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An illustration of the power of perceptual grouping. Individually, the black, amor-
phous blobs carry very little information. However, when grouped into parts, the
emergent part structure allows each figure to be quickly interpreted without any a
priori knowledge of scene content. The figures are reproduced with kind permission
from Teachers College Press, Columbia University, New York: A gestalt completion
test: a study of a cross section of intellect, 1931, Roy F. Street, p. 41, Fig. 1, p. 61,
Fig. 11, p. 47, Fig. 4, p. 55, Fig. 8).
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Preface

Shape has a long and rich history in vision research. On the computer vision side,
shape was the backbone of classical object recognition systems in the 1960s, 1970s,
and 1980s. However, the advent of appearance-based recognition in the 1990s drew
the spotlight away from shape. While an active shape community continued in
the periphery, only recently has shape re-entered the mainstream with a return to
contours, shape hierarchies, shape grammars, shape priors, and even 3-D shape in-
ference. On the human vision side, shape research was also affected by paradigm
changes. Unlike the computer vision community, psychologists have usually agreed
that shape is important, but it has been less clear to them what it is about shape
that should be studied: surfaces, invariants, parts, multiple views, learning, simplic-
ity, shape constancy or shape illusions? The growing interest in mathematical for-
malisms and computational models has begun to provide the long overdue common
denominator for these various paradigms.

In an effort to foster greater dialog between these two communities of shape re-
searchers, we co-organized a very successful series of four International Workshops
on Shape Perception in Human and Computer Vision, in conjunction with ECCV
2008 (http://viper.psych.purdue.edu/workshops/iwsphcv08/), ECVP 2009 (http://
viper.psych.purdue.edu/workshops/iwsphcv09/), ECCV 2010 (http://viper.psych.
purdue.edu/workshops/iwsphcv2010/), and VSS 2011 (http://www.visionsciences.
org/satellite_shape_perception.htm), two computer vision venues and two human
vision venues. The format of each workshop was identical: 12 distinguished invited
speakers, 6 from human vision and 6 from computer vision. Each speaker was in-
vited not to present their latest and greatest research, but to reflect more broadly
on the issues and challenges they’ve faced over their careers and the major chal-
lenges ahead. Moreover, the speakers were chosen to cover the topic from all sides
rather than promote a particular paradigm. The workshops were a great success and
received funding from a number of sources.

The goal had always been to have the union of the four workshops’ authors each
submit a chapter to an interdisciplinary collection modeled after the workshops.
What follows is a collection that is the realization of that goal, offering 33 chapters
by a set of world-class shape researchers from both sides of the aisle. Most of the
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viii Preface

authors have worked on the problem of shape perception for many years (decades),
and have a unique perspective to offer researchers and students alike on what issues
have shaped the field, the trends we’ve followed, the progress we’ve made, and the
challenges we face. Just like the four workshops, this collection offers a unique,
interdisciplinary perspective that is essential for young researchers to understand
the broader landscape of the problem so that they can build on a firm foundation.
We hope you find the collection as exciting and as useful as we do.

There are a number of people and organizations who we’d like to thank for help-
ing to make this volume possible. Wayne Wheeler and Simon Rees from Springer
have been incredibly supportive of this initiative, providing valuable guidance and
support throughout the process of assembling this collection. We’d like to sincerely
thank the Air Force Office of Scientific Research (AFOSR), the Purdue Univer-
sity Department of Psychological Sciences, and the German Association for Pattern
Recognition (DAGM) for their generous financial support of the workshops. Finally,
we’d like to thank the Organizers of the ECCV, ECVP and VSS conferences for ac-
commodating our workshops. Our sincere thanks to you all.

Sven J. Dickinson
Zygmunt Pizlo

University of Toronto, Canada
Purdue University, USA
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Chapter 1
The Role of Mid-Level Shape Priors
in Perceptual Grouping and Image Abstraction

Sven J. Dickinson, Alex Levinshtein, Pablo Sala, and Cristian Sminchisescu

1.1 Introduction

Have a look at the image in Fig. 1.1(a) (taken from [29]) and don’t read any fur-
ther until you recognize the object(s) in the scene. For most people, the image of
a horse and rider quickly emerges. This is remarkable considering that each indi-
vidual black fragment is practically meaningless in terms of its indexing power to
suggest a horse or rider (or any object, for that matter). Only when the fragments
are grouped together and abstracted to yield meaningful parts and relations do the
objects begin to emerge. Moreover, these grouping and abstraction processes are
primarily bottom-up, and do not require a priori knowledge of scene content. No-
body told you what object to look for, and you certainly didn’t run through tens of
thousands of category detectors to decide that it was a horse and rider and not a table
and chair. Somehow, your visual system grouped the fragments to form a set of ab-
stract parts, then grouped those parts into larger configurations, then “queried” your
visual memory for similar configurations, and only then used a priori knowledge of
a promising candidate to “detect”, i.e., verify, the object.

Perceptual grouping is a critical function in the human visual system, offering a
powerful heuristic for grouping together causally related image features in support
of both figure-ground segmentation and 3-D inference. In the mid-to-late 1990s,
perceptual grouping was a thriving subcommunity in computer vision, as illustrated
in Fig. 1.1(b). However, over the past 10 years, there’s been a steady decline in the
number of perceptual grouping papers appearing in the computer vision commu-
nity’s main conferences. The reason for this is the reformulation of object recogni-
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Department of Computer Science, University of Toronto, Toronto, Canada
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2 S.J. Dickinson et al.

Fig. 1.1 (a) An illustration of the power of perceptual grouping. Individually, the black, amor-
phous blobs carry very little information. However, when grouped into parts, the emergent part
structure allows the scene (horse and rider) to be quickly interpreted without any a priori knowledge
of scene content (figure reproduced with kind permission from Teachers College Press, Columbia
University, New York: A gestalt completion test: a study of a cross section of intellect, 1931, Roy
F. Street, p. 55, Fig. 8); (b) The rise and fall of perceptual grouping. Tracking perceptual group-
ing papers in the computer vision community’s four main conferences indicates a growing interest
in perceptual grouping, peaking in the late 1990s. However, since then, interest in this critically
important problem has waned

tion, historically cast as the problem of recognizing an object from a large database,
as a detection problem, cast as the search for a particular target object.

The classical formulation of the object recognition problem, which defined the
mainstream from the mid-1960s through to the late-1990s, was the recognition of
an unexpected object from a database of objects. As illustrated in Fig. 1.2, the fea-
ture extraction process began by extracting categorical or generic features, as the
recognition community aspired to recognize categories, not exemplars. As far back
as the seminal work of Roberts [23] in the mid-1960s, the recognition community
understood that across the exemplars that belong to a category, shape is a more in-
variant property than appearance. As a result, the majority of recognition systems
from the mid-1960s to the late 1990s attempted to extract shape features, typically
beginning with the extraction of edges, for at occluding boundaries and surface dis-
continuities, edges capture shape information. However, unlike today’s distinctive
local image features, e.g., SIFT [20], a local edgel carries very little information
with which to index into a database of objects in an attempt to select a small number
of promising object models that might account for the edgels.

The need for perceptual grouping in these early systems was critical, for only
when the edgels were grouped into longer contours, perhaps parsed at high-
curvature points, and grouped with other causally related contours, did distinctive
indexing features emerge. Lowe’s thesis [21] was the first to introduce computa-
tional models of perceptual grouping processes, e.g., proximity, collinearity, and
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Fig. 1.2 In the classical recognition model, the desire to extract shape features, considered more
generic than appearance, began with edge detection. Because edgels were not discriminative, they
were perceptually grouped and abstracted to form distinctive indexing structures that could prune
a large database of objects down to a small number of promising candidates. (figure reproduced
with kind permission from Springer Science+Business Media: Proceedings, 4th Mexican Confer-
ence on Pattern Recognition (MCPR), Perceptual Grouping using Superpixels, 2012, S. Dickinson,
A. Levinshtein, and C. Sminchisescu, p. 14, Fig. 1)

parallelism, derived from image statistics. By grouping contour features into more
distinctive groups (in Lowe’s case, proximity followed by collinearity followed
by parallelism), more discriminating indexing (using parallel lines instead of, say,
triples of corners [11]) was possible. The more that features were grouped, per-
haps first into parts and then into multipart groups [8, 9], the more powerful the
resulting indexing structure and the fewer candidates that ultimately needed to be
verified. Each candidate was verified, yielding a score (typically reflecting the de-
gree to which a model could be aligned with image features), and the top-scoring
candidate, if sufficiently strong, gave the final interpretation.

The formulation of object recognition as the detection of a specific target object
has dominated the recognition community over the past 10 years. As illustrated in
Fig. 1.3(top) and working backwards from the verification module, instead of having
to verify a number of candidate object hypotheses, the detection problem identifies
only a single hypothesis that needs to be verified (or detected). This, in turn, means
that the indexing step, in which a large database of candidate objects is pruned down
to a small set of candidates for verification, is superfluous, as the database effectively
has a single object (target). Continuing to work our way backwards, as illustrated
in Fig. 1.3(middle), if discriminative indexing features are not required to select
promising candidates, the perceptual grouping stage is also superfluous. Instead, as
illustrated in Fig. 1.3(bottom), the detector, i.e., verification, can be applied directly
to the edgels, e.g., [6], to give the final score, thereby short-circuiting the entire
perceptual grouping process.

The existence of an object detector, representing a strong shape prior, eliminates
the need for perceptual grouping, representing a much weaker, domain-independent
shape prior. However, as the categorization community moves from single object
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Fig. 1.3 The classical
formulation of object
recognition from a large
database has given way to a
more recent formulation of
object recognition as target
detection: (top) rather than
verifying a number of
candidates, the target
candidate is known, rendering
the process of indexing (or
model selection) obsolete.
(Middle) Without the need for
domain-independent
recovery, grouping, and
abstraction of structure in
order to prune a large
database down to a small
number of promising
candidates, perceptual
grouping is unnecessary.
(Bottom) As a result,
verification (detection) can be
applied directly to the
ungrouped, low-level edge
features. (Figure reproduced
with kind permission from
Springer Science+Business
Media: Proceedings, 4th
Mexican Conference on
Pattern Recognition (MCPR),
Perceptual Grouping using
Superpixels, 2012, S.
Dickinson, A. Levinshtein,
and C. Sminchisescu, p. 14,
Fig. 1)
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detection back to recognition from large databases, detection methods, typically for-
mulated as template matching (or “sliding windows”), simply won’t scale, and a lin-
ear search through thousands of templates is intractable, especially when an object
can be viewed arbitrarily, it can articulate, and it can undergo significant within-class
shape deformation. Verification (or detection) must be highly sublinear in the size of
the database, demanding that discriminative indexing features be recovered without
knowledge of which object is being imaged. Such domain-independent, bottom-up
perceptual grouping is essential in the absence of an object prior.

In this chapter, we briefly review our recent progress on three classical prob-
lems in perceptual grouping using three mid-level shape priors: symmetry, closure,
and parts. We begin by describing a framework that first groups superpixels into
symmetric parts, and then groups the symmetric parts into multipart structures [13].
Symmetry has played a prominent role in shape modeling for object recognition
since the 2-D medial axis transform (MAT) of Blum [2] and the 3-D generalized
cylinder (GC) of Binford [1]. By detecting a set of symmetric parts and their attach-
ments from a cluttered image of real objects, we recover a powerful shape index that
can serve to prune a large database of objects down to a small number of promising
candidates. Next, we address the classical problem of contour closure, i.e., finding a
cycle of edgels in the image that separates figure from ground. We describe a frame-
work that looks for groups of superpixels whose collective boundary has strong
edgel support in the image [14, 15]. The resulting shape boundary, or silhouette,
can yield a structured, parts-based representation, e.g., [27], that can also be used to
prune a large database down to a small number of promising candidates. Finally, we
use a vocabulary of simple shape parts (which, in turn, can be used to construct an
infinite number of objects) to not only guide the perceptual grouping of superpixels
into regions representing parts, but use the part vocabulary to regularize, or abstract,
the shapes of the regions.

1.2 Symmetric Part Detection and Grouping

In [13], we introduced a novel approach to recovering the symmetric part structure
of an object from a cluttered image, as outlined in Fig. 1.4. Drawing on the prin-
ciple that a skeleton is defined as the locus of medial points, i.e., centers of maxi-
mally inscribed disks, we first hypothesize a sparse set of medial points at multiple
scales by segmenting the image (Fig. 1.4(a)) into compact superpixels at differ-
ent superpixel resolutions [17] (Fig. 1.4(b)). Superpixels are adequate for this task,
balancing a data-driven component that’s attracted to shape boundaries while main-
taining a high degree of compactness. The superpixels (medial point hypotheses) at
each scale are linked into a graph, with edges adjoining adjacent superpixels. Each
edge is assigned an affinity that reflects the degree to which two adjacent superpix-
els represent medial points belonging to the same symmetric part (medial branch)
(Fig. 1.4(c)). The affinities are learned from a set of training images whose sym-
metric parts have been manually identified. A standard graph-based segmentation
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Fig. 1.4 Overview of our approach for multiscale symmetric part detection and grouping: (a) orig-
inal image; (b) set of multiscale superpixel segmentations (different superpixel resolutions); (c) the
graph of affinities shown for one scale (superpixel resolution); (d) the set of regularized symmet-
ric parts extracted from all scales through a standard graph-based segmentation algorithm; (e) the
graph of affinities between nearby symmetric parts (all scales); (f) the most prominent part clus-
ters extracted from a standard graph-based segmentation algorithm, with abstracted symmetry axes
overlaid onto the abstracted parts; (g) in contrast, a Laplacian-based multiscale blob and ridge de-
composition, such as that computed by [19], shown, yields many false positive and false negative
parts; (h) in contrast, classical skeletonization algorithms require a closed contour which, for real
images, must be approximated by a region boundary. In this case, the parameters of the N-cuts al-
gorithm [26] were tuned to give the best region (maximal size without region undersegmentation)
for the swimmer. A standard medial axis extraction algorithm applied to the smoothed silhouette
produces a skeleton (shown in blue) that contains spurious branches, branch instability, and poor
part delineation. (Figure reproduced with kind permission from Springer Science+Business Me-
dia: Proceedings, 4th Mexican Conference on Pattern Recognition (MCPR), Perceptual Grouping
using Superpixels, 2012, S. Dickinson, A. Levinshtein, and C. Sminchisescu, p. 17, Fig. 2)

algorithm applied to each scale yields a set of superpixel clusters which, in turn,
yield a set of regularized symmetric parts (Fig. 1.4(d)).

In the second phase of our approach, we address the problem of perceptually
grouping symmetric parts arising in the first phase. Like in any grouping problem,
our goal is to identify sets of parts that are causally related, i.e., unlikely to co-occur
by accident. Again, we adopt a graph-based approach in which the set of symmetric
parts across all scales are connected in a graph, with edges adjoining parts in close
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spatial proximity (Fig. 1.4(e)). Each edge is assigned an affinity, this time reflecting
the degree to which two nearby parts are believed to be physically attached. Like
in the first phase, the associated, higher granularity affinities are learned from the
regularities of attached symmetric parts identified in training data. A graph segmen-
tation yields a set of part clusters, each representing a set of regularized symmetric
elements and their hypothesized attachments (Fig. 1.4(f)).

Our approach offers clear advantages over competing approaches. For example,
classical multiscale blob and ridge detectors, such as [19] (Fig. 1.4(g)), yield many
spurious parts, a challenging form of noise for any graph-based indexing or match-
ing strategy. And even if an opportunistic setting of a region segmenter’s parameters
yields a decent object silhouette (Fig. 1.4(h)), the resulting skeleton may exhibit
spurious branches and may fail to clearly delineate the part structure. From a clut-
tered image, our two-phase approach recovers, abstracts, and groups a set of medial
branches into an approximation to an object’s skeletal part structure, enabling the
application of skeleton-based categorization systems to more realistic imagery. De-
tails of the approach can be found in [13].

Some qualitative results are shown in Fig. 1.5. Proceeding left to right, top to
bottom, we see excellent part recovery and grouping for the starfish, the plane, the
windmill, and the runner, respectively. In the case of the windmill, a second, sin-
gleton cluster, representing the entire body of the human, is recovered; however, the
distant windmills are not recovered, for their scale is smaller than the smallest super-
pixel scale. The final two figures represent failure modes. In the case of the lizard,
the curved symmetric tail is oversegmented into piecewise linear symmetric parts.
In the case of the lake scene, the symmetric parts making up the horizon tree line
are incorrectly grouped with the dock structure due to a lack of apparent occlusion
boundary between the dock structure and the tree line parts.

1.3 Contour Closure

In this section, we review our framework for efficiently searching for optimal con-
tour closure; details can be found in [14, 15]. Figure 1.6 illustrates an overview of
our approach to computing contour closure. Given an image of extracted contours
(Fig. 1.6(a)), we begin by restricting contour closures to pass along boundaries of
superpixels computed over the contour image (Fig. 1.6(b)). In this way, our first
contribution is to reformulate the problem of searching for cycles of contours as
the problem of searching for a subset of superpixels whose collective boundary has
strong contour support in the contour image; the assumption we make is that those
salient contours that define the boundary of the object (our target closure) will align
well with superpixel boundaries. However, while a cycle of contours represents a
single contour closure, our reformulation requires a mechanism to encourage super-
pixel subsets that are spatially coherent.

Spatial coherence is an inherent property of a cost function that computes the
ratio of perimeter to area. We modify the ratio cost function of Stahl and Wang [28]
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Fig. 1.5 Detected medial parts and their clusters. Parts with the same color axis have been grouped
together (through high attachment affinities) and are hypothesized to belong to the same object.
(Figure reproduced with kind permission from Springer Science+Business Media: Proceedings,
4th Mexican Conference on Pattern Recognition (MCPR), Perceptual Grouping using Superpixels,
2012, S. Dickinson, A. Levinshtein, and C. Sminchisescu, p. 18, Fig. 3)

to operate on superpixels rather than contours, and extend it to yield a cost func-
tion that: (1) promotes spatially coherent selections of superpixels; (2) favors larger
closures over smaller closures; and (3) introduces a novel, learned gap function that
accounts for how much agreement there is between the boundary of the selection
and the contours in the image. The third property adds cost as the number and sizes
of gaps between contours increase. Given a superpixel boundary fragment (e.g., a
side of a superpixel) representing a hypothesized closure component, we assign a
gap cost that’s a function of the proximity of nearby image contours, their strength,
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Fig. 1.6 Overview of our approach for image closure: (a) contour image: while we take as input
only this contour image, we will overlay the original image in the subsequent figures to ease visu-
alization; (b) superpixel segmentation of contour image, in which superpixel resolution is chosen
to ensure that target boundaries are reasonably well approximated by superpixel boundaries; (c) a
novel, learned measure of gap reflects the extent to which the superpixel boundary is supported
by evidence of a real image contour (line thickness corresponds to the amount of agreement be-
tween superpixel boundaries and image contours); (d) our cost function can be globally optimized
to yield the largest set of superpixels bounded by contours that have the least gaps. In this case the
solutions, in increasing cost (decreasing quality), are organized left to right. (Figure reproduced
with kind permission from Springer Science+Business Media: Proceedings, 4th Mexican Confer-
ence on Pattern Recognition (MCPR), Perceptual Grouping using Superpixels, 2012, S. Dickinson,
A. Levinshtein, and C. Sminchisescu, p. 19, Fig. 4)

and their orientation (Fig. 1.6(c)). It is in this third property that our superpixel re-
formulation plays a second important role—by providing an appropriate scope of
contour over which our gap analysis can be conducted.

In our third contribution, the two components of our cost function, i.e., area and
gap, are combined in a simple ratio that can be efficiently optimized using para-
metric maxflow [12] to yield the global optimum. The optimal solution yields the



10 S.J. Dickinson et al.

Fig. 1.7 Example results of superpixel closure. (Figure reproduced with kind permission from
Springer Science+Business Media: Proceedings, 4th Mexican Conference on Pattern Recogni-
tion (MCPR), Perceptual Grouping using Superpixels, 2012, S. Dickinson, A. Levinshtein, and
C. Sminchisescu, p. 20, Fig. 5)

largest set of superpixels bounded by contours that have the least gaps (Fig. 1.6(d)).
Moreover, parametric maxflow can be used to yield the top k solutions (see [4], for
example). In an object recognition setting, generating a small set of such solutions
can be thought of as generating a small set of promising shape hypotheses which,
through an indexing process, could invoke candidate models that could be verified
(detected). The use of such multiscale hypotheses was shown to facilitate state-of-
the-art object recognition in images [18].

In Fig. 1.7, we illustrate results of our superpixel closure (SC) method. In the
case of the carriage, swimmer, plane, golfer, baseball player, plane, and spider, we
see that the algorithm nearly correctly segments figure from background, and is able
to capture the deep concavities of the object, which is particularly visible with the
spider. In the case of the horse, elephant, and giraffe, we see evidence of underseg-
mentation due to the properties of the objective function that we’re optimizing. In
each case, there are false boundaries (e.g., horizon) that can increase the area of the
figure without introducing additional gap. In other words, if the algorithm can fol-
low a gap-free contour that yields a larger area, e.g., following the contour between
ground and sky in the giraffe image, it will do so, yielding a bias towards compact
objects.
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Fig. 1.8 Overview of our approach for spatiotemporal closure. (a) Spatiotemporal volume;
(b) spatiotemporal superpixels; (c) superpixel graph with edges encoding appearance and motion
affinity; (d) optimizing our spatiotemporal closure corresponds to finding a closed surface cutting
low affinity graph edges; (e) our optimization framework results in multiple multiscale hypotheses,
corresponding to objects, objects with their context, and object parts. (Figure reproduced with kind
permission from Springer Science+Business Media: Proceedings, 10th Asian Conference on Com-
puter Vision (ACCV), 4th Mexican Conference on Pattern Recognition (MCPR), Spatiotemporal
Closure, 2010, A. Levinshtein, C. Sminchisescu, and S. Dickinson, p. 370, Fig. 1)

We have extended this framework to detect spatiotemporal closure [15, 16].
Similar to detecting contour closure in images, we formulate spatiotemporal clo-
sure detection inside a spatiotemporal volume (Fig. 1.8(a)) as selecting a subset of
spatiotemporal superpixels whose collective boundary falls on such discontinuities
(Fig. 1.8(b)). Our spatiotemporal superpixels, extending our superpixel framework
in [17], provide good spatiotemporal support regions for the extraction of appear-
ance and motion features, while limiting the undersegmentation effects exhibited by
other superpixel extraction techniques due to their lack of compactness and temporal
stability.

We proceed by forming a superpixel graph whose edges encode appearance and
motion similarity of adjacent superpixels (Fig. 1.8(c)). Next, we formulate spa-
tiotemporal closure. The notion of contour gap from image closure detection is
generalized to the cost of a cut of a set of spatiotemporal superpixels from the rest
of the spatiotemporal volume, where the cut cost is low for superpixel boundaries
that cross appearance and motion boundaries. Similarly, instead of normalization
by area, we choose to normalize by a measure of internal motion and appearance
homogeneity of the selection, which is more appropriate for video segmentation.
The cost is again minimized using parametric maxflow [12] which is not only able
to efficiently find a globally optimal closure solution, but returns multiple closure
hypotheses (Fig. 1.8(e)). This not only eliminates the need for estimating the num-
ber of objects in a video sequence, as all objects with the best closure are extracted,
but can result in hypotheses that oversegment objects into parts or merge adjacent
objects. Multiple spatiotemporal segmentation hypotheses can serve tasks such as
action recognition, video synopsis, and indexing [22].
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Fig. 1.9 Recovering abstract shape parts from an image: (a) input image of two exemplars that
show considerable within-class variation; (b) extracted contours: note that corresponding con-
tour-based features are seldom in one-to-one correspondence; (c) a simple example vocabulary
of 2-D part models that will drive the perceptual grouping and shape abstraction processes; (d) the
resulting abstract surfaces recovered by our framework; contour correspondence exists not at the
level of individual contours, but at a much higher level of abstraction. (Figure reproduced with kind
permission from Springer Science+Business Media: Proceedings, 11th European Conference on
Computer Vision (ECCVC), Contour Grouping and Abstraction using Simple Part Models, 2010,
P. Sala and S. Dickinson, p. 604, Fig. 1)

1.4 Abstract Part Recovery

In the previous two sections, we reviewed approaches based on traditional Gestalt
grouping principles such as symmetry and closure. But consider Fig. 1.9(a), which
shows images of two object exemplars belonging to the same class (bowl). If we ex-
amine their extracted contours, shown in Fig. 1.9(b), we notice that corresponding
contour-based features are seldom in one-to-one correspondence. Despite this lack
of contour correspondence, the two objects are perceived as having similar shape
without any a priori knowledge of object class, i.e., you did not run a successful
bowl detector on both images. Somehow, you not only grouped this plethora of con-
tours into surfaces, but abstracted the groups to yield emergent shapes that were
common to both images. While cues such as symmetry and closure are indeed pow-
erful mid-level regularities that could drive perceptual grouping of these contours,
the complexity of the contours begs the question: Is there some sort of higher-level
regularity, lying somewhere between low-level perceptual grouping and knowledge
of the target object, that can be used to not only group the contours but recover their
abstract shape?

In this third and final section of this chapter, we review our approach to the per-
ceptual grouping and abstraction of image contours using a set of 2-D part models;
details can be found in [24]. We assume no object-level prior knowledge and, like
the perceptual grouping community, assume only a mid-level shape prior. However,
our shape prior is slightly stronger than such classical Gestalt features as symmetry,
parallelism, proximity, collinearity, etc. Specifically, our mid-level shape prior takes
the form of a user-defined vocabulary of simple 2-D shape models, representing a
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Fig. 1.10 Problem formulation: (a) input image; (b) region oversegmentation; (c) region bound-
ary graph; (d) example vocabulary of shape models (used in our experiments); (e) example paths
through the region boundary graph that are consistent (green) and inconsistent (red); (f) example
detected cycles that are consistent with some model in the vocabulary; (g) abstractions of cycles
consistent with some model; (h) example cycles inconsistent with all models. (Figure reproduced
with kind permission from Springer Science+Business Media: Proceedings, 11th European Con-
ference on Computer Vision (ECCVC), Contour Grouping and Abstraction using Simple Part Mod-
els, 2010, P. Sala and S. Dickinson, p. 606, Fig. 2)

fixed set of parts from which a large database of object models can be constructed.
In that sense, our vocabulary can be seen as a high-level nonaccidental regularity—a
common denominator set of part shapes that can be used to model a large collection
of objects in the world [7–9]. But since different domains may demand different
vocabularies of parts, it’s essential that our framework be independent of the part
vocabulary; therefore, the vocabulary is an input to our framework.

Returning to our illustrative example, in Fig. 1.9(c), we show sample instances
from a simple, example vocabulary of 2-D shapes that will be used to group and
abstract the contours in Fig. 1.9(b). In Fig. 1.9(d), we overlay the abstract shapes
recovered by our algorithm. It is at this level, i.e., the abstracted parts and their rela-
tions, that commonality exists between the two images. Moreover, the boundaries of
these abstract parts may not correspond to explicit image boundaries in the image.
Rather, they can be viewed as hallucinations of the actual image boundaries, after
they’re appropriately selected and grouped.

Our approach begins by computing a region oversegmentation (Fig. 1.10(b)) of
the input image (Fig. 1.10(a)). The resulting region boundaries yield a region bound-
ary graph (Fig. 1.10(c)), in which nodes represent region boundary junctions where
three or more regions meet, and edges represent the region boundaries between
nodes; the region boundary graph is a multigraph, since there may be multiple edges
between two nodes. Our approach can be formulated as finding simple cycles in the
region boundary graph whose shape is consistent with one of the model shapes in
the input vocabulary (Fig. 1.10(d)); these are called consistent cycles. There is an
exponential number of simple cycles in a planar graph [3], and simply enumerating
all cycles (e.g., [30]) and comparing their shapes to the model shapes is intractable.
Instead, we start from an initial set of starting edges and extend these paths, called
consistent paths (or CPs), as long as their shapes are consistent with a part of some
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model. To determine whether a given path is consistent (and therefore extendable),
we approximate the path at multiple scales with a set of polylines (piecewise linear
approximations), and classify each polyline using a one-class classifier trained on
the set of training shapes (Fig. 1.10(e)). When a consistent path is also a simple
cycle, it is added to the set of output consistent cycles (Fig. 1.10(f)).

Figure 1.10(d) shows the input vocabulary used in our experiments: four part
classes (superellipses plus sheared, tapered, and bent rectangles, representing the
rows) along with a few examples of their many within-class deformations (repre-
senting the columns). Each shape model is allowed to anisotropically scale in the
horizontal and vertical directions as well as rotate in the image plane. Since we
employ scale-, rotation-, and translation-invariant features to train the classifiers,
we need to generate only (approximately) 1,500 instances (by varying the aspect
ratio and deformation parameters) belonging to these four shape classes. A single
classifier is trained on all the component polylines (computed at multiple scales)
of length (i.e., number of piecewise linear segments) k spanning the complete set
of shape models and their deformations. Therefore, if K is the upper bound on the
length of a polyline approximating a shape in the vocabulary, then K classifiers are
trained. An ideal vocabulary defines a small set of “building blocks” common to a
large database of objects. As such, the complexity of the vocabulary shapes is low,
and even at the finest scale of polyline partitioning of a vocabulary shape’s contour,
K remains low; for our vocabulary, K is 13.

The algorithm outputs cycles of contours that are consistent with one of the
model (training) shapes. A cycle consists of actual contours (edges in the region
boundary graph) in the image, and therefore does not explicitly capture the abstract
shape of the contours. Moreover, the cycle has not yet been categorized accord-
ing to the shapes in the vocabulary. To abstract (or regularize) the shape of a cycle
and to categorize it, we employ an active shape model (ASM) [5] trained on about
600,000 model instances (generated by varying their aspect ratio, orientation, and a
finer sweeping of the deformation parameters than the one used to train the polyline
classifiers). We iterate over the classical two-step ASM procedure, consecutively
aligning and deforming the mean training shape with the cycle until convergence.
However, we depart from a standard ASM framework in two key ways.

In a standard ASM framework, the training shapes belong to a single shape class,
and the allowable, often limited, deformations are typically captured (using PCA)
in a low-dimensional shape space that can be approximated by a multidimensional
Gaussian distribution. Moreover, at run time, the model must be properly initial-
ized, for if the model is grossly misaligned, the deformations required to warp the
model into the image may fall outside the space of allowable deformations. In our
case, given a consistent cycle, we don’t know which category of vocabulary shape
it belongs to, and hence which ASM model to apply (if we assumed one model per
category in the vocabulary). Moreover, even if we knew its category, we assume no
correct or near-correct initial landmark correspondence. We overcome the first prob-
lem by having a single ASM that’s trained on all instances of all the shapes in the
vocabulary, and overcome the second problem by training on all possible landmark
correspondences (alignments) across these shapes.
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After ASM convergence, the training shape closest to the deformed model iden-
tifies the category of the cycle. In the previous step, the consistent cycle classifier’s
precision rate is never 100 % at reasonable recall rates, and some of the recov-
ered consistent cycles (of contours) may yield shapes that are qualitatively differ-
ent from those in the vocabulary. Therefore, following ASM convergence, shapes
that are still significantly different from the training shapes are discarded. Fig-
ure 1.10(g) illustrates the vocabulary shapes abstracted from the consistent cycles
in Fig. 1.10(f); for each detected shape, the algorithm also yields its shape category.
Finally, Fig. 1.10(h) illustrates some of the false positives discarded by the shape
abstraction process.

In order to evaluate our framework, we created an annotated dataset with 67 im-
ages containing object exemplars whose 3-D shape can be qualitatively described
by cylinders and bent or tapered cubic prisms. The abstract visible surfaces of each
3-D shape were hand-labeled using 2-D models drawn from our vocabulary. Fig-
ure 1.11 illustrates the output of our system on a number of examples in the dataset:
column (a) shows the input image; column (b) shows the region oversegmentation
used as input to our algorithm, computed using the local variation approach by
Felzenszwalb and Huttenlocher [10] with a fixed parameterization on all images;
column (c) shows the consistent cycles from which the shapes in column (d) were
abstracted, representing the recovered parts closest to the ground truth in column (e).
The numbers inside recovered abstract parts in column (d) indicate the rank of the
part among all recovered parts in that image, computed as a function of the distance
to the contours of the cycles that they are abstracting. The target regions can some-
times rank low if their degree of abstraction is high compared to non-target regions
in the image (whether real or segmentation artifacts) that require less abstraction.
Note that in some cases, e.g., the blender body in row 8, the ideal ground truth part
(e.g., corresponding to the projection of the body of a tapered cylinder) did not exist
in the vocabulary.

Exploring the results in more detail, we see that Fig. 1.11(d) shows the ability
of our approach to abstract object surfaces that are locally highly irregular due to
noise or within-class variation, but capture a model shape at a higher level of ab-
straction. In some cases (e.g., rows 5, 6, and 8), we see misalignment with a neigh-
boring shape. This can be due to two reasons: (1) the vocabulary may not contain
the appropriate shape to model the surface; and (2) the shapes are recovered in-
dependently, with no alignment constraints exploited; such constraints, as well as
other constraints, will play an aggressive role in pruning/aligning hypotheses in our
future work. In all the examples, we can see that the model abstraction process is
able to cope with region undersegmentation when it is restricted to a relatively small
section of the contour.

Our ability to abstract the shape of a cycle of contours with high local irreg-
ularity (shape “noise”) means that many false positive parts will be recovered. In
[25], we addressed this precision problem by moving the camera and exploiting spa-
tiotemporal constraints in the grouping process. We introduced a novel probabilistic,
graph-theoretic formulation of the problem of spatiotemporal contour grouping, in
which the spatiotemporal consistency of a perceptual group under camera motion is
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Fig. 1.11 Abstract part recovery (see text for discussion). (Figure reproduced with kind permis-
sion from Springer Science+Business Media: Proceedings, 11th European Conference on Com-
puter Vision (ECCVC), Contour Grouping and Abstraction using Simple Part Models, 2010, P. Sala
and S. Dickinson, p. 613, Fig. 4)
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learned from a set of training sequences. In future work, we plan to explore powerful
contextual relations, including proximity, alignment, and 3-D shape information to
prune many of these false positives. For example, if the surfaces in our images can
indeed be the projections of volumetric parts, such as cylinders or prisms, then there
are strong constraints on the shapes and relations of the component faces (parts) of
their aspects. Other constraints are also possible, such as pruning smaller surfaces
that are subsumed by larger surfaces.

1.5 Conclusions

The perceptual grouping of contours has long been a problem of interest to hu-
man and computer vision researchers alike. In computer vision, classical approaches
have addressed the problem by first extracting contours and then grouping the con-
tours, leading to prohibitive combinatorial complexity. We have explored this prob-
lem from the dual standpoint of region-based grouping, where regions are super-
pixels that minimize undersegmentation. In the case of symmetry-based grouping,
the superpixels represent deformable, maximally inscribed disks (medial points),
and we learn to group them when they belong to the same symmetric part. In the
case of closure-based grouping, the superpixels represent “chunks” of boundary, and
when the right subset of superpixels is found, those chunks of boundary will form
a closure with minimal gap. Finally, in the case of part-based grouping and abstrac-
tion, the superpixels define an intractable space of contour cycles from which those
whose coarse shape matches a model part are efficiently found. In each case, over-
segmented regions, or superpixels, not only help manage the combinatorial com-
plexity of traditional contour grouping, but support the inclusion of appearance in-
formation.

As the community moves from single category detection to recognition from very
large databases, the strong priors provided by object detectors will have to give way
to domain-independent intermediate shape priors that can yield discriminative shape
structures that, in turn, are required for efficient indexing. These mid-level shape
priors represent a return to perceptual grouping, and we expect research activity in
this area of critical importance to rise again. Shape is clearly the most powerful
and the most invariant feature of most categories, but a single shape part, unlike
a SIFT feature, carries very little distinctiveness. Only when shape primitives are
nonaccidentally grouped together do the resulting higher-order structures possess
the indexing power required to prune a large database down to a few promising can-
didates. In each of the frameworks reviewed in this chapter, the perceptual grouping
of superpixels yields a rich shape structure (in the case of a closed contour, a set
of parts and relations can be easily extracted [27]) that will support powerful shape
indexing and categorization.
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Chapter 2
Symmetry Is the sine qua non of Shape

Yunfeng Li, Tadamasa Sawada, Yun Shi, Robert M. Steinman,
and Zygmunt Pizlo

2.1 Introduction

“Shape” is one of those concepts that seem intuitively obvious, but prove to be sur-
prisingly difficult to define. In this paper, we propose a solution of this seemingly
insoluble definitional problem. Our definition of shape is based on a fundamen-
tally new first principle. By starting from scratch, we avoided what had been an
insurmountable problem inherent in the traditional way of thinking about shape.
In our definition, shape is characterized by a similarity of the object to itself not
to other objects as had always been done previously. This new characterization is
done by specifying how spatial features of the object are transformed, spatially or
temporally, to its other spatial features. Such transformations, which are called sym-
metries, are the object’s self-similarities. In order to anticipate objections of some
readers that our definition is too narrow because it excludes objects that are com-
pletely asymmetrical from the class of objects having shape, we can point out that
our definition explains what is surely the most fundamental perceptual phenomenon
of shape called, “shape constancy”.

By the way of reminder, shape constancy refers to the fact that the perceived
shape of a given 3D object is constant despite changes in the shape of the ob-
ject’s 2D retinal image. The retinal image changes when the 3D viewing orienta-
tion changes. Conventional wisdom holds that our perceptual systems always strive
for perceptual constancy and it also accepts empirical results showing that percep-
tual constancy in general, and shape constancy in particular, is never fully achieved.
Constancy always falls far short of perfection. But note that if shape is not defined
properly, a putative study of “shape constancy” is likely to produce failures of con-
stancy simply because shape was not actually being studied. It would be completely
unreasonable to expect that the observer’s visual system is able to achieve shape
constancy when what is meant by “shape” changes from study to study often in ad
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Fig. 2.1 (a) An irregular set of scattered points. (b) Is a scaled down version of (a). According
to most conventional definitions, (b) has the same shape as (a). It is not clear, however, what this
shape actually is, or whether either of these two dot patterns actually possesses the property we
mean when we say a visual stimulus has “shape”

hoc, arbitrary ways. A better way of dealing with this confusion is to determine how
shape should be defined so as to make it possible to show in the laboratory, what
commonsense tells us happens in everyday life where shape constancy is perfect.
This is what we did. We started by accepting that shape constancy is the sine qua
non of shape, without shape constancy there is no shape. By starting this way, we
were able to define shape operationally [16]. This worked well for planning shape
experiments and evaluating their results but it was less than ideal because one can-
not know whether an object has shape until shape constancy with the stimulus used
was verified by viewing it from more than one direction.

Using an operational, rather than analytical, definition presented us with two
problems, namely: (i) it can be argued that our definition was circular, and (ii) this,
like all, operational definitions did not provide any analytical tools that could be
used to formulate a mathematical or computational model of shape constancy. The
first problem can be partially circumvented by pointing out that our operational def-
inition, at the very least, allows identification of the class of objects that satisfy the
shape constancy criterion. Recall, that for centuries common wisdom believed that
shape constancy could never be achieved with any object. Our operational definition
made it possible for us to show convincingly that shape constancy could be achieved
with many objects. The second problem made it clear that an analytical definition
of shape was needed. This chapter explains how this was done by proposing that
there is as much shape in an object as there is symmetry (regularity) in it. Note that
the complete failure of shape constancy will never be observed once you accept our
new definition of shape. In fact, when our new definition is used, shape constancy
is almost always perfect, and when shape constancy does fall short of perfection,
we know why it does and we can explain the extent of the failure in every case.
Should you worry about excluding objects that have no regularities in them from a
definition of shape? The answer is “no” because our definition of shape applies to
all natural objects important to human beings, including, animal bodies and plants,
as well as to the tools we use.

Our new definition questions whether all objects and all patterns exhibit the
property called “shape”. Does the spatial arrangement of the points in Fig. 2.1a
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Fig. 2.2 The object in (b) is identical to the object in (a) except for its overall size. The object in
(c) was produced by computing a 3D reflection of (a). According to the conventional definition of
shape, all three objects have the same “shape” (after [22])

have shape? According to conventional definitions it does. If the pattern of points in
Fig. 2.1a has shape, is it the same visual quality as the shape of, say, a butterfly or
of an airplane? No matter which conventional definition of shape you prefer, your
commonsense will tell you that the answer to this question is a resounding “No”.
The quality of shape inherent in a butterfly or in an airplane is nothing like any
shape you can make out in the dotted pattern shown in Fig. 2.1. So, if we want to
include all patterns and all objects in a comprehensive discussion of shape, some
objects will surely have more shape than others, and there will even be amorphous
objects without any shape, whatsoever. Bent wires and crumpled papers will fall
on, or near, the amorphous end of this continuum. Prior definitions of shape will be
reviewed before our new definition of shape is explained.

2.2 Prior Definitions of Shape

Most contemporary shape theorists agree that the property we have in mind when
we refer to some visual arrangement as having shape refers to some aspect of this
arrangement that is “invariant under transformations”. Consider first, an example
of what is probably the most appropriate transformation that can be used when we
try to define shape. This transformation is produced by the rigid motion of an object
within a 3D space. Pulling a chair away from a table is a good example. The position
of the chair within the room has changed (this is what we mean by the “transfor-
mation”), but the chair, itself, did not. We call this kind of transformation a “rigid
motion” because all of the geometrical properties of the chair (what the conventional
definition calls the chair’s “shape”) stay the same. These properties are “invariant.”
The size of the chair stays the same, as well as all the distances and angles between
the individual parts that made it up. The legs are not broken or bent, and the indi-
vidual parts are not stretched by this kind of transformation. It follows that if there
are two identical chairs in the room, we would say that they have the same shape.

Note that this conventional definition of shape is often generalized, slightly, by
including a 3D reflection of the object and the change of its overall size. This results
in a “similarity transformation.” Look at Fig. 2.2. According to the conventional
definition of shape, all three objects seen in Fig. 2.2 have the same shape. All angles
remain the same in a similarity transformation, so an angle formed by two line
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segments is an invariant of this transformation. If all corresponding angles in two
objects are equal, one object can be produced by transforming the other by using
a similarity transformation. These two objects are said to have the same “shape”
because such a transformation is possible.

This is by far the most commonly used definition of shape. There are several vari-
ants of this definition that use more general groups of transformations, leading some
shape experts to suggest that shape refers to invariants of an affine transformation:

x′ = ax + by + cz+ d

y′ = ex + fy + gz+ h

z′ = kx + ly +mz+ n

(2.1)

Affine transformation allows for uniform stretching of an object along an arbitrary
direction. As a result, angles, surface areas and volumes are no longer invariant.
What is invariant is the ratio of areas of two figures residing on parallel planes
or the ratio of the volumes of two objects. According to this definition, any two
rectangular boxes, say a shoebox and a pizza box have the same shape. This def-
inition obviously violates our commonsense. Most people would say that a pizza
box and a shoebox have very different shapes. Few, if any, people would look for
their pie in the shoebox, or try to put their foot in the pizza box. Despite the ob-
vious fact that the affine definition of shape is counterintuitive, this definition has
been used in shape perception research and applications for two reasons. The first
reason is geometrical. A camera image of a planar figure can be approximated by a
2D affine transformation of the figure [16]. It follows that affine invariants of planar
figures will be preserved (approximately) in any camera image. This could serve as
a tool for recognizing planar figures in camera (or retinal) images. The second rea-
son was suggested by the results of psychophysical experiments. When an observer
is asked to judge depth relations of points on 3D surfaces, the judgments are always
quite unreliable. This poor performance was taken to indicate that metric aspects
of depth are not reconstructed by the observer, which has led many, probably most,
researchers to conclude that metric aspects of depth are not represented in the visual
system. The smallest non-metric group is the affine group, so the observer’s failure
to judge metric properties led many shape experts to claim that shape is represented
by affine invariants in the human visual system. The first reason just described is
acceptable to us, but the second is not. We believe that the definition of shape, in-
cluding perceived shape, should be based on what the human visual system can do
very well, not on what the visual system cannot do. Very many, quite different, rea-
sons are probably responsible for failures in visual perception, and using the failure
of shape perception does not seem to be a good way to derive a useful definition.
Affine invariants obviously cannot form the basis of a useful definition of shape, at
least not shape as we humans perceive it. A transformation that shows that shoe and
pizza boxes have the same shape cannot apply to human shape perception.

The affine group is not the end of the line when it comes to trying to use more
and more abstract properties to define shape. Another definition of shape uses a
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Fig. 2.3 An image of a 3D projective transformation of a cube (from Pizlo [16])

projective group of transformations:

x′ = ax + by + cz+ d

px + qy + rz+ s

y′ = ex + fy + gz+ h

px + qy + rz+ s

z′ = kx + ly +mz+ n

px + qy + rz+ s

(2.2)

The motivations for using this group are essentially the same as those used with
the affine group. The advantage of using a projective group is that, unlike an affine
transformation, a projective transformation provides an accurate description of im-
age formation in a camera or in the human eye (but see [17, 18] for a detailed
discussion of the limitations of the projective group as the model of retinal image
formation). The disadvantage is that the projective group is larger than the affine
group. Comparing them, a 3D affine group is characterized by 12 parameters, 5 of
which affect the 3D shape as defined by a 3D rigid motion plus size scaling while
a 3D projective group is characterized by 15 independent parameters, 8 of which
affect the 3D shape as defined by a 3D rigid motion plus size scaling. Note that all
hexahedra with 8 vertices and 6 quadrilateral faces are valid 3D projective trans-
formations of a cube as long as the planarity of quadruples of points in the cube
is preserved. According to the projective definition of shape, the object in Fig. 2.3
should look like a cube. This, obviously, is not the case. The fact that a 3D pro-
jective transformation of a cube does not look like a cube is precisely the reason
why the Ames’s room demo is so striking. According to a projective definition of
shape, there is nothing special in Ames’s distorted room. Ames’s trapezoidal room
has, according to this definition, the same shape as a normal rectangular room. So,
despite the fact that the projective transformation is an essential tool for describing
the relation between the 3D space and the 2D retinal image, the projective group,
like the affine group, cannot provide the foundation needed for the study of human
shape perception.

Shape is sometimes defined by an even more general group of transformations,
namely, the topological group. The topological transformation is a continuous trans-
formation. When used in a 2D space, this transformation is often called “rubber
sheet geometry”, because the rubber can be stretched arbitrarily without tearing or
cutting. The main reason for using a topological group to define shape is that it al-
lows one to identify two different postures of an animal body as the same shape. But
the “price” paid for being able to handle non-rigid objects is very high: for exam-
ple, when a topological definition is used, a needle and a coffee cup have identical
shapes! Both are 3D surfaces with one hole. It is obviously the metric properties
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which allow one to use a cup to drink and a needle to sew. Obviously, the topologi-
cal transformation, like the affine and the projective transformations, is not without
its problems when human shape perception is under study.

There is a way to avoid the excessive generality inherent in the topological trans-
formation (just described) while preserving the ability to handle non-rigid and piece-
wise rigid objects, namely, the shape under consideration can be characterized by
geodesics along a surface. Recall that the shortest path between two points on a
surface is a geodesic curve of the surface. When an animal changes its posture,
all geodesic lines stay the same, or nearly the same. Similarly, when the stem of
a flower bends, the geodesics along its surface stay approximately the same. So,
geodesic lines are much more attractive than topological properties for describing
shapes. There are, however at least two serious shortcomings in using geodesic lines.
First, finding geodesic lines is computationally difficult, so using them beyond toy
examples is impractical. Second, defining a 3D shape by using lines, which are
1D properties, will not work because geodesic lines do not convey any information
about the volumetric aspects of the object. For example, all origami shapes (3D
shapes produced by folding paper) are identical in a “geodesic” definition of their
shape, and they all have the same shape as an unfolded, flat piece of paper.

Clearly, there are multiple problems with all of the conventional definitions in
use for describing shape: some are too restrictive and others too general. Recall
what we really want our definition to do. We want it to exclude random dot patterns
like the pattern shown in Fig. 2.1, but we want it to include non-rigid objects such as
walking animals and human beings. Furthermore, if we do not want to exclude any
objects, whatsoever, can we find a way to assign some degree of shape to all objects,
even to objects with very little or even no shape? It can be done but this requires us
to adopt an entirely new way of thinking about shape. The way we adopted goes
as follows: If shape is to capture permanent (invariant) properties of an object’s
geometry, properties that will allow us to recover the object, recognize it, remember
it and identify its function, shape must refer to the object’s intrinsic characteristics
in a way that does not require comparing one object with other objects. The way to
do this, perhaps the only way, is to define shape by object’s self-similarities.

2.3 Explanation of the New Definition and How We Worked It
out

Recall that all conventional definitions of shape have assumed that all objects have
shape. Intuitively, even commonsensically, something seems to be missing from this
very strong claim. Namely, there are patterns and objects that actually have no shape
at all, or at most, they have very little of this property. Asking someone about the
shape of the pattern of randomly generated points like the pattern shown in Fig. 2.1,
makes little sense. Commonsense tells us that there is little, if any, shape in Fig. 2.1.
We also “know” that shapeless common objects exist in everyday life. A crumpled
piece of paper, a bent paperclip, or a rock before it is shaped by a human hand do not
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Fig. 2.4 Eight
differently-shaped
meaningless objects
characterized by translational
symmetry. The shape of the
cross section is constant for
each cone, but the size is not
necessarily constant. The axis
is orthogonal to the cross
sections and it is a planar
curve or a straight line (from
Pizlo [16])

have what we really mean when we refer to an object’s shape. All of these objects,
as well as random patterns like the pattern in Fig. 2.1, are, and should be, called
“amorphous” or “shapeless.” Why? They are amorphous simply because they are
completely “irregular.”

This observation makes it very clear that the term “shape” refers to the spatial
regularity (self-similarity) possessed by an object. We have all had lots of experi-
ence dealing with such regularities in our everyday life. The bodies of all animals are
mirror-symmetrical. By “mirror-symmetrical” we simply mean that one symmetri-
cal half is the mirror image (the reflection) of the other with respect to the animal’s
plane of symmetry. But there is more to symmetry than mirror symmetry and re-
flection. Limbs of animals, trunks of trees, and stems of flowers are characterized
by what we call “translational symmetry”. An object with translational symmetry is
produced by taking a planar shape and sweeping it through a 3D space using rigid
motion along an axis. During the sweeping process, the size of the cross section may
change. Figure 2.4 shows several examples of objects with translational symmetry.
They are called “Generalized Cones” (GC) [2, 4].

Take one of the 8 objects in Fig. 2.4, say the second from the left in the top row.
All cross sections of this object are similar to each other. The technical meaning of
similar here is that the members of any pair of cross sections in this object are related
to each other by a similarity transformation (rigid motion and size scaling). So, we
can use rigid motion, reflection and size-scaling of the “parts” within the object,
itself, to define the shape of the object as its “spatial self-similarity”(regularity)
instead of using rigid motion, reflection and size-scaling of the entire object in 3D
space to define the shape of this object by comparing it to another object. Put simply,
shape is an intrinsic characteristic of an object because it refers to its self-similarity,
rather than to the similarity of one object to another. A small-scale model of an
airplane has the same shape as a real airplane not merely because the model is
a scaled version of the plane, but because both the model and a real airplane are
characterized by the same symmetries.

Self-similarity of biological forms seems to be their inherent characteristic. It is
the result of the natural process called “growth” (D’Arcy Thompson [24]). Growth
explains why all flowers and plants are characterized by one or more types of sym-
metry. They have the shape they have because of how they grow. All animal bodies
are mirror symmetrical because of the way they move. A dog without a mirror sym-



28 Y. Li et al.

metrical body could not run straight along a straight path. All biological forms have
shape because all of them are symmetrical. Inanimate objects such as rocks and
crumpled papers, which have no trace of symmetry, are obviously shapeless. It is
also important to note that many inanimate objects actually do have shape. All ob-
jects that serve some useful function, such objects as furniture and tools, have one
or more types of symmetry, without which they would probably be dysfunctional.

Symmetry relations among parts of objects imply the presence of invariants of
3D symmetry transformations. These invariants can be represented as the eigenvec-
tors of the 3D transformation matrix. We will analyze their 2D perspective images to
derive the perspective invariants of their symmetries after we derive the formulas for
the eigenvectors characterizing their 3D symmetries. These invariants are needed for
the veridical recovery of 3D shapes. This approach leads naturally to the two essen-
tial aspects that are required to characterize shape perception, namely, (i) properties
of the retinal image that provide visual data about the invariants of symmetries, and
(ii) the kind of a priori knowledge that is needed to produce the 3D shape percept
which provides information about the symmetry transformations characterizing the
self-similarities of the particular object. The reader should appreciate the fact that
our new definition of shape is richer than any of the previous definitions because
our definition uses both invariants and the transformations, whereas all previous
definitions only used invariants.

2.4 Symmetry Groups for 3D Shapes, Their Invariants and
Invariants of the Perspective Projection

Our analytical definition of shape states that the shape of an object refers to all of its
spatially-global symmetries (its self-similarities) as measured by the group of rigid
motions, reflections and size-scaling of the “parts” within the object itself.

Groups of transformations are known to have invariants. Unlike all conventional
approaches to shape, we begin not with invariants of transformations from one ob-
ject to another, but with invariants of transformations of one part of an object to
another part of the same object. This makes sense because we defined 3D shape
as the presence of self-similarity. It is known that a similarity transformation is a
linear transformation and that it can be represented by a matrix. Furthermore, it
is known that eigenvectors are the only invariant vectors of a linear transforma-
tion. It follows that it is natural to look for invariants by analyzing the properties
of the eigenvectors characterizing the transformation matrices. Consider the three
basic symmetries: mirror, translational and rotational. We begin with a symmetrical
shape, whose repeated part is planar, and then extend the results to general symmet-
rical shapes. Some invariants are limited and exist only for the symmetries with a
planar configuration, and the others are general.

Assume that c is a point on a plane π , nX and nY are two perpendicular axes
in π . The normal of π is nZ (see Fig. 2.5). c, nX and nY define a 2D Cartesian
coordinate system, in which c is the origin and nX and nY are the two axes. Let a
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Fig. 2.5 Illustration of a 3D
translation of a point from
one plane to the other

3× 3 matrix A represent this coordinate system

A= (nX nY c) (2.3)

Then any point in π can be expressed as

P =Ap (2.4)

where p = (pX,pY ,1)T in which pX and pY are the Cartesian coordinates of P in
π . Assume that π ′ is the resulting plane after some rigid transformation of π . The
normal of π ′ is n′Z and the Cartesian coordinate system is expressed as

A′ = (n′X n′Y c′
)

(2.5)

The resulting point P after the rigid transformation is obtained as:

P ′ =A′p (2.6)

Combining Eqs. (2.4) and (2.6), we obtain the transformation from the point P to
P ′

P ′ =A′A−1P (2.7)

which means that the transformation from P to P ′ is a 3D affine transformation.
Next, we use A and A′ to define the three types of symmetries, translational, mir-

ror and rotational, and identify the invariants for those symmetry transformations.

(a) If nX = n′X , the transformation from π to π ′ is a translational symmetry (see
Fig. 2.6a). The translation axis (the red curve in Fig. 2.6a) is a planar curve and
nX coincides with the normal of the plane containing the axis. If the translation
axis is not a planar curve, the transformation is a mixture of a translational
symmetry and a rotational symmetry. It is easy to prove that nX is one of the
eigenvectors of the transformation matrix A′A−1. Since nX is constant and is
only determined by the plane in which the translation axis resides (see Fig. 2.6a),
nX is an invariant of the projective transformation from one cross section to
another.
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(b) If nX = n′X and cc′ bisects the angle formed by nZ and n′Z , the transformation
from π to π ′ is a mirror symmetry (see Fig. 2.6b). Compared with the trans-
lational symmetry, an additional constraint is added in the mirror symmetry. It
follows that a mirror symmetry with a planar configuration is a special case of
the translational symmetry. The fact that cc′ bisects the angle formed by nZ and
n′Z is equivalent to the fact that a symmetry plane (the plane in red in Fig. 2.6b)
bisects the planes π to π ′. The normal of the symmetry plane is nY − n′Y . Both
nX and nY − n′Y are the eigenvectors of A′A−1.

(c) If c = c′, nZ = n′Z and nX �=′X , the transformation from π to π ′ is a rotational
symmetry (see Fig. 2.6c). It is easy to prove that c is an eigenvector of A′A−1.
Since c is the rotation center of a planar rotationally symmetrical object and
it is a fixed point, c is an invariant of a rotationally symmetric transformation.
The other two eigenvectors of A′A−1 are nX + inY and nX − inY . They are not
invariant because nX or nY could be an arbitrary direction (or vector) on the
plane π . However, their cross product nZ is. The geometrical application of the
cross product (nZ) will be discussed in the next part.

Up to this point, we characterized the invariants of the three types of symme-
tries in 3D space. This is a transformation from one part of an object to another.
We are also interested in the invariants of 2D perspective images of 3D symme-
try relations—the invariants of the transformation from the image of one part of
an object to an image of another part of the same object. This will be essential for
detecting 3D symmetries in perspective images and for recovering 3D symmetrical
shapes from perspective images.

Assume that a pair of symmetric corresponding points P and P ′ in π and π ′ are
projected to an image through a camera and that the camera matrix is K . A camera
matrix is an upper triangular 3× 3 matrix, consisting of a camera’s intrinsic param-
eters, such as its focal length and principal point. Then, the images of P and P ′
are

v = KAp (2.8)

v′ = KA′p (2.9)

Note that the image points v and v′ are expressed in homogeneous coordinates and
they are 3-element vectors (refer to [9], for the details of differences between Eu-
clidean coordinates and homogeneous coordinates). Combining Eqs. (2.8) and (2.9),
we obtain

v′ =KA′A−1K−1v (2.10)

Equation (2.10) implies that the relation between images of the planes π to π ′ is a
2D projective transformation. By analyzing the eigenvectors of KA′A−1K−1, we
look for the invariants for the above three types of symmetries in their 2D perspec-
tive images. It is known that an eigenvector has the following property: if m is an
eigenvector of A′A−1, then Km is an eigenvector of KA′A−1K−1. Therefore, it is
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easy to identify the invariants in the 2D image from the invariants of 3D symme-
try transformations. Next, we list the invariants in the 2D image and explain their
geometrical meaning.

(a) In the case of translational symmetry, since nX is an invariant vector of the
symmetry transformation in 3D, KnX is an invariant of the projective transfor-
mation from one perspective image of a cross section to a perspective image of
another cross section. Geometrically, KnX represents the vanishing point of the
lines that are parallel to nX . This means that for a 2D projective transformation
between the images of any two cross sections, the vanishing point is projected to
itself (the invariant point under projective transformation). Identifying the van-
ishing point KnX should help recover translationally symmetrical 3D shapes
from their images [23].

(b) In the case of mirror symmetry, nX and nY −n′Y are the invariant eigenvectors of
A′A−1. So are KnX and K(nY − n′Y ) for KA′A−1K−1. KnX and K(nY − n′Y )
are the vanishing points for those lines that are parallel to nX and nY − n′Y ,
respectively. In particular, K(nY − n′Y ) is the vanishing point for those lines
that are perpendicular to the symmetry plane. Because K(nY − n′Y ) is deter-
mined by the normal of the symmetry plane, it is independent of the orientation
of π or π ′. This means that K(nY − n′Y ) can be used with mirror-symmetrical
objects whose symmetrical halves are not planar. For example, for the poly-
hedron in Fig. 2.6e, its lateral side is non-planar and it consists of three pla-
nar faces. From the image of each face and of its symmetrical counterpart, we
compute a 2D projective transformation matrix. For the three matrices repre-
senting the relations between images of the three pairs of symmetrical faces,
K(nY −n′Y ) is their common eigenvector. In a perspective image, once the van-
ishing point K(nY − n′Y ) is identified and the symmetry correspondences in
the image are established, the shape of a 3D mirror symmetrical object can
be uniquely determined [14]. Because KnX and K(nY − n′Y ) are invariant,
their cross product K−T ((nY − n′Y )× nX), representing a line passing through
KnX and K(nY − n′Y ), is also invariant under the projective transformation
KA′A−1K−1.1 This means that any point on this line projects onto this line
again. The points KnX and K(nY − n′Y ) are two special points on this line be-
cause they project onto themselves.

(c) In the case of rotational symmetry, Kc is the invariant eigenvector of
KA′A−1K−1. It is the image of c (the image of the rotation center) and it is
an invariant point under the projective transformation between the images of a
repeated part of a rotationally symmetrical shape. The other two eigenvectors
of KA′A−1K−1, K(nX + inY ) and K(nX − inY ) are not invariant. But, their
cross product K−T nZ is and it represents an invariant line. nZ is the direction of
the rotation axis and it is fixed for a rotationally symmetrical shape. K−T nZ is

1The magnitude of a vector is unimportant in a homogeneous coordinate system. So, we can ignore
det(K), which is a constant, from the cross product det(K)K−T ((nY − n′Y ) × nX) of KnX and
K(nY − n′Y ).
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Fig. 2.6 Three types of symmetries and their symmetry transformations. (a) Translational sym-
metry. The red planar curve represents the translation axis. (b) Mirror symmetry. The red plane
represents the symmetry plane. (c) Rotational symmetry. c is the rotation center. (d) A translational
symmetrical 3D shape with a quadrilateral cross sections. (e) A mirror-symmetrical 3D shape that
consists of three pairs of mirror-symmetrical planes. (f) A rotationally symmetrical 3D shape that
consists of three planes

more general than the invariant Kc and it can be applied to the non-planar rota-
tional shape like the one in Fig. 2.6f. K−T nZ is an invariant line for the plane
A1A2A3A4A5 and it is also the invariant line for the planes B1B2B3B4B5 and
C1C2C3C4C5.

It is known that at least four points and their correspondences are needed to
compute the 2D projective transformation matrix. Therefore, four planar points “out
there” and their symmetrical counterparts are needed to identify the invariance in a
perspective image. The invariants for the three types of symmetries are listed in
Table 2.1. Those invariants representing lines are marked by ∗.

Table 2.1 shows the invariants of symmetry transformations under a perspective
projection. Because an orthographic projection is a special case of a perspective
projection, these equations can also be applied to the orthographic projection after
making two changes in the camera matrix K , and the matrices A and A′. First, in the
case of an orthographic projection, the principal point is undefined. So, we set the
elements in the camera matrix K that represent the principal points to zero. Second,
the last row in vectors A and A′ is replaced by (0,0,1), which means that the change
of Z values of vertices doesn’t change their image. As a result, KA′A−1K−1 has
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Table 2.1 The invariants for the three types of symmetries

Type Planar configuration Non-planar
configuration

Translation KnX KnX

Mirror KnX,K(nY − n′Y ), K−T ((nY − n′Y )× nX)
∗ K(nY − n′Y )

Rotation Kc, K−T n∗Z K−T n∗Z

the same format as A and A′, in which the last row vector is (0,0,1). It follows that
the symmetry transformation under an orthographic projection is a 2D affine trans-
formation, instead of a 2D projective transformation. For an affine transformation,
three points and their correspondences are enough to determine the transformation
matrix and then identify the invariants. It follows that in the case of an orthographic
projection, co-planarity of points or curves is not required.

2.5 Inferring 3D Shape from a 3D Object

With a real object, its shape (its symmetries) must be inferred (abstracted). The
symmetries are not given. The best (perhaps the only) way to do this is by using
a Bayesian formalism and a closely-related concept called “Minimum Description
Length” [11]. This method will be analogous to the “generative” model formulated
by Feldman & Singh [8] and used for their 2D medial axis transform (identifica-
tion of a “shape skeleton”). The main differences are that our model applies to 3D
shapes and it handles several 3D symmetries. We start by formulating the problem
as a Bayesian inference [10]. Our task is to estimate the 3D symmetries (we call
this the “shape” of the object) that best describe a given 3D “object”. This means
that we try to maximize the posterior probability, p(shape|object). Take a general-
ized cone like the one on the top-left of Fig. 2.4. This 3D object has two possible
descriptions, one based on translational symmetry and the other based on mirror
symmetry (this object has both symmetries). Translational symmetry seems to cap-
ture its 3D structure better, so the maximum of the posterior will probably be higher
when translational symmetry serves as the shape description than when the descrip-
tion is based on its mirror symmetry. The planar cross section (pentagon) of this
Generalized Cone (GC) is a simple 2D figure whose contour information is fairly
low [7]. The same is true with the axis of this GC, which is a straight-line segment.
It follows that the prior, p(shape), for translational symmetry will be high in this
case. This object does not have any random perturbations, which means that the
likelihood, p(object|shape), will be equal to 1.0. As a result, the maximum of the
posterior will also be high:

p(shape|object)= c · p(object|shape) · p(shape) (2.11)

Note that what we call “an object”, Feldman & Singh [8] call a “shape”, but this
difference is only terminological. By taking the negative logarithm of both sides
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of (2.11), we can express our problem in terms of the description length, DL:

DL(shape|object)=DL(object|shape)+DL(shape)+ c′ (2.12)

Now we can look for the shortest description length, DL(shape|object), instead of
looking for a maximum of the posterior probability. The “shape” solution is the
same.

If we consider the maximum of the posterior, p(shape|object), for mirror sym-
metry, we will get a smaller value (a more complex description) because mirror
symmetry will lead to lower “compression” of the shape of this object. Mirror sym-
metry will not “know” about the simplicity of its cross section. The only redundancy
represented by mirror symmetry is the fact that one half is the same as the other half.
Note that this is less obvious than it sounds because the actual prior, p(shape), in
this case, depends on how we describe one half of this mirror-symmetrical object.
One could do this by using a large number of points on the surface, or by using
straight lines, the object’s contours, interpolated by planar surface patches. Mirror
symmetry might become a better description of an object like the one on the top-left
in Fig. 2.4, when the mirror-symmetrical cross-section becomes less regular. This
can be done by introducing random perturbation of the object’s contours, while
keeping these perturbations mirror-symmetrical. Such perturbations will be counted
as random noise in the likelihood, p(object|shape), when translational symmetry,
but not when mirror symmetry is used. This will lower the value of the posterior.
It should be obvious that the formalisms (2.11) and (2.12) allow both the object’s
regularities (symmetries) and random perturbations to be handled naturally. In other
words, all objects, no matter how irregular, can be described in this way. Less regu-
lar objects will have more complex descriptions and the maximum of the posterior,
p(shape|object), ranging between 0 and 1, can be used as a measure of the object’s
“shapeness”.

In this approach, similarities among different shapes can be evaluated by simply
comparing the objects’ symmetries. In Sect. 2.2, we discussed how metric symme-
tries can be generalized to affine and projective groups. Recall that all symmetries
are defined by the underlying groups of transformations, where “group” has a spe-
cific meaning. Group refers to a set of transformations that satisfies the group’s
axioms, like closure and associativity. It follows that the change from one “shape”
to another (where “shape” means a description of an object’s symmetries, using a
particular symmetry group) will be represented by a transformation of its character-
istics (cross section, axis) by using one of the groups, namely, Euclidean, similarity,
affine, projective or topological. At this point it is not clear whether this approach
will naturally lead to a one-dimensional dissimilarity metric representing the cur-
rently conventional way of thinking about similarity in cognitive psychology (e.g.,
[1]), or whether it will turn out to be a parameterized (geometrical) measure making
explicit use of the concepts of transformation groups. After all, when we compare a
pizza box to a shoebox, we may be more comfortable saying that “they have differ-
ent aspect ratios” than that their “dissimilarity is about 7.4”.
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2.6 Computational and Psychophysical Implications of the New
Definition

Now that we have explained both geometrical and algebraic characteristics of shape
based on symmetry, we will discuss several interesting implications of our new def-
inition. Two of these implications were anticipated in our recent papers (Sects. 2.6.1
and 2.6.4), and two are new (Sects. 2.6.2 and 2.6.3).

2.6.1 Veridical Perception of 3D Shapes

Recovering a 3D shape from one or more 2D retinal images is an ill-posed inverse
problem [15, 20]. This is the case with all difficult inverse problems, so producing a
unique and correct interpretation requires the application of constraints to the family
of possible solutions. When a 3D symmetry constraint is applied to a single 2D per-
spective image of a 3D shape, the 3D interpretation is unique and always very close
to veridical! The shape recovered is said to be “veridical” because it is the same as
the object’s shape “out there”. During the last 6 years we provided empirical, both
simulation and psychophysical evidence, showing how symmetry leads to veridi-
cal 3D shape recovery. This includes the recovery of 3D mirror-symmetrical shapes
from: (i) a single image [12], and (ii) a pair of images [13], as well as (iii) the recov-
ery of nearly symmetrical shapes [21] and (iv) 3D shapes characterized by transla-
tional symmetry [23]. The claim that 3D shapes can be, and actually are, perceived
veridically is completely new [19] and until very recently, the “veridical perception
of shape” was considered by most shape researchers to be “science fiction”, some-
thing that does not exist, never has existed, and never will exist. This conventional
“wisdom” was based on hundreds of years of reporting failures to achieve shape
constancy in the laboratory. Everyone believed that human shape perception could
never be perfect or even nearly so. We now know that all of these reported failures
came about because everybody was studying the perception of depth, not the percep-
tion of shape [16]. Once shape is defined properly, by it symmetries, this confusion
is removed and a “miracle” ensues. Shape perception is perfect when the viewing
conditions and psychophysical measurements are done correctly. How this can be
done was explained in our papers (referenced just above) in which we described
computational models that use the mathematical properties of symmetry to recover
3D shape and presented extensive psychophysical data on 3D shape recovery and
on shape constancy.

2.6.2 Shapes of Non-rigid Objects

When shape is defined by self-similarity, rather than by the similarity of one ob-
ject to another, it becomes much easier to talk about the shapes of “non-rigid” and



36 Y. Li et al.

Fig. 2.7 Three snapshots
from a range of articulations
of non-rigid objects:
Top—the axis of a GC is
changing, but the shape of the
cross-section is the same (this
looks like a gymnast on
uneven bars at the Olympic
Games). Middle—the shape
of the cross-section is
changing, but the axis is not
(this looks like a flying bird).
Bottom—the local size of the
cross-section is changing, but
the shape of the cross-section
and the axis of the GC is
constant (this looks like a
snake that swallowed a large
belly-bulging prey)

“piece-wise rigid” objects. If an object is non-rigid, like the stem of a flower, bend-
ing the stem does not remove its translational symmetry. All of the flower’s cross-
sections are still circular. Bending only changes the curvature of the axis of the
flower’s stem. If an object is piece-wise rigid, like the body of a dog, changes in the
articulations of its legs distorts the mirror symmetry of the dog’s body, but it does
not eliminate the symmetry altogether. After all, the dog still has two legs on the
right side of his body and two legs on the left side. This obviously applies as well
to your body as to your dog’s. Our new analytical definition of shape removes the
fundamental difficulty inherent in all other conventional definitions of shape. None
of them can deal with the non-rigidity of objects, objects that are both common and
often very important throughout our natural environment.

Consider some examples (Fig. 2.7). Three snapshots of non-rigid, unfamiliar ob-
jects are shown. It is easy to see that the three objects in a given row have something
in common. They share symmetries. The objects on top have the same shape of their
cross-sections, the objects in the middle have the same axis, and the objects at the
bottom have the same axis as well as the same shape of their cross-sections. If an
observer is able to see the similarities of the symmetries of an object despite the non-
rigidity of this object, he may be able to conclude that the shape of the object being
viewed is constant despite its non-rigidity. This is what we mean by perceiving the
shape of a non-rigid object.

2.6.3 Symmetry as an Objective, but Informative, Prior

“Objective priors” have a special status in Bayesian methods used to solve inverse
problems, probably simply because “objective” sounds more reliable and more sci-
entific than “subjective”. But there is another pair of terms for these two types of
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priors, namely, “uninformative” and “informative”. Uninformative priors are objec-
tive in the sense that these priors are derived from some basic statistical and mathe-
matical principles, rather than from some special domain such as knowledge about
lung cancer or about earthquakes. Such domain specific knowledge is less interest-
ing because it results in a Bayesian inference method that is specific to a particular
domain. Also, it is often difficult to quantify this kind of subjective prior. If the prior
is unreliable, the posterior will also be unreliable. The good news in the conven-
tional approach, is that there is an objective way to learn the subjective prior. One
begins with an objective, uninformative prior and starts collecting evidence. The
posterior computed after the first piece of evidence is acquired is used as a prior
for the second piece of evidence. Bayesian inference, including updating priors is
optimal in the sense that it extracts all relevant information contained in the data.
By the time that the learning has been completed, we have a very good, informative
prior that is based on hard data without any “subjective” guessing.

