
Chapter 13
Shape as an Emergent Property

Ian H. Jermyn

13.1 Shape Inference

Changes in the properties of matter with position in space, on a scale small enough
relative to our own that they can be treated as discontinuities, are ubiquitous in our
world. The discontinuities define surfaces, which have geometric properties, which
we call ‘shape’. The omnipresence of such surfaces, and the distinctive physical
properties of the matter that they surround, means that shape is frequently infor-
mative about matters of importance to us and to other biological systems, and so
inferences involving shape become useful. In particular, because the reflective prop-
erties of matter often change along with the properties that define shape surfaces,
measurements of light intensity, whether by retina or CCD, can be used to make
inferences about shape. Image formation can be approximated in geometric terms,
meaning that inferences about two-dimensional shape become relevant too.

What is required to make such inferences? To solve an inference problem, we
should construct a probability distribution describing our knowledge of the unknown
quantity of interest given the known information. For inferences involving shape,
this will involve probability distributions P(R|K), where R ∈ R is, in general, an
element of a suitable set R ⊂ 2D of subsets of a space D possessing sufficient
geometric structure to render the idea of shape meaningful. In any specific case, R

will parameterize a set of propositions whose probabilities we wish to calculate, for
example, “region R in the image domain D contains entity X” (where X is ‘human
being’, ‘Ian’, ‘road network’, ‘car’, etc.). The quantity K denotes all the knowledge
we have of the situation (or anyway all the information that we choose, or are able,
to express). In particular, this will include all the information we have about the
shape of R, perhaps arising from knowledge of X.

In order to make inferences involving shape, then, we need to understand how
to construct distributions P(R|K) for given knowledge K : that is, how to encode
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Fig. 13.1 An example of an
element of the space of
‘regions’, R, showing the
complicated nature of such
elements

information about shape into the probability distribution. We will look at the prop-
erties probability distributions must have to be regarded as shape models, and then
at how these properties have typically been implemented in machine vision. After
looking at the drawbacks of this ‘classical’ approach, we then discuss an alterna-
tive, inspired by classes of shapes arising in certain image processing problems. In
the resulting framework, shape becomes an emergent property of interactions in a
network of simple nodes. It may therefore be of some biological relevance. We con-
clude with a discussion of this approach, and of what remains to be done to turn it
into a complete shape modelling framework.

13.2 Modelling Shape

The key task, then, is to construct probability distributions P(R|K) on a suitable
space of shapes R.1 We will focus attention on a space R ⊂ 2D , where D ⊂ R

2 is
a relevant domain (often the support of an image), although much of the discussion
applies to other spaces and other dimensions. ‘Regions’ R ∈ R are open sets, but
we do not specify them further; we assume they possess whatever properties are
needed to render the models well defined. Note that the space R is complicated:
regions can have arbitrarily many connected components; connected components
can contain holes; and these in their turn can contain connected components; and so
on. Figure 13.1 shows an element of this space.

Now we need a category of mathematical objects to represent the elements of R,
a ‘representation space’ S . Many such spaces have been used in the literature. Some
are isomorphic to R (indicator functions, distance functions [16]). This seems good,
but leaves the complexity of R intact: S still contains infinitely many connected
components, for example. For others (‘many-to-one’), there is a non-injective map
from R to S (landmark points [6, 12], various Fourier descriptors [20], medial
axis [2, 8]). Such representations are often low-dimensional, and can be intrinsi-
cally invariant to transformations. However, a region cannot be reconstructed from

1A continuum description of regions involves spaces of infinite dimension. The task of constructing
probability measures on such spaces, once we move beyond Gaussians, is difficult, and we will
not address it. The details are anyway usually irrelevant because they concern infinitely small
distances; it is enough to imagine some kind of frequency cut-off imposed at a scale too fine to
matter. There may be strong dependence on the scale of the cut-off unless the model parameters
are made cut-off dependent, but in practice, since the parameters are determined experimentally
for a known cut-off, this is of little importance.
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Fig. 13.2 Predicting one part
of a boundary from another.
Left: a sample from the Ising
model, where accurate
prediction is not possible.
Right: a case where accurate
prediction is possible

its representation, and so there is no probability distribution on shapes; we do not
consider them further. Finally, there are representations (‘one-to-many’) for which
there is a non-injective map σ : S → R (parameterized closed curves, phase field).
The advantage is that S may have a much simpler structure than R; however, we
have to think about the distribution induced on R by a distribution on S :

P(R) =
∫
S

δ
(
R,ρ(S)

)
P(S) =

∫
SR

P (S), (13.1)

where SR = {S ∈ S : R = σ(S)}. Often one uses a saddle point approxima-
tion: P(R) ∝ P(SR), where SR = arg maxS∈SR

ρ(S), with ρ(·) a suitable density
for P(S).

