with the exception of the kinetic depth effect cue that provides ambiguous
information (see item 2b.2 below). (1) There are two main extraretinal signals: (1a)
Vergence is a binocular signal: it refers to the simultaneous but opposite-directed
movement of the two eyes to achieve fixation of both on the point of interest. Since
it can be expressed as an angle (vergence angle) that is formed by the two eyes’ lines
of sight, it is a single-valued function. (1b) Lens accommodation is self-explanatory
monocular signal: the shape of the eye lenses has to vary in order to achieve the
proper optical power, also single valued, to obtain a sharp “image” on the retina.
Theoretically, at least, if viewers had access to the motor signals that control the
muscles affecting vergence and accommodation, they could have used them as cues
to depth, provided they were derived over time, as they fixate various points on the
object/surface of interest. In practice, there is a long-standing debate on whether
such motor signals are indeed used as cues to depth [4, 50, 68]. (2) We next move
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to some of the retinal-based cues: (2a) The most important binocular signal is the
stereoscopic disparity between the two-eyes’ “images”, which comprises both hor-
izontal and vertical components; disparity provides continuous 3-D shape cues that
recover the true depth ordering of a scene or object; however, disparity needs to be
processed further to yield true accurate depth information [51, 64]. (2b) Some of the
monocular cues that are most relevant to the hollow-face illusion are: (2b.1) Motion
parallax, due to the observer’s self-motion as he/she views a scene, produces an op-
tic flow field that also provides continuous 3-D shape cues with properties that are
similar to those of stereopsis; they recover the correct depth ordering but they need
to be scaled for recovering true depth [53, 54]. (2b.2) For a stationary observer, a
moving object provides depth-from-motion cues, the so-called kinetic depth effect
or KDE [31, 62]. KDE also provides continuous 3-D shape cues, but the depth or-
dering is ambiguous; as an example, a rotating wire-frame globe can be perceived
either veridically, rotating in the physical direction, or in reverse depth, rotating in
the opposite direction. (2b.3) Occlusion is a powerful cue to depth but it only pro-
vides depth-ordering information. (2b.4) Shading can also provide cues to the 3-D
shape of an object [48, 65]. (2b.5) Finally, image blur can be used for assessing
depth relationships in a scene [25, 66]. Blur is closely related to lens accommoda-
tion because only the point that the viewer fixates on and its close surroundings are
in sharp focus, whereas more distant points are blurred. The degree of blur can be
used to estimate the depth differential between a blurred image point and the fix-
ation point, but it does not inform us of the depth polarity (is it in front or behind
fixation). In addition, there are other depth cues in the general case (texture gradient,
atmospheric perspective, size familiarity, etc.) that may not be strongly relevant in
the hollow mask illusion. Nevertheless, the plethora of depth cues makes the prob-
lem of recovering depth too complex for a thorough scientific analysis. Here, we
lump together all the depth cues that provide good estimates of depth (items 1a,
1b, 2a, 2b.1, 2b.3) and observe that they are more powerful at small viewing dis-
tances.

Thus, when observers view a hollow mask up close, the bottom-up signals of
stereopsis, motion parallax, vergence eye movements and lens accommodation,
among others, provide powerful signals that dominate and enable viewers to re-
cover the veridical concave 3-D shape of the mask. These signals, however, be-
come weaker as the viewing distance increases. At an adequately long viewing dis-
tance, the top-down influences—familiarity with convex faces in the case of a facial
mask—dominate, causing depth relationships to be inverted; points that are physi-
cally further away appear to be closer than points that are physically closer. Conse-
quently, concavities appear as convexities and vice versa, resulting in the percept of
an overall convex face.