With shape recovery, however, we are presented with a unique situation in which
an objective prior is actually informative. It seems likely that this unique situation
only applies to a symmetry prior. No other prior has this unique characteristic. All
other priors in all other inverse problems, can be either objective or informative.
This fact, alone, is responsible both for the special and unique status of shape in
visual perception and for the fact that shapes are perceived veridically (see [16], for
the uniqueness of shape in visual perception). Once we realize that all important ob-
jects are symmetrical, the informative prior of 3D symmetry becomes an objective
prior because it refers to mathematical invariants, specifically to invariants of trans-
formation groups. There is no need, whatsoever, to learn group invariants from ex-
amples. We can derive them analytically, and once the invariants are derived, we can
prove their invariance and examine the necessary and sufficient conditions for them
to operate. Symmetries are also informative because they represent the fundamental
(permanent, invariant, and intrinsic) characteristics of the 3D objects “out there”.
So, once we know that all objects are symmetrical, it makes no sense, whatsoever,
to start with any uninformative priors because symmetry, alone, is sufficiently infor-
mative, and once symmetry is used as a prior, it also makes no sense, whatsoever,
to update it. How could you improve (update) a definition of a mirror symmetry?
It simply cannot be done. Note that the symmetry prior can be applied to infinitely
many shapes in a finite amount of time, and this includes unfamiliar shapes and even
the shapes of non-existent objects.

2.6.4 Shape Constancy: View-Invariant vs. View-Dependent Shape
Perception

Note that shape constancy is typically tested with novel (unfamiliar) objects in order
to avoid allowing familiarity to influence the shape perceived. All studies of shape
constancy prior to ours focused efforts on determining the availability of invariant
properties in the 2D image (see [16], for a review). If invariants cannot be extracted
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reliably from the 2D retinal image, shape constancy fails or, at least, degrades when
the size of the change of the viewing direction increases. This result encouraged
investigators to accept what is known as the “view-point dependence of shape per-
ception”. Before we explain what is missing in this view-point dependent view of
shape perception, we will remind the reader about a basic aspect of conventional
shape constancy methodology. In a typical experiment of this kind, the subject is
shown the same object twice, with the second viewing direction different from the
first by an “angle α”. The angle α refers to the rotation of the object in depth, that
is, a rotation around an axis that is orthogonal to the line of sight. Only then will the
shape of the 2D retinal image change, and a change in the shape of the retinal image
is the necessary condition for studying shape constancy. When the object is rotated
around the line of sight, not orthogonal to it, the 2D retinal shape does not change;
only its 2D orientation changes, so such an experiment cannot have any bearing on
the shape constancy phenomenon.

Appropriate methodology for performing experiments to test shape constancy
introduces a complication that has never been discussed explicitly in the past. For
large values of α, shape constancy may be difficult to achieve because some parts
of an opaque object that were visible in the first presentation, are not visible after
the object is rotated, and new parts may become visible in the second presenta-
tion. So, shape constancy, in such cases, may not be perfect for a trivial reason: the
relevant information was simply not available to the observer. But if the object is
symmetrical, or if it is composed of symmetrical parts, as it was in Biederman &
Gerhardstein’s [3] experiment, it may be possible to recover the entire 3D shape,
including the back, invisible parts. In such cases, shape constancy might be perfect
because the entire 3D shape could be recovered correctly in both presentations. This
problem has not been studied in the past because there was no computational theory
that could predict when an entire shape, back as well as front, can be recovered. We
now know that the symmetry of an object is the key concept involved in recovering
the invisible backs of 3D objects. These objects must have a sufficient degree of re-
dundancy (regularity and self-similarity) to permit an observer to correctly “guess”
(recover) the shape of the hidden part. We already have a computational model that
can usually recover the entire 3D shape of a mirror-symmetrical object [12]. It can
also recover a translationally symmetrical object [23]. However, the entire shape
may not be recovered, even if the object is symmetrical, if the object does not have
a sufficient degree of regularity. This is precisely what happens with irregular ob-
jects like symmetrical polyhedra, whose faces are not planar [5] or with symmetrical
irregular “potatoes” and “bell peppers” [6]. It follows that shape constancy is actu-
ally much more concerned with invariants in the 3D representation, after the 3D
shape is recovered, than with the presence of invariants in the 2D retinal image. For
those symmetrical objects, whose entire shape can be recovered, shape constancy
will not be affected by the degree of rotation in depth. Put simply, performance will
be view-invariant. For objects, like irregular polyhedra, or potatoes and bell pep-
pers, whose back parts cannot be recovered, performance will be view-dependent.
This analysis should clarify, once and for all, the apparent controversy between the
proponents of both theories. The key to understanding what is going on resides in
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the recovery of 3D shapes rather than in the presence of cues or invariants in the 2D
retinal image.

2.7 Conclusion

In the past, the only thing that everyone agreed about when trying to define shape
was that shape refers to the spatially-global geometrical characteristics of an ob-
ject or a figure. Once one appreciates that all important objects in our natural
environment are symmetrical, it follows that any meaningful definition of shape
must be based on the concept of symmetry. Imagine how difficult it would be to
describe spatially-global geometrical characteristics of a symmetrical object ade-
quately without mentioning its symmetry? It is probably impossible to do this! But
using symmetry to describe an object cannot be the whole story because a definition
of shape should go beyond a mere description of the object’s geometry. The con-
cept called “shape” is used in many ways. We use it to identify objects, we use it to
compare similar objects, we use it to remember and to recognize objects, we use it
to infer an object’s functions, and we use it to identify the permanence of objects in
the presence of non-rigidities. We conclude by claiming that all of these things can
be done only when shape is defined by the object’s symmetries, as we explained in
detail above. Furthermore, all of these things can be done very well, and they can
be done in a very principled way because “symmetry groups”, with their concepts
of transformations and invariants, provide the foundation of large parts of mathe-
matics. By excluding only the very few objects in our natural environment that are
completely devoid of symmetries, you can use our new definition of shape to accom-
plish a great deal more than had been possible before we explained the significance
and utility of symmetry in the visual perception of shape. You will have to use ex-
perience and learning with irregular rocks and crumpled papers to discriminate their
shapes, but with all other shapes, you can depend entirely on symmetry.
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Chapter 3
Flux Graphs for 2D Shape Analysis

Morteza Rezanejad and Kaleem Siddiqi

3.1 Introduction

Medial representations, introduced by Blum [2], simultaneously capture properties
of an object’s outline and its interior. Abstractions of medial representations into
graphs have become popular in the computer vision literature and have successfully
been applied to view-based object recognition [12, 14]. Recent extensions and ap-
plications include alterations of medial graphs to capture salient object parts [8] and
the use of medial fragments for perceptual grouping to form object part hypotheses
directly from images [11].

Motivated by the success of medial representations, this chapter revisits a quan-
tity related to medial axis computations—the limiting behavior of the average out-
ward flux (AOF) of the gradient of the Euclidean distance function to the object’s
boundary as the region through which it is computed is shrunk [4]. We exploit the
property that at skeletal points the AOF reveals the object angle and thus can be
viewed as a scalar descriptor from which the complete boundary can be recon-
structed. We then introduce a novel measure of salience for a skeletal point by
combining the AOF with a check on uniqueness of the inscribed medial disk to the
host skeletal branch. The simplified skeletons are used to derive a directed graph-
based representation of the object which we term the flux graph. Our experiments
show that flux graphs are a good deal simpler than competing skeletal graphs such
as shock graphs, by a number of standard complexity measures, with little loss in
representational power. Furthermore, they yield competitive performance in object
recognition experiments.

We begin by discussing mathematical properties of the geometry of the medial
axis of an object and by introducing the appropriate notation.
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Fig. 3.1 Local geometry of a maximal inscribed disk centered at the skeletal point p with radius
r and with object angle θ . The maximal inscribed disk touches the boundary at two points b±1

(Π(p)= {b+1,b−1}) (adapted from [13])

Definition 3.1 Assume an n-dimensional object denoted by Ω with its boundary
given by ∂Ω ∈ R

n. A closed disk D ∈ R
n is a maximal inscribed disk in Ω if

D ⊆ Ω but for any disk D′ such that D ⊂ D′, the relationship D′ ⊆ Ω does not
hold.

Definition 3.2 The Blum medial locus or skeleton, denoted by Sk(Ω), is the locus
of centers of all maximal inscribed disks in ∂Ω .

As illustrated in Fig. 3.1, a skeletal point is characterized by its location p, the
maximal inscribed disk radius r , the object angle θ , the direction of the unit tangent
vector T, and the object angle θ given by arccos(− dr

ds
), where s is the arc length

along a branch of the medial axis. The projection Π(p) is the set of closest points on

the boundary ∂Ω to p, i.e., Π(p)
�= {q ∈ ∂Ω : ‖p− q‖ =min{‖p− q‖∀q ∈ ∂Ω}}.

For a skeletal point p the projection set Π(p) is the set of points on the boundary
touched by the maximal inscribed disk centered at p (the points b±1 in Fig. 3.1).
According to the “Maxwell set” definition of the medial locus [10], each skeletal
point p ∈ Sk(Ω) must have at least two closest boundary points (|ΠΩ(p)| ≥ 2).

Topologically Sk(Ω) consists a set of branches that join to each other at branch
points to form the complete skeleton. A skeletal branch denoted by χ is a set of con-
tiguous regular points from the skeleton that lie between a pair of junction points, a
pair of end points or an end point and a junction point. As shown by Dimitrov et al.
in [4] these three classes of points can be analyzed by considering the behavior of
the average outward flux of the gradient of the Euclidean distance function to the

boundary of a 2D object, given by
∫
∂R〈q̇,N〉ds∫

∂R ds
, when shrunk to a circular neighbor-

hood, where q̇ = ∇D [4], with D the Euclidean distance function to the object’s
boundary. In particular:

1. p is a regular point if the maximal inscribed disk at p touches the boundary at
two corresponding boundary points such that |ΠΩ(p)| = 2. The computed AOF
at a regular point p is given by limε→0

Fε(p)
2πε =− 2

π
sin θ .

2. p is an end point if there exists δ (0 < δ < r) such that for any ε (0 < ε < δ) the
circle centered at p with radius ε intersects Sk(Ω) just at a single point (r is the
radius of the maximal inscribed disk at p). The computed AOF at an end point p
is given by limε→0

Fε(P )
2πε =− 1

π
(sin θP − θP ).
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Fig. 3.2 Different types of skeletal points are illustrated using segments of the skeleton Sk(Ω)

of a given shape Ω . Left: A regular skeletal point. Middle: An end point. Right: A junction point.
(Adapted from [4])

3. p is a junction point if ΠΩ(p) has three or more corresponding closest boundary
points. Generically a junction point has degree 3. All other branch points are
unstable. The computed AOF at a junction point p is given by limε→0

Fε(P )
2πε =

− 1
π

∑n
i=1 sin θi .

These different classes of skeletal points are shown in Fig. 3.2.
We now enumerate the main contributions of this chapter. First, previous ap-

proaches to compute flux-based skeletons and use them for boundary representation
are not entirely complete. Section 3.2 addresses these limitations and presents a
method that gives more complete boundary reconstruction results. Second, a new
method for skeletal simplification which in turn leads to a simplified graph repre-
sentation is presented in Sect. 3.3. Underlying this simplification is a measure of
saliency that combines a notion of uniqueness of the inscribed medial disk to the
host branch with the limiting AOF value.

3.2 Full Boundary Reconstruction

According to the Maxwell set definition of the medial axis, each point on the skele-
ton has two or more corresponding boundary points. Therefore, given a mapping
between boundary points to skeletal points, it is possible to invert that mapping to
reconstruct the boundary purely from skeletal points and their properties. Dimitrov
et al. [4] attempted to do this by exploiting the relationship between regular points
of the medial axis and the object angle. In this section, we will review the basic
algorithm for doing this and then extend it to obtain a more complete boundary
reconstruction by adding the cases of end points and junction points.

3.2.1 Boundary Representation Through Regular Points
with First-Order Approximation of the Tangent Vector

Taking a regular point p on the skeleton, Dimitrov et al. outlined the reverse trans-
form to obtain corresponding boundary points by b±1 = p+rRot(±θ)Tp. To recon-
struct b±1 from a regular point on a parametrized skeleton, the following parameters
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Fig. 3.3 Top row: Outlines of binary images of a dog, a profile and a hand object, along with their
derived skeletons using flux based skeletonization. Bottom row: Reconstructed boundary points
(filled black disks) overlayed on the original outlines, using the method of Dimitrov et al. [4]

of a skeletal point ought to be numerically computed: the coordinates of the point
p, the radius value r , the object angle θ , and the unit tangent vector Tp. During the
skeletonization process, a parametrized discrete skeleton is computed where each
skeletal point includes its position p, the radius at that point r , and the limiting AOF
value. For the object angle θ , a numerical estimate is obtained based on the rela-
tionship for regular skeletal points: θ = arcsin

(−Fε(P )
4ε

)
. Finally, the tangent vector

is estimated as the slope of the line that connects the prior (discrete) skeletal point
p−1 to the subsequent (discrete) skeletal point p+1, i.e., Tp = p+1−p−1

‖p+1−p−1‖ . Figure 3.3
shows results from these skeletonization and boundary reconstruction algorithms,
using the original implementations.

3.2.2 Full Boundary Reconstruction

As is evident from the results in Fig. 3.3, the reconstruction of regular points, though
promising, does not provide a complete representation of the boundary. In this sub-
section, we extend this approach by considering all types of skeletal points and pro-
viding a better numerical approximation of the parameters required for reconstruc-
tion. To achieve this aim, three limitations of the boundary reconstruction method
are considered and addressed:

1. Sensitivity of first-order approximation of tangent estimation: The two point
stencil computation of the tangent vector is very sensitive to discretization ef-
fects along the skeleton, and can often fail at regular points. To mitigate these
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Fig. 3.4 Top row: Along with the reconstructed points in Fig. 3.3 shown with black disks, newly
reconstructed points resulting from the improved tangent estimation are shown with blue disks.
Second row: Along with the reconstructed points in Fig. 3.3 shown with black disks, newly re-
constructed boundary circular segments corresponding to end points are shown with green disks.
Third row: Along with the reconstructed points in Fig. 3.3 shown with black disks, newly recon-
structed boundary points corresponding to junction points are shown with violet disks. Bottom row:
Along with reconstructed points in Fig. 3.3 shown with black disks, all the additional reconstructed
boundary points are shown in orange

numerical errors, we deploy higher order methods for approximating the unit
tangent. For those medial loci for which the two point method fails, we use a
four point (discrete) stencil approximation [1] given by Tp = 2

3

( p+1−p−1
‖p+1−p−1‖

) +
1
3

( P+2−P−2
‖P+2−P−2‖

)
where p+2 and p−2 represent the subsequent and the previous

skeletal points to p+1 and p−1, respectively. Using the second-order of approxi-
mation of tangent estimation results in a number of newly reconstructed bound-
ary points (see Fig. 3.4, top row).
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2. Boundary points that map to an end point: The boundary reconstruction method
by Dimitrov et al. [3] does not explicitly consider the other two types of skeletal
points (end points and junction points). This decision results in a number of
circular segments missing from the boundary, which map to the end points. We
present a numerical approach to recover such missing boundary points. Assume
p is an end point such as the one shown in Fig. 3.2. Then, there would be a
circular arc segment from the boundary corresponding to this skeletal point. The
osculating disk at p touches the boundary along that circular segment, and the
limiting tangent vector to the skeleton at that point bisects the angle that subtends
the circular arc. Let γ represent the curve of that circular arc segment, then

γ : I →Ω (3.1)

γ (θ) = p+ r Rot(θ)Tp (3.2)

where I is an interval I = [−θp, θp]. The coordinates of the point p, and the ra-
dius value r are parameters that are computed during the skeletonization process.
To compute γ , the following parameters need to be computed numerically other
than p, and r : the object angle θp, and the unit tangent vector Tp. To compute
the object angle, we use the end point equation Fε(P )

2πε = − 1
π
(sin θp − θp). For

the tangent vector TP , we simply use the tangent estimation of the (discrete)
skeletal point prior to the end point, i.e., Tp = Tp−1 . Figure 3.4 (second row)
shows boundary reconstruction results with the newly found circular boundary
segments corresponding to end points shown in green.

3. Boundary points that map to a junction point: Junction points are also not in-
cluded in the initial boundary reconstruction method by Dimitrov et al. [3]. We
compute the corresponding boundary points of a junction point the same way that
we compute the corresponding boundary points of a regular point, with the dif-
ference that the tangent vectors near junction points are approximated by those at
the prior points on the skeleton. The rest of the procedure is the same as that for
computing boundary points for a regular point. Figure 3.4 (third row) shows the
improvement with the newly found boundary points corresponding to junction
points shown in violet.

The contribution of this approach to reconstructing boundary points is threefold:
improved approximation of tangents for many regular points of the skeleton, the
computing of circular segments that correspond to end points of the skeleton, and
the computing of extra boundary points from junction points. In Fig. 3.4 (bottom
row), the additional skeletal points added by these steps are shown in orange, which
together with the original reconstructed points demonstrate a far more complete rep-
resentation of the boundary (compare with Fig. 3.3). The remaining gaps between
the reconstructed boundary points can be attributed to the fact that they are map-
pings of discretely sampled skeletal points.
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Fig. 3.5 A part of the dog shape is shown with maximal inscribed disks corresponding to unique
and non-unique skeletal points. The maximal inscribed disk centered at p1(∈ χ1) does not intersect
with any maximal inscribed disk from branches other than χ1 so p1 is a unique skeletal point. In
contrast, p2(∈ χ1) is not a unique skeletal point because the maximal inscribed disk centered at
p2(∈ χ1) intersects with the maximal inscribed disk centered at p3(∈ χ2)

3.3 Salient Parts of the Medial Axis

We now build on the previous results to obtain a novel measure of saliency for
medial axis points that combines two criteria: (1) The object angle, which by the
characterization of [4] is obtained directly from the computation of the AOF and
(2) A notion of uniqueness of the maximal inscribed disk at a skeletal point to the
host branch.

Definition 3.3 A unique skeletal point has the property that the maximal inscribed
disk centered at it does not intersect the maximal inscribed disk associated with any
skeletal point on any other branch.

Whereas the object angle has often been used as a criterion for saliency [13], the
second notion is novel. The intuition here is that unique skeletal points are salient
because without them a significant portion of the object’s area would not be repre-
sented. Examples of unique and non-unique skeletal points are shown in Fig. 3.5.

As explained in Sect. 3.1, the limiting average outward flux at a regular skeletal
point p is computed by: limε→0

Fε(p)
2πε =− 2

π
sinα. This equation determines a rela-

tionship between the AOF and the object angle. The bigger the AOF, the higher the
object angle and the more likely the shape silhouette is to be elongated locally. Since
elongated parts admit a simple and stable medial axis structure, skeletal points with
high AOF are salient.

3.3.1 Simplifying the Skeleton

We combine these two measures of saliency to simplify flux based skeletons using
the following procedure: when the considered skeletal point is unique or its nor-
malized AOF is greater than a certain threshold, the skeletal point is retained. In
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Fig. 3.6 Left: The skeletal points found to be unique are shown in black on the medial axis of a dog
example. Middle: Normalized flux values of a skeleton are shown in a range starting from white
(minimum AOF) and ending in black (maximum AOF). Right: Several salient segments labeled as
ti are shown as the result of simplifying the medial axis by retaining only those skeletal points that
are unique or have AOF above a threshold

our experiments, we use the threshold τ = 0.9045 for the AOF, which means that
all non-unique skeletal points with object angle α greater than about 60° will be
retained in the simplified skeleton. Figure 3.6 illustrates the result of applying this
simplification procedure on the dog shape.

3.4 Flux Graphs

Our main motivation for simplifying the flux-based skeleton is to extract a graph
representation which is simpler than but otherwise as complete and effective as pop-
ular existing approaches such as the shock graph [14] and the bone graph [8]. We
propose a “Flux Graph” that uses the simplification process to describe a shape as a
set of connected parts while preserving the topology of the original skeleton.

3.4.1 Nodes and Edges

The simplification process can result in a number of skeletal fragments, as illustrated
by the example in Fig. 3.6. Not all these fragments described distinct parts, rather,
those that share a significant portion of their volumes (obtained as the union of the
associated medial disks) and are in close proximity of one another can be combined
via a merging process. The segments which remain at the end of the merging process
are treated as the nodes of a flux graph. The results of merging fragmented parts
associated with the simplified skeleton of the dog shape are shown in Fig. 3.7 (left).
The set of edges between nodes are then determined based on their connectivities on
the original medial axis. To direct edges, we consider the average radii of inscribed
disks associated with two adjacent nodes and compare them. The one with larger
magnitude is chosen as the parent and the other as the child. The resulting directed
flux graph for the dog shape is shown in Fig. 3.7 (right).
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Fig. 3.7 The flux graph of the dog shape. Left: The set of nodes is shown with the distinct parts
depicted in different colors, each representing a union of medial disks. Right: The directed flux
graph. The dummy node  carries no geometrical information but serves as a parent to all the top
level nodes

Fig. 3.8 Top row: A view of a dog (middle) with adjacent views obtained by rotating around it in
the clockwise and anti-clockwise directions. For each view, the parts reconstructed by each node
of the flux graph are shown as a colored union of disks. Middle row: The flux graph corresponding
to the view in the top row. Bottom row: The shock graph corresponding to the view in the top row

3.4.2 Qualitative Stability with Viewpoint Changes

We provide a qualitative demonstration that flux graphs remain stable under small
changes in viewpoint, while providing an intuitive part structure. We consider a
view of the dog (Fig. 3.8 (top row, middle)) and adjacent views obtained by rotating
around it in clockwise and anti-clockwise directions. For each view the top row
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Table 3.1 Efficiency of flux graphs over shock graphs. The measures in the first six columns are
obtained by taking the ratios of the average values of these complexity measures for flux graphs and
shock graphs, subtracting these ratios from 1, and then averaging over all the 1664 silhouettes in
the database. The last column indicates the percentage of area of the original object reconstructed
by flux graphs

Nodes Edges Σ deg(v)d Depth Skeletal point TSV Coverage

Efficiency % 49.87 % 56.08 % 59.99 % 26.38 % 24.08 % 48.52 % 99

depicts the parts represented by each node of the flux graph, the second row the
flux graph and the bottom row the shock graph. Changes to the flux graph typically
occur when new parts, such as the tail, come into view (or disappear) but the overall
graph structure is much simpler than that of the shock graph. This is essentially
because the shock graph utilizes and hence represents the entire skeleton, without
any simplification. The experimental results in Table 3.1 which shows averages over
1664 view-based silhouettes of objects used in [8] demonstrate that the flux graph
representation is essentially complete, reconstructing 99 % of an object’s area. This
will be discussed in further detail in Sect. 3.5.3.

3.5 Flux Graphs for Matching

A skeletal graph abstraction can be used as a tool in many visual shape problems
including view-based object recognition. We now examine the potential of using
flux graphs for matching, in comparison against the well established shock graphs.
To carry out a comparative experiment against shock graphs, we used the same
graph matching setup and database used for shock graphs in [5, 14].

3.5.1 Topological and Geometrical Similarity

Given two flux graphs, which are directed acyclic graphs (DAGs) a bipartite graph
is constructed between their nodes in a hierarchical manner. Each edge is weighted
based on the structural similarity between nodes; the weight is the normalized length
of difference of the topological signature vectors (TSVs) introduced in [14]. The
best matching of a maximum weighted bipartite matching is when the sum of the
values of the edges is maximized. In a DAG representation, the TSV is defined as
the vector of eigenvalue-sums derived from the corresponding adjacency matrix for
the sub-DAG of the considered node. The matching algorithm used is a greedy algo-
rithm [5] which has the benefit of finding a largest maximal matching in polynomial
time. The similarity is computed by matching a query with a model node and then
normalizing by the number of matched nodes according to the order of the model
graph.
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3.5.2 The DAG Matcher

To match a query shape with other shapes, we must develop a DAG matcher. The
DAG matcher receives two DAGs as input and computes a value representing their
similarity, as well as a list of corresponding nodes in the two DAGs. This analysis
considers both topological structure (Γ ) and geometric information (Δ) associated
with a flux graph’s vertices. Each of these two measures returns a value normalized
in the interval [0 1]. The final similarity score is a weighted combination of these
two S(G1,G2)= ωΓ (G1,G2)+ (1− ω)Δ(G1,G2), where S(G1,G2) represents
the similarity between DAGs derived from two given shapes, and ω is a tuning
weight in the interval [0 1]. At the end of the process, a list of corresponding nodes
and a similarity measure are obtained.

3.5.3 The Dataset and Experimental Results

The matching problem we consider is to recognize unseen 2-D query views of 3-D
objects by matching a query view against all the available silhouettes (reviewed in
Sect. 3.5). We compare results of these experiments with those obtained using shock
graphs in [6, 8].

The dataset used for our experiments is the same dataset used for experiments
carried out for Bone Graphs in [7, 9] and Shock Graphs [5] and has 13 3-D models.
Perspective projection of each 3-D object is computed onto the image plane where
each model is centered in a uniformly tessellated view sphere. With 128 uniformly
sampled views per object, the data set contains a total of 1664 2-D projected views.

3.5.4 Flux Graphs versus Shock Graphs

We begin by demonstrating that by a number of complexity measures the flux graph
is simpler and hence more efficient than the shock graph, while essentially providing
a complete reconstruction of the original object. To do this, in Table 3.1, for each of
the 1664 views we compare: the count of graph vertices, the count of graph edges,
the cumulative sum of number of nodes at each depth multiplied by the depth, the
depth, total number of skeletal points on the graph, and the average of the TSV
(topological signature vectors) values. The numbers reported in the table reflect the
efficiency gained by using flux graphs over shock graphs, e.g., flux graphs have 50 %
fewer nodes, 56 % fewer edges and 24 % fewer skeletal points. The last column
shows the fraction of the area of the original object reconstructed by flux graphs
(99 %), indicating that there is essentially no less in representational power.
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Fig. 3.9 Using the
experimental set up of [6, 8],
we compare the use of flux
graphs versus shock graphs in
a view-based object
recognition experiment
involving a total of 128 views
of each of 13 3-D graphical
objects (1664 silhouettes in
total). The flux graphs, which
are considerably simpler,
provide recognition results
that are a few percentage
points below those of shock
graphs

3.5.5 Matching 2-D Views of 3-D Models

We now evaluate the flux graph against the shock graph in a set of view-based object
recognition experiments. This comparison follow the matching framework of [7].
The recognition task is performed by: (a) Each view removed sequentially from the
database (1664 2-D view-based shapes), and compared to all other remaining views
(b) if the class of the closest matching view is the same as that of the query, then the
recognition is interpreted as being correct. In the next set of trials, in each step 25 %
of the total views are removed randomly from the database. The same experiment is
then carried out with further subsampled databases. Figure 3.9 plots the recognition
estimation success rates for both shock graphs and flux graphs, averaged over all
views of all objects in the database. See [6] for a more detailed explanation of the
experimental set up. We also note that the results reported in [6, 8] show that the use
of bone graphs, which require a more elaborate construction process, outperforms
shock graphs in this experiment.

Flux graphs offer the advantage of efficiency in terms of fewer nodes, edges,
depth levels and skeletal points than shock graphs, while still allowing for intuitive
hierarchical part-to-part correspondences. However, in terms of the quantitative re-
sults, shock graphs outperform flux graphs slightly in this experiment. This could be
in part because the matcher used has been tuned to shock graphs and their detailed
features and has not been changed in any way to exploit the simplicity of flux graphs.
A particular issue is that the geometric node similarity measure used in the matcher
[6] implicitly assumes that a node contains a continuous locus of skeletal points.
This assumption fails for flux graph nodes that arise from the simplification pro-
cess we have outlined because the underlying skeletal segments maybe fragmented.
The greedy matching approach may also suffer from some limitations and alternate
hierarchical matching algorithms could be explored.
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3.6 Conclusion

We have presented a novel skeletal shape representation that can be used to faithfully
reconstruct the original object’s boundary from medial entities. The comprehensive
recovery of the object’s boundary supports the integrity of using the average outward
flux at skeletal points for shape analysis. In addition, a complete representation sug-
gests a way of directly relating medial quantities to boundary features, because the
medial features are easier to handle, to store and to compare with other represented
objects than the shape boundaries directly.

We have suggested the use of the uniqueness of an inscribed disk to the host
skeletal branch as a novel measure of saliency. Combining this measure with the
limiting AOF leads to simplified skeletons which can be abstracted as graphs that
are simpler than popular skeletal graphs in the literature such as shock graphs. In
contrast with methods that carry out ligature analysis for simplification based on the
limited number of configurations of the placement of ligature and non-ligature parts,
such as the bone graph in [8], our investigation has the advantage that the notion of
saliency is defined for each skeletal point separately. The flux graph representation
has been evaluated using a matching framework designed for shock graphs ([8, 9])
to recognize 2D views of 3D objects and the results show that flux graphs are almost
as good as shock graphs for matching. However, more work could be done to im-
prove the robustness of the merging process of fragments left by our simplification
method, which is presently based on a heuristic.

To advance the use of flux graphs for matching, a number of directions could be
explored including the use of appropriate node similarity measures, the incorpora-
tion of a notion of types for nodes (those resulting from simplification, and those
not) and the use of alternate hierarchical matching algorithms. The qualitative sim-
plicity and stability of flux graphs with changes in viewpoint suggests their potential
for view-based partitioning of the view sphere and view abstraction.
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Chapter 4
An Integrated Bayesian Approach to Shape
Representation and Perceptual Organization

Jacob Feldman, Manish Singh, Erica Briscoe, Vicky Froyen, Seha Kim,
and John Wilder

4.1 Shape and Perceptual Organization

The visual representation of shape is a complex problem, requiring the reduction
of an essentially infinite-dimensional object (the geometry of the shape) to a few
perceptually meaningful dimensions. Human infants can recognize shape from line
drawings without any prior experience [17], suggesting that the ability to abstract
form from the bounding contour is innate. Much research in the study of shape has
involved a quest for a set of shape descriptors that will allow just the right aspects of
shape to be extracted—a representation that retains enough information to support
recognition, shape similarity, and other key functions. Each of these techniques—
geons [3], codons [37], medial axes [4], curvature extrema [18], Fourier descriptors
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[8], and so forth—has merits. Some have compelling mathematical motivations,
while others (unfortunately not usually the same ones) have demonstrable agree-
ment with human data. Still, broadly speaking, a complete computational character-
ization of human shape representation remains elusive.

The approach we lay out below aims to address two inadequacies in the existing
literature. First, many existing theories of shape lack a persuasive “theory of the
computation,” in Marr’s influential phrase [34]—that is, an explanation of why, in
principle, the proposed shape descriptors solve the shape problem better than al-
ternatives. To provide such an account, one must adopt a particular definition of
“the shape problem”—i.e., a model of what it is that we are actually trying to es-
timate when we describe a shape. Second, many shape theories have suffered from
a lack of connection to other closely related problems in perceptual organization,
including perceptual grouping and figure/ground. The shape literature in both psy-
chology and computer science has generally focused on isolated shapes segregated
from their backgrounds. But a great deal of evidence suggests that the problem of
shape is, at least in the human visual system, intimately connected with the problems
of figure/ground and perceptual organization more generally. The representation of
a shape is in part determined by the factors that make it perceived as an integral,
figural object in the first place, suggesting that shape and perceptual organization
are intertwined.

In what follows we describe a framework that is both (a) principled, meaning
that it stems from basic considerations of the nature of the shape inference, and
(b) unified, in that it aims to approach a broad class of interrelated problems in
a coherent way. We first briefly explain the principles of the Bayesian approach
to shape representation, and then illustrate how it naturally gives rise to solutions
to several related problems, including (i) shape similarity (ii) figure/ground, and
(iii) 3D shape from line drawings.

4.2 Bayesian Estimation of the Shape Skeleton

Skeletal or medial-axis representations were first introduced by Blum [4, 5]. Blum’s
basic insight was that many aspects of contour shape are intuitively captured by a
representation that extracts the local symmetries of the bounding contour. The me-
dial axis transform (MAT), originally defined as the union of centers of inscribed cir-
cles, is highly suggestive of global shape structure, in that its branches often seem to
correspond intuitively distinct shape parts such as limbs (and indeed Blum initially
conceived it as a compact representation of animal morphology). Medial represen-
tations relate to many other problems in perceptual organization [23], and have both
psychophysical correlates [25, 50] as well as known neural representations in brain
areas V4 and IT [19, 26]. But as has long been recognized [5], the conventional MAT
reflects global part structure very imperfectly; in particular, its branches do not reli-
ably correspond to perceptually distinct shape parts. Many improvements on Blum’s
original MAT have been developed (e.g., [21]), including some that represent math-
ematically deep generalizations of the “grassfire” procedure that underlies it [40].
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But most contemporary medial axis models inherit the basic limitations of Blum’s
approach, because (with some exceptions [53]) they share its essentially determin-
istic conception, which aims to define an information-preserving transformation of
the shape, rather than an abstraction of the shape’s underlying structure.

In contrast, we view skeleton computation as a probabilistic estimation problem,
the goal of which is to estimate the shape skeleton from which the shape is most
likely to have been generated—that is, the skeleton that best explains the shape.
Many natural shapes, especially biological ones, are effectively described as com-
binations of elongated parts [35]. We view the skeletal structure underlying such
shapes as the “signal” which is combined with noisy local contour perturbations to
yield the eventual shape. Specifically, we conceive of the shape skeleton as the gen-
erating source of the contour, which then “extrudes” the shape via a partly stochastic
process akin to growth (cf. [28]). We then adopt an inverse-probability framework,
taking as our goal the recovery of the skeleton that gave rise to the observed shape.
The problem then becomes a standard Bayesian inverse probability problem, with
the goal being to estimate the skeleton with maximum posterior probability (called
the MAP skeleton) as the best interpretation of the shape. The rest of the approach
flows from this central conception: we define a model of the shape-generating pro-
cess, and estimate the model.

4.2.1 Sketch of the Theory

In our formalism, a shape SHAPE = {(x1, t1), (x2, t2), . . . , (xn, tn)} is a set of edges
each of which is defined by a location xi and a tangent vector ti . A skeleton
SKEL = {A1,A2, . . .} is a set of hierarchically connected axial curves, with a root
axis, child axes, grandchildren, etc., branching off from it. Skeletons have a prior
probability p(SKEL) and generate shapes stochastically via the likelihood model
p(SHAPE|SKEL) explained below. Our computational goal is to find the best “ex-
planation” of SHAPE by estimating the skeleton SKEL that is most likely to have
generated it, i.e., that maximizes the product p(SKEL)p(SHAPE|SKEL) of prior and
likelihood.

We begin by adopting a prior p(SKEL). As in all Bayesian approaches, the prior
encodes our assumptions about which models (here, skeletons) are more and less
likely to be encountered in the environment—assumptions that can then be easily
modified to reflect different contexts or knowledge. In [15], we adopted a simple
“vanilla” prior that assigns higher probability to simpler skeletons and lower proba-
bility to more complex ones, meaning ones with more axes or more curved axes
(Fig. 4.1). This prior is a simple hierarchical extension of our prior for smooth
contours, which has been validated in a number of empirical settings (see [12–
14, 43, 44]). Specifically, we assume that each of the N component axes Ai contains
a series of points Ai = {ai,1, ai,2, . . .}, which defines a sequence of turning angles
αi,j (e.g., α1,2 is the angle between the vector ai,3 − ai,2 and the vector ai,2 − ai,1)
with the turning angles following a von Mises distribution p(αi,j ) ∝ expβ cosα
(the analog of the normal for circular variables, see [33]) and assumed independent.
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Fig. 4.1 “Vanilla” prior
p(SKEL) for skeletons,
favoring skeletons with fewer,
straighter axes (left) and
penalizing those with more
numerous and curvier
branches (right)

Fig. 4.2 Generative
(likelihood) model
p(SHAPE|SKEL), modeling a
process of stochastic lateral
growth. Random deviates
(“ribs”) sprout bilaterally
from each axis, terminating in
edges that taken together
constitute the shape contour.
The sprouting direction θ and
edge orientation φ are each
von Mises distributed
(respectively
θ ∼ exp [βθ cos θ ] and
φ ∼ exp [βφ cosφ]), and the
rib length d is assumed
Gaussian with a mean and
variance estimated from the
data (d ∼N(d̂, σ 2

d ))

So the prior for axis Ai is the product of the probabilities of its component turning
angles, p(Ai)=∏j p(αi,j ). Each axis is “born” with fixed probability pA, leading

to an overall prior p(SKEL)= pN
A

∏N
i=1

∏
j p(αi,j ). This prior favors skeletons with

fewer axes (low N ) and relatively straight axes (small αs, see Fig. 4.1).
The next component is the likelihood model p(SHAPE|SKEL), which quantifies

how likely each shape is given a hypothesized skeleton. Our likelihood model ex-
presses the idea of shape “growth” contour points sprout laterally from each axial
segment. The growth process is formalized via a set of random lateral vectors that
sprout from both sides of a skeletal axis, referred to as “ribs” (Fig. 4.2). The ribs
point in a stochastically chosen direction (we use a von Mises distribution, centered
on perpendicular to the axis) and have a stochastically chosen length (we use a nor-
mal distribution, centered on an expected shape-part half-width whose value varies
continuously over the length of the axis). The ribs thus represent correspondences
between contour points and axial points that explain them—i.e., are interpreted as
having generated them. This notion of “explanation” is central to the framework:
the skeleton is understood as a hypothesis that explains the data, i.e. the observed
contour points. We assume conditional independence of contour points given the
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Fig. 4.3 Examples of the MAP skeleton for simple animal shapes (ribs not shown)

skeleton, so the likelihood of the shape is simply the product of the likelihoods of
all its component points,

p(SHAPE|SKEL)=
n∏

i=1

p
(
(xi, ti)|SKEL

)
. (4.1)

The likelihood quantifies the degree of fit between a shape and a hypothetical skele-
ton that might explain it.

Finally the degree of belief in a given skeleton—that is, the degree to which the
system ought to adopt that skeleton as an explanation for the given shape—is given
by the posterior p(SKEL|SHAPE), which is proportional to the product of the prior
and the likelihood,

p(SKEL|SHAPE)∝ p(SKEL)p(SHAPE|SKEL). (4.2)

To select a single best explanation of the shape, we estimate the skeleton with max-
imum posterior probability, referred to as the MAP skeleton (Fig. 4.3). The MAP
skeleton represents the optimal skeletal interpretation of the shape, meaning that—
given the assumptions captured by the prior and likelihood model—it identifies the
single skeleton most likely to have generated the shape. Critically, the choice of the
MAP involves a tradeoff between the prior, which favors simple skeletons, and the
likelihood, which favors more complex skeletons that can fit the shape better. The
axes that are included in the MAP skeleton, i.e., those whose contribution to the
likelihood outweighs their penalization in the prior, represent statistically meaning-
ful parts of the shape. That is, each distinct axis in the MAP skeleton represents
what the procedure interprets as a distinct part of the shape (depicted with different
colors in the figures).

4.3 Applications and Extensions

We next describe preliminary work extending the basic shape theory to key shape
problems. Each of these applications grows directly out of the basic theory, illus-
trating the fecundity of the approach.
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Fig. 4.4 The estimated
skeleton divides the shape
into sections “owned” by
distinct axes (color coding).
The entailed part boundaries
tend to correspond to negative
curvature minima and
correspond to short part cuts,
suggesting that skeleton
estimation can subsume these
principles

4.3.1 Decomposing Shapes into Parts

Notwithstanding the success of appearance-based recognition models (e.g. [30]),
there is substantial evidence that human object recognition uses structural represen-
tations based on combinations of shape parts [1, 3]. But though many factors are
known to influence the decomposition of shapes into parts [9, 41, 45, 46], we still
lack a comprehensive account of part decomposition. A simple and principled ac-
count of part decomposition is directly entailed by the Bayesian approach to shape
representation, encompassing several well-known part-decomposition rules as side-
effects. The MAP skeleton implies a part decomposition, because the shape contour
naturally decomposes into regions that are “owned” by distinct component axes. For
example, in Fig. 4.4 contour sections indicated with different-colored ribs are owned
(explained) by distinct axes. As explained above, the axial makeup of the winning
skeleton reflects a Bayesian decision about which branches benefit the posterior; the
MAP includes only those axes whose contribution to the likelihood outweighs their
penalization by the prior.

The skeleton-based decomposition of shapes into component parts concurs with,
and arguably subsumes, certain rules of part decomposition obeyed by the human vi-
sual system [42]. For example, transitions between axial ownership (e.g., the bound-
ary between red and green ribs in the hand in Fig. 4.4) tend to occur at within deeply
concave sections of the contour, near negative curvature extrema, in accordance with
the well-known minima rule [18] (even though curvature plays no overt role in skele-
ton estimation). In this sense skeleton-based shape decomposition explains both the
successes of the minima rule, i.e., the fact that part boundaries tend to occur near
minima, and also its failures, for example, part boundaries that occur where there
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are no curvature minima and curvature minima that are not perceived as part bound-
aries (see [45]). Similarly, regions of common axial ownership tend to be relatively
convex, subsuming the part convexity principle [38], and part cuts tend to be rela-
tively short, subsuming the short-cut rule [46]. All of these known characteristics of
intuitive part decomposition arise naturally from skeletal estimation, rather requir-
ing additional assumptions, leading to a more principled and unified account than
was previously possible.

4.3.2 Tuning the Shape Model to the Environment

The results given above are based on a very simple “vanilla” skeleton prior and like-
lihood, but both the prior and likelihood model can be modified to accommodate
more realistic models of natural shape classes. Some shape classes tend systemati-
cally to have more axial branches, or fewer; or more curved branches, or straighter;
or smoother contours (smaller variance in rib lengths), or rougher; and so forth, all
suggesting modifications to the generative model. To illustrate the approach, we es-
timated the skeletal parameters of the shapes in several large databases of natural
shapes [52], including one of animals and one of leaves (Fig. 4.5a). Tabulations of
skeletal parameters show substantial differences between the two shape classes. For
example the distribution of number of branches show not only different means but
also qualitatively different distributional forms (Fig. 4.5b): Gaussian for animals
(with a mean near 5, about the number of intuitively distinct parts in the typical
animal body plan) but exponential for leaves (suggesting a recursively branching
process). Such differences show how the skeletal generative model can be “tuned”
to natural shape classes.

We have also found that human subjects’ classification of novel shapes can be
predicted from their skeletal representations. We showed subjects composite shapes
created by morphing animals and leaves in controlled proportions, and asked them
to classify them into animal or leaf categories. (There is no correct answer since the
shapes are actually novel composites.) Their responses closely match Bayesian clas-
sifications based on skeletal parameters, but disregard or even contradict predictions
based on more conventional shape parameters such as aspect ratio or compactness.
This suggests that human observers do indeed extract skeletal parameters and use
category-specific probabilistic knowledge to classify novel shapes.

4.3.3 Shape Similarity

An essential application of shape representation is the evaluation of shape similar-
ity. Measures of shape matching abound in the computational literature, where they
form the basis of shape recognition [10], including some with properties suggestive
of human intuitions, like robustness to part articulation [29]. But though similarity
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Fig. 4.5 (a) Samples of the shapes from which skeletal statistics were drawn. (b) Animals and
leaves show systematic statistical differences, such as in the distribution of the number of axial
branches. (c) A classifier based on these differences predicts human subjects’ classifications of
morphed (composite) shapes
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based on skeletal representations has been found effective [39], few if any algorith-
mic similarity measures have been validated against human similarity judgments.

Our skeletal representation provides a natural measure of shape similarity [6].
Because each skeletal estimate represents a “model” of the observed shape, it is
natural to ask how well this model explains another shape. Specifically, given two
shapes SHAPE1 and SHAPE2, with associated skeletal estimates SKEL1 and SKEL2,
we define the similarity of SHAPE1 to SHAPE2 as the likelihood

sim(SHAPE1, SHAPE2)= p(SHAPE1|SKEL2), (4.3)

that is, the probability that shape SHAPE1 would “grow” from skeleton SKEL2. This
gives an asymmetric assessment of the first shape’s fit to the second shape’s repre-
sentation (potentially accommodating the asymmetric similarity judgments that are
well-known in the psychological literature). A symmetric similarity measure can be
defined by taking the average

d(SHAPE1, SHAPE2)= 1

2

[
sim(SHAPE1, SHAPE2)+ sim(SHAPE2, SHAPE1)

]
.

(4.4)

In [6], we tested the psychological validity of this shape similarity measure by
asking subjects to rate similarity of all pairs drawn from several collections of
shapes. For example, Fig. 4.6a shows a set of shapes generated from a 2-axis skele-
ton, in which the length of the secondary axis was modulated from very small to
large. The red border shows the boundary between shapes whose MAP skeletons
contain one axis (that is, in which the second part was too small to be included in
the estimated skeleton) and those that contain two distinct axes. Figure 4.6b shows
the similarity space of the same shapes, computed via multidimensional scaling
from subjects’ similarity judgments. The exaggerated division (marked in red) be-
tween shapes perceived to have one part and those perceived to have two parts is
plainly visible, and as can be seen in the figure corresponds exactly to the division
between 1-axis and 2-axis MAP skeletons. Finally, Fig. 4.6c shows the very close
linear relationship between judged similarity and similarity computed via Eq. (4.4).
Experiments with several other classes of shapes also show close matches between
computed and perceived shape similarity [6].

4.3.4 Figure and Ground

Figure/ground (f/g) assignment is intrinsically intertwined with the representation
of shape, in part because figural polarity (border ownership) determines the sign of
curvature, which plays a central role in shape representation [18]. Indeed because
figural regions “own” the border [2, 11], only figural regions’ shapes are overtly
represented [36], with ground regions perceived as extending indefinitely behind.
F/g assignment is known to be influenced by a number of shape factors, includ-
ing region size [24] convexity [20] and symmetry [20]. But nonetheless theoretical
connections between shape and f/g remain largely unexplored.
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Fig. 4.6 Shape similarity
model. (a) Shapes tested,
showing MAP skeletons
including ribs and entailed
part decomposition. The red
border divides the shapes
estimated to have 1 part from
those estimated to have 2
parts. (b) Results of
multidimensional scaling
based on human similarity
ratings; the red border here
corresponds to the border in
(a), showing the exaggerated
psychological distance
between 1- and 2-part shapes.
(c) Plot showing
approximately linear
relationship between human
and computed similarity
ratings

Our approach to contour interpretation can easily be extended to encompass ge-
ometric factors on f/g assignment in a simple but principled way. Above, we have
assumed that f/g assignment along the contour is known, and that shapes have to be
explained from their interiors—that is, by skeletons in their interiors. Instead, we
now (a) relax the assumption that border ownership is known, and instead treat it
as a parameter to be estimated; and (b) relax the assumption that there is a single
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Fig. 4.7 (a) A contour point x can be “explained” by the skeleton on one side or the other, deter-
mining its border ownership. (b) Belief estimation of border ownership from skeletons, showing
the medial structure present (on both sides of all contours) and estimated border ownership (ar-
rows point towards figure). (c) Human judgments of figural status depend on the log posterior ratio
(relative axiality) of the skeletons on either side of a boundary, favoring the side with the stronger
posterior

shape to be explained by a single skeleton, and instead attempt to explain the entire
set of image contours by an ensemble of skeletons. More specifically, we no longer
assume that the sign of each tangent vector ti (which defines which side of each
contour is figural) is given as part of the data, and instead treat it as an unknown
parameter to be estimated. The formal problem of image explanation now reduces
to the estimation of the ensemble of skeletons that, collectively, best explain the ob-
served image structure. That is, we seek the set of skeletons that best explains all
the observed edges, with each edge being explained from whichever side provides
the best overall posterior, which determines its perceived border ownership.

In this expanded view of the problem, the MAP interpretation assigns (skeletal
models) conjointly with f/g assignments over the entire ensemble of edges. The
winning interpretation explains as much the contour as possible “from within”—
that is, with each contour owned by a skeleton in what is perceived as its interior—
while also maximizing everything else that the Bayesian model maximizes, such as
the simplicity of the skeletons and the fit between the skeletons and the contours.

Because figural surfaces are perceived as closer, the induced figural assignment
induces depth differences among skeletal axes: the axis that “wins” a given edge
is interpreted as closer. This in turn allows the 3D relations among objects in the
scene to be estimated. More specifically, each contour point (x, t) can be explained
by skeletons on either side of it, and whichever skeleton assigns it a higher posterior
will be interpreted as “owning” the point, thus determining the direction of t , the
polarity of local f/g, and the relative (qualitative) depth (Fig. 4.7a). Recall that the
direction of the normal at the contour point influences the posterior in part because
the likelihood function penalizes contour normals that point “away” from the gener-
ating skeleton (see Fig. 4.2). Figure 4.7b shows results of a Bayesian belief network
that implements a version of this computation [16]. The belief network estimates
border ownership at each contour point, propagating the f/g estimate along each
contour in a manner similar to previous f/g belief networks [51], but here including
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the skeleton-based likelihood function as a determinant of f/g status. As can be seen
in the illustration, the procedure assigns border ownership to the perceived interiors
of both overlapping shapes, critically including assigning the common boundary to
the region human observers judge to be in front.

An empirical prediction derived directly from this framework is that more “ax-
ial” regions, that is, regions with stronger skeletal posteriors, are more likely to
be perceived as figural. We tested this by constructing displays in which a sym-
metric region abutted a more “axial” one, and asked subjects which side appeared
to own their common boundary [22], while manipulating the shape of the axial
side so as to modulate the skeletal posterior. In the Bayesian model, ownership
of a point (x, t) along the common boundary should follow the posterior ratio
p((x, t)|SKEL1)/p((x, t)|SKEL2), where SKEL1 and SKEL2 are MAP skeletons on
respectively the axial and symmetric sides. Figure 4.7c gives a representative plot
showing the observed decrease in f/g responses as a function of (log) posterior ratio,
confirming the basic claim that axiality under the Bayesian model tends to “draw”
figural status.

4.3.5 3D Shape

Our approach to skeleton estimation, like virtually all medial approaches, is based
on two-dimensional silhouettes, which do not generally give rise to strong 3D in-
terpretations. But much richer 3D interpretations arise from images that include
interior contours, including T-junctions stemming from self-occlusions. Even with-
out texture, shading, or other surface cues, human subjects can interpret 3D shape
from such line drawings about as well as from natural images [7]. Yet interpretation
of such figures remains a virtually unsolved problem. The extensive early literature
on line and junction labeling [31, 32, 49] largely failed to solve it due to reliance
on hard-and-fast junction classification rules. Our framework replaces these deter-
ministic rules with a probabilistic inference in which the goal is to estimate the 3D
skeleton that best explains the ensemble of contours and junctions in the image.

The first step is to extend the generative (likelihood) model to 3D. A direct 3D
generalization of the conventional MAT [27] results in a complex and psychologi-
cally implausible combination of space curves and 2D medial “scaffolds.” In con-
trast, the skeletal generative model generalizes to 3D in an intuitive way. The key
idea is simply to assume that the ribs (random deviates), rather than being generated
laterally on both sides of the skeleton as in the 2D model, are instead generated in all
directions in the plane orthogonal to the skeleton, thus “inflating” the skeleton into
a 3D shape (Fig. 4.8a, b) (cf. [48]). The inverse problem is to estimate the 3D skele-
ton that is most likely, when inflated, to yield the observed contour when projected,
including both outer silhouette, internal contours, and other contour features such
as T-junctions. The resulting estimate can be substantially non-planar (Fig. 4.8c).
A suitable estimation procedure for this model is of course a difficult problem, but
in principle one that can be solved by conventional Bayesian techniques.
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Fig. 4.8 (a) 3D likelihood model, yielding (b) inflation of the skeleton into a 3D shape. (c) When
T-junctions and internal contours are included, the estimated skeleton can be non-planar

4.4 Discussion and Conclusion

We have described a principled probabilistic conception of shape representation,
which provides natural approaches to part decomposition, shape similarity, and fig-
ure/ground, and can be extended in a conceptually simple way to 3D. The main
idea is to view contour elements as data generated by a skeletal growth process, and
then estimate the structure of the skeleton. The best representation of a shape is the
skeleton that best explains it; the similarity of two shapes is the degree to which one
shape’s skeletal interpretation explains the other shape; and the best interpretation
of multiple shapes is the collection of skeletons that best explains the ensemble of
contours, thus inducing estimates of f/g and depth relations.

Many aspects of our framework are present in other approaches, including
stochastic estimation of skeletal structure [47, 53], belief propagation for f/g [51],
and inflation of 2D skeletal representations into 3D shape [48]. But the main at-
traction of our approach is its simplicity, comprehensiveness, and coherence: all
the applications derive from the central conception of shape as a rational inference
problem. Broadly speaking, the aim is to make some assumptions about shape-
generating processes in the environment; express these assumptions as a probability
model; and estimate the model. As mentioned, the probability model can then be
tuned to natural shape statistics, used to model shape similarity, extended to multi-
ple shapes in a way that yields f/g estimates and depth relations, and easily extended
to 3D. None of these extensions require elaborate new hacks, nor indeed any change
to the basic principles. The psychological literature attests a wealth of connections
among these different aspects of perceptual organization, and we would argue that
our approach integrates them in a way that properly respects their interconnections.

It is important to understand that our approach does not intrinsically require me-
diality; axial forms are simply a reasonable model for many natural shapes. For oth-
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ers, alternative (non-medial) generative models might be adopted without changing
the essentials of the approach. All the extensions we have presented derive from
the central probabilistic estimation problem, not from specific aspects of medial
geometry or local symmetry. The ultimate goal of this work is thus not to deepen
our understanding of medial representations specifically, but rather to “probabilize”
shape and related problems of perceptual organization, thus unifying them with the
growing literature on probabilistic and Bayesian approaches to visual perception.
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Chapter 5
Perceptual Organization of Shape

James H. Elder

5.1 Introduction

Computing the correct bounding contours of objects in complex natural scenes is
generally thought to be one of the harder computer vision problems, and the state
of the art is still quite far from human performance, when human subjects are given
an arbitrary amount of time to delineate the shape of these contours [1]. How do we
explain this gap? One possibility is that, when given enough time, humans fall back
on high-level, deliberative reasoning processes. If this is true, then it is possible that
when faced with detecting and recognizing objects in an active vision timeframe
(hundreds of milliseconds), we may rely upon a simpler “bag of tricks”, using ap-
pearance cues such as texture and color to discriminate objects.

To address this possibility, let us consider the specific task of rapidly detecting
animals in natural scenes. Humans perform this task remarkably well: evoked po-
tential studies indicate that the corresponding neural signals can emerge in the brain
within 150 msec of stimulus onset [32], and eye movements toward animal targets
can be initiated in roughly the same timeframe [20].

Until recently, little was known about the cues that humans use to achieve this
impressive level of performance. However, a recent study by Elder & Velisavjle-
vić [10] sheds some light on this question. This study made use of a standard com-
puter vision image dataset called the Berkeley Segmentation Dataset (BSD) [26].
For each image in the dataset, the BSD provides hand segmentations created by
human subjects, each of which carves up the image into meaningful regions. Elder
& Velisavjlević used this dataset to create new images in which luminance, color,
texture and shape cues were selectively turned on or off (Fig. 5.1—top). They then
measured performance for animal detection using these various modified images
over a range of stimulus durations (Fig. 5.1—bottom left), and estimated the weight
of each cue using a multiple regression technique (Fig. 5.1—bottom right).
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Fig. 5.1 Psychophysical animal detection experiment. Top: Example stimuli. The letters indicate
the cues available: Luminance, Color, Texture, Shape. ‘SO’ stands for ‘Shape Outline’. Bottom left:
Stimulus sequence. Bottom right: Estimated loadings for four cues to animal detection. From [10]

The results show that humans do not use simple luminance or color cues for
animal detection, but instead rely on shape and texture cues. Interestingly, shape
cues appear to be the first available, influencing performance for stimulus durations
as short as 10 msec, within a backward masking paradigm. These results suggest that
contour shape cues are not “luxury items” used only when time is not a factor, but
rather underlie our fastest judgements about the objects around us. So the question
remains: how does the brain rapidly and reliably extract contour shape information
from complex natural scenes?

5.2 Computational Models

Computer vision algorithms for contour grouping typically assume as input a map
of the local oriented elements to be grouped into chains corresponding to the bound-
aries of objects in the scene. This is a combinatorial problem—exhaustive methods
have exponential complexity and are thus infeasible as algorithms or models for
information processing in the brain.

To tame this complexity, most research has focused on modelling and exploiting
only the first-order probabilistic relations between successive elements on bound-
ing contours, in other words, modelling contours, either explicitly or implicitly, as
first-order Markov chains. In the psychophysics community, this has led to the no-
tion of an “association field” encoding these local relations [13, 28], identified with
long-range lateral connections known to link compatible orientation hypercolumms
in primate striate cortex [16]. The probabilistic expression of this model has been
supported by studies of the ecological statistics of contour grouping, which have
also focused principally upon first-order cues [7, 15, 21, 35].
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Fig. 5.2 Contour grouping algorithms. Right column: Single scale. Left three columns: multi-scale,
with coarse-to-fine feedback. From [12]

Similarly, many computer vision algorithms for contour grouping have employed
a Markov assumption and have focused on first-order cues [3, 4, 8, 11, 18, 24, 28,
33, 41, 43]. However, these first-order Markov algorithms have generally not per-
formed well unless augmented by additional problem-domain knowledge [8] or user
interaction [5]. An example from [8] is shown in Fig. 5.2 (right column). The algo-
rithm proceeds by greedy search over the exponential space of possible contours,
monotonically increasing the length of the contour hypotheses, and pruning those
of lower probability. As can be seen in this example, closed contours correspond-
ing to parts of objects can sometimes be computed in this way, but for complex
scenes it is rare that the entire object boundary is recovered exactly, unless addi-
tional domain-specific constraints are brought to bear.

Recently, however, Estrada & Elder [12] demonstrated that the same algorithm
performs much more effectively when placed within a coarse-to-fine scale-space
framework (Fig. 5.2—left three columns). In this framework, a Gaussian scale-space
over the image is formed, and greedy search is first initiated at the coarsest scale.
Since the number of features at this scale is greatly reduced, the search space is much
smaller and the algorithm generally finds good, coarse blob hypotheses that code the
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Fig. 5.3 Feedback in the human object pathway. The diagram on the upper right is modified
from [39]. Solid arrowheads indicate feedforward connections, open arrowheads indicate feedback
connections

rough location and shape of the salient objects in the scene. These hypotheses are
then fed back to the next finer level of resolution, where they serve as probabilistic
priors, conditioning the likelihoods and effectively shrinking the search space to
promising regions of the image.

The success of this simple framework raises the possibility that the brain may
also use a feedback mechanism to transmit global shape constraints to the early
visual mechanisms involved in contour grouping.

5.3 Feedback in the Primate Object Pathway

Physiologically, it is certainly plausible that feedback might be involved in the per-
ceptual organization of contours in the human brain. Figure 5.3 (right) shows the
known connectivity of visual areas in the object pathway of primate brain. While
processing is often described by default as a feedforward sequence V1→ V2→
V4→ TE/TEO [37], in fact there are feedback connections from each of the later
areas to each of the earlier areas, as well as additional feedforward connections.

While some have argued that animal detection by humans and other primates is
too fast to allow time for feedback [20, 32, 37], behavioral and physiological reac-
tion times are always broadly dispersed, with a long positive tail. Thus even if the
very fastest reactions (perhaps on the easy conditions) are strictly feedforward, there
is time for feedback on the rest. Furthermore, recent evidence suggests that visual
signals arrive in higher areas much faster than previously thought [14], allowing
sufficient time for feedback even on the fastest trials.

What exactly are the grouping computations effected by the recurrent circuits in
primate object pathway? We are far from being able to answer this question, but
Fig. 5.3 (left) illustrates one specific conceptual model (see also [2, 22, 38, 42]). For
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concreteness, let us suppose that earlier areas (e.g., V1, V2) in the visual pathway
compute and encode specific partial grouping hypotheses corresponding to frag-
ments of contours. These fragment hypotheses are communicated to higher-order
areas (e.g., V4 or TEO), which use them to generate more complete hypotheses of
the global shape. These global hypotheses are then fed back to earlier visual areas to
sharpen selectivity for other fragments that might support these global hypotheses.

A central component of this architecture is a generative model of shape that is
capable of producing probable global shape hypotheses given partial shape infor-
mation. This generative shape module will be our focus for the remainder of the
chapter.

5.4 Generative Models of Shape

While there are many computational theories and algorithms for shape representa-
tion, few are truly generative, and those that are or could be have not been fully
developed and tested (e.g., [23]). An important exception is the shapelet theory pro-
posed by Dubinskiy & Zhu [6]. The theory is based upon the representation of a
shape by a summation of component shapelets. A shapelet is a primitive curve de-
fined by Gabor-like coordinate functions that map arclength to the plane. Shifting
and scaling shapelets over the arclength parameter produces a basis set that, when
combined additively, can model arbitrarily complex shapes.

The shapelet approach has many advantages. For example, components are local-
ized, albeit only in arclength, and scale is made explicit in a natural way. However,
like other contour-based methods, the shapelet theory does not explicitly capture
regional properties of shape. Perhaps most crucially, the model does not respect
the topology of object boundaries: sampling from the model will in general yield
non-simple, i.e., self-intersecting, curves.

5.4.1 Localized Diffeomorphisms: Formlets

A different class of model that could be called region-based involves the application
of coordinate transformations of the planar space in which a shape is embedded.
This idea can be traced back at least to D’Arcy Thompson, who considered spe-
cific classes of global coordinate transformations to model the relationship between
the shapes of different animal species [36]. Coordinate transformation methods for
representing shape have been explored more recently in the field of computer vi-
sion (e.g., [19, 34]), but these methods do not in general preserve the topology of
embedded contours.

While general smooth coordinate transformations of the plane will not preserve
the topology of an embedded curve, it is possible to design a specific family of dif-
feomorphic transformations that will [9, 17, 27]. It then follows immediately by in-
duction that a generative model based upon arbitrary sequences of diffeomorphisms
will preserve topology.
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Specifically, let us consider a family of diffeomorphisms we will call formlets
[9, 27], in tribute to D’Arcy Thompson’s seminal book On Growth and Form [36].
A formlet is a simple, isotropic, radial deformation of planar space that is local-
ized within a specified circular region of a selected point in the plane. The family
comprises formlets over all locations and spatial scales. While the gain of the de-
formation is also a free parameter, it is constrained to satisfy a simple criterion that
guarantees that the formlet is a diffeomorphism. Since topological changes in an
embedded figure can only occur if the deformation mapping is either discontinuous
or non-injective, these diffeomorphic deformations are guaranteed to preserve the
topology of embedded figures.

This formlet model is closely related to recent work by Grenander and colleagues
[17], modeling changes to anatomical parts over time. There the problem is: given
two MRI images It and It+1 of an anatomical structure taken at two successive times
t and t + 1, first (a) compute the deformation vector field that associates each pixel
of It with a pixel of It+1, and then (b) represent this deformation field by a sequence
of local and radial diffeomorphisms. They demonstrated their method, which they
called Growth by Random Iterated Diffeomorphisms (GRID), on the problem of
tracking growth in the rat brain, as revealed in sequential planar sections of MRI
data. Subsequent work has focused on the generalization of this method to other co-
ordinate systems [29], on establishing the existence and uniqueness of a continuous
‘growth flow’ given a specified forcing function [31] and on investigating regular-
ized versions of the GRID formulation [30].

The underlying mathematics here are very similar, although there are some im-
portant differences in the exact nature of the localized diffeomorphisms and the
manner in which parameters are estimated. But the crucial question of interest here
is whether these ideas can be extended to model not just differential deformations
between two successive images, but to serve as the framework for a generative
model over the entire space of smooth shapes, based upon a universal embryonic
shape in the plane such as an ellipse.

5.5 Formlet Coding

5.5.1 Formlet Bases

We represent the image by the complex plane C, and define a formlet f : C→ C

to be a diffeomorphism localized in scale and space. Such a deformation can be
realized by centering f about the point ζ ∈ C and allowing f to deform the plane
within a (σ ∈R+)-region of ζ . A Gabor-inspired formlet deformation can be defined
as

f (z; ζ, σ,α)= ζ + z− ζ

|z− ζ |ρ
(|z− ζ |;σ,α), where

ρ(r;σ,α)= r + α sin

(
2πr

σ

)
exp

(−r2

σ 2

)
.

(5.1)
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Fig. 5.4 Example formlet
deformations. The location ζ

of the formlet is indicated by
the red marker. From [27]

Thus, each formlet f : C→ C is a localized isotropic and radial deformation of
the plane at location ζ and scale σ . The magnitude of the deformation is controlled
by the gain parameter α ∈ R. Figure 5.4 demonstrates formlet deformations of the
plane with positive and negative gain.

5.5.2 Diffeomorphism Constraint

Without any constraints on the parameters, these deformations, though continuous,
can fold the plane on itself, changing the topology of an embedded contour. In or-
der to preserve topology, we must constrain the gain parameter to guarantee that
each deformation is a diffeomorphism. As the formlets defined in Eq. (5.1) are both
isotropic and angle preserving, it is sufficient to require that the radial deformation
ρ be a diffeomorphism of R+, i.e., that ρ(r;σ,α) be strictly increasing in r . It can
be shown [9, 17, 27] that this requirement leads to a very simple diffeomorphism
constraint:

α ∈ σ
(
− 1

2π
,0.1956

)
. (5.2)

By enforcing this constraint, we guarantee that the formlet f (z, ζ, σ,α) is a diffeo-
morphism of the plane.

Figures 5.5(a) and (b) show the radial deformation function ρ(r;σ,α) as a func-
tion of r for a range of gain α and scale σ values respectively. Figures 5.5(c) and (d)
show the corresponding trace of the formlet deformation of an ellipse in the plane.

5.5.3 Formlet Composition

The power of formlets is that they can be composed to produce complex shapes
while preserving topology. Given an embryonic shape Γ 0(t) and a sequence of K
formlets {f1, . . . , fK}, the new shape Γ K(t), defined as

Γ K(t)= (fK ◦ fK−1 ◦ · · · ◦ f1)
(
Γ 0(t)

)
, (5.3)
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Fig. 5.5 Formlet
transformations as a function
of scale and gain. Red
denotes invalid formlet
parameters outside the
diffeomorphism bounds of
Eq. (5.2). From [27]

Fig. 5.6 Shapes generated by random formlet composition over the unit circle. Top row: shapes
resulting from a sequence of five random formlets. The red dot and circle indicate formlet location
ζ and scale σ , respectively. Bottom row: example shapes produced from the composition of many
random formlets. From [27]

is guaranteed to have the same topology as the original embryonic shape Γ 0(t).
Figure 5.6 shows an example of forward composition from a circular embryonic

shape, where the formlet parameters ζ, σ , and α have been randomly selected. Note
that a rich set of complex shapes is generated without leaving the space of valid
shapes (simple, closed contours).

A more difficult but interesting problem is inverse formlet composition: given an
observed shape Γ obs(t), determine the sequence of K formlets {f1, . . . , fK}, drawn
from a formlet dictionary D producing the new shape Γ K(t) that best approximates
Γ obs(t), according to a specified error measure ξ . Here, we measure error as the L2

norm of the residual.
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5.6 Formlet Pursuit

To explore the inverse problem of constructing formlet representations of planar
shapes, Oleskiw et al. [9, 27] employed a set of 391 blue-screened images of ani-
mal models from the Hemera Photo-Object database. The boundary of each object
was sampled at 128 points at regular arc-length intervals. The full dataset of object
shapes used is available at www.elderlab.yorku.ca/formlets.

To estimate the optimal formlet sequence {f1, . . . , fK}, a version of matching
pursuit for sparse approximation was employed [25]. Specifically, given an ob-
served target shape Γ obs, the model was initialized as a an embryonic elliptical
shape Γ 0 minimizing the L2 error ξ(Γ obs,Γ 0). At iteration k of the formlet pursuit
algorithm, the formlet fk(z; ζk, σk,αk) is selected that, when applied to the current
model Γ k−1, maximally reduces the approximation error.

This is a difficult non-convex optimization problem with many local minima.
Fortunately, the error function is quadratic in the formlet gain α, so that, given a
specified location ζ and scale σ , the optimal gain α∗ can be computed analytically
[9, 27]. Thus, the problem comes down to a search over location and scale param-
eters. In practice, this problem can be solved effectively by a dictionary descent
method, which combines a coarse grid search with local gradient descent at promis-
ing locations in the parameter space [9].

5.7 Evaluation

This shape model can be evaluated by addressing the problem of contour comple-
tion, using the animal shape dataset. In natural scenes, object boundaries are often
fragmented by occlusion and loss of contrast: contour completion is the process
of filling in the missing parts. Note that this is precisely the task of the generative
model in the feedback process illustrated in Fig. 5.3.

Oleskiw and colleagues [9, 27] compared the formlet model with the shapelet
model described in Sect. 5.4 [6]. For each shape in the dataset, they simulated the
occlusion of a section of the contour, and allowed the two methods to pursue only
the remaining visible portion. They then measured the residual error between the
model and target for both the visible and occluded portions of the shapes. Per-
formance on the occluded portions, where the model is under-constrained by the
data, reveals how well the structure of the model captures properties of natural
shapes. Implementations for both the formlet and shapelet models are available at
www.elderlab.yorku.ca/formlets.

Figure 5.7 shows example qualitative results for this experiment. While shapelet
pursuit introduces topological errors in both visible and occluded regions, formlet
pursuit remains topologically valid, as predicted. Figure 5.8 shows quantitative re-
sults. While the shapelet and formlet models achieve comparable error on the visible
portions of the boundaries, on the occluded portions the error is substantially lower
for the formlet representation. This suggests that the structure of the formlet model

http://www.elderlab.yorku.ca/formlets
http://www.elderlab.yorku.ca/formlets
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Fig. 5.7 Example of 30 % occlusion pursuit with shapelets (red) and formlets (blue) for
k = 0,2,4,8,16,32. Solid lines indicate visible contour, dashed lines indicate occluded contour.
From [9]

Fig. 5.8 Results of occlusion pursuit evaluation. Black denotes error for Γ 0(t), the affine-fit el-
lipse. From [9]

better captures regularities in the shapes of natural objects. The two principal rea-
sons for this are thought to be [9] (a) respecting the topology of the shape prunes off
many inferior completion solutions and (b) by working in the image space, rather
than arc length, the formlet model is better able to capture important regional prop-
erties of shape.

5.8 Discussion

Strictly feedforward algorithms for contour grouping based upon first-order Markov
models of contours tend to work poorly on complex natural scenes, yet humans
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are able to make effective use of contour shape information for object detection
[10]. Proven performance advantages of coarse-to-fine methods for contour group-
ing [12], together with the massive feedback connections that are known to pervade
primate object pathway [39, 40] suggest that the human brain may employ a recur-
rent computation to group contours and efficiently extract shape information from
natural scenes.

A key requirement for this recurrent network is a generative model of shape ca-
pable of producing global shape “hallucinations” based on contour fragments com-
puted in early visual cortex. These global shape hypotheses can then be fed back
to early visual areas to condition search for additional fragments that might support
the hypotheses.

The main problem in establishing such a generative model has been topology:
prior models do not guarantee that sampled shapes are simple closed contours (e.g.,
[6]). Recently, however, a novel framework for shape representation has been intro-
duced that guarantees that sampled shapes will have the correct topology. The theory
[9, 27], based upon localized diffeomorphic deformations of the image called form-
lets, has its roots in early investigations of biological shape transformation [36],
and is closely related to recent work modelling growth in biomedical imaging data
[17]. The formlet representation is seen to yield more accurate shape completion
than an alternative contour-based generative model of shape, which should make it
more effective at generating global shape hypotheses to guide feedforward contour
grouping processes.

These findings suggest a number of future experiments and computational inves-
tigations: (1) Is there any psychophysical evidence that humans exploit higher-order
shape features to segment contours in complex, cluttered scenes? If we do, is there
any evidence that this involves a feedback circuit? (2) Many shapes have highly
elongated parts that are not efficiently modelled by isotropic formlets. Is there a
way to generalize the theory to incorporate oriented formlets? (3) Applying the the-
ory effectively for problems of grouping, detection and recognition will require a
probabilistic model over formlet sequences. What is an appropriate structure for
this model, and how can its parameters be learned?

Answers to these questions will bring us considerably closer to an understanding
of the perceptual organization of shape.
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Chapter 6
Two-Dimensional Shape as a Mid-Level Vision
Gestalt

Johan Wagemans

6.1 General Introduction

In this chapter, I consider two-dimensional (2-D) shape as a mid-level vision Gestalt.
There is an extensive literature on the projection of three-dimensional (3-D) objects
on 2-D images and how human and computer vision can recover 3-D objects and
shapes from 2-D images (e.g., [34]). However, 2-D shape in itself is also a very rich
phenomenon. Here, I will argue that 2-D shape constitutes an interesting case of
visual Gestalts, in the sense of structured percepts where global properties dominate,
where local features or parts interact with one another or are coded relative to a
reference frame. I will also argue that 2-D shape is a prototypical case of a mid-level
vision phenomenon, meaning that its essential properties are processed somewhere
mid-way along the cortical hierarchy, receiving inputs from low-level visual areas
where simple stimulus attributes (or “features” such as orientation and curvature)
are processed, and sending outputs to high-level visual areas for recognition and
further interpretation. This formulation suggests a rather static system of relatively
well-delineated and isolated processing modules, with a series of sequential input-
output processors, but what I will show here instead is that the way in which 2-D
shapes are processed in human vision is really much more flexible and dynamical, in
the sense that most processes at this level show an intricate interplay between low-
and high-level aspects of processing. Studying these processes in isolation, which
has been the dominant approach in much research so far, has been masking much
of the richness of 2-D shape processing as a mid-level Gestalt. I will argue for a
more integrated approach by showing some examples of our research program on
this theme.