Next, we have to construct probability distributions on S expressing shape in-
formation. Do all distributions on S count? The only precise answer is yes, but
this is not very useful. The standard Ising model on Z

2 can be viewed as a proba-
bility distribution on regions in R

2 by associating the indicator function of a square
with each vertex, but while this distribution undoubtedly contains information about
region geometry, because regions with greater boundary length have lower probabil-
ity, it cannot really be called a ‘shape model’. This can be seen by looking at distant
parts of the sample in Fig. 13.2: high probability regions do not have any properties
in common that we would normally call ‘shape’.

Why do we say that the Ising model does not contain shape information? The
reason is that the set of high probability regions is too large, that is, the entropy is
too high. In order to reduce the entropy, we have to create more dependence in the
distribution. Indeed, it is clear that what we normally refer to as ‘shape’, involves
the ability to make quite precise inferences about the overall region give only par-
tial information about its boundary. For example, most people could make a good
estimate of the part of the object boundary that is concealed in the image on the
right-hand side of Fig. 13.2, given the part that is revealed: the conditional entropy
is small. The same is not true of the left-hand side. In other words, the probability
distribution induced by our knowledge of the object’s identity and behavior contains
strong, long-range dependencies between parts of the region boundary. Such depen-
dencies, then, are key to the construction of non-trivial shape models. We now turn
to how to build probability distributions that incorporate such dependencies.
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13.3 The Classical Approach

We will first look at what we will call the ‘classical approach’ to shape modelling.
The focus here is on defining a ‘dissimilarity measure’ d : S × S → R≥0 between
points in S . Usually, although not always, this measure is metric [3, 4, 10, 14, 15,
18, 19]. Once defined, the metric can be used to define a probability distributions
on S as a function of distance to a ‘template’ shape S0. The most common form of
distribution is ‘pseudo-Gaussian’, taking the form:

P(S|S0) ∝ dS e− 1
2 d2(S,S0), (13.2)

where S0 is the ‘template’, and dS is an underlying measure on S . (Mixtures of
such distributions over a set of templates have also been used [5].)

The distribution (13.2) encourages S to be close to the region S0, but this is rarely
what is required. Typically, there will be uncertainty about the position, orientation,
and perhaps scale of the shape. To incorporate such uncertainty in the classical ap-
proach, one must create mixture models over these transformations. Let G be the
transformation group acting on S , with the action denoted gS. Then the distribution
one is really interested in is

P(S|S0) =
∫

G

P (S|g,S0)P (g|S0) ∝ dS

∫
G

dg ρ(g)e− 1
2 d2(S,gS0), (13.3)

with P(g|S0) = dg ρ(g), where dg is an invariant measure on G. Often complete
invariance to G is needed. This requires dS to be G-invariant, ρ ≡ 1, and G to
act by isometries on S : d2(gS,S0) = d2(S, g−1S0). In practice, the integral in
Eq. (13.3) is rarely evaluated. Rather a saddle point approximation is made in which

g∗ = arg ming∈G d2(S, gS0) is substituted, giving P(S|S0) ∝ dS e− 1
2 d2(S,g∗S0), that

is, pose is estimated. Although easier than performing the integral, this still requires
significant computational effort.

How do the long-range dependencies necessary for nontrivial shape modelling
arise in the classical approach based on templates? The answer is that the template
itself, or rather its parameters, such as the group elements just discussed, act as hid-
den variables. Once they are integrated out, they introduce long-range dependencies
between boundary points. A trivial example, in one dimension, is the following. In
1-d, regions are unions of intervals; we consider only connected regions. Let the
template region be an interval of length 1, with center at c. Let the probability of a
region [x, y] be P(x, y|c) = δ(x − (c − 1