Figures 28.1a and 28.1b illustrate an essential feature of the hollow-mask il-
lusion. Namely, even though the hollow mask of Fig. 28.1b faces to the left, the
(mis-)perceived convex mask appears to face to the right (more details on this are
provided later in reference to Fig. 28.2). This gives rise to two related motion il-
lusions: (1) When a viewer moves laterally in front of a static hollow mask, the
perceived convex mask appears to turn and “follow” the viewer. An explanation of
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Fig. 28.1 (a) A convex mask that faces to the right of the viewer (θ = 22.5◦ in the notation
of Fig. 28.2). (b) A concave mask that actually faces to the left (θ = 157.5◦) but it appears to
be a convex mask facing to the right. (c) A mask with significant self-occlusion (θ = 117.3◦).
(d) A mask that involves a marginal self-occlusion (θ = 135◦). See also Fig. 28.2

this illusory motion that is based on the depth inversion has been proposed by Pap-
athomas [42]. (2) When the hollow mask is rotated in front of a stationary viewer,
the perceived convex mask appears to rotate in a direction opposite to the physical
direction of rotation. An extension of the explanation by Papathomas can be applied
in this case. In this paper, we will concentrate on the second type of illusory motion
that is elicited by a rotating mask for a stationary observer.

Figure 28.2a is a top view that illustrates the notation we use to describe the ori-
entation of the mask. Angle θ specifies the spatial orientation of the mask, starting
from zero when the convex side of the mask faces straight ahead toward the viewer,
shown with solid lines, and increasing in the counter-clockwise (CCW) direction; a
mask is shown in dashed lines as it rotates CCW by an angle θ1. This mask orienta-
tion is very similar to the one used to obtain the image in Fig. 28.1a. In Fig. 28.2b
the mask starts at θ = 180◦ − θ1 (dashed lines) and it rotates CCW by an angle θ1

to the straight ahead concave position at θ = 180◦ (solid lines). The viewer sees
the concave side of the mask in this case. The image in Fig. 28.1b was obtained
using a mask orientation similar to that at θ = 180◦ − θ1. Notice that, if we think
of the dashed-line hollow mask (θ = 180◦) as pointing toward the viewer, then the
solid-line hollow mask of Fig. 28.2b points to the left of the viewer by an angle
θ = −θ1.

Importantly, as masks in Figs. 28.2a and 28.2b illustrate, for small rotation an-
gles that avoid self-occlusions on the mask, and under orthographic projection, the
image of the concave mask at θ = 180◦ − θ1 is very similar to that of the con-
vex mask at θ = θ1. For example, the sizes of the left and right eyes of the masks
will be roughly equal under orthographic projection. In contrast, for a perspective
projection—which, after all, is what one obtains on the retina or with a camera—
there are ample cues, for small viewing distances, to distinguish between the images
obtained for the masks at θ = 180◦ − θ1 and at θ = θ1; this ability to distinguish be-
tween the two images decreases with increasing viewing distance.
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Fig. 28.2 Notation for the mask orientation. In these top views the viewer is at the bottom
of the figure. For each mask orientation, the straight-ahead solid arrow—NOT the thick ar-
row—extending outward from the convex side is used to indicate its spatial orientation. The ori-
entation angle θ is measured counter-clockwise from the reference position (θ = 0), in which the
convex mask faces the viewer. (a) The convex mask rotates CCW by an angle θ1 from θ = 0 (solid
lines) to θ = θ1 (dashed lines). (b) The mask rotates CCW by an angle θ1 from θ = 180◦ − θ1
(solid lines) to θ = 180◦ (dashed lines); both of these masks show their concave side to the viewer.
The dashed-line mask in part a and the solid-line mask in part b were used to obtain the images of
Fig. 28.1a and 28.1b, respectively

For example, for the dashed-line mask in Fig. 28.2a (θ = θ1), the eye to the
left of the viewer, being closer than the eye to the right of the viewer, will form a
larger image. The opposite will be true for the solid-line mask in Fig. 28.2b (θ =
180◦ − θ1); the eye to the right of the viewer will form a larger image than the eye to
the left of the viewer. Of course, the size difference depends on the viewing distance
of the imaging device (retina or camera) from the mask. This size difference between
the left and the right eyes extends to the entire left and right sides of the face and the
resulting size gradient can theoretically be used to recover the true 3-D shape. The
images of Figs. 28.1a and 28.1b were obtained from a relatively large distance and,
hence, these size differences are not evident.