The chapter consists of a brief overview of three lines of research under this
umbrella. First, I will discuss our work on the perception of contours of outline
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shapes derived from everyday objects, showing strong interactions between local
and global aspects of processing. Second, I will illustrate some of our projects on 2-
D shape as a mid-level vision phenomenon, using Gabor arrays, which allow to link
shape with perceptual grouping, texture processing, and figure-ground organization.
Third, I will briefly review some studies that relate 2-D shape processing to more
high-level processes such as categorization.

6.2 Part I. Contours of Outline Shapes Derived from Everyday
Objects

6.2.1 Introduction

A few well-placed line segments on a flat canvas are often sufficient to identify ob-
jects but not all points along an object’s boundary contour are equally informative
about shape. Attneave [1] was probably the first to explicitly formulate the hypoth-
esis that curvature extrema (i.e., points along the contour where curvature reaches a
local maximum) are most informative about shape. He used two demonstrations to
support this hypothesis. In one demonstration, he asked participants to mark salient
points along the contour of a random shape and showed that frequencies of partici-
pants’ responses were highest on the curvature extrema. In a second demonstration,
which has become known as Attneave’s sleeping cat, he created a version of a line
drawing of his sleeping cat by connecting the curvature extrema by straight lines
and showed that this straight-line version was still easy to recognize.

To test the role curvature singularities, special values of curvature such as
extrema (maxima and minima) but also inflections (i.e., points where curvature
changes sign and goes through zero locally) for shape perception, we studied an
extensive stimulus set on many observers in a variety of tasks (reviewed in [3]).
This way we overcame limitations of previous studies that often tested a small set
of shapes and observers with a single task.

6.2.2 The Role of Curvature Singularities in Shape Perception

We derived various stimulus sets from line drawings of everyday objects and asked
large groups of observers to identify and segment them. We manipulated informa-
tion about shape in different ways and tested hypotheses about the role of curvature
singularities for object identification and segmentation.

Silhouette and Outline Versions As a point of departure, we have taken a well-
known set of line drawings from Snodgrass and Vanderwart [39], turned these into
black silhouettes, extracted their contours and spline-fitted them to obtain smoothly
curved, closed contours, with known curvature values at all points along the contour
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Fig. 6.1 For all line-drawings of everyday objects in the set by Snodgrass and Vanderwart [39]
Rossion and Pourtois [36] created version with additional surface qualities (gray-level or color).
In this example, different versions of a frog are shown. We reduced the amount of information
about 3-D and 2-D shape in several ways in subsequent studies. On the top row at the right are
silhouette and outline versions [42]. On the bottom row at the left are straight-line versions (anal-
ogous to Attneave’s sleeping cat) with straight-line segments connecting the curvature extrema or
the inflections that are, respectively, easy or hard to identify [6]. On the bottom row at the right are
fragmented versions with fragments centered on extrema or inflections that are, respectively, hard
or easy to identify [30]. This pattern of result was typically but not always found for other items in
the set

(see Fig. 6.1, top row). Not all of these boundary shapes can still be identified. Iden-
tifiability ranged from 0 % to 100 %. We have established norms for identification
of these silhouette and outline versions and explored why identifiability of different
stimuli was highly variable [42]. These benchmark data are useful for testing com-
putational theories of 3-D object recognition, because they illustrate a wide range
of difficulties having to do with diagnostic versus degenerate 2-D views, surface
structure, texture, diagnostic features, different types of line segments, junctions,
etc.

Salient Points We then asked subjects to mark salient points along the contours
of these shapes and noted that they often picked points in the neighborhood of cur-
vature extrema, confirming Attneave’s original observation. But we also found that
more global shape factors also played a significant role [5]. The saliency of a point
along the contour did not only depend on how high the maximum or how low the
minimum was but it also depended on the local neighborhood (e.g., the contour seg-
ment within which it was embedded) and the part structure (e.g., how much a part
is seen to be protruding or how deep the perceived indentation between two parts
is). Such data evidently constrain computational theories of shape representation.
Additionally, these benchmark data reveal the spatial scale at which object outlines
are perceived (e.g., level of smoothness).

Straight-Line Versions We then created figures consisting of straight-line seg-
ments connecting different points along the contour, such as curvature extrema ver-
sus inflection points, or salient points versus points midway between them (Fig. 6.1,
bottom row, two left images). Again, we have established norms for identification



88 J. Wagemans

of these straight-line figures and discussed some reasons for the large differences in
identifiability between different stimuli that we found [6]. The straight-line figures
based on extrema or salient points were generally easier to identify, again confirm-
ing Attneave’s intuitions as illustrated in his famous drawing of a sleeping cat. How-
ever, we also noted that the degree in which the straight-line version represented the
overall part-structure of the outline shape strongly affects the degree of identifiabil-
ity. In some cases, the straight lines connecting the selected points still preserved the
overall structural description of the shape (i.e., same parts in more or less the same
relative spatial positions and orientations), while in others they created a different
structural description. Hence, adding line-segments between two consecutive points
along the contour does much more to the resulting shape than just marking these
points, which may be a trivial point but one that is often forgotten in discussions
regarding Attneave’s cat.

Fragmented Versions Next, we created versions of these stimuli consisting of
small fragments, centered either on curvature extrema or salient points on the one
hand or on inflection points or midpoints on the other hand. Once again, we have
established norms for identification of these fragmented figures and explored the
reasons for the large variability of identifiability between different stimuli [30].
This time, however, we found that the fragmented figures with contour elements
centered on extrema or salient points were generally more difficult to identify than
those where contour elements were centered on inflections or midpoints (Fig. 6.1,
bottom row, two right images), contradicting the idea that most information is car-
ried by the curvature extrema. Apparently, the fact that the fragments require some
perceptual grouping to occur yields effects opposite to those obtained in figures with
closed contours. This observation illustrates the general point that a computational
theory about the importance of geometric sources of information also requires a
consideration of task demands. In the context of visual perception, information is
not a general, abstract notion but one that requires a computational analysis of the
constraints provided to the visual system carrying out a particular function.

Microgenesis of Fragmented Picture Identification The role of perceptual
grouping and the effects of different types of fragments in different types of shape
(simple versus complex, natural versus artificial) were later studied in much more
detail. Here we used a discrete identification paradigm, which means that we pre-
sented a series of fragmented pictures with increasing exposure duration (first for
80 ms, when the answer was incorrect, for 93 ms, then for 106 ms, etc.), until correct
identification occurred [33]. In combination with a discrete-time survival analysis,
this method allowed us to get a handle on the gradual emergence or microgenesis of
fragmented picture identification, including interesting time-course contingencies
between component processes (such as perceptual grouping of image fragments) to
build a shape description on the one hand and the matching of the resulting shape
description to existing object representations in visual memory on the other hand.
In addition, different geometric measures of the stimuli were incorporated in the
statistical models to analyze the data, which allowed us to investigate their role
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at different points in time. For instance, configural properties such as symmetry
dominated early grouping processes, compared to local fragment properties such as
fragment curvature or local relational properties such as proximity. The complexity
of shape also played a role that changed over time. For instance, low-complexity
objects showed a decreasing disadvantage compared to medium-complexity objects
(because there are more possible matches for simpler objects), while high-complex
objects showed an increasing advantage (due to a low number of activated candi-
dates). Similar results were subsequently obtained in a version of the discrete iden-
tification paradigm in which the fragmented pictures were gradually build up from
very sparse, short fragments to longer fragments and almost complete contours [40].

6.2.3 Conclusion

Contours provide considerable information about outline shapes, especially at the
points where contour curvature has singular values (inflections and extrema). How-
ever, no matter how much one reduces the available information (e.g., by presenting
only contour fragments), human perception always extracts and encodes relational
properties such as relative distance, parallelism, and so forth. Curvature singular-
ities play a role which is significantly modulated by the local neighborhood and
global configuration in which they are embedded. This was also very obvious in
an extensive study on the segmentation of objects into parts which we performed
with these stimuli [4]. Hence, shape perception, shape-based object identification
and segmentation are all tasks that require perceptual organization.

6.3 Part II. From Mid- to Lower-Level Vision: Linking Shape
Perception to Perceptual Organization

6.3.1 Introduction

In an extensive research program, we are explicitly connecting our earlier work on
perceptual grouping (e.g., [2]) and figure-ground organization (e.g., [16]) to issues
in shape perception. It is obvious that in real-life, both of these mid-level processes
play a significant role in detecting, localizing and identifying objects. Usually, ob-
jects are not presented to us as delineated outlines without a background, which
implies that the visual system has to do significant preprocessing to deliver a shape
percept which can then be interpreted. As is well known to the computer vision com-
munity, this can be a very difficult task. In the photograph in Fig. 6.2, for instance,
the segregation and grouping cues would give rise to the perception of a stick in
the foreground and some segments of twigs may be grouped in elliptic or circular
configurations, but the grouping of elements belonging to the frog (in the center of
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Fig. 6.2 Find the frog

the image) with elements from the background prevents to segregate the frog from
the background.

To mimic this interplay between perceptual grouping, figure-ground organiza-
tion, and object detection and identification, we have created so-called Gaborized
object outlines. Starting from the same contours derived from line-drawings of ev-
eryday objects as in Part I, we can place Gabor patches on the contour and in the
interior surface of the object. When we embed these target patches in an array of
randomly oriented Gabor patches in the background, the task can become shape
detection or identification but it would also require grouping and segregation (as
in the frog example). We can then manipulate the orientation of the Gabor ele-
ments on the contour separately from the orientation of the Gabor elements forming
the interior surface of the figure, and examine the interplay between curvilinearity-
based contour grouping and isolinearity-based texture segregation or surface group-
ing (Fig. 6.3, top panel). Software tools have been made to create such displays, with
easy control over low-level parameters like contrast, frequency, phase and orienta-
tion of the Gabor elements and mid-level parameters like density and distribution of
their placement [7]. The power of this approach is the combination of the following
characteristics:

(1) By using Gabor displays, we can mimic the processes that are necessary to
group elements that belong together and segregate them from the background.
We can slow down the processes that are usually occurring too quickly for mea-
surements in the lab.

(2) By using Gabor patches as the primitive element, we can relate our work to the
huge psychophysical and neurophysiological literature on how these stimuli are
processed at early levels in the visual system.

(3) By placing Gabor patches on the contour or in the interior surface of object
outlines, we can also study the contribution of perceptual organization processes
to object identification, and vice versa. We can study the interplay between mid-
level and high-level processes in more or less controlled circumstances.
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(4) The natural variation of object outlines, which implies a reduced level of para-
metric control, can still be studied more or less systematically by incorporating
all kinds of geometric measures of the shapes (e.g., contour length, surface area,
degree of curvature variation along the contour, degree of symmetry, complex-
ity, etc.) in the statistical models to analyze the data.

(5) In principle, the same stimuli can be used to tap into different levels of process-
ing: from detecting a regularity or structure in noise, to grouping and figure-
ground organization, to shape discrimination and object identification.

Here, I summarize only some headlines of some of the studies we have done so
far within this on-going research program. In extensive benchmark studies we have
provided norms for the detectability and identifiability for these stimuli [37, 38], in
which the structure were made more or less obvious by manipulating the degree of
grouping of the elements along the contour as well as inside (surface) and outside
(background). In more psychophysical experiments, we have studied the effect of
different levels of misalignment of the elements along the contour for both static
and dynamic stimuli, and for both detection and identification [21]. In a subsequent
study, we have also tested the effect of local flicker rates on the strength of group-
ing and how that affects both detection and identification (see [20]). In another line
of work, we have examined the role of contour and surface grouping as cues to
figure-ground organization with random shapes [18]. As illustrated in Fig. 6.3 (bot-
tom panel), grouping of surface elements is sufficient to see “something” against a
background, but a closed contour seems important to really see a clear “shape” or
“figure”. Psychophysical results indicated that both cues were combined optimally.

6.3.2 Conclusion

In the context of this chapter, I could not do justice to this line of research but I
do hope to have shown that the development of such stimuli and tasks can help
to bridge the gaps between the traditionally separated domains of perceptual orga-
nization (perceptual grouping, texture segregation, figure-ground organization) and
shape detection. Gaborized object arrays like these are particularly suited to study
mid-level vision as a relay station between low-level vision and high-level vision.

6.4 Part III. From Mid- to Higher-Level Vision: Linking Shape
Perception to Categorization

6.4.1 Introduction

Human shape perception is intrinsically relational (e.g., [15]). Not only is the per-
ception of an individual shape often determined by how the different features and
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Fig. 6.3 Figure-ground organization in Gabor arrays. On top are three examples of Gaborized
outlines [37, 38], with the contour and surface clearly segregated from the background (left), and
only the contour segregated from a regular (middle) or noisy (right) background. Below are three
examples of surface only, contour only, and combined surface-contour displays, used in target
detection [18]

parts are coded relative to one another within a spatial reference frame or struc-
tural description. Human perceivers also spontaneously encode similarities and dif-
ferences between shapes (e.g., [19]). Indeed, shape similarity is at the heart of a
remarkable cognitive capacity, namely to categorize shapes into groups that are suf-
ficiently similar to be treated as exemplars of the same fundamental kind (e.g., ap-
ples, bottles) and to distinguish these as a group from other shapes that are similar
in some respects and different in others (e.g., pears, cups). Categorization facilitates
perceptual and cognitive processing by supporting inferences about behaviorally
relevant features of objects one has never encountered. For instance, if it looks like
a duck and quacks like a duck, it is (probably) a duck, and then it will fly away when
approached by a human, it will swim rather than sink when thrown in the water, etc.

In this section, I will briefly review studies pertaining to the relationship between
shape similarity and categorization. This relationship is far from trivial: shape simi-
larity at least partially determines categorization but categorization also affects per-
ceived shape similarity. For example, when shapes are grouped together in a single
category, they are perceived to be more similar. Before getting into this relation-
ship, I will first address the question what aspects of visual shape form the basis of
perceived shape similarity (e.g., features, dimensions, or yet other aspects).
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6.4.2 Shape Features, Dimensions, and Generative
Transformations

There is considerable controversy in the perceptual literature about whether dif-
ferences between shapes are perceived holistically or analytically. In an analytic
processing mode, a shape is analyzed into its constituent features or dimensions,
and shape similarity is assessed feature-by-feature or dimension-by-dimension. In
a holistic processing mode, the processing depends on the nature of the dimensions
[9]. So-called integral dimensions cannot be perceived independently. Well-known
examples are color brightness and saturation, or for the shape domain, a rectangle’s
width and height. So-called separable dimensions, on the other hand, allow for sepa-
rate or independent judgments (e.g., shape and color). In a holistic processing mode,
integral dimensions are processed holistically, whereas separable dimensions can be
processed analytically [9].

In one study, we created a shape space of novel 2-D shapes varying in aspect
ratio and medial axis curvature, and asked whether the two dimensions could be
processed independent of one another in various tasks [22]. In general, the two di-
mensions behaved as separable and they could be extracted consistently from a large
set of different contour shapes. The latter finding indicated that shape dimensions
could be thought of as generic shape transformations or generative operations that
can be applied to a variety of visual objects. We tested this hypothesis in subsequent
studies.

In one series of experiments, we introduced two kinds of transformations: one
used linear transformations of the image plane (i.e., affine transformations), gen-
erally limiting shape variations within the boundaries of basic-level categories; the
other used curvilinear continuous transformations of the image plane that preserved
local affine structure (i.e., diffeomorphisms), allowing shape variations that crossed
and did not cross the boundaries of basic-level categories (for more details, see Ap-
pendix in [23]). We created shape quartets, in which two contours of object outlines
(e.g., lamp and wineglass) were paired and two other outlines were derived from
them by applying corresponding linear and curvilinear transformations (Fig. 6.4).
Similar quartets, with corresponding transformation parameters, were created for
non-existing shapes. We administered stimulus pairs from within these shape quar-
tets to children of 3 to 7 years old in a delayed match-to-sample task [23]. With
increasing age, especially between 5 and 6 years, children became more sensitive
to the curvilinear shape deformations that are relevant for between-category distinc-
tions, indicating that acquired categorical knowledge in early years induces percep-
tual learning of the relevant generic shape differences between categories. Such a
distinction was also found in a word-stimulus association learning task in a subse-
quent study, where errors in a naming task reflected the visual structure of categories
[24]. In an earlier study [14], we had applied a similar logic to simpler shapes (e.g.,
triangles, trapezoids) and simpler shape transformations (e.g., stretching, tapering),
and found that infants and toddlers (between 2.5 months and 2.5 years) were more
sensitive to categorical than metric shape changes.
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Fig. 6.4 Some of the stimuli that are used in the experiments on shape transformations. The
horizontal pairs reflect planar linear shape differences (affine transformations) and the vertical
pairs reflect planar curvilinear shape differences (diffeomorphisms). The upper three panels are
derived from existing objects (lamp-wineglass, bottle-guitar, doll-ostrich); the lower three panels
use non-existing shapes assembled from contour fragments of object outlines

6.4.3 Shape Similarity and Categorization Learning

We have investigated the relationship between shape similarity and categorization
in two lines of work, one using artificial shapes (which observers have never en-
countered) and one using outlines of everyday objects (see “Within-category shape
discrimination”).

Shape Similarity of Fourier Boundary Descriptors In many of the studies we
have performed on this topic, we have created random shapes using the so-called
Fourier Boundary Descriptors (or FBDs). These shapes are defined by radial fre-
quency components, describing the shape’s contour as a sum of sinusoidal modula-
tions, which are turned into a closed shape by connecting the end point to the start-
ing point [43]. This method allows one to parametrically vary the stimulus shape
(by the number, amplitude, and phase of the frequency components), although it is
very unlikely that human shape perception makes use of these parameters (Fig. 6.5).

Instead, the family resemblance seems to be based on the overall structure or con-
figuration of the shapes, i.e., the number of parts and their relative positions within
some structural description of the shape, whereas the within-family exemplars are
all variations of the same global structure in terms of the relative size, degree of
curvature and protrusion of the parts, etc. Surprisingly, the similarity structure of
such shape spaces showed a clear correspondence between similarity ratings by
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Fig. 6.5 Novel 2-D shapes created by Fourier Boundary Descriptors (FBDs). Although one can
easily see in (d) that shapes within a row are more similar to one another than between rows, the
specific relations between the shapes belonging to a family of similar shapes become clear only
when they are presented in an ordered way as in (a-b-c), where the shape variations are captured
by two dimensions and all pairwise differences between two shapes are more or less the same

human observers, shape confusions revealed in shape discrimination by macaque
monkeys, and responses of single neurons in the infero-temporal (IT) cortex in the
same macaque monkeys [27]. All of these (behavioral and neural) similarity spaces
corresponded (at least at an ordinal level) with the 2-D structure of the shape space
defined by the sum of the local, pixel-by-pixel dissimilarities (as reflected by the ar-
rangements in panels a, b, and c of Fig. 6.5, with equal pairwise differences between
all consecutive shapes within the space).

Shape Similarity and Categorization Learning In subsequent studies, we have
investigated relations between shape encoding and category learning in such shape
spaces. For example, we examined how the difficulty of a categorization task de-
pended on the way a categorization rule divided the shape space. When a linear sep-
aration rule was used, separating half of the shapes from the other half by a linear
boundary in the shape space (e.g., shapes 1–4 versus 5–8 in Fig. 6.5a–c), catego-
rization learning proceeded quickly. In the absence of such a linear separation rule,
categorization learning was much slower and did not reach perfect performance, al-
though performance was still better when the rule divided the space into quadrants
(e.g., shapes 1, 2, 5, and 6 versus 3, 4, 7, and 8 in Fig. 6.5a–c), as compared to an
arbitrary rule in which every nearest neighbor of a shape belonged to the opposite
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category (e.g., shapes 1, 3,5, and 7 versus 2, 4, 6, and 8 in Fig. 6.5a–c). This pattern
of results clearly supports the relevance of perceptual similarity for categorization:
It is much easier to group shapes into categories depending on their perceived sim-
ilarity. The categorization learning rate in monkeys could be modeled on the basis
of the similarity of neural responses in the cortical area IT, in a version of a neural
network model derived from ALCOVE [17], but only when the variability of their
firing rate and tuning selectivity was taken into account (for more details, see [29]).

In another line of work, the reverse influence was studied, i.e., how categoriza-
tion affected perceived shape similarity. After learning to categorize some shapes
as members of category A and others as members of category B, two shapes from
different categories were perceived as more different from one another. However,
the nature of the perceived shape dimensions was important: With so-called inte-
gral shape dimensions of shapes made from FBDs, both the relevant and the irrele-
vant shape differences became more distinguishable, whereas in so-called separable
shape dimensions (such as aspect ratio and curvature) only the relative differences
were enhanced (for more details, see [28]). This provides evidence for another link
between shape perception and categorization.

6.4.4 Within-Category Shape Discrimination

In a second set of studies, we investigated shape similarity effects within existing
categories of objects. Previous research of object identification has been primar-
ily concerned with basic-level identification: identification of objects as members
of a larger class, usually made of different exemplars with similar overall shapes
and usually named by simple nouns, learned in the young age (e.g., dog, chair).
Of course, many natural categories consist of different exemplars, which can also
be distinguished (e.g., German shepherd, Labrador, Golden retriever, etc.; kitchen
chair, arm chair, office chair, etc.). Moreover, these basic-level categories them-
selves can also be grouped into larger categories, usually containing much more
shape variation (e.g., mammals, furniture). The former is called subordinate-level
categorization; the latter is called superordinate-level categorization [35]. We have
conducted several studies on subordinate-level categorization and shape similarity.

First, we developed a stimulus set that allows one to study identification at the
subordinate-category level [26]. This set consists of 269 line-drawings of 25 differ-
ent basic-level categories, both natural objects and artifacts. In an fMRI study, we in-
vestigated the additional perceptual processes and representations that are recruited
when exemplars have to be discriminated at the subordinate-category level [25].

In subsequent studies, we derived silhouette and outline versions of these
subordinate-level exemplars and had a large sample of subjects perform similarity
ratings on them. Using Multi-Dimensional Scaling or MDS [8], we derived two-
dimensional representations of those families of shapes such as cars (Fig. 6.6A).
Then we extracted four extreme exemplars and created intermediated shapes by
morphing the extreme exemplars (Fig. 6.6B). In a set of 6 × 4 morph sequences
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Fig. 6.6 (A) The similarity ratings between all the exemplars of one basic-level object (e.g., car)
can be analyzed by MDS to create a shape space (with distance representing dissimilarity). (B) Tak-
ing the four most extreme shapes in such a shape space, one can then create 6 morph sequences
between each pair

with equal parametric changes from one exemplar to another for each basic-level
category, we collected similarity ratings, typicality ratings and basic-level matching
responses [32].

In an fMRI study using an event-related adaptation design, we confirmed that
within-category shape similarity is represented in the cortical area LOC, previously
identified as the locus for shape-based object identification [31]. When pairs of these
object outlines were presented consecutively, the BOLD activations in this area de-
creased monotonically as a function of the distance between objects on the morph
line (small decrease for large distance, larger decrease for smaller distance). This
finding of shape-similarity encoding in human LOC corresponds to a similar corre-
lation that was established in the study mentioned earlier [27], between 2-D shape
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similarity at the behavioral level for both humans and macaque monkeys and single-
cell responses in cortical area IT in the macaque monkey.

In an additional study in this series, we trained subjects to partition each basic-
level category into two subsets, using a horizontal or vertical boundary in the 2-D
shape space. Compared to a control condition in which the different exemplars were
presented equally often, the categorized shapes were discriminated better and, more
importantly, between-category pairs were discriminated better than within-category
pairs. Moreover, LOC was more selective for differences among the categorized
objects than among control objects [10]. These results indicate that the task context
modulates the extent to which shape similarity is altered as a result of training, both
at the behavioral and neural levels.

6.4.5 Shape Interpretation and Perceptual Switching

In all of the above studies where we created morphed between identifiable stimuli
(e.g., two cars), we implicitly assumed that the intermediate shapes formed a smooth
stimulus continuum. In another line of work, we explicitly studied the possibility of
a categorical shift from one interpretation to another, and the role of ambiguity in the
transition stage. The source of inspiration for this work came from traditional am-
biguous figures like Boring’s old-young woman, Jastrow’s duck-rabbit, and so forth
(see Fig. 6.7, top). An interesting aspect of these ambiguous figures is that one can
manipulate the degree of ambiguity. This can be done in two opposite ways. First,
starting from a classic ambiguous figure and its two unambiguous interpretations,
one can construct gradually less ambiguous versions in both directions (e.g., from
classic duck-rabbit in the middle to clear duck at one side and clear rabbit at the
other side; see Fig. 6.7, middle). Eleven such series were made [13], normative data
on the level of perceptual ambiguity of each exemplar in a series were collected, and
interesting biases were obtained [41].

Second, starting from pairs of outlines of everyday objects (e.g., airplane–
crocodile; [42]), fifteen series of morphed objects were made with ambiguous fig-
ures arising in-between the extremes [11], also at several levels of ambiguity (see
Fig. 6.7, below). The degree of categorical perception differed between the differ-
ent series: For some series, the transition between the two alternative interpretations
changed abruptly, somewhere in the middle, with very few other responses than the
two dominant ones, while for other series, the transition occurred much more grad-
ually, and the morphs in the middle region of the continuum gave rise to quite a
few additional response alternatives). In subsequent studies, we have used a double-
naming task to reveal whether the non-dominant alternative enters response compe-
tition (becomes suppressed) and a Bayesian selection model to distinguish continu-
ous versus discrete processing of alternatives and accounts of switching [12].
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Fig. 6.7 On top is the classic duck-rabbit ambiguous figure. In the middle, a morph sequence
created in-between the ambiguous middle figure and one extreme (clear duck) in one direction and
another extreme (clear rabbit) in the other direction. Below is another kind of morph sequence,
starting from one clear picture (e.g., airplane) to another clear picture (e.g., crocodile) with gradual
transitions in-between

6.4.6 Conclusion

Several conclusions can be drawn from this review on our work on the link between
shape perception and categorization. First, shape encoding is essentially relational.
Few changes can be made to a local feature of a shape without influencing the overall
shape percept, so features and parts of shapes are encoded configurally. Moreover,
shapes are usually encoded relative to other similar shapes, and properties of sets of
shapes (the average, the overall degree of variation, the strength of different sources
of variation) are extracted from the input images without much effort. Second, how
shapes are encoded affects several cognitive tasks. The mental representation of a
family of shapes (i.e., mental shape space) and how the categorization rule divides it
influence the difficulty of category learning by way of the nature of the separation of
the space. Third, similar shapes are often categorized together and category learning
increases perceived similarity of shapes within a category. In sum, there is a mutual
influence between shape similarity and categorization.

6.5 General Conclusion

Shape is a beautiful thing. Even simple outline drawings induce a wealth of pro-
cesses and representations within the human visual system. When fragments of
shapes and objects must be extracted from a noisy and cluttered input images, the
interplay between low-level image processing, mid-level perceptual organization,
and high-level interpretations is truly stunning. Much of this is still way too com-
plex for computer vision systems but they can resort to simpler brute-force methods
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to solve more delineated problems. Human vision, in contrast, is probably less good
at isolated tasks but by combining subprocesses in generic and flexible ways, it can
handle the much more complex tasks of visual processing encountered in everyday
life. Laboratory experiments usually scratch only the surface of what human per-
ceivers can do and there is still a great deal to learn about why things look the way
they do [15].
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Chapter 7
Shape Priors for Image Segmentation

Daniel Cremers

7.1 Image Analysis and Prior Knowledge

The segmentation of images into meaningful regions is among the most studied
problems in image analysis. The term meaningful typically refers to a semantic
partitioning where the computed regions correspond to individual objects in the
observed scene. Unfortunately, generic purely low-level segmentation algorithms
often do not provide the desired segmentation results, because the traditional low
level assumptions like intensity or texture homogeneity and strong edge contrast are
not sufficient to separate objects in a scene.

To stabilize the segmentation process with respect to missing and misleading
low-level information, researchers have proposed to impose prior knowledge into
low-level segmentation methods. In the following, we will review methods which
allow to impose knowledge about the shape of objects of interest into segmentation
processes.

In the literature there exist various definitions of the term shape, from the very
broad notion of shape of Kendall [37] and Bookstein [5] where shape is whatever
remains of an object when similarity transformations are factored out (i.e., a geo-
metrically normalized version of a gray value image) to more specific notions of
shape referring to the geometric outline of an object in 2D or 3D. In this work, we
will adopt the latter view and refer to an object’s silhouette or boundary as its shape.
Intentionally we will leave the exact mathematical definition until later, as different
representations of geometry actually imply different definitions of the term shape
and will require different algorithms. In fact, we will see that the question of how
to represent shapes is closely coupled to the question of finding efficient algorithms
for shape optimization.

One can distinguish three kinds of shape knowledge:
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Table 7.1 Shapes can be represented explicitly or implicitly, in a spatially continuous or a spatially
discrete setting. More recently, researchers have adopted hybrid representations [67], where objects
are represented both in terms of their interior (implicitly) and in terms of their boundary (explicitly)

Spatially continuous Spatially discrete

Explicit polygons [15, 74],
splines [3, 26, 36]

edgel labeling & dyn. progr.
[1, 53, 60, 64, 66]

hybrid repres. LP
relaxation [67]

Implicit level-set methods [27, 51],
convex relaxation [12, 23]

graph cut methods [6, 33]

• Low-level shape priors typically favor shorter boundary length, that is, curves
with shorter boundary have lower shape energy [4, 6, 33, 36, 48].
• Mid-level shape priors characterize a certain class of shapes without specifying

their exact shape. For example, thin and elongated structures can be preferred
to facilitate the segmentation of roads in satellite imagery or of blood vessels in
medical imagery [30, 49, 55]. Similarly one can impose a prior on the low-order
shape moments without otherwise constraining the shape [41].
• High-level shape priors favor similarity to previously observed shapes, such as

hand shapes [15, 26, 34], silhouettes of humans [18, 21] or medical organs like
the heart, the prostate, the lungs or the cerebellum [42, 58, 59, 71].

Among a wealth of works on shape priors for image segmentation we will fo-
cus in this chapter on high-level shape priors. Specifically, we will present a range
of representative works—with many of the examples taken from the author’s own
work—and discuss their advantages and shortcomings.

7.2 Explicit versus Implicit Shape Representation

Among mathematical representations of shape, one can distinguish between explicit
and implicit representations. In the former case, the boundary of the shape is repre-
sented explicitly as a mapping from a chart into the embedding space. Alternatively,
shapes can be represented implicitly in the sense that points in the ambient space are
labeled as part of the interior or the exterior of the object. In the spatially continuous
setting, the optimization of such implicit shape representations is solved by means
of partial differential equations. Among the most popular representatives are the
level-set method [27, 51] or alternative convex relaxation techniques [11, 12]. In the
spatially discrete setting, implicit representations have become popular through the
graph cut methods [7, 33]. More recently, researchers have also advocated hybrid
representations where objects are represented both explicitly and implicitly [67]. Ta-
ble 7.1 provides an overview of a few representative works on image segmentation
using explicit and implicit representations of shape.

Figure 7.1 shows examples of shape representations using an explicit parametric
representation by spline curves (spline control points are marked as black boxes),
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Fig. 7.1 Examples of shape representations by means of a parametric spline curve (1st image),
a signed distance function (2nd image), a binary indicator function (3rd image), and an explicit
discrete representation (4th image)

Fig. 7.2 The linear interpolation of the signed distance functions associated with two human sil-
houettes also gives rise to intermediate shapes, yet it does not constrain the shape’s topology. The
interpolation of signed distance functions is generally no longer a signed distance function

implicit representations by a signed distance function or a binary indicator function
and an explicit discrete representation (4th image).

Both explicit and implicit shape representations can be used for statistical shape
learning where one can generalize a family of plausible shapes from a few sample
shapes—see Fig. 7.2.

In the following, we will give an overview of some of the developments in the
domain of shape priors for image segmentation. In Sect. 7.3, we will discuss meth-
ods to impose statistical shape priors based on explicit shape representations. In
Sect. 7.4, we discuss methods to impose statistical shape priors in level-set based
image segmentation including the concept of dynamical shape priors to learn tem-
poral models of shape evolution as priors for image sequence segmentation. And
lastly, in Sect. 7.5, we will present a method to compute polynomial-time optimal
segmentations with elastic shape priors.

7.3 Statistical Shape Priors for Explicit Shape Representations

Over the last decades Bayesian inference has become an established paradigm to
tackle the problem of image segmentation—see [22, 76], for example. Given an
input image I : Ω → R on a domain Ω ⊂ R

2, a segmentation C of the image
plane Ω can be computed by maximizing the posterior probability P(C | I ) ∝
P(I |C) P(C), where P(I |C) denotes the data likelihood for a given segmenta-
tion C and P(C) denotes the prior probability which allows to impose knowledge
about which segmentations are a priori more or less likely.
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Maximizing the posterior distribution can be performed equivalently by mini-
mizing its negative logarithm given by a cost function of the form

E(C)=Edata(C)+Eshape(C), (7.1)

where Edata(C) = − logP(I |C) and Eshape(C) = − logP(C) are typically re-
ferred to as data fidelity term and regularizer or shape prior. By maximizing the
posterior, one aims at computing the most likely solution given data and prior.

Over the years various data terms have been proposed. In the following, we will
simply use a piecewise-constant approximation of the input intensity I [48]. More
sophisticated data terms based on color likelihoods [8, 40, 50, 75] or texture likeli-
hoods [2, 22] are conceivable.

7.3.1 Linear Shape Priors

Among the most straightforward ways to represent a shape is to model its outline
as a parametric curve, for example a spline curve of degree k [14, 26, 29, 46]. For
k = 1, we simply have a polygonal shape [74]. Such parametric representations are
quite compact in the sense that very detailed silhouettes can be represented by a few
control points. This representation can be made invariant to translation, rotation and
scale by appropriate normalizations often called procrustes analysis [28].

With this contour representation, the image segmentation problem boils down
to computing an optimal spline control point vector for a given image. The seg-
mentation process can be constrained to familiar shapes by imposing a statistical
shape prior computed from the set of training shapes. The most popular shape prior
is based on the assumption that the training shapes are Gaussian distributed—see
for example [15, 26, 38]. One can define a shape prior that is invariant to simi-
larity transformations (translation, rotation and scaling) by applying the Gaussian
assumption to the similarity-normalized control point vector [26]. Since the space
of similarity-normalized shapes is no longer a vector-space, however, the resulting
distribution will not be exactly Gaussian.

Figure 7.3 shows several intermediate steps in a gradient descent evolution on
the energy (7.1) combining the piecewise constant intensity model with a Gaussian
shape prior constructed from a set of sample hand shapes. Note how the similarity-
invariant shape prior constrains the evolving contour to hand-like shapes without
constraining its translation, rotation or scaling. We refer to this as a linear shape
prior since admissible shapes are linear combinations of respective eigen-shapes.

Figure 7.4 shows the gradient descent evolution with the same shape prior for
an input image of a partially occluded hand. Here the missing part of the silhouette
is recovered through the statistical shape prior. The curve converges to the desired
segmentation over rather large spatial distance.
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Fig. 7.3 Evolution of a parametric spline curve during gradient descent on the energy (7.1) com-
bining a piecewise constant intensity data term model with a Gaussian shape prior constructed
from a set of sample hand shapes [26]. Since the shape prior is by construction invariant to simi-
larity transformations, the contour easily undergoes translation, rotation and scaling during energy
minimization

Fig. 7.4 Gradient descent evolution of a parametric curve with similarity invariant shape prior.
The statistical shape prior permits a reconstruction of the hand silhouette in places where it is
occluded

7.3.2 Nonlinear Shape Priors

In general, a given set of shapes—say the various projections of a 3D object ob-
served from different view points or the various silhouettes of a walking person—
will not be Gaussian-distributed. There are many ways to go beyond the Gaussian
distribution—using mixtures of Gaussians, kernel density estimators or manifold
learning techniques. Alternatively one can introduce nonlinearity by means of Mer-
cer kernel methods. In [20], it was proposed to model the shape prior not by a
Mahalanobis distance in the input space (arising from the Gaussian model), but by a
corresponding distance upon a transformation ψ :Rn→ Y of the control point vec-
tor z ∈Rn to some generally higher-dimensional feature space Y . This gives rise to
a Mahalanobis distance of the form:

E(z)= (ψ(z)−ψ0
)t
�−1

ψ

(
ψ(z)−ψ0

)
(7.2)

with ẑ being the similarity-normalized control point vector. Here ψ0 and �ψ denote
the mean and covariance matrix computed for the transformed shapes:

ψ0 = 1

m

m∑

i=1

ψ(zi), �ψ = 1

m

m∑

i=1

(
ψ(zi)−ψ0

)(
ψ(zi)−ψ0

)�
. (7.3)

As shown in [20], the energy E(z) above can be evaluated without explicitly
specifying the nonlinear transformation ψ . It suffices to define the corresponding



108 D. Cremers

Fig. 7.5 Tracking a familiar object over a long image sequence with a nonlinear statistical shape
prior constructed from a set of sample silhouettes. In contrast to commonly used Gaussian shape
priors, the nonlinear prior allows the emergence of a multitude of familiar shapes which are not
merely a linear combination of familiar shapes

Mercer kernel [17, 47]:

k(x, y) := 〈ψ(x),ψ(y)
〉
, ∀x, y ∈Rn, (7.4)

representing the scalar product of pairs of transformed points ψ(x) and ψ(y).
A popular choice of k is a Gaussian kernel function: k(x, y)∝ exp(− 1

2σ 2 ‖x− y‖2).
It was shown in [20], that the resulting energy is related to the classical Parzen-
Rosenblatt density estimators. As shown in Fig. 7.5, this nonlinear shape prior al-
lows the emergence of multiple very different shapes and therefore better preserves
small-scale shape details.

7.4 Statistical Priors for Level-Set Representations

Parametric representations of shape such as those presented above have numerous
favorable properties. In particular, they allow the representation of rather complex
shapes with few parameters, resulting in low memory requirements and low compu-
tation time. Nevertheless, the explicit representation of shape has several drawbacks:
Firstly, explicit shapes require a specific choice of curve (or surface) parameteriza-
tion. To factor out this dependency in the representation and in respective algorithms
gives rise to computationally challenging problems of regridding or reparameteriza-
tion. This becomes particularly difficult for higher-dimensional shapes. Secondly,
parametric representations are difficult to adapt to varying topology of the rep-
resented shape. Numerically topology changes require sophisticated splitting and
remerging procedures. Thirdly, the commonly used energies are not convex with
respect to a parametric boundary representation. Gradient descent algorithms will
therefore only determine locally optimal solutions.

A mathematical representation of shape which is independent of parameteriza-
tion was pioneered in the analysis of random shapes by Fréchet [31] and in the
school of mathematical morphology founded by Matheron and Serra [45, 70]. The
level-set method [27, 51] provides a means of propagating contours C (indepen-
dent of parameterization) by evolving associated embedding functions φ via partial
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differential equations—see Fig. 7.2 for a visualization of the level-set function as-
sociated with a human silhouette. It has been adapted to segment images based on
numerous low-level criteria such as edge consistency [10, 39, 44], intensity homo-
geneity [13, 73], texture information [9, 35, 52, 57] and motion information [24].

7.4.1 Nonparametric Shape Priors

For level-set based shape representations, researchers have fit a linear sub-space to
the sampled signed distance functions [43, 59, 72]. These approaches were shown
to capture some shape variability. Yet, they exhibit two limitations: Firstly, they rely
on the assumption of a Gaussian distribution which is not well suited to approximate
shape distributions encoding more complex shape variation—see above. Secondly,
they work under the assumption that shapes are represented by signed distance func-
tions. Yet, the space of signed distance functions is not a linear space. Therefore, in
general, neither the mean nor the linear combination of a set of signed distance
functions will correspond to a signed distance function.

In the following, we will propose an alternative approach for generating a sta-
tistical shape dissimilarity measure for level-set based shape representations. It is
based on classical methods of (so-called non-parametric) kernel density estimation
and overcomes the above limitations.

Given a set of training shapes {φi}i=1,...,N , one can introduce a nonparametric
shape prior on the space of signed distance functions [25] by means of a Parzen-
Rosenblatt kernel density estimator [54, 56]:

P(φ)∝ 1

N

N∑

i=1

exp

(
− 1

2σ 2
d2(φ,φi)

)
, (7.5)

with an appropriate distance d to measure the dissimilarity of two given level-set
functions. The kernel density estimator is among the theoretically most studied den-
sity estimation methods. In the finite-dimensional case, it was shown to converge to
the true distribution in the limit of infinite samples (and σ → 0).

As in the case of parametric curves, segmentation can be cast as a problem of
maximum aposteriori inference which boils down to an energy minimization prob-
lem of the form

E(φ)=Edata(φ)+Eshape(φ), (7.6)

with Eshape(φ)=− logP(φ) and an appropriate data term Edata.
Figure 7.6 shows a direct comparison of a level-set segmentation process without

and with the non-parametric shape prior in (7.5). The shape prior permits the accu-
rate reconstruction of an entire set of fairly different shapes. Since the shape prior is
defined on the level-set function φ, it can easily handle topological changes of the
represented curve.
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Fig. 7.6 By extending a purely data driven level set segmentation (top row) with a nonparamet-
ric shape prior (bottom row) the resulting segmentation method is robust to misleading low-level
information such as shadows or partial occlusion

7.4.2 Dynamical Shape Priors for Implicit Shapes

Although the above shape priors can be applied to tracking objects in image se-
quences, they are not suited for this task, because they neglect the temporal coher-
ence of silhouettes which characterizes many deforming shapes. In the following,
we will present temporal statistical shape models for implicitly represented shapes
that were first introduced in [18]. At any given time, the shape probability depends
on the shapes observed at previous time steps. The integration of such dynamical
shape models into the segmentation process can be formulated within a Bayesian
framework for image sequence segmentation: Let It :Ω→ R denote the input im-
age at time t and let φ̂1:t−1 := (φ̂1, . . . , φ̂t−1) denote the segmentations obtained for
the previous frames. Under the assumption that these segmentations are correct and
that no knowledge about future data is available, the most likely segmentation at
time t can be computed as follows:

φ̂t = arg max
φt

P(φt | It , φ̂1:t−1)= arg max
φt

P(It |φt )P(φt | φ̂1:t−1). (7.7)

Under certain assumptions, it is even possible to reinterpret the past observations in
closed form [61]. The intuition is then to find the segmentation which best partitions
the current image and all past images (when propagated backward in time with the
dynamical model). Similarly one could take into account future observations (if
available) by propagating the model forward in time.

Again, one can equivalently minimize the negative logarithm of the above ex-
pression. Gradient descent induces an evolution of the level set function which is
driven both by the intensity information of the current image as well as by a dy-
namical shape prior which relies on the segmentations obtained for the preceding
frames. Experimental evaluation demonstrates that the resulting segmentations are
not only similar to previously learned shapes, but they are also consistent with the
temporal correlations estimated from sample sequences. The resulting segmentation
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Fig. 7.7 Variational image sequence segmentation with a dynamical shape prior on noisy and
partially occluded data. 90 % noise means that nine out of ten intensity values were replaced by
a random intensity. The statistically learned dynamical model allows for reliable segmentation
results despite large amounts of noise (above) and prominent occlusion (below)

process can cope with large amounts of noise and occlusion because it exploits prior
knowledge about temporal shape consistency and because it aggregates information
from the input images over time (rather than treating each image independently).

As in the case of static shape priors, one can consider linear [18] or nonlinear
[19] dynamical shape priors. As shown in Fig. 7.7, a linear dynamical shape prior
allows reliable tracking of a walking person in an image sequence degraded by large
amounts of noise and prominent occlusion.

7.5 Parametric Representations Revisited: Combinatorial
Solutions for Segmentation with Shape Priors

In previous sections, we saw that shape priors improve the segmentation and track-
ing of familiar deformable objects, biasing the segmentation process to favor fa-
miliar shapes or even familiar shape evolutions. Unfortunately these approaches are
based on locally minimizing the respective energies via gradient descent. Since these
energies are generally non-convex, the computed locally optimal solutions typically
depend on an initialization and may be suboptimal in practice. One exception based
on implicit shape representations as binary indicator functions and convex relaxation
techniques was proposed in [23]. Yet, the linear interpolation of shapes represented
by binary indicator functions will generally not give rise to plausible intermediate
shapes: For example, linearly interpolating two human silhouettes with one arm in
different locations will fade out the arm in one location and make it emerge again in
the other location. It will not translate the arm from one location to the other which
would be desirable. In this sense, there is no generalization to plausible intermediate
shapes.

Moreover, while implicit representations like the level-set method circumvent the
problem of computing correspondences between points on either of two shapes, it
is well-known that the aspect of point correspondences plays a vital role in human
notions of shape similarity. For matching planar shapes, there is abundant literature
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Fig. 7.8 A polynomial-time solution for matching shapes to images: matching a template curve
C : S1→R

2 (left) to the image plane Ω ⊂R
2 is equivalent to computing an orientation-preserving

cyclic path Γ : S1→Ω × S
1 in the product space spanned by the image domain and the template

domain. The latter problem can be solved in polynomial time—see [66] for details

on how to solve this correspondence problem in polynomial time using dynamic
programming techniques [32, 62, 69].

Similar concepts of dynamic programming can be employed to localize deformed
template curves in images. Coughlan et al. [16] detected open boundaries by shortest
path algorithms in higher-dimensional graphs. Felzenszwalb et al. used dynamic
programming in chordal graphs to localize shapes, albeit not on a pixel level.

Polynomial-time solutions for localizing deformable closed template curves in
images using minimum ratio cycles or shortest circular paths were proposed in [66],
with a further generalization presented in [65]. There the problem of determining
a segmentation of an image I : Ω → R that is elastically similar to an observed
template cc : S1→R

2 is computed as a cycle

Γ : S1→Ω × S
1 (7.8)

of minimum ratio in the product space spanned by the image domain Ω and template
domain S

1. See Fig. 7.8 for a schematic visualization. All points along this circular
path provide a pair of corresponding template point and image pixel. In this manner,
the matching of template points to image pixels is equivalent to the estimation of
orientation-preserving cyclic paths, which can be solved in polynomial time using
dynamic programming techniques such as ratio cycles [63] or shortest circular paths
[68].

Figure 7.9 shows an example result obtained with this approach: The algorithm
determines a deformed version (right) of a template curve (left) in an image (cen-
ter) in globally optimal manner. An initialization is no longer required and the best
conceivable solution is determined in polynomial time.

Figure 7.10 shows further examples of tracking objects: Over long sequences of
hundreds of frames the objects of interest are tracked reliably—despite low contrast,
camera shake, bad visibility and illumination changes. For further details, we refer
to [66].
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Fig. 7.9 Segmentation with a single template: despite significant deformation and translation, the
initial template curve is accurately matched to the low-contrast input image. The globally optimal
correspondence between template points and image pixels is computed in polynomial time by
dynamic programming techniques [66]

Fig. 7.10 Tracking of various objects in challenging real-world sequences [66]. Despite bad vis-
ibility, camera shake and substantial lighting changes, the polynomial-time algorithm allows to
reliably track objects over hundreds of frames. Image data taken from [66]

7.6 Conclusion

In the previous sections, we have discussed various ways to include statistical shape
priors in image segmentation methods. We have made several observations:

• By imposing statistically learned shape information one can generate segmenta-
tion processes which favor the emergence of familiar shapes—where familiarity
is based on one or several training shapes.
• Statistical shape information can be elegantly combined with the input image data

in the framework of Bayesian maximum aposteriori estimation. Maximizing the
posterior distribution is equivalent to minimizing a sum of two energies represent-
ing the data term and the shape prior. A further generalization allows to impose
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dynamical shape priors so as to favor familiar deformations of shape in image
sequence segmentation.
• While linear Gaussian shape priors are quite popular, the silhouettes of typical ob-

jects in our environment are generally not Gaussian distributed. In contrast to lin-
ear Gaussian priors, nonlinear statistical shape priors based on Parzen-Rosenblatt
kernel density estimators or based on Gaussian distributions in appropriate fea-
ture spaces [20] allow to encode a large variety of rather distinct shapes in a single
shape energy.
• Shapes can be represented explicitly (as points on the object’s boundary or sur-

face) or implicitly (as the indicator function of the interior of the object). They
can be represented in a spatially discrete or a spatially continuous setting.
• The choice of shape representation has important consequences regarding the

tractability of the resulting optimization problem. Moreover, different notions of
shape similarity and shape interpolation are more easily expressed with respect to
one or the other shape representation. As a result, there is no single ideal represen-
tation of shape. In fact, a good compromise between desirable and tractable cost
functions may be obtained using hybrid representations such as the one proposed
in [67]. It is an overcomplete shape representation which combines an explicit (al-
beit not parametric) and an implicit representation coupled via linear constraints.
As a consequence, properties of both the object’s interior and its boundary can
be directly accessed in the respective cost function. If this cost function is linear
then LP relaxation can provide minimizers of bounded optimality.
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Chapter 8
Observations on Shape-from-Shading
in Humans

Andrew J. Schofield, Peng Sun, and Giacomo Mazzilli

Humans are able to judge the shape of an undulating surface from variations in the
amount of light reflected from it due to changes in its orientation/position relative
to the light source. Here, we are concerned more with the shape of undulations on
a surface than the solid shapes of objects as a whole. The latter may support object
recognition and coarse grasping actions whereas the former may relate more to fine
grasping and finger placement.

The study of shape-from-shading in humans has a long history but remains an
open problem. It is clear that humans can estimate surface undulations from patterns
of shading but less clear what mechanisms support this process. This knowledge gap
is also found in the computer vision literature where despite many years’ of effort
and the existence of many good algorithms to deal with special cases, a robust,
generic solution to shape-from-shading remains somewhat elusive.

The central problem of shape-from-shading is that shape must be estimated from
luminance variations in the image but the origin of such variations is highly am-
biguous. Even in the most restricted cases (e.g., Lambertian surfaces with uniform
albedo illuminated by a single collimated light source) the amount of light reflected
to the eye depends on the angle between the surface normal and the lighting direc-
tion. Potentially, vision faces the task of simultaneously estimating two unknowns
(the direction of the light source and the orientation of the surface) from a single
luminance value. This problem is mathematically ill posed and can only be solved
with additional information or constraints. Vision of course has access to more than
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Fig. 8.1 A photograph of a
convexity and a concavity
both lit from above-left.
People tend to see both as
convexities with the one on
the left lit from below-right
even though this requires two
light sources

one luminance value at a time, but no surface is truly Lambertian, surface albedo
varies, and scenes are lit by a multitude of spatially localized light sources. All of
these factors complicate the estimation of shape-from-shading. Thus, a given pattern
of luminance variations, can arise from changes in surface properties, illumination
intensity and direction, and surface orientation. The task of extracting surface ori-
entation with no knowledge of the light field or surface reflectance properties is
mathematically intractable.

That humans can apparently perform shape-from-shading implies that we can
also perform a number of other related tasks such as (1) decompose the luminance
image into reflectance changes and illumination changes; (2) discriminate shading
from shadows; (3) estimate the light field; and (4) locate boundary points in the
image to both separate surfaces one from another and to provide vital constraints
to solve the shape-from-shading problem. Each of these tasks is difficult in its own
right and it is by no means certain that the human visual system solves them all
independently or veridically. What is clear is that the visual system can solve this
constellation of problems well enough to produce useful solutions most of the time.

The human visual system also seems to employ prior knowledge to fill in gaps in
the sensory input thus allowing shape-from-shading to proceed even in highly im-
poverished scenes. Human vision degrades gracefully. For example, the simple case
of a sinusoidal luminance grating of moderate contrast is seen as an undulating sur-
face even when there is no physical surface or light source generating the ‘shading’,
and when boundary information is at best incomplete [25, 29, 32]. In such reduced
cases, the visual system must assume a light source and estimate surface shape de-
spite the lack of boundary constraints. However, these surface estimates may not be
veridical to the physical surface, where one exists. The ambiguities and inaccuracies
of shape-from-shading are well illustrated by Fig. 8.1 which shows a photograph of
a bump and a dip lit by a single light source but which often appears as two bumps
lit from different directions.

In this review, we will first consider which shape properties are estimated by
human shape-from-shading. We will then review the human visual system’s ability
to extract shape-from-shading and estimate light source direction; the importance of
boundary conditions; the nature and role of default assumptions; and the estimation
of shape in sub-optimal circumstances.
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8.1 Shape Properties

Marr’s [20] hierarchal approach to vision suggests that low-order scene properties,
such as the orientation of surfaces are extracted from the image and that these es-
timates are then used to compute higher properties such a surface curvature and
overall object shape. More recent theories of shape perception such as Pizlo’s [26]
account of the extraction of object shape from 2D outlines suggest that no such hi-
erarchy exists. Human vision need not, and does not, compute higher order shape
properties from surface orientations. Johnston and Passmore [9, 10] had observers
measure both surface orientation and curvature and found that the two appeared
to be estimated separately. This dissociation persisted even when stereoscopic and
texture cues were added to the displays. They concluded that curvature judgments
do not rely on estimates of surface orientation. People can derive both surface ori-
entation and curvature from shading, but the two processes are separate. Perhaps
unfortunately, most studies of shape-from-shading (including our own) have mea-
sured the perceived orientation of surfaces. Other studies have used relative depth
judgments between probe points to estimate surface shape and a few have asked
participants to estimate curvature directly. Johnston & Passmore’s result suggest
that findings based on one type of shape estimate cannot be assumed to translate to
other measurement methods.

Summary Human vision estimates surface orientation and curvature directly and
separately from shading, it does not derive curvature estimates from changes in
orientation.

8.2 Veridicality and Stability

While the visual system seems to reconstruct surface shape from shading if at all
possible, it does not necessarily do so veridically. Orientation settings for a given
image do not necessarily match the orientations of the original surface that gen-
erated the image. However, given that any shading image can be generated from
an infinite number of shape and lighting combinations (see, for example, [2]) this
lack of veridical perception is not surprising. As Koenderink, van Doorn, and Kap-
pers [14] put it, the information in an image can only deliver shape estimates up to a
certain level of ambiguity, after that the observer must apply their ‘beholders share’
(some internal estimate of the missing information) to interpret the shape before
them.

Koenderink, van Doorn and Kappers [13] side stepped the question of veridical
perception and asked only if observers’ shape judgments were consistent over re-
peated observations and across observers. They found that observers were internally
consistent for a given task and that tilt settings were reasonably consistent between
observers. In contrast, the inter-observer variability in slant settings was quite high.
Tilt measures the direction or axis along which the surface is oriented whereas slant
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measures the degree to which the surface is oriented away from the observer. Thus,
Koenderink et al.’s [13] result shows that observers tend to perceive the same basic
shape but apply a different depth scaling to it. Koenderink et al. [14] extended this
work to consider variations across different tasks for the same shape. As well as
the expected inter-observer variations, Koenderink et al. found considerable within
observer variations for the same shape estimated using different measurement meth-
ods. This result would seem to suggest that shape-from-shading is unreliable, how-
ever, the estimated shapes were almost always affine transformations of one another
(both across tasks and observers). That is, all the estimates represented the same ba-
sic shape with a scale factor in depth (z) and a shear in x, y. Koenderink et al. [14]
associated this affine transformation with the ‘beholders share’ and the application
of prior assumptions.

It is interesting that the particular affine transformation adopted by an observer
varied between measurement methods and stimuli. This finding suggests that the set
of prior assumptions adopted by human vision is to some large extent determined
by both the stimulus and the measurement task. There were, however, marked sim-
ilarities among the transformations adopted by each observer: for example, shears
tended to be in the same direction. Koenderick et al. [14] concluded that, affine
transformations notwithstanding, estimates of surface shape are very reliable.

Summary Human shape-from-shading does not always yield veridical solutions
but it does yield reliable ones up to an affine transformation. Because of the ill-
posed nature of shape-from-shading, and the consequent need to employ prior as-
sumptions about the scene and lighting conditions which may be idiosyncratic, we
must expect variations in perceived shape across participants and between tasks
within participants. Thus, we must be careful about the choice of task and should
probably test more people than is typical in psychophysics. However, for reason-
ably well-articulated stimuli, we should expect a high degree of stability once affine
transformations of perceived surfaces are allowed. We should not be too concerned
by inter- and intra-subject variability that can be explained by such transformations.

8.3 Boundary Conditions and Contours

Although it is possible to make some estimate of shape directly from shading alone,
the presence of contours in an image can have a profound effect on the percept
formed. Erens, Kappers and Koenderick [5] asked people to make shape judgments
about isolated patches of surface free from boundary and lighting information and
found that they were unable to distinguish between convex, concave, quadric and
hyperbolic structures. Adding lighting information in the form of cast shadows im-
proved performance but participants were still unable to distinguish the quadric
and hyperbolic cases. Knill [11] provides an interesting example case: a sinusoidal
shading pattern provides an ambiguous shape percept; it might either represent two
bumps under frontal lighting or four bumps lit from above. Curved stripes added to
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the image disambiguate the percept such that the curvature frequency of the contours
determines the number of bumps perceived.

Occluding contours and edge contours also disambiguate shape-from-shading.
Occluding contours, such as those found at the perimeters of objects, are especially
important for helping to define shape. At such points, surface slant is a maximal 90
degrees and tilt is perpendicular to the contour. Thus, occluding contours provide
useful seed points where both slant and tilt are known independently of shading.
Slant and tilt values can then be propagated from such points and, modified appro-
priately by the intervening shading values, producing more veridical solutions than
might be obtained using shading alone [8].

In our own work on boundary constraints [32], we presented observers with sim-
ple periodic stimuli—not rendered images—and found that shape estimates often
conformed to the linear shading or ‘slant proportional to luminance’ rule. However,
shape estimates were also affected by luminance edges in the image. For exam-
ple, truncating the image so that only one cycle of luminance variation was visible
changed the perceived shape. We conclude that even when edge features do not de-
fine occluding boundaries and are not interpreted as surface marking they can still
affect shape perception.

Summary Contours due to both occluding boundaries and surface markings
strongly determine perceived surface shape and serve to disambiguate, perhaps even
override, shape-from-shading. Luminance edges, even when they are part of the
shading pattern and do not define contours, may also be critical in determining the
computations used to extract shape-from-shading.

8.4 The Role of Lighting

Gerardin, Kourtzi and Mamassian [6] have shown that lighting direction and shape
judgments are processed in separate brain areas with the former being processed
in early retinotopic areas while the latter is processed in higher areas. This might
support a degree of independence between the estimation of lighting direction and
shape-from-shading but also suggest that shape-from-shading may depend on an
estimate of the light source. In this section, we discuss the relationship between
shape-from-shading and the nature of the light source.

The pattern of shading produced by a surface clearly depends on the direction
and nature of the illuminant that shines upon it. A robust shape-from-shading algo-
rithm should produce stable shape estimates despite variations in the composition
of the light field. Such robustness might be achieved by estimating the light field
and then using this information when extracting shape-from-shading. If this pro-
cess were perfect, shape estimates would be independent of lighting. However, it is
by no means certain that humans use lighting information so directly. For example,
Todd and Mingolla [33] asked observers to judge curvature and lighting direction for
shiny and dull surfaces and found that whereas curvature estimates varied between
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the two surface treatments judgments of lighting direction did not; suggesting that
the two estimates are decoupled. Further Mingolla and Todd [21] found that the ac-
curacy on shape judgment tasks correlated only weakly with that for judgments of
lighting direction. This correlation fell to zero when the stimuli represented elon-
gated ellipsoids suggesting a disassociation between lighting judgments and shape
judgments. We note, however, that accuracy was relatively low for both tasks when
the ellipsoids were elongated and that judgments of lighting direction have since
been shown to be poor for elongated stimuli.

Curran and Johnston [3] assessed the lighting dependence of shape judgments
using a curvature estimation task. Curvature estimates reduced when the tilt of the
illuminant was increased (away from vertical) but increased with increasing illumi-
nant slant (zero slant representing lighting along the line of sight). This variation
in perceived depth with lighting slant could indicate a relationship between per-
ceived curvature and contrast. Low lighting slant corresponds to more frontal light-
ing which tends to produce low contrast shading signals. Similarly, for a given light-
ing slant, reducing the overall depth of the surface will reduce contrast. It is possible
then that changes in lighting slant are mistaken for changes in surface depth with
overall depth being set proportional to image contrast. It is less clear why increased
tilt should reduce perceived curvature.

Christou and Koenderink [4] showed that shape estimates for elliptical solids
were biased by the illuminant direction such that regions of high luminance were
seen as closer to the observer and darker regions as further away (a dark-is-deep
interpretation). For directional lighting, highlights occur on surfaces pointing to-
wards the light source and so move with changes in lighting direction. Knowledge
of the lighting direction should stabilize the perceived surface shape. The finding
that perceived shape varied with lighting direction suggests that no such stabiliza-
tion occurred. However, the observers produced a dark-is-deep interpretation which
is something of a special case as it is associated with diffuse illumination rather than
directional illumination (Langer and Bülthoff [16]). Diffuse illumination is, by defi-
nition, non-directional and therefore under diffuse lighting any variation in shading
must be due to the surface shape rather than changes in lighting direction. There-
fore, the lack of shape constancy found by Christou and Koenderink may have been
caused by observers falsely perceiving the illuminant as diffuse and therefore, at
least partially, attributing shading variations between images of the same object to
changes in surface shape.

Summary Perceived shape is not always independent of lighting direction. It may
be that such variations are most prevalent when changes in the lighting direction are
misattributed to changes in the surface profile. This might occur when changes in
lighting slant result in reduced image contrast which is falsely associated with low
surface relief and where a directional light source is mistaken for a diffuse one.
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8.5 Estimating Lighting Direction and Diffuseness

We now consider the human ability to estimate lighting diffuseness and direction.
Langer and Bülthoff [16] used well-articulated isotropic surfaces and had people
make relative depth judgments for pairs of probe points. When the surface was lit by
a directional source, observers responded accordingly indicating that light parts of
the surface were slanted towards the light source (slant proportional to luminance).
However, when a diffuse source was used, observers adopted an approximation to
the dark-is-deep rule whereby light regions are seen as closest to the observer and
thus often oriented towards them. The contrast between these two cases suggests
that observers can both tell the difference between directional and diffuse lighting
and that they process shape-from-shading accordingly. Few if any models of shape-
from-shading accommodate such a switch.

Koenderink, Pont, van Doorn, Kappers and Todd [12] have shown that humans
are sensitive to many parameters of the physical light field in terms of their abil-
ity to correctly set the pattern of shading on a probe sphere introduced into a well-
articulated scene; people can estimate both lighting direction and diffuseness. Light-
ing direction can also be estimated accurately for images of isotropic rough surfaces
Koenderink, van Doorn, and Pont [15]. Directional lighting produces anisotropies in
the shading pattern even for isotropic textures and these can be used to infer the di-
rection of the light source as coming from one of two orientations 180 degrees apart.
However, if the texture is anisotropic the resulting shading pattern will be dominated
by anisotropies in the texture itself and people will estimate the light source orienta-
tion incorrectly, but systematically, to be orthogonal to the dominant orientation of
the surface/shading pattern. We conclude, after Pentland [23] and Koenderink, van
Doorn, and Pont [15], that humans assume that surfaces are isotropic and therefore
use anisotropies in the shading image to estimate the location of the light source.
This logic might extend to ellipsoid surfaces where we would expect elongated el-
lipsoids to support judgments of lighting direction less well than more isotropic
examples, as is indeed the case [21].

Summary Humans are quite good at estimating the direction and diffuseness of
lighting in well-articulated and globally isotropic scenes. When the surfaces them-
selves are highly anisotropic the dominant orientation of the surface undulations
largely determines the perceived direction of the light source.

8.6 Prior Assumptions

As an alternative to estimating the position of the light source the human visual
system sometimes assumes the lighting parameters and is thus able to process shape-
from-shading without estimating the light source at all, but with the consequence
that all images will be interpreted as if lit from the same default location. While this
is unlikely to be the case in well-articulated scenes it seems likely that some sort
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of default illumination is assumed when there are insufficient cues in the image to
specify the light source. There are, however, other potential prior assumptions, such
as the assumption that objects will tend to be convex, which might also influence
shape-from-shading.

The crater illusion, first reported by Gemlin at the Royal Society in 1744 and in
print by Rittenhouse [28], describes a compelling effect whereby surface relief as
perceived from shading is inverted (that is, convexities become concavities) when
the image is rotated through 180 degrees. This much studied illusion is taken as
evidence that humans have a bias for seeing lighting from above. Experimental ver-
sions of the crater illusion have been used to determine the precise direction of the
assumed light source. Early studies put it above the observers head [27, 31] sug-
gesting that it corresponds to the average location of the sun. More recent studies
have suggested a consistent leftward bias [19] although the ecological reason for
this left-bias is unknown. Adams, Graf and Ernst [1] have shown that the lighting
bias can be somewhat modified by experience in humans.

Studies related to the crater illusion often assume, at least implicitly, that the
default lighting assumption is quite strongly directional. Tyler [34] by contrast sug-
gests that the most basic lighting assumption is for a diffuse source although this
was argued on the basis of a stimulus (a radial sine wave or rosette) which strongly
promoted such an interpretation. Schofield, Rock and Georgeson [29] observed the
perceived shape obtained from images of linear sine waves (that is sinusoidal lu-
minance variations not rendered sinusoidal surfaces) and concluded that changes in
the perceived locations of surface peaks relative to luminance peaks could not be
explained by the assumption of any highly directional point source alone, nor by a
fully diffuse source alone, but could be explained by a combination of diffuse and
directional sources with the precise location of each person’s preferred directional
element responsible for idiosyncratic variations in the data.

Although the dominance of the lighting from above assumption is often presented
as the cause of the crater illusion, Liu and Todd [18] note that there are other prior
assumptions with equally strong ecological validity that could explain many exam-
ples of the effect. For example, due to gravity and the tendency to view surfaces
from above, observers have a tendency to interpret ambiguous surfaces such that
overall depth increases with height in the image. Further, because objects tend to
be globally convex there is a bias towards seeing ambiguous stimuli as convexities
rather than concavities [7, 17]. Lui and Todd tested naturalistic renderings of sim-
ple concave and convex surfaces which produced ambiguous shading profiles. They
found a strong perceptual bias for convexity and a much weaker perceptual bias for
lighting from above. The convexity bias is seen in Fig. 8.1 where many people see
two convexities lit from different directions even though this greatly complicates the
perceived light field. If lighting from above dominated, the left disk would be seen as
concave—which is in fact the ground truth for this image. Lui and Todd’s most strik-
ing finding was that perceived shape was strongly influenced by perceptual biases
even when specular highlights and cast shadows were present suggesting, somewhat
counter intuitively, that stimulus properties are rather unimportant for shape-from-
shading. However, it should be noted that, while realistically rendered, these scenes
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were highly reduced in content, containing one shape only. In this sense, they were
not well articulated and this may be why prior assumptions seemed to dominate in
Lui and Todd’s study.

In contrast, Morgenstern, Murray and Harris [22] examined the combination of
default illumination assumptions with estimates of the actual illuminant in well- ar-
ticulated scenes. They found evidence for a maximum likelihood combination of
assumed and actual illumination but noted that the weight given to the prior as-
sumption is low such that it can be overridden by relatively weak lighting cues.
This suggests that in most everyday cases, shape estimates will be dominated by the
observer’s estimate of the actual lighting direction not by their any prior assumption.

Summary For poorly articulated scenes, shape-from-shading most likely employs
prior assumptions in some way. The assumptions that surface depth increases with
height in the image, that objects are convex and that lighting is from above all seem
to assist shape-from-shading in certain circumstances. The idea that we a have a
strong preference for seeing shaded objects as if lit from above has strong currency
but may be a relatively weak assumption, easily overridden by image information
relating to lighting and less strong that the convexity assumption. Even when the
default lighting assumption is applied it most likely represents a mixed diffuse and
directional source rather than a strongly directional one.

8.7 Computation of Shape-from-Shading

We now consider the mechanisms that might underlie shape-from-shading at the
most basic level. Although many have attempted to derive computer vision algo-
rithms for shape-from-shading relatively few studies have directly considered the
algorithm employed by human vision. Pentland [24] noted that the visual field is
tiled with local small scale sensors that compute centre surround Laplacian of Gaus-
sian (retina) and oriented 2nd derivatives (early cortex) of image intensity and that,
assuming Lambertian surfaces, such local operators are sufficient to compute slant
and tilt provided the illumination direction can also be estimated. The method pro-
duces plausible relief maps from natural scenes and is quite robust to deviations
from its operating assumptions. Remarkably, this result is achieved working directly
from the image itself with no recourse to top-down information or requirement for
boundary conditions to constrain the solution. However, to our knowledge the va-
lidity of this algorithm as a model for human shape-from-shading has not been fully
tested.

Pentland [25] proposed an alternative model for shape-from-shading based on
a Fourier decomposition of the image. In this model, the Fourier spectrum of the
surface height function is linearly related to the Fourier spectrum of the image plus
some constant (Pentland set the constant to zero). Pentland also provided a biolog-
ically plausible mechanism by which this relationship might be calculated which
comprised the type of filters found in early vision. This method rests on the assump-
tion that there is a linear relationship between luminance and surface orientation
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and both Pentland and Seyama and Sato [30] present data to suggest that human
vision may make such an assumption. Pentland’s method also introduces a 90 de-
gree phase shift between the luminance and height spectra such that, when linearity
is also assumed, points of maximum luminance will typically correspond to points
of maximum perceived slant. This phase shift implies that estimated surface gradi-
ent should be proportional to luminance. This relationship between surface gradient
and luminance is now often implicitly assumed in the literature although there are
important cases where it does not hold.

As with his 1984 method, Pentland’s Fourier model presents a powerful shape-
from-shading tool which does not rely on top-down processing or strong in-built
assumptions and yet can produce plausible relief maps from input images. Both
models are robust to violations of their own assumptions about the surface compo-
sition. However, like the human visual system, model solutions may not always be
veridical.

Langer and Bülthoff [16] showed that shape-from-shading can switch between
operating under a point source lighting assumption and a diffuse lighting assump-
tion. They offered an alternative model for the diffuse case in which surface height
(not slant) is proportional to luminance. In this model, the image was blurred to re-
move high frequency information from the luminance signal, thus better modeling
visual systems tendency to ignore the slight increases in luminance found at the very
bottom of valleys under diffuse lighting.

Summary Relatively simple linear mechanisms which set either surface slant or
surface height proportional to image luminance have been proposed as models for
human shape-from-shading although few studies have directly tested such models
against human performance. Pentland has presented methods based on both local
luminance differentials and Fourier decomposition that relate slant to luminance
via a linear transformation. The modified dark-is-deep transformation proposed by
Langer and Bülthoff might account for cases were surface height is proportional to
luminance.

8.8 Operation in Sub-optimal Conditions

Shape-from-shading gives better (more veridical) solutions that are less dependent
on prior assumptions and more stimulus driven when the stimulus is well articulated.
Well-articulated stimuli should contain lots of shapes and, globally, be sufficiently
isotropic to allow the identification of the principle illuminants. It can be argued
that testing shape-from-shading in less well articulated circumstances is, in effect,
testing a broken system. However, it is clear that people perceive shape even in the
most reduced images: shape-from-shading degrades gracefully. Anything that looks
at all like a shaded pattern will drive shape-from-shading mechanisms which, with
the aid of prior assumptions, do their best to estimate shape in adverse conditions.
There is some merit then in testing shape-from-shading in reduced scenes.
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Sun and Schofield [32] took this reductionist approach close to the limit by pre-
senting repetitive grating stimuli. These stimuli were not rendered but were rather
simple sine wave, square wave and sawtooth gratings drawn onto the stimulus. There
were no surface markings to produce contours, nor any bounding contours, occlu-
sion edges, specular highlights, or cast shadows. These stimuli contained luminance
edges only where the grating stimuli gave way to the mean luminance background
or where the shading itself underwent sharp transitions (square wave and sawtooth
gratings), and (arguably) at the zero crossings of the sine wave gratings. Sun and
Schofield manipulated the number and polarity of the luminance edges in the im-
age by manipulating the number of grating cycles presented and the phase of the
gratings.

Using such stimuli Sun and Schofield identified two principle modes of operation
for shape-from-shading. Further, the visual system seems to switch between these
modes on the basis of the polarity of edges within the shading patterns. When mul-
tiple cycles of grating were present, each cycle was bounded by edges of the same
polarity. In this case perceived slant was set proportional to luminance such that
sine waves were seen as sinusoidal surfaces with an approximately 90 degree offset
between surface peaks and luminance peaks (see also [25]). Square wave gratings
were seen as triangular wave surfaces with the light section sloping in one direction
(typically upward) and the dark section sloping in the other direction. Sawtooth grat-
ings were seen as either sharp ridges with broad valleys or broad mounds with sharp
valleys. All these interpretations are consistent with slant being proportional to lu-
minance, with Pentland’s [25] model, and also with the assumption of a collimated,
directional, oblique light source.

Next, single cycles (actually 1.2 cycles) of the sine and square wave stimuli were
presented with a central bright region flanked by two darker regions of just over half
the width of the central region. Excluding the edges at the extent of the cropping
zones these stimuli contain only two edges and they are of opposite polarity. Here
people set surface height (not slant) proportional to luminance as is consistent with
the dark-is-deep rule and either diffuse or frontal lighting.