2 ))δ(y − (c + 1
2 )). Thus, given c, x and y

are independent. If we now add a uniform prior on c (suppose c, x, y ∈ S1 so this
is normalized), we can integrate out c to obtain P(x, y) = δ(y − x − 1). Thus not
knowing c, x and y are dependent: in this singular case, x determines y completely.
In the general case, integration over a group as above, or integrations over other
unknown template parameters, play exactly the same role as in this simple example,
introducing the long-range dependencies that contain nontrivial shape information.
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Fig. 13.3 Left: multiple
instances of an entity (‘gas of
near-circles’). Right:
a ‘network’ region

13.3.1 Drawbacks of the Classical Approach

While the classical approach to creating long-range dependencies using templates
and a metric is useful and efficient in many applications, it does not apply, or is
inefficient, in many important cases. In particular, the use of templates and metrics
means that high probability shapes only occur ‘close’ to one or more points in the
space of shapes. There are entities, however, for which our knowledge of their shape
cannot be expressed in terms of small variations around a template shape or shapes.
In particular, when the entity involved has an extent or a topology that is in some
way unconstrained, the use of templates fails to allow sufficient variability.

Perhaps the most commonly occurring example is when multiple instances of an
entity can be present: see Fig. 13.3 left. In this case, although each entity might be
well described by a template and small variations, the whole may have any number
of connected components, and hence is not amenable to a template/metric descrip-
tion. Although in principle this situation can be dealt with by using object point pro-
cesses [13], in practice the large number of degrees of freedom per object, together
with the necessity to estimate transformation group parameters for each instance,
mean that such methods are very inefficient.

Another example is provided by ‘network’ regions: see Fig. 13.3 right. The set of
network regions can be divided into topologically distinct subsets classified by the
graph of which they are a fattened version. It is thus clear that such shapes cannot
be described as variations around a finite number of templates.

To overcome these drawbacks, a new modelling framework is needed that allows
the incorporation of strong constraints on region shape, without necessarily con-
straining region topology, and that provides intrinsic invariance. To achieve this, the
long-range dependencies necessary for shape modelling will be encoded in the dis-
tribution in a new way. This turns out to be of interest in its own right, independently
of the examples that inspired it.

13.4 Nonlocal Interactions

In this section, we will look at an alternative method for introducing the long-range
dependencies needed in order to encode non-trivial shape information. Rather than
using a template to introduce such dependencies, explicit nonlocal interactions be-
tween region boundary points will be introduced. These interactions generate long-
range dependencies strong enough to constrain region shape, but because no tem-
plate is used, they need not constrain region extent or topology. In addition, the
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models will be intrinsically invariant to Euclidean transformations, meaning that
these transformations do not have to be estimated for each instance of an entity.
Multiple instances thus become easier to handle. We first describe these models in
terms of the ‘contour representation’, but then go on to reformulate them in terms
of nonlocal interactions in networks of simple real- and binary-valued nodes.

The contour representation represents R ∈ R by its boundary ∂R, which consists
of a set of oriented, closed curves. (The dark lines bounding the region in Fig. 13.1
show an example of a region boundary; the boundary orientation is not shown in the
figure.) The contour representation space S = Γ , is thus the space of multiple, ori-
ented, closed curves, subject to certain constraints, to which we return later. In fact,
it is often convenient to write probability distributions in terms of circle embeddings
S1 → R

2: making a distribution invariant to the action of Diff(S1) then ensures that
it is well-defined on Γ , and hence on R.

We now introduce a class of models, expressed in the contour representation and
known as ‘higher-order active contours’ [17], that encode nontrivial shape informa-
tion via explicit nonlocal interactions.2

13.4.1 Higher-Order Active Contours

The simplest Euclidean invariant model one can place on Γ is

EC,0(∂R) = λCL(∂R) + αCA(∂R), (13.4)

where L and A are region boundary length and region area respectively; and
λC,αC ∈ R≥0. This model, or minor variants of it, has been much used as a region
model in the literature, starting with [11]. Indeed, it is essentially the Ising model in
a constant external field, expressed in the contour representation. As such, although
this model contains important information about the (low-resolution) smoothness
of region boundaries, it contains no real shape information. Indeed, both L and A

can be expressed as single integrals over ∂R involving only tangent vectors, mean-
ing that only ‘infinitesimally nearest neighbor’ points on the boundary interact: the
model does not contain the long-range dependencies necessary to incorporate non-
trivial shape information.