The essence of the illusion is obtained when one compares what is perceived in
the following two cases: (a) The convex masks starts from a straight-ahead position
(θ = 0◦) and moves CCW by an angle θ1 to position θ = θ1, as in Fig. 28.2a. (b)
The concave masks starts from a straight-ahead position (θ = 180◦) and moves CW
by an angle θ1, to position θ = 180 − θ1, in the opposite direction to that shown in
Fig. 28.2a. Under viewing conditions that favor the illusion, these two motions will
produce the same percept, namely a convex masks that rotates CCW, because the
concave mask will appear to rotate in the opposite direction to that of its physical
direction of rotation. Notice that, because the kinetic-depth-effect cue (item 2b.2 in
this section) is ambiguous, when we perceive the concave mask in inverted depth
(convex), we perceive it rotating in the opposite direction.

The question is: will this size-differential cue, as well as other bottom-up cues
(motion parallax, stereoscopic disparity, blur and possibly vergence angle and ac-
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commodation,1 among others) overcome the schema of a convex face to recover the
true concave mask shape? The answer is: it depends on several factors but primarily
on the viewing distance. As explained above, the size gradient is negligible for large
viewing distances and increases with decreasing viewing distance. The same is true
for the differential signals provided by most of the bottom-up cues we mentioned
earlier. Namely, the binocular disparity differential signals provided by mask fea-
tures that are at different depths, such as the tip of the nose and lips, are very weak
at long viewing distances and grow stronger as the distance decreases; ditto for mo-
tion parallax signals, and differences in vergence and accommodation. Because the
strength of these bottom-up signals diminishes with increasing viewing distance,
the prior experience with convex faces dominates and thus the prediction is that the
illusion strength will increase with increasing distance. This is precisely what has
been observed in experimental studies [21, 27–29, 43, 70].

28.3 The Hollow-Mask Illusion and Computer Vision

Most computer vision algorithms that have been developed to recover the 3-D struc-
ture of human faces include the schema for the convex form of faces as part of their
knowledge base. Naturally, one would expect this schema to influence the recov-
ery of 3-D shape when such algorithms are provided an animation sequence that
involves a hollow mask. This is what we consider below for a representative face-
tracking algorithm.

28.3.1 Model and Algorithm

The particular 3-D face model and tracking algorithm we used is that of DeCarlo
and Metaxas [10]. The model itself is a handcrafted 3-D polygon model which has
motion parameters that describe head movements (3-D translation and rotation) and
facial motions (mouth movements, eyebrow raises, etc.), and shape parameters that
enable the model to approximate the geometry of an individual’s face. See Fig. 28.3.
The 3-D face model uses about 80 spatial geometry variables (distance between
eyes, length of nose, distance between upper lip and tip of nose, width of lips, etc.)
that the algorithm adjusts to obtain a physical 3-D surface that conforms best to the
face features that are present in the animation sequence being processed. The algo-
rithm uses a combination of optical flow and feature alignment in order to maintain
track of moving subjects. Essentially, the 3-D model, along with a simple model of
image formation, is used to explain the changing appearance of a face in a series of
images, in terms of its parameters.