The most intriguing aspect of Sun & Schofield’s data was the transition between
the linear shading model (slant proportional to luminance) and the dark-is-deep
model following relatively simple image manipulations. These two models are both
candidates for the computation of shape-from-shading, and both are known to op-
erate in human vision [16]. It is clear that some mechanism must exist to mediate
between the two modes of operation. Sun and Schofield’s results suggest that such a
switch might be mediated by relatively low level cues rather than an estimate of the
light field derived from a well-articulated scene. Sun & Schofield show that edges
are important whereas Schofield et al. [29] suggest that stimulus orientation may
also mediate between the two methods for estimating shape-from-shading.

Finally, Schofield, et al. suggest an outline model in which both ‘dark-is-deep’
and ‘slant proportional to luminance’ are computed with the final perceived sur-
face being a weighted sum of the two solutions; the weights being determined by
low level stimulus properties. However, this model has not been tested on complex/
natural stimuli. It is also not clear if such shifts should best be viewed as a change in
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the mechanisms by which shape-from-shading is calculated or a change in the light-
ing assumptions employed, because the shift between the two operational modes
can equally be seen as a shift in the composition of the assumed illuminant from
point-like to diffuse.

Summary When highly reduced stimuli are used, estimates of surface shape seem
to be derived from rather simple linear relationships between luminance variations
in the image and either surface slant (gradient) or height. Pentland’s [24, 25] linear
transformations of luminance to gradient and Langer and Bülthoff’s [16] modified
dark-is-deep rule would be sufficient to explain each mode of operation. Some com-
bination of the two processes, arbitrated by low level cues, might explain shape-
from-shading in reduced scenes.

8.9 Conclusion

Humans are clearly able to estimate surface shape from shading/luminance even
in the most reduced images where there is insufficient information to constrain the
ill-posed mathematical problem presented by such shading patterns. In such cases
humans would seem to employ relatively simple linear mechanisms to convert lumi-
nance to shape estimates so that either surface slant or surface height are set propor-
tional to luminance. Such mechanisms can operate without boundary conditions or
knowledge of the light field. At this level, the choice of setting slant or height pro-
portional to luminance would seem to be governed by simple image features such
as luminance edges and orientation. Shape-from-shading in such reduced scenes
seems also to benefit from a number of default assumptions such as the convexity
and lighting from above priors although the default light source has a strong diffuse
component. Although the perceived shape produced from such reduced stimuli is
often not veridical to the ground truth, it may nonetheless provide a useful work-
ing hypothesis for further processing. Such estimates may be idiosyncratic and vary
with task demands.

When scenes are better articulated cues to the light field composition will aid
in the estimation of the light sources illuminating the scene and such informa-
tion may improve shape-from-shading making it less reliant on default lighting as-
sumptions. Bounding contours and surface markings will provide key constraints on
perceived surface shape, disambiguating the luminance signal. At this level shape-
from-shading is likely to produce percepts that are stable across observers and tasks
up to an affine transformation of some common surface shape. However, perceived
shape may not be veridical to the generating surface.

The addition of further cues such as edges contours, cast shadows, texture gra-
dients, stereopsis, and motion will further constrain and may override solutions to
shape-from-shading and so it may be more appropriate to use rich, complex, scenes
for the study of shape perception as a whole and more reduced scenes for studying
shape-from-shading in isolation.
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Chapter 9
Deformations and Lighting

David Jacobs, Anne Jorstad, and Alain Trouvé

9.1 Introduction

One of the most basic problems in vision is to formulate an effective distance be-
tween two images. This should account for two effects. First, pixels can change their
position as viewpoint or the shape of objects change. Second, pixels may change
their intensity as lighting changes. A good distance should capture both of these
transformations. Further, it should allow us to unwind them, so that we can deter-
mine correspondences between the two images that we compare.

In many vision problems, intensity changes are primarily due to lighting varia-
tion. In this chapter we sketch a general approach to this problem, and then describe
some initial results that implement components of this approach. Our work rests on
a new approach to modeling lighting effects, which yields a new image distance,
with many appealing properties. We will also focus on combining this with both
existing and new models of image deformation.

Our image distance aims to capture three ubiquitous properties of real world
images. Geometric variations have the effect of deforming the 2D appearance of an
object. For example, a 3D object might deform or have parts that articulate, causing
its image to deform. Or, if we view even a rigid 3D object from a new viewpoint,
this can have the effect of deforming the resulting image. Also, different instances
of objects within the same class can vary considerably in shape; we can treat some
of the effects of this shape variation as a deformation. Therefore, we can model a
significant number of geometric variations as image deformations.
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Fig. 9.1 A simple illustration of some problems that arise in image matching. (A) and (B) are
images of a sphere illuminated from different directions. (C) is identical to (A), with a change in
its histogram to create higher contrast. (D) is similarly derived from (B). We would like to judge
the similarity of each image pair, and the extent to which they should be matched by deforming the
image or by positing a lighting change. Our proposed algorithm has the following properties: when
intensities with smooth shading shift position, as between (A) and (B), the metric tends to view this
as a lighting change, whereas when high contrast intensity patterns shift position, as between (C)
and (D), the metric tends to interpret this as an image deformation. Also, changes in contrast that
do not affect image gradient directions but that do introduce high contrast edges, as between (A)
and (C), can be costly

Usually, the effects of image deformations are complicated by simultaneous vari-
ations due to changes in lighting. As an object articulates, deforms or moves relative
to a camera, it also moves relative to the light. When we view two similar objects,
we rarely view them under identical lighting. These changes in lighting can have a
dramatic effect on the appearance of objects. Moreover, deformations and lighting
changes will occur in the presence of noise, occlusions and other unmodeled image
variations that require robust matching. Therefore, our primary goal is to develop
robust image matching methods that can simultaneously handle changes in lighting
and geometry.

We model deformations as continuous one-to-one transformations of the image
that affect the position of pixels but not their intensity. Lighting, on the other hand,
affects the intensity of pixels, but not their position. These effects can be difficult to
separate because of the ambiguity that occurs in finding a correspondence between
two images. Figure 9.1 illustrates this problem. We can match each pair of images
using a pure deformation that warps the bright pixels in one image to the position
they occupy in a second image. Or we can explain the image change with a change
in lighting position that alters the intensity of all pixels (we show in [5] that any two
images can be explained with a single, Lambertian scene and a lighting change).
In general, any possible deformation can be combined with alteration in intensities
to match two images; our problem is to select the combination of deformation and
intensity change that provides the best explanation. For object recognition, it is also
important that we assign a cost to this interpretation, so we can judge its validity.

We will approach this problem by first developing a Riemannian metric for im-
ages that captures deformations and lighting change. This kind of metric is appro-
priate for image transformations that can be modeled as the result of a continuous
sequence of small transformations. That is, it is appropriate when it makes sense to
continuously morph from one shape to another, or one lighting condition to another.
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Therefore, we can build a distance between images by constructing a metric on any
infinitesimal change in the image, and then stitching these together to provide a
geodesic distance between any two images.

There is much work already on constructing Riemannian metrics that capture
image deformations. Though we have some proposed enhancements to these, our
main focus is on developing comparable metrics for intensity variation that capture
lighting effects, so that these may be effectively combined. We first propose such
a metric, and show that it has many of the properties of existing, successful ap-
proaches to lighting change, and also has some desirable properties not possessed
by these representations. As an additional benefit, this metric also robustly captures
variations in image intensity due to occlusion and clutter.

This metric will provide a theory of computation for deformation and lighting,
that encodes our notion of image similarity. However, it is still a considerable chal-
lenge to find ways to effectively compute with such an image metric. To address this,
we first show that our local metric can be incorporated into an optical flow frame-
work to produce an image distance that performs face recognition effectively. Then,
we show that for the intensity component of our metric alone, geodesic distances
can be computed extremely efficiently in the wavelet domain. Most of the results in
this chapter and further developments are described in greater detail in [13].

9.2 Background

There is a vast amount of work on image matching. First, we note that many ap-
proaches have been suggested for comparing images in ways that are insensitive to
illumination, typically through a process of locally normalizing the image intensi-
ties. Osadchy et al. [19] reviews these methods and proves that several are essen-
tially equivalent. Gopalan and Jacobs [9] performs an experimental comparison of
many of these approaches and finds that comparison using simple gradient direc-
tions works best. Representing an image in terms of the gradient direction is equiva-
lent to a local normalization that is invariant to additive or multiplicative changes in
intensity. We conclude that a good lighting metric can be expected to bear some re-
semblance to image comparison using gradient direction, as a prototypical example
of local normalization.

There is also a great deal of prior work on non-rigid image matching. Much of
this has been done in the context of tracking, in which image changes are assumed
to be small ([1, 2] provide some entry points to this vast literature). Much work
that handles larger deformations has been done, especially in the domain of medical
imaging, in which body structures from different individuals are non-rigidly aligned
(e.g., [6, 8]), although often these ideas are applied to other domains, such as faces.
Riemannian metrics for deformable matching have been developed, (e.g., [3, 17,
22]), as well as novel image descriptors that are invariant to deformations [14].
In general, all these approaches typically find a deformation by combining some
penalty on the deformation, to encourage smoothness, with some image term that
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encourages the aligned images to have similar intensities. Our proposal fits into this
framework; however we propose that the image term should be designed to robustly
compare intensities in a way that captures the effects of lighting variation.

Finally, there has been much work on image matching when there is both geo-
metrical and lighting variation, primarily in the context of motion tracking. These
approaches attempt to deal with the fact that a moving object deforms in the image
and moves relative to the lighting (e.g., [2, 10]). There is also a huge literature on
optical flow, some of which explicitly focuses on matching with lighting variation
[4, 15, 18].

9.3 Robust Image Metrics for Lighting and Deformation

Our approach will make use of the theory of image metamorphosis as a framework
that allows us to embed the notion of simultaneous deformation and lighting change
into a proper Riemannian formulation. Prior developments of this framework are
summarized in [23]. Intuitively, in this approach we proceed by first defining a cost
on infinitesimal image changes. This defines a tangent space for each image. This
tangent space spans the image space; that is, any small change to the image is pos-
sible. But the cost of these local changes may be quite different from Euclidean dis-
tances in the image space. Together, these tangent spaces define a manifold that fills
the space of all images. The distance between any two images, then, is a geodesic
path on this manifold. We can think of this geodesic as the lowest cost metamor-
phosis from the first image to the second, in which the image is simultaneously
deforming and changing intensity.

More precisely, we can express a small change, δI , to an image I , through a
deformation, as:

δI (x)= ∂t I
(
x − tv(x)

)∣∣
t=0 =−

〈∇I (x), v(x)〉

Here t represents time, 〈, 〉 denotes the inner product, and v is a vector field that
encodes the instantaneous deformation. This equation is essentially the equation
of optical flow. Alternately, we can express the image change as a change in the
intensity of pixels, with no deformations, as: δI = h, where h(x) represents the
change in intensity at x. More realistically, we should describe the image change
as the sum of these two processes, δI (x)=−〈∇I (x), v(x)〉 + h(x), each of which
might explain image changes. Given a metric |v|V on the deformation, and a metric
|h|H on the intensity change, one can define a combined metric:

‖δI‖2
I = inf

v∈V
(|v|2V + λ

∣∣δI + 〈∇I, v〉∣∣2
H

)
(9.1)

This gives the cost of an image change as the minimum possible cost of a deforma-
tion and intensity change, where λ weights the costs. Note that any specific defor-
mation implies a specific intensity change. Most of the work on metamorphosis of
images concerns the simplest case in which the metric on intensity change, |h|H , is
just the L2 metric.
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9.3.1 Intensity Variation

We now present two new, related metrics for intensity variation, and describe some
of their mathematical properties. The analysis in this section concerns intensity vari-
ation only, and does not consider deformations. These metrics are closely related to
image comparison based on the direction of the image gradient, which has proven
to be very robust to lighting changes. At the same time, these metrics also measure
contrast variations in a way that fits some intuitive notions about intensity change.
Finally, these metrics also produce a robust image comparison method for occlu-
sions, related to L1 norms.

Intuitively, we want to develop an intensity metric that is related to the likelihood
that two images come from the same 3D scene, and that the difference between the
two images is due to a lighting variation. Because we are constructing a general
metric for images, this distance cannot be based on specific knowledge of the 3D
structure of the current scene, but rather should depend on general considerations
about the effect of lighting variation on image intensities.

We begin with a simplified, intuitive description of some key issues posed by
lighting. The intensity of a pixel mainly depends on the lighting conditions at the
corresponding scene point, on the direction of the surface normal at that point, and
on the albedo, that is, the fraction of light reflected at that point. When there is a
small change in lighting, an image, I , will change by some amount δI . First, we
note that as lighting changes, the intensity at a single pixel can change in almost any
way. That is, δI (x) is not very constrained for any point x. However, δI is often
correlated at nearby points, so we will consider the properties of δI as it varies spa-
tially, that is the properties of ∇δI . Usually, lighting conditions vary slowly within
a scene, so ∇δI is primarily the result of the differential effect that lighting varia-
tion has as surface normals and albedos vary throughout a scene. We consider three
situations.

First, consider the case of regions of smooth or planar surfaces with nearly uni-
form albedo. In this case, ∇δI (x) tends to be small, and also the initial image gradi-
ent, ∇I (x) tends to be small. Second, suppose the albedo changes in this region, but
the surface normal is constant or changes slowly. In this case, lighting tends to uni-
formly scale the intensities of pixels in a region, so ∇δI (x) tends to be proportional
to ∇I (x), and ∇δI (x) is large only when ∇I (x) is large. Finally, consider surfaces
with high curvature or curvature discontinuities, in which nearby points have very
different surface normals. In this case, nearby points are exposed to different light-
ing, and affected quite differently even by the same lights. So changing lighting can
affect nearby pixels in a way that is almost uncorrelated. Therefore, ∇δI (x) tends
to be quite unpredictable, it might be low or high. However, usually (but not always)
in this situation ∇I (x) tends to be high.

As an example to illustrate these situations, consider a v-shaped roof with two
sides, facing in two different directions. If a region is on one side of the roof and
has uniform albedo, it will tend to have uniform intensity. As the sun moves, the
whole region may get brighter or darker, but it will continue to be uniform. So
∇I (x) and ∇δI (x) will both be low. Suppose, now, the roof is striped, and consider
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a region that is still on one side of the roof, but that crosses this stripe. The gradient
across this stripe will get stronger when the sun faces the roof more directly, and
the whole side of the roof gets brighter. Therefore, the image gradient produced by
the stripe changes in proportion to the overall intensity, i.e., ∇δI (x) is proportional
to ∇I (x). Finally, consider a region of the images that crosses the two sides of the
roof. As the sun moves, or the light otherwise changes, the intensity on the two sides
of the roof also changes. The relationship between these two intensities cannot be
predicted without specific knowledge of the geometry and lighting. So, ∇δI (x) is
unpredictable across the edge separating the two sides of the roof. However, most
of the time this edge will have a strong gradient itself. Therefore, we see that when
∇I (x) is large, this may signal that ∇δI (x) can also be large, or at least its value
is hard to predict from the image alone. The following metric on intensity changes
captures these properties:

C(δI)=
(∫

Ω

( |∇δI (x)|
|∇I (x)| + ε

)2

dx

)1/2

(9.2)

Here C(δI) denotes the cost of a small change to the intensities, and the integral
is over the image. This cost has the desired properties: (1) When ∇I (x) is low,
large values of ∇δI (x) are very expensive; (2) When ∇δI (x) is proportional to
∇I (x) the cost is fairly constant; (3) When ∇I (x) is high, the value of ∇δI (x) is
not important in determining the overall cost. Note that ε is a small constant. This
prevents division by zero, and adds other useful properties, as we will see later.

We can also consider a somewhat more complex metric that bases the cost of a
change not only on the magnitude of its gradient but also on its direction, with a
lower cost for changes in the direction of the image gradient. This cost has interest-
ing theoretical properties, though we have not yet evaluated it experimentally.

C(δI)=
(∫

Ω

(
(1+ ρ(|∇I |))〈 ∇δI|∇I |+ε ,

∇I⊥
|∇I⊥|

〉2 + 〈 ∇δI|∇I |+ε ,
∇I
|∇I |

〉2)

(2+ ρ(|∇I |))
)1/2

(9.3)

ρ is a function that serves as a weight between the two terms. ρ(|∇I |) goes to 0
as |∇I | goes to 0, and becomes large as |∇I | goes to infinity. One natural choice
for ρ would be ρ(|∇I |)= log(1+ |∇I |). ∇I⊥/|∇I⊥| is a unit vector orthogonal to
the image gradient, while ∇I/|∇I | is a unit vector in the direction of the gradient.
Equation (9.3) becomes identical to (9.2) as |∇I | goes to 0.

Intuitively, this metric divides the change in the image into two parts, one orthog-
onal to the image gradient, and one in the direction of the image gradient. The first
type of change is more costly than the second. This allows us to also express the fact
that typically the direction of ∇δI (x) is the same as the direction of ∇I (x), because
the direction of ∇I (x) is more likely to be the direction in which scene properties
are changing rapidly. Note that this is true in our roof example.

We have been able to analytically determine the distance between pairs of im-
ages for some simple cases that show that our metric has a number of favorable
properties. We will summarize these properties here, while omitting derivations:
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1. Relation to direction of gradient comparisons: Let us consider the above metrics
for the case in which ∇δI (x) is always in the direction perpendicular to ∇I (x).
In this case, we can show that the cost of a local change in image intensities is
approximately proportional to the change in the direction of the image gradient.
That is, if we denote the change in the direction of the image gradient by: δθ(x),
the cost in (9.2) reduces to:

C(δI)=
(∫

Ω

( |∇I (x)|
|∇I (x)| + ε

)2(
δθ(x)

)2
dx

)1/2

For (9.3), we can select a parameter ρ so that ρ(|∇I |) is always high. This as-
signs minimal cost to all intensity changes in which ∇δI (x) is parallel to ∇I (x).
So, by proper parameter selection we can make our metric reduce to one that
measures the change in the direction of the image gradients. As noted above,
many current approaches to lighting insensitive image comparison use represen-
tations like this, so this assures us that we can achieve good performance with
this metric.

2. Contrast change: When ∇δI (x) is in the same direction as ∇I (x), this alters the
contrast in an image, without changing the direction of the image gradient. For
this case, we can derive a closed form solution for the total cost of the geodesic
path between two images, which we denote d(I0, I1). We can show that when
the magnitude of the gradient in an image changes from |∇I0| to |∇I1| then our
metric assigns this a cost proportional to:

d(I0, I1)=
(∫

Ω

(
log
|∇I1(x)| + ε

|∇I0(x)| + ε

)2

dx

)1/2

That is, the cost at each point is generally proportional to the log of the ratio of the
change, though it becomes linear when the gradient magnitude is near zero. This
means that when there is a strong image gradient, such as an edge, changing the
contrast has little cost. However, changing a low contrast region of the image into
a strong edge can have a high cost, even if the direction of the image gradient
does not change. This cost is not captured by most current lighting insensitive
representations, and seems useful.

3. Robustness: Our proposed metrics accounts for occlusions robustly. We can ana-
lytically determine the cost of transforming a region of uniform intensity into an
arbitrary image pattern caused by occlusion. This cost is similar to, and bounded
by, a constant times the bounded variation norm (BV-norm) of the image gradi-
ent of the new image pattern. That is, when I0 is a constant image, and I1 is not,
for the geodesic distance we have:

d(I0, I1)≤ 1

ε

∫

Ω

∣∣∇I1(x)
∣∣dx

This implies that the cost of transforming one image pattern into a totally different
pattern is bounded by the sum of the BV-norms of the two patterns. This is a type
of L1-norm on the image gradients, and is known to be much more robust than
L2-norms.
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9.3.2 Interaction Between Deformations and Intensity Change

We can combine our metric for intensity variation with standard metrics for defor-
mation using (9.1). With this formulation, deformations and intensity changes com-
pete to explain image changes. We have analyzed some simple cases of this, in order
to gain intuitions. We will consider here the case of an image pattern undergoing a
small translation. The cost of explaining such a change through a deformation cost is
always low, and is independent of the image content. However, this change can also
be explained through intensity variation. We have shown that for a smoothed edge,
this cost will vary linearly with the sharpness of the edge. So a small translation
of a sharp, high contrast edge is very expensive to explain with an intensity varia-
tion. Translation of a smooth, gradual edge is more easily modeled as an intensity
variation with our metric (Fig. 9.1).

When there is a more complicated deformation of image intensities, the cost of
explaining this with deformations rises, while the cost of explaining this through
intensity variations will be the aggregate of a collection of local translations, and
depend on the number and sharpness of edges that are shifting.

Consequently, explaining the motion of a number of sharp edges in an image as
an intensity variation is very expensive. If a set of sharp edges are deformed, even
quite a lot, we will tend to interpret this as a deformation. However, when there
are fewer, more gradual edges in the image, we will be more inclined to interpret a
complex deformation of these patterns as an intensity variation.

9.4 Using These Metrics for Image Comparison

The metrics we have described form the basis for several algorithms that we have
created. First, we have used the local image metric described in Eqs. (9.1) and (9.2)
to build an optical flow algorithm. Our goal is not motion understanding, the tradi-
tional focus of optical flow research, but to apply this algorithm to compare images
with changes in lighting and shape. Second, we show that if we only consider the
intensity component of our local metric, given in Eq. (9.2), we can compute an ap-
proximation to geodesic distances on a Riemannian manifold constructed with this
local metric using a very efficient algorithm that works in the wavelet domain. Fi-
nally, an initial foray into the computation of geodesic costs that take account of
intensity changes and deformations can be found in [13].

9.4.1 A Deformation and Lighting Insensitive Metric for Face
Recognition

Our primary goal is to create a Riemannian manifold of images, in which geodesic
distances represent image similarity. However, our local image metric can be more
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Table 9.1 Face recognition experiments, comparing our new methods with top previous meth-
ods. Run time is given on common hardware, when available. Results shown on recognition with
changes in expression, lighting, or both

Method Time (sec) Expression Lighting Overall

Image Differencing 3.1× 10−5 83.0 % 9.0 % 46.0 %

Normalized Cross-Correlation 7.2× 10−3 84.0 % 59.3 % 71.7 %

Significant Jet Point [24] – 80.8 % 91.7 % 86.3 %

Binary Edge and MI [21] – 78.5 % 97.0 % 87.8 %

Gradient Direction 3.8× 10−4 85.0 % 95.3 % 90.2 %

Our Optical Flow Approach 1.0 89.6 % 98.9 % 94.3 %

Our Wavelet Approach 1.3× 10−3 93.7 % 96.7 % 95.2 %

Pixel Level Decisions [11] 5.6× 10−4 98.0 % 94.0 % 96.0 %

Our Wavelets Thresholded 1.3× 10−3 97.3 % 97.0 % 97.2 %

easily evaluated by using it as the cost function in an optical flow algorithm. We
then use the correspondences from optical flow to judge similarity, evaluating our
results quantitatively on a Face Recognition task. For reasons of space, we only
briefly summarize our algorithm here; a full description may be found in [12].

• The intensity component of our local metric is given in Eq. (9.2). To measure
deformations, we introduce a new regularization term: Er(α) = 1

2 〈α, k ∗ α〉G.
Here G denotes a generalized inner product on vector fields, and the flow field is
k ∗α, where k is a smooth kernel, such as a Gaussian, and ∗ denotes convolution.
α can be considered to represent the dual elements of the flow field. This results
in smoother gradients and superior rates of convergence.
• The kernel, k, is a combination of fine and coarse scale Gaussians. This allows

the method to converge accurately to a solution that is effective at a fine scale,
while avoiding convergence to local minima.
• Optimization over correspondence fields is performed using a modified gradient

descent. Convolutions are calculated using the fast Fourier Transform, for effi-
ciency.

We experiment by applying this algorithm to face recognition. To compare two
face images, we compute the optical flow between them. At each pixel, this pro-
vides us with four values: a flow vector and an intensity gradient change. We use a
naïve Bayes classifier to determine whether the resulting values are more consistent
with two images of the same person, or of two different people. Results of experi-
ments with the Martinez data set [16] are shown in Table 9.1. This data set contains
images of 100 individuals taken with variations in lighting and facial expression.
Recognition based on our local metric performs competitively.
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9.4.2 Geodesics for Image Comparison with a Lighting-Insensitive
Metric

Using Eq. (9.2) as a local metric, we can define an image manifold in which dis-
tances will tend to be low when intensity changes are due to lighting variation. It
turns out that we can compute approximate geodesic distances on this manifold
very efficiently by working in the wavelet domain. While this metric does not ex-
plicitly account for deformations, there is a close relationship with an approximate
algorithm for computing the Earth Mover’s Distance [20], which suggests that this
metric will also be insensitive to small deformations. Using this local metric, we
must solve the following:

Igeod(t)= arg min
I (t)

1

2

∫ 1

0

∑

x,y

‖∇δI (x, y, t)‖2

‖∇I (x, y, t)‖2 + ε2
dt

Here, t parameterizes the images along a geodesic path traveled starting at t = 0, and
ending at t = 1. We then rewrite the image in the wavelet domain, using orthonormal
wavelets whose horizontal and vertical components, H , and V , are approximations
to horizontal and vertical first derivative operators. This gives us a local cost:

Ewav(I )= 1

2

∑

m,n

δH 2 + δV 2

H 2 + V 2 + ε2

In the wavelet domain, each wavelet basis location is now independent of its neigh-
bors, as the local descriptions of the gradients are handled during the wavelet fil-
tering, a result of the orthogonality of the wavelets. This allows us to rewrite the
geodesic computation as:

Igeod(t)= 1

2

∑

m,n

arg min
H(t),V (t)

∫ 1

0

H ′2 + V ′2

H 2 + V 2 + ε2
dt

where H ′ and V ′ denote derivatives taken with respect to t . Note that H(t) and
V (t), the horizontal and vertical components of the images that lie on the geodesic
path, can be computed independently for each location. Each of these minimiza-
tion problems can be converted to a differential equation using the Euler-Lagrange
equations, and solved numerically. The boundary conditions of these equations are
H(0), H(1), V (0) and V (1), two corresponding wavelet coefficients in each image.
Because the geodesic cost is invariant when both images are rotated together, there
are three degrees of freedom in these conditions, allowing us to construct a look-
up table for the geodesic cost at a single image location. Computing the geodesic
distance between two images, then, can be done by adding together the results of a
table look-up for each image location, which can be done in about a millisecond.

When taken at a single scale, this metric is closely linked to our original metric
on intensity changes. We then combine information over many scales (see [13, 20]),
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building a metric on the (H,V )(m,n) space which is a direct product of the metric
on each (H,V ) fiber. Mapping to the wavelet domain creates greater stability to
deformations.

We show the results of using this distance in Table 9.1. Although it doesn’t ex-
plicitly account for deformations, this cost, based on geodesic distances, slightly
outperforms our method based on optical flow. When combined with a thresholding
technique developed in [11], this method produces the best current results on this
data set.

9.5 Conclusions

In this chapter, we describe a new, local image distance. Our overall goal is to use
this local metric to define an image manifold, in which geodesic distances measure
the similarity of images in which shape and lighting may have changed. We have
argued analytically that our local metric has some intuitive properties, and begun to
evaluate it experimentally. First, we have shown that by integrating our local metric
into an optical flow framework we can achieve strong performance on a face recog-
nition task. Second, we have shown that using our new, lighting insensitive metric
on intensity changes, we can compute geodesics very efficiently in the wavelet do-
main, and also achieve excellent face recognition results. Further work remains to
develop a complete approach to image comparison in the presence of lighting and
shape changes, but these initial results encourage us to believe that this problem can
be profitably addressed using Riemannian manifolds.
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Chapter 10
The Shape of Space

Jan Koenderink and Andrea van Doorn

10.1 The Shape of Space

Does space have a shape? The question might sound slightly odd to the naive ad-
dressee. The answer has to be evidently yes though. In mathematics, the notion that
space has a shape became common during the course of the nineteenth century,
when the familiar space of Euclid of Alexandria (ca. 300 BCE) was finally seen as
just one of infinitely many possible geometries [4]. Gauss (1777–1855) famously
attempted to measure the shape of the space we move in by geodesical methods.
This was comparable to the first estimate of the radius of the (then generally consid-
ered flat) earth by Erathostenes of Cyrene (276–194 BCE). In the twentieth century,
the zoo of possible space forms really exploded [9]. Perhaps more importantly, it
became clear that the space we physically exist in, has a shape that is determined by
the distribution of matter in it. Space became just another physical object.

The notion that the space of perceptual awareness does not have the familiar Eu-
clidean shape is comparatively recent. Psychophysical data became available from
the late nineteenth century to the present. Formal, conceptual developments started
with Helmholtz [8], Riemann [28] and Mach [24]. However, it would be too opti-
mistic to say that we are dealing with a well understood topic here. On the contrary,
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the field of “visual space” is a mess, with many unresolved problems. Many of such
problems occur as apparent conflicts between various data sets.

There are a number of reasons for this unfortunate state of affairs. In this chapter,
we discuss some of these. We also suggest alternatives that might be empirically
addressed.

10.2 Some Spaces of Interest

Some spaces of immediate interest are the space we move in, henceforth denoted
“physical space”, and what is often called “visual space”. The latter is a space of
visual awareness. One problem is that there are many of these, almost certainly not
all identical or equivalent. Consider some important instances.

First distinctions of basic importance are enactive1 versus contemplative2 vision,
and optically guided behavior versus visual awareness [10]. It makes a major dif-
ference in the available optical structure whether the observer moves or is station-
ary [6].

Even with a stationary observer, and an emphasis on visual awareness, the full
state of the observer is not fully determined. What does “stationary” mean? One
thing we require is monocular vision, binocular vision implying a momentary shift
of view point. (For distances that are large with respect to the interocular segment
binocular disparity just contributes another, minor depth cue, and the present discus-
sion applies.) But it makes a huge difference whether one fixes the location of the
body, the skull, or the eyeball. In each case one obtains a distinct “shape of visual
space”.

The situation is actually more complicated than that. For example, Helmholtz’s
“subjective curvatures” [26] of objectively straight lines in the visual field (e.g., the
images of taut wires) are “explained” by Helmholtz [8] on the basis of the kinemat-
ics of eyeball rotations (especially Listing’s law). However, in the experiment the
observer fixates a point, thus does not make eye movements at all. The movements
are of crucial importance for Helmholtz’s theory, even when the eye is stationary!

A categorically different space is that experienced when looking “into” a pic-
ture. This is so called “pictorial space” [11]. The shape of pictorial space is quite
unlike the shape of the picture, which (in generic cases) will be a planar surface
covered with pigments in some simultaneous order. Pictorial space, and the visual

1“Enaction” was introduced by Jerome Bruner [2, 3] who distinguished between iconic and sym-
bolic knowledge. It is presently (also by us) used for knowledge that comes through action. It is
acquired through motor skilled motor actions, such as handling objects and locomotion. Enactive
vision is not necessarily accompanied by any acute visual awareness.
2“Contemplation” is commonly defined as “to admire something and think about it”. It typically
involves no motor action, but acute awareness, and is akin to meditation. Contemplative vision is
also akin to artistic vision, and is so described in Hildebrand [10] with the notion of “far image”
(G. Fernbild), and “serenely viewing eye” (G. das ruhig schauende Auge).
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space experienced by a stationary observer in front of some physical space, are sim-
ilar, though often different. Looking out of a window, or into a mirror, is clearly
different from looking into a painting. However, there appears to be a continuous
spectrum here, ranging from essential identity, to categorical difference. The differ-
ences have to do with minor deviations from strict “stationarity”, say the monocular,
physiological cues. Pictorial space—as indeed visual space with minimal cues—is
rather volatile, as is well known from many common phenomena [1, 25].

In the remainder of this section, we discuss a few characteristic cases. In many
real life situations, one is likely to meet with some in between case, of course.

10.2.1 The Pinned down Observer

With the “pinned down observer” we indicate a fixed view point. Otherwise the
spatial attitude of the body, head, and eye ball are fully arbitrary. In such a case,
the shape of visual space should be spherically symmetric. This is a case we have
analyzed in some detail before [12].

The key point is that rotations about the viewpoint have no effect on the avail-
able optical structure. Eye movements will never reveal anything new, their effect
is purely interospecific.3 Likewise, magnifications of the world about the viewpoint
have no effect on the available optical structure. Lilliput looks the same as Brob-
dignac, it requires a common currency like Gulliver in order for the difference to
become visible. This means that the shape of space should be invariant with respect
to these transformations. It implies the Riemannian metric

ds2 = dx2 + dy2 + dz2

x2 + y2 + z2
= dμ2 + dϑ2 + sin2 ϑ dϕ2, (10.1)

where {x, y, z} are Cartesian coordinates of physical space with the origin at the
view point. In polar form μ= log

√
x2 + y2 + z2, and {ϑ,ϕ} the usual angular co-

ordinates. The geodesics of this space are planar logarithmic spirals about the origin
(as seen immediately when specializing to constant ϕ). (See Fig. 10.1.) The space
has constant, elliptic curvature.

Notice that this is a model that suggests a rigid relation between physical space
and visual space. This is perhaps odd, because the pinned down observer is not able
to gain experience with the structure of physical space. What is really going on here
is that the model purports to describe the visual space of a pinned down observer
with plenty of experience in enactive vision.

3One distinguishes “interospecific” and “exterospecific” information. We don’t use the origin of
the terms, but they were used by Gibson [7] to differentiate between information that relates to
the observer and to the external world. For an ideal camera–eye eye–movements do not reveal
any novel information about the scene, since no novel perspectives are gained. They lead to pure
interospecific information. (E.g., the optic nerve activity may be used to monitor eye movements.)
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Fig. 10.1 At left bundles of geodesics through a point in the forward direction, according to
Eq. (10.1). These geodesics are logarithmic spirals that even exist behind the observer (although
we have clipped them at the fronto-parallel). At right parallel geodesics through two symmetrically
located points. The drawn lines are “railway tracks” (in terms of the metric), whereas the dashed
geodesics are launched in (Euclidean) parallel directions

10.2.2 The Pinned down Observer, Fixating the Forward Direction

In this case the observer’s body scheme, defined by the body’s bilateral symmetry
and the direction of gravity, as well as a fixed spatial attitude of the eye ball, limit
the observer’s freedom to the utmost extent. Visual space can hardly be assumed
spherically symmetric, since only (about) a half-space in front of the observer is
optically effective. The frontal plane through the view point acts as a hard limit, and
may be assumed to play an important role in settling the shape of space.

If we assume visual space to be homogeneous, and the limiting plane to be at
infinity in terms of the metric, then the obvious model is a Riemann space with
metric

ds2 = dx2 + dy2 + dz2

z2
, (10.2)

where Z is the forward direction, Y the vertically upward direction, and X the right-
left direction. (See Fig. 10.2.) This is a well-known metric of hyperbolic geometry.
(For x = 0, or y = 0, one has the Poincaré half-plane model of the hyperbolic plane.)
The geodesics are semicircles in planes orthogonal to the frontal (z= 0) plane. (See
Fig. 10.3.) This space has constant, hyperbolic curvature.

This shape of space is essentially identical (except for some minor adjustments)
to Luneburg’s model of visual space [23]. Indeed, the argument of homogeneity
used here was exactly Luneburg’s argument. (Although Luneburg purports to deal
with binocular space, his key argument has nothing to do with that.)

Notice that this model has much in common with the previous one. For instance,
in either case visual rays are mutually parallel geodesics (in the sense of a fixed
distance between the two geodesics, like the rails of a railway track), and spheres
concentric with the view point appear as “fronto-parallel” geodesic surfaces. There
are important differences too. For instance, the model from the previous subsection
does not allow a projective structure, whereas the present one does.

The fact that the visual rays in either model appear as bundles of parallel direc-
tions is interesting. It appears to capture at least one important phenomenological
property of visual space.



10 The Shape of Space 149

Fig. 10.2 The canonical coordinate system used throughout the text. The plane F is the “frontal
plane”, it passes through the view point, and is orthogonal to the viewing direction (which coincides
with the anterior direction of the body). The Z-axis is the anterior direction, the Y-axis the cranial
(up) direction, and the X-axis the left to right direction

Fig. 10.3 At left bundles of geodesics (semicircles with center in the frontal plane) through a
point in the forward direction, according to Eq. (10.2). These geodesics stop at the fronto-parallel
through the view point, they meet the fronto-parallel at right angles. At right, parallel geodesics
through two symmetrically located points. The drawn lines are “railway tracks” (in terms of the
metric), whereas the dashed lines are launched in (Euclidean) parallel directions

10.2.3 The Pictorial Observer

In the case of the pictorial observer, there is no notion of any “physical space”. There
is no such a thing as “range” (distance as measured from the view point), whereas
“depth” is a purely mental entity that is (in many cases) defined up to an origin and
a scaling. Depths in different directions cannot necessarily be compared, except for
some idiosyncratic gauge transformation. The shape of pictorial space is that of a
fiber bundle [13, 22], in simple cases equivalent to a singly isotropic space.

We understand pictorial space well enough that we can apply geometric transfor-
mations to compare various observers quantitatively, even if their responses might
appear very different to a naive analysis.

In the simplest instances, pictorial space is described by a semi-metric

ds2 = dξ2 + dη2, (10.3)

where {ξ, η} are picture plane coordinates, and ζ denotes the depth [11]. Notice that
the depth dimension does not occur in the semi-metric. It is an “isotropic dimen-
sion”. In this way, the metric captures the basic fiber bundle structure.
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Fig. 10.4 The “cone of sight” is a right angle. The observer at E views a point P , thus the frontal
plane is FF. The point Q at 90◦ from P is just visible. (The circular arc is the geodesic PQ, its
center is on FF.) Any points like the points A, B , inside the right angled cone are simultaneously
visible

10.3 The “Polarized” Pinned down Observer

With “polarized” we mean that the observer is pinned down, but will typically orient
body, head, and eyes according to need. Different from the general pinned down
observer (Eq. (10.1)), this means that the observer has only access to a half-space
at any time (Eq. (10.2), but with unspecified frontal plane). This observer is free
to rotate (body, head, or eyes, as the case may be) in order to “look around”, and
change the frontal plane.

This has a number of important consequences. For instance, given two locations
(say a pointer and a target), it is not necessarily the case that the observer is able
to see both at the same time. Only within a right circular cone of top-angle ninety
degrees can the observer simultaneously see any point pair wherever she happens to
be looking. This reminds one of the fact that the ancients—who failed to distinguish
between the visual field and the field of view—considered the cone of vision to be
limited to a right angled cone. (See Fig. 10.4.)

As the observer compares two points A and B (say), it is likely that she fixates
one of the two at a time, perhaps sequentially. As the observer changes fixation, the
“effective fronto-parallel plane” moves too, staying at right angles to the primary
viewing direction. Thus the metric is view direction dependent, and may be written

ds2 = dx2 + dy2 + dz2

(r · d)2
, (10.4)

where d (with d · d = 1) denotes the primary direction of view, and r = {x, y, z}.
(The simple case of Eq. (10.2) is regained by setting d= {0,0,1}.)

In the case the two points A and B do not occur in a single view, there is no met-
ric relation, and we have to do something special. Such cases occurred in prior ex-
periments. We analyzed the data in terms of a general pinned down observer model
(Eq. (10.1)), but the present discussion suggests that this was perhaps not the right
way to proceed.

The case of the polarized pinned down observer (Eq. (10.4)) has far reaching
consequences. For instance, it implies that in many cases the geometrical relation of
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Fig. 10.5 As the eye E fixates either location P, or location Q, one obtains (according to Eq. (10.4))
the drawn geodesics PQ (both circular arcs, but with different centers and radii), which are clearly
distinct. Equation (10.1) yields the dashed geodesic (a logarithmic spiral) in either case. Of course,
one might fit an inflected, cubic arc to match the direction of the appropriate drawn geodesic
at either end point. However, this would be really contrived, and corresponds to no reasonable
geometry

a point A with respect to a point B is not simply the reverse of the geometrical rela-
tion of a point B with respect to a point A . (See Fig. 10.5.) For instance, pointings
from each point to the other are not guaranteed to “mesh”. This is a phenomenon
that we have encountered in previous experiments [5, 18], and that caused us much
reasons for concern, because it indicated the impossibility of any “geometry of vi-
sual space” to account for the data.

10.4 Reanalysis of Some Pertinent Empirical Data

In this section, we consider a few pertinent cases. We concentrate upon data col-
lected by ourselves because in each case we know the experimental setting in in-
timate detail. It would be quite hard to analyze arbitrary literature data this way.
Moreover, our reanalysis will often cause us to criticize the original analysis, and
we prefer to do that to ourselves, rather than to a colleague scientist.

External local sign In each of the models, visual rays are mutually parallel. This
is perhaps most obvious from Eq. (10.1) in polar form, specialized to a meridional
plane (thus dϕ = 0, for instance by setting ϕ→ 0). The interpretation is that ob-
servers should experience their visual rays, which diverge from the anterior nodal
point, as mutually parallel. Thus, they have no access to an external local sign.

This surprising prediction, that seems to be largely unknown to the vision com-
munity, has been amply verified in a number of experiments [19, 20, 27]. It has far
reaching consequences, both for optical spatial recognition, and for pictorial per-
ception.

Failures of “simple geodesic arcs” In several experiments we found indications
that simple geodesic arcs (similar to parabolic arcs) failed to fit the data [5, 18].
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Fig. 10.6 Pointing from one vertex of an equilateral triangle to the next, the observer being at the
center. At left the observer fixates P, at right the middle of the arc PQ. In both cases pointing b

would be veridical, whereas Eq. (10.4) would predict the pointing direction a. However, in the case
at left the points P and Q are not simultaneously visible. While fixating the pointer at P, the point Q
is behind the observer. A default “behind” pointing would yield c, whereas a “memory pointing”
might yield b. One expects perhaps a result between b and c

This is serious, because it suggests that it might be nonsense to speak of a “shape of
space” at all. There seems to be no single arc that explains both pointing from P
to Q, and pointing from Q to P . (Fig. 10.5.)

In these experiments, we did not constrain the fixation of the observer. In an
exocentric pointing task, they often end up (after a period of looking back and forth)
looking at the pointer, rather than the target. If that is the case, we would indeed
predict exactly the asymmetry found in the experiments. There would not be a single
“shape of space”, but the shape would depend upon where the observer happened to
be looking. This is only a mild complication, but it greatly influences the way such
experiments should be analyzed.

Pointing in circles In a basic experiment on the nature of visual space, we had
observers stand at the center of equilateral triangles of various sizes, and had them
perform exocentric pointing between vertices [14]. (Fig. 10.6.) We reported large
systematic deviations from the Euclidean prediction, depending upon triangle size.
These experiments were analyzed in terms of a pinned down, but otherwise free
observer model. It appeared that space curvature changed from elliptic to hyperbolic
with increasing range.

The vertices are 120◦ apart in the visual field. When fixating one vertex, the
observer cannot see the other. If we assume that the observer will look at the mid
point of the vertices, thus seeing both simultaneously, we predict an error of 60◦
away from the observer (Fig. 10.6 arrow a). If we assume that the observer fixates
a vertex, we are in a quandary, because the other vertex cannot be seen. Since it is
behind the observer, it is perhaps reasonable to assume that the pointing will be at
the observer, implying a 30◦ error toward the observer (Fig. 10.6 arrow c).

In these experiments, the pointer was of constant size. This implies that observers
are indeed able to see both vertices by fixating the midpoint if pointer and target are
close, but not when the pointer is far away, its angular size then becoming too small.
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Thus, one expects the observer to fixate the pointer in the latter case. This at least
qualitatively predicts the results that were actually obtained.

The conclusion is that these results may well be explained with a homogeneous
space shape. The explanation by way of varying space curvature is not forced upon
us.

Pointing to opposite sides What happens if an observer has to perform exocentric
pointing between mutually opposite locations? Only one location can be seen in any
case. If the observer fixates one location, one expects the pointing to be toward the
observer. If the observer fixates a direction orthogonal to the connecting line of the
two locations, and makes minor left and right head movements to see one or the
other location in alternation, one predicts that the pointing will be at right angles to
the connecting line. Depending on various additional assumptions, we predict errors
between 0◦ and 90◦ away from the observer.

In the experiment [17], we find a rather small value of about 6◦ away from the
observer. It was interpreted in terms of a pinned down, spherically symmetric set-
ting. From the present discussion, it is clear that alternative “explanations” cannot
be ignored off hand.

The existence of planes The issue of whether visual space admits of planes is
conceptually important because it relates to the (possible) projective structure of
visual space. In a recent experiment [21], we found that visual space in general does
not admit of a projective structure. However, the data were hard to interpret due to
very significant individual differences.

The main task in the experiment was to set the mid point of a geodesic arc in
depth (the direction being given). In the present interpretation, this task will depend
critically on the viewing direction. The locations were about a right angle apart,
so the observer is almost forced to look at the mid point. If not, then we predict
different settings according to which point is fixated.

In the experiment we had three target points, in mutually orthogonal directions,
and ranges in the ratios 1 : 2 : 4. The observer set the mid points of the sides of this
triangle, then the barycenter, a point on the arc between a vertex and the opposite
mid point. One obtains three estimates for the barycenter, in the same direction (by
design), but with different ranges. We define the ratio of the largest to the smallest
range as the “discrepancy”. In the present setting (Eq. (10.4)), we predict a discrep-
ancy of 1.414 . . . , different from the original prediction (based on Eq. (10.1)), which
was 1.129 . . . . Neither prediction is well borne out by the results, though both are
within the range of the data.

Given the many possibilities of variation (in the numerous subtasks the observers
are free to pick idiosyncratic fixation directions), it is not very surprising that the
results of the study turned out to be confusing.

The curvature of large fronto-parallels Given the basic model of the pinned
down observer, one would expect the curvature of large scale fronto-parallels to be
very significant. In reality, they are found to be significantly curved, but perhaps less
so then naively expected [15, 16].
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Fig. 10.7 PQ is a fronto-parallel of 120◦. When the observer fixates the midpoint of PQ, one
predicts the curved, dashed geodesic. Thus, with the pointer at P, target at Q, one predicts the
pointing direction a. When the observer fixates the pointer at P, the target at Q is invisible, it is
behind the observer. One perhaps expects the default “behind” pointing direction c. A “memory
pointing” might yield pointing direction b. In reality, one perhaps expects something between b

and c. Notice that the sign of curvature in the cases of fixating the mid point, and fixating an
end point are opposite. In experiments we obtained instances of either case, depending upon the
observer

This is easily understood from the model of the forward looking observer. The
naive prediction uses the spherically symmetric, pinned down observer. In this case
one would expect the fronto-parallels to be almost semi-circles. (Fig. 10.7.) How-
ever, if the observer fixates an end point, then the prediction would change to an
almost straight line. In the actual experiments, various points were set on the fronto-
parallels, and it is very likely that the viewing direction changed systematically with
the current task. Thus, it becomes very difficult to interpret the results as reflecting
some integral geometrical object. Rather, it is likely that the actual “object” changed
from setting to setting.

Pointing in pictorial space In pointing tasks in pictorial space, we find clear
evidence that observers “point by curved arcs”, instead of straight lines [29]. This
is perhaps more remarkable than the analogous case in physical space, because the
pointing occurs fully in pictorial space, which is already a mental entity.

We did not find evidence of failures of the pointings to “mesh”, thus a single
parabolic arc always accounted for two-way pointing. In the case of pictorial space it
is hard to motivate the metric of Eq. (10.4). Moreover, it is not clear how to interpret
the singular plane d · r= 0: is it the plane orthogonal to the line of sight, or rather
the picture plane? Whereas the semi-metric equation (10.3) accounts very well for
numerous aspects of the shape of pictorial space, it predicts straight geodesics. There
evidently remains much to clear up here. Unfortunately, there is hardly any empirical
data to start from (except from our study referred to above).
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10.5 Conclusion

We have contrasted mainly two very simple models of human visual space. Either
model is capable of almost limitless refinement. However, we have refrained from
even the obvious refinements, because we wanted to show the most elementary prop-
erties instead of attempting any data fitting.

One important omission is that we (except in the case of pictorial space) consid-
ered only transformations of physical space. In any reasonable model, the metrics as
used here would be applied to an intermediary space, in which at least the physical
range (distance from the eye) would be replaced with a subjective representation.
Such a transformation would depend upon the exact setting of the experiments, that
is to say, on the available depth cues.

In typical experiments, memory will play an important role if only part of the
configuration is visible at any given time. This suggests, perhaps, that in many cases
predictions should be some compromise between the spherically symmetric, and the
forward looking case.

One important message is that experiments like the ones considered in the analy-
sis should be replicated with explicit emphasis on the viewing directions (as evident
from body, head, and eye movements) of the observer. There is no doubt that the free
observer will adjust posture, head attitude, and eye direction according to the task,
and the constraints imposed by the experimenter. The present analysis shows that
this has important consequences for the predictions of even the simplest of models
of visual space.

In conclusion, we find that the “shape of space” in the context of human visual
perception remains an entity that is only very partially understood, both from a
phenomenological and from a formal, conceptual perspective.
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Chapter 11
The Visual Hierarchy Mirage: Seeing Trees
in a Graph

Steven W. Zucker

11.1 Introduction

In everyday language, and in much of computer and human vision, we speak about
early or low-level vision and about high-level vision. Early vision is about the first
stages of visual processing, and spans much of the processing anchored by the sen-
sor. While this includes communication and signal processing, for our argument
we center on feature detection. Calculating edge and color maps, typical low-level
tasks, differs from high-level vision, which includes object recognition and other
“cognitive” tasks.

Early vision has a very natural expression in neurobiological terms. A corner-
stone of visual physiology is the concept of receptive field, or the locus of positions
to which a neuron responds, weighted by the response. Loosely speaking, receptive
fields are filters. There is an elegant linear theory of filtering and it is popular to
interpret receptive fields in terms of the statistics (e.g., co-occurrence probabilities
of nearby pixels) in image datasets [1]. Nonlinearities are occasionally considered,
but these are limited in (spatial) scope. Pooling, squaring [2], and “winner take all”
are common examples. Although these non-linearities are less well understood sta-
tistically, in effect this view of processing is one in which neurons with early visual
receptive fields “summarize” a local region of visual space via a template. As above,
some templates are thought to correspond to edge and line elements, for example.

High-level vision is often described in very different terms. First, it is inherently
not local. Shape representations are global and object detection is global; all of the
relevant information must be used. Decisions are completely nonlinear. The tasks
are typically general, such as detection of a face, tracking an object or tracing a
contour. We can be aware of high-level processing [3] and can actively control parts
of it with attention [4]. As present practice puts it, early and high-level vision are
rather different beasts.
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But what lies in between, and how is the transition achieved? Does early vision
proceed, well, “half-way” up the processing stream and high-level vision take over
after that? Algorithmically one could make a distinction that early vision consists of
a hierarchy of template-like computations, which summarize the high-dimensional
image data, effectively putting it into a proper space for making decisions; the high-
level computation is this final decision making apparatus (say, a support vector ma-
chine).

Taken crudely, this view seems to be supported by biology, pushed almost to the
limit. Nearly half of the primate brain consists of a collection of visual areas that
parcellate cortex, each enjoying a rather similar anatomy. This suggests a view of
the visual machine consisting of iterated layers of processors. Since there are many
projection neurons (in a given visual area) that synapse with a given target neuron
(in the next area), the machine is postulated to have fan-in, or a contraction mapping,
between layers. The contraction map has very local support, and suggests a natural
story line for processing information in an incremental, step-like development. To
illustrate, consider this metaphor as an account: local edge elements are agglomer-
ated into curves; curves into clusters (e.g., the eyes, nose and mouth); clusters into
superclusters (e.g., a face), and positions of the face into a person in an automobile
and voila, Uncle Jack is recognized. (Something close to this is achieved, for a few
examples, in [5, 6].) The gap between low-level and high-level processing is gone—
the feedforward network is almost complete—except perhaps for a support vector
machine or classifier at the very end. A natural abstraction hierarchy has emerged,
and can perhaps even be learned. It looks like it’s all about trees, or summaries
of summaries of . . . summaries. Of course, this is the simplest form; many models
are slightly more general and involve partial orderings or directed acyclic graphs
(DAGs). Convolutional networks [7] and deep learning networks are of this form
[8].

This story-line is hard to resist. The performance of deep learning networks is
driving commercial applications, and DAGs and trees are elegant data structures.
In various forms this model has become the dominant architecture for visual recog-
nition systems today. It has a rich history, which is briefly outlined after the next
section.

There is a basic concern about whether the story line from the Introduction suf-
fices. Are low-level and high-level vision truly decoupled in this way, with feedfor-
ward architectures dominating until the end? Basically the question boils down to
whether this simple contraction mapping exists. I shall argue that more is required.

11.2 What Is Intermediate-Level Vision?

Our argument about architectures for vision systems, both computer and biological,
centers on the question of intermediate-level processing: why is it required, what
might it be, and how can it illuminate the overall system. We begin with evidence
for its existence.
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The first pillar of the argument is the actual experience in computer vision. Al-
though segmentation is seen as a goal for early vision, and recognition as a goal
for high-level vision, separating them has been problematic. The original argument
was that recognition is difficult, so a good segmentation could provide clues about
where to deploy expensive computational resources; this thinking still survives [9],
although now it is thought by many that segmentation and recognition cannot be
separated; they must be solved together [10]. One cannot be confident in a segmen-
tation until recognition is complete, and one cannot be confident in a recognition
until the segmentation is complete. There are no shortcuts, which makes it theoreti-
cally questionable about how to proceed.

One possibility for how to proceed, then, is to appeal to neuroanatomy, the sec-
ond pillar of our argument. Most emphatically, cortical neuroanatomy is much more
complex than a simple feedforward architecture. As reviewed shortly, there are both
long-range horizontal connections within an area, and feedback connections be-
tween areas. If simpler architectures sufficed, wouldn’t mother nature have preferred
them? Or making this point in the other direction, since only a small portion of V1
can be viewed a filters: “what is the other 85 % of V1” doing [11]? An answer to
this could provide insight into intermediate-level processing.

A third pillar for the argument is that, for the so-called “natural” imagery cur-
rently being used to evaluate object recognition systems, little more than simple
filtering models for V1 are required [12]. This suggests that either (i) the processing
beyond V1 is not necessary, which seems unlikely from an evolutionary perspec-
tive, or (ii) something fundamental has taken place in the selection of these datasets.
After all, in the natural habitats occupied by non-human primates there is no social
web on which to collect “natural” images.

Thus, we need to understand the difference between “natural” images (from web
collections) and natural images. One way this could be realized is asking which
tasks are relevant. Lots of web images are from birthday parties and car photographs.
Again, an answer to this could also provide insight into intermediate-level process-
ing.

Another view of imagery derives from the tasks and behaviors it supports, and
this brings up a different heuristic from neuroscience: seek pathways rather than
layers. Perhaps the most popular of this other type of decomposition derives from
studying lesions and perceptual deficits, and two basic pathways have been identi-
fied: one related to identifying objects—the what or ventral pathway—and another
related to judgements about where these objects were—the dorsay pathway [13, 14].
The object recognition task is often assumed to live in the what pathway, and some
researchers put the distinction between low-level and high-level somewhere around
the fourth visual area, V4, [15]; research on visual attention further supports this
[4]. But what about the parietal—where—pathway? What might the distinction be
between early and high-level place tasks? That eye movements are driven by both
types of information suggests this is something of a problem.

The what/where processing stream heuristic [13] is, in a sense, orthogonal to the
low-level/high-level distinction. As we delve deeper into different schemes for pro-
cessing (e.g., color vs. contrast; motion vs. static; etc.) we end up with a patchwork
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quilt of visual processes, with little organization, little predictive power, and little
guidance about how to build computer vision systems. Putting it all together, it now
seems that visual processing takes place in a machine organized as a graph, or per-
haps even a hypergraph, rather than a tree or a DAG. But this is now too general a
view, so the question for vision researchers is how to constrain this graph. (A view
of this graph is provided in the next section.)

My sense is that hierarchies are too restricted a model to achieve the rich process-
ing capabilities exhibited by advanced biological vision systems because of a kind
of local/global problem. There are many situations in which global information is
required to make local decisions, and many of these occur rather early in the visual
processing stream. A classical example of this is the figure/ground distinction, and
I return to this problem later in the chapter.

To my knowledge there is no “segmentation machine” in primate neurobiology;
there is perceptual organization machinery. They are not equivalent. Perceptual or-
ganization is not about partitioning the image (which is a side-effect, sometimes,
available behaviorally), but rather is about good continuation [16], figure/ground
and border ownership [17] , and the beginnings of inferences about surfaces [18];
in other words, about the early universals in descriptions inferred from the image. It
follows from this that hierarchies are too restricted a model to achieve the rich pro-
cessing capabilities exhibited by advanced biological vision systems. Significantly,
these systems are organized (at least) as graphs of processing units, and not trees.
But not arbitrary graphs. And perhaps there is a continuous (rather than discrete)
aspect to this organization as well.

Of course there are many different ways (Cayley’s formula) in which trees can
approximate graphs, and each has different properties. However, without the full
processing capabilities of the graphical machine, something is missing. I focus on
the border ownership problem because it illustrates several points about what is
missing. First, the global information needed locally is the type used in shape de-
scription, but is more regularized (in a technical sense). This breaks the need to
solve the full segmentation and the full recognition problems together. Second, gen-
eral processing architectures are needed to implement it. It is not a feedforward,
hierarchical construct. Finally, recent mathematical ideas suggest that (at least for
biological systems) there could be continua of processing, and not just graphs of in-
terconnected neurons. While this last point is still speculative, it severely underlines
the limitations of feedforward processing.

In summary of the paper, I argue that perceptual organization comprises the
intermediate-levels of processing necessary to cope with the large variations in nat-
ural imagery in support of the diversity of visually-mediated behaviors, and that
important aspects of perceptual organization are realized only when global informa-
tion is fed back to influence local decisions. It is in this sense that I claim the visual
processing hierarchy is illusory: it works well when designed within a highly con-
strained image space, but collapses when true natural imagery is used. We are now
ready to explain the title to this Chapter: Just as the desert, the atmosphere, and the
heat conspire to create an imaginary pool of water, the problems being considered
within—and architectures of—computer vision conspire to create the mirage that
feedforward, visual hierarchies suffice.
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11.3 Hierarchies and Trees

Informally hierarchies are layered structures with a contraction mapping. Histor-
ically, the word hierarchy arose in connection with the church, an application in
which the flow of information can be thought of as progressing across levels: the
views of parishioners are summarized by priests, whose views are (in turn) sum-
marized by bishops, and so on. Locality follows from the parish membership, and
information can be viewed as flowing “up” the tree from the leaves to the root.
Conceptually one thinks of abstraction increasing as one moves up the tree.

Trees provide a fundamental data representation for, for example, organizing ef-
ficient search, which works naturally in the other direction. Logarithmic complexity
algorithms arise because, working from the root of the tree, decisions are made
at nodes and each decision eliminates a significant portion of the data from be-
ing searched. In binary search, for example, each node in the search tree has two
children and half of the possibilities are eliminated at each step. Now, abstraction
decreases as one moves down the tree.

A basic tenet of complexity theory is that, when the proper data structure is build,
processing can be most efficient. In vision systems, the processing architecture pro-
vides the framework for learning these “data structures.” Because these aspects of
trees are so fundamental, many different contraction maps and data abstractions
have been used in computer vision and in neurobiology. Here is a brief listing, in
which examples from both domains are described. I organize them into four time
epochs, to emphasize the recurrent presence of these ideas.

1. Classical Period
MYSTICAL IDEAS MIXED WITH AN INTUITION ABOUT HOW COMPLEX THE

INFERENCE PROCESS CAN BE.

a. Visual Spirits “How the image or picture is composed by the visual spirits
that reside in the retina and the [optic] nerve, and whether it is made to appear
before the tribunal of the visual faculty, like a magistrate sent by the soul
. . . Kepler, p. 202 [20]. da Vinci’s early anatomical experiments suggested a
processing sequence across the ventricles. See Fig. 11.1(a).

2. Early Period
TWO FOCI EMERGING: (I) EFFICIENCY (SPEND RESOURCES WHERE RESULTS

ARE LIKELY TO BE FOUND) AND (II) BUILDING ABSTRACTIONS.

a. Pandemonium [21] Oliver Selfridge’s inspired proposal for computational
daemons arranged in layers, each “shouting” for attention but moderated by
stochastic search and hill climbing. Paradigm foundational for AI; strictly a
heterarchy rather than a hierarchy, but set the stage.

b. Hubel/Wiesel Original model for the hierarchical, mechanistic view. The lat-
eral geniculate contains cells with circular surround receptive fields, which
can be combined into simples cells, which can be combined into complex
cells, and then hypercomplex cells. [22]. Are grandmother cells [23] at the
top of the abstraction pyramid?
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Fig. 11.1 Developing views of the primate brain, with the standard, feedforward view on the top
and the rich biological complexity on the bottom. (a) Da Vinci’s (c. 1490) drawing of the scalp,
skull and “visual system”, which we now know to be the ventricles. It clearly shows a feedforward
progression from the eye through a series of three (ventricle) stages. (b) Fukishima’s Neocognitron.
Notice the layered organization and the feedforward projections. (c) A rough “wiring diagram” of
the brain, showing the connections between areas. For every forward connection there is a back
projection. This suggests a much richer graphical model than the tree structure common in feedfor-
ward systems. Although there is an attempt to layer the different areas, with height corresponding
roughly to abstraction, this is at best only partial. This diagram, or portions of it, are often sum-
marized as describing the hierarchical organization of the visual system. (d) A finer-scale view, in
which neurons within a typical visual area are shown to form networks. These involve circuits both
within the area and between areas. The neurons comprising the visual system define a graph, not
a tree. Credits: fig. (b) after Scholarpedia; fig. (c) after David van Essen, Washington University,
[19]
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c. Neocognitron Early computational model that placed the Hubel/Wiesel hier-
archy in a pattern recognition framework [24]. See Fig. 11.1(b).

d. Image pyramids and coarse-fine analysis Efficient search in the early days of
computer vision. An example was Rosenfeld’s coarse-fine approach to edge
detection [25]. Connections to multiple-size receptive fields and to more re-
cent edge detection algorithms [26].

3. Intermediate Period
MATURATION OF IDEAS, PLUS DEEPER UNDERSTANDING OF MATHEMATI-
CAL AND ANATOMICAL FOUNDATIONS.

a. Scale Spaces Evolution of the idea of coarse-fine, but placing a mathematical
structure on it. Central idea: group formed by for example, Gaussians under
the heat operator [27–30].

b. Hierarchy of Visual Areas [19] This diagram of the organization of the visual
system codified an enormous amount of anatomical information, and became
central to thinking about layers of abstraction. Central idea: one function per
visual area [31]; this is essential for the abstraction notion to persist.

4. Modern Period
REALIZING THE POTENTIAL OF EARLIER MODELS SCALED UP IN SIZE; FA-
CILITATED BY THE ENORMOUS GROWTH IN COMPUTATIONAL RESOURCES

AND THE POTENTIAL OF MACHINE LEARNING METHODS.

a. Decision Trees Statistical version of: ask the right question at the right time for
recognition [32]. Since trees are limited, sometimes more general structures
(e.g., forests [33]) or richer statistical ideas (e.g., boosting [34]) are required.

b. Hierarchical Networks Key idea: takes the Hubel-Wiesel idea above and
pushes it to its limit, with only mild non-linearities [5]. Feedforward only.

c. Deep Networks Feedforward convolutional networks with learning algorithms
[7]. Opens the door to understanding learning across layers. Highly successful
for a number of applied problems [35].

d. Bi-Directional Networks Early attempts to integrate top-down with bottom-up
information flows [36]. There is even some evidence that intermediate frag-
ments help recognition [37], although the tests were done with image frag-
ments and not intermediate representations.

Above I concentrate on feedforward and sequential aspect of visual process-
ing. Hierarchies and DAGs arise within other parts of computer vision as well, and
these provide a somewhat expanded role for them. Shape hierarchies (fingers, hands,
arms/legs, torso, person) [38] articulate the natural partial ordering over parts, and
these hierarchies have much in common with memory hierarchies as deployed in
computer systems and in biological systems. These partial orders are relevant for
searching and matching, because they often provide an efficient organization for
structuring complex problems. Constructing the right tree is key to algorithm de-
sign [39].

A second major source for DAGs are probabilistic inference nets, Bayesian net-
works, and belief propagation (expanding 4(a) above). These are also applied widely
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in computer vision systems (e.g., [40]). They are completely global, but involve very
different issues from those on which we are concentrating. In particular, the goal is
often to find an approximation (e.g., difference functionals for stereo) that can be
efficiently computed. These approaches do not illuminate the intermediate-structure
question.

Complexity analysis also illustrates the limitations of trees; or at least their spe-
cial nature. The traveling saleman problem (TSP), for example, is normally defined
on a graph but enjoys a certain advantage when the points are in a Euclidean space.
This Euclidean TSP admits an approximation, enjoys a relationship to Steiner trees
[41], highlighting how metrics and locality, when assumed, can help.

In vision problems, we do not always have a metric locality structure to fall
back upon; as neurobiology teaches us, sometimes we need to look some distance
away.

11.4 Neuroanatomy is a Graph

As is clear from Fig. 11.1, the visual system is a graph of neurons and not a tree.
The Felleman-Van-Essen diagram (Fig. 11.1(c)) summarizes the large scale organi-
zation among visual areas; we stress that there are both feedforward and feedback
connections. Understanding the role of feedback connections remains something of
an open problem, whose subtlety is amplified by looking at a finer scale drawing
(Fig. 11.1(d)). Within each area neurons form circuits with inputs from feedfor-
ward projections, local connections, long-range horizontal connections, and feed-
back connections. The visual areas are not homogeneous structures, but are layered
organizations themselves with rich circuits within and between them. The complex-
ity of this graph of connections is daunting. Which tree approximates it? The very
question now seems naive.

Rather than address it, researchers in computer vision have addressed the practi-
calities of the segmentation problem. An incredible range of techniques have been
stitched together: local edge signals, global region information, spectal theory, and
hierarchical image regions; some systems even attempt to use all of these techniques
at once (for recent examples, see, e.g., [42, 43]).

I believe that a deep connection exists between the functional architecture of cor-
tical areas and the computational abstractions they support. For early vision, visual
cortex is organized largely around orientation; that is, around selective responses to
local oriented bars. In a classical observation, Hubel and Wiesel made [22] record-
ings along different penetrations of cortex. Tangential penetrations (roughly, paral-
lel to the cortical surface) revealed groups of cells with regular shifts in orientation
preference, while normal penetrations (normal to cortical surface) revealed cells
with similar orientation and position preferences but different receptive field sizes.
(This is the receptive field scale variation that supported the early attempts at im-
age pyramids and coarse/fine edge detection discussed earlier.) Together they define
an array of orientation columns, and combined with eye of origin, these columns
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provide a representation for visual information processing. In effect these columns
represent an instance of the cortical columnar machine specialized for problems in
vision. It is not a tree and can support many forms of Gestalt good continuation
for curves, textures, and colors; see [44–46]. But more is required, as we describe
next.

11.5 Border Ownership as Visual Inference

Computer vision is focused largely on detection and recognition problems, driven
by applications in the automotive, security, advertising, and biomedical domains.
A defining characteristic of these applications is that images are highly constrained
and the problem is well specified a priori. But for animate vision it is not just recog-
nition. Primates must infer the three-dimensional structure of trees before leaping,
while searching for food and avoiding predators. Missing a branch could mean
falling to the ground, and missing fruits and nourishing leaves could have metabolic
consequences.

The Gestalt psychologists recognized the importance of perceptual organization
in natural environments by observing how camouflage worked. The evidence is that
it relates to intermediate levels. Kanizsa [47] provides some of the most compelling
modern examples relating to surface organization, material properties, and lighting.
The myriad of coupled visual inferences is extensive, and well beyond this short
position paper. Instead, we concentrate on an aspect of border detection that goes
well beyond standard models. Most importantly, it illustrates distant influences on
local events.

Border ownership is the property that borders belong to figure, and not to back-
ground [48]. It is illustrated by Rubin’s classical demonstration (Fig. 11.3). Most
importantly, we now know that there are border ownership influences on the fir-
ing of neurons in the first and (extensively) second cortical visual areas [49]; see
Fig. 11.3(b,c). Two stimuli are used, the first shows a dark square on a white back-
ground (Fig. 11.3(b)), and the second (c) a white square on a dark background.
Recordings were made from a neuron whose receptive field is shown as the small
ellipse, and the stimuli were aligned so that the receptive field was optimally situ-
ated. Notice that, in both cases the neuron “sees” a dark (left)/bright (right) edge
pattern. However, for some neurons, the response is more vigorous to pattern (b)
than to (c); for others it might be the reverse; and for still others it responds equally
to both configurations. In other words, the neuron is responding in a manner that
complements geometric good continuation (as in Fig. 11.2 which depends differen-
tially to the global arrangement of edges (or brightnesses).

How might such border-ownership responses be computed? They are clearly re-
lated to Gestalt notions of perceptual closure, and several models have been pro-
posed. In effect, they all provide a means of estimating properties of the shape of
the enclosed region. Most importantly, this shape estimate has to regularize over
different possible shapes, such as straight or wiggly edges (Fig. 11.3(d–f)). Thus,
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Fig. 11.2 A first view of circuits in the superficial layer of visual cortex. (a) A tangential pene-
tration reveals neurons whose receptive fields are at about the same location in visual space, but
whose orientations differ. These can be rearranged into columns, in which the orientation changes
progressively and then (b) viewed in an geometrically abstracted view of cortex. The geometric
view embodies the idea that orientation changes smoothly along boundaries, as indicated (c) by
the curvature approximation. (d) Long-range horizontal connections realize these geometric con-
nection patterns

we have a global to local problem (estimate the boundary response at a point as
a function of whether it bounds a shape) but one in which details have to be inte-
grated away. Building detailed wiring diagrams such as those suggested in Fig. 11.2
are daunting in the combinatorics: how are all of the different edge arrangements
organized into equivalence classes of figures?

We have suggested a very different type of solution to this problem, based on
field-theoretic notions [50]. Briefly, edge responses (in a lower area) are integrated
into contour fragments based on geometric good continuation (long-range connec-
tions in that area) and grouping, and are summarized in a higher visual area. The
arrangement of these boundary fragments is then fed back to the lower area via pro-
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Fig. 11.3 (a) The concept of border ownership is illustrated by Rubin’s classical vase. Perceptually
a closed figure alternates with a pair of “faces,” and the border appears to switch; it always belongs
to the figure. (b, c) Border ownership is signaled by the response of certain neurons. Consider
two stimuli, the first of which is a dark square on a white background (b), and the second (c) a
white square on a dark background. Recordings were made from a neuron whose receptive field
is shown as the small ellipse, aligned to see identical local stimulation in both configurations. The
interpretation is that this neuron prefers for example, “light” figures against a dark background, as
in (c), and is providing a border and a border-ownership response; that is, that the global boundary
defines a light figure. (Individual responses not shown.) Note that the light-dark pattern within the
receptive field does not change, only the global arrangement of which it is a part. Figure after [49].
(d, e, f) Border ownership must somehow regularize over different shape completions; from the
perspective of the neuron whose receptive field is shown, it should be about constant regardless of
the figure’s exact shape

jections ending in the most superficial layers. But these feedback connections also
set up a local potential field in the earlier area, and it is this local field potential
that gates the boundary neuron’s firing (Fig. 11.4). Most significantly, the gradient
of this potential (when evaluated at a boundary point) provides information about
global shape by being proportional to properties of the distance map. Thus the loop
is closed, and global shape information is available locally.

How might these field-theoretic techniques be used in computer vision? Airports
are examples of complex image features that so far have defied standard approaches.
Templates are impossible to specify, because airports are defined more by their syn-
tax than by their actual layout. Nevertheless, humans are quite good at recognizing
airports from imagery. We suggest that this is because the problem of specifying
airports (and other complex features, such as industrial complexes, hospital com-
plexes, etc) is given at an abstract level. Some preliminary experiments have shown
that the enclosure field notion can be used for these types of recognition problems;
See Fig. 11.5 [50]; in effect they provide a measure of edge element density, align-
ment, and overall, global arrangement.
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Fig. 11.4 Neural substrates that could support border ownership computations. We continue the
circuitry outlined in Fig. 11.2, by showing (a) the local field potential (in gray) built up around
neurons from the superficial layer feedback signal. This field-theoretic model carries global infor-
mation about a kind of “enclosure field.” (b) Each neuron is surrounded by networks of glial cells,
which further participate in setting up local fields (glia also have channels) and provide an active
context for learning. If correct, models such as this suggest that a much richer perspective is re-
quired in neural modeling, and also suggests that field-theoretic mechanisms could also be relevant
to computer vision. For more details, see [50]

Fig. 11.5 Airports are complex features whose description may exist at a “distance map” level.
(a) Original image. (b) Enclosure field as a particular scale. Notice how different edge densities
and arrangements are summarized into the potential. Blue values correspond to enclosed regions
in this implementation. After [51]

11.6 Summary

The current practice in computer vision is to view the processing machine as a lay-
ered architecture, with local contraction mappings between layers. This view also
pervades visual neuroscience. In computer vision, however, the problem is often
limited to a feed-forward network. This raises big problems around segmentation
and recognition for natural (unlimited) imagery.