To incorporate nonlocal interactions, and hence long-range dependencies, one
must move from single integrals to multiple integrals, thereby incorporating in-
formation from more than one contour point at a time. Two integrals is the sim-
plest case: pairs of points on the boundary then interact. The idea is illustrated in
Fig. 13.4. One possibility among many for such a ‘higher-order active contour’ en-
ergy is

EC,NL(∂R) = −βC

∫∫
S1×S1

dt dt ′ n · G
(
γ, γ ′) · n′, (13.5)

2We will not talk about probability distributions directly from now on, but rather about their ener-
gies E, defined, up to an additive constant, by P (R|K) ∝ exp(−E(R|K)).
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Fig. 13.4 Left: the
‘nearest-neighbor’
interactions induced by first
derivatives. Right: nonlocal
interactions

where γ is an embedding of a circle (or multiple circles, if the region has more than
one connected component or is multiply-connected), whose image is ∂R; t, t ′ are
coordinates on S1; n indicates the un-normalized normal vector field to γ (i.e., γ̇

rotated by π/2); (un)primed quantities are evaluated at (t)t
′
; and G : R2 × R

2 →
T ∗

R
2 � T ∗

R
2, where � indicates the outer tensor product, is a bitensor field. Note

that it is easy to make EC,NL intrinsically Euclidean invariant, for example by taking
G(x, x′) = Ψ (|x − x′|)I.

Summing the nonlocal term (13.5) with Eq. (13.4) gives an energy EC = EC,0 +
EC,NL with interesting properties, documented in [9, 17]. In particular, for certain
parameter ranges, calculable via stability analyses [7, 9], EC has local minima cor-
responding to ‘network’ regions or to ‘gas of near-circles’ regions. Examples of such
local minima of EC , generated by gradient descent, are shown in Fig. 13.5. Network
regions consist of a number of branches joining together at junctions, and can be
thought of an ‘fattened embedded graphs’, as in Fig. 13.3. ‘Gas of near-circles’ re-
gions consist of any number of connected components, each of which has infinitely
many degrees of freedom, but which with high probability is ‘close’ to being a circle
of a given radius. Note that ‘gas of near-circles’ regions represent multiple instances
of a shape, with different interaction functions Ψ favoring different perturbations of
the circle, and hence different shapes. Intrinsic Euclidean invariance of EC means
that no pose estimation is required.

Higher-order active contours demonstrate that non-trivial shape information can
be encoded using explicit nonlocal interactions between boundary points, and they
have been used successfully in a number of image processing applications [9, 17].
Nevertheless, the contour representation in which they are expressed suffers from
a number of drawbacks arising from the fact that not all sets of oriented, closed
curves are boundaries: constraints are needed to prevent (self-)intersections; curve
orientations, which describe ‘inside’ and ‘outside’, have to be mutually consistent;
and the space Γ is not connected, having one component for each topologically
distinct set of regions (connected region components, holes, nested regions, . . . ).
These difficulties can all be alleviated by changing the shape representation. In the

Fig. 13.5 Local minima under EC . Left: network regions; right: gas of near-circles regions
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process, we will see that shape information can be encoded in terms of nonlocal
interactions in a network of simple binary- or real-valued nodes.

13.4.2 Reformulation as a Network of Nodes

A region can be represented by a binary-valued function φ : D → {±1}, with R =
ζ(φ) = {x ∈ D : φ(x) > 0}. It turns out to be convenient to relax this to a real-
valued ‘phase field’ function φ : D → R (we will use the same symbol) controlled
by an energy that encourages it to take on the values ±1. Perhaps the simplest such
energy is the Ginzburg-Landau energy:

E0 =
∫
D

dx

{
D

2
|∂φ|2 + λ

(
φ(x)4

4
− φ(x)2

2

)
+ α

(
φ(x) − φ(x)3

3

)}
, (13.6)

where all φ are evaluated at x. The ultralocal part of the integrand has minima at
±1. This means that if D = 0, φR = arg minφ: ζ(φ)=R E0(φ) will take the value +1
inside, and −1 outside R, that is, will be binary. It is then easy to see that E(φR) =
2
3αA(R) up to an additive constant. Nonzero D has the effect of smoothing the
discontinuity, and also measures the boundary length. Indeed it can be shown that

E0(φR) 
 λCL(R) + αCA(R), (13.7)

where λC and αC are functions of λ, α, and D. The energy E0 is thus EC,0 refor-
mulated in terms of the phase field representation.