1As Christopher Tyler commented, “vergence and accommodation would have to be derived over
time by eye movements to provide shape information.”
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Fig. 28.3 The deformable face model from DeCarlo and Metaxas [10] has separate parameters that
describe the static shape of the face and dynamic parameters that describe face and head motion

In Fig. 28.3, the light regions of the shape are the explicitly parameterized parts
of the shape, e.g., a hand-crafted 3D deformable model of the lips. The dark regions
connect the vertices of the deformable models together using triangles (and no new
vertices), e.g., the space between the lips and nose is “filled in”. These dark regions
are only used for modeling occlusion and are use for predicting the locations of
occluding contours. The shape and motion models are formulated the same way,
except that the shape parameters are static quantities, and the motion parameters are
time-varying. For instance, one particular shape parameter describes the width of
the lips. One particular motion parameter is the horizontal translation of the entire
head.

We developed two versions of the tracking framework, which differed only in
the schema used to interpret the input images: (1) The original algorithm used the
assumption that human faces are convex. It tracked faces and, naturally, the 3D
face model implicitly constrained geometry to be convex overall, with depth undu-
lations that are typical of human faces. (2) To explore the interaction of top-down
and bottom-up processes on the behavior of the algorithm, the second version of the
algorithm did not use the assumption that faces are convex. We allowed it to accept
concave faces, as well as convex faces, and to conduct feature tracking based on this
new schema. In some sense, this second version enables the algorithm to recognize
a thin mask that has both a convex and a concave side, like Halloween masks.

28.3.2 Algorithm Input—Results

The input to the algorithm was a video animation of a mask that was painted real-
istically on both sides, as shown in Fig. 28.1. The concave side was painted to give
the impression of a convex face. The mask rotated by 360◦ about a vertical axis
in the CCW direction. The animation can be viewed in http://videos.springer.com.
Examples of tracking results are shown in Fig. 28.4.

http://videos.springer.com


420 T.V. Papathomas and D. DeCarlo

Fig. 28.4 Tracking results of the algorithm with a convex face schema (model 1). On top is the
original sequence, and on the bottom the 3D model is superimposed on top of the images. The
superimposed grid lines indicate the results of the 3D model

The results of the original version are graphed in Fig. 28.5a. The horizontal axis
represents the orientation θ of the physical mask that varies from −180◦ (concave
part facing viewer) through −90◦ (mask facing left), 0◦ (convex part facing viewer),
90◦ (mask facing right), all the way to 180◦ (concave part facing viewer). As θ varies
continuously along the horizontal axis, the mask can be thought of as rotating CCW.
The vertical axis represents the orientation that the algorithm recovers, based on the
visual input, as modulated by the algorithm’s schema.

If the algorithm recovers the true orientation of the mask, we would expect a line
with a slope of 1. On the contrary, if the algorithm is susceptible to the hollow-mask
illusion then, as Fig. 28.2 illustrates, a hollow mask at an orientation θ = 180◦ − θ1
will be perceived as a convex mask at θ = θ1; thus, as the physical concave mask
rotates CCW from θ = 180◦ − θ1 to θ = 180◦, the perceived convex mask will be
seen rotating CW from θ = θ1 to θ = 0◦, producing a line with a slope of −1 on the
graphs of Fig. 28.5.

This is precisely what the results of the algorithm indicate: The algorithm recov-
ers the orientation of the convex mask perfectly for −90◦ ≤ θ ≤ 90◦. However, in
the approximate range 132◦ < |θ | ≤ 180◦, the data indicate that the algorithm “ex-
periences” the hollow-mask illusion as evidenced by the slope of −1; see Fig. 28.6.
Interestingly, but predictably, the algorithm does not recover a face at all in the ap-
proximate range 90◦ < |θ | < 132◦. This is the range for which there is a significant
extent of self-occlusions, as illustrated in Fig. 28.1c. The marginal orientation of
132◦ is shown in Fig. 28.1d, for which the algorithm barely recovered a face.