A deeper view of the neuroscience reveals much richer processing architec-
tures. These are required for tasks in perceptual organization, or the inference of
intermediate-level structures from images that can support high-level tasks. One of
the more subtle aspects of perceptual organization is the manner in which global
information can effect local decisions. We illustrate this with the problem of border
ownership.
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Border ownership illustrates how general properties of shape (namely, figure)
can influence border detection. Thus, it serves to illustrate in a concrete fashion how
neurobiology may first be solving the segmentation (i.e., perceptual organization)
and recognition problems as formulated in computer vision by organizing contours
into figures while putative (generalized) figures select from among possible con-
tours. Their coupling comes not in a tree-structured machine, but though beautifully
structured feedback connections. Discovery of such roles for feedback in computer
vision could be a rich extension of current paradigms.
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Chapter 12
Natural Selection and Shape Perception

Manish Singh and Donald D. Hoffman

12.1 Introduction

Our perception of shape is, like all of our perceptions, a product of evolution by
natural selection. This entails that our perception of shape is a satisficing solu-
tion to certain problems faced by our ancestors, e.g., the need to stalk prey, secure
mates, elude predators, and predict outcomes of actions. Natural selection produces
satisficing solutions, rather than optimizing solutions, because selection favors sur-
vival of the fitter, not of the fittest: A gene need confer only a slight edge over the
competition—a standard far lower than optimality—to proliferate in later genera-
tions.

It is standard in vision research to assume that more accurate perceptions are
fitter perceptions, and that therefore natural selection tunes our perceptions to be
veridical, i.e., to be accurate reflections of the objective world. For instance, Palmer
argues that “Evolutionarily speaking, visual perception is useful only if it is reason-
ably accurate . . . This is almost always the case with vision” [29]. Geisler and Diehl
argue that “In general, (perceptual) estimates that are nearer the truth have greater
utility than those that are wide of the mark” [12].

If perception is indeed veridical, then the world of our visual experience shares
the attributes of the objective world. Our visual world has three spatial dimensions,
a temporal dimension, and contains 3D objects with shapes, colors, textures and
motions. Vision researchers standardly assume that the objective world does also. In
other words, they standardly assume that the language of our visual representations
is the correct language for describing objective reality.

M. Singh (B)
Department of Psychology and Center for Cognitive Science, Rutgers University,
New Brunswick, NJ, USA
e-mail: manish.singh@rutgers.edu

D.D. Hoffman
Department of Cognitive Science, University of California, Irvine, CA, USA
e-mail: ddhoff@uci.edu

S.J. Dickinson, Z. Pizlo (eds.), Shape Perception in Human and Computer Vision,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-5195-1_12, © Springer-Verlag London 2013

171

mailto:manish.singh@rutgers.edu
mailto:ddhoff@uci.edu
http://dx.doi.org/10.1007/978-1-4471-5195-1_12


172 M. Singh and D.D. Hoffman

In this chapter we propose, contrary to standard assumptions, that natural selec-
tion does not in general favor veridical perceptions. The reason, in short, is that
fitness is distinct from truth; it depends not only on the objective world, but also on
the organism, its state, and the action class in question. A gazelle, for instance, of-
fers lots of “fitness points” to a hungry cheetah seeking to eat, but none to a cheetah
seeking to mate. Natural selection favors fitness, not truth. It is straightforward to
produce evolutionary games in which true perceptions are driven to extinction by
nonveridical perceptions that simply report fitness [26].

The consequences of this for shape perception are profound. If our perceptions
of 3D shape are not veridical reconstructions of objective 3D shapes, then a new
framework, entirely different from the standard, is required to properly understand
shape perception. In this chapter, we sketch such a formal framework that incorpo-
rates the role of evolution in a fundamental way, and in which perceived shape is an
adaptive guide to behavior, not a reflection of objective reality. This framework is
consistent with the interface theory of perception [16].

Because natural selection has tuned our perception of shape to be an adaptive
guide to behavior, our perception of shape has evolved to be tightly coupled with our
actions, a coupling that we formalize here with a commuting diagram that we call
the “perception-decision-action” loop, or PDA loop. Thus the detailed properties of
perceived shapes, such as their symmetries and parts, are not depictions of the true
properties of shapes in an objective world, but simply guides to adaptive action.1

12.2 Bayesian Decision Theory

A common framework for modeling vision in general, and the “recovery” of 3D
shape from 2D images in particular, is Bayesian decision theory (BDT) [13, 18,
19, 22, 24, 25]. BDT provides a probabilistic framework at the computational (or
competence) level [27], at which visual problems are analyzed in terms input-
output relations (e.g., the formal constraints needed to derive desired outputs from
given inputs)—independently of performance considerations involving specific al-
gorithms or their implementations.

Given the basic inductive problem that any image is consistent with many differ-
ent 3D interpretations, the visual system can resolve this ambiguity only by bring-
ing additional constraints (or biases) to bear—based on regularities observed in
the terrestrial environment in which our species evolved—and comparing the rel-
ative probabilities of different scene interpretations. For example, in estimating 3D
shape from shading, human vision appears to assume that light comes from above
(e.g., [20, 25]). Similarly, theories of shape-from-contours often assume that the 3D
shapes are symmetric, or maximally compact (e.g., [31]).

1We use “action” in the broadest sense of the word—to include not only visually-guided manip-
ulation of objects (“dorsal stream”), but also visual categorizations (“ventral stream”) that inform
subsequent behavior, e.g., whether or not to eat a fruit that has some probability of being poisonous.
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Formally, given an image y0, the visual system must compare the posterior prob-
ability p(x|y0) for different scene interpretations x. By Bayes’ theorem, this poste-
rior probability is proportional to the product of the likelihood of the scene p(y0|x)
and its prior probability p(x). The likelihood term captures the extent to which the
scene interpretation x is consistent with—and hence can “explain”—the image y0.
In theories of shape-from-X, it is usually taken to be a projective mapping from 3D
to 2D (orthographic or perspective), plus some model of noise. Because many differ-
ent 3D interpretations are typically consistent with any given image, the likelihood
cannot generally resolve the ambiguity by itself (i.e., the likelihood may be equally
high for a large number of 3D interpretations). The other source of information—the
prior probability—reflects the observer’s internalized beliefs about fact that certain
scenes, shapes, or states of the world are more likely than others—e.g., light tends
to come from above, objects tend to be compact, there is a prevalence of symmetric
objects, etc. [20, 25, 31].

The combined use of the prior and likelihood—via Bayes—yields a posterior dis-
tribution on the space of scene interpretations. It is common to use the maximum-a-
posteriori (MAP) estimate as one’s “best” interpretation. More generally, however,
the choice of a “best” point estimate depends on the loss function one assumes—
namely, the consequences of errors, or deviations from the “true” (but unknown)
interpretation. If the loss function is essentially a Dirac-delta function (i.e., no loss
for the correct answer, equal loss for every other answer) the value that minimizes
expected loss is the mode of the posterior distribution, i.e., the MAP estimate. How-
ever, if the loss function is quadratic (i.e., squared-error), the value that minimizes
expected loss is the mean of the posterior distribution. Hence, different choices of
loss functions lead to different strategies for picking a single “best” scene interpre-
tation from the posterior distribution (e.g., [25]).

12.3 A General Framework for Perception and Its Evolution

Bayes’ theorem provides a provably optimal way of combining the two probabilis-
tic sources of information embodied in the likelihood and prior [18]. Hence there is
strong, principled justification for using Bayes, once a likelihood model and a prior
have been specified on a particular space of possible interpretations. However, the
Bayesian framework as it is standardly applied to vision involves important assump-
tions about the choice of interpretation space that we will argue are too restrictive.

Consider the standard Bayesian setup for vision shown in Fig. 12.1a. X is the
space of scene interpretations (say, 3D shapes), with prior probability distribution
μX . Y is the space of 2D images. The likelihood mapping L is the projective map
from 3D to 2D (possibly with noise). B is the Bayesian posterior map from Y to X.
Technically, L and B are both Markovian kernels [32]. Thus, for each x ∈ X, the
projective map L specifies a probability distribution on Y (in the noise-free case,
this distribution is supported on a single point). And for each y ∈ Y , the Bayesian
posterior B gives a probability distribution on the space X of 3D shapes.
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Fig. 12.1 (a) The standard Bayesian framework for vision. (b) The computational evolutionary
perception (CEP) framework. In CEP, the objective world W lies outside of the probabilistic infer-
ential apparatus for vision. There are perceptual channels PX and PY to the two representational
spaces X and Y , respectively. And there are specific fitness functions on W that assign, for a given
organism o, its state s, and the type of action a in question, “fitness points” to each w ∈W

Importantly, note that in this setup the space X plays two distinct roles: (i) it
corresponds to the space of objective world states; and (ii) it corresponds to the space
of possible perceptual interpretations from which the visual system must “choose.”
This dual role is entirely consistent with the inverse optics approach to vision—
according to which the goal of vision is essentially to invert or “undo” the effects
of optical projection (e.g., [1, 28, 30]). It is also consistent with the historical roots
of Bayesian methods, namely, as techniques for computing “inverse probability”—
a prototypical case being to infer the relative probabilities of possible underlying
causes p(C|E) given some observed event E, when what one actually knows are
the probabilities of obtaining various events p(E|C) from particular causes C [23].

This dual role played by X makes it clear how BDT embodies the common as-
sumption that human vision has evolved to see the truth. It is not the case, of course,
that a BDT observer always makes veridical perceptual inferences. Indeed, it can-
not. Because a BDT observer embodies specific assumptions about regularities in
the world (“light tends to come from above,” “objects tend to be mostly convex,”
etc.) it is always possible to place it within a context where its assumptions are vi-
olated. At a more fundamental level, however, BDT makes the basic assumption
that the language of scene interpretations X is the correct language for describing
objective reality. In other words, BDT assumes that the representational space X

contains somewhere within it a true description of the objective world—even if the
observer’s estimate misses it in any given instance. It is in this more fundamental
sense that BDT assumes that human vision has evolved to see the truth.

Consideration of vision in other species, especially those with simpler visual
systems, suggests that this implicit identification of the representational space X

with the objective world is too simplistic. As we will see, it is also too restrictive if
one wants a formal framework that is general enough to encompass the evolution of
visual systems.

In discussing simpler visual systems, such as those of the fly and the frog, Marr
[27] noted that they “. . . serve adequately and with speed and precision the needs
of their owners, but they are not very complicated; very little objective informa-
tion about the world is obtained. The information is all very subjective . . . ”; and
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that “. . . it is extremely unlikely that the fly has any explicit representation of the
visual world around him—no true conception of a surface, for example, but just a
few triggers and some specifically fly-centered parameters . . . ” (p. 34). Thus, Marr
seemed to acknowledge that visual systems that do not compute objective properties
of the world can serve the needs of their owners well enough for them to survive,
even thrive, in their respective niches. This should not be surprising; after all, what
matters in evolution is fitness, not truth, and even visual systems that compute only
simple, purely “subjective,” properties can confer sufficient fitness. Despite this,
Marr held that the properties computed by human vision—such as object shape—
are objective properties of the world that exist independently of any observer. There
is no reason to believe, however, that the representational spaces that evolved in the
species Homo sapiens must correspond to objective reality. The evolution of Homo
sapiens is guided no less by fitness than the evolution of any other species. And
fitness is clearly distinct from objective truth because it depends not only on the
objective world, but also on the organism (fly vs. elephant), its state (hungry vs. sa-
tiated), and the type of action under consideration (eating vs. mating). Therefore,
one’s formal framework must be broad enough to include the possibility that human
visual representations also do not capture objective truth.

Thus, rather than simply assuming, or postulating, that the space of interpreta-
tions X is identical to (or in one-to-one correspondence with) the objective world—
let’s call it W—one’s formal framework must consider different possible relation-
ships between X and W . We make no assumptions about W , except that it is mean-
ingful to talk about probabilities in W , governed by some (unknown) probability
measure μ on an event space W . We define a perceptual strategy as a measurable
function P :W → X. One can think of P as a channel between W and X, that al-
lows information to flow from the objective world to the organism. In the general
case, P is a Markovian kernel which specifies, for each w ∈W [7], a probability
distribution on X.2 One can then consider four classes of perceptual strategies cor-
responding to different relationships between X and W (see [17, 26]): (i) the naïve
realist strategy assumes that X =W and that P preserves all structures on W ; (ii)
the strong critical realist strategy assumes only that X ⊂ W but requires that P
projects all structures of W onto X; (iii) the weak critical realist strategy allows that
X �⊂W but requires that P projects all structures of W onto X; and (iv) an interface
strategy allows that X �⊂W and does not require that P projects all structures of W
onto X. The interface strategy need not see the truth in the more fundamental sense
that the very language of the space X may be the wrong language to capture the
structure of the objective world W .

Most vision researchers today are weak critical realists. They recognize—
contrary to the claim of naive realism and strong critical realism—that perceptual

2Hence, formally, P is a mapping P :W ×X → [0,1], where X is the event space on X. One
can view P as a linear operator that maps probability measures on W to probability measures on
X. In the discrete case, it would be represented by a stochastic matrix whose rows add up to 1. For
more on Markovian kernels, see [3, 32].
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representations are distinct from objective reality, but assume that perceptual rep-
resentations are isomorphic, or at least homomorphic, to objective reality. We call
these two versions “isomorphic realism” and “homomorphic realism.”

We generalize BDT to a framework we call Computational Evolutionary Percep-
tion (CEP; [17]). In CEP, the objective world W lies outside of the Bayesian infer-
ential apparatus (see Fig. 12.1b). X and Y are simply two representational spaces—
neither corresponds to the objective world W (nor are they assumed to be isomor-
phic to W ). For example, Y may be a lower-level representation (say, a 2D repre-
sentation of image structure) that evolved earlier, whereas X may be a higher-level
representation, involving some 3D structure, that evolved later. There are perceptual
channels PX and PY from the world W to X and Y , respectively. As noted above, in
the general case, PX and PY are also Markovian kernels. Thus, for each w ∈W , PX

specifies a probability measure on X, and PY specifies a probability measure on Y .
In particular, the measure μ on W yields, via PX , a pushdown measure μX on X,
and similarly via PY , a measure μY on Y .3 In the diagram in Fig. 12.1b, therefore,
all four mappings shown (L,B,PX and PY ) are Markovian kernels. It is therefore
meaningful to take their compositions, which are also Markovian kernels (such as
the composition PXL :W → Y ).4 An important constraint in the CEP framework is
that the diagram in Fig. 12.1b must commute. As a result, for example, PY = PXL.
This is a coherence constraint on perceptual representations that allows observers
to predict the perceptual consequences of their actions, despite the fact that they are
ignorant about the objective world itself (see also Sect. 12.4).

What shapes the evolution of perception is, of course, fitness. We therefore ex-
pect that natural selection tunes perceptual channels (and their corresponding repre-
sentational spaces) to the only signal that matters for evolution, namely, fitness. In
order to bring fitness into our formalism, we view organisms as gathering “fitness
points” as they interact with the world. As we noted, fitness depends not only on the
objective world, but also on the organism, its current state, and the type of action
in question. Thus, we define a global fitness function f :W ×O × S × A→ R

+,
where O is the set of organisms, S of their possible states, and A of possible action
classes. Once we fix a particular organism o ∈O , state s ∈ S, and action class a ∈A,
the specific fitness function fo,s,a :W → R

+ assigns fitness points to each possible
w ∈W (say, of a starving lion eating a gazelle).

Given a specific fitness function fo,s,a , evolution shapes a source message about
fitness and a channel to communicate that message, that results in hill-climbing to-
ward greater expected-fitness payout to the organism. This means that a perceptual
channel PX from W to X may be expressed as the composition of two Marko-
vian kernels: a message construction kernel PCX

from W to a set of messages M ,

3Thus, whereas in BDT μX is taken to be the world prior, in CEP μX is the pushdown, via the
perceptual channel PX , of the prior μ on the objective world.
4Kernel composition is defined as follows: let M be a kernel from (X,X ) to (Y,Y ), and N

be a kernel from (Y,Y ) to (Z,Z ). Then the composition kernel MN from (X,X ) to (Z,Z ) is
defined, ∀x ∈X and A ∈Z , by MN(x,A)= ∫

Y
M(x, dy)N(y,A). This is simply a generalization

to the continuous case of the familiar multiplication of (stochastic) matrices. For details, see [32].
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Fig. 12.2 (a) A specific fitness function defined on a world containing a resource that varies in
quantity from 0 to 100. Resource quantities around 25 and 75 confer the greatest fitness, whereas
resource values around 0, 50, and 100 confer the least fitness. (b) The construction of a message
set with 4 messages, based on a simple clustering of fitness values into four categories: “very high”
(white), “somewhat high” (light gray), “somewhat low” (dark gray) and “very low” (black)

and a transfer kernel PTX from M to X [7]. The message construction kernel PCX
is

needed because the messages to be transmitted depend not only on the world W , but
also on the fitness values associated with elements of W (for a particular organism
o, its state s, and action class a). Hence, given the same W , but a different specific
fitness function fo,s,a , the set of messages to be transmitted may be different. Con-
sider an example of a simple world with multiple territories, each of which contains
a resource whose quantity varies from 0 to 100. Thus, each value from 0 to 100
may be considered to be a different world state. Now consider the specific fitness
function fo,s,a shown in Fig. 12.2a. As shown, resource quantities around 25 and
75 confer the greatest fitness, whereas resource values around 0, 50, and 100 confer
the least fitness. Assume that the representational space X contains 4 elements, say,
X = {A,B,C,D}. Then an efficient way to construct a message set might be to have
four messages, obtained by clustering the fitness values into four categories: “very
high” (white), “somewhat high” (light gray), “somewhat low” (dark gray) and “very
low” (red) (see Fig. 12.2b). The received messages are then highly informative about
fitness, and would allow the organism to choose between territories in a manner that
will result in high expected-fitness payout (e.g., given a choice between a “white”
territory vs. a “light gray” one).5 (Note that this occurs despite the fact that the re-
ceived messages carry little information about the actual number of resources.) We
use the term Darwinian Observer to refer to a perceptual channel PX that has been
shaped by natural selection as a satisficing solution for a specific fitness function.

The above analysis assumed that the representational space X was fixed, and the
perceptual channel PX was being tuned to increase expected-fitness payout. An-
other way, however, to increase expected-fitness payout is to evolve the representa-
tional space itself: X1→X2→ ·· ·. Presumably, there would be selection pressure
to evolve a more complex representational space (e.g., a representation that captures
some 3D structure) when the expected-fitness payout with the current space is insuf-

5In this example, a simple clustering based on fitness values was sufficient. More generally, how-
ever, multi-dimensional scaling may be required. Indeed, MDS-type solutions may also provide an
explanation of how dimensional structure can arise in perceptual representations.
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ficient to survive or compete, and going to the more complex representational space
would allow a substantial increase in expected-fitness payout.

The CEP framework is thus more general than the BDT framework for vision.
First, while incorporating the fundamental role of probabilistic inference, it allows
us to consider different possible relationships between the space of interpretations
X and the objective world W (rather than simply assuming that X =W , or that X is
isomorphic to W ). Second, it explicitly incorporates the role of fitness into the for-
mal framework, in a way that does not simply reduce fitness to the gain/loss function
of BDT. And third, by using Markovian kernels to map the relationship between W

and X, it allows us to articulate precisely different ways in which perceptual evo-
lution can proceed (e.g., by tuning a perceptual channel to a fixed representational
space, or evolving the representational space itself).

12.4 Shape as a Code for Fitness

12.4.1 Implications for Shape Perception

With our general framework in place, the implications for shape perception now
follow straightforwardly. First, our framework makes it clear that we really have
no basis for assuming—as is standardly done—that shape is an objective property
of the world. For example, it is fairly standard among shape researchers to speak
of “shape recovery” when referring to the computation of 3D shape from different
2D cues. This nomenclature reflects the identification of the representational space
X with the objective world W that is assumed in the inverse optics approach to
vision (and, as noted above, is commonly made in Bayesian approaches to vision).
When one sees the 3D shape of an object, the undulations in its surface, etc., one
sees, according to the inverse optics approach, geometric properties that correspond
to objective properties of the world6—properties that exist independently of any
observer. However, as we noted above, this is too simplistic. It is certainly much
more than can be claimed based on available facts. There is surely an objective
world W , but there is no basis for saying that shape is a property of that world.
Rather, shape is simply a representational format used by our visual systems to guide
interactions with the objective world. It is part of the representational space X, not
W . It should be clear from this that our position is strictly weaker—not stronger—
than the standard inverse optics or shape recovery approach. Whereas the standard
approach assumes, or postulates, that X =W or that X is isomorphic to W , we are
open to different possible relations between X and W .

6The inverse optics approach allows for misperceptions—e.g., that observers tend to perceive an
object from a certain viewpoint as being less elongated in depth than physical measurements of the
object tell us it is. But the inverse optics approach nevertheless assumes that one of the shapes in
X is the “correct” one in the objective world W . In other words, at a more fundamental level, the
inverse optics approach assumes that the very property we call shape is an intrinsic property of the
objective world W itself.
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Second, our framework entails that shape, as a representational format, most
likely evolved because it made possible the development of a perceptual channel
with high expected-fitness payout. Thus the property we call shape is essentially an
effective coding scheme that has been tuned by natural selection: it conveys to an
organism—in a compact and efficient format—the various ways in which the organ-
ism could interact with objects in the world to gain more “fitness points.” Therefore
when we perceive the 3D shape of an object—the undulations on its surface, its
symmetries, its part structure—all of these are different aspects of a representa-
tional format that natural selection has fashioned, one which compactly summarizes
the different possible actions that we could take, and that allows us to predict the
perceptual consequences of those actions (e.g., how the perception of a 3D object
would change were we to rotate it slightly to left, pick it up in a certain way, etc.),
and what the fitness consequences would be (e.g., would we successfully eat that
apple or evade that tiger).

This last point raises a natural question: How is it possible for us to interact
successfully with the objective world if we are fundamentally ignorant of it, and
can assume no simple correspondence between our perceptions and that objective
world? This is where the third implication of our framework comes in, namely, that
action (broadly construed) plays a central role in the evolution of shape perception.
In brief, it is perfectly possible to interact successfully with a fundamentally un-
known objective world because (i) there is a regularity in the perceptual mapping;
(ii) there is regularity in the consequences of our actions in the objective world; and
(iii) these mappings are linked in a coherent manner. This is a fundamental point for
our framework and, to develop it fully, we need to introduce some more formalism,
namely that of the perception-decision-action (or PDA) loop. Before we do this in
the next subsection, however, we provide an example that should help fix intuitions.

Consider the desktop interface of a PC. A file’s icon on the desktop might be
green, rectangular and in the middle of the screen. Does this entail that the file
itself is green, rectangular and in the middle of the computer? Of course not. The
shape, position and color of the icon are merely conventions that allow the user
to interact with the computer despite being ignorant of the complex details of its
diodes, resistors, software, voltages and magnetic fields. The desktop interface is
useful not because it reveals the truth about the computer, but because it hides the
complex truth, and instead provides simple symbols that guide useful interactions
with the computer. In like manner, natural selection has shaped our perceptions to
be an interface that hides the true nature of the objective world, and guides adaptive
behavior [15, 16, 21]. Spacetime is the desktop, and objects with their shapes, colors,
textures and motions are icons in the desktop. Spacetime and objects are not the
objective truth, and do not resemble the truth. Instead, they are a species-specific
adaptation shaped by natural selection to guide adaptive behaviors and to allow us
to survive long enough to reproduce. Perception has been shaped by the imperative
to produce offspring, not to see truth.
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Fig. 12.3 The Perception-Decision-Action (PDA) loop. W denotes the objective world, X a space
of perceptual representations of an organism, and G the related set of actions the organism can take.
P is a perception kernel, D a decision kernel, and A an action kernel. All kernels are Markovian

12.4.2 The Role of Action in the Evolution of Shape Perception

In this section, we incorporate action and decision into our formalism, and draw
out implications for shape perception. Natural selection necessarily couples percep-
tion and action because fitness, to which perception is tuned, depends crucially on
the actions of the observer. Different classes of action are, in general, coupled with
different expected fitnesses. The fitness points gleaned from an apple for the ac-
tion of eating is greater than for the action of mating. Since natural selection tunes
perceptual channels to convey information about fitness, one expects tight coupling
between perceptual channels and the actions they inform.

When an observer receives a perceptual experience x ∈ X, it must decide what
action to take. We will denote the set of available actions by a set G, where we think
of G as including a group that acts on W . Recall that if a group G acts on W , then
for every g ∈G the mapping w �→ gw is a bijective map from W to W . Common
examples are the actions of translation and rotation on Euclidean spaces. We also
allow there to be actions in G other than group actions.

Thus, given a perceptual experience x ∈ X the observer must decide which ac-
tion g ∈ G to take. The natural formalism to describe such a decision is again a
Markovian kernel, D, from (X,X ) to (G,G ). We call D the decision kernel.

Once an action g is chosen, the observer must then act on the objective world
W . We model this action by a Markovian kernel A from (G,G ) to (W,W ), which
we call the action kernel. Given this formalism, we can think of action as sending a
message from the observer to the objective world.

Thus, we have three kernels: P , D, and A. P maps from W to X; D maps from
X to G; A maps from G back to W (see Fig. 12.3). So together they form a loop,
which we call the PDA loop. We have a PDA loop for each perceptual representation
space X. So, in the CEP example discussed in Sect. 12.3, there is a PDA loop for
the 2D image space Y and another PDA loop for the 3D space X.

However, just as we assume that the observer does not know the objective world
W , and therefore does not know the perception kernel P , so also the observer does
not know the action kernel A. Informally, this means that when we act, we don’t
really know what effects we are having in the objective world W itself; however we
do know the results of those effects back in our perceptual experiences X. Formally,
even though the observer cannot know the kernels P and A, it can know the kernel
AP from (G,G ) to (X,X ), which is formed by the kernel composition of A and
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P . It can also know the kernel DAP from (X,X ) to (X,X ) (i.e., from X back
to itself). This allows the observer to learn how to interact with W , even while
being ignorant of W . The observer can try different actions g ∈ G and note their
consequences for perceptual experiences in X. If the consequences are unexpected,
the observer can update its decision kernel D to correct this.

This applies to actions with objects and shapes. If, for instance, the observer acts
in a way that leads it to perceive that its body moves through space via an element of
the Galilean group, or that its hand is grasping an object and rotating it, then, given
its perceptions of the relative position of an object, and the symmetries and parts of
that object, it can predict what the consequences of its action should be for changes
in the relative position and perceived shape of that object.

This also applies to object categorization. Such categorization allows the ob-
server to predict the fitness consequences of various current and future interactions
with the object (such as eating it). We are thus using the word “action” broadly to
include not only “dorsal stream” visually-guided motor behavior, but also “ventral
stream” perception and categorization that inform future behavior.

Let’s return to the desktop metaphor discussed above. A new generation of desk-
tops now employs 3D interfaces [4]. In such a desktop, if the icon of a file has a
particular 3D shape, say the shape of a book, and the desktop contains a 3D book-
shelf with a book-shaped gap, then the user can be guided by the shape and position
of the 3D icon to grasp it and place it in the bookshelf. In one sense, this is unre-
markable. But the key concept here is that the file itself in the computer has no 3D
shape, and in particular is not shaped like a book. Moreover, the directory system
in the computer has no 3D shape, and in particular is not shaped like a bookshelf.
These 3D shapes are mere conveniences for guiding effective interactions of the
user, not insights into the true nature of files and directories—and certainly not of
the myriads of voltages and magnetic fields in the computer.

12.4.3 Perceptual Organization of Shape

Apart from computing 3D shape from 2D image cues, another fundamental aspect
of shape perception is the perceptual organization of shape. A great deal of psy-
chophysical work indicates that human vision organizes complex shapes hierarchi-
cally in terms of parts and their spatial relationships (e.g., [6, 8, 14, 33]). This “struc-
tural” approach to shape separates the representation of individual parts from that of
their spatial relationships—thereby allowing a shape to be identified as comprising
the same parts, but in somewhat different spatial relations (e.g., a sleeping cat vs. a
standing cat). It is also closely related to the axis or skeleton-based approach, which
provides a compact “stick-figure” representation of a complex shape that captures
its structural aspects (e.g., its branching structure) [5]. A recent probabilistic ap-
proach to the computation of shape skeletons yields a one-to-one correspondence
between parts and skeletal branches—indicating that parts and skeletons are indeed
complementary aspects of the perceptual organization of shape [9].
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They key point, for current purposes, is that the perceptual organization of shape
in terms of parts and axes has no natural interpretation in terms of inverse optics.
There is no objective “ground truth” regarding whether an object “really” has one
part or two, or whether an axis that continues from one portion of a shape to another
is “really” the same or a different axial branch (e.g., consider a U-shape vs. a V-
shape, and a morphing sequence between them). The organization of shape in terms
of segmented parts, or in terms of axes, is something that the visual system imposes
on perceptual objects—it is not an objective property of the world. This does not
mean that a Bayesian analysis of the problem is not possible. However, the likeli-
hood or the “forward” mapping in that case has a different interpretation; it is not
a projective or rendering map, but the visual system’s own generative model con-
cerning how objects are formed [9]. This is easily accommodated within the current
framework, since for us the space of interpretations X is distinct from the world
W . Hence, in this case, the space X would consist of all possible interpretations of
a shape as a hierarchical organization using segmented parts (e.g., different parti-
tions of a shape, and different tree structures capturing possible part hierarchies). In
the context of perceptual organization of shape, it is therefore especially clear that
elements of X have no simple correspondence to the objective world W .

A natural question is: Why have shape representations based on parts and axes
evolved, if they have no simple correspondence to the objective world W ? The an-
swer, as expected, has to do with fitness. Organisms that can predict, upon seeing an
object at one time, what that object might look like on other occasions, are likely to
interact with it much more successfully—and thus have greater fitness—than those
that cannot. And a shape representation based on parts and axes goes a long way
in conferring this ability: Upon seeing an animal in one particular articulated pose
(configuration of limbs), for example, it is much easier to predict other possible (un-
seen) articulated poses if one’s shape representation is part-based than, say, if one’s
representation consists simply of an unstructured template of the shape as a whole.
In sum, a framework that allows X and W to be distinct, and incorporates the role
of fitness, makes it much easier to understand the perceptual organization of shape.

12.5 Discussion

We sketched a formal framework—Computational Evolutionary Perception—that
subsumes and generalizes the standard Bayesian framework for vision. While in-
corporating the role of probabilistic inference, CEP also incorporates fitness in a
fundamental way, and it allows us to consider different possible relationships be-
tween the objective world and perceptual representational spaces. In our frame-
work, shape is not an objective property of the world. It is simply a representa-
tional format employed by our visual systems to guide adaptive interactions with
the world. This representational format evolved because it allows a high-capacity
channel for fitness. In other words, shape is an effective code for expected fitness
that has been tuned by natural selection. Because fitness depends crucially on the
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actions of an organism, shape representations in our framework are closely tied to
actions. Thus when we perceive the 3D shape of an object—the undulations of its
surface, its local and global symmetries, its part and skeletal structure—these are
various aspects of a code that compactly summarizes the possible actions that one
could take (including future actions based on current categorization), and to predict
the fitness consequences of those actions. To model this formally, we introduced the
perception-decision-action (PDA) loop. Among other things, the PDA loop clari-
fies how, even though one cannot know the effects of one’s actions in the objective
world itself, one can nevertheless know (because of the coherent coupling between
perception and action) the results of those effects back in our perceptual experience.
This explains how organisms can interact effectively with a fundamentally unknown
objective world. Finally, CEP and the PDA loop provide a new framework for under-
standing the perceptual organization of shape using parts and skeletons—something
that is difficult to accommodate within a standard inverse-optics approach to shape.
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Appendix: Relation to Quantum Bayesianism

One possible objection to the framework proposed in this chapter might be: “It is
naive for vision scientists to propose that our perceptions are not veridical, and that
therefore the objective world need not be spatiotemporal and need not contain 3D
objects with shapes. Surely physicists know otherwise, and would dismiss such a
proposal out of hand.”

Although some physicists might dismiss such a proposal, there are others who,
in trying to best interpret the formalism of quantum theory, have been led to a view
about quantum states that comports well with our proposal. These physicists, who
call their approach “quantum Bayesianism,” or QBism for short, claim that quantum
states are not objective representations of the external world, but rather are compen-
dia of beliefs about possible outcomes of measurements [2, 10, 11]. As Fuchs [10]
puts it, “. . . there is no sense in which the quantum state itself represents (pictures,
copies, corresponds to, correlates with) a part or a whole of the external world, much
less a world that just is” and “. . . a quantum state is a state of belief about what will
come about as a consequence of . . . actions upon the system.” So, for instance, ac-
cording to QBism a state function of a quantum system, represented say in the basis
of the position operator, has a particular shape in space that can be used to predict
the consequences of actions on that system.

This is entirely consistent with the view we propose about our perceptual ex-
periences in general, and our experiences of shape in particular. There is no sense
in which the objects in our perceptual experiences picture, copy, correspond to, or
correlate with a part or a whole of the external world. Instead such objects and their
shapes, and perceived space-time itself, are states of belief about what will come
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about as a consequence of our actions (which could include measurement). The rea-
son is that natural selection, which has tuned our perceptions, rewards fitness and
nothing else. Therefore our perceptions have been tuned to inform us of the fitness
consequences of our possible actions, not to copy or picture the objective world.
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Chapter 13
Shape as an Emergent Property

Ian H. Jermyn

13.1 Shape Inference

Changes in the properties of matter with position in space, on a scale small enough
relative to our own that they can be treated as discontinuities, are ubiquitous in our
world. The discontinuities define surfaces, which have geometric properties, which
we call ‘shape’. The omnipresence of such surfaces, and the distinctive physical
properties of the matter that they surround, means that shape is frequently infor-
mative about matters of importance to us and to other biological systems, and so
inferences involving shape become useful. In particular, because the reflective prop-
erties of matter often change along with the properties that define shape surfaces,
measurements of light intensity, whether by retina or CCD, can be used to make
inferences about shape. Image formation can be approximated in geometric terms,
meaning that inferences about two-dimensional shape become relevant too.

What is required to make such inferences? To solve an inference problem, we
should construct a probability distribution describing our knowledge of the unknown
quantity of interest given the known information. For inferences involving shape,
this will involve probability distributions P(R|K), where R ∈R is, in general, an
element of a suitable set R ⊂ 2D of subsets of a space D possessing sufficient
geometric structure to render the idea of shape meaningful. In any specific case, R
will parameterize a set of propositions whose probabilities we wish to calculate, for
example, “region R in the image domain D contains entity X” (where X is ‘human
being’, ‘Ian’, ‘road network’, ‘car’, etc.). The quantity K denotes all the knowledge
we have of the situation (or anyway all the information that we choose, or are able,
to express). In particular, this will include all the information we have about the
shape of R, perhaps arising from knowledge of X.

In order to make inferences involving shape, then, we need to understand how
to construct distributions P(R|K) for given knowledge K : that is, how to encode
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Fig. 13.1 An example of an
element of the space of
‘regions’, R, showing the
complicated nature of such
elements

information about shape into the probability distribution. We will look at the prop-
erties probability distributions must have to be regarded as shape models, and then
at how these properties have typically been implemented in machine vision. After
looking at the drawbacks of this ‘classical’ approach, we then discuss an alterna-
tive, inspired by classes of shapes arising in certain image processing problems. In
the resulting framework, shape becomes an emergent property of interactions in a
network of simple nodes. It may therefore be of some biological relevance. We con-
clude with a discussion of this approach, and of what remains to be done to turn it
into a complete shape modelling framework.

13.2 Modelling Shape

The key task, then, is to construct probability distributions P(R|K) on a suitable
space of shapes R.1 We will focus attention on a space R ⊂ 2D , where D ⊂ R

2 is
a relevant domain (often the support of an image), although much of the discussion
applies to other spaces and other dimensions. ‘Regions’ R ∈R are open sets, but
we do not specify them further; we assume they possess whatever properties are
needed to render the models well defined. Note that the space R is complicated:
regions can have arbitrarily many connected components; connected components
can contain holes; and these in their turn can contain connected components; and so
on. Figure 13.1 shows an element of this space.

Now we need a category of mathematical objects to represent the elements of R,
a ‘representation space’ S . Many such spaces have been used in the literature. Some
are isomorphic to R (indicator functions, distance functions [16]). This seems good,
but leaves the complexity of R intact: S still contains infinitely many connected
components, for example. For others (‘many-to-one’), there is a non-injective map
from R to S (landmark points [6, 12], various Fourier descriptors [20], medial
axis [2, 8]). Such representations are often low-dimensional, and can be intrinsi-
cally invariant to transformations. However, a region cannot be reconstructed from

1A continuum description of regions involves spaces of infinite dimension. The task of constructing
probability measures on such spaces, once we move beyond Gaussians, is difficult, and we will
not address it. The details are anyway usually irrelevant because they concern infinitely small
distances; it is enough to imagine some kind of frequency cut-off imposed at a scale too fine to
matter. There may be strong dependence on the scale of the cut-off unless the model parameters
are made cut-off dependent, but in practice, since the parameters are determined experimentally
for a known cut-off, this is of little importance.
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Fig. 13.2 Predicting one part
of a boundary from another.
Left: a sample from the Ising
model, where accurate
prediction is not possible.
Right: a case where accurate
prediction is possible

its representation, and so there is no probability distribution on shapes; we do not
consider them further. Finally, there are representations (‘one-to-many’) for which
there is a non-injective map σ :S →R (parameterized closed curves, phase field).
The advantage is that S may have a much simpler structure than R; however, we
have to think about the distribution induced on R by a distribution on S :

P(R)=
∫

S
δ
(
R,ρ(S)

)
P(S)=

∫

SR

P (S), (13.1)

where SR = {S ∈ S : R = σ(S)}. Often one uses a saddle point approxima-
tion: P(R) ∝ P(SR), where SR = arg maxS∈SR

ρ(S), with ρ(·) a suitable density
for P(S).

Next, we have to construct probability distributions on S expressing shape in-
formation. Do all distributions on S count? The only precise answer is yes, but
this is not very useful. The standard Ising model on Z

2 can be viewed as a proba-
bility distribution on regions in R

2 by associating the indicator function of a square
with each vertex, but while this distribution undoubtedly contains information about
region geometry, because regions with greater boundary length have lower probabil-
ity, it cannot really be called a ‘shape model’. This can be seen by looking at distant
parts of the sample in Fig. 13.2: high probability regions do not have any properties
in common that we would normally call ‘shape’.

Why do we say that the Ising model does not contain shape information? The
reason is that the set of high probability regions is too large, that is, the entropy is
too high. In order to reduce the entropy, we have to create more dependence in the
distribution. Indeed, it is clear that what we normally refer to as ‘shape’, involves
the ability to make quite precise inferences about the overall region give only par-
tial information about its boundary. For example, most people could make a good
estimate of the part of the object boundary that is concealed in the image on the
right-hand side of Fig. 13.2, given the part that is revealed: the conditional entropy
is small. The same is not true of the left-hand side. In other words, the probability
distribution induced by our knowledge of the object’s identity and behavior contains
strong, long-range dependencies between parts of the region boundary. Such depen-
dencies, then, are key to the construction of non-trivial shape models. We now turn
to how to build probability distributions that incorporate such dependencies.
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13.3 The Classical Approach

We will first look at what we will call the ‘classical approach’ to shape modelling.
The focus here is on defining a ‘dissimilarity measure’ d :S ×S →R≥0 between
points in S . Usually, although not always, this measure is metric [3, 4, 10, 14, 15,
18, 19]. Once defined, the metric can be used to define a probability distributions
on S as a function of distance to a ‘template’ shape S0. The most common form of
distribution is ‘pseudo-Gaussian’, taking the form:

P(S|S0)∝ dS e−
1
2 d

2(S,S0), (13.2)

where S0 is the ‘template’, and dS is an underlying measure on S . (Mixtures of
such distributions over a set of templates have also been used [5].)

The distribution (13.2) encourages S to be close to the region S0, but this is rarely
what is required. Typically, there will be uncertainty about the position, orientation,
and perhaps scale of the shape. To incorporate such uncertainty in the classical ap-
proach, one must create mixture models over these transformations. Let G be the
transformation group acting on S , with the action denoted gS. Then the distribution
one is really interested in is

P(S|S0)=
∫

G

P (S|g,S0)P (g|S0)∝ dS

∫

G

dg ρ(g)e−
1
2 d

2(S,gS0), (13.3)

with P(g|S0) = dg ρ(g), where dg is an invariant measure on G. Often complete
invariance to G is needed. This requires dS to be G-invariant, ρ ≡ 1, and G to
act by isometries on S : d2(gS,S0) = d2(S, g−1S0). In practice, the integral in
Eq. (13.3) is rarely evaluated. Rather a saddle point approximation is made in which

g∗ = arg ming∈G d2(S, gS0) is substituted, giving P(S|S0) ∝ dS e− 1
2 d

2(S,g∗S0), that
is, pose is estimated. Although easier than performing the integral, this still requires
significant computational effort.

How do the long-range dependencies necessary for nontrivial shape modelling
arise in the classical approach based on templates? The answer is that the template
itself, or rather its parameters, such as the group elements just discussed, act as hid-
den variables. Once they are integrated out, they introduce long-range dependencies
between boundary points. A trivial example, in one dimension, is the following. In
1-d, regions are unions of intervals; we consider only connected regions. Let the
template region be an interval of length 1, with center at c. Let the probability of a
region [x, y] be P(x, y|c)= δ(x − (c− 1

2 ))δ(y − (c+ 1
2 )). Thus, given c, x and y

are independent. If we now add a uniform prior on c (suppose c, x, y ∈ S1 so this
is normalized), we can integrate out c to obtain P(x, y) = δ(y − x − 1). Thus not
knowing c, x and y are dependent: in this singular case, x determines y completely.
In the general case, integration over a group as above, or integrations over other
unknown template parameters, play exactly the same role as in this simple example,
introducing the long-range dependencies that contain nontrivial shape information.
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Fig. 13.3 Left: multiple
instances of an entity (‘gas of
near-circles’). Right:
a ‘network’ region

13.3.1 Drawbacks of the Classical Approach

While the classical approach to creating long-range dependencies using templates
and a metric is useful and efficient in many applications, it does not apply, or is
inefficient, in many important cases. In particular, the use of templates and metrics
means that high probability shapes only occur ‘close’ to one or more points in the
space of shapes. There are entities, however, for which our knowledge of their shape
cannot be expressed in terms of small variations around a template shape or shapes.
In particular, when the entity involved has an extent or a topology that is in some
way unconstrained, the use of templates fails to allow sufficient variability.

Perhaps the most commonly occurring example is when multiple instances of an
entity can be present: see Fig. 13.3 left. In this case, although each entity might be
well described by a template and small variations, the whole may have any number
of connected components, and hence is not amenable to a template/metric descrip-
tion. Although in principle this situation can be dealt with by using object point pro-
cesses [13], in practice the large number of degrees of freedom per object, together
with the necessity to estimate transformation group parameters for each instance,
mean that such methods are very inefficient.

Another example is provided by ‘network’ regions: see Fig. 13.3 right. The set of
network regions can be divided into topologically distinct subsets classified by the
graph of which they are a fattened version. It is thus clear that such shapes cannot
be described as variations around a finite number of templates.

To overcome these drawbacks, a new modelling framework is needed that allows
the incorporation of strong constraints on region shape, without necessarily con-
straining region topology, and that provides intrinsic invariance. To achieve this, the
long-range dependencies necessary for shape modelling will be encoded in the dis-
tribution in a new way. This turns out to be of interest in its own right, independently
of the examples that inspired it.

13.4 Nonlocal Interactions

In this section, we will look at an alternative method for introducing the long-range
dependencies needed in order to encode non-trivial shape information. Rather than
using a template to introduce such dependencies, explicit nonlocal interactions be-
tween region boundary points will be introduced. These interactions generate long-
range dependencies strong enough to constrain region shape, but because no tem-
plate is used, they need not constrain region extent or topology. In addition, the
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models will be intrinsically invariant to Euclidean transformations, meaning that
these transformations do not have to be estimated for each instance of an entity.
Multiple instances thus become easier to handle. We first describe these models in
terms of the ‘contour representation’, but then go on to reformulate them in terms
of nonlocal interactions in networks of simple real- and binary-valued nodes.

The contour representation represents R ∈R by its boundary ∂R, which consists
of a set of oriented, closed curves. (The dark lines bounding the region in Fig. 13.1
show an example of a region boundary; the boundary orientation is not shown in the
figure.) The contour representation space S = Γ , is thus the space of multiple, ori-
ented, closed curves, subject to certain constraints, to which we return later. In fact,
it is often convenient to write probability distributions in terms of circle embeddings
S1→R

2: making a distribution invariant to the action of Diff(S1) then ensures that
it is well-defined on Γ , and hence on R.

We now introduce a class of models, expressed in the contour representation and
known as ‘higher-order active contours’ [17], that encode nontrivial shape informa-
tion via explicit nonlocal interactions.2

13.4.1 Higher-Order Active Contours

The simplest Euclidean invariant model one can place on Γ is

EC,0(∂R)= λCL(∂R)+ αCA(∂R), (13.4)

where L and A are region boundary length and region area respectively; and
λC,αC ∈ R≥0. This model, or minor variants of it, has been much used as a region
model in the literature, starting with [11]. Indeed, it is essentially the Ising model in
a constant external field, expressed in the contour representation. As such, although
this model contains important information about the (low-resolution) smoothness
of region boundaries, it contains no real shape information. Indeed, both L and A

can be expressed as single integrals over ∂R involving only tangent vectors, mean-
ing that only ‘infinitesimally nearest neighbor’ points on the boundary interact: the
model does not contain the long-range dependencies necessary to incorporate non-
trivial shape information.

To incorporate nonlocal interactions, and hence long-range dependencies, one
must move from single integrals to multiple integrals, thereby incorporating in-
formation from more than one contour point at a time. Two integrals is the sim-
plest case: pairs of points on the boundary then interact. The idea is illustrated in
Fig. 13.4. One possibility among many for such a ‘higher-order active contour’ en-
ergy is

EC,NL(∂R)=−βC
∫∫

S1×S1
dt dt ′ n ·G(γ, γ ′) · n′, (13.5)

2We will not talk about probability distributions directly from now on, but rather about their ener-
gies E, defined, up to an additive constant, by P (R|K)∝ exp(−E(R|K)).
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Fig. 13.4 Left: the
‘nearest-neighbor’
interactions induced by first
derivatives. Right: nonlocal
interactions

where γ is an embedding of a circle (or multiple circles, if the region has more than
one connected component or is multiply-connected), whose image is ∂R; t, t ′ are
coordinates on S1; n indicates the un-normalized normal vector field to γ (i.e., γ̇
rotated by π/2); (un)primed quantities are evaluated at (t)t

′
; and G : R2 × R

2→
T ∗R2 � T ∗R2, where � indicates the outer tensor product, is a bitensor field. Note
that it is easy to make EC,NL intrinsically Euclidean invariant, for example by taking
G(x, x′)= Ψ (|x − x′|)I.

Summing the nonlocal term (13.5) with Eq. (13.4) gives an energy EC =EC,0+
EC,NL with interesting properties, documented in [9, 17]. In particular, for certain
parameter ranges, calculable via stability analyses [7, 9], EC has local minima cor-
responding to ‘network’ regions or to ‘gas of near-circles’ regions. Examples of such
local minima of EC , generated by gradient descent, are shown in Fig. 13.5. Network
regions consist of a number of branches joining together at junctions, and can be
thought of an ‘fattened embedded graphs’, as in Fig. 13.3. ‘Gas of near-circles’ re-
gions consist of any number of connected components, each of which has infinitely
many degrees of freedom, but which with high probability is ‘close’ to being a circle
of a given radius. Note that ‘gas of near-circles’ regions represent multiple instances
of a shape, with different interaction functions Ψ favoring different perturbations of
the circle, and hence different shapes. Intrinsic Euclidean invariance of EC means
that no pose estimation is required.

Higher-order active contours demonstrate that non-trivial shape information can
be encoded using explicit nonlocal interactions between boundary points, and they
have been used successfully in a number of image processing applications [9, 17].
Nevertheless, the contour representation in which they are expressed suffers from
a number of drawbacks arising from the fact that not all sets of oriented, closed
curves are boundaries: constraints are needed to prevent (self-)intersections; curve
orientations, which describe ‘inside’ and ‘outside’, have to be mutually consistent;
and the space Γ is not connected, having one component for each topologically
distinct set of regions (connected region components, holes, nested regions, . . . ).
These difficulties can all be alleviated by changing the shape representation. In the

Fig. 13.5 Local minima under EC . Left: network regions; right: gas of near-circles regions
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process, we will see that shape information can be encoded in terms of nonlocal
interactions in a network of simple binary- or real-valued nodes.

13.4.2 Reformulation as a Network of Nodes

A region can be represented by a binary-valued function φ :D→ {±1}, with R =
ζ(φ) = {x ∈ D : φ(x) > 0}. It turns out to be convenient to relax this to a real-
valued ‘phase field’ function φ :D→ R (we will use the same symbol) controlled
by an energy that encourages it to take on the values ±1. Perhaps the simplest such
energy is the Ginzburg-Landau energy:

E0 =
∫

D
dx

{
D

2
|∂φ|2 + λ

(
φ(x)4

4
− φ(x)2

2

)
+ α

(
φ(x)− φ(x)3

3

)}
, (13.6)

where all φ are evaluated at x. The ultralocal part of the integrand has minima at
±1. This means that if D = 0, φR = arg minφ: ζ(φ)=R E0(φ) will take the value +1
inside, and −1 outside R, that is, will be binary. It is then easy to see that E(φR)=
2
3αA(R) up to an additive constant. Nonzero D has the effect of smoothing the
discontinuity, and also measures the boundary length. Indeed it can be shown that

E0(φR)� λCL(R)+ αCA(R), (13.7)

where λC and αC are functions of λ, α, and D. The energy E0 is thus EC,0 refor-
mulated in terms of the phase field representation.

It is now natural to ask whether it is possible to create a phase field energy that
is equivalent to EC =EC,0 +EC,NL. This is indeed the case. The equivalent of the
nonlocal energy EC,NL in Eq. (13.5) is

ENL(φ)=−β

2

∫∫

D2
dx dx′ ∂φ(x) ·G(x, x′) · ∂φ(x′). (13.8)

It can then be shown that

E(φR)=E0(φR)+ENL(φR)�EC,0(R)+EC,NL(R)=EC(R). (13.9)

The phase field representation S = Φ is a one-to-many representation. Equa-
tion (13.9) shows that in a saddle-point approximation to Eq. (13.1), the phase field
model E is equivalent to the contour model EC . (The same is true in the Gaussian
approximation also.) In particular, for different parameter ranges, the phase field
model has local energy minima corresponding to networks and a gas of near-circles;
the ranges can be found by translating the results of the stability analyses performed
in the contour representation to the phase field representation, and are well verified
numerically. This is useful because the phase field representation turns out to have
multiple advantages. First, unlike the contour representation, there are no difficult
constraints to implement: φ lives in a linear space Φ . Second, regions of arbitrary
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Fig. 13.6 Diagram of the
network interactions in the
spatially-discretized phase
field model

topological complexity are all represented in a single, connected space, so that no
special methods are needed to deal with multiple connected components, handles,
etc. Coupled with the intrinsic Euclidean invariance of the energy, this means that
multiple instances of an entity are modeled at essentially no extra cost. Third, in the
contour representation, γ appears as an argument to G, which makes the nonlocal
term complicated. In the phase field representation, the nonlocal term is quadratic,
and when translation invariant, is diagonal in the Fourier basis. This greatly simpli-
fies any computations involving it.

The continuum form of the phase field energy is easy to manipulate, but computa-
tions, whether in a machine or biological visual system, will inevitably involve dis-
cretization of some sort. If we spatially discretize Eq. (13.6), the result is a Markov
random field ψ , consisting of a set of real-valued nodes, interacting (see Fig. 13.6):
with themselves via the potential (red); with their nearest neighbors via the deriva-
tive term (green); and also with the large number of nodes that lie within the support
of the nonlocal interaction (blue). We thus see that nontrivial shape information can
be encoded as nonlocal interactions in a network of real-valued nodes.

We can simplify things even further, at the cost of losing some geometric accu-
racy, as follows. On most of its domain, the phase field takes values very close to the
set {−1,1}. This suggests replacing ψ by a field taking values only in the set {−1,1},
that is, by a binary-valued Markov random field ω. By definition, the distribution for
ω is given in terms of that for ψ by P(ω)= ∫

Ψ
P (ω|ψ)P (ψ). Binarization means

that P(ω|ψ) = δ(ω, sgn(ψ)). In the saddle point approximation, the energy U of
the binarized field is given by U(ω)=E(ψω), where ψω = arg minψ : sgnψ=ω E(ψ).
Computing ψω is a difficult task in itself. A crude but practically effective approxi-
mation gives rise to the energy [1]:

U(ω)= Db

2

∑

i,j : i∼j
(ωi −ωj )

2 + αb
∑

i

ωi + βb

2

∑

i,j

ωiFijωj , (13.10)

where αb = 2α
3 , βb = β , Db = D

4 , and F is related to ∂2G. Gibbs sampling from this
distribution, with appropriate temperature and parameter ranges (again derived from
stability analyses performed in the contour representation) shows convergence to gas
of near-circles or network regions. These then fluctuate, but remain stable, under
further sampling. As with the other two representations, the probability distribution
can have local maxima at these shape families. Thus, the same nontrivial shape
information can be encoded as nonlocal interactions in a network of binary nodes.
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13.4.3 Nonlocality via Local Interactions

Nonlocal interactions have so far been introduced explicitly. However, explicit non-
locality may not be plausible in some contexts, for example the biological, so it is
important to note that nonlocality can arise from purely local energies. We introduce
a vector field v :R2→R

2, and define a joint distribution with Gibbs energy

Ê(φ, v)=E0(φ)+ a〈v|∂φ〉 + 1

2
〈v|F |v〉, (13.11)

where 〈|〉 is the L2 inner product on D ; F is a positive operator; and a ∈R. Notice
that v couples to the gradient of φ, that is, to the boundary. At the same time v is
spatially correlated (e.g., smoothed) by the interaction represented by F . It therefore
induces an interaction between points on the boundary. To find this interaction, we
marginalize over v. The resulting Gibbs energy is

Ẽ(φ)=E0(φ)− 1

2
β〈∂φ|F−1|∂φ〉, (13.12)

where β = a2. This has the same form as the nonlocal phase field energy E defined
in Eqs. (13.7), (13.8), and (13.9). A similar procedure works for the binary MRF
model. Thus rather than encoding shape information via nonlocal interactions, it
can instead be encoded by allowing the network to have several ‘layers’.

13.5 Discussion

Thus, we reach the end of the story. Shape information can be encoded via non-
local interactions in a network of binary- or real-valued nodes. In turn, these non-
local interactions can be re-encoded as local interactions in a network with multi-
ple ‘layers’. Control of these interactions then allows different shape families to be
modeled. Shape, therefore, does not have to be described by exogenous templates,
or constructed from arbitrary building blocks. Instead, it can arise naturally, as an
emergent property of the connections in a network of simple nodes.

The fact that shape information is encoded as interactions in a network means
that shape processing can be inherently parallel. The domain D can be separated
into subdomains that can be processed simultaneously, with some communication
overheads. Note that to search for a shape in multiple subdomains using a template
would be equivalent to searching for multiple instances, requiring separate pose
estimations for each subdomain.

For image processing applications, the nodes are usually generated by spatial
discretization onto a square lattice, but any discretization is possible, for example,
using a hexagonal lattice. The nodes need not even correspond to spatial elements:
one of the strengths of the phase field representation is that it can be written in any
basis, and so a discretization could be generated by imposing a frequency cut-off
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Fig. 13.7 A Fourier
component, quadratically
unstable at zero but stabilized
at a finite value by quartic
behavior, added to an
otherwise stable circle

in Fourier space, or a scale cut-off in wavelet space. The local and non-local terms
(but not the potential) are diagonal in the Fourier basis, while the potential term is
diagonal in the spatial point basis. This suggests that a wavelet basis, which is inter-
mediate between these two extremes, might simplify the interactions in the model.
This would also have the advantage of providing a naturally multiscale representa-
tion of shape.

Despite all its promising aspects, however, the framework cannot yet be called a
complete shape modelling method. Only simple shapes have been modeled so far,
and the natural question is whether one can model more complex shapes.

One possible direction is suggested by observations in numerical experiments.
Shapes have been seen that were neither circles nor bars, but instead were star-
shaped: circles plus a sinusoidal perturbation of their radius. These appeared to be
stable. While it is possible that this was an artefact of the numerical method, it is also
possible that the chosen parameter values produced a new type of local minimum.
A simple explanation is as follows. To second order in a small perturbation of a cir-
cle, only two behaviors are possible for each Fourier component of the perturbation:
stable or unstable, corresponding to positive or negative second-order coefficient
in the expansion. To fourth order, however, more complex behaviors can occur. In
particular, if the second-order coefficient is negative but the fourth-order coefficient
is positive, then although the zero amplitude state is unstable, there will be some
finite amplitude that is stable. Now imagine that all Fourier components are sta-
ble quadratically except for one, which is unstable quadratically but stabilized by a
fourth-order term. The circle itself is now a saddle-point of the energy, while a circle
perturbed by a sinusoid of the correct frequency and amplitude is a local minimum.
This is illustrated in Fig. 13.7.

This picture suggests that by adjusting the interaction function of the model, one
might be able to assign different stable amplitudes to each Fourier component. Were
this possible, it would be mean that any star domain could be modeled.

An alternative approach to the modelling of more complex shapes involves the
introduction of higher-order interactions. There are two issues with such interac-
tions. The first is learning the interactions necessary to model a given family of
shapes. In order for an energy to model such a family, it should have local minima
at the appropriate points in R, and this involves difficult analysis. It could perhaps
be achieved using standard statistical estimation techniques verified a posteriori for
local minimality, or by placing constraints on the parameters during estimation. The
first seems wasteful, while the second is complex, and its theoretical basis is not



198 I.H. Jermyn

clear. The second issue is algorithmic complexity. Simply evaluating higher-order
terms is expensive, and although there are algorithms available for certain types of
higher-order term in the binary MRF case, it is not likely that they would apply to
the types of term needed. Nevertheless, some promising progress is being made in
these areas, and there is good reason to hope that the picture of shape as an emergent
property of interactions between network nodes can be fully realized.
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Chapter 14
Representing 3D Shape and Location

Andrew Glennerster

14.1 A Primal Sketch That Survives Eye Rotation

Many of the chapters in this book are concerned with 2D shape whereas this chapter
discusses the representation of 3D shape. However, I will argue that there is a strong
link between these. 3D shape may be better understood in terms of the 2D image
changes that occur when an observer moves than 3D ego-centered or world-centered
coordinates frames. The same applies to representations of 3D location. 3D shape
and 3D location are properties that remain the same as an observer moves through a
static world, despite rapidly changing images. Two different conceptions for visual
stability emerge. One relies on generating a representation that is like the world and
is stable in the face of observer movements. The other relies only on an ability to
predict the sensory consequences of a movement. The implications for representa-
tion of 3D shape (and location) are quite different under these two frameworks.

Most of the literature on visual stability focuses on a situation that is relatively
straightforward from a computational perspective, namely that of a camera (or the
eye) rotating around its optic center [3–7]. In this case, all the light rays we wish
to consider arrive at a single optic center from all possible directions (a panoramic
view, what Gibson called the ‘optic array’ at a single point). In computer vision, the
process of ‘mosaicing’ a set of such images is now standard [8, 9]. In principle, it
requires only that the rays corresponding to each pixel in each image to be registered
in a common 2D coordinate frame, or sphere, of visual directions from the optic
center. Nevertheless, this is a sensible starting point for considering visual stability
in general. If points in the scene are all very distant (take, as an extreme example,
the stars at night), the optic array remains unchanged wherever you move. If these
points are stable in the representation, we have a sound foundation for explaining
visual stability in general.

A. Glennerster (B)
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Fig. 14.1 Hierarchical encoding of position. An image (top left) is bandpass-filtered to show re-
gions that are darker than the local mean luminance, including finer scale features in one part of
the image, such as the fovea (top right image) or across the whole scene, e.g., after many saccades
(bottom left). Because the combination of filter outputs follows the MIRAGE algorithm [1], there
is a natural hierarchical encoding of position as shown schematically in the bottom right image
(see also Fig. 14.3)

We are now in a position to consider translation of the optic center, either for
a moving observer or the case of binocular vision. Translation of the optic center
causes a change in the optic array. Two aspects of this change can be examined
separately: first, the image change generated by a small patch in the scene and,
second, the changes in the relative visual direction of objects that are separated by
wide visual angles. The first is relevant for the representation of 3D surface shape;
the second is relevant for encoding object location.

14.2 Translation of the Optic Center

14.2.1 Representing Surface Slant and Depth Relief

When viewing a small surface patch, the rays reaching the eye can be considered
to be parallel (orthographic projection). This means that the ways the image of the
surface deforms when the optic center translates are relatively simple. For example,
the component of eye translation along the line of sight causes expansion (or con-
traction) while the orthogonal component causes 1D shear or stretch. The axis of
the shear/stretch depends on the tilt of the surface, corresponding to the intersection
of the plane perpendicular to the line of sight with the plane of the surface. The di-
rection of the shear/stretch depends on the direction of the observer translation. The
magnitude of the shear/stretch is influenced by the slant of the surface away from
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Fig. 14.2 A representation of
visual direction. (a) An eye
that rotates about its optic
center (which is an
approximation to the truth in
most cases) provides
information about the relative
visual direction of objects.
Fixating different objects
provides different sets of
relative visual directions (e.g.,
blue and red arcs) which can
be combined across the entire
sphere to provide a single,
stable representation of
relative visual directions.
(b) An illustration of forming
this type of representation
from images taken using a
camera that rotates about its
optic center, including the
same image and primitives as
used in Fig. 14.1. Features J
and n appear in two of the
images allowing them to be
registered with the correct
orientation (adapted, with
permission, from Glennerster
et al. [2])

fronto-parallel. Figure 14.3 shows one ‘patch’ or blob that has been stretched as a
result of observer translation. It also shows how a hierarchical encoding of spatial
location could help to implement a method of recording image changes. Koenderink
and van Doorn [10] have proposed that surface structure could be represented us-
ing an image-based coordinate frame that would not require the generation of a 3D
object-based representation. Because the three basis vectors of the frame are image
based, the coordinates of all points on a rigid object remain unaffected by changes in
viewpoint, rather like the coordinates of points on a deformable rubber sheet. A sim-
ilar approach can be applied to the deformation of the blob shown in Fig. 14.3. The
centroids of the blobs at each scale are recorded in relation to the centroid of the
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Fig. 14.3 Consequences of translating the optic center. The ‘blobs’ shown in Fig. 14.1 are repeated
here with, in grey, the changes that would be caused by a movement of the observer or a change
from the left to right eye’s view. The lower blob has shifted to the left without any change in width,
size or the configuration of the finer scale blobs within it. This is compatible with the surface being
fronto-parallel and at a different depth from the other blobs. The centroid location of the top left
blob has not changed so it is at the same depth as the top right blob. However, the width of the
blob has changed, compatible with these features being on a slanted surface. The inset shows that
in this case all the relative visual directions of the features (yellow and white lines) have changed
together, as if drawn on a rubber sheet. These features all lie in the same slanted plane

blob at a larger scale. If the coordinate frame for measuring these relative positions
is inherited from the scale above, that is, the distance metric is not measured in min-
utes of arc at the eye but relative to the width and height of the blob at the next
coarsest scale, this would lead to a representation of location with similar properties
to those advocated by Koenderink and van Doorn [10]. Shear, stretch or expansion
of an image region caused by moving laterally or closer to a planar surface patch
(as shown in Fig. 14.3) would yield no change in the relative position of the finer
scale features if positions are measured in this locally-defined, hierarchical coordi-
nate frame. Similarly, any depth relief of points relative to the surface plane would
give rise to a change in hierarchical position when the viewpoint changes but this
would be independent of the slant of the surface and signal only the relief relative
to the surface [11, 12].

One difference between this hierarchical scale-based scheme and that of Koen-
derink and van Doorn [10] concerns the basis vectors used. In Koenderink and van
Doorn’s scheme, provided that the points defining the three basis vectors are not
co-planar, the coordinate of every point on a rigid object is recorded using the same
basis vectors. But in the hierarchical system illustrated in Fig. 14.3, the coordinate
frame is local and scale-based. This means that the representation amounts to some-
thing like a set of planar patches at each scale, each patch having a location, depth,
tilt and slant defined relative to the ‘parent’ patch at the scale above. With this pro-
viso, the scale-based hierarchy is very similar to the object-based representation
Koenderink and van Doorn proposed and has the advantage of avoiding an explicit
3D coordinate frame.
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A series of psychophysical studies support the hypothesis that the visual sys-
tem may use a surface-based coding system of this sort. Mainly, these studies have
investigated the processing of binocular disparity but there is also some evidence
from structure from motion experiments [13]. Mitchison and McKee [14] showed
that binocular correspondences in an ambiguous stereogram were determined not
by a nearest-neighbor rule using retinal coordinates to define proximity, as had al-
ways been supposed, but by proximity to an invisible ‘interpolation’ surface drawn
between the edges of the patch. This is equivalent to the prediction of the hierarchi-
cal ‘rubber sheet’ representation outlined above, in which the metric for measuring
the location of dots in the left and right eyes is determined by the shear/stretch
of the patch in that eye. Like correspondence, perceived depth relief is also deter-
mined by the disparity of a point relative to a local surface even when observers
are remarkably insensitive to the slant of the surface [15–17]. Finally, sensitivity to
depth perturbations are determined not by the disparity of a point relative to neigh-
boring points but instead by its disparity relative to an invisible interpolation plane
[12, 18, 19], as a ‘rubber sheet’ model would predict.

As an aside, it is worth noting that the hierarchical encoding of blob location
proposed here (following Watt and Morgan [1, 20]) brings some theoretical disad-
vantages but there is experimental evidence to suggest that the visual system may
be prepared to pay this cost. In the coarse-to-fine stereo correspondence algorithm
proposed by Marr and Poggio [21], the ‘coarse scale’ version of an image is al-
ways sparse, with large spacing between features (in their case, ‘zero-crossings’).
This means that there will always be relatively wide gaps between true and false
matches along any given epipolar line and hence a nearest-neighbor rule will yield
correct correspondences over a wide range of disparities. In Watt and Morgan’s
MIRAGE scheme, however, the ‘coarse scale’ representation is generated by sum-
ming the ‘on’ responses of filters at all spatial scales and, separately, the ‘off’-
responses. While this has the merit that the fine scale features always lie within
the boundary of coarse-scale blobs, the disadvantage is that in certain situations the
‘coarse scale’ representation can be much more densely packed with features than
the pure low frequency channel output envisaged by Marr and Poggio. Figure 14.4
shows such a situation: a dense random dot pattern with, on the right, a MIRAGE
‘coarse scale’ output and a schematic version to illustrate how the ‘sea’ between the
low frequency blobs have been ‘filled in’. A random dot pattern has much greater
power at high frequencies than natural images and perceptually it appears far more
crowded than most images. Glennerster [22] measured the ability of the visual sys-
tem to find matches when random dot patterns were shifted (either in motion or by
adding disparity) and showed that MIRAGE primitives predicted well the magni-
tude of shift that the visual system could tolerate before the perception of motion
or stereo depth broke down. This price (a small Dmax for high density patterns)
appears to be an acceptable sacrifice for the visual system. The positive benefit is
that fine scale features always have a simple, hierarchical ‘address’ to define their
location.
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Fig. 14.4 A penalty for hierarchical encoding. If fine scale features are always to lie within the
boundaries of coarse scale features, as they do in the MIRAGE algorithm [1] and illustrated in
Figs. 14.1 and 14.3, then the ‘coarse scale’ representation must inevitably be more crowded than
a low-pass version of the image. This is particularly evident in white noise images such as the
random dot pattern shown here. In a Dmax task (see text), observers behave as if their representation
of this type of image is quite crowded with features, as shown on the top right (reproduced, with
permission, from [22]). The white dots mark the centroids of each blob measured along horizontal
raster lines. The ‘coarse scale’ representation is crowded, as shown schematically in the bottom
right panel, because blobs originating from different low, medium and high spatial frequency filters
all contribute to the representation (see bottom left panel) and ‘fill in the sea’ between low spatial
frequency ‘islands’

14.2.2 Representing Location

Having considered the effect of observer translation on a small patch of the vi-
sual field, we now turn to the consequences for widely separated features. There
are strong similarities between these two scales but also important differences. In
particular, disparity and motion of a small patch provide useful information about
surface shape while changes in relative position of widely separated features, such
those shown in Fig. 14.2a, provide information about object location.

Unlike the image changes in a small region of the visual field, the changes in
relative visual direction of widely separated features do not suffer from the ‘bas
relief ambiguity’. This refers to the fact that a small disparity or motion can be due
either to the depth relief being small or to the patch being far away. By contrast, for
two widely separated features, if the angle separating them does not change when
the observer moves (or there is no change between the left and right eye’s view) then,
in general, the points are distant: the bas relief ambiguity has disappeared (discussed
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in detail by Glennerster et al. [2]). The tendency for the relative visual direction of
two features to change as the observer moves gives useful information about whether
those features belong to near or distant objects. The most distant points in a scene
form a set whose relative visual directions (the angles separating each pair and triple
of points) are the most stable when the observer translates. Against the background
of these distant objects, nearer objects ‘slide around’ as the observer moves [8]. One
could turn this around and propose, in Gibsonian fashion, that an observer moves
themselves from one place to another by ‘grabbing’ an object (visually, by fixating
it) and ‘pushing it’ one way or another against the background (by walking, say)
until it is in the desired place relative to the background.

The advantage of this representation is that the 3D origin of the coordinate frame
is never defined. This makes sense. If you are star-gazing and see only stars, their
relative visual directions do not change as you move and hence they provide no
information about where you are on earth. The location of the 3D origin is impos-
sible to define. Distant mountains allow your location to be defined more precisely,
nearby trees even more so. The closer the objects in view, the more it becomes pos-
sible to pinpoint the location of the origin. Only with near objects in view would it
make sense to distinguish between the origin of a coordinate system being at the eye,
head, body or hand. If, however, the goal is not to build a 3D coordinate frame at
all but instead to build an image-based representation, then the stars, the mountains,
trees and very near objects provide a hierarchical method of locating the current
image in that representation. These ideas are discussed in detail by Glennerster,
Hansard and Fitzgibbon [2, 23].

In summary, both 3D shape and 3D location can be considered as properties de-
rived from the changes in relative visual direction of features produced by observer
translation. The way that each of these are encoded in the visual system should leave
traces when we test psychophysical performance, as we have discussed. Two further
examples are described in the final section (Sect. 14.4).

14.3 Implementation of a Universal Primal Sketch

There is no pretence that the suggestions raised in this chapter are anything like
a recipe for implementation, but they do provide some useful pointers. The case
of a camera rotating around its center is an exception. In that case, a solution was
described by Watt 25 years ago [1, 24], with the location (visual direction) of fea-
tures defined hierarchically across scale space for the entire optic array. But once
the optic center of the camera or observer translates, practical issues emerge that are
considerably more tricky.

One example is the matching process that must link data structures describing the
same surface seen from different view points. For example, if a surface is viewed
from two distances, the spatial frequency of the filters responding to features on the
surface will be higher for the farther viewing distance but if scales, like positions,
are defined relative to one another, then the data structure recording fine scale fea-
tures and a coarse scale outline of the object might be relatively unchanged by this
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alteration in viewing distance. Relative measures are likely to be a prominent aspect
of the primal sketch. Of course, in the real world, with real images, complex changes
occur with changes in viewpoint due to cast shadows, occlusions and specularities.
The suggestions made in this chapter provide no quick fix for these problems.

It is also worth questioning the extent to which a view-based representation could
underlie all visual tasks, not just the ones described here. One particularly problem-
atic class of tasks involves imagining you are at a different location and making
responses as if you were there. In a familiar environment, the observer may have
visited that location in the past, in which case it is possible that an observer could
‘run the tape’ instead of actually walking to the new location and solve the task that
way. But people are able to imagine being on the other side of a room that they have
never seen before and to make judgements as if from that location. In our lab, we are
currently exploring ways to model behaviors of this type using view-based methods,
without relying on the assumption that the brain generates a Cartesian representa-
tion of the scene. In general, it is not yet clear what the limits will be to the set of
tasks that could be carried out using a primal sketch or view-based framework.

14.4 Apparent Paradoxes in the Representation of 3D Shape
and Location

The primal sketch outlined in this chapter is a source of ‘raw’ visual information that
could be used for many different tasks. We discuss here two experiments that show
how participants’ performance appears paradoxical if we assume the visual system
uses a 3D representation but both experiments are readily explained if we suppose
that the visual system extracts ‘raw’ visual information once the task is defined [25].
In one case, the task is a judgement of object shape and in the other it is a judgement
of object location.