It is now natural to ask whether it is possible to create a phase field energy that
is equivalent to EC = EC,0 + EC,NL. This is indeed the case. The equivalent of the
nonlocal energy EC,NL in Eq. (13.5) is

ENL(φ) = −β

2

∫∫
D2

dx dx′ ∂φ(x) · G
(
x, x′) · ∂φ

(
x′). (13.8)

It can then be shown that

E(φR) = E0(φR) + ENL(φR) 
 EC,0(R) + EC,NL(R) = EC(R). (13.9)

The phase field representation S = Φ is a one-to-many representation. Equa-
tion (13.9) shows that in a saddle-point approximation to Eq. (13.1), the phase field
model E is equivalent to the contour model EC . (The same is true in the Gaussian
approximation also.) In particular, for different parameter ranges, the phase field
model has local energy minima corresponding to networks and a gas of near-circles;
the ranges can be found by translating the results of the stability analyses performed
in the contour representation to the phase field representation, and are well verified
numerically. This is useful because the phase field representation turns out to have
multiple advantages. First, unlike the contour representation, there are no difficult
constraints to implement: φ lives in a linear space Φ . Second, regions of arbitrary
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Fig. 13.6 Diagram of the
network interactions in the
spatially-discretized phase
field model

topological complexity are all represented in a single, connected space, so that no
special methods are needed to deal with multiple connected components, handles,
etc. Coupled with the intrinsic Euclidean invariance of the energy, this means that
multiple instances of an entity are modeled at essentially no extra cost. Third, in the
contour representation, γ appears as an argument to G, which makes the nonlocal
term complicated. In the phase field representation, the nonlocal term is quadratic,
and when translation invariant, is diagonal in the Fourier basis. This greatly simpli-
fies any computations involving it.

The continuum form of the phase field energy is easy to manipulate, but computa-
tions, whether in a machine or biological visual system, will inevitably involve dis-
cretization of some sort. If we spatially discretize Eq. (13.6), the result is a Markov
random field ψ , consisting of a set of real-valued nodes, interacting (see Fig. 13.6):
with themselves via the potential (red); with their nearest neighbors via the deriva-
tive term (green); and also with the large number of nodes that lie within the support
of the nonlocal interaction (blue). We thus see that nontrivial shape information can
be encoded as nonlocal interactions in a network of real-valued nodes.

We can simplify things even further, at the cost of losing some geometric accu-
racy, as follows. On most of its domain, the phase field takes values very close to the
set {−1,1}. This suggests replacing ψ by a field taking values only in the set {−1,1},
that is, by a binary-valued Markov random field ω. By definition, the distribution for
ω is given in terms of that for ψ by P(ω) = ∫

Ψ
P (ω|ψ)P (ψ). Binarization means

that P(ω|ψ) = δ(ω, sgn(ψ)). In the saddle point approximation, the energy U of
the binarized field is given by U(ω) = E(ψω), where ψω = arg minψ : sgnψ=ω E(ψ).
Computing ψω is a difficult task in itself. A crude but practically effective approxi-
mation gives rise to the energy [1]:

U(ω) = Db

2

∑
i,j : i∼j

(ωi − ωj )
2 + αb

∑
i

ωi + βb

2

∑
i,j

ωiFijωj , (13.10)

where αb = 2α
3 , βb = β , Db = D

4 , and F is related to ∂2G. Gibbs sampling from this
distribution, with appropriate temperature and parameter ranges (again derived from
stability analyses performed in the contour representation) shows convergence to gas
of near-circles or network regions. These then fluctuate, but remain stable, under
further sampling. As with the other two representations, the probability distribution
can have local maxima at these shape families. Thus, the same nontrivial shape
information can be encoded as nonlocal interactions in a network of binary nodes.
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13.4.3 Nonlocality via Local Interactions

Nonlocal interactions have so far been introduced explicitly. However, explicit non-
locality may not be plausible in some contexts, for example the biological, so it is
important to note that nonlocality can arise from purely local energies. We introduce
a vector field v : R2 →R

2, and define a joint distribution with Gibbs energy

Ê(φ, v) = E0(φ) + a〈v|∂φ〉 + 1

2
〈v|F |v〉, (13.11)

where 〈|〉 is the L2 inner product on D ; F is a positive operator; and a ∈ R. Notice
that v couples to the gradient of φ, that is, to the boundary. At the same time v is
spatially correlated (e.g., smoothed) by the interaction represented by F . It therefore
induces an interaction between points on the boundary. To find this interaction, we
marginalize over v. The resulting Gibbs energy is

Ẽ(φ) = E0(φ) − 1

2
β〈∂φ|F−1|∂φ〉, (13.12)

where β = a2. This has the same form as the nonlocal phase field energy E defined
in Eqs. (13.7), (13.8), and (13.9). A similar procedure works for the binary MRF
model. Thus rather than encoding shape information via nonlocal interactions, it
can instead be encoded by allowing the network to have several ‘layers’.