The results of the modified algorithm that recognizes the existence of both convex
and concave faces are shown in Fig. 28.5b. As expected, the rich optic flow signals,
without the constraint of a convex face, allow the algorithm to recover the true 3-D
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Fig. 28.5 The results of the algorithm under two different 3-D schemata, as applied to the an-
imation sequence. The horizontal axis denotes the actual mask orientation of the stimuli during
the rotation; icons at the top display the mask view for the corresponding orientation (the stimuli
are identical in the two cases). The vertical axis denotes the mask orientation estimated by the
algorithm. (a) Results with model 1 that assumes a convex mask schema. The algorithm tracks the
mask well when the convex part is visible (−90◦ ≤ θ ≤ 90◦). However, the estimate is in the op-
posite direction from the actual motion (it approximately has slope −1), when the concave part is
visible without any self-occlusions (135◦ ≤ |θ | ≤ 180◦). The algorithm experiences tracking prob-
lems and is unable to explain the image when parts of the mask occlude other parts (roughly in the
range 90◦ < |θ | < 135◦). (b) Results with model 2, a schema that accepts both convex and concave
faces. The estimated mask orientation approximately matches the actual mask orientation for all
360 degrees (it has slope 1)

shape and spatial orientation of the mask over the entire range of 360◦. Indeed, the
slope of the line is 1 for −180◦ ≤ θ ≤ 180◦.

28.4 Discussion

In some sense, these findings can be thought of as evidence for the existence of
schema-driven influences in visual perception for the particular case of human faces.
Liberated from these top-down influences—in this case the knowledge that faces are
convex—the algorithm uses the bottom-up signals to recover exactly the true shape
and orientation of facial masks. However, when the algorithm is imbued with the
knowledge of faces being convex, it behaves just as humans in being “fooled” by the
hollow-mask illusion. As Theo Pavlidis [44] commented, “I have not seen any other
demonstration where machine vision algorithms also suffer from optical illusions.”

There are at least two pieces of evidence for top-down influences. The first is the
inversion effect, that is, the reduced strength of the illusion when the hollow mask is
displayed upside-down [27, 28, 43]. Apparently, the cause for the reduced strength
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Fig. 28.6 Tracking results for the concave side of the mask. On top is the original sequence. In
the middle are tracking results using model 2 (the convex-concave 3D model), which estimates the
mask position correctly; it recovers a hollow mask rotating CW. On the bottom are tracking results
using model 1 (the convex-face 3D model), which has the rotational direction reversed; it recovers
a convex mask rotating CCW

is the lack of familiarity with inverted faces. The second piece of evidence is the re-
duced strength of the hollow-mask illusion in cases where the cognitive influences
are impaired. Examples of such impairment are observed with subjects who are
sleep-deprived [63] or under the influence of cannabis [13, 14, 56] or alcohol [58].
Schizophrenia (SZ) patients also experience a weaker illusion than controls, i.e.,
they tend to perceive the hollow mask as hollow [13, 33, 37, 57, 59]. One possible
explanation is that SZ patients have a reduced ability to exert top-down influences
in perception. Evidence for such weak feedback connections in SZ patients was
presented by Dima et al. [11], based on fMRI data; Dima et al. [12] presented ad-
ditional evidence on the basis of reduced P300 and P600 electro-encephalography
(EEG) components, which signal late-stage processing, in SZ patients.

In addition to the explanation that the illusion is based on face familiarity, another
possibility is that the illusion may not be stimulus-specific but instead may owe
to a bias in favor of convexity [39, 60]. This hypothesis was tested by Hill and
Bruce [28]. They reported that a hollow human mask produces a much stronger
illusion than a “hollow potato” by comparing the switching distance, namely the
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average of the viewing distance at which the illusion breaks down on approach—
starting with the illusory percept from a long distance—and the viewing distance
at which the illusion sets in on retreat—starting with the veridical percept at a very
close distance. Thus, the human mask enhances the bias to see concave surfaces as
convex.