Figure 14.5 illustrates the shape task. We know that under rich-cue conditions,
people show good size constancy and good depth constancy when they compare the
size or depths of similar objects across different distances [26, 27] but exhibit large
biases when asked to make a judgement of the metric shape of a surface such as
comparing the depth to the half-height of a horizontal cylinder [27–29]. In the case
shown in Fig. 14.5, the visual system must apparently estimate four values, namely
the depths and half-heights of two semi-cylinders presented at two distances: d1, h1
and d2, h2. If these values were all available to the visual system, independent of the
task the participant was set, then it would not be possible for participants to judge
d1 ≈ d2, h1 ≈ h2 and yet, under the same viewing conditions, d1 > h1, d2 < h2 (i.e.
d1 judged as reliably larger than h1 but d2 judged to be reliably smaller that h2).
Yet, this is what observers see. If they built a single consistent representation of
the scene and accessed the values d1, h1, d2 and h2 from this representation for all
tasks, then the data would present a paradox. However, comparisons of height (h1
versus h2) can be done with other short-cuts, such as comparing the retinal size of
test objects to other objects in the scene and the same is true of the comparisons of
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Fig. 14.5 Paradoxical representations of shape. Observers are good at size constancy (h1 = h2)
and depth constancy (d1 = d2) but, under essentially identical viewing conditions, they make sys-
tematic errors when judging the shape of objects (d1 > h1 while at the same time d2 < h2). The
solution to the apparent paradox is to assume that in each case, once the task is defined, the visual
system acquires the relevant information and computes the solution. One task depends on an esti-
mate of viewing distance (e.g., D1) while the other requires only an estimate of the ratio of viewing
distances to the two objects (D1/D2) [27]

Fig. 14.6 Paradoxical representation of location. In virtual reality, observers judged the relative
depth of two squares presented in separate intervals. Sometimes the room expanded between inter-
vals (A to B and C to D), although the participants never noticed a change in room size [30]. On
the other trials, the room stayed still (small room: A to C or large room B to D). It is impossible
to determine a single location of D relative to A that is compatible with all the pairwise settings
observers make. However, similar to Fig. 14.5, there is no paradox if the visual system acquires
the relevant information for any given comparison once the task is defined

depths. By contrast, comparing d1 to h1 or d2 to h2 requires an estimate of absolute
(not relative) viewing distance which means that these estimates are open to a source
of bias that does not affect the other judgements [27]. The important point is that
these data provide compelling evidence that the visual system uses information in a
more ‘raw’ form than the metric values d1, h1, d2 and h2 when carrying out these
judgements of 3D shape.

For 3D location, a good example of an apparent paradox is the case illustrated in
Fig. 14.6 from Svarverud et al. [30]. Several experiments using immersive virtual
reality have shown that moving observers fail to see a room changing in size around
them, by as much as a factor of four in all directions, provided that looming cues
are eliminated [31–33]. This is compatible with earlier evidence on observers’ poor
sensitivity to change in disparity in the absence of looming cues [34] and raises
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interesting questions about the type of representation that observers must be building
of the scene. Svarverud et al. [30] measured subject’s biases when they judged the
relative depth of objects either with or without an expansion of the room between
the presentation of the two objects. Observers did not notice any difference between
these two types of trial. As Fig. 14.6 illustrates, although their perception of the
room was stable throughout, their pairwise depth matches cannot be explained by
a single, consistent 3D representation. There is, therefore, no one-to-one mapping
between a participant’s internal representation of the room and a single static 3D
room. It does not matter that the stimulus is an unusual one. The point is that the
observer’s perception is one of an ordinary, stable room so the conclusions we draw
from probing the representation underlying that perception should apply to other
ordinary, stable scenes.

These examples raise questions about what the minimum requirements are for a
useful representation of the scene. It is no use claiming, as Gibson often appeared
to [35], that an internal representation is unnecessary. More recent accounts em-
phasise the importance of information stored ‘out in the world’ rather than in the
head [25], but these still require a coherent set of rules that will allow the informa-
tion ‘out there’ to be accessed. The stored information must remain useful even if
the object or visual information is not within the current field of view. This chapter
outlines a possible primal sketch of blob location that is an example of a representa-
tion of ‘raw’ visual information. Something like this might, with further elaboration,
fulfil the criteria for a store that could be used to access information ‘out there’. Such
a representation must store sufficient information to allow the observer to turn their
gaze to any object they remember and, if necessary, walk in the right direction until
the object comes into view. It must also contain information about the slant of sur-
faces and the depth relief of points compared to local surfaces. These requirements
fall short of the attributes of a full 3D reconstruction, but psychophysical evidence
suggests the same is true of human vision.
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Chapter 15
Joint Registration and Shape Analysis of Curves
and Surfaces

Jingyong Su, Sebastian Kurtek, and Anuj Srivastava

15.1 Introduction

There are several meanings of the word shape. Although the use of words shape or
shape analysis is very common in computer vision, its definition is seldom made
precise in a mathematical sense. According to the Oxford English Dictionary, it
means “the external form or appearance of someone or something as produced by
their outline”. Kendall [8] described shape as a mathematical property that remains
unchanged under certain transformations such as rotation, translation, and global
scaling. Shape analysis seeks to represent shapes as mathematical quantities, such
as vectors or functions, that can be manipulated using appropriate rules and metrics.
Statistical shape analysis is concerned with quantifying shape as a random quan-
tity and developing tools for generating shape registrations, comparisons, averages,
probability models, hypothesis tests, Bayesian estimates, and other statistical pro-
cedures on shape spaces.

Shape is an important physical property of objects that characterizes their appear-
ances, and can play an important role in their detection, tracking, and recognition
in images and videos. A significant part has been restricted to “landmark-based”
analysis, where shapes are represented by a coarse, discrete sampling of the object
contours [1, 16]. This approach is limited in that automatic detection of landmarks is
not straightforward, and the ensuing shape analysis depends heavily on the choice of
landmarks. One usually restricts to the boundaries of objects, rather than the whole
objects, for shape analysis and that leads to a shape analysis of curves (for 2D im-
ages) and surfaces (for 3D images). Figure 15.1 suggests that shapes of boundaries
can help characterize objects present in images.

To understand the issues and challenges in shape analysis, one has to look at the
imaging process since that is a major source of shape data. A picture can be taken
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Fig. 15.1 Shapes of boundary curves are useful in object characterizations

Fig. 15.2 Re-parameterized curve has different coordinate functions but same shape as the original
curve. (a) curves (t, βx(t), βy(t)) and (t, β̃x(t), β̃y (t)); (b) βx(t) and β̃x(t); (c): βy(t) and β̃y (t);
(d): curves (βx(t), βy(t)) and (β̃x(t), β̃y(t)); (e): γ (t)

from an arbitrary pose (arbitrary distance and orientation of the camera relative to
the imaged object), and this introduces a random rotation, translation, and scaling
of boundaries in the image plane. Therefore, any proper metric for shape analysis
should be independent of the pose and scale of the boundaries. A visual inspection
also confirms that any rotation, translation, or scaling of a boundary, while changing
its coordinates, does not change its shape.

In case of parameterized curves and surfaces, an additional challenge arises when
it comes to invariance. Let β : [0,1] → R

2 represent a parameterized curve and let
γ : [0,1]→ [0,1] be a smooth, invertible function such that γ (0)= 0 and γ (1)= 1.
Then, the composition β̃(t) ≡ (β ◦ γ )(t) represents a curve with coordinate func-
tions that are different from those of β(t) but have the same shape. β̃ is called
a re-parameterization of β . Figure 15.2 illustrates this issue with a simple exam-
ple. It shows that the coordinate functions of the re-parameterized curve, β̃x(t) and
β̃y(t), as functions of t , are different from the original coordinate functions βx(t)

and βy(t). But when β̃x(t) is plotted versus β̃y(t), it traces out the same sequence
of points, that is, the same shape, as that traced by βx(t) versus βy(t). This results
in an additional invariance requirement in shape analysis of parameterized curves
(and similarly for surfaces). That is, the shape metrics should be invariant to how
the curves are parameterized. Similarly, for parameterized surfaces, a change of pa-
rameterization does not change the shape of the object. Figure 15.3 shows three
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Fig. 15.3 The same surface
with different
parameterizations

different parameterizations of a surface but the overall shape of the objects remains
the same. We will treat a closed surface as an embedding of unit sphere in R

3, that
is, f : S2→ R

3. If γ is an arbitrary diffeomorphism of S2, then f ◦ γ is nothing
but a re-parameterization of the surface. We seek shape metrics and techniques for
analysis which will be invariant to the introduction of arbitrary γ in shape represen-
tations. For example, a parameterization-invariant metric between the three surfaces
shown in Fig. 15.3 should be zero.

Another important issue in comparing shapes is registration, that is, matching of
points across objects. Any shape metric requires a registration component to help
decide which point on one shape is compared to which point on the other. A reg-
istration is good when it matches points across shapes that have similar geometric
features. A majority of current techniques in shape analysis need registration as an
input or they perform registration-shape analysis in a sequential fashion. These two
steps are often performed under two different criteria. Even if one can achieve opti-
mal solutions under the individual steps, the overall system will be suboptimal due
to these differing criteria. A better strategy is to solve the two problems simulta-
neously under the same objective function. This is accomplished in a Riemannian
framework by forming quotient spaces under the re-parameterization group. To un-
derstand this important idea, let us take two curves β1, β2 : [0,1]→R

n. By default,
the point β1(t) is matched with the point β2(t), for any t ∈ [0,1]. However, if we
re-parameterize one of the curves, say β2 using β2 ◦γ , then the registration of points
depends on γ . Thus, optimal registrations between curves and surfaces can be con-
trolled using re-parameterizations. The key point is to find metrics that serve two
purposes: (1) form an objective function for finding optimal re-parameterizations
and (2) lead to proper parameterization-invariant metrics for comparing shapes.

There are several papers in the literature that consider the problem of register-
ing curves [2–4, 15]. While this literature represented a major progress in that the
authors recognized the importance of curve registration, the proposed criteria for
registration had certain major limitations. We elaborate the main limitation next.
Once again consider any two curves β1 and β2. It is easy to show that an iden-
tical re-parameterization of β1 and β2 (β1 ◦ γ,β2 ◦ γ ) does not change the cor-
respondence. Thus, any criterion (a cost function or a metric) used for determin-
ing optimal correspondences between curves should satisfy the isometry property:
d(β1, β2) = d(β1 ◦ γ,β2 ◦ γ ). Note that under the standard L

2 metric, we have
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‖β1−β2‖ �= ‖β1 ◦γ −β2 ◦γ ‖, in general. Most criteria used in the current literature
(including [2–4, 15]) do not satisfy this fundamental property. In other words, the
quantity for registration of curves is not invariant to the re-parameterization action.
Many criteria, such as minimum description length, mutual information, relative en-
tropy, etc, are not even proper metrics on representation spaces. One exception is the
framework used in [19], but it only applies to curves in R

2. In addition, isometry is
needed for subsequent statistical analysis of shapes such as defining geodesic paths,
distances, and summary statistics such as means and covariances.

In this paper, we summarize recent progress in using Riemannian methods for
shape analysis of curves and surfaces. The advantages of these methods are as fol-
lows: (1) they allow for a joint solution to the problem of shape registration and
analysis, (2) the criterion used for registration and analysis is based on an elastic
Riemannian metric, (3) the analysis is fully invariant to translation, scale, rotation
and re-parameterization, and (4) they allow one to define geodesic paths between
shapes, sample means and covariances and other statistics on manifolds contain-
ing curves and surfaces. (These sample statistics can be further used for deriving
probability models.) Furthermore, because of these desirable properties, the use of
these methods in pattern recognition tasks such as shape classification and tracking
significantly improves performance over existing methods. We will consider shape
analysis of curves and surfaces separately in the next two sections.

15.2 Shape Analysis of Curves

Although the framework described here is valid for curves in any Euclidean space
R
n, we will focus primarily on planar closed curves. These curves originate as

boundaries of imaged objects in 2D images and their shapes form an important fea-
ture in object classification and recognition. While many current techniques, such as
the active shape model and Kendall’s shape analysis (KSA) [1, 8] use discrete points
(or landmarks) sampled from the curves for analyzing their shapes, we will work
with full parameterized curves. As mentioned earlier, an important aspect of this
framework is that shape distances, geodesics, and statistics should be invariant to
how the curves are parameterized. For details, please refer to the papers [6, 17, 18].

Mathematical Representation We start by describing the mathematical frame-
work for the elastic shape analysis of curves. Let a parameterized closed curve be
denoted as β : S1→ R

2. (The domain of parameterization for closed curves is nat-
urally chosen to be S

1 rather than an interval.) In order to analyze its shape, β is

represented by its square-root velocity function (SRVF): q(t)= β̇(t)√
‖β̇(t)‖ ∈ R

2. The

SRVF q includes both the instantaneous speed and the direction of the curve β at
time t . The use of the time derivative makes the SRVF invariant to any translation of
curve β . In order for the shape analysis to be invariant to scale, one can rescale each
curve to be unit length. The set of all unit length, closed curves in R

2, represented by
their SRVFs, is called the preshape space C. If q is the SRVF of a curve β , then the
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SRVF of β ◦ γ is (q, γ )= (q ◦ γ )√γ̇ . An important property of SRVFs is that for
any two curves, the corresponding SRVFs satisfy ‖q1 − q2‖ = ‖(q1, γ )− (q2, γ )‖
for any re-parameterization function γ .

There are four shape-preserving transformations for curves: translation, scale,
rotation, and re-parameterization. Of these, the first two have already been elimi-
nated from the representations, but the other two remain. Curves that are within a
rotation and/or a re-parameterization of each other result in different elements of
C despite having the same shape. Let SO(2) be the group of 2× 2 rotation matri-
ces and Γ be the group of all re-parameterizations (they are actually orientation-
preserving diffeomorphisms of the unit circle S

1). In order to unify all elements
in C that denote the same shape, one can define equivalence classes of the type:
[q] = {O(q ◦ γ )√γ̇ |O ∈ SO(2), γ ∈ Γ }. Each such equivalence class [q] is associ-
ated with a shape uniquely and vice versa. The set of all these equivalence classes
is called the shape space S ; mathematically, it is a quotient space of the preshape
space: S = C/(SO(2)× Γ ).

An important advantage of the SRVF representation is that the elastic Rieman-
nian metric defined by Mio et al. [14], turns into the standard L

2 metric, as shown by
Joshi et al. [6], Srivastava et al. [18]. That is, one can alternatively compute the path
lengths, or the sizes of deformations between curves, using the cumulative norms of
the differences between successive curves along the paths in the SRVF space. This
turns out to be much simpler and a very effective strategy for comparing shapes
of curves, by finding the paths with least amounts of deformations between them,
where the amount of deformation is measured by an elastic metric. This gives a
proper distance dc for comparing elements of C. Another distinct advantage of using
SRVFs is that the distance between any two curves remains same if they are rotated
and re-parameterized in the same way, that is, dc(q1, q2)= dc((q1, γ ), (q2, γ )) and
dc(q1, q2) = dc(Oq1,Oq2) for all O ∈ SO(2) and γ ∈ Γ . Consequently, a shape
distance between any two curves is given by:

ds
([q1], [q2]

)= inf
γ∈Γ,O∈SO(2)

dc
(
q1,O(q2 ◦ γ )

√
γ̇
)
. (15.1)

Shape Matching and Geodesics According to Eq. (15.1), the distance between
any two shapes is given by the length of the shortest path, called a geodesic, con-
necting them in that manifold. An interesting feature of this framework is that it
not only provides a distance between shapes of two curves, but also a geodesic path
between them in S . The geodesics are actually computed using the differential ge-
ometry of the underlying space S . One technique for finding geodesics is called
path straightening [9]. It is an iterative technique that initializes an arbitrary path
and then iteratively “straightens” it by updating it along the negative gradient of
the cost function. This gives a geodesic and a geodesic distance between SRVFs in
C but the goal is to compute geodesic paths in S . In other words, geodesic paths
between the equivalence classes [q1] and [q2] are needed, not just between q1 and
q2. This desired geodesic is obtained by finding the shortest geodesic amongst all
pairs (q̃1, q̃2) ∈ ([q1] × [q2]). This search is further simplified by fixing an arbitrary
element of [q1], say q1, and searching over all rotations and re-parameterizations of
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Fig. 15.4 Comparison of initial matching and matching after optimization over Γ

Fig. 15.5 Examples of geodesic paths between shapes using KSA and ESA

q2 to minimize the geodesic length, as stated in Eq. (15.1). The minimization over
SO(2) is in conventional way and the optimization over Γ is accomplished using
the dynamic programming algorithm or a gradient-type approach [18].

We present two examples of optimization over Γ in Fig. 15.4. The parametriza-
tion of a curve is displayed using colors, that is, same color implies the same value of
t . It can be seen that the matching after the optimization over Γ is better in matching
similar geometric features. Several examples of geodesic paths in the shape space S
are shown in Fig. 15.5; these geodesics are compared with the geodesics obtained
by KSA, for the same shapes. KSA is a method that only considers rigid transfor-
mation and scaling. It is easy to see that the geodesics resulting from our elastic
shape analysis (ESA) appear to have more natural deformations as they are better in
matching features across shapes.

Shape Statistics of Curves The richness of this framework comes from its abil-
ity to provide shape statistics, such as sample mean or sample PCA, under proper
shape metrics. The notion of a mean on a nonlinear manifold is typically estab-
lished using the Karcher mean [7]. For a given set of curves β1, β2, . . . , βn, repre-
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Fig. 15.6 Examples of mean shapes under two different methods

sented by their SRVFs q1, q2, . . . , qn, their Karcher mean is defined as the quantity
that satisfies: [μ] = arg min[q]∈S

∑n
i=1 ds([q], [qi])2. There is a gradient-based iter-

ative algorithm for finding the minimizer of this cost function that can be found in
[7, 13, 17]. Shown in Fig. 15.6 are some examples of mean shapes. The top three
rows show a set of given curves and bottom rows display their means computed
using the two methods discussed here: KSA and ESA.

For computing and analyzing the second and higher moments of a shape sample,
the tangent space to the shape manifold S at the point μ is used. This space, de-
noted by Tμ(S), is convenient because it is a vector space and one can apply more
traditional methods here. The details are omitted for brevity. Figure 15.7 shows the
principal geodesic paths along two different dominant directions, respectively. The
middle points in each row are the mean shapes.

One important use of means and covariances of shape families is in devising
“Gaussian”-type probability densities on the shape space S . In order to tackle the
nonlinearity of the shape space, a common approach is to impose a Gaussian dis-
tribution on the tangent space Tμ(S) since that is a vector space. In case of ESA
this space is infinite-dimensional, so the Gaussian model is actually imposed on a
finite-dimensional subspace, for example, a principal subspace, of Tμ(S). Shown in
Fig. 15.8 are examples of random samples from S using means and covariances esti-
mated from data shown in Fig. 15.6. For comparison, this figure also shows random
samples from similar Gaussian models but using KSA.

It is easy to observe the superiority of the results obtained using ESA. Consider
the example of hand, the mean using ESA is much more representative. In the prin-
ciple geodesic paths, using ESA, the last finger shrinks and the fourth one grows
in the first principle direction and both fingers shrink in the second principle direc-
tion. The shapes obtained by KSA are distorted, including the mean, the principle
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Fig. 15.7 Two principal directions of variability in shapes shown in Fig. 15.6

Fig. 15.8 Random samples from “Gaussian”-type distributions under the two methods: KSA, and
ESA, for parameters estimated from the given shapes shown in Fig. 15.6

geodesic paths and random samples. The same distortion can be observed in another
two cases using KSA.

15.3 Shape Analysis of Parameterized Surfaces

In this section, we describe a similar framework for studying shapes of parame-
terized surfaces using novel mathematical representations. For details of this ap-
proach, please refer to the papers by Kurtek et al. [10–12]. We assume that the
surfaces are closed and have genus zero, so they can be represented as embeddings
of S2 in R

3, that is, f : S2→ R
3. The function f also denotes a parameterization

of S2. Let the set of parameterized surfaces be F = {f : S2 �→R
3| ∫

S2 ‖f (s)‖2 ds <

∞ and f is smooth}, where ds is the standard Lebesgue measure on S
2. A re-

parameterization γ of a surface is given by a diffeomorphism of S
2 to itself; let

Γ be the set of all re-parameterizations. The re-parameterization of a surface f is
then given by the composition f ◦ γ .
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Mathematical Representation To endow F with a Riemannian metric, we be-
gin by defining a new representation of surfaces, called q-maps, defined as q(s)=√
κ(s)f (s), where κ(s) is the area-multiplication factor at the point s ∈ S2. (An al-

ternative mathematical representation using the normal vector field on a surface is
described in a recent paper [5].) If a surface f is re-parameterized as f ◦ γ , then its
q-map is given by (q, γ )≡ (q ◦ γ )√Jγ , where Jγ is the determinant of Jacobian of
γ . For comparing shapes, we choose the natural L2 metric on the space of q-maps.
Similar to SRVFs for curves, an important advantage of using these q-maps is that a
simultaneous re-parameterization of any two surfaces does not change the distance
between them. That is, for any two surfaces f1 and f2, represented by their q-maps,
q1 and q2 respectively, we have that ‖q1 − q2‖ = ‖(q1, γ )− (q2, γ )‖. Actually, the
Riemannian metric that we will use on F is the pullback of the L

2 metric from the
space of q-maps. With this induced metric, F becomes a Riemannian manifold.

Shape analysis of surfaces can be made invariant to translation and scaling by
normalizing. With a slight abuse of notation, we define the space of normalized sur-
faces as F . F forms the pre-shape space in our analysis. The remaining groups—
rotation and re-parameterization—are dealt with differently, by removing them al-
gebraically from the representation space. The equivalence class of a surface f is
given by [f ] = {O(f ◦ γ )|O ∈ SO(3), γ ∈ Γ } and the set of all such equivalence
classes is defined to be S .

Shape Matching and Geodesics The next step is to define geodesic paths in S .
Similar to the curve case, a path-straightening approach is used to find geodesics
in F [12]. Once we have an algorithm for finding geodesics in F , we can obtain
geodesics and geodesic lengths in S by solving an additional minimization problem
over SO(3)× Γ . Let f1 and f2 denote two surfaces and let 〈〈·, ·〉〉 be the inherited
Riemannian metric on F . Then, the geodesic distance between shapes of f1 and f2
will be given by quantity of the following type:

min
γ,O

⎛

⎜
⎝ min

F : [0,1]→F
F(0)= f1,F (1)=O(f2 ◦ γ )

(∫ 1

0

〈〈
Ft(t),Ft (t)

〉〉(1/2)
dt

)
⎞

⎟
⎠ . (15.2)

Here F(t) is a path in F indexed by t , and the quantity
∫ 1

0 〈〈Ft(t),Ft (t)〉〉(1/2) dt de-
notes the length of F where Ft is used for dF

dt
. The minimization inside the brackets,

thus, denotes the problem of finding a geodesic path between the surfaces f1 and
O(f2 ◦ γ ), where O and γ stand for an arbitrary rotation and re-parameterization
of f2, respectively. The minimization outside the bracket seeks the optimal rotation
and re-parameterization of the second surface so as to best match it with the first
surface. In simple words, the outside optimization solves the registration or match-
ing problem while the inside optimization solves for both an optimal deformation
(geodesic, F ∗) and a formal distance (geodesic distance) between shapes.

We demonstrate these ideas using some examples in Fig. 15.9. These examples
also highlight improvements in registration of surfaces during the optimization over
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Fig. 15.9 Comparison of geodesics in F and S , and their geodesic distances

SO(3) × Γ , by comparing corresponding geodesic paths between the same pairs
of surfaces in F and S . In all of these experiments, we notice that the geodesic
distances in S are much smaller than the geodesic distances in F .

Shape Statistics of Surfaces Here we briefly present some examples for comput-
ing the Karcher mean for a set of surfaces using the method similar to planar closed
curves.

We present some examples of Karcher mean shapes using toy objects. For com-
parison, we also display f̃ = (1/n)

∑n
i=1 fi , that is, without any rotational or re-

parameterizational alignment. For each example we show the decrease in the gradi-
ent of the cost function during the computation of the Karcher mean. In the top part
of Fig. 15.10, we present means for ten unimodal surfaces with random peak place-
ments on a sphere. The f̃ surface has ten very small peaks at the locations of the
peaks in the sample. On the other hand, the mean in S has one peak, which is of the
same size as all of the peaks in the sample. In this simple example one can clearly see
the effect of feature preservation due to rotational and re-parameterizational align-
ment. In the bottom part of Fig. 15.10, we present mean shapes of nine surfaces with
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Fig. 15.10 Mean computation for a sample of surfaces with one peak (top) and dual peaks (bot-
tom). The figures compare mean computations in F and S

dual peaks. We note that the mean in F has one peak aligned (at the location of the
common peak in the sample) and one very wide and small peak, which could be
considered as a failure mode. The very wide peak happens due to averaging out of
features. The mean in S has two peaks due to a crisp alignment and thus is a much
better representative of the sample.

15.4 Conclusion

In this paper, we have described recent progress in using Riemannian methods in
shape analysis of curves and surfaces. An important attribute of this framework is
that it performs shape comparison and registration jointly under the same metric.
The choice of elastic metric and novel mathematical representations (SRVFs for
curves and q-maps for surfaces) enable us to use L

2 norms and standard optimiza-
tion tools. This framework provides geodesics—optimal deformations—between
shapes, and tools for computing statistical summaries of sets of shapes.
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Chapter 16
The Statistics of Shape, Reflectance, and
Lighting in Real-World Scenes

Richard F. Murray

16.1 Introduction

Visual perception is a statistical problem par excellence. If the goal of vision is
to give a reliable reconstruction of the scenes and objects in the external world
from 2D images on the retinas, then in one sense it is an impossible problem:
there is simply not enough information in retinal images alone to infer what
is being seen. Put differently, there are many combinations of lighting, surface
shapes, and surface colors that could have given rise to any particular 2D reti-
nal image. Accordingly, a visual system can only reconstruct a 3D scene if it
has criteria for choosing a particular 3D interpretation of a 2D retinal image out
of the wide range of interpretations that are physically consistent with the im-
age.

The generalized bas-relief (GBR) ambiguity illustrates this problem vividly [9].
Suppose we have a Lambertian object, with an arbitrary shape and an arbitrary sur-
face reflectance pattern, under arbitrary lighting. The GBR ambiguity shows that
we can drastically change the shape and reflectance pattern of the object, with-
out changing the retinal image that it generates. Specifically, we can compress and
shear the object along the viewer’s line of sight; then adjust the lighting so that the
positions of cast shadows on the object are unchanged; and finally adjust the sur-
face reflectance at each point on the object (now with a new surface normal and
new lighting conditions) so that it creates the same image luminance as before. The
GBR ambiguity shows constructively that images are not ambiguous just in special
cases, or to some small degree, but that they are consistently and deeply ambigu-
ous.
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Furthermore, the GBR ambiguity is a lower limit; images are much more am-
biguous than the GBR ambiguity alone suggests.1 The strategy of distorting the
shape of an object, and then adjusting lighting conditions and reflectance so that
the resulting image is unchanged, is obviously a very general one. We can make
many kinds of local, nonlinear deformations in an object’s shape, and compensate
for their effect on the image by adjusting lighting and reflectance accordingly. At
the extreme, we can relight and repaint practically any scene so that it generates the
same image as practically any other scene. Thus a visual system cannot simply live
with the ambiguity in 2D images. The ambiguity is too great, and without some way
of at least partly overcoming it, visual stimuli are all but useless.

The objects created by GBR and GBR-like transformations of real objects are,
in some sense, odd. A highly transformed object (e.g., greatly stretched or com-
pressed along the viewer’s line of sight) does not usually correspond to our percept
of what is shown in the image, and it surprises us that these distorted objects create
the same images as the more familiar, untransformed objects. But in what sense are
the transformed objects odd? The answer I will explore in this chapter is that there
are statistical regularities in the shapes, reflectance patterns, and lighting conditions
of real world scenes that allow observers to rule out implausible interpretations, and
thereby overcome image ambiguity. On this view, transformed scenes are odd be-
cause they have shapes, reflectance patterns, or lighting conditions that are unlikely
to occur in the real world.

This answer seems so natural, even obvious, that it is worth pointing out that it is
not the only possible answer. The generic viewpoint assumption, for instance, is a
reasonable principle that suggests we should prefer 3D interpretations of 2D images
that are stable across small changes in viewpoint, instead of interpretations that
assume the scene is being viewed from a tightly constrained ‘accidental’ viewpoint
[17]. This principle makes only weak assumptions about shape, reflectance, and
lighting (e.g., that lighting is equally likely from all directions), and yet it gives a
criterion for preferring some 3D interpretations over others. The generic viewpoint
assumption resolves the GBR ambiguity by preferring planar interpretations over
interpretations with depth [38], so it is not, by itself, a good way of completely
overcoming image ambiguity. Nevertheless, it demonstrates that approaches other
than relying on the most obvious scene statistics are possible.

These issues have long been understood in broad terms, and yet remarkably little
is known about exactly what statistical regularities in real world scenes can support
perception of shape and reflectance, or which of these regularities human observers
rely on. Here I selectively review and evaluate recent work on these problems.

1Belhumeur et al. showed that image ambiguity is limited to the GBR ambiguity for an observer
who has images of an object under all possible distant point lighting conditions. This is important
for understanding the limits of methods such as photometric stereo, but the ambiguity is much
greater when the observer sees an object under just one lighting condition. This has sometimes
not been understood, e.g., Todd [36] suggests that work on the GBR ambiguity shows that the
ambiguity of 2D images is highly constrained.
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Fig. 16.1 A light probe is a spherical representation of the illumination incident from all directions
at a single point in space, i.e., an omnidirectional luminance snapshot. (a) A spherical, globe-like
representation of a high-resolution light probe assembled from photographs of a mirrored sphere
(from [13]). This light probe includes color as well as luminance. (b) A similar representation of
a low-resolution light probe measured with a multidirectional photometer. White represents high
luminance, and black represents low luminance (from [22])

I will use “scene” to mean a 3D arrangement of surfaces, reflectance patterns,
and lights, and “image” to mean the 2D retinal luminance pattern that a scene gives
rise to.

16.2 Lighting

16.2.1 Lighting: Scene Statistics

The direction, diffuseness, and complexity of lighting can have an enormous ef-
fect on the appearance of a scene. Many studies have examined real world light-
ing conditions, and have found that despite the great variability in lighting, there
are also strong regularities. Most interesting for our purpose are the relatively few
studies of ‘light probes’, omnidirectional snapshots of the pattern of light inci-
dent from all directions at a single point in space (Fig. 16.1). A light probe cap-
tures the lighting that would illuminate an object at the light probe’s measure-
ment location, so an understanding of the statistical regularities in real world light
probes is useful for understanding the relationship between 3D scenes and 2D im-
ages.

Dror, Willsky, and Adelson [14] examined around 100 high-resolution light
probes, and found that they had some of the same statistical properties as conven-
tional images: a pink-noise-like power spectrum, kurtotic wavelet coefficient distri-
butions, and statistical dependencies between wavelet coefficients at adjacent scales,
orientations, and positions. They also found that, unlike conventional images, the lu-
minance distribution of light probes peaks at low luminances, with a few very high
luminance values due to small, bright sources such as the sun.
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Fig. 16.2 GBR transformations change a diffuse light probe (center) so that its luminance is con-
centrated either along a great circle (left) or in two opposite directions (right)

Mury, Pont, and Koenderink [28] used a similar approach, but they paid special
attention to the low-pass components of natural lighting that are relevant to shad-
ing of convex Lambertian objects [8, 32]. They found that although high frequency
components of light probes vary rapidly as one moves through a scene, the low fre-
quency components are much more stable. They examined a few different types of
scenes, such as open-sky scenes and forests, and showed that the pattern of changes
in low-frequency lighting structure through a scene is largely determined by the
scene’s coarse geometry.

Mury, Pont, and Koenderink [29, 30] built a multidirectional photometer to mea-
sure low-pass light probes. Mury et al. [30] measured light probes in several envi-
ronments, and consistent with their previous work [28], they found that a lighting
model based on a coarse description of the scene layout accounted for the structure
of the measured light probes.

Morgenstern [22, 23] used a multidirectional photometer to measure several hun-
dred low-pass light probes in diverse environments. He examined the diffuseness of
natural lighting, that is, the extent to which light comes mainly from one direction,
as on a sunny day, or from all directions, as on a cloudy day. He found that the dif-
fuseness levels in different environments (e.g., sunny, cloudy, indoors), span a fairly
limited range, and that across all environments the diffuseness levels cluster in the
lower-middle region of the physically possible range of diffuseness.

Morgenstern also found that some low-pass lighting patterns were much more
likely than others. He showed that natural low-pass lighting can be approximated
reasonably well using a classic computer graphics lighting model, in which light is
the sum of a distant point source and uniform ambient source (e.g., [31]). Consistent
with this, he found that ring-like lighting patterns, where light is weak in two op-
posite directions and strong along the great circle halfway between them, are rare.
Interestingly, GBR transformations can create just such ring-like lighting patterns
(Fig. 16.2): some GBR transformations shift uniform (i.e., very diffuse) light dis-
tributions so that they are concentrated either along a great circle of directions, or
in two directly opposed directions. This is one sense in which GBR-transformed
scenes are unusual, and it gives one possible criterion for choosing the most likely
3D interpretations of 2D images.
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16.2.2 Lighting: Psychophysics

Whether an observer’s 3D interpretation of an image is accurate often depends on
whether they have an accurate estimate of the scene’s lighting. For human observers,
this estimate is a compromise between the observer’s prior on lighting conditions,
and cues to lighting conditions in individual scenes. We know more about the human
visual system’s priors on lighting than about any other perceptual prior.

Metzger [21] first suggested that in order to perceive the 3D shapes depicted in
2D images, we rely on an assumption that light comes from above and slightly to
the left, an assumption that has come to be known as the light-from-above prior2

Metzger based this suggestion on informal observations of the appearance of im-
ages at different orientations, and more quantitative psychophysics has supported
his notion of a preferred lighting direction above and to the left [35]. (One cannot
say more careful psychophysics, since it is remarkable that Metzger was able to
conclude that we prefer a lighting direction to the left of vertical, based only on his
own qualitative observations.) Interestingly, there are large individual differences in
the precise direction of the prior [2], and the direction of the prior can be modified
by just an hour or two of experience in an environment with oblique lighting [1].

Even if light comes from some direction on average (e.g., directly above, or above
and to the left), it does not come from that direction in every scene, leading to the
question of what happens when lighting direction cues like shading and shadows
indicate a lighting direction different from the direction suggested by the light-from-
above prior. Morgenstern, Murray, and Harris [24] showed that instead of the prior
overriding lighting direction cues or vice versa, information about lighting direction
from the prior and from lighting direction cues is combined, so that the perceived
lighting direction that guides shape from shading is a compromise between the prior
and direction cues. They also found that the light-from-above prior is remarkably
weak, in the sense that even very faint cues to lighting direction have a greater effect
in this compromise. This suggests that the light-from-above prior has little influence
in everyday perception.

Recent psychophysical work suggests that human vision also relies on assump-
tions about the diffuseness of lighting. Boyaci et al. [11] and Bloj et al. [10] ex-
amined lightness constancy as a function of the orientation of the test patch being
judged. They found that constancy was quite good when the patch was within ±60◦
of frontoparallel to the dominant light source, but that reflectances were consistently
underestimated when the test patch was more oblique than this. They noted that this
unusual pattern of success and failure in judging surface reflectance is what one
would expect from observers who overestimate lighting diffuseness in the scene

2Brewster [12] is often credited with discovering the light-from-above prior. In fact, he mostly
elaborated Rittenhouse’s [33] observation that we perceive ambiguous shaded patterns as having a
3D shape that is consistent with whatever we believe about the lighting direction in the scene being
viewed. Neither Rittenhouse nor Brewster suggested that we have a default assumption that light
comes from overhead.
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being viewed. Boyaci et al. and Bloj et al. calculated the level of assumed diffuse-
ness that would explain each observer’s performance, and they found that observers
consistently behaved as if lighting was much more diffuse than it actually was in
the experimental apparatus. This suggests that observers’ diffuseness estimates may
have been biased by a prior for high levels of diffuseness. It is also possible, though,
that observers simply always overestimate lighting diffuseness; it would be interest-
ing to see whether experiments similar to Boyaci et al.’s and Bloj et al.’s, but with
very diffuse light, find that observers underestimate diffuseness, as would occur if
their errors were due to a lighting prior that favored high but not maximal levels of
diffuseness.

Schofield, Rock, and Georgeson [34] used very different methods than Bloj and
Boyaci, and reached similar conclusions. They noted that observers tend to see si-
nusoidal luminance gratings as corrugated surfaces that are sinusoidal in depth, and
that the phase difference between the luminance grating and the perceived depth
grating changes with the orientation of the luminance grating. They showed that this
is what one would expect from an observer who has a prior on lighting direction,
and they showed that, under certain modelling assumptions, the magnitude of the
phase change across luminance grating orientations is a signature of the observer’s
assumptions about lighting diffuseness: a smaller phase change corresponds to an
assumption of more diffuse light. They calculated the level of diffuseness that ex-
plained each observer’s shape percepts, and their results were quantitatively very
similar to Bloj et al.’s. Furthermore, Morgenstern [22, 23] showed that the diffuse-
ness levels that Bloj et al. and Schofield et al. arrived at match the range of lighting
diffuseness found in real world environments. This suggests that just as observers
have a prior on lighting direction that matches the average lighting direction in real
world scenes, they also have a prior on lighting diffuseness that matches real world
lighting. Boyaci et al.’s observers seem to have been guided by much higher lev-
els of diffuseness, but Morgenstern argues that Boyaci et al.’s results were probably
biased by partial failures of lightness constancy in perceiving computer-generated
stimuli.

Fleming, Dror, and Adelson [15] found that human vision also relies on higher-
order properties of natural lighting, beyond its direction and diffuseness. They ex-
amined material perception under real and synthetic lighting, and they found that
natural lighting is important for accurate perception of material properties, in par-
ticular for perception of gloss. They concluded that one of the most important prop-
erties of natural lighting, for human observers, is that it contains point-like light
sources and spatially extended light sources with edges.

16.3 Shape and Reflectance

16.3.1 Shape and Reflectance: Scene Statistics

Torreão [37] developed a Markov random field (MRF) approach to shape from shad-
ing, that used mathematically convenient assumptions about object shape to arrive
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Fig. 16.3 (a) Orientation and (b) reflectance changes across real-world objects [26]. These his-
tograms were created by viewing digital scans of real objects of various sizes through a virtual
100 × 100 grid, and measuring the changes in orientation or reflectance between adjacent grid
elements. Here reflectance is measured on the interval [0,1]

at maximum a priori (MAP) shape interpretations of shaded images. Freeman, Pasz-
tor, and Carmichael [18] used a similar approach to the problem of recovering both
shape and reflectance from shading, but with some important innovations. For our
purpose, the most interesting development was that instead of using convenient as-
sumptions about shape and an assumption of uniform reflectance, Freeman et al.’s
algorithm learned the statistical distribution of shape and reflectance patches in a
computer-rendered virtual world. The algorithm built up a library of surface patches
from the virtual world, with both shape and reflectance information represented, and
interpreted new images by assembling a grid of surface patches from the library that
best accounted for the luminance patterns in the shaded image.

Murray [26] examined the shape and reflectance distribution in real objects. He
used 3D digital scans of 80 natural and man-made objects. From random viewpoints,
he examined how surface orientation and reflectance changed across the surface of
the objects. The histograms of surface and reflectance changes were highly regular
(Fig. 16.3). One of the most noteworthy findings was that reflectance changes were
much more narrowly peaked around zero than surface orientation changes, suggest-
ing that a rational visual system will tend to attribute shading changes to surface
orientation changes instead of reflectance changes whenever possible.

Barron and Malik [6, 7] developed an MRF algorithm to recover shape and re-
flectance from shading, but unlike Torreão and Freeman et al. they incorporated
shape and reflectance statistics of real objects. They used parametric models of
shape and reflectance gradients, and they fit these models to digital scans of ten real
world objects. They found that the MAP estimates from the resulting algorithm were
able to recover shape and reflectance from shaded images, and that scene statistics
learned from a set of training objects worked well with a new set of test objects.

These studies support the notion that natural scene statistics can overcome the
ambiguity inherent in 2D images. Murray, and Attewell and Baddeley [5], show that
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scene statistics are sufficiently stable that they can be measured with a reasonable
number of samples. Torreão, Freeman et al., and Barron and Malik show that prob-
abilistic algorithms that incorporate assumptions about scene statistics can recover
shape and reflectance from shaded images. One shortcoming of work to date is that
it has not given us a good theoretical understanding of what statistical regularities
in 3D scenes are important for recovering shape and reflectance. For instance, is it
enough to assume in some way, as Murray suggests, that reflectance changes are rare
compared to shape changes, or is the specific parametric form that Barron and Ma-
lik assume for reflectance changes also important? Is there any role for correlations
between shape and reflectance? Researchers have developed algorithms that learn to
infer shape and reflectance, demonstrating that scene statistics can overcome image
ambiguity, but there has been less progress in determining what the key properties
of natural scenes are, that such algorithms learn.

One possibility that has been overlooked in previous work is that measuring the
precise distribution of shape and orientation in real world scenes might be less im-
portant than using statistical properties that one can predict from first principles. For
instance, in GBR and GBR-like transformations, an object’s shape, reflectance, and
lighting are put through changes that cancel one another precisely, e.g., if the shape
and lighting transformations result in a lower image luminance for a given surface
patch, then the surface patch’s reflectance is increased in order to undo the change
in image luminance. This introduces statistical dependencies between surface ori-
entation, illuminance, and reflectance. Some of these dependencies might be very
unnatural. In natural objects, for instance, we expect illuminance and reflectance to
be statistically independent across surface patches. Such almost-a-priori constraints
may be useful for finding correct 3D interpretations of shaded images.

16.3.2 Shape and Reflectance: Psychophysics

Very little is known about the assumptions that human observers make about shape
and reflectance. One of the most successful approaches to lightness perception is
Gilchrist’s anchoring theory, a set of rules for predicting human lightness percepts
under a wide range of conditions [19, 20]. Gilchrist [19] argues that Bayesian theo-
ries of lightness perception are unlikely to be successful, because they are normative
theories, and will not account for the systematic errors in human lightness percep-
tion that are observed empirically and that form an important part of anchoring
theory.

Adelson [3] proposes an alternative, Bayesian theory of lightness perception. He
suggests that human observers assume that real world reflectances follow some sta-
tistical distribution, and that observers also assume that reflectances r and image
luminances l are related by an affine transformation, l =mr + b. From observed lu-
minances l, observers make statistical estimates of the reflectances r and the lighting
condition parameters m and b.

Recent work in my laboratory has shown that a Bayesian theory along these
lines accounts for much of anchoring theory [27]. The Bayesian theory assumes that
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(a) reflectances follow a broad, asymmetric normal distribution, (b) lighting consists
of multiplicative and additive components, so luminance and reflectance are related
by l =mr + b, and (c) the proportion of additive light b/(m+ b) tends to be low.
This simple theory predicts many of the rules of anchoring theory, thereby show-
ing that some systematic errors in human lightness perception are actually rational
consequences of simple assumptions about lighting and reflectance.

One obstacle to understanding the human visual system’s assumptions about real
world scenes is that we know little about how the visual system represents scenes.
I have spoken, for instance, of the human visual system’s assumptions about re-
flectance, but reflectance is a notion that is most useful in a Lambertian imaging
model. The image luminance of a non-Lambertian surface varies as a function of
incident lighting and/or viewing direction, so to describe such surfaces we need
more information than the proportion of light reflected. Few real world surfaces are
truly Lambertian, and this fact along with recent work on material perception (e.g.,
[4, 25]) suggests that the human visual system does not rely on a purely Lambertian
model. Without knowing more about the human visual system’s model of surfaces,
though, it is difficult to know what properties of real world surfaces we should try to
characterize statistically. Similar comments apply to the perceptual representation of
surface shape and lighting conditions. For instance, Fleming, Holtmann-Rice, and
Bülthoff [16] suggest that the human visual system infers 3D shape from the local
orientation field of the retinal image, in which case an important goal for studies
of 3D scene statistics would be to examine the statistical relationship between local
image orientation and 3D shape in real world scenes.

16.4 Conclusion

There has been important progress on understanding statistical properties of 3D nat-
ural scenes and how they guide human vision. Nevertheless, the most fundamental
problems are still almost completely open.

What assumptions about 3D scenes guide human perception of shape and re-
flectance? Consider assumptions about lighting. Human observers certainly have a
prior that light comes from above, but Morgenstern et al. [24] have shown that this
prior is very weak, and probably unimportant in everyday perception. Bloj et al.,
Boyaci et al., and Schofield et al. report intriguing evidence that human observers
have a prior on lighting diffuseness, but these results are highly model-dependent,
and further work is needed before we can say with confidence exactly what assump-
tions human observers make about diffuseness, and how these assumptions guide
visual perception.

Our understanding of assumptions about shape and reflectance is even more
tentative. Work in computer vision has shown that assumptions about shape, re-
flectance, and lighting can be used to estimate 3D scene properties. These studies
provide functioning algorithms, but they leave many basic questions unanswered.
For instance, what types of image luminance patterns are best attributed to shape
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patterns, and what types are best attributed to reflectance patterns? Are any general
principles possible, such as that changes in reflectance are less likely than changes
in surface orientation? Furthermore, what scene properties does the human visual
system have priors on, e.g., reflectance, or the gradient of reflectance, or both? And
how strong are the various priors that the human visual system relies on, e.g., priors
on shape vs. priors on reflectance? It is remarkable, when there is such broad support
for the notion that assumptions about natural scenes play a crucial role in perception
of 3D scenes, that these fundamental questions are still largely unanswered.
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Chapter 17
Structure vs. Appearance and 3D vs. 2D?
A Numeric Answer

Wenze Hu, Zhangzhang Si, and Song-Chun Zhu

17.1 Introduction

It has been widely acknowledged that while humans are quite good at extracting
structures from images, that is, the edges [4], textons [10] etc. which are concepts
hidden in pixel intensities, the notion of structure does not lend itself to its precise
detection by computer programs. As a result, there now exist appearance based im-
age representations [6, 14] which directly express the image using statistics or his-
tograms of image operator (filter) responses. Structure based and appearance based
image representations are advocated by different researchers, whose reasons for en-
dorsement range from the practical benefits in building simple vision applications
to the faith that computer vision would ultimately stick to human vision.

When different views of objects are taken into account, a similar dichotomy hap-
pens in describing the image structures. The intrinsic 3D shape of objects suggests
that object-centered representation using volumetric primitives [1, 2, 15] should be
simple yet capable of representing the observed image structure changes. But again
the difficulty of extracting these 3D hidden concepts from images make the viewer-
centered representation [11, 12, 17, 21] a competing alternative, which uses a col-
lections of 2D representations each covering a small portion of the modeled views.
Over the two representations, researchers showed various cases where one represen-
tation prevailed [3, 8, 20], but there is no clear winner.

In our view, these competing representations are points lying in different posi-
tions of representation spectrum, and they should be combined to better represent
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Fig. 17.1 Images of leaves at different scales. From left to right, our description of the image
gradually changes from exact structure to the overall appearance of the leaves

Fig. 17.2 (a) Hybrid image
template mixing sketch (dark
bar) and texture (red disk)
representations.
(b) Templates mixing 2D
primitives (dark bar) and 3D
primitives (red bar) to
describe the desktop globe
images over different views.
Image in (b) is adopted
from [9]

images. For example, consider the images of leaves at different scales shown in
Fig. 17.1, one can easily identify the structures inside the first image, but quickly
give up and change to appearance based description for the last image. By gradually
zooming the camera, images in between must combine some portion of both struc-
ture and appearance. A similar spectrum for the 2D and 3D case is suggested in [7].

In this chapter, we want to evaluate and combine these representations on purely
intrinsic and quantitative measurements. The idea behind this work is that elements
(primitives) in competing representations should be weighted by their informa-
tion contribution. Borrowing from information theory, we take information gain as
a quantitative measure of this contribution. We further introduce a mathematical
framework called information projection, which evaluates and sequentially selects
elements from both competing representations, so that the best representation of a
given set of images can be learned automatically.

As a result of using a combined pool of representational elements, we find that
the learned result almost always mixes the competing representations. Figure 17.2
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Fig. 17.3 Learning by information projection, illustrated in the model space. Each point in this
space represents a possible model or a distribution over the target images. The series of models
p0,p1, . . . ,pK converge to the target probability f monotonically by sequentially matching the
constraints. Image adopted from [19]

shows two typical examples for the structure vs. appearance case and 3D vs. 2D
case in our study. In the structure vs. appearance case, we take deformable Gabor
filters [16] as primitives for structure representation, and oriented histograms of Ga-
bor responses as those for appearance. On cat face images shown in Fig. 17.2(a),
Gabor filters (dark bars) are automatically selected to describe the boundary of cat
ears, eyes and mouth etc., while the histograms (red disks) are used to encode the
texture of fur on the cat face. Similarly, in the 2D vs. 3D case, we take 2D Gabor fil-
ters and 3D stick-like elements as primitives for object-centered representation and
viewer-centered representation respectively. Given the set of desktop globe images
shown in Fig. 17.2(b), the algorithm selects 3D primitives (red bars) for the han-
dle and the base as their appearance change drastically across views, and uses 2D
primitives (dark bars) for the much more view invariant circular shape of the globe.
More experiments on various image classes reveal that the representation spectrum
exist, which further shows the importance of having a numerical solution to the
representation integration problem.

In the rest of this chapter, we will first introduce the information projection
framework along with our information gain criterion, followed by detailed case stud-
ies over the above two pairs of competing representations.

17.2 Information Projection

We treat the set of images we want to model as samples from a target image distri-
bution f (I):

{
Iobs
m ;m= 1,2, . . . ,M

}∼ f (I). (17.1)

Our objective is to learn a sequence of models p starting from an initial ref-
erence model q , which would incrementally approach the target distribution f by
minimizing the Kullback-Leibler divergence KL(f ‖p):

q = p0→ p1→ ·· ·pk to f. (17.2)

The approach can be explained in the space of probability distributions shown
in Fig. 17.3, where each point is a model describing a probability distribution over
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target images. Our true model f and the initial model q are two points in the space
with a large divergence KL(f ‖q).

The learning proceeds iteratively. In each iteration, we augment the current model
pk−1 to pk , by adding one statistical constraint so that pk matches a new marginal
statistics Ef [rk(I)], where rk(I) is a scalar or vector valued function of images, de-
noting the response of an element (such as a Gabor filter) in image representations.
Specifically, an iteration is composed of the following two steps:

1. Min-step. Given an unobserved image statistics Ef [rk(I)], we want to find the
model p∗k in the set of models Pk having the same statistics as f while as close to
pk−1 as possible:

Pk =
{
p :Ep

[
rk(I)

]=Ef

[
rk(I)

]}
. (17.3)

The closeness is evaluated by KL(pk‖pk−1). Intuitively, this is to enforce that on the
element k our model should produce the same image statistics as the true model f .
In Fig. 17.3, this set of models Pk can be shown as the corresponding gray curve
passing through f . According to the Pythagorean theorem [5] in information theory,
the new model p∗ is the perpendicular projection of pk−1 on Pk , and the three points
f,p∗k ,pk−1 form a right triangle.

The step above actually solves the constrained optimization problem of

p∗k = arg min
p∈Pk

KL(p‖pk−1). (17.4)

By using Lagrange multiplier, we have

pk(I;Θk)= 1

zk
pk−1(I;Θk−1)e

−λkrk(I) (17.5)

where λk is the parameter satisfying the constraint in Eq. (17.3), zk is the partition
function that normalize the probability to 1, and Θk = {λ1, λ2, . . . , λk}.

2. Max-step. Among all the candidate elements r(I) and their statistics, choose
the one that reveals the largest difference between pk and pk−1.

r∗k = arg max KL(pk‖pk−1). (17.6)

As the KL-divergence is non-negative and

KL(pk‖pk−1)= KL(f ‖pk−1)−KL(f ‖pk), (17.7)

this step greedily minimize the KL-divergence between f and our final model p.
Intuitively, this step chooses a curve in Fig. 17.3 which is farthest away from the
current model pk−1.

After K iterations, we obtain a model

p(I|Θ)= q(I)
K∏

k=1

1

zk
e−λkrk , (17.8)
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and the information gain of each step k is:

Igk =Epk

[
log

pk(I|Θ)

pk−1(I)

]
= KL(pk‖pk−1). (17.9)

As the information gain in step k is equal to KL(pk‖pk−1), each of the training it-
erations above actually selects the representation element which achieves maximum
information gain over the current model pk−1. This learning process sequentially
projects the current model to a number of constrained spaces, and thus is called
information projection.

As the only assumption in the above model is that the candidate element should
have a scalar or vector valued response, the information projection framework can
be used in many feature or pattern learning problems, provided that the goal of
learning is to construct the target image distribution, and the candidate element pool
is fixed before learning. In the following, we discuss in detail the candidate element
pools and implementation details in studying the two groups of competing repre-
sentations introduced Sect. 17.1.

17.3 Case I: Combining Sketch and Texture

In the first case study, we illustrate the integration of structure and appearance as
hybrid image templates (HIT) for object image modelling. More discussion about
this hybrid image template can be seen in [19].

We assume the training images {Iobs
m :m= 1,2, . . . ,M} are instances of an object

category and are roughly aligned in position, orientation and scale with arbitrary
background, such as the ones shown in Fig. 17.2(a). While a single template suffices
for the cat examples here, when there is large pose variations on the objects in
training images, multiple templates can be learned through an EM-like clustering
procedure.

Given the set of training image, the lattice of the image Λ is decomposed into a
set of K non-overlapping patches {Λi}Ki=1 selected from a large pool of candidate
patches. Note that these patches do not necessary compose the full lattice Λ as some
pixels in Λ may correspond to object background which have inconsistent feature
responses.

By enumerating all possible patch candidates, and assuming each patch can be
represented either by its structure or appearance, we are able to construct a large
pool of candidate representation elements. It is worth noting that although the final
selected set of patches are assumed to be non-overlapping, patches in the candidate
pool are not subject to this restriction.

Currently, we limit the structure elements to be sketches only, such as those
shown on the boundary of the hedgehog template in Fig. 17.4(b). If an image patch
IΛk

is represented as a sketch, we define its element response rskt(IΛk
) by

rskt(IΛk
)= max

dx∈∂x,do∈∂o
S
(∣∣〈I,Bxk+dx,ok+do〉

∣∣2) (17.10)
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Fig. 17.4 (a) A hedgehog image may be seen as a bunch of local image patches, being either
sketches or textures. (b) Quantization in the image space and histogram feature space provides
candidate pools for sketches {B} and textures {h}, respectively. A hybrid template of hedgehog
T = {B1,h2,B3,h4, . . .} is composed of sketches and histogram prototypes explaining local image
patches at different locations. Image adopted from [19]

which is a transformed local maximum response of a image primitive B around a
local neighborhood of a specific position x and orientation o indexed by k. Here we
choose the primitives to be Gabor filters at a set of discrete orientations, such as the
ones shown in Fig. 17.4(b), 〈·, ·〉 denotes the inner product between the image and
the filter, and S(·) is the sigmoid transform that saturates large filter responses.

Similarly, we limit the appearance elements to be those for texture only, and
define the element response as:

rapp(IΛk
)= S

(∥∥H(IΛk
)− h

∥∥2) (17.11)

where H(IΛk
) is the histogram of the responses from Gabor filters at different ori-

entations pooled within IΛk
and h is a pre-computed histogram prototype (one may

consider it as a cluster center of similar texture patches). In practice, h is obtained
by averaging the histograms at the same position over all the observed training ex-
amples.

By constructing this candidate pool, we derive a large set of constraints as in
Eq. (17.3) on the individual response of patch representations, where Ef [r(IΛk

)] is
estimated by the average response on observed images

Ef

[
r(IΛk

)
]≈ 1

M

M∑

m=1

r(Im,Λk
). (17.12)
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Fig. 17.5 Learned HITs of
several object categories.
Bold black bars denote
sketches, while gray blobs
denote texture patches. For
illustration purpose, we only
show sketches/textures of a
single scale and vary the
(relative) Gabor scales for
different categories

Because we assume the selected patches are non-overlapping,

Igk = KL
[
pk(I)‖pk−1(I)

]= KL
[
p(IΛk

)‖q(IΛk
)
]
, (17.13)

thus the information gain of each candidate element can be computed ahead of time
by matching Ep[rk(I)] = Ef [rk(I)]. During learning, the patch non-overlapping
assumption is enforced by inhibiting (removing) candidate patches with significant
overlap with selected ones.

Figure 17.5 shows the hybrid templates learned from several categories. The
sketches usually outlines the rough shape of the target object category, with the
appearance patches fill in the furs on animal head or leaves on the tree.

We also study how the structure and appearance patches are ordered by their
information gains. We choose four categories ranging from structured to textured:
head-shoulder, hedgehog, pizza, and wavy water. In Fig. 17.6 we plot the infor-
mation gains of the selected patches in decreasing order: the hollow bars are for
structure patches and the solid bars are for texture patches. For image categories
with regular shape, for example, head/shoulder, sketches dominate the information
gain. For the wavy water, textures makes the most contributions. The two categories
in the middle contains different degrees of mix of sketch and texture.

Learned templates can be used for image classification. Quantitative experiments
in [19] show that our method performances on-par with HoG+SVM approach [6] on
several public datasets, while using far shorter (at least 1/10) feature dimensions.

17.4 Case II: Mixing 3D and 2D Primitives

In the second case study, we illustrate the automatic selection of viewer-centered and
object-centered representations, which build object templates composed of 3D and
2D primitives. The observed images are those of an object category captured from
different views {Im,ωm}Mm=1, where ω denotes the view of the image parameterized
by the pan and tilt angle of camera. For simplicity, we assume the camera roll angle
is zero, and object images are captured at the same scale. More discussion about this
case study can be found in [9].
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Fig. 17.6 Transition from structure based to appearance based representation. For each image
category, the top 40 selected patches are ordered by their information gains in decreasing order.
Image adopted from [19]

Similar to the structure vs. appearance case, we have two types of image primi-
tives to build our pool of constraints.

The first type is the primitive for object-centered representation, which we call
3D primitives. The 3D primitives are stick like primitives with position X and ori-
entation O in 3D space, such as the ones shown in the center of Fig. 17.8. On object
images, primitives are realized by Gabor filters at their projected positions and ori-
entations, and primitive responses can be defined similar to the sketch responses in
the previous case study:

r3D
k (I;ω)= max

dx∈∂x,do∈∂o
S
(∣∣〈I,GP(Xk,ω)+dx,P (Ok,ω)+do〉

∣∣2) (17.14)

where P(·, ·) denotes the camera projection function.
Our 3D primitive pool is created by enumerating combinations of 3D positions

X and orientations O as in Fig. 17.7(a). To avoid an excessive enumeration of 3D
primitives, we quantize the 3D object volume into non-overlapping cuboids, and
inside each cuboid, we sample primitive orientations uniformly.

We illustrate how the proposed 3D primitives pool information from images in
Fig. 17.8. For each hypothesized 3D primitive, we project it on to observed images
from different views, compute its primitive responses on images and estimate its
statistics. Primitive responses of meaningful ones will be consistently high across
views and will contribute significant information gains.

The 2D primitives we choose for viewer-based image representation are the same
as the sketches in case study I, and thus are not further explained.

Compared with learning the hybrid image templates model in Sect. 17.3, one
key difference in mixing 3D and 2D primitives is that the primitives might occlude
each other, such as in the desktop globe example. Also, as a viewer-centered repre-
sentation, the 2D primitives should be allowed to be view specific, thus individual
2D sketches may only explain some of the observed images whose views are in a
specific range.

To model these effects, we introduce another auxiliary variable # to describe
the visible range of a primitive, which is defined as a set of N views on which the
corresponding primitive is visible: #= {ω1,ω2, . . . ,ωN }.



17 Structure vs. Appearance and 3D vs. 2D? A Numeric Answer 245

Fig. 17.7 (a) Illustration of 3D and 2D primitives and how they are used to compose mixed repre-
sentations. The 3D primitives can be viewed as sticks with selected 3D positions and orientations,
while 2D primitive are Gabor filters located at selected 2D positions and orientations. (b) When
generating object images at a particular view ω, we project the 3D primitives and superimpose
the 2D primitives. A primitive is not instantiated if it is not visible in the particular view. Image
adopted from [9]

Fig. 17.8 Illustration of how
3D primitives are learned
from images in different
views. The learning step can
be interpreted as trying all
possible locations and
orientations of 3D primitives
and incrementally select ones
with high overall responses.
Image from [9]

Adding this auxiliary variable leads to the following changes in Min-step and
Max-step:

In Min-step, the estimation of Ef [r(I)] is changed to the sample mean of the
primitive response on visible images:

Ef

[
r(I)

]≈ 1

N

M∑

m=1

rk(Im) · 1(ωm ∈#k) (17.15)

where 1(·) is an indicator function that equals 1 if ωm is in set #k , and 0 otherwise.
In Eq. (17.15), N =∑M

m=1 1(ωm ∈#k).
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Fig. 17.9 Spectrum of image representations in 2D/3D case. Row 1–3: Learned templates for
each object category. The white bars represent 2D primitives and red ellipses are 3D primitives.
Row 4: The selection order of 2D and 3D primitives in each object class and their information
gains. Row 5: The ratio on the information contribution of 3D and 2D primitives. Image from [9]

In Max-step, the constraint selection criterion is also updated to

(
r∗k ,#∗k

)= arg max KL(pk‖pk−1). (17.16)

Conceptually, adding auxiliary variable # will dramatically increase the compu-
tational complexity, since for each primitive, we need to search through 2M possible
different view ranges. However, since we only care about the pair which leads to
maximum information gain, these 2M evaluations would be reduced to less than M

evaluations. Details of this simplification can be found in [9].
For experiments, we use the ETH80 dataset [13], and further augment it by

adding images of soda cans and desktop globes to have 10 categories of object
images, where each one is captured from different views and with a few instances.
Due to the difficulty in illustrating the 3D elements in mixed templates, we directly
show their projections on sample training images in the first three rows of Fig. 17.9.

From the figure, we can see that our method automatically finds suitable repre-
sentations for different object categories, which spans a spectrum from nearly pure
2D to pure 3D. For object categories with stable 2D shapes, the algorithm automat-
ically selects 2D primitives to form the rough shape of that category. For parts such
as the tip of tomatoes, and handle of cups, it selects 3D primitives, because these
details are view specific and only appear in part of the view sphere. For categories
with complex shapes, coding the projected shape for each single view will be less
efficient than coding the general 3D shape using 3D primitives. So, the algorithm
automatically transit to mostly selecting 3D primitives.

Row 4 and 5 of Fig. 17.9 shows the selection order of the 3D (red) and 2D (gray)
primitives, their information gains, and their proportion of information contribution
in each template. By sorting these categories according to this proportion, Fig. 17.9
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Fig. 17.10 The confusion matrix over 8 poses in the 3D car dataset [18], and sample car pose
estimation results. 3D and 2D primitives are all showed using white bars. Image adopted from [9]

clearly shows that the learned representations reside in different positions of the
spectrum, and their positions are related to the complexity of the object shape.

The learned model can be used for image classification and object pose estima-
tion. Figure 17.10 shows sample pose estimation results and the confusion matrix
over the 8 views in 3D car dataset [18]. More experiment results can be found in [9].

17.5 Discussion

This chapter introduces a general learning framework that automatically mixes dif-
ferent representations to find the best representation for a given set of images. By
using images of different object classes, we show that there are representation spec-
trum where images are best represented by mixing different proportions of compet-
ing representations. Although only particular cases are illustrated, the framework
we describe permits the exploration of this approach to general representations and
we hope it will prove to be useful for researchers in the vision community.
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Chapter 18
Challenges in Understanding Visual Shape
Perception and Representation: Bridging
Subsymbolic and Symbolic Coding

Philip J. Kellman, Patrick Garrigan, and Gennady Erlikhman

18.1 Introduction

Our everyday perceptual experience is of a world populated by objects and surfaces
arrayed in space, as well as of events that produce changes in these arrangements
over time. Successful perception, thought and action depend on processes that pro-
duce accurate descriptions of these objects and events. Often, object contours are
only partially visible as we move or as they move around us. Nevertheless, we expe-
rience a unified, stable world: the squirrel running through the tree branches appears
as a single animal, not as dissociated squirrel-bits, and the house seen through the
slats of a fence is one house, not a collection of independent house fragments. These
perceptual outcomes depend on a number of segmentation, grouping, and interpola-
tion processes, which, taken together, perform some of the most crucial and remark-
able tasks in allowing us to perceive the world visually. They also pose some of the
greatest challenges in understanding the underlying processes and mechanisms of
vision.

Researchers in the past several decades have made considerable progress on a
number of important components of these perceptual capabilities. Much is known
about early cortical processing of visual information. At a more abstract level, ex-
perimental data and computational models have revealed a great deal about contour,
object, and shape perception. Neurophysiological and imaging methods have pro-
vided evidence for functional specificity in areas of cortex for animate and inanimate
objects, tools, faces, and places. However, between the initial encodings by spatially
localized units and higher level descriptions of contours, surfaces, objects and their
properties lies a considerable gap. To use a chess analogy, we do not understand
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Fig. 18.1 Spiritual, culinary, and commercial aspects of shape perception. (A) This 10-year-old,
partially eaten cheese sandwich sold for $28,000 on Ebay; the owner claimed to see the face of
the Virgin Mary in it. (B) Description from the Ebay ad. (See text.) (From http://www.slate.com/
articles/news_and_politics/explainer/2004/11/the_28k_sandwich_that_grew_no_mold.html)

much about the “middle game.” The study of shape perception and representation
is important in its own right but also because it gives us a sharp focus on some of
the biggest unsolved general issues in the computational and neural understanding
of perception.

Early cortical encodings (e.g., responses of neural units in V1) are spatially local,
retinally specific, and modulated by oriented contrast. The functionally important
outputs of perceiving are constancy-based descriptions of bounded objects, their
contours, surfaces, and shapes, and their arrangements in space. Our goal in this
chapter is to shed light on shape perception, but also to use it as a vehicle to focus
on major issues that must be addressed in order to understand how early visual
processes connect to high-level representations. We describe (1) the dependence of
shape perception on segmentation and grouping processes, and (2) properties that
(some) shape representations must have and how they might be assembled from
lower level encodings. In both discussions, we end with thoughts and efforts on a
crucial frontier of work in these areas, which we might call “modeling the middle.”

18.2 Some Useful Examples

To begin, we offer two demonstrations that illustrate the flexible and abstract na-
ture of shape representations and the important issue of what gets assigned a shape
representation.

What is shown in Fig. 18.1? It is perhaps the most famous cheese sandwich in
history. The story, in the owner’s own words in an E-bay advertisement, is given
in Fig. 18.1B. The image and description may relate to several different scientific
mysteries. Given that this cheese sandwich has had “no disingration [sic]” in 10
years, one of the mysteries is, obviously: What are they in putting in the bread?!

http://www.slate.com/articles/news_and_politics/explainer/2004/11/the_28k_sandwich_that_grew_no_mold.html
http://www.slate.com/articles/news_and_politics/explainer/2004/11/the_28k_sandwich_that_grew_no_mold.html
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Fig. 18.2 Which region was part of the display in Fig. 18.1A? The difficulty of answering provides
a simple demonstration that we encode simplified and abstract descriptions of displays, not pixel
maps or records of feature activations

For us, the more important fact is that humans spontaneously see a face in the
toast. This reveals more than one interesting fact about shape representations. A key
observation is that such representations are flexible enough to be matched to new
input that is markedly different from previously experienced faces. Putting aside
whether the image is in fact the Virgin Mary, or bears, as others have suggested, a
resemblance to Greta Garbo or a young Shirley Temple, the striking fact is that any
recognition here is not a match at the pixel level. Presumably, if you have seen Garbo
before, she was not impersonating a cheese sandwich. More formally, our encoding
of this display is both much less and much more than a literal copy of the stimulus.
Consider Fig. 18.2. Suppose we tell you that one of the panels shows a region of
Fig. 18.1A. Without looking at Fig. 18.1A, which is it—Fig. 18.2A or 18.2B? We
doubt anyone can answer correctly with confidence. Now, compare the regions to
Fig. 18.1A. With serious effort, you can see that the region in Fig. 18.2A matches
an area near the left eye, and the region in Fig. 18.2B also matches, around the right
eye. Even with all images visible, verification of the match is an effortful task. This
kind of demonstration, and many ordinary observations, indicate that we preserve
very little of the point-by-point stimulus in encoding shape information.

This should not be seen as a shortcoming of our visual processing. The ability to
see a face here and to detect similarities to previously seen faces implicates extrac-
tion of relevant structure while ignoring irrelevant variation. The structure extracted
must be encoded in some abstract form sufficient to trigger activation of previously
encoded structure. Two other notable points here are that we are able to see a face
while still encoding the entire object as a cheese sandwich, and that we sponta-
neously see the face despite the low expectations (and low prior odds, in Bayesian
frameworks) for seeing faces in partially eaten cheese sandwiches. Most important,
however, is the suggestion of an abstract, flexible representational format that allows
matching of selected structure to categorical shape information encoded or formed
earlier.

Our second demonstration leads more directly into the connection between shape
perception and visual segmentation and grouping processes. Glance at the picture in
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Fig. 18.3 Illustration of the
dependence of shape
descriptions on object
formation. (See text.)
(Reprinted with permission
from fotosearch.com)

Fig. 18.3 and then cover it up. Looking at Fig. 18.4, which panel, A or B, shows a
shape that was present in the original figure? The question is difficult to answer.

Now uncover Fig. 18.3. Both regions turn out to be part of the picture. The region
in Fig. 18.4A is part of the cow’s head, and the shape in Fig. 18.4B is part of the
fence post. Both of the regions shown in Fig. 18.4 are fairly well delineated by con-
trast boundaries in the image.1 Naively, we might expect that bounded regions in the
visual input comprise the objects to which we assign shape descriptions. Examples
such as these demonstrate that such an expectation is often incorrect.

We assign shape descriptions to objects. The detection of objects in a visual
scene, if it is to correspond to actual physical objects in the world, must overcome
a number of obstacles. Perhaps most important is occlusion. A single object in the
world may project to the retinae of our eyes in multiple, spatially separated regions,
as illustrated by the cow in Fig. 18.3. A single object may have a variety of col-
ors, such that lightness and color boundaries are incomplete indicators of object
boundaries. Fortunately, our visual processing includes sophisticated mechanisms

Fig. 18.4 Which region is
part of the display in
Fig. 18.3? (See text)

1These are mostly, but not fully, delineated by contrast boundaries. The difficulty in using contrast
boundaries alone to find the functionally important shapes in the environment is another important
aspect of the relation between processes that accomplish segmentation and shape representation.

http://fotosearch.com
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for perceiving coherent objects from information that is fragmentary in space (and
also in time, although we do not consider spatiotemporal fragmentation here; see
[37] for relevant research and [32] for a review).

Shape perception in biological vision, then, means something more than finding
regions of roughly homogeneous lightness and/or color. Rather, shape encoding ap-
pears to be reserved for functional units delivered by segmentation and grouping
processes. In the next section, we describe processes of interpolation that connect
visible regions across gaps to furnish the objects that receive shape descriptions. In-
troducing these will show their relevance to shape perception and also highlight the
issue of “modeling the middle” in vision science.

18.3 Interpolation Processes Underlying Object Perception

From the perspective of an organism that needs to see, the projection of objects
and scenes in the world onto the sensitive surfaces of our eyes is beset by several
chronic problems. The world has three spatial dimensions, but information is lost
as it is projected onto the essentially two-dimensional surface of each retina. Light
moves in straight lines, and objects are usually opaque; these facts dictate that in
ordinary environments nearer objects will often partly occlude farther ones, meaning
the projections of farther objects will be interrupted by the projections of nearer
ones. Commonly, a single object may project to multiple, spatially separated retinal
regions.

When motion of objects or observers is involved, these patterns of occlusion
become more complex, changing over time. Different parts of a single object may
be visible at different times, while some parts of objects may never project to the
eyes at all. Such problems of occlusion are not exclusively products of modern,
cluttered environments; some of the richest and most complex patterns of occlusion
occur when we view objects and scenes through foliage, a situation that has likely
been important in human behavior over evolutionary time.

Perhaps these enduring constraints on seeing are responsible for the sophisti-
cated and elegant visual processes that serve to overcome occlusion. The human
visual system possesses remarkable mechanisms for recovering coherent objects
and surface representations from fragmentary input. Specifically, object and surface
perception depends on interpolation processes that overcome gaps in contours and
surfaces in 2-D, 3-D, and spatiotemporal displays. Recent research suggests that the
mechanisms for doing so are deeply related in that they exploit common geometric
regularities.

18.4 Contour and Surface Processes

Evidence suggests that there are two kinds of mechanisms for connecting visible
areas across gaps: contour and surface interpolation. These processes can be dis-
tinguished because they operate in different circumstances and depend on different
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Fig. 18.5 Contour and surface interpolation. (A) Both contour and surface interpolation processes
contribute to perceived unity of the three black regions behind the gray occluder. (B) Contour
interpolation alone. (C) Surface interpolation alone. (D) Both contour and surface interpolation
have been disrupted, causing the blue, yellow, and black regions to appear as three separate objects.
(See text)

variables. Contour interpolation depends on geometric relations of visible contour
segments that lead into contour junctions. These geometric constraints have been
most frequently studied in 2-D displays, but they have been shown to govern con-
tour interpolation in 3-D scenes as well [33]. Surface interpolation in 2-D displays
can occur in the absence of contour segments or junctions; it depends on the similar-
ity of lightness, color, and/or texture of visible surface patches. In 3-D scenes, it also
depends on the orientations and positions of visible fragments [9]. For simplicity,
we describe interpolation processes in 2-D displays here.

Figure 18.5 illustrates distinguishable contour and surface interpolation pro-
cesses, as well as some of their interactions. In Fig. 18.5A, the three black regions
appear as one object connecting behind the gray occluder. Both the contour rela-
tionships of the black regions and their surface similarity contribute to this per-
cept. In Fig. 18.5B, the surface colors of the visible regions have been altered to
block surface interpolation. However, the relations of the contours still engage con-
tour interpolation, leading to an impression of a unified object despite the color
differences. Figure 18.5C shows the converse arrangement. Here, the geometry of
contour relatability (see below) has been disrupted blocking contour interpolation.
Due to surface interpolation (included by the matching surface color of the frag-
ments), however, there is still some impression that the three fragments connect
behind the occluder. Finally, Fig. 18.5D shows both contour and surface interpola-
tion disrupted. Here, the blue, yellow, and black regions appear as three separate
objects.

Figure 18.6 further illustrates the action of surface interpolation. Surface interpo-
lation in Fig. 18.6B causes the same black objects that appear separate in Fig. 18.6A
to appear connected. Surface interpolation also causes the circle within the gray area
to appear as a hole, rather than a spot on top of a surface [54]. In this display, con-



18 Challenges in Understanding Visual Shape Perception and Representation 255

Fig. 18.6 Rules of surface interpolation under occlusion. Contour relations in both displays are ar-
ranged so as not to produce contour interpolation behind the occluder. (A) The three black regions
appear as separate objects; the circle on the right appears as a spot on top of the gray background.
(B) The three black regions have been positioned so that surface spreading within extended tan-
gents of edge orientations at points of occlusion allows areas to connect behind the occluder. A
bloblike single object, whose contours behind the occluder are vague, is perceived. The black cir-
cle is now seen as a hole in the occluder. The white circle also illustrates surface spreading; it
appears as a hole through which the white background is seen

tour interpolation is blocked due to misalignment of the edges. It has been shown
that the surface interpolation process under occlusion integrates areas of similar
surface quality (1) when they fall within edges connected by contour interpolation,
(2) when they fall within the extended tangents of nonrelatable edges, or (3) when
the fall within a fully surrounding area (as in the case of the white dot in Fig. 18.6B)
[55]. Whereas contour interpolation processes are relatively insensitive to relations
of lightness or color, the surface process depends crucially on these.

18.5 Contour Interpolation

Central to establishing perceived shape is the process of contour interpolation,
which unifies visible regions across gaps (for reviews, see [31, 33]). Perhaps the
most basic question in understanding visual object and surface formation is what
stimulus relationships cause it to occur. This question is fundamental because it al-
lows us to understand the nature of visual interpolation. For contour interpolation,
certain relations of visible contours lead the visual system to fill in connections be-
tween visible regions whereas other contour relationships do not. Discovering the
geometric relations and related stimulus conditions that lead to object formation is
analogous to understanding the grammar of a language (e.g., what constitutes a well-
formed sentence). This level of understanding is also most crucial for appreciating
the deepest links between the physical world and our mental representations of it.
While these efforts are at first descriptive, as unifying principles are revealed, they
allow us to relate the information used by the visual system to the physical laws
governing how objects and surfaces project to the eyes, in the form of deep con-
straints about the way the world works (e.g., [16, 36]) or as natural scene statistics
(e.g., [14]).
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18.6 Triggering Contour Interpolation

A general fact about contour interpolation is that interpolated contours begin and
end at junctions or corners in visible contours (tangent discontinuities). These are
locations at which contours have no unique orientation [44, 46]. Most typically in
vision, they are intersections of two oriented contours, such as “T” junctions that
form when the boundary of an occluding object interrupts that of an occluded object.
Whereas a zero-order discontinuity would be a spatial gap in a contour, a first-order
or tangent discontinuity is a point at which the direction of the contour changes
abruptly. Besides first-order discontinuities, some have suggested that second-order
discontinuities (as where a straight segment joins a constant curvature segment, with
the slopes matching at the join point) might also play a role in triggering interpola-
tion ([2–4, 46]; for discussion see [33]). The importance of tangent discontinuities
in visual processes coping with occlusion stems from an ecological invariant: Ship-
ley and Kellman [46] observed that in general, interpolated contours begin and end
at tangent discontinuities and showed that their removal eliminated or markedly
reduced contour interpolation. In the patterns that induce illusory contour forma-
tion, “L” junctions, rather than T junctions, are most common. In these displays,
the presence or absence of tangent discontinuities can be manipulated by rounding
the corners of inducing elements, a manipulation that experimental evidence shows
reduces or eliminates contour interpolation (e.g., [3, 33, 37, 46]).

18.7 Contour Relatability

What determines which visible contour fragments get connected to form objects?
Although tangent discontinuities are ordinarily necessary conditions for contour in-
terpolation, they are not sufficient. After all, many corners in images are corners of
objects, not points at which some contour passes behind an intervening surface (or
in front, as in illusory contours).

Empirical research shows that contour interpolation depends crucially on ge-
ometric relations of visible contour fragments, specifically the relative positions
and orientations of pairs of edges leading into points of tangent discontinuity
[11, 26, 29–31, 33, 37, 44, 46]. These relations have been described formally in
terms of contour relatability [29, 49]. Relatability is a mathematical notion that de-
fines a categorical distinction between edges that can connect by interpolation and
those that cannot (see [29]). The key idea in contour relatability is smoothness (e.g.,
interpolated contours are differentiable at least once), but it also incorporates mono-
tonicity (interpolated contours bend in only one direction) and a 90° limit (interpo-
lated contours bend through no more than 90°). Figure 18.7 shows a construction
that is useful in defining contour relatability. Formally, if E1 and E2 are surface
edges, and R and r are perpendicular to these edges at points of tangent discontinu-
ity, then E1 and E2 are relatable if and only if:

0≤R cos θ ≤ r.
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Fig. 18.7 Contour relatability. Contour relatability describes formally a categorical distinction
between edges that can be connected by visual interpolation and those that cannot. (A) Geomet-
ric construction defining contour relatability (see text). (B) Alternative expression of relatability.
Given one visible contour fragment terminating in a contour junction at (0,0) and having orienta-
tion 0 deg, those orientations Θ that satisfy the equation tan−1(y/x) ≤Θ ≤ π/2 are relatable. In
the diagram, these are shown with solid lines, whereas nonrelatable orientations are shown with
dotted lines. (Adapted from [23]. A unified model of illusory and occluded contour interpolation.
Vision Research, 50, 284–299. Reprinted with permission)

Although the precise shape of interpolated contours is a matter of some disagree-
ment, there are two properties of relatability that cohere naturally with a particular
class of contour shapes. First, it can be shown that interpolated edges meeting the
relatability criteria can always be comprised of one constant curvature segment and
one zero curvature segment. Second, it appears that this shape of interpolated edges
has the property of being a minimum curvature solution in that it has lowest max-
imum curvature: any other first-order continuous curve will have at least one point
of greater curvature [29]. This is a slightly different minimum curvature notion than
minimum energy.

Relatability is primarily a categorical distinction, indicating which edges can be
connected by contour interpolation. Object perception often involves a discrete de-
termination of whether two visible fragments are or are not part of the same object.
Figure 18.8 shows examples of relatable and nonrelatable edges, in both percep-
tion of partly occluded objects and perception of illusory objects. Complete objects
are formed in the top row but not in the bottom row. In general, object formation
has profound effects on further processing, such as generation of a representation
of missing areas, generation of an overall shape description, and comparison with
items or categories in memory. Research indicates that the representation of visual
areas as part of a single object or different objects has many important effects on
information processing [6, 33, 56].

Relatability is a mathematical formulation that accounts for empirical findings
on the geometric relations that support contour interpolation. It incorporates several
separable claims, all of which have received substantial confirmation in empirical
research. These include the requirements that the edge fragments that participate in
interpolation are those terminating in tangent discontinuities [18, 33, 44, 46], the re-
quirements that interpolated edges have orientations matching their inducing edges
at the points of tangent discontinuity, are smooth (differentiable at least once), and
monotonic (i.e., they do not doubly inflect) [10, 11, 29, 33, 37, 48]. Most evidence
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Fig. 18.8 Examples of relatable and nonrelatable contours. (See text)

Fig. 18.9 Outputs of
neurally plausible models of
contour interpolation. The top
row shows the raw image
given to each model, and the
bottom row shows the output
(real and interpolated edges).
(A) Output of the Heitger
et al. [21] model for illusory
contour display. (B) Output of
Kalar et al. [23] model for an
occlusion display. (Adapted
from Kalar et al. [23], Vision
Research. Reprinted with
permission)

also supports the idea that interpolation is weak or absent for Θ greater than 90 deg
in Fig. 18.9B [10, 11, 14, 26, 33, 49], although data also suggests that the cutoff may
not be abrupt [11, 19]. Although discrete classification of visible areas as connected
or not is important, there is also evidence that quantitative variation exists within the
category of relatable edges [5, 10, 29, 47–49]. Singh and Hoffman [49] proposed an
expression for quantitative decline of relatability with angular change.

Some work based on scene statistics has been interpreted as showing some de-
viations from the predictions of relatability. Geisler & Perry [13] reported statistics
about the probabilities of arbitrary contour segments being connected in a variety
of scenes. In the same paper, the authors reported that observers’ subjective judg-
ments of contour connectedness conformed reasonably well to the scene statistics.
Compared to relatability, the most systematic deviation appeared to be that relata-
bility allows connections between edge fragments of opposite contrast polarity, a
phenomenon that has been confirmed experimentally [10, 15, 24, 28], whereas the
collected scene statistics indicate that such connections are highly improbable. The
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authors’ data also indicates that an ideal observer using the natural priors they ob-
tained would interpolate only between very nearly collinear edge fragments and
primarily those within one deg of separation. These outcomes are surprising, in
that they markedly differ from considerable evidence obtained from a variety of
paradigms about human contour interpolation [11, 18, 33, 42, 48].

The discrepancies are not difficult to understand, however. The scene statistics
gathered by Geisler & Perry [13] involved the probabilities of any arbitrary edge
fragments in scenes being connected. A key geometric invariant in contour inter-
polation is that occlusion produces tangent discontinuities in the optical projection
[29] and evidence indicates that this information is influential in contour interpola-
tion (e.g., [44, 46]). Sampling edge fragments terminating in tangent discontinuities
would involve a more restricted set of edge pairs and these may produce different
scene statistics. The conditional probability of a pair of edge fragments being part
of the same contour in the world, given their relative orientation, position, and sepa-
ration may differ from the conditional probability of a pair of edge fragments being
part of the same contour given those spatial relations and the fact that each termi-
nates in a contour junction (typically a T junction, for potential cases of amodal
completion). The latter seems more relevant to understanding the relations of envi-
ronmental regularities to contour interpolation. We do not know whether these two
conceptually different conditional probabilities would differ in their empirical dis-
tributions, but intuitively, the locations, orientations, sizes, etc. of occluders seems
unlikely to be uniformly distributed across images.

Also difficult to interpret is the empirical study reported by Geisler & Perry [13],
which involved subjective judgments of 7 observers, two of whom were not naïve.
Observers were instructed that half of edge pairs presented in the study would be
connected. Such instructions seem incompatible with an attempt to assess partici-
pants’ natural perceptions of whether two edges appear to be connected under oc-
clusion or not. These instructions also did not reflect the priors derived from scene
statistics, so observers’ results were compared to arbitrarily revised scene statistics
incorporating a 0.5 prior on edges being connected, a prior that far exceeded the
“natural priors” obtained from Geisler & Perry’s scene statistics. Unlike many stud-
ies that have used objective performance methods [10, 30, 33, 37], the subjective re-
port methods employed by Geisler & Perry [13] in combination with the prompting
of participants to judge 50 % of edge pairs as connected make the task fraught with
demand characteristics, as well as difficult to relate either to scene statistics or to
other data on interpolation performance. One other major difference from both prior
research and ordinary perception of natural scenes is that each “edge” presented in
the experiment was a tiny Gabor element (with length roughly 6–7 arc min), and
pairs of elements had comparatively large separations (occluders had diameters of
40, 80, and 180 arc min). It is known that strength of interpolation between pairs
of inducers is a roughly linear function of support ratio [5, 48, 50], defined as the
length of interpolated edge as a fraction of total (real plus interpolated) edge length.
Relatively little or very weak interpolation would be expected with support ratios
ranging from 0.07–0.25, as in this study, and the scene statistics in this study did
not incorporate inducing edge lengths in any manner. It would be interesting to
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study the relationship of contour relatability to richer scene statistics in future re-
search. Existing data support the geometric relations encompassed by relatability as
a formal account of human contour interpolation, and the value of this particular ge-
ometry might indeed bear close relations to relevant statistical regularities in natural
scenes.

18.8 Neural Models of Contour Interpolation

The model of object formation from fragmentary information, as we have sketched
it here, as well as in more elaborate treatments [23, 25, 26, 33], assumes that certain
kinds of inputs have been identified in prior visual processing. The inputs to contour
interpolation, for example, are oriented edges of surface regions. The contour orien-
tations that matter are those leading into tangent discontinuities, which we assume
can be located by earlier visual processing. Whether such contour inputs connect
depends on geometric relations of their orientations, which we assume are also en-
coded. Once a contour segment is interpolated, it, along with the physically given
parts of the contour, become a continuous contour that closes, defining the boundary
of some object. To these closed contour tokens, we assign a perceived shape.2

A variety of neural-style models have been proposed as giving the underlying,
neurally plausible mechanisms by which the above computations are performed
[17, 21, 23, 31]. Therefore, it would seem that the general issues we raised at the
start of this paper have been addressed: High-level information processing accounts
of visual object completion have been connected to plausible neural mechanisms,
providing not necessarily final or correct explanations, but at least explanations that
show how we can go from initial registration of visual information to high-level
scene descriptions.

This impression, however, would be as illusory as many of the contours per-
ceived in the visual completion literature. Although neural-style models of visual
completion exist, in general, they illustrate, rather than solve, the problem of bridg-
ing low-level visual coding and higher level, symbolic representations. Figure 18.9
helps to illustrate the issues.

In the figure are displays presented to two contour interpolation models
(Fig. 18.9A) as well as the outputs of those models (Fig. 18.9B). The display and
output on the left are from Heitger et al. [21] and those on the right are from Kalar
et al. [23]. It is evident that the models fill in illusory and occluded contours based
on the input contours. These models use local oriented edge detectors and grouping

2Obviously, this brief description leaves out many additional specifics. For example, our treatment
here has been confined to 2-D interpolation and the “object” formed by completing the boundary
would be a planar (2-D) object. Consideration of 3-D and spatiotemporal object formation is dis-
cussed in more detail elsewhere [33, 37], but the current treatment is sufficient to raise the general
issues about modeling that are the focus of this section.
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operators that examine the relations of activated units to determine interpolated ac-
tivation in the space in between. Each pixel in the interpolated area is the output of
a grouping operator that was positioned at that location.

These models and others (e.g., [17]) show that an early stage of interpolation
can be done by sets of local operators that look at relations of contour activation in
nearby regions and produce activation maps for regions in between. The input oper-
ators (edge detectors) and grouping operators are consistent with known character-
istics of early visual cortical areas [20, 21], and their outputs likely approximate an
important early stage in object formation [23]. However, it is crucial to understand
what these models do and do not do. Specifically, the models have indicated points
of interpolation in areas with no stimulus contrast, but they don’t do much else.
When we look at the output images, we see complete contours that span between
input edges, but the models do not connect the interpolation points into contour to-
kens, nor do they connect the interpolated and real contours into contour tokens.
They also do not certify whether these contours close, assign shapes to either the
contour parts or the enclosed regions, determine what the objects are, or indicate
which object is closer in the display. For example, in the display in Fig. 18.9B, we
see two rectangles, with the gray rectangle partly occluding the black one. Given
edge orientations and positions, the computational interpolation model of Kellman
& Shipley [29] would interpolate the edges as shown. The model of Kalar et al. [23],
intended as a neurally plausible implementation of the Kellman & Shipley model
that operates on raw images, produced the image in Fig. 18.9B. The model’s output,
however, and the predecessor model of Heitger et al. [21], consists of a collection
of points of “interpolation activation”: it marks where interpolated edges would oc-
cur, but it does not produce a representation of connected edges, closed objects or
depth relations. The apparent continuity of contours and shapes of closed figures
are generated by the viewer when they look at the model’s output image. The model
itself does not “know” what is connected to what. We might call these “subsym-
bolic” models. Thus, “local” interpolation models leave a lot of work to be done.
They build from the kinds of spatially localized neural units that exist in cortex, but
they stop short of giving contour and object descriptions needed for higher level
representations. Those descriptions need to be much more abstract, symbolic repre-
sentations, as we discuss in the next section.

18.9 Shape Perception

Modern work in computational vision has typically addressed shape with a variety
of sophisticated mathematical techniques (for a review, see [8]). These techniques
allow great precision. For contour shape, having even a few data points allows, for
example, polynomial approximation that specifies all of the contour’s derivatives at
all points. Yet neither these computational techniques nor neurophysiological data
about the functions of cortical neurons has yet produced a real understanding of
shape perception in biological vision.
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Fig. 18.10 Examples of
shape invariance. Which of
the figures in B, C, or D, has
the same shape as the figure
in A? (See text)

To understand some of the key issues in shape perception, we first specify some
properties that human shape representations must have. These will help us to un-
derstand the central problem of bridging between early visual encoding (e.g., by
local, orientation-sensitive units) and higher-level notions of shape. On one hand, it
is clear that human perceptual abilities to see shape and shape similarities implicate
more abstract symbolic coding than can be accomplished by sets of local orienta-
tions. On the other hand, it seems doubtful that our brains represent shapes with
the arbitrary level of precision possible with mathematical techniques common in
computer vision. For example, for the shapes of occluded contours, it has been ar-
gued [11] that experimental data is fit best by quintic (5th order) polynomials. This
is no doubt a faithful description of curve-fitting results; however, one may wonder
whether we should take seriously the idea that the brain really uses such a complex
representation for shape and how it might generate quintic polynomials. Certainly
no brain mechanism for generating them has yet been proposed. Moreover, such a
representation, in a given case, would suggest a highly precise contour description,
whereas psychophysical tests on human representations would likely show that our
shape memory, at least, is substantially more vague.

For simplicity, we focus primarily, but not exclusively, on contour shape [12, 27].
Even the relatively basic shape notions we will consider evoke the issues of ab-
straction and simplification in shape representations that we wish to illustrate. Fig-
ure 18.10 illustrates some properties that seem to characterize human contour shape
representations.

A shape representation for the contour given in Fig. 18.10A is sufficient to allow
a shape match with one or more of the shapes in Figs. 18.10B, C, and D. This is
possible despite changes in size, orientation, or even the elements comprising the
figure. In terms of the lines or elements making up the figure, the display in 18.10C
is most like 18.10A, yet inspection readily reveals that it is the only figure whose
overall shape is different from 18.10A. Some of the key properties indicated by
these simple shape-matching capabilities are that shape representations have some
degree of scale invariance, orientation invariance, and that a common shape can be
extracted despite differing constituent elements. These points were made long ago
by the Gestalt psychologists (e.g., [34]), who emphasized that the simple summation
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Fig. 18.11 Illustration of gist
and similarity relations in
shape representation. (See
text.) (From http://lolyard.
com/3448/cloud-fish)

of sensory elements did not comprise form; indeed, form consists of relations, which
can be conveyed by many different kinds of sensory elements.

The modern version of the Gestalt point is fully relevant to primary issues in
understanding shape and the connection between early visual coding and symbolic
representations. We know that the patterns in Fig. 18.10 stimulate sets of spatially
localized, orientation-sensitive units in the visual cortex (in V1 and V2). Yet hu-
man shape-matching performance clearly indicates that seeing the same or similar
shape is not a matter of activating the same local orientation-sensitive units. The
transformation of size changes the spatial frequency of the relevant units; changing
orientation of the shape alters the relevant local orientations that are detected; and
various elements can be used such that there is little or no overlap in populations of
basic detectors that are activated and lead to perception of the same shape. How do
we get from the stage of local orientation encoding to more abstract percepts and
representations of shape?

Figure 18.11 illustrates two other crucial properties of human shape perception
and representation. One we might call “gist.” The cloud shown in Fig. 18.11A has
quite ragged edges, including various protrusions and “frayed edges” in various
places. A fully precise contour representation that matched all of the visible bound-
ary points (e.g., what one might get by doing a precise, higher-order polynomial fit)
would give a very jagged and complicated boundary contour representation. It is
doubtful that, after looking briefly at such an image, we possess any such fully de-

http://lolyard.com/3448/cloud-fish
http://lolyard.com/3448/cloud-fish
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tailed representation. As a thought experiment, if we showed observers such images,
took them away, and then presented new images in which the perturbations along
the edges had been moved or changed, it is unlikely that observers would be good at
detecting these changes (for a more detailed example, see [12]). Our representations
encode the overall shape at a level that is likely to be relevant to our functioning in
the world. Encoding all of the little wisps and deviations along the edges in this case
are unlikely to be of functional importance (although given specialized tasks, this
could change).

The other property illustrated in Fig. 18.11 is closely related to gist. It is that
our shape representations support similarity relations in a constrained but flexible
manner. The shape similarity of the cloud and the fish are obvious. Slightly more
demanding is the question of which of two aircraft more closely matches the cloud
shape. Pretty clearly it is the aircraft in Fig. 18.11D (the one on the right). These
shape matching feats are remarkable because the matching images are far from a
match at the pixel level or at the level of sets of local orientation detectors activated
by the two patterns.

In summary, the visual system must somehow get from early local encodings of
oriented contrast to more global and abstract shape representations. These represen-
tations are unlikely to be precise polynomial approximations to detailed boundaries,
but are likely to be simplifications in some way. And these simplifications are likely
to be the very properties that allow approximate matching to similar forms that are
by no means identical, either at the one extreme of activating the same population of
oriented units or at the other extreme of matching a precise mathematical description
of a bounding contour.

18.10 Constant Curvature Coding: An Example of a Bridge
Between Subsymbolic and Symbolic Shape Coding

The foregoing discussion of requirements of human contour shape representation
may be useful in indicating important constraints on theories of biological shape rep-
resentation, but they also represent a set of daunting challenges. Much of the point of
this discussion is that we do not currently have suitable theories of shape that meet
these requirements. There is no doubt, of course, that mathematical approaches for
specifying shape are flexible enough such that we could specify symbolic repre-
sentations that meet the requirements, but that would leave open the question of
how such representations are acquired from the initial encoding of visual informa-
tion. We do not offer a comprehensive answer to these problems, but we propose
a scheme that addresses some particular issues, and, more generally, offers an ex-
istence proof of how more symbolic tokens might be acquired from subsymbolic
precursors.
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18.11 Early Symbolic Encoding of Contours: Arclets

Based on considerations of simplicity, coding efficiency, and some existing psy-
chophysical and neurophysiological data, we have developed a scheme that uses the
simplicity of the circle as the link between low- and higher-level vision [12, 27].
We propose that neural circuits exist that combine small groups of oriented units
that are linked by constant turning angles, e.g., they encode constant curvature seg-
ments (including zero curvature) of contour shape. We call these arclets. Any open
contour (including a part of the bounding contour of an object) may be described
in terms of segments of constant curvature. In recent work, we have proposed two
computational models of how this encoding could work, with the models differing
in the tradeoff between the load in terms of number of segments and the fidelity of
getting a near exact match to a viewed contour [12]. We refer the reader to that work
for details.

For present purposes, the more important point is how arclets can operate as
a bridge between subsymbolic and symbolic encoding. In their application to in-
terpolation, activation initiated by real contours spreads along restricted paths in
a network of oriented units; these paths consist of arclets. Because of this restric-
tion, there is a unique path of interpolation connecting any relatable edges [29, Ap-
pendix A]. In their application to shape coding, arclets are symbolic tokens that are
activated by signals in chains of several oriented units. This allows a natural means
of handing off the information encoded by local oriented units to higher-level shape
representations.

The central idea is that an important basic level of abstract shape encoding con-
sists of contour representations comprised of one or more constant curvature seg-
ments. These middle-level shape representations result from detectors that are ac-
tivated by sets of oriented units in particular relations to each other (cf., [10]). As
illustrated in Fig. 18.12, a given arclet is activated if a chain of oriented units form-
ing a collinear or co-circular path are simultaneously activated. At the bottom of
this figure is the viewed object. The object activates sets of oriented units (shown
as Gabor patches) in early cortical areas. Arclet detectors respond to chains of these
units having a constant angular relation (turn angle).

This is the locus of the transition from local, contrast-sensitive elements to the
first symbolic representation. The activated arclet token contains three pieces of in-
formation: the scale (spatial frequency) of the oriented units, the turn angle relating
them (20 deg in the example given), and the number of oriented units (encoding seg-
ment length). We assume some system of competition to find the best-fitting arclet
for any segment, as arclets of different scales and turn angles may fit to differing
degrees.

Different arclets code different curvatures. Activation of a single arclet indicates
the presence of that curvature at a certain position and orientation. The encoding of a
constant curvature segment extends along a contour until a transition zone, at which
arclets of that curvature exceed some threshold of accurately matching the con-
tour (or are less well activated than some arclet having a different curvature value).
A shape representation consists of a set of constant curvature values characterizing
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Fig. 18.12 Illustration of constant curvature segment encoding. (See text.) (From [27]. In M.A. Pe-
terson, B. Gillam, & H.A. Sedgwick, (Eds.) In the Mind’s Eye: Julian Hochberg on the Perception
of Pictures, Film, and the World. New York: Oxford University Press. Reprinted with permission)

segments along a contour, along with some marking of transition zones between
constant curvature segments. (For working models of this scheme, see [12]).

As shown in Fig. 18.12, arclets have the interesting property of permitting con-
current scale-variant and scale-invariant coding of contours. A problem for under-
standing invariance in human perception is that standard mathematical notions of
curvature do not capture shape invariance. A large circle and a small circle obvi-
ously have the same shape, but they have very different curvatures (where curva-
ture is given by the change in contour orientation per unit arc length). Typically,
use of relative curvatures or normalization by some overall object size measure-
ment is used to compare shapes in computer vision and some biological vision work
[8, 22].

Arclets offer a means of achieving scale invariance in a more natural way. Be-
cause orientation-sensitive units in early visual areas exist across a range of spatial
scales, arclets would similarly span this range. An interesting invariant characterizes
arclets made of differently sized elements that are related by the same turn angle.
As long as all elements within each arclet are of equal size, all arclets based on
the same turn angle between oriented elements represent the same scale-invariant
shape, i.e., shape pieces that differ only by a scalar. This is shown in Fig. 18.12,
in which two arclets at different scales both encode segment lengths including the
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same number of oriented units in a chain having the same turn angle. Activating a
best-fitting arclet at any scale therefore signals a unique number (based on the turn
angle) that specifies scale-invariant shape for that part of the contour. Two circles of
different sizes, for example, will have contours that best match arclets at different
scales, but both arclets will have the same turn angle.

Remarkably, this property of obtaining size invariance for free comes from the
use of oriented segments of finite lengths to encode curvature. Mathematically, a
perfect description of a curve would have infinitesimal segments; orientation is con-
stantly changing along a curve! Approximating curvature using units sensitive to
orientations that are constant along their lengths would seem a necessary but re-
grettable compromise in encoding. It is, however, this characteristic that allows a
scale-invariant curvature property to emerge automatically. Our analysis is consis-
tent with the fact that the size of oriented units in human vision co-varies with their
spatial frequency.

In Fig. 18.12, the two ellipses, having the same shape but different sizes, each
have a constant curvature segment that is shown as encoded by arclets with the
same turn angle and the same number of participating units (length). At the level of
a scale-specific representation (allowing us to see that the two ellipses are different
in size), the scale-specific arclet representation preserves the turn angle information
and the scale of the elements in the best fitting arclet. At this level, the large ellipse
is shown as having scale 3k and the smaller ellipse as having scale k. The scale
invariant representation, in which the shape of the corresponding segment of each
ellipse is encoded identically, simply drops out the scale term. Curved segments
having the same turn angle and comprised of the same number of units specify the
same perceived shape (relative curvature).

Because the arclets are encoding change information (turn angles), orientation
invariance also comes naturally with this form of representation. Orientation invari-
ance has limits in human form perception [43]. Analogous to the concurrent scale-
variant and scale-invariant encoding, absolute orientation information of segments
is likely preserved for some purposes, including form coding that has privileged
reference axes.

Garrigan & Kellman [12] discuss alternative versions of an arclet-based code that
trades off between complexity (in terms of number of parts) and fidelity (in terms
of how faithfully the code represents the contour). Most contours in the world do
not consist of constant curvature segments (as is true of the ellipse in Fig. 18.12),
but they could be approximated to any level of precision by many small constant
curvature pieces. A simpler code in terms of constant curvature segments would
have fewer segments but more distortion. It seems likely that the precision of contour
coding varies with attention and task demands.

There are alternative possibilities for early symbolic encoding of contours. Codes
that utilize more complicated primitives, e.g., any spline fitting model, will outper-
form the arclet-based approach in some cases, but also have a number of shortcom-
ings when considered as a model of contour shape representation that can handle the
shape-related problems the human visual system encounters under normal viewing
conditions. Consider, e.g., recognizing that one contour segment is part of another
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contour. More simple shape primitives (like the arclets) are less sensitive to long-
range relationships along the contour, a characteristic that may be critical for match-
ing the representation of a smaller contour segment to part of the representation of
a larger contour.

The simplicity of the arclet representation is also an advantage as the problem of
shape representation is scaled up to more ecological shapes. Contour shape repre-
sentation likely precedes intermediate representations (e.g., surface shape) and the
representation of the shapes of behaviorally important objects that may have addi-
tional complexities (e.g., an animal with articulating parts). A simpler code that does
not leverage some of the more complicated, perhaps distal relationships among the
features of a contour may be more robust when these additional complexities are in-
cluded. Consider the problem of articulating parts. A shape code that represents the
bounding contour of an object with a very small set of relatively complicated con-
tour shape primitives will have little relationship to the representation of the bound-
ing contour of that same object if one part of the object unexpectedly moves. In
sum, besides the tradeoff between fidelity and complexity, there is likely a tradeoff
between efficiency and stability. The arclets are not the most efficient representa-
tion of contour shape, but they may lead to a more stable representation than more
sophisticated primitives that leverage regularities that do not persist across viewing
conditions.

18.12 Evidence for Constant Curvature Coding in Human Shape
Perception

The arclets approach to constant curvature encoding of contours offers an example
of how subsymbolic encoding might lead to more abstract shape codes. This specific
proposal of constant curvature coding is also consistent with a variety of evidence
in human vision, including results of recent research.

Pizlo, Salach-Golyska, & Rosenfeld [41] compared detection performance for a
curve formed from dots arranged in straight lines, dots arranged in circular arcs,
and dots arranged in various types of irregular paths. They found that straight lines
were easiest to detect, but that circular arcs were easier to detect than irregular paths
(provided the change in curvature along the irregular path was not too small). Pizlo,
et al. also found that circular arcs were significantly easier than all the irregular
paths they tested when the subject was given prior information about the shape of
the target. These results are consistent with the importance of constant curvature
extraction and memory in shape perception.

More recently, Achtman, Hess, & Wang [1] used a Gabor-path detection
paradigm and showed that circular paths were more easily detected than radial or
spiral paths. Similar detection threshold advantages for circles have been found
using Glass patterns [35, 45, 53]. Other evidence, however, suggests that the prim-
itives for form perception may include both circular and spiral pooling mecha-
nisms [52].
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Fig. 18.13 Stimuli in experiments on constant curvature segment coding. Shape 1 is composed of
five circular segments with differing radii. Each segment has constant curvature. Scaling horizon-
tally and vertically by the same amount preserved the constant curvature (scale B), whereas scaling
along the two dimensions by different amounts produces regions of non-constant curvature (scales
C and D). These are all “matching” shapes. Shape 2 is created by changing the curvature of one of
the circular segments of Shape 1 and is a “non-match” shape. (From P. Garrigan and P.J. Kellman,
2011, Perception, 40(11), p. 1297. Reprinted with permission)

Neurophysiological evidence also supports a special role for constant-curvature
encoding in shape perception. Single cell recordings in macaque monkeys are con-
sistent with the idea that intermediate visual areas such as V4 may be representing
object-oriented contour curvature [38–40]. These investigators suggest that repre-
sentations of overall shapes can be derived from the collective output of such cells.

In recent psychophysical work, Garrigan and Kellman [12] used open contours to
investigate the role of constant curvature in shape representations. Subjects judged
whether two sequentially presented contour segments were the same or not, allow-
ing for scale, rotation and translation transformations. The stimuli were created by
combining five circular segments of differing radii and spans (Fig. 18.13). Because
they were constructed from circles, each segment had a constant curvature. Scal-
ing the shape by an equal amount horizontally and vertically preserved the constant
curvature, while scaling by different amounts along each dimension produced non-
constant curvature segments. Non-matching shapes were created by changing the
curvature of one of the circular segments (see Shape 2, Fig. 18.13).

Subjects were reliably more accurate in matching constant curvature shapes than
non-constant curvature shapes. Even when all transformations were removed so that
the two stimuli were exactly identical, subjects were more accurate in matching con-
stant curvature shapes, when shapes had to be compared across a retention interval
of 1000 ms. Similar recognition performance was observed for both shape types,
however, when they were compared at the same size and viewpoint and the reten-
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tion interval was reduced to 500 ms. These findings are consistent with a symbolic
encoding of 2-D contour shapes into constant curvature parts when the retention in-
tervals over which shapes must be stored exceeds the duration of initial, transient,
visual representations.

These experiments and the arclets model provide a plausible proposal for the
how a location-specific, subsymbolic representation might transition to an abstract,
symbolic one. Local edge information may be integrated into a scale and rotation
invariant representation of contour curvature. They represent modest steps, as ef-
forts to understand abstraction in perceptual representations is a multifaceted, chal-
lenging, and ongoing effort. These proposals do, however, offer an existence proof
related to some of the most open-ended questions in understanding perceptual rep-
resentations: How does the visual system construct abstract, flexible, functionally
useful shape representations from the early encoding of local, literal image proper-
ties? Constant curvature representations of contours are computationally possible,
and consistent with both properties of early cortical units in vision and some results
suggesting curvature coding in visual area V4.

18.13 Connecting Contour Interpolation and Shape
Descriptions

Consistent with the complexity of problems of contour, object, and shape percep-
tion, even this short overview has covered a lot of ground. We noted the relevance of
interpolation processes to shape, in that shape descriptions typically encompass not
image fragments, but the outputs of object formation processes. We then focused on
representations of contour shape, which the visual system may obtain in symbolic
form by recoding object contours in terms of constant curvature parts. Figure 18.14
provides an example pulling together these themes, using the picture of a cow from
Fig. 18.3. The cow’s partially occluded head in the original image (Fig. 18.14A) is
shown represented as a completed, constant-curvature based shape representation
(Fig. 18.14B). Primary edges were found using a version of the Canny edge detec-
tor [7]. (This approach was used for simplicity here, although its outputs are highly
consistent with some models that utilize neutrally plausible local units to do initial
edge finding (e.g., [23]).) In Fig. 18.14B, the edges of the cow’s head are shown
after recoding as constant curvature segments, consistent with the contour curva-
ture model of Garrigan & Kellman [12]. Dotted lines indicate amodally completed
contours; these have been interpolated following the rules of contour relatability,
with the resulting interpolated contours also represented with constant curvature
parts. The interpolation model and the contour shape model are guaranteed to be
consistent, as any interpolated contour consistent with relatability can be described
uniquely as consisting of one zero curvature and one constant curvature segment
([29], cf., [51]).
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Fig. 18.14 Example of interpolation and constant curvature coding in shape perception. The
cow’s partially occluded head in the original image (A) is shown represented as a completed,
constant-curvature based shape representation (B). Primary edges were obtained from the raw im-
age using a common edge-detection operator. Edges of the cow’s head in the image on the right
have been recoded as constant curvature segments, consistent with the contour curvature model of
Garrigan & Kellman [12]. Dotted lines indicate amodally completed contours following the rules
of contour relatability, with the resulting interpolated contours also represented with constant cur-
vature parts. The cross-hatched area in the display on the right indicates an area where edges and
textures are ambiguous and do not permit clear interpolation. (See text)

This example is not meant to minimize challenging problems that remain in un-
derstanding the transition from subsymbolic to symbolic coding, even in the rela-
tively simple domain of contour perception. As we have discussed elsewhere, al-
though some extant interpolation models can use raw images as their input, they
will be improved when certain symbolic encoding is added, such as representing a
unique edge orientation at each contour junction rather than a distribution of ori-
entation activations (for discussion, see Kalar et al. [23]). Natural scenes may also
have areas for which the outputs of edge finding and/or interpolation models are
indeterminate, as in the cross-hatched area indicated in Fig. 18.14B. Sometimes
these outputs are likely consistent with some indeterminacy in actual perception,
but in other cases they likely indicate limitations of current models. Regarding the
recoding of contours into segments of constant curvature, the model of Garrigan &
Kellman [12] is a working algorithm that takes a contour specified in terms of local
orientation values and produces constant curvature segments as outputs, but no full
implementation yet exists in terms of attaining each local orientation value from the
outputs of separate, local, orientation-sensitive units at multiple scales. Moreover,
versions of the model vary in their tradeoff of fidelity (minimizing differences from
the input image, but requiring greater numbers of segments in the approximation)
and economy (accepting limits in fidelity due to some capacity or complexity limit).
We have proposed that the visual system may similarly adjust contour shape cod-
ing for greater fidelity or greater economy [12], depending on task demands and
attention, but the specifics are not known.
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18.14 Summary

Shape perception and representation pose fascinating challenges in vision science.
In this article, we have focused on perhaps the greatest theoretical chasm in under-
standing shape: the origin of abstract, symbolic representations. Perceived shape is
not a readout of image characteristics, nor is it a collection of activations of early
orientation-sensitive units. Image regions do not receive shape descriptions in hu-
man perception; rather, the shapes we record relate to objects formed by interpo-
lation processes that may connect various separated regions. Both the shapes of
interpolated contours and of real contours share representational formats that make
possible invariant shape recognition despite certain scale and orientation changes,
matching of shapes despite different constituent elements, and extraction of gist in
shape encoding, allowing detection of shape similarities. Understanding the nature
of these symbolic representations, and how they are constructed from earlier encod-
ings, is a complex task. Vision science is fortunate in having some understanding of
initial subsymbolic encoding by neural units, and having also a number of middle
or high-level vision models that begin with representations that are already abstract.
The challenge is to discover how these meet in the middle—how we attain more
global, symbolic, interpreted descriptions from local, non-symbolic encodings. For
contour and object boundary representations, extraction of constant curvature seg-
ments as basic tokens of early symbolic representations may comprise an important
step, one consistent with psychophysical and neurophysiological data, and one that
illustrates how the visual system may approach “the middle game.”
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Chapter 19
3D Face Reconstruction from Single Two-Tone
and Color Images

Ira Kemelmacher-Shlizerman, Ronen Basri, and Boaz Nadler

19.1 Introduction

This chapter addresses the problem of reconstructing the three-dimensional shape
of faces from single images. We present an algorithm that uses prior knowledge of
faces—a single shape model of a face—to eliminate the ambiguities in the recon-
struction [13, 14]. The algorithm achieves veridical reconstruction results on images
taken under a wide range of viewing conditions. In addition, it can reconstruct the
shape of a face from two-tone (“Mooney”) images of faces [15]. Our algorithm
demonstrates the importance of “top-down” information in 3D shape reconstruc-
tion.

The extent to which internal representations affect perception is fundamental to
the understanding of cognitive processes. Perceiving the appearance of a 3D shape
in an image can be complicated as shapes are distorted by projection and their ap-
pearance is affected by lighting as well as by their color and texture. Yet people
can readily perceive shape (perhaps qualitatively) merely from one image. A funda-
mental question therefore is whether the perception of shape is guided primarily by
bottom-up processes, in which only image intensities are used along with generic
assumptions regarding the statistics of natural scenes, or, alternatively, if it is dic-
tated by top-down processes, which may be driven by memory and attention and
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Fig. 19.1 Two-tone
(“Mooney”) face images [1].
These images may initially
seem difficult to interpret due
to poor visual detail, but
eventually lead to a rich and
stable percept of a face

preceded by a preliminary recognition process. The example of random dot stere-
ograms [12] suggests that the perception of 3D shape in stereo vision is governed
by bottom-up processes. In contrast, two-tone images (see Fig. 19.1) suggest that
familiarity with an object can enhance the perception of its shape.

Two-tone images were introduced in the 1950s by Craig Mooney [20] to in-
vestigate the development of shape perception in children [20, 28]. A number of
recent studies suggest that the perception of Mooney images is driven by memory
and attention and preceded by a preliminary recognition process. In particular, it
was shown that people usually fail to perceive upside-down faces in two-tone im-
ages, arguably due to their unfamiliarity [8, 23], and that pre-exposure to original
gray level (or color) image facilitates their recognition [6, 9]. Moreover, Moore and
Cavanagh [21] showed that shape primitives (e.g., generalized cones) are rarely per-
ceivable in two-tone images, both in isolation and in novel configuration with other
primitives, even when the image contains explicit hints about the direction of the
light source. These shapes, however, can readily be interpreted from gray level im-
ages and even from degraded line drawings. Familiar classes of objects, in contrast,
are much more often perceivable in two-tone images. Even volumetric primitives of
faces, if rearranged, cease to be perceived as coherent 3D objects. These findings
support the view that the interpretation of Mooney images is guided by top-down
processes. Here we provide further support for this claim by showing from a math-
ematical standpoint that, in the absence of a model, the interpretation of Mooney
images is highly ambiguous.

Our further aim in this chapter is to provide an example of how top-down pro-
cessing can play a role in the reconstruction of 3D faces. We focus on faces, as the
overall similarity of faces [11] can provide a strong prior for reconstruction. Yet
despite this similarity the reconstruction task is hard, since people are sensitive to
minute shape differences across different individuals. 3D reconstruction of faces
from single images can potentially be achieved by applying shape-from-shading
(SFS) algorithms [10]. However, SFS requires knowledge of the lighting, albedo,
and boundary conditions and is ill-posed in the absence of this information. The
approach presented in this chapter uses prior knowledge about faces to achieve a
well-posed formulation in which this missing information can be inferred. For a
prior, we use a single 3D reference face model of either a different individual or a
generic face. Our method assumes Lambertian reflectance (indeed, most face recon-
struction methods assume that faces can be modeled accurately as Lambertian [19]),
light sources at infinity, and rough alignment between the input image and the ref-
erence model. To model reflectance, we use a spherical harmonic approximation
(following [3, 22]), which allows for multiple unknown light sources and attached
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shadows. We note that other work used face priors (although not in the context of
Mooney images), by combining information from hundreds of faces (e.g., [4, 5]).
We find it interesting that veridical reconstructions can be obtained with just one
model.

19.2 Reconstruction Ambiguities in Two-Tone Images

In this chapter, we ask whether a unique 3D shape can be recovered from a single
Mooney image. We examine this question under typical SFS settings. We assume
a single point light source of known magnitude and direction, the observed surface
is Lambertian, and albedo is uniform (or otherwise known). Our formulation also
accounts for boundary conditions. We focus on the Mooney transition curve, i.e.,
the boundary between bright and dark regions in the image, as the information con-
tained in a Mooney image is captured almost entirely in this curve. We show that
reconstruction is not unique even along this curve, indicating that top-down infor-
mation is essential for shape perception.

Consider a gray level image I (x, y) of a smooth Lambertian surface z(x, y)

with uniform albedo obtained with a directional illuminant l ∈ �3. The intensi-
ties I (x, y) is given by I = lT n, where n = n(x, y) denotes the surface normal

at (x, y), n= (1/
√
z2
x + z2

y + 1)(−zx,−zy,1). A two-tone image is obtained from

I by thresholding the image I ≥ T by some constant T > 0. Without loss of gener-
ality, we assume below that T is known, and that the light source direction coincides
with the viewing direction, so that l= (0,0,1). Note however that our analysis can
be applied to any directional source by a change of coordinates, as in [17], and the
magnitude of the light can be scaled by appropriately scaling T . With these assump-
tions, we obtain

I (x, y)= 1
√
z2
x + z2

y + 1
, (19.1)

which can be expressed in the form of an Eikonal equation

|∇z|2 =E(x,y) (19.2)

on some closed domain Ω ⊂ �2, E = (1/I 2) − 1. Such an Eikonal equation can
be solved for example by applying an upwind update scheme using a Dijkstra-like
algorithm [17, 24, 27]. In general, such solutions require Dirichlet boundary condi-
tions so that z needs to be specified at every local minimum of E (maximum of I )
in Ω . These may include minimal points in Ω , as well as points along the boundaries
of Ω . Our analysis therefore considers the introduction of boundary conditions.

Consider two surfaces z and z′ that respectively produce two images I and I ′
(and hence E and E′) which are “Mooney equivalent.” By this we mean that |∇z|2 =
E(x,y) and |∇z′|2 = E′(x, y) and I = I ′ = const along an isoluminance curve γ .
Some boundary conditions may also be specified, so that z = z′ (and at internal
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points also |∇z|2 = |∇z′|2 = 0) in a set B ⊂ Ω . Let α(x, y) = z′ − z, our goal is
given z to characterize the possible assignments of α along γ .

Subtracting the two eikonal equations for z and z′ results in a new eikonal equa-
tion in α

|∇α|2 + 2∇α · ∇z=E′ −E. (19.3)

To solve for α, we introduce a (local) change of coordinates (x, y)→ (t, s) such
that αs = 0 and αt �= 0. In this coordinate frame, t points in the direction of the gra-
dient of α, which is also the characteristic direction of (19.3). Consequently, (19.3)
becomes

α2
t + 2ztαt −

(
E′ −E

)= 0. (19.4)

This equation is quadratic in αt and can have up to two real solutions,

αt =−zt ±
√
z2
t +E′ −E. (19.5)

We can use this equation to derive a general solution for α in the entire domain Ω

by integrating (19.5) with respect to t along the characteristic directions as follows

α(t, s)=−z(t, s)+ z(t0, s)±
∫ t

t0

√
z2
t +E′ −E dt, (19.6)

where the point (t0, s) ∈ B. One can readily verify that indeed α(t0, s)= 0.
Clearly, given a Mooney image we cannot use (19.6) to recover α, since in gen-

eral neither E nor E′ are known. However, along the transition curve, γ , we know
that E =E′, and so (19.5) implies that αt |γ =−zt ± zt ∈ {0,−2zt }. In general, we
are interested here in the negative solution αt |γ =−2zt since only this solution can
produce a nontrivial ambiguity. We next use this solution to derive an explicit solu-
tion for α along the transition curve γ . Denote the arclength parameterization of γ
by σ , and the angle between the tangent to γ and the t direction by θ(σ ). Then

α|γ =−2
∫

γ

zt cos θ dσ + α(σ0). (19.7)

This solution implies that if we choose a set of characteristic directions for α along
the transition curve γ then there can be exactly two shapes along this curve that
are consistent with the input two-tone image, namely z and z′ = z+ α. In general,
however, we are free to choose any set of smoothly varying characteristic directions
along γ and this way produce many additional solutions. A valid solution for α

therefore must be consistent with the boundary conditions in B, if such conditions
are provided, and its gradients must coincide with some smoothly varying direc-
tional derivatives at points along γ . This implies in general that many ambiguities
exist even if we only restrict our attention to the Mooney transition curve.
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19.3 Shape Reconstruction with a Prior Model

In the remainder of this chapter, we introduce an algorithm for reconstructing the
3D shape of a face from a single image by exploiting our familiarity with faces as
a class. Previous methods attempted to learn the set of allowable reconstructions
from a large number of 3D laser-scanned faces. This was achieved by embedding
all 3D faces in a linear space [2, 4, 26, 30] or by using a training set to determine
a density function for faces [25, 29]. Similarly, Active Shape Models [5, 7, 18]
seek to construct image-based, linear 2D representations of faces by exploiting large
datasets of prototype faces for face recognition and image coding. In contrast to this
work our method uses only a single reference model, and by that avoids the need to
establish pointwise correspondence between many face models in a database.

Consider an image I (x, y) of a face whose shape z(x, y) is defined on a compact
domain Ω ⊂ �2. We assume that the face is Lambertian with albedo ρ(x, y), and
that lighting can be an arbitrary combination of point sources, extended sources and
diffuse lighting that need not be known ahead of time. Under these assumptions,
Lambertian surfaces reflect only the low frequencies of lighting [3, 22], and so the
reflectance function can be expressed in terms of spherical harmonics as

R
(
n(x, y); l)≈

N∑

n=0

n∑

m=−n
lnmαnYnm

(
n(x, y)

)
, (19.8)

where lnm are the coefficients of the harmonic expansion of the lighting, αn are fac-
tors that depend only on n and capture the effect of the Lambertian kernel acting
as a low pass filter, so αn becomes very small for large values of N , and Ynm(x, y)

are the surface spherical harmonic functions evaluated at the surface normal. Be-
cause the reflectance of Lambertian objects under arbitrary lighting is in general
very smooth, this approximation is highly accurate already when a low order (first
or second) harmonic approximation is used.

For simplicity, we model the reflectance function using a first order harmonic
approximation. In [14] we present a more general formulation using also the second
order harmonics. We write the reflectance function in vector notation as

R
(
n(x, y); l)≈ l T Y

(
n(x, y)

)
, (19.9)

with Y(n) = (1, nx, ny, nz)T , where nx,ny, nz are the components of the surface
normal n and l is a four vector. The image irradiance equation is then expressed as
I (x, y)= ρ(x, y)R(x, y).

We are further given a reference face model and denote respectively by zref(x, y),
nref(x, y), and ρref(x, y) the surface, the normals, and the albedo of the reference
face. We use the reference model to regularize the reconstruction problem. To that
end, we define the difference shape and albedo as dz(x, y) = z(x, y) − zref(x, y)

and dρ(x, y)= ρ(x, y)− ρref(x, y) respectively and require these differences to be
smooth. We are now ready to define our optimization function:

min
l,ρ,z

∫

Ω

(
I − ρl T Y(n)

)2 + λ1(�G ∗ dz)2 + λ2(�G ∗ dρ)2 dx dy, (19.10)
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where�G∗ denotes convolution with the Laplacian of a Gaussian, and λ1 and λ2 are
positive constants. Below, we refer to the first term in this integral as the “data term”
and the other two terms as the “regularization terms”. Evidently, without regulariza-
tion the optimization functional (19.10) is ill-posed. Specifically, for every choice of
depth z(x, y) and lighting vector l it is possible to prescribe albedo ρ(x, y) to make
the data term vanish. With regularization and appropriate boundary conditions, the
problem becomes well-posed. Note that we chose to regularize dz and dρ rather than
z and ρ in order to preserve the discontinuities in zref and ρref.

We assume the input image is roughly aligned to the reference model and ap-
proach this optimization by solving for lighting, depth, and albedo separately.

Step 1: Recovery of Lighting Coefficients In the first step, we attempt to recover
the lighting coefficients l, by fitting the reference model to the image. To this end,
we substitute in (19.10) ρ→ ρref and z→ zref (and consequently n→ nref). At this
stage both regularization terms vanish, and only the data term remains:

min
l

∫

Ω

(
I − ρref l T Y(nref)

)2
dx dy. (19.11)

In discrete form this produces a highly over-constrained linear least squares opti-
mization system with only four unknowns, the components of l, and can be solved
simply using the pseudo-inverse. Our experiments indicate that, in practice, the er-
ror of recovering lighting using the face of a different individual is sufficiently small
(around 4–6°).

Step 2: Depth Recovery We continue using ρref(x, y) for the albedo and turn to
recovering z(x, y). Below we exploit the reference face to further simplify the data
term. The data term thus minimizes the squared difference between the two sides of
the following system of equations

I = ρrefl0 + ρref

Nref
(l1zx + l2zy − l3), (19.12)

where Y(n) = (1, zx/N, zy/N,−1/N)T and we use Nref(x, y) to approximate

N(x,y)=
√
z2
x + z2

y + 1. Replacing zx and zy , for example, by forward differences,

the data term thus provides one equation for every unknown z(x, y) (except for the
pixels on the boundary of Ω). Note that by solving directly for z(x, y) we in fact en-
force consistency of the surface normals (“integrability”). Clearly, (19.12) is linear
in z(x, y) and so it can be solved using linear least squares optimization.

Next, we consider the regularization term λ1�G∗ dz. We implement this term as
the difference between dz(x, y) and the average of dz around (x, y) obtained by ap-
plying a Gaussian function to dz. Consequently, this term minimizes the difference
between the two sides of the following system of equations

λ1
(
z(x, y)−G ∗ z(x, y))= λ1

(
zref(x, y)−G ∗ zref(x, y)

)
. (19.13)

This system too is linear in z(x, y). The second regularization term vanishes since
we have substituted ρref for ρ.
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Boundary Conditions for Depth Recovery For boundary conditions, we assume
in our algorithm that the gradient of the surface in the direction perpendicular to the
exterior boundary vanishes (i.e., the surface is planar near the boundaries; note that
this does not imply that the entire bounding contour is planar). Specifically, we add
for each boundary point the following constraint

∇z(x, y) · nc(x, y)= 0. (19.14)

where nc(x, y) is a two-dimensional vector representing the normal to the bounding
contour. These constraints will be roughly satisfied if the boundaries are placed
in slowly changing parts of the face. They will be satisfied for example when the
boundaries are placed along the cheeks and the forehead, but will not be satisfied
when the boundaries are placed along the eyebrows, where the surface orientation
changes rapidly.

Finally, since the obtained equation system involves only partial derivatives of
z(x, y), while z(x, y) itself is absent from these equations, the solution can be ob-
tained only up to an additive factor. We remedy this by arbitrarily setting one point
to z(x0, y0)= zref(x0, y0).

Step 3: Estimating Albedo Using the data term the albedo ρ(x, y) is found by
solving the following equation

I (x, y)= ρ(x, y)l T Y(n). (19.15)

The first regularization term in (19.10) is independent of ρ, and so it can be
ignored. The second term optimizes the following set of equations

λ2�G ∗ ρ = λ2�G ∗ ρref. (19.16)

These provide a linear set of equations, in which the first set determines the
albedo values, and the second set smoothes these values. We avoid the need for
boundary conditions simply by terminating the smoothing process at the boundaries.

19.4 Experiments

We demonstrate our algorithm on photographs taken under uncontrolled view-
ing conditions. Additional experiments and quantitative comparisons can be found
in [14, 15]. We align the input image to the reference model by manually marking
five points (the two centers of the eyes, the tip of the nose, the center of the mouth
and the bottom of the chin), and then determine a 2×4 affine transformation, which
aligns 3D points on the reference model to marked 2D points in the input image. Af-
ter the alignment procedure the images are of typical size of 360× 480 pixels. Our
MATLAB implementation of the algorithm takes about 9 seconds on a quad-core
AMD processor 2354 1100 MHz Linux workstation.
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Fig. 19.2 A face model from the USF dataset used as a reference model in our experiments. The
model is shown with uniform texture (left) and with an image overlay on the model (right)

Fig. 19.3 Reconstruction results on images from the YaleB dataset (left column) and images pho-
tographed by us (right column). In each example we present the input image, our 3D shape recon-
struction, and an image overlay on the reconstructed shape

Fig. 19.4 Reconstruction from color (top) and two-tone (bottom) images. Each pair shows an
input image and a reconstruction result

In Figs. 19.2–19.4, we show a few illustrative results obtained with our algorithm.
The reference model used in our experiments is shown in Fig. 19.2. Figure 19.3
shows results on two images from the YaleB dataset and two more that were pho-
tographed by us. Figure 19.4 shows reconstruction results from three color images
and from three two-tone images obtained by thresholding the intensity values.
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We can see that convincing reconstructions are obtained for these images despite
differences in identity, head orientation and facial expressions relative to the ref-
erence model. In addition, our reconstruction results for the two-tone images are
similar to those obtained for the color images. These results are encouraging given
the ill-posedness of the single view reconstruction problem and particularly recon-
struction from two-tone images.

19.5 Conclusion

In this chapter, we explored the role of top-down information in the 3D reconstruc-
tion of faces from single images. We provided mathematical evidence that two-tone
images provide ambiguous shape information and presented a novel method for re-
construction of faces from single image by using only a single reference model. Our
results demonstrate that familiarity with faces as a class can help overcoming the
difficulties in applying SFS algorithms and achieve veridical reconstructions even
for Mooney images in which only two-tone intensity information is available.

We can foresee a number of potential directions to further extend over our
method. One natural extension is to incorporate information from several images of
the same individual, as in [16]; this could also address degeneracies of the current
approach occurring under particular lighting conditions (see more details in [14]).
Additionally, while facial expression is captured in the reconstruction, this is not
directly targeted by the method and pixel-wise correspondence is not established.
Establishing such correspondence can be useful also if we wish to generalize our
ideas and apply them to other classes of objects. Finally, it will be interesting to
further explore to what extent our algorithmic objectives are indeed achieved by the
visual cortex.
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Chapter 20
Perception and Action Without Veridical Metric
Reconstruction: An Affine Approach

Fulvio Domini and Corrado Caudek

The variety of motor tasks we often carry out effortlessly and unconsciously are
the result of very complex mechanisms that utilize visual information. These motor
tasks depend on decisions that are based on perceptual judgments. Both perception
and action require efficient and robust encoding of visual information, the nature
of which is still debated. The large majority of researchers postulate that the visual
system derives a veridical metric representation of the environment from retinal
images. According to this approach, it is the veridical metric representation that
allows the correct execution of motor actions and accurate perceptual judgments.

We argue, however, that the visual system does not aim at a veridical metric
analysis of the visual scene. Our main claim, instead, is that the brain extracts from
retinal signals the local affine information of environmental objects. This informa-
tion lacks the specification of metric properties, but is a sufficiently rich description
of the 3D shape of objects to serve the requirements of a robust and functional per-
ceptual experience. Most importantly, this information is sufficient for enabling the
correct execution of motor actions.

In support of our claim, after a brief description of what metric reconstruction
entails (Sect. 20.1), we will present empirical evidence from published studies that
clearly shows the fallibility of both perceptual and motor systems in metric tasks
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Fig. 20.1 Left: Information about the 3D structure of the three-rod configuration can be provided
by binocular disparities, specified by the two different views of the left (L) and right (R) eyes.
The same information can also be specified by the change in the monocular retinal projection
of the three-rod configuration induced by a change in viewpoint from L to R. Center: Binocular
disparities and retinal velocities can be defined as the difference between the visual angles at R (αR)
and at L (αL). Right: If the vergence angle of the eyes (μ) or the lateral motion of the observer
(T ) are unknown then the same binocular disparities and retinal velocities are compatible with the
projection of an infinite family of 3D structures

(Sect. 20.2). We will then describe a recent theory of 3D shape reconstruction that
is based on a non-metric analysis of visual information and redescribe the results of
Sect. 20.2 in light of this novel account (Sect. 20.3).

In all three sections, we will be considering the example of perceiving and in-
teracting with an object as the three-rod configuration in Fig. 20.1 and will limit
our discussion to two sources of 3D information: binocular disparities and retinal
velocities.

20.1 Veridical Metric Structure from Binocular Disparities and
Retinal Velocities

Metric properties are not directly specified by retinal information. Binocular dispar-
ities and retinal velocities must be scaled to yield a veridical representation of the
scene in Fig. 20.1, such as the correct estimate of the egocentric distance of the ob-
ject (zf ), depth extent ($z) and size ($x). In Fig. 20.1 (left and center) the relative
disparity (d) between the front rod and one of the two flanking rods is defined as the
difference αR − αL, where αR and αL are the visual angles subtended by the two
rods on the right and left eye, respectively. d is related to the depth $z of the ob-
ject, but the same disparity can be produced by larger objects that are further away
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Fig. 20.2 Top: Retinal signals (d or v) specify an infinite family of 3D structures (gray). The
precise estimate of retinal signals in conjunction with the precise estimate of extra-retinal signals
(μ or T ) allows the computation of the veridical metric structure (black). Bottom left: The precision
of a depth estimate is hindered by the measurement noise of retinal and extra-retinal signals. In this
example, depth-from-disparity (top) is more precise than depth-from-velocities (bottom). Bottom
right: Combining the depth estimates from multiple signals in a statistically optimal fashion yields
a more precise depth estimate

from the observer or smaller objects that are closer to the observer (Fig. 20.1, right).
Without a specification of the distance to the object (zf ), $z cannot be inferred
from d . Retinal velocities are very similar to binocular disparities in the way they
specify metric depth. In Fig. 20.1, the positions L and R can be thought of as the
locations of one eye at two different instants of time (tL and tR), resulting from a
lateral movement of size T. The relative velocity between the front rod and a flank-
ing rod, defined as v = αR−αL

tR−tL , specifies $z only up to a scaling factor that depends
again on the distance zf and the observer’s motion T .

The correct scaling factors for metric depth estimates are determined by extra-
retinal information. zf can be estimated by the vergence angle μ, encoded by the
efferent signals related to the eyes’ rotation and by ocular accommodation. Assum-
ing stationarity of the object, T could in principle be obtained via an efferent copy of
the motor commands sent by the central nervous system to the muscles responsible
for the observer’s lateral movement.

In Fig. 20.2 (top), the depicted 3D configurations of the three rods correspond
to some, among infinite, different scalings; however, only one scaling is veridical
(black triangle). In an ideal world, where measurements of retinal and extra-retinal
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signals are accurate and infinitely precise the scaling of disparities and velocities
yields the veridical solution. In reality, both the measurement of retinal signals and
the estimates of scaling factors are subject to measurement noise. This in turn leads
to uncertain estimation of the veridical metric depth $z, whose likelihood is usu-
ally modeled as a Gaussian distribution centered at the true depth (Fig. 20.2, bottom
panels). Depending on the specific viewing conditions, different signals are subject
to different levels of uncertainties. The most popular theory of cue integration pos-
tulates that the visual system combines separate estimates in a way that takes into
account the reliability of each estimate; this gives rise to a more reliable combined
estimate. This theory now belongs to a more general framework: modeling per-
ception as a Bayesian inference. This framework postulates that vision deals with
uncertainty in a statistically optimal fashion, with the goal of maximizing both the
accuracy and the precision of metric estimates ([1] for a review).

According to this framework, veridical metric reconstruction is the basic require-
ment for perception and action. Once a scene, or parts of a scene that are directly
relevant to a specific task, are represented in a metric fashion, an agent can make
accurate perceptual judgments or plan a motor action.

The assumption of veridical metric estimates underlies most studies on 3D shape
perception and it is believed to be true at least for mechanisms involving motor
actions. According to the dual visual system theory, precise metric judgments are
not fundamental for a functional perceptual system. Perception can be thought of
as the conscious representation of objects and their relationships, that allows us to
make decisions about our future actions. Since this representation must be robust
and invariant in many viewing conditions, it may be more general and abstract than
a metric representation. Once we perform an action like grasping, however, we have
to be able to match our finger grip configuration to that of the object we intend to
grasp. The dual visual system theory of perception and action therefore postulates
the existence of two dedicated sub visual systems [2]. The perceptual system de-
livers a non-metric representation of the environment, whereas the action system
performs a precise metric reconstruction of objects in the scene.

20.2 Is Veridical Metric Structure Used or Needed?

We argue that neither perceptual judgments nor motor actions are based on a veridi-
cal metric analysis of the visual scene. This claim stems from a series of empirical
studies showing a systematic failure in perceptual and motor tasks that do in fact
require a veridical metric representation of environmental objects. Thus, percep-
tual distortions in metric tasks are the norm and not the exception. Large biases are
found, for example, when observers are asked to judge the distance between pairs
of points, the orientation, or the curvature of smooth surfaces [3–6]. These biases
persist regardless of the number of cues present that specify the 3D shape of an
object [7]. Distortions are found for virtual as well as real objects [8, 9]. Motor
actions, as described in the following sections, are not immune to large biases ei-
ther. Instead, they follow a pattern of systematic errors, that cannot be reconciled
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with a theory postulating a veridical reconstruction of metric properties for the pur-
pose of an effective interaction with the environment. In the next paragraphs, we
will provide examples of these perceptual and motor failures in the specific case of
stereo and motion cues. We will then present an alternate theory of depth processing
which postulates a non metric analysis of visual information. The specific assump-
tions characterizing this theory lead to a new model of 3D processing; this can then
predict the systematic biases found in the empirical studies.

20.2.1 Perceived 3D Structure from Stereo and Motion Signals

Perceived metric properties from binocular disparities and retinal motion are not
only inaccurate, but also largely sensitive to specific viewing conditions. Depth
from stereo varies with viewing distance, revealing a systematic failure of depth
constancy. Objects appear increasingly shallow as their distance from the viewer
increases; furthermore, their depth is overestimated at close distances and underes-
timated at larger distances [10]. Depth from retinal velocities is largely dependent
on the relative motion between the observer and the distal object [11–14]. Whereas
in the case of passive viewing of moving objects it may be less surprising, (since
observers do not have access to extraretinal information), it is most striking that it
holds true in the more natural case when the observer’s self motion generates the
retinal optic flow. Indeed our recent studies indicate that extraretinal information
about the observer’s egomotion is mostly ignored by the visual system, in spite of
its potential availability [15–17].

To establish whether binocular disparities and retinal velocities undergo veridical
metric scaling, we tested depth perception on visual stimuli that were created to
simulate the viewing condition depicted in Fig. 20.1. The task was to compare the
perceived depth of a stimulus specified by only motion information with that of
a stimulus specified by only stereo information [18]. The simulated depth of the
motion stimulus was kept fixed (zv) whereas that of the stereo stimulus was varied
through a staircase procedure so to find the point (PSEd ) at which stereo and motion
stimuli were perceived to have the same depth. The graph on Fig. 20.3 (left panel)
shows the PSEs of individual observers for simulated motion depths of 2.5 mm
(small symbols) and 5 mm (large symbols), and viewing distances (zf ) of 0.5 m
(circles) and 1 m (squares). The data clearly shows a lack of accuracy and a very
large variability across observers.

In further studies, we investigated whether inaccuracy of depth judgments dimin-
ishes when the visual system has access to more sources of 3D information [7, 19].
From a computational stand point, the joint analysis of binocular disparities and
retinal velocities allows the estimation of missing scaling parameters like the view-
ing distance (zf ) and the relative motion between the observer and the distal object
(T ) [20]. This is especially important in the absence of efferent motor information
about the observer’s ego-motion. In a recent experiment, we tested whether the vi-
sual system exploits a similar mechanism [21]. Observers judged the depth of the
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Fig. 20.3 Left: Binocular depth values (PSEd ) perceptually matched to motion specified depths
(zv) of 2.5 mm (small symbols) and 5 mm (large symbols) simulated at two viewing distances
(50 cm—circles and 100 cm—squares) for individual observers. The oblique line represents veridi-
cal performance. Right: The same values re-plotted as function of a predictor based on the assump-
tion that a perceptual match is obtained when the SNR of the two signals is the same (see text)

three-rod configuration depicted in Fig. 20.1; they were asked to make judgments in
three conditions, in which only stereo, only motion or both signals specified the 3D
structure. The results plotted in Fig. 20.4 (left panel) show systematic biases of met-
ric depth estimates. As in the previous example, we found a very large inter-subject
variability. Most notably, the combined-cue stimuli were systematically overesti-
mated, showing that perceived metric depth from multiple-cues is also inaccurate.
Another important characteristic of this pattern of results is that the combined-cue
stimuli were perceived as deeper than the single-cue stimuli. This finding is in-
compatible with theories of cue-integration predicting that combined-cue estimates
are the result of a weighted sum of single-cue estimates. We replicated this basic
finding in other studies with different methodologies [19] and even with “real” 3D
structures [9].

20.2.2 Reach-to-Grasp Without Visual or Haptic Feedback

The dual visual system theory postulates the existence of two separate processes for
perception and motor action. Any distortions found in perceptual judgments should
disappear when action is involved, since precise metric estimates are required for
the correct execution of motor tasks. The results described in the next two examples,
however, clearly contradict this claim.

In a recent study observers were requested to reach for and grasp the virtual three-
rod configuration depicted in Fig. 20.1 [22]. They could view the object (which was
specified by stereo information) but not their hand. Moreover, they could not feel the
object at the end of their grasping action. We recorded both the Final Hand Position
(FHP) and the index-thumb Final Grip Aperture (FGA), with which the observers
mimicked a potential grasp. A correct FHP would indicate an accurate assessment
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Fig. 20.4 Left panels: Mean perceived depth (left) and mean Final Grip Aperture (FGA) of a
reach-to-grasp task (center) as function of simulated depth in three stimulus conditions: mo-
tion-only (grey), stereo-only (white) and combined (black). The oblique line indicates accurate
performance. For each subject and in each stimulus condition we estimated the slope of the linear
function relating perceived depth and FGA values to the simulated values. Right panel: Observed
slopes of the combined-cue condition as function of the slopes predicted by our model. The pre-
dictions are based on the assumption that depth scaling depends on the SNR of single and multiple
signals (see text) and not on the metric structure of the simulated object. Data from the perceptual
and motor tasks are represented by black and white circles, respectively

of the egocentric distance from the observer, whereas a correct FGA would reveal an
appropriate scaling of stereo information. The graphs in Fig. 20.5 show the results
of individual observers for both measures of performance. It is important to note the
large deviations from veridicality and the large inter-subject variability. Without any
feedback about the final position of hand and fingers, the target configuration was
largely missed by most observers.

Identical stimuli used in the experiment described in Sect. 20.2.1 [21] were also
used in a reach-to-grasp task. This task investigated the accuracy of grasping when
only stereo information, only motion information or a combination of motion and
stereo information specified the 3D structure. The pattern of results (Fig. 20.4, mid-
dle panel) is very similar to that of the perceptual task (Fig. 20.4, left panel). First,
FGAs were inaccurate and varied by a large amount among observers. Second,
FGAs for the combined-cue stimuli were larger than those for the single-cue stimuli;
furthermore, they indicated a large depth overestimation.
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Fig. 20.5 Final Grip Aperture (FGA, left panel) and Final Hand Position (FHP, right panel) of
a reach-to-grasp task as function of simulated depth (left) and distance (right) for each individual
subject. The oblique line represents accurate performance

20.2.3 Is Veridical Metric Reconstruction Needed?

The few examples given in the previous sections and the results of several other
studies show that accurate metric estimates are not a priority for the visual system,
neither for perception nor for action. Perhaps the most surprising findings are those
that show a systematic failure of motor tasks, casting doubt on the notion of a “met-
ric dorsal stream”. But how is it possible that we can successfully interact with the
environment without metric knowledge? The answer may be that we do not need ac-
curate metric knowledge at all. There are at least two strategies that could be adopted
by the brain to execute motor tasks without a veridical representation of objects in
the world. Both strategies capitalize on the use of visual or haptic feedback (both of
which were unavailable to the subjects in the previously described experiments).

Vision of both hand and target has been shown to play a major role in the con-
trol of reaching movements [23]. Of particular relevance is evidence that vision of
the hand is also important for very fast movements, indicating that the process of
motor control requires continuous visual feedback of the effectors, even for tasks
that were thought to be entirely preplanned. This means that within a split second,
the visual system monitors the relative position of the hand and the target; subse-
quently, it uses this information to update the motor commands. What is relevant for
the present discussion is that if both hand and fingers are visible while a grasping
action unfolds, then metric information is in theory unnecessary for a correct execu-
tion of the movement. It is sufficient that the relative distances between the fingers
and the object grasp points are nulled. In this case the scene could be scaled by any
arbitrary factors, as long as both hand and object are scaled in the same way (see
Fig. 20.6).

Another important component of each motor action is the presence of the final
haptic feedback the brain receives when a grasping action is completed. As dis-
cussed before, when subjects reach for objects within a new visual scene without
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Fig. 20.6 A precise grasping
action can take place without
veridical metric
reconstruction, only precise
affine information about hand
and object is required

vision of their hand they make large errors. However, it has been shown that after
only a few trials where they can feel some objects in the scene, reaching errors are
reduced or nulled [24]. The explanation for this effect is that when vision of the
hand is unavailable, haptic feedback allows the calibration of the visuomotor sys-
tem: after feeling an object an appropriate scaling of the scene can be applied in
order to re-adjust the motor commands.

20.3 Local Affine Information and Heuristic Scaling

In Sect. 20.1 we saw that, in addition to retinal signals, veridical metric scaling re-
quires precise extraretinal information about the egocentric location of objects in
the scene or the relative movement between the object and the observer. Retinal sig-
nals, however, directly specify non-metric 3D properties. Consider again Fig. 20.2
(top-right panel): binocular disparities and retinal velocities identify an infinite class
of possible 3D shapes that could have generated the retinal signals. All these shapes
have a similar structure but they differ in their metric properties. The structure that
is common to all the shapes is defined as the affine structure. In words: “two rods at
the same depth plane and one in front in the middle”. From a geometric perspective,
all the structures in Fig. 20.2 (top-right panel) have the same affine structure since
they are related to each other through a linear transformation: a linear stretching
along the depth dimension [25–27].

As previously discussed, a successful interaction with the environment does not
necessarily require accurate metric knowledge: affine information suffices. This
concept is illustrated in Fig. 20.6, where we sketched three different visual recon-
structions of a scene representing a grasping action. In one case, hand and object
are mapped onto a veridical metric representation. In the other two, both hand and
object are wrongly scaled, but the relationship between them (i.e., the affine struc-
ture) is preserved. Thus, imprecise and inaccurate estimates of metric properties do
not prevent precise grasping as long as the local affine information about object and
hand is accurately preserved.

Since the affine structure of distal objects is directly specified by optical informa-
tion, it is reasonable to speculate that the visual system has evolved to pick up this
information. In contrast, accurate metric scaling requires the fine tuning of extra-
retinal information, which is mostly unreliable and specific to the retinal signal
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Fig. 20.7 Top left panels: Disparity of each element of a the three-rod configuration as function of
the cyclopean visual direction β . Disparity alone specifies the correct depth order of the configura-
tion. Top right panel: When corrupted by Gaussian noise the measured disparity signal can jump
to negative values and therefore lead to perceived depth reversals. Bottom panels: The precision
of the depth order estimate (i.e., the affine structure) depends on the retinal Signal to Noise Ratio
(SNR). The SNR can be improved by directly combining multiple image signals before any metric
scaling

being scaled. Hence, a veridical metric mapping requires a more complex visual
system that would also be less robust to extraretinal noise perturbations.

If the goal of the visual system is to pick up local affine information, then it must
also have evolved to carry out this goal with the maximum precision allowed by the
optical apparatus. This implies that metric information (via extraretinal signals) is
ignored in the process and that different image signals (e.g., disparity and velocity)
are combined before any metric scaling is applied. This is our general assumption:

Affine Hypothesis: (a) Local affine information is derived from multiple im-
age signals at the earliest stage of 3D processing. (b) The combination of
signals into a single affine estimate is optimal insofar as it maximizes preci-
sion. Metric knowledge is ignored, the only information carried on to further
processing being affine.

(a) Local Affine Information In order to understand how disparities (and by
analogy retinal velocities) directly specify the affine structure of the three-rod con-
figuration, consider Fig. 20.7 (top-left panels) where we plotted the disparities of the
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rods as a function of their visual direction β .1 It is simple to visualize how relative
disparities specify the affine structure of the three-rod configuration. When both the
visual directions (βA, βB , βC ) and the sign of the relative disparities (d) of the rods
are known, the depth order of the rods is perfectly specified. In Fig. 20.7, the central
rod has a positive disparity d0, which indicates that it is in front of the flankers.

(b) Maximizing Precision of Affine Estimates This example describes the ideal
case of infinitely precise measurements of retinal information. In reality, measure-
ment noise affects the estimate of both binocular disparities and retinal velocities.
Figure 20.7 (top-right panel) shows how Gaussian noise can corrupt the estimation
of the affine structure. In this case, whenever the measured value of disparity (or
velocity) jumps to a negative value, it defines a different affine structure, where the
depth order of central and flanking rods is reversed. It follows that the precision of
affine structure estimation depends on both the true value of disparity (d0) or veloc-
ity (v0) and the standard deviation of the measurement noise of the retinal signals
(σd and σv). Since the noise is considered to be Gaussian, the true values d0 and v0
correspond to the expected values E(d) and E(v). A measure of the precision of the
affine estimates is therefore given by the Signal to Noise Ratios (SNRs): E(d)

σd
and

E(v)
σv

.
Image signals can be directly combined for a more precise estimate of the affine

property (Fig. 20.7, bottom panel). The optimal combination rule, which guaranties
the maximum precision, yields an estimate whose SNR is larger than that of each
individual signal2 (see [7] and [28] for a detailed description of the combination
rule).

20.3.1 Metric Tasks and Heuristic Scaling

Most tasks in laboratory experiments investigating 3D perception involve metric
judgements. The experiments described above, for example, require observers to
judge the perceived depth of the three-rod configuration or shape their grasp without
vision of their hand. These tasks, therefore, require some sort of metric scaling.

According to the Affine Hypothesis, at the initial stage of 3D processing only
affine information is extracted from image signals. Hence, whatever metric scaling
takes place after this early stage, it is based on affine information. Our theory does
not specify the exact mechanisms of this scaling, but we can be certain that (1) it
depends on viewing parameters (e.g., vergence angle) and global scene informa-
tion (e.g., perspective) specifying egocentric distance and (2) it is heuristic, since in
general it cannot lead to veridical metric information.

1We arbitrarily chose a zero disparity value for the flankers, as if the observers were fixating the
plane identified by the two flanking rods.
2In the specific case of disparity and velocity SNRc =

√
SNR2

d + SNR2
v .
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To understand this second point consider again disparities and velocities: In or-
der to obtain veridical metric information, disparities and velocities must be scaled
separately, through an accurate estimate of viewing distance in the former and the
relative motion between object and observer in the latter. If these signals are com-
bined before each of these scalings can take place, as the Affine Hypothesis postu-
lates, then the veridical metric knowledge carried by each signal is lost. Hence, we
can formulate the following:

Heuristic Scaling Hypothesis Performance in metric tasks is heuristically de-
termined by (1) affine information of image signals and (2) egocentric dis-
tance information (e.g. vergence angle, observer motion, perspective infor-
mation, etc.).

Thus, assuming the egocentric distance information remains constant, two signals
will give rise to the same metric judgement if they specify the same affine structure
with the same precision (i.e., same SNRs), regardless of the actual metric proper-
ties of the configuration that has generated them. Going back to the three-rod con-
figuration of Fig. 20.1, whenever disparities and velocities specify the same affine
structure with the same SNRs, they will generate the same perceptual (and motor)
response, even if their simulated depths are different.

We have previously shown that when asked to set the depth of a stereo stimulus
so to appear as deep as that of a motion stimulus of simulated depth zv , observers
are highly inaccurate (PSEd �= zv ; Fig. 20.3 left panel). The Heuristic Scaling Hy-
pothesis predicts that a perceptual match should occur when the SNRs of the two
signals are the same. In order to test this assumption, we measured the discrimina-
tion thresholds of disparities (JNDd ) at PSEd and velocities (JNDv) at zv[18]. It can
be shown that SNRv = E(v)

σv
= zv

JNDv
and that SNRd = E(d)

σd
= PSEd

JNDd
. By equating the

two SNRs it follows that PSEd = zv
JNDd

JNDv
, which provides an alternative prediction

to the metric account (PSEd = zv). Figure 20.3 (right panel), where we re-plotted
the results of Fig. 20.3 (left panel) as a function of zv

JNDd

JNDv
, clearly shows the good

agreement between data and the prediction of the Heuristic Scaling Hypotheses.
This means that we do scale signals based on affine information, not metric proper-
ties.

What if the precision of two affine estimates is different (i.e., SNRs are different)?
From a statistical point of view, deeper objects are more likely to produce larger
SNRs since they generate, “on average”, image signals with larger magnitudes.3 We
can thus formulate the following hypothesis:

SNR Hypothesis: The magnitude of heuristic metric estimates is an increasing
function of the Signal-to-Noise Ratio of the affine estimate, as long as the
factors that affect heuristic scaling (e.g. vergence angle, observer motion, etc.)
are kept constant.

3Consider binocular disparities: The relative disparity d is proportional to the depth $z of the distal
object through a scaling factor kd , related to the egocentric distance of the object (d = kd$z) and,
therefore, to the Signal to Noise Ratio (SNRd = kd

σd
$z). For a fixed value of kd , SNRd increases

with $z. Thus, “on average”, larger values of SNR correspond to larger values of $z.
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A corollary of this hypothesis is that the scaled depth of combined-cue stimuli is
larger than the scaled depth of single-cue stimuli, since the SNR of combined-cue
stimuli is larger than the SNR of single-cue stimuli. This is exactly what we found in
the experiment described in the previous section for both perceptual judgments and
reach-to-grasp actions (Fig. 20.4, left panels) [21]. If it is assumed that the function
relating scaled depth and SNR is linear within the range of simulated depths, then
it is possible to predict its slope for the combined-cue results from the slopes of the
single-cue results [21]. In Fig. 20.4 (right panel), we plotted the predicted slope vs.
the observed slope of the combined-stimulus estimates for both perceptual (filled
circles) and motor (open circle) tasks for each individual observer. The good agree-
ment between predictions and data suggests that for both tasks depth estimates are
based on the local affine information.

These empirical results constitute strong evidence for the validity of the Affine
Hypothesis and, at the same time, cast serious doubts on previous theories postu-
lating a veridical metric analysis of the visual scene, for both perception and ac-
tion. Several other studies provide additional converging evidence since they test
the Affine Hypothesis with different sets of 3D cues (e.g., texture and shading) and
in natural 3D settings, where cues-to-flatness are not present [7, 9].

20.4 Conclusion

A biological system has a successful interaction with the environment when suffi-
cient information about the physical world is channeled through its sensory organs.
While metric reconstruction is certainly sufficient for the achievement of this goal,
its necessity has never been proven. Instead, empirical work and theoretical consid-
erations indicate that metric reconstruction may not have been the ultimate result of
evolutionary pressure.

We argue that local affine information directly available at the retinal level deter-
mines both our conscious perception of the world and the basic input for the control
of motor actions. Image signals are combined at the very first stage of 3D processing
through mechanisms that maximize the reliability of affine information, while dis-
regarding metric information. Thus, only relational properties of object structures
(e.g., depth order of feature points) are accurately carried on to further processing,
yet enabling sufficient information about the world to be perceived and motor ac-
tions to be correctly executed.
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Chapter 21
A Stochastic Grammar for Natural Shapes

Pedro F. Felzenszwalb

21.1 Introduction

In this chapter, we consider the problem of detecting objects using a generic model
for natural shapes. A common approach for object recognition involves matching
object models directly to images. Another approach involves building intermediate
representations via a generic grouping processes. One of the ideas behind the work
described here is that these two processes (model-based recognition and grouping)
are not necessarily different. By using a generic object model, we can use model-
based techniques to perform category-independent object detection. This leads to a
grouping mechanism that is guided by a generic model for objects.

It is generally accepted that the shapes of natural objects have certain regularities
and that these regularities can be used to guide visual perception. For example, the
Gestalt grouping laws explain how the human visual system favors the perception of
some objects over others. Intuitively, the tokens in an image should be grouped into
regular shapes because these groupings are more likely to correspond to the actual
objects in the scene. This idea has been studied in computer vision over several
decades (see [6–10, 12]).

We propose a method in which a generic process searches the image for regular
shapes to generate object hypotheses. These hypotheses should then be processed
further in a way that depends on the perceptual task at hand. For example, each
hypothesis could be matched against a database of known objects to establish their
identities. Our algorithm works by sampling shapes from a conditional distribution
defined by an input image. The distribution is constructed so that shapes with high
probability look natural, and their boundaries align with areas of the image that have
high gradient magnitude.

Our method simply generates a number of potential object hypothesis. Two hy-
pothesis might overlap in the image, and some image areas might not be in any
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Fig. 21.1 Rabbit, pear, and hand represented by triangulated polygons. The polygonal boundaries
represent the outlines, while the triangulations decompose the objects into parts

hypothesis. A consequence of this approach is that the low-level processing doesn’t
commit to any particular interpretation of the scene.

We start by defining a stochastic grammar that generates random triangulated
polygons. This grammar can be tuned to capture regularities of natural shapes. For
example, with certain choice of parameters the random shapes generated tend to
have piecewise smooth boundaries and a natural decomposition into elongated parts.
We combine this prior model with a likelihood model that defines the probability of
observing an image given the presence of a particular shape in the scene. This leads
to a posterior distribution over shapes in a scene. Samples from the posterior provide
hypotheses for the objects in an image.

Our approach is related to [13] who also build a stochastic model for natural
shapes. One important difference is that our approach leads to polynomial time in-
ference algorithms, while [13] relied on MCMC methods.

The ideas described here are based on the author’s PhD thesis [3].

21.2 Shape Grammar

We represent objects using triangulated polygons. Intuitively, a polygonal curve is
used to approximate the object boundary, and a triangulation provides a decompo-
sition of the objects into parts. Some examples are shown in Fig. 21.1.

There is a natural graph structure associated with a triangulated polygon, where
the nodes of the graph are the polygon vertices and the edges include the polygon
boundary and the diagonals in the triangulation. Figure 21.2 shows a triangulated
polygon T and its dual graph GT .

Here we consider only objects that are represented by simple polygons (polygons
without holes). If T is a triangulated simple polygon, then its dual graph GT is a
tree [1]. There are three possible types of triangles in T , corresponding to nodes
of different degrees in GT . The three triangle types are shown in Fig. 21.3, where
solid edges are part of the polygon boundary, and dashed edges are diagonals in the
triangulation. Sequences of triangles of type 1 form branches, or necks of a shape.
Triangles of the type 0 correspond to ends of branches, and triangles of the type 2
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Fig. 21.2 A triangulated
polygon T and its dual graph
GT . If the polygon is simple
the dual graph is a tree where
each node has degree 1, 2 or 3

form junctions connecting multiple branches together. For the rest of this chapter, we
will use a particular labeling of the triangle vertices shown in Fig. 21.3. A triangle
will be defined by its type (0, 1 or 2) and the location of its vertices x0, x1 and x2.

A procedure to generate triangulated polygons is given by the following growth
process. Initially a seed triangle is selected from one of the three possible types.
Then each dashed edge “grows” into a new triangle. Growth continues along newly
created dashed edges until all branches end by growing a triangle of the first type.
Figure 21.4 illustrates the growth of a polygon. A similar process for growing com-

Fig. 21.3 Different triangle types in a triangulated polygon. The types corresponds to nodes of
different degrees in the dual graph. Solid edges correspond to the polygon boundary while dashed
edges are diagonals in the triangulation

Fig. 21.4 Growth of a triangulated polygon. The label in each triangle indicates the stage at which
it was created. Initially we select a triangle (stage 1) from one of three possible types. Then each
dashed edge grows into a new triangle (stage 2) and growth continues along newly created dashed
edges (stages 3, 4, 5). New branches appear whenever a triangle of type 2 is created. All branches
end by growing a triangle of type 0
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Fig. 21.5 In principle our
growth process can generate
objects with overlapping parts

binatorial structures known as n-clusters is described in [5]. The growth process can
be made stochastic as follows. Let a triangle of type i be selected initially or during
growth with probability ti . As an example, imagine picking ti such that t1 is large
relative to t0 and t2. This would encourage growth of shapes with long branches.
Similarly, t2 will control the number of branches in the shape.

The three parameters t0, t1, t2 control the structure of the object generated by
the stochastic process. The shape of the object is determined by its structure and
distributions that control the shape of each triangle. Let X = (x0, x1, x2) be the
locations of the vertices in a triangle. We use [X] to denote the equivalence class of
configurations that are equal up to translations, scales and rotations. The probability
that a shape [X] is selected for a triangle of type i is given by si([X]). We assume
the triangle shapes are independent.1

The growth process described above can be characterized by a stochastic gram-
mar. We note however that this grammar will not only generate triangulated poly-
gons, but will also generate objects with overlapping parts as illustrated in Fig. 21.5.

There are two types of symbols in the grammar, corresponding to triangles cre-
ated during growth T and dashed edges that still need to grow E . Triangles cre-
ated during growth are elements of T = {0,1,2} × R

2 × R
2 × R

2. The element
(i, a, b, c) ∈ T specifies a triangle of type i with vertices x0 = a, x1 = b, x3 = c

following the labeling in Fig. 21.3. Edges that still need to grow are elements of
E =R

2 ×R
2. The element (a, b) ∈ E specifies an internal edge of the triangulated

polygon from point a to point b. The edges are oriented from a to b so the system
can “remember” the direction of growth. Figure 21.6 illustrates the production rules
for the grammar. Note that there are two different rules to grow a triangle of type
1, corresponding to a choice of how the new triangle is glued to the edge that is
growing. We simply let both choices have equal probability, t1/2.

To understand the effect of the parameters t0, t1, t2, consider the dual graph of
a triangulated polygon generated by our stochastic process. The growth of the dual
graph starts in a root node that has one, two or three children with probability t0, t1
and t2 respectively. Now each child of the root grows according to a Galton–Watson
process [4], where each node has i children with probability ti .

1The fact that we can safely assume that triangle shapes are independent in a triangulated polygon
and get a sensible model follows from Theorem 2.1 in [3].
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Fig. 21.6 Production rules for the shape grammar. The grammar generates triangles and oriented
edges. The variables a, b and c correspond to locations in the plane. The three variables are selected
in a production from the start symbol, but only c is selected in a production from an edge. Note
that edges are oriented carefully so that growth continues along a particular direction

An important parameter of a Galton–Watson process is the expected number of
children for each node, or Malthusian parameter, that we denote by m. In our pro-
cess, m= t1 + 2t2. When m< 1 the probability that the growth process eventually
terminates is one. From now on, we will always assume that m< 1, which is equiv-
alent to requiring that t2 < t0 (here we use that t0 + t1 + t2 = 1).

Let e, b and j be random variables corresponding to the number of end, branch
and junction triangles in a random shape. Let n= e+ b+ j be the total number of
triangles in a shape. For our Galton–Watson process (corresponding to growth from
each child of the root of the dual graph), we can compute the expected number of
nodes generated, which we denote by x,

x = 1+ (x)t1 + (2x)t2 ⇒ x = 1/(t0 − t2).

The total number of triangles in a shape is obtained as one node for the root of the
dual graph plus the number of nodes in the subtrees rooted at each child of the root.
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So the expected value of n is,

E(n)= 1+ (x)t0 + (2x)t1 + (3x)t2.

Substituting for x we get,

E(n)= 2

t0 − t2
. (21.1)

Similarly we can compute the expected value of j , the number of junction tri-
angles in a shape. This quantity is interesting because it gives a measure of the
complexity of the shape. In particular it is a measure of the number of parts (limbs,
necks, etc.). For the Galton–Watson process, let y be the expected number of nodes
with degree 3 (two children),

y = (y)t1 + (1+ 2y)t2 ⇒ y = t2/(t0 − t2).

The number of junction triangles in a shape equals the number of such triangles in
each subtree of the root plus one if the root itself is a junction triangle,

E(j)= (y)t0 + (2y)t1 + (1+ 3y)t2.

Substituting for y we get,

E(j)= 2t2
t0 − t2

. (21.2)

Equations (21.1) and (21.2) provide intuition to the effect of the parameters
t0, t1, t2. The equations also show that the parameters are uniquely defined by the
expected number of triangles and the expected number of junction triangles in a ran-
dom shape. We can compute the ti corresponding to any pair E(n) and E(j) such
that E(n) ≥ 2 and E(n) ≥ 2E(j)+ 2. These requirements are necessary since the
growth process always creates at least two triangles and the number of triangles is
always at least twice the number of junction triangles plus two.

t0 =
(
2+E(j)

)
/E(n),

t1 = 1− (2E(j)+ 2
)
/E(n),

t2 = E(j)/E(n).

While the ti control the combinatorial structure of the random shapes we gen-
erate, their geometry is highly dependent on the choice of shape for each triangle.
The triangle shapes are chosen according to distributions that depend on the triangle
type. As an example we can define,

si
([X])∝ e−ki def(Xi ,X)2

,

where Xi is an ideal triangle of type i and def(Xi,X) is the log-anisotropy of the
affine map taking Xi to X (see [2, 3]). The constant ki controls how much the in-
dividual triangle shapes are allowed to vary. For the experiments in this chapter,
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Fig. 21.7 Connecting multiple type 1 triangles in alternating orientations to form an elongated
branch, and with the same orientation to form a bend. If the neck triangles tend to be isosceles and
thin than the shape boundary tends to be smooth

we chose both X0 and X2 to be equilateral triangles and X1 to be isosceles, with a
smaller side corresponding to the polygon boundary edge. This choice for X1 gen-
erates shapes that tend to have smooth boundaries. Figure 21.7 shows what happens
when we connect multiple triangles of this type with alternating or similar orienta-
tions.

Figure 21.8 shows some random shapes generated by the random process with
E(n) = 20, E(j) = 1, and the choice for si([X]) described above. Note how the
shapes have natural decompositions into parts, and each part has an elongated struc-
ture, with smooth boundaries almost everywhere. These examples illustrate some of
the regularities captured by our stochastic shape grammar. In the next section, we
will show how the grammar can be used for object detection.

21.3 Sampling Shapes from Images

Now we describe how our model for random shapes can be combined with a likeli-
hood function to yield a posterior distribution p(T |I ) over triangulated polygons in
an image. We then show how to sample from the posterior using a dynamic program-
ming procedure. The approach is similar to sampling from the posterior distribution
of a hidden Markov model using weights computed by the forward-backward algo-
rithm [11]. Our experiments in the next section illustrate how samples from p(T |I )
provide hypotheses for the objects in an image.

Recall that each triangle created during growth is an element of T , specifying a
triangle type and the location of its vertices. We assume that the likelihood p(I |T )
factors into a product of terms, with one term for each triangle,

p(I |T )∝
∏

(i,x0,x1,x2)∈T
πi(x0, x1, x2, I ). (21.3)

This factorization allows for an efficient inference algorithm to be developed to
generate samples from the posterior p(T |I )∝ p(I |T )p(T ).

We expect the image to have high gradient at the boundary of objects, with orien-
tation perpendicular to the boundary. In practice, we have used a likelihood function
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Fig. 21.8 Examples of random shapes generated by the stochastic grammar

of the form,

P(I |T )∝ exp

(
λ

∫ ∥∥(∇I ◦ f )(s)× f ′(s)
∥∥ds

)
.

Here f (s) is a parametrization of the boundary of T by arclength. The term ‖(∇I ◦
f )(s)× f ′(s)‖ is the component of the image gradient that is perpendicular to the



21 A Stochastic Grammar for Natural Shapes 307

Fig. 21.9 A partial shape
generated from the edge
(a, b)

object boundary at f (s). The integral above can be broken up into a sum of terms,
with one term for each boundary edge in the triangulated polygon. This allows us to
write the likelihood in the form of Eq. (21.3) where πi(x0, x1, x2, I ) evaluates the
contribution to the integral due to the boundary terms (solid edges) of a triangle of
type i with vertices (x0, x1, x2).

Let Tr denote a triangulated polygon rooted at a triangle r . Using Bayes’ law, we
can write the posterior distribution for rooted shapes given an observed image as,

p(Tr |I )∝ p(Tr)p(I |T ).
There are two approximations we make to sample from this posterior efficiently. We
consider only shapes where the depth of the dual graph is bounded by a constant d
(the depth of a rooted graph is the maximum distance from a leaf to the root). This
should not be a significant problem since shapes with too many triangles have low
prior probability anyway. Moreover, the running time of our sampling algorithm is
linear in d , so we can let this constant be relatively large. We also only consider
shapes where the location of each vertex is constrained to lie on a finite grid G , as
opposed to an arbitrary location in the plane. The running time of our algorithm for
sampling from p(T |I ) is O(d|G |3).

To sample from the posterior we first pick a root triangle, then pick the triangles
connected to the root and so on. The root triangle r should be selected according to
its marginal conditional distribution,

p(r|I )=
∑

Tr

p(Tr |I ). (21.4)

Note that the sum is over all shapes rooted at r , and with the depth of the dual
graph bounded by d . We can compute this marginal distribution in polynomial time
because the triangles in a shape are connected together in a tree structure.

Let T(a,b) denote a partial shape generated from an edge (a, b). Figure 21.9 shows
an example of a partial shape. We denote the probability that the grammar would
generate T(a,b) starting from the edge (a, b) by p(T(a,b)). The posterior probability
of a partial shape T(a,b) given an image I is given by,

p(T(a,b)|I )∝ p(T(a,b))
∏

(i,x0,x1,x2)∈T(a,b)
πi(x0, x1, x2, I ).
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We define the following quantities in analogy to the backward weights of a hid-
den Markov model (see [11]),

Vj (a, b)=
∑

T(a,b)

p(T(a,b)|I ),

where the sum is taken over all partial shapes with depth at most j . Here we measure
depth by imagining the root to be a triangle that would be immediately before the
edge (a, b). The quantities Vj (a, b) can be computed recursively using a dynamic
programming procedure,

V0(a, b) = 0,

Vj (a, b) = t0
∑

c

s0
([b, c, a])π0(b, c, a, I )

+ (t1/2)
∑

c

s1
([b, c, a])π1(b, c, a, I )Vj−1(a, c)

+ (t1/2)
∑

c

s1
([c, a, b])π1(c, a, b, I )Vj−1(c, b)

+ t2
∑

c

s2
([b, c, a])π2(b, c, a, I )Vj−1(a, c)Vi−1(c, b).

Now, depending on the type of the root triangle we can rewrite the marginal distri-
bution in Eq. (21.4) as,

p
(
(0, a, b, c)|I) ∝ t0 s0

([a, b, c])Vd(a, c),

p
(
(1, a, b, c)|I) ∝ t1 s1

([a, b, c])Vd(a, c)Vd(c, b),

p
(
(2, a, b, c)|I) ∝ t2 s2

([a, b, c])Vd(a, c)Vd(c, b)Vd(b, a).

The equations above provide a way to sample the root triangle from its marginal
distribution. The running time for computing all the Vj (a, b) and the marginal dis-
tribution for the root triangle is O(d|G |3). Once we compute these quantities we can
obtain samples for the root by sampling from a discrete distribution. After choos-
ing r = (i, x0, x1, x2) we need to sample the triangles connected to the root. We
then sample the triangles that are at distance two from the root, and so on. When
sampling a triangle at distance j from the root, we have an edge (a, b) that is grow-
ing. We need to sample a triangle by selecting the location c of a new vertex and a
triangle type according to

p
(
(0, b, c, a)|I, (a, b)) ∝ t0 s0

([b, c, a]),
p
(
(1, b, c, a)|I, (a, b)) ∝ (t1/2) s1

([b, c, a])Vd−j (a, c),

p
(
(1, c, a, b)|I, (a, b)) ∝ (t1/2) s1

([c, a, b])Vd−j (c, b),

p
(
(2, b, c, a)|I, (a, b)) ∝ t2 s2

([b, c, a])Vd−j (a, c)Vd−j (c, b).
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Fig. 21.10 Samples from p(T |I ) for two synthetic images I . Note how in the second image we
get multiple potential objects among the samples

We evaluate these probabilities using the precomputed Vj quantities and then sam-
ple a triangle type and location c from the corresponding discrete distribution. Note
that for a triangle at depth d the only choices with nonzero probability will have
type zero, as V0(a, b)= 0.

21.4 Experimental Results

For the experiments in this section, we used a grid G of 40× 40 locations for the
vertices of the shapes. We used the likelihood model defined in the last section, and
the same grammar parameters used to generate the random shapes in Fig. 21.8.

Figure 21.10 shows some of the samples generated from the posterior distribution
p(T |I ) for two different synthetic images. The first image has a single object and
each sample from p(T |I ) gives a slightly different representation for that object.
The second image has two objects and the samples from p(T |I ) are split between
the two objects. Note that we obtain samples that correspond to each object and also
to a part of one object that can be naturally interpreted as a single object. Overall the
samples in both cases give reasonable interpretations of the objects in the images.

Figures 21.11 and 21.12 show samples from the posterior distribution p(T |I ) for
two natural images. In practice we obtain groups of samples that are only slightly
different from each other, and here we show representatives from each group. For
the mushroom image, we obtained different samples corresponding to competing
interpretations. In one case the whole mushroom is considered as an object, while
in another case the stem comes out on its own.
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Fig. 21.11 Sample from p(T |I ) for an image with a bird

Fig. 21.12 Samples from p(T |I ) for an image with a mushroom
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Chapter 22
Hard-Wired and Plastic Mechanisms in 3-D
Shape Perception

Qasim Zaidi, Andrea Li, Carson Wong, Elias H. Cohen, and Xin Meng

22.1 Introduction

Learning has intrigued scientists and scholars for as long as we know, for exam-
ple, Plato’s Meno, in part because the ability to learn confers plasticity to an or-
ganism in dealing with a variable environment. It has also been understood that
learning specific knowledge requires biological structures that facilitate the learning
[20, 21, 100]. The evolution of such hard-wired structures can be considered long-
term genetic learning of capacities to deal with the environment. The two processes
have interesting similarities, such that genetic algorithms form a major stream in
machine learning [47], the equations for population genetics (especially for selec-
tion at a single locus) can be formally identical to those for Bayesian inference [16],
and Bayesian adaptation has been used as a model for the evolution of neural mech-
anisms [38, 39]. Functionally, one would expect hard-wired and plastic mechanisms
to be matched to long and short-term invariants of the environment, sometimes cap-
tured in the pithy statement, “The mean is in the genes, the variance in the synapses”.
In this paper, by combining the results presented by Li and Zaidi [57, 58], Wong and
Zaidi [101], Cohen and Zaidi [24], and Meng and Zaidi [73], we examine how the
interplay of hard-wired and plastic neural mechanisms enables humans to perceive
generally informative 3-D shapes from textures/patterns.

22.2 Orientation and Frequency Cues for 3-D Shape Perception

In the retinal image of a curved 3-D surface, the statistics of the texture pattern
change with the curvature of the surface. (We follow convention in using the term
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texture for surface markings that form a repetitive pattern.) Almost all shape-from-
texture models assume that the texture on the surface is statistically homogeneous
(i.e. stochastically stationary and invariant to translation), so inhomogeneities in
the image arise from the projection of segments of the surface that are not fronto-
parallel with respect to the observer [22, 36, 65]. This assumption is true for devel-
opable surfaces that can be unfolded into a flat plane without stretching or cutting,
for example, cylinders, cones, and sinusoidal corrugations. However, developable
surfaces only have zero Gaussian curvatures (maximum curvature x minimum cur-
vature), whereas erosion, accumulation, carving, or stretching can generate complex
surfaces with positive and negative Gaussian curvatures. Whereas it is possible to
carefully paint any surface with homogeneous texture [22], under generic condi-
tions the texture on a saddle, ellipsoid, or any varying Gaussian curvature surface
is not homogeneous. For patterned animal skin, the inhomogeneity may change as
the surface deforms. Thus, for most complex shapes, texture inhomogeneities in an
image are not caused solely by the projection. Therefore, estimating the projective
transform and reversing it, as in Garding [36], Malik and Rosenholtz [65], Clerc and
Mallat [22], is not always sufficient to infer the 3-D shape of the surface.

We show that the assumption of homogeneity is not necessary for extracting
3-D shape because observers correctly perceive 3-D curvatures and slants when sig-
nature patterns of orientation modulations are visible, irrespective of whether the
texture on the surface is homogeneous or not (Note: Throughout this paper, cor-
rect percepts explicitly mean that the perceived signs of curvatures and directions
of slants are identical to those of the simulated 3-D surface). In the generic case,
these orientation modulations appear in perspective images of carved, stretched and
developable surfaces only at the locations of the correct curvatures or slants. Shape
from texture can thus rely on hardwired neural modules that extract signature ori-
entation modulations. We also show that these neural templates take advantage of
cross-orientation inhibition, and that cortical anisotropies in orientation tuning can
explain constancy failures of some 2-D and 3-D shapes.

When signature patterns of orientation modulations are not visible, observers in-
fer shape using spatial frequency gradients as cues to distance. This leads to correct
percepts for images where spatial frequency varies with distance from the observer,
but incorrect percepts where the spatial frequency varies because of the varying slant
of the surface. Using haptic feedback on virtual 3-D surfaces, we tested the function
of touch in such cases. We found that in the perception of 3-D shapes from tex-
ture cues, haptic information can dominate vision in some cases, changing percepts
qualitatively from convex to concave and concave to slant. The effects take time to
develop, do not outlive the cessation of the feedback, are attenuated by distance, and
drastically reduced by gaps in the surface.

We discuss 3-D sinusoidal corrugations because they can form a set of basis
shapes, that is, shapes that in combination could generate a wide variety of shapes
[12]. In addition, these shapes contain a large range of local slants so that our re-
sults can be generalized to a large range of surface views. We consider sinusoidally
carved and developable corrugations (Fig. 22.1). The signals that are used in both
feed-forward and feed-back models of shape perception depend on the receptive
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Fig. 22.1 Developable
(folded) and carved solid
surfaces with identical
sinusoidally corrugated
shapes from the observer’s
viewpoint

field properties of V1 cells [75, 76]. Since V1 neurons are tuned for orientation and
spatial frequency, it is useful to parse texture variations in an image into orientation
and frequency modulations. We first discuss two classes of texture patterns to sepa-
rate the contributions of orientation and frequency modulations to shape perception.

The first set of patterns were composed of oriented sinusoidal gratings and are
shown with their amplitude spectra in the left column of Fig. 22.2: a horizontal–
vertical plaid, an octotropic plaid consisting of 8 gratings of the same spatial fre-
quency equally spaced in orientation, and the octotropic plaid minus the horizontal
grating. The second set, shown in the right column of Fig. 22.2, consisted of pat-
terns made of circular dots: a pattern consisting of uniformly sized dots that were
randomly positioned (with a minimal overlap constraint), a pattern in which the uni-
formly sized dots were horizontally and vertically aligned, and a pattern in which
the size of the aligned dots was randomly varied. While the elements of all three
of the patterns are isotropic, the first pattern is the only one that is also globally
isotropic as shown by its amplitude spectrum. The other two patterns contain con-
centrations of energy at discrete orientations. When larger versions of these textures
are folded into a developable surface, the texture on the surface remains statistically
homogeneous. The texture on the surface, however, is not homogeneous when solids
containing these patterns are carved, or when elastic versions of these patterns are
stretched over curved surfaces. The surface markings on carved or stretched sur-
faces are locally affine transformations of these homogeneous patterns, depending
on the local curvature. Texture distortions in perspective images are therefore due to
a combination of shape-based and projective transformations.

22.3 Folded Surfaces

When any of the patterns in Fig. 22.2 is folded into a corrugation, the texture on the
surface remains unchanged, but appears distorted in perspective images. (Fig. 22.3
top: centrally concave; bottom: centrally convex.) For both the horizontal–vertical
plaid and the octotropic plaid, it is easy to identify right and left slants, and thus
concavities and convexities. Slants are not easily distinguished, however, in the third
column where the texture pattern is missing the horizontal grating. For this pattern,
observers confuse left and right slants, and often classify both as flat [56]. This
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Fig. 22.2 Two groups of texture patterns with their amplitude spectra: Composites of sinusoidal
gratings (A–C) and locally isotropic dot patterns (E–F). A. Horizontal–vertical plaid. B. Octotropic
plaid consisting of 8 gratings of the same frequency as those in A, equally spaced in orientation
(see next figure). C. Octotropic plaid without the horizontal component. D. Uniformly sized, ran-
domly positioned dot pattern. E. Uniformly sized, horizontally and vertically aligned dot pattern.
F. Randomly sized, horizontal and vertically aligned dot pattern

demonstrates the critical information supplied by the grating parallel to the axis of
maximum curvature, visible as contours that bow inward towards the center of the
image at local concavities, bow outward at local convexities, and converge rightward
or leftward respectively at rightward and leftward slants. These contour flows occur
generically in retinal images at the locations of the 3-D shape features simply as a
result of perspective projection (Fig. 22.4a).

It is easy to show why the horizontal grating uniquely carries the shape informa-
tion in these images. For the corrugated surfaces in concave phase, Fig. 22.4b shows
the perspective projections of the eight oriented components of the octotropic plaid
(see [58], for mathematical derivations of projected orientations and frequencies).
The image of the horizontal component (0◦) is the only one that shows patterns of
orientation modulations that are different for different signs of curvature. The image
of the vertical grating (90◦) shows frequency modulation but no changes in orienta-
tion. For all the oblique components, the local orientation and frequency at fronto-
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Fig. 22.3 Perspective images of developable surfaces containing central concavities (top) and con-
vexities (bottom) overlaid with the three grating composite patterns. Signature orientation modu-
lations of the horizontal component in both plaid patterns (A–B) contain sufficient information
to correctly convey concavities, convexities, right slants and left slants. Subtracting the horizontal
component (C) eliminates these orientation modulations, and the surface shapes are not correctly
perceived

parallel portions of the surface equal the original orientation and frequency, and
increase with increasing slant. When all eight components are added, the horizontal
component is visible. The other seven components do not convey shape individually
or summed together. Li and Zaidi [58] show that the pattern of critical orientation
modulations is universal for texture patterns containing discrete energy parallel to
the axis of maximum curvature.

Frequency modulations in the image, however, vary as a function of how the sur-
face is formed. Frequency modulations in perspective images of developable sur-
faces are caused largely by changes in surface slant. Figure 22.5a shows an aerial
view of a patterned surface slanted at two different angles with respect to the ob-
server’s eye. Since the frequency of the pattern on the surface is constant, as slant
increases, the projected width of the pattern in the image plane decreases, and the
frequency in the image increases. In images of textured objects whose internal depth
is substantially less than their distance from the observer, spatial frequency modula-
tions are due more to changes in slants than to changes in distance from the observer.
Consequently, images of rightward and leftward slants exhibit similarly increased
frequency because of the slant. As a result, images of concave and convex portions
of the corrugation exhibit similar high-low-high frequency gradients. Observers do
not resolve this ambiguity and perceive convex and concave curvatures both as con-
vexities. This percept is consistent with the frequency gradient functioning as a cue
to relative distance from the eye since the effect of distance is to increase the spatial
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Fig. 22.4a Perspective images of horizontal 3-D contours below eye-height, bowed away or to-
wards, or slanted away to right or left, project as bowed up or down, or slanted up to right or left
respectively. The opposite is true for contours above eye-height

Fig. 22.4b Perspective images of the developable surface (with a central concavity) overlaid with
each of the eight grating components of the octotropic plaid. The horizontal component exhibits
the signature orientation modulations. All other components exhibit lowest frequencies at fronto-
parallel segments, and higher frequencies at slants. Orientation modulations of these components
are all steeper than those exhibited by the horizontal component

Fig. 22.4c Perspective images of carved solids (with central concavity) with each of the eight grat-
ing patterns of the octotropic plaid. The orientation modulations of the horizontal component are
the same as those for developable surfaces. The orientation modulations of the±22.5◦ components
overlap in range with those of the horizontal component

frequencies in the image of a pattern [55]. It is worth noting that in cases where
the observer is navigating through a textured environment, distances to the observer
vary over a large range. Consequently the frequency modulations in the retinal im-
age would be mainly due to changes in distance, and thus provide veridical cues.

Images of the developable corrugations overlaid with the three dot patterns are
shown in Fig. 22.6. The images of the corrugations with the isotropic dot pattern
exhibit slant-caused frequency modulations along the horizontal axis with high-
low-high frequency gradients at both concavities and convexities. For this pattern,
observers confused left and right slants. Li and Zaidi [55] showed that for glob-



22 Hard-Wired and Plastic Mechanisms in 3-D Shape Perception 317

Fig. 22.5a Frequency
modulations in images of
developable surfaces are
largely slant-caused. Aerial
view of a vertical grating on a
flat surface at two different
slants. As slant increases,
frequency in the perspective
image increases

Fig. 22.5b Frequency
modulations for carved
depth-invariant textures.
Aerial view of a
depth-invariant texture solid
formed by vertical grating
planar patterns. As the angle
of the cut is increased, the
frequency on the surface of
the cut decreases, however
projection increases the
frequency in the image plane.
As a result there is little
frequency modulation in the
image

ally isotropic patterns, observers report that concavities and convexities both appear
convex, indicating that, rather than attribute these modulations to changes in sur-
face slant, observers attribute them to changes in distance. This is done despite the
fact that frequency changes due solely to distance would be isotropic, whereas these
frequency gradients are pre-dominantly along the axis of maximum curvature, sug-
gesting that shape changes of texture elements are less potent cues to 3-D shape.
Orientation modulations are difficult to perceive for the isotropic dot pattern, but
the modulations are apparent when the dots are horizontally and vertically aligned
in the texture. These modulations are similar to those of the horizontal gratings.
Concavities, convexities, right slants, and left slants are all identifiable. Randomiz-
ing the size of the aligned dots, may compromise the ability to extract frequency
modulations but it does not affect the shape percepts much, the different surface
shapes are easily distinguishable.
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Fig. 22.6 Perspective images of the developable surfaces overlaid with the three dot patterns.
Slant-caused frequency modulations in the globally isotropic dot pattern (A) are misinterpreted as
changes in distance and as a result concavities are misperceived as convex. Horizontal and vertical
alignment of the dots (B) adds the signature orientation modulations of the horizontal component
and concavities become distinguishable from convexities. Randomizing the size of the aligned dots
(C) makes little difference in the percepts

22.4 Carved Surfaces

Surface textures were homogeneous for all the developable examples, but that is
often not the case for carved surfaces. Figure 22.7 shows perspective images of
corrugations carved from solids formed by repeating a single texture pattern along
the depth-axis. In the images of the solids patterned with the horizontal–vertical
plaid (Fig. 22.7A), concavities, convexities, right and left slants can all be correctly
identified. The orientation modulations of the horizontal component are identical
to those of the horizontal component on the developable surface. Despite identical
orientation modulations, the shapes of the carved surfaces appear more gradually
curved than their developable counterparts. This is because the frequency of the ver-
tical component modulates much less than for the developable surface. Figure 22.5b
shows an aerial view of a solid formed by repeated vertical-grating planar patterns
carved at two different angles (indicated by the thick dark grey lines). Unlike for
the developable surface, the frequency on the surface of the cut decreases with in-
creasing slant angle. However, as slant angle increases, the projected width of a unit
length of solid decreases in the image. These two tendencies counteract each other,
so that in the perspective image, the frequency is little affected by slant. Gradients
in the image are thus mainly due to changes in distance from the observer. Con-
sequently, the frequency gradients around concavities and convexities are distinct
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Fig. 22.7 Perspective images of the sinusoidal surfaces carved from depth-invariant textures with
the three grating component planar patterns. The horizontal component in the HV plaid exhibits
the same signature orientation modulations that convey concavities and convexities, however the
surfaces appear more gradually curved than their developable counterparts. These orientation mod-
ulations are invisible in the octotropic plaid patterns (B–C) which both appear flat

from one another: low-high-low for concavities and high-low-high for convexities.
Variations in spatial frequency on the carved surface show that the texture is not
homogeneous on a surface carved with multiple slants.

The images in Figs. 22.7B and C appear flat. This is particularly surprising for
Fig. 22.7B, where the horizontal component of the octotropic plaid could be ex-
pected to contribute the signature orientation modulations. The reason is revealed
by Fig. 22.4c, which shows the images of the eight components for the carved solid.
As expected, the horizontal component exhibits the signature orientation modula-
tions that observers use to perceive shape correctly for the horizontal–vertical plaid.
However, the images of the ±22.5◦ components contain orientations and frequen-
cies that are similar to those of the horizontal component and mask the orientation
modulations of the horizontal component in the summed image. In Fig. 22.8, these
two components are subtracted from the octotropic plaid, the signature orientation
modulations of the horizontal component become visible, and concavities, convex-
ities, and right and left slants become distinguishable. It is interesting that the dis-
tance caused frequency modulations of the seven other components in Fig. 22.4c are
consistent with correct percepts of the central concavity, but the perceived shape is
essentially flat when all seven components are combined in Fig. 22.7C

Images of the carved corrugations with the dot patterns are shown in Fig. 22.9.
All the images for the dot patterns contain frequency modulations determined by
distance. Orientation modulations are visible in the aligned dot patterns, but not in
the isotropic pattern. In Fig. 22.9A, concavities and convexities are discernible, but
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Fig. 22.8 Octotropic plaid
from Fig. 22.7B without the
±22.5◦ components. The
signature orientation
modulations of the horizontal
component are revealed and
concavities and convexities
become distinguishable

just barely, from the frequency cue to distance. While observers make some correct
slant judgments for this pattern, a large proportion of the slants are classified as flat.
Signs of curvature and slant are easily identifiable when signature orientation mod-
ulations are visible. The addition of random frequency modulations hardly affects
the shape percepts.

It is worth pointing out that all six of the patterns are inhomogeneous on the
carved surface, but that frequency and orientation modulations signal correct loca-
tions and signs of curvature. The orientation modulations, in particular, are identical
for the developable and carved surfaces, and provide unambiguous cues to the signs
of curvature and slant. Parsing the perspective image in terms of orientation and
frequency modulations thus obviates a need to restrict shape-from-texture models
to homogeneous textures.

Fig. 22.9 Perspective images of carved solids with the three dot planar patterns. Distance-caused
frequency modulations in the random dot pattern (A) roughly convey concavities and convexities,
however they are much more compelling when the dots are aligned in the solid (B). Randomizing
the size of the aligned dots (C) makes little difference in the percept
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22.5 Perceptual Strategies

All the projected images shown previously are flat surfaces containing repeating but
statistically non-homogeneous patterns. When these are viewed monocularly, even
without access to stereo or motion, 3-D shape percepts are extremely vivid if the
signature orientation modulations are visible. This suggests that the visual system
automatically creates percepts of curvature corresponding to signature orientation
modulations. Given that signature orientation modulations automatically evoke cor-
responding shape percepts, the question of whether these percepts are correct re-
duces to whether these modulations occur in the correct locations in perspective
images of real surfaces. Li and Zaidi [58] show that this is true for developable,
carved, and stretched surfaces under many different conditions, which suggests that
the same neural mechanisms of extracting orientation modulations from images will
suffice for all of these conditions. Similarly, a discrete number of mechanisms tuned
to extract frequency modulations can provide information about distances to dif-
ferent parts of the surface. In other words, rather than perform the reverse optics
operations of assuming texture properties, estimating texture distortions from the
image, and then reversing the projection transform to infer the 3-D shape, the vi-
sual system might instead signal the presence of 3-D shape features automatically
from the outputs of a discrete number of matched filters configured for particular
orientation and frequency patterns.

This perceptual strategy differs from other computational approaches in the way
that we have characterized the information present in retinal images of texture sur-
faces. There are an infinite number of ways to parse this information. Some of the
ways that have been shown to be useful are deformation gradients [36], local affine
deformations of the spectrum of a pattern [65], and deformations of wavelets [22].
We have parsed the information in terms of orientation and frequency modulations
[8]. This has been useful because orientation modulations are generically different
for concavities, convexities, right slants and left slants, whereas frequency modu-
lations are not. The corollary is that unless the texture pattern contains discretely
oriented energy that distorts into signature orientation flows, the textured image will
not contain in-formation that is different for different signs of curvatures and slants.
Consequently, to identify 3-D shapes from texture cues, the minimum requirement
for a visual system, machine or natural, is that it be able to extract orientation mod-
ulations and be able to differentiate between orientation modulations that are sig-
natures for distinct 3-D features. Further, as shown by the carved octotropic plaid
pattern, only those visual systems will identify 3-D shapes correctly that can ex-
tract the signature orientation modulations in the presence of distractor orientations.
Thus, correct shape perception relies both on the information contained in the im-
age, and on the capacity of the visual system to extract the relevant information.

The figures above use only limited classes of texture patterns and upright cor-
rugated solids, but these results generalize to naturally occurring texture patterns,
and other 3-D shapes. For the case of homogeneous textures on upright developable
shapes, we have previously examined the Brodatz [14] set of natural and man-made
textures [59]. For these texture patterns, we found that similar to synthetic patterns,
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visibility of the signature orientation modulations, and the perception of correct
curvatures and slants can be predicted by the discreteness of energy in the critical
Fourier component. For example, for certain natural textures, like wood with fairly
parallel grain, shapes are perceived correctly or incorrectly depending on whether
the axis of 3-D curvature is parallel or orthogonal to the grain. These results are
likely to generalize to non-developable surfaces because the oriented components
that distort into the signature orientation modulations are the same as for devel-
opable surfaces. We have also shown that whereas the Fourier component parallel
to the axis of maximum curvature is critical for upright corrugations, other com-
ponents provide the signature modulations for pitched corrugations [103], and that
this is the reason why texture patterns can convey more varied shapes than the par-
allel contours explored by Stevens [97]. In addition, shape percepts are also correct
for two non-generic but theoretically important classes of images. First, if signature
orientation modulations are defined solely by contrast variations (that is, without
Fourier energy) [33, 56], and second if the orientation modulations are created by
illusions [60]. Finally, perceived shapes of sinusoidal depth plaids can be predicted
from the perceived shapes of the constituent corrugations [58].

These results that patterns of orientation modulations obviate the need to cal-
culate texture gradients or assume homogeneity have implications for neural and
computational models of shape from texture. The results suggest that a neural im-
plementation of the extraction of 3-D shape-from-texture would require only a small
number of mechanisms, each receiving input from local orientation sensitive oper-
ators configured in signature patterns of orientation modulations that represent in-
dividual 3-D shapes. Other mechanisms receiving input from frequency sensitive
operators would contribute supplementary inferences about relative distance along
the surface.

22.6 Cross-Orientation Inhibition

In the perspective image of a slanted textured surface, when oriented components
of the texture that are aligned with the 3-D slant converge to form orientation flows,
the horizontal component appears perceptually more salient than other components
when a surface is slanted (Fig. 22.10A, top left and right), to a greater extent than
it does when the surface is fronto-parallel (Fig. 22.10A, top center). The increase in
saliency is more pronounced in complex texture patterns, for example, the octotropic
plaid (Fig. 22.10A bottom). Since these converging orientation flows play a critical
role in conveying the perceived 3-D slant and shape of the surface, an increase in
their saliency should enhance the 3-D perceived slant. In this section, we examine
the neural mechanisms that enhance the visibility of orientation flows.

Many surface textures contain components of roughly the same frequencies at
many different orientations, with most of the frequencies in the higher-frequency
declining segment of the human CSF [17]. Slanting the surface increases the fre-
quencies of components not aligned with the slant [54], thus leading to a reduction
in visibility. If different oriented components were processed independently by the
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Fig. 22.10 Suppression of the test grating as a function of surface slant. A. Planar surfaces at dif-
ferent slants patterned with horizontal–vertical (h–v) (top) and octotropic (bottom) plaids. B. Top:
Contrast thresholds for three observers for the horizontal component alone (filled circles), with a
vertical component (open triangles), and with seven non-horizontal components (filled squares) as
a function of surface slant. The top axis of each panel represents the frequency of the vertical com-
ponent relative to the frequency of the test in the image. Bottom: Suppression factor as a function
of surface slant

visual system, the increase in saliency of the components parallel to the slant could
be due just to the reduced visibility of the other components. However, the response
of oriented neurons in cat and primate striate cortex, to a stimulus at a preferred
orientation, is suppressed by the superposition of a stimulus at the null orientation
[9]. Parallel to these results, psychophysical studies have reported that the contrast
threshold of an oriented stimulus is increased in the presence of a superimposed
orthogonal stimulus [19]. Physiologically measured cross-orientation suppression
(COS) is broadband for orientation and occurs over a wide range of spatial frequen-
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cies [10, 26, 74]. Psychophysically measured COS appears to be broadband for ori-
entation [87], but with mixed evidence for frequency-selectivity [71, 72, 81, 88, 89].
Thus, it is possible that psychophysically measured COS has components that are
distinct from the COS measured in V1 neurons.

Li & Zaidi [57] showed that the visibility of orientation flows increases as a
function of surface slant, and that the increased salience results from the frequency-
selectivity of COS and not the frequency dependent visibility of the masking compo-
nents. We used planar surfaces projected in perspective, patterned with horizontal–
vertical (h–v) and octotropic plaid patterns, and measured contrast-thresholds for
detecting the horizontal component with a 2IFC method, in a variety of configura-
tions. First, of the horizontal grating alone at left and right slants of 25, 50, and 65
deg, and then in the presence of the non-horizontal components. Contrast thresh-
olds of the horizontal components in the different conditions are shown for the three
observers in Fig. 22.10. Thresholds of the grating alone were relatively unchanged
by surface slant, reflecting the fact that the spatial frequency of this component was
relatively unchanged. The presence of the vertical grating, increased thresholds for
all surface slants, reflecting an overall decrease in visibility of the horizontal com-
ponent. Thresholds increased even more in the presence of the seven non-horizontal
components of the octotropic plaid. We quantified the suppression induced by non-
horizontal components by dividing thresholds of the horizontal grating in the pres-
ence of other components by thresholds in the absence of other components. Sup-
pression for both patterns decreased as surface slant increased, with substantially
greater and steeper changes in suppression for the octotropic plaid.

It is clear from these results that contrast-thresholds are raised by orthogonal
masks, which is a signature of COS. We used four conditions to provide two inde-
pendent comparisons of whether the peak suppression is a function of the similarity
of frequencies between the test and mask, or of the salience of the mask. Fronto-
parallel surfaces were patterned with an iso-frequency h–v plaid (Fig. 22.11A) or
an h–v plaid consisting of a vertical grating of half the frequency of the horizon-
tal grating (Fig. 22.11C). The same surfaces were also presented slanted at left
or right at 60 deg which approximately doubles the vertical frequency in the im-
age, thus making the frequencies in the image of the originally 2:1 frequency plaid
approximately equal (Fig. 22.11D). In Fig. 22.11 (bottom), mean suppression fac-
tors averaged across the three observers are plotted for all conditions. First, the
similarity hypothesis predicts that thresholds should be higher in the iso-frequency
fronto-parallel plaid (Fig. 22.11A) than for the unequal frequency fronto-parallel
plaid (Fig. 22.11C), whereas the salience hypothesis predicts the opposite. Thresh-
olds were raised more by the iso-frequency mask than the more salient unequal fre-
quency mask. Second, the increase in suppression when the unequal frequency plaid
(Fig. 22.11C) is slanted also supports the similarity hypothesis over the salience hy-
pothesis. In addition, in comparing the two slanted plaids, suppression was greater
when the image pattern was iso-frequency (Fig. 22.11D) than when the surface pat-
tern was iso-frequency (Fig. 22.11B). These results indicate that the COS from the
vertical grating is greatest when the frequency in the projected image is equal to that
of the horizontal grating, even when the frequency is one to which we are less sen-
sitive. Previous measurements of the spatial frequency tuning of COS [15] showed
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Fig. 22.11 Suppression of the test grating from iso-frequency vs. unequal frequency masks. Top:
An iso-frequency plaid (A), and an unequal frequency plaid (C) consisting of a horizontal grating
and a vertical grating at half the frequency. At slants of 60 deg, the components in the image of the
iso-frequency plaid are unequal in frequency (B), and the components in the image of the unequal
frequency plaid are equal in frequency (D). Bottom: Suppression factors averaged across three
observers (left: 4 cpd test frequency, right: 6 cpd test frequency). Error bars represent one standard
error of the mean. Black bars represent suppression factors in the fronto-parallel conditions, and
grey bars represent suppression factors in the slanted conditions

a decrease in masking for a 4 cpd test when the mask frequency increased from 4 to
8 cpd, but did not determine whether spatial-frequency mismatch or a decrease in
mask saliency was the cause.

COS is well-documented in cortical area V1, the first site in the visual pathway
containing orientation tuned cells. COS has been attributed to compressive contrast
nonlinearities in LGN [62, 84], but a cortical component has also been revealed
[64]. Although several electrophysiological studies examining the frequency selec-
tivity of COS suggest that suppression mechanisms are broadly tuned [11, 26, 78],
it is unclear whether this kind of tuning plays out psychophysically. It would be
remarkable if the facilitation of 3-D shape perception occurs automatically through
the neural processes that lead to COS, so to ascertain its locus, we explored the
possibility of frequency selectivity in an LGN based model.

Although intra-cortical inhibition was the original suggestion for COS, the fact
that suppression is not reduced by prior monocular or binocular adaptation to the
masking stimulus, that suppression is robust for masks at temporal frequencies be-
yond the limits of cortical neurons, and that COS has an early onset led to the sug-
gestion that the suppression results from the depression of thalamo-cortical synapses
[35, 72, 95]. More recent papers quantifying the fast recovery times of COS [62]
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and the suppression of both synaptic inhibition and excitation by orthogonal masks
[84] challenge the notion of synaptic depression. Instead these models suggest that
COS results from contrast saturation and rectifying nonlinearities in the LGN, and
expansive spike threshold nonlinearities in the cortex [62, 84].

To test the frequency-selectivity of COS in the models of Li et al. [62] and Priebe
and Ferster [84], Li and Zaidi [57] computed cortical responses to a vertical test
grating in the presence of superimposed horizontal masks of the same or different
frequency. All combinations of receptive fields and nonlinearities led to frequency
selectivity, with suppression greatest when the frequency of the mask matched that
of the test. The suggested roles of COS in visual encoding have included orientation
tuning [10, 92, 93], contrast gain control [2, 18, 26, 37, 43], and redundancy reduc-
tion in the coding of natural images [32, 79, 91]. Here, we present a potential role
for COS in the decoding of 3-D slant [85].

22.7 Hebbian Learning of Matched Filters

The results above show that folding or carving patterned surfaces creates signature
orientation flows in the retinal image, and 3-D shape is conveyed by these orientation
flows. Since many textures contain multiple orientations, flows have to be extracted
in the presence of other orientations. The parallel extraction of multiple orientations
at every retinotopic location by the striate cortex is perfectly matched to the de-
mands of this task, especially when critical orientations are enhanced by frequency-
dependent cross-orientation inhibition. Wong and Zaidi [101] asked whether extra-
striate neural filters matched to orientation flows could extract 3-D shapes? Could
neural matched filters for specific flows evolve through supervised learning from an-
other modality or sense? Would this require Cross Orientation Inhibition? Since the
critical orientation information occurs at different locations for different textures,
image-based procedures require augmentation. We sorted a large number of tex-
tured images into shape categories, filtered them with oriented pyramids similar to
V1 receptive fields [94], and implemented a Hebbian learning procedure on the filter
outputs. As Fig. 22.12 shows, Hebbian learning gave matched filters that resembled
the ideal filter, but this required frequency-specific COI. Normalization [43] of V1
responses, led to denser but less continuous filters. Similar results were obtained for
other shape categories and orientations and locations. This exercise points out the
critical role of V1 parallel processing in the decoding of 3-D shapes from texture
cues [44].

22.8 Hardwired Cortical Anisotropies

Shape is the attribute of an object that is mathematically invariant to location, rota-
tion and scale effects [49, 67–69, 82]. The ability to perceive the shape of a rigid
object as constant, despite differences in the viewing angle, has been considered an
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Fig. 22.12 (Center) Orientation structure of an ideal matched-filter for a vertical concavity. (Left
& right) Matched filters from Hebbian Learning using cross-orientation inhibition, without and
with normalized responses

Fig. 22.13a Convex and
concave wedges oriented
vertically and obliquely

essential component of representing objects in the visual world accurately. Because
the visual system cannot generally discount perspective distortions, shapes of certain
classes of 3-D objects are not perceived as constant across viewpoints [40, 41, 83],
but shape constancy is expected to hold for simple shapes under 2-D rotations of
the image plane [53]. In striate cortex, cells tuned to orientation are sampled un-
evenly, with greater concentration, as well as narrower tuning, near horizontal and
vertical [61, 66]. These anisotropies raise questions about whether shape constancy
can survive image rotations [25].

Figure 22.13a depicts four shapes that appear triangular in depth due to texture
cues. The concave and convex 3-D wedges with vertical axes (top) appear deeper
than the corresponding wedges with oblique axes (bottom), especially when viewed
monocularly. However, when the page is rotated 45◦, the bottom shapes appear
deeper than the top. The bottom images are simply rotated copies of the top im-
ages, revealing that perceived depth depends on shape orientation. To quantify the
orientation dependence of depth percepts, two 3-D wedges (one oriented at 45◦ and
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Fig. 22.13b (a) Highlights
2-D angles in the image of a
3-D convex shape. (b) and (c)
Display vertical and oblique
obtuse angles similar to those
used in the experiment

the other at 90◦) were viewed successively in random order, and observers identi-
fied which appeared greater in depth. The average ratios of subjectively equivalent
vertical to oblique depths for convex and concave shapes were 0.766 (SE= 0.006)
and 0.781 (SE = 0.010), respectively. Physically identical shapes were perceived
as deeper when oriented vertically than when oriented obliquely, consequently, 3-D
shapes are not perceived as constant even across rotations in the image plane.

Since the perception of 3-D shapes from texture cues depends critically on the
orientation modulations around the axis of maximum curvature, we tested whether
the 3-D inconstancy results from anisotropy in perception of 2-D image features.
The critical orientation flows, form obtuse angles that bow inward in the center of
the perspective image of the concave wedge, and bow outwards in the center of
the image of the convex wedge (Fig. 22.13b). Changes in the magnitudes of angles
above and below eye-height determine the perceived depth. We tested whether there
is a corresponding anisotropy in the perception of obtuse 2-D angles when angles
symmetric around 90◦ are compared to angles symmetric around 45◦ (Fig. 22.13b).
All 2-D angles were perceived to be sharper at vertical than at 45◦. The average sub-
jectively equivalent vertical angle was 4.5◦ (SE= 0.38◦) shallower than the oblique
angle. Consequently, 2-D angles are not perceived as constant across plane rota-
tions. In addition, the 3-D depth inconstancy could be quantitatively explained by
anisotropy in perception of 2-D features.

Having traced 3-D perceptual anisotropy to an oblique bias for 2-D angles, Cohen
& Zaidi [25] used a probabilistic stimulus decoding model [90] to test whether this
2-D bias could be explained by anisotropies in numbers or tuning widths of cortical
cells tuned to different orientations [61], or the anisotropic distribution of oriented
energy in images of natural scenes [42]. COS was a necessary part of this model.
The decoded oblique angles were wider than the decoded vertical angles by mag-
nitudes similar to the empirically measured bias. In numerous simulations, as long
as the anisotropy in the excitatory bandwidths and a constant ratio of excitatory to
inhibitory tuning-widths was maintained, the oblique angle was decoded as broader
than the vertical angle. The anisotropy in numbers of cells, maximum at horizontal
and less at oblique [61] tended to pull the posterior estimates of the arms of the
angles toward the horizontal, creating a bias in perceived angles that is opposite to
the empirical results, but weaker than the bias due to tuning width anisotropy. The
decoded difference was insensitive to the prior probability of image angles, that is,
a uniform prior led to the same predictions as the empirical frequency distribution.
The model thus showed that the combination of narrower tuning of cells for hori-
zontal orientations with cross-orientation inhibitory effects, explains the orientation
dependent angle misperception and hence the 3-D shape inconstancy.
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Perhaps because investigations of oblique effects concentrated on detection and
discrimination (e.g., [4, 25, 99]) or memory of oriented information [31], the oblique
bias for angles remained undiscovered. The oblique bias has direct consequences for
a variety of shape and space constancies. First, it suggests that 2-D shapes defined by
contours will also not be perceived as constant across axis orientations. In addition,
contour curvature is known to be fundamental to uncovering depth [51] as well as
representation of the part-structure of 2-D and 3-D shapes [23, 46], and cells in area
V4 have been shown to be selective for angles and curves in particular orientations
[80]. Our finding that perception of even a simple angle is dependent upon image
orientation thus has broad implications for object-shape perception.

22.9 Plastic Processes in Shape from Texture

Perceiving the correct shapes of objects is necessary for inferring object qualities,
manipulating tools, avoiding obstacles, and other aspects of functioning success-
fully in the world. Since observers can estimate object properties from larger dis-
tances using vision than they can from touch, generally vision makes predictions
that touch relies on, such as the shape of a handle or chair. Visual percepts are
often used to make predictions for tactile properties like soft, stiff, brittle, sharp,
dull, sticky, or slippery, whereas touch is rarely used to make predictions for vi-
sual percepts [104]. However, since the information in retinal images is inherently
under-determined, the inferential power of vision arises from employing intelligent
heuristics, assumptions, or priors, such as shown in this paper, but this inevitably
leads to illusory percepts in some cases. What are the possible functions of touch
in such cases? Observers could rely entirely on the haptic percept and ignore the
erroneous visual percept, or touch could temporarily correct the visual percept, or
there could be longer lasting effects if observers learn to change their visual prior
assumptions [1] and/or weights for different visual cues [29]. Meng & Zaidi [73]
tested these possibilities by measuring the effects of various types of haptic feed-
back on the perception of images that evoke incorrect visual percepts despite being
proper perspective projections of 3-D surfaces.

Figure 22.14A demonstrates that observers perceive veridical 3-D shapes when
looking at perspective projections of half-cycles of a sinusoidal corrugation covered
with a plaid texture, but identical shapes covered by a random-dot texture evoke
qualitatively incorrect percepts (Fig. 22.14B). The images of the random-dot tex-
tured surfaces do not exhibit the orientation flows, but contain spatial-frequency
gradients similar to the gradients of the vertical component of the plaid. Spatial-
frequency gradients in an image can result from variations in surface distance or
slant. In the absence of orientation flows, the perceived 3-D shapes are consistent
with the prior assumption that low and high frequencies result solely from closer
and more remote regions: in Fig. 22.14B, concave and convex surfaces are seen as
convex (high-low-high horizontal gradients of spatial frequency), while right and
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Fig. 22.14 Veridical and non-veridical percepts of 3-D shapes conveyed by surface textures:
(A) Flat fronto-parallel surface and half-cycles of a 3-D vertical sinusoidal corrugation covered
with horizontal–vertical plaid textures. (B) Identical surfaces covered with random-dot textures

left slants are seen as concave (low-high-low gradients) [55]. In other words, de-
spite the stimuli in Fig. 22.14B being ecologically valid, observers do not perceive
veridical shapes.

Meng & Zaidi [73] tested whether touch can “correct” the visual percepts [6]
in Fig. 22.14B, and if observers can learn to dissociate spatial-frequency gradients
from distance, after repeatedly touching the surfaces. Observers viewed each of the
images in Fig. 22.14B at the proper distance through a monocular aperture, while
actively “touching” the virtual 3-D surface with a SensAble PHANTOM Omni sty-
lus. A mirror was used to locate the visual image and the haptic feedback in the
same plane. The PHANTOM was set to one of three conditions: (i) No haptic feed-
back; (ii) haptic feedback consistent with simulated 3-D shape; (iii) haptic feedback
opposite to simulated 3-D shape (concave, convex; r-slant, l-slant). Each trial was
100 sec. Every 10 sec there was a beep to prompt the observers to say whether they
saw the shape as convex, concave, right-slant, left-slant, or flat, and either deep or
shallow. Each session contained every trial condition randomly interleaved. In the
absence of a visual stimulus, when observers were instructed to touch each virtual
surface between two landmarks for 40 secs, they reported veridical percepts on 97
to 100 % of the trials (10 trials per shape for each of 3 observers), so we know that
the haptic feedback conveys the intended shapes.

Results from 20 trials (5 observers × 4 trials) per shape-feedback condition,
are summarized in Fig. 22.15. For each response interval, the shape of the symbol
represents the most frequently reported shape, and the size of the symbol repre-
sents the proportion of the 20 trials on which observers reported the majority shape
(Fig. 22.15A). In the trials without haptic feedback (Fig. 22.15B), on the majority
of the trials, observers perceived concavities and convexities as convex, and both
slants as concave. In the trials that provided continuous haptic feedback consistent
with the simulated shape (Fig. 22.15C), observers’ visual percepts were already dif-
ferent from the no-feedback condition after 10 secs of touching, and as the trial pro-
gressed, they started perceiving the concave and slanted surfaces “correctly” with



22 Hard-Wired and Plastic Mechanisms in 3-D Shape Perception 331

Fig. 22.15 Effects of haptic feedback: (A) Symbols: Most frequently reported shape (4 trials × 5
observers). Size: Proportion of majority responses per condition. Data panels show majority shape
reported at each prompt after a 10 sec interval when viewing sinusoidal corrugations covered by
random-dot texture without haptic feedback (B), with haptic feedback consistent with simulated
3-D shape (C), and with haptic feedback opposite to 3-D shape (D). Without haptic feedback, the
observers generally perceived concavities and convexities as convex, and both slants as concave;
With haptic feedback consistent with the simulated surface, observers gradually started perceiving
the concave and slanted surfaces “correctly”. With the haptic feedback opposite to the simulated
surface, the observers gradually perceived the surface indicated by the haptic feedback. (E) Shapes
reported when viewing sinusoidal corrugations covered by random-dot texture with flat fronto-par-
allel haptic feedback. This feedback failed to modify the pre-training percept. (F) A flat fronto-par-
allel surface textured with random dots was tested with convex, concave, right-slant and left-slant
haptic feedback. The curved or slanted haptic feedback did not alter the percept of the flat stimulus.
(G) When the simulated surfaces were covered by a plaid texture, the observers could perceive the
shape correctly, and haptic feedback opposite to the shape did not alter the visual percept

increasing frequency. In the trials that provided haptic feedback opposite to the sim-
ulated surface (Fig. 22.15D), the observers’ percepts changed to the shape indicated
by the haptic feedback, = that is, opposite to the previous condition. It is interesting
that visual percepts developed with similar time-courses in the two haptic-feedback
conditions.

To test whether haptic feedback could create visual percepts at odds with vi-
sual cues, we used three additional conditions: (i) flat fronto-parallel haptic feed-
back was combined with the images of the random-dot curved and slanted surfaces,
(ii) a random-dot flat fronto-parallel surface was coupled with convex, concave,
right-slant, and left-slant haptic feedback, (iii) Convex, Concave, Right-slant, and



332 Q. Zaidi et al.

Left-slant corrugations covered by plaid textures, which observers perceive as cor-
rect 3-D shapes, were presented with haptic feedback opposite to each simulated
shape. The summary figures, show that in all of these conditions the feedback failed
to modify the initial visual percept prior to haptic feedback. The shape reports under
flat haptic feedback (Fig. 22.15E) were essentially the same as under no haptic feed-
back, and the curved haptic feedback did not change the flat percept of the images
simulating flat surfaces (Fig. 22.15F). Finally, the “opposite” haptic feedback did
not change the percepts of the images with plaid textures that contain orientation
cues to the veridical shapes (Fig. 22.15G).

All of the shape-feedback conditions were randomly mixed in each session, so
we presume that observers were using the same criteria to report what they saw in all
the trials. The results showed that haptic feedback reliably altered the visual percept
in some of the conditions (Figs. 22.15C, D), but in others the reported shapes were
different from those simulated by haptic feedback (Figs. 22.15E–G), confirming that
observers’ reports reflected not the shape that they touched, but rather the shape they
saw as per the instructions. Could the effects of haptic feedback be understood in
terms of statistically optimal cue combination [28]? In the absence of haptic feed-
back, Fig. 22.15A shows that observers perceive the random-dot concave surface
predominantly as convex, but only on about 54 % of the trials, and the two slants as
concave on about 73 % of the trials, whereas in the absence of visual stimulation,
haptic feedback evoked the intended percept on 97–100 % of the trials. A Bayesian
observer would give greater weight to the lower variance (more reliable) percepts
[52], so in the case of conflict between visual and haptic percepts, haptic informa-
tion would be more likely to modify the less reliable visual percept. In the case of
the flat feedback with the curved visual surfaces (Fig. 22.15F), these surfaces were
never reported as flat without feedback, so the feedback did not modify the visual
percept from 3-D to flat. Similarly, since there was almost no variance in the initial
visual percepts prior to haptic feedback of the flat surfaces (Fig. 22.15G) and the
non-concave surfaces with plaid textures (Fig. 22.15H), haptic feedback had little
effect.

While running the experiment, we noticed that even after 100 sec of continu-
ous touching, as soon as we stopped touching the virtual surface, the effect of the
feedback vanished. To quantify this effect, we used the L-slant and R-slant stimuli
with random-dot textures. Observers were asked to first report the perceived shape
after looking at it for 5 secs. They then touched the virtual surface for 40 secs with
veridical haptic feedback (consistent with the simulated 3-D shapes but inconsistent
with the initial percepts of concavity), and reported the perceived shape 0, 5, 10, and
15 secs after cessation of feedback (i.e., 45, 50, 55 & 60 secs after the beginning of
each trial). The results plotted in Fig. 22.16, show that before haptic feedback, both
slanted surfaces were perceived as concave. After 40 secs of veridical haptic feed-
back, each slant was perceived correctly on over 90 % of the trials, but 5 secs after
cessation of feedback, the percept started to change, and after 15 secs the reported
shape had reverted to the pre-feedback percept. We had hoped that visual system
would use the haptic feedback to learn that the frequency gradients in the images
actually signaled slant rather than distance, and would learn to correlate the ellip-
tical shapes of the texture elements with the surface angle indicated by touch, so
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Fig. 22.16 Temporary nature of haptic feedback: (A) Symbols: Most frequently reported shape
(5 trials × 3 observers). Size: Proportion of majority responses per condition. (B) Data panel
shows majority shape reported when viewing L-slant and R-slant sinusoidal corrugations cov-
ered by random-dot texture with haptic feedback consistent with simulated 3-D shape. Observers
viewed the stimulus for 5 sec without haptic-feedback, reported the shape, then touched the stimu-
lus for