13.5 Discussion

Thus, we reach the end of the story. Shape information can be encoded via non-
local interactions in a network of binary- or real-valued nodes. In turn, these non-
local interactions can be re-encoded as local interactions in a network with multi-
ple ‘layers’. Control of these interactions then allows different shape families to be
modeled. Shape, therefore, does not have to be described by exogenous templates,
or constructed from arbitrary building blocks. Instead, it can arise naturally, as an
emergent property of the connections in a network of simple nodes.

The fact that shape information is encoded as interactions in a network means
that shape processing can be inherently parallel. The domain D can be separated
into subdomains that can be processed simultaneously, with some communication
overheads. Note that to search for a shape in multiple subdomains using a template
would be equivalent to searching for multiple instances, requiring separate pose
estimations for each subdomain.

For image processing applications, the nodes are usually generated by spatial
discretization onto a square lattice, but any discretization is possible, for example,
using a hexagonal lattice. The nodes need not even correspond to spatial elements:
one of the strengths of the phase field representation is that it can be written in any
basis, and so a discretization could be generated by imposing a frequency cut-off
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Fig. 13.7 A Fourier
component, quadratically
unstable at zero but stabilized
at a finite value by quartic
behavior, added to an
otherwise stable circle

in Fourier space, or a scale cut-off in wavelet space. The local and non-local terms
(but not the potential) are diagonal in the Fourier basis, while the potential term is
diagonal in the spatial point basis. This suggests that a wavelet basis, which is inter-
mediate between these two extremes, might simplify the interactions in the model.
This would also have the advantage of providing a naturally multiscale representa-
tion of shape.

Despite all its promising aspects, however, the framework cannot yet be called a
complete shape modelling method. Only simple shapes have been modeled so far,
and the natural question is whether one can model more complex shapes.

One possible direction is suggested by observations in numerical experiments.
Shapes have been seen that were neither circles nor bars, but instead were star-
shaped: circles plus a sinusoidal perturbation of their radius. These appeared to be
stable. While it is possible that this was an artefact of the numerical method, it is also
possible that the chosen parameter values produced a new type of local minimum.
A simple explanation is as follows. To second order in a small perturbation of a cir-
cle, only two behaviors are possible for each Fourier component of the perturbation:
stable or unstable, corresponding to positive or negative second-order coefficient
in the expansion. To fourth order, however, more complex behaviors can occur. In
particular, if the second-order coefficient is negative but the fourth-order coefficient
is positive, then although the zero amplitude state is unstable, there will be some
finite amplitude that is stable. Now imagine that all Fourier components are sta-
ble quadratically except for one, which is unstable quadratically but stabilized by a
fourth-order term. The circle itself is now a saddle-point of the energy, while a circle
perturbed by a sinusoid of the correct frequency and amplitude is a local minimum.
This is illustrated in Fig. 13.7.

This picture suggests that by adjusting the interaction function of the model, one
might be able to assign different stable amplitudes to each Fourier component. Were
this possible, it would be mean that any star domain could be modeled.

An alternative approach to the modelling of more complex shapes involves the
introduction of higher-order interactions. There are two issues with such interac-
tions. The first is learning the interactions necessary to model a given family of
shapes. In order for an energy to model such a family, it should have local minima
at the appropriate points in R, and this involves difficult analysis. It could perhaps
be achieved using standard statistical estimation techniques verified a posteriori for
local minimality, or by placing constraints on the parameters during estimation. The
first seems wasteful, while the second is complex, and its theoretical basis is not
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clear. The second issue is algorithmic complexity. Simply evaluating higher-order
terms is expensive, and although there are algorithms available for certain types of
higher-order term in the binary MRF case, it is not likely that they would apply to
the types of term needed. Nevertheless, some promising progress is being made in
these areas, and there is good reason to hope that the picture of shape as an emergent
property of interactions between network nodes can be fully realized.
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