A third possibility, raised by Barlow [5], is that the sensory mechanisms analyze
the redundancy that exists inherently in the sensory signals and the associations
between input variables. According to Barlow, neural mechanisms respond to the
“established associative structure in the input messages by recoding them . . . [thus]
making new structure more easily detectable” [5]. In the case of faces, he argues
that our vast prior experiences resulting from moving past normal faces—as they
themselves move or remain stationary—have resulted in an efficient neural coding
scheme for the representation of our own motion and the visual motion signals gen-
erated by the 3D geometry and the parts of a normal face. Thus, when we move past
a stationary hollow mask, this recoding scheme now works in the wrong direction
to compensate for the visual motion that it expects. The result is that the scheme in-
terprets the visual motion signals as elicited by a normal (convex) face that moves.
The weaker illusion for an upside-down hollow mask is accounted by Barlow’s [5]
hypothesis as resulting from less exposure to upside-down faces and therefore less
recoding mechanisms.

What happens for 90◦ < |θ | < 132◦? Figure 28.1c shows a mask oriented at
θ = 117.3◦. The algorithm, as well as the human visual system, is unable to recog-
nize a normal face in this and other cases where there are extensive self-occlusions.
Apparently, the algorithm that has a convex-face schema cannot resolve the discon-
tinuities in the 3-D shape that are recovered by the optic flow and provides no output
for a face. When the extent of the self-occlusions is limited, as in the marginal ori-
entation of Fig. 28.1d (θ = 132◦), the algorithm can still—barely—recover a face.
The same occlusion that acts as noise for tracking a convex face in the convex-face
schema algorithm can be used as signal in the thin-mask schema algorithm.

At this point, we can conjecture about how a computer vision algorithm for scene
perception would operate when presented with an animation sequence of a rotat-
ing reverspective. A reverspective is a 3-D piece that is constructed and painted
realistically such that the painted perspective cues depict a depth structure that is
exactly opposite to the physical structure, which is recovered correctly by binocu-
lar disparity and motion parallax signals [61, 67]. A computer vision scene anal-
ysis system that is driven mainly by data-driven signals (motion parallax, stereo-
scopic disparity, etc.) would recover the veridical 3-D structure. We conjecture that,
if such a scene analysis system is endowed with schema-driven modules for perspec-
tive, it will likely experience the illusion that human experience, that is, perceiving
the direction of rotation to be the opposite from the physical direction, in analogy
with the behavior of the face tracking algorithm (see pertinent video animation in
http://videos.springer.com).

This raises an interesting issue. Ideally, computer vision systems need to be en-
dowed with some schemata that help them process the visual input more efficiently

http://videos.springer.com
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and accurately. For example, face-processing systems benefit greatly from a built-
in deformable model of a generic face that is characterized by several deformation
parameters. This allows the systems, when provided the input video sequence of a
particular face, to optimize the parameters so as to fit the best possible model to that
particular face. The price they pay is that such systems are fooled by the hollow-
mask illusion, as humans are.

Humans, however, have the advantage of changing the viewing conditions
(shorter viewing distance, binocular viewing, etc.), not to mention handling the stim-
ulus by touch, to gain more knowledge about the true 3-D structure of the stimulus.
We can see two extreme options for computer vision systems. The first—easy—
approach involves endowing such systems with additional schemata, such as the
schema of a thin facial mask in the case of face perception. The second—difficult—
approach is to enable these systems to explore possibilities that are not covered by
the initial repertory of schemata they were provided with at inception. In the case
of face tracking algorithms, the system would have to analyze the optic flow in the
video, recognize that it fails to arrive at a solution in some instances and search
for alternative schemata that, if successful, it would add it to its own repertoire.
The first approach is one of “spoon feeding” schemata to the system and it requires
constant supervised learning; the second approach is one of “learning from experi-
ence” and it appears more promising but requires fundamental advances before it
can be implemented. Of course, these two approaches are applicable to cases where
we are limited to images derived from the visible spectrum only. Obviously, sys-
tems equipped with range finders can provide 3D signals to recover the true depth
structure.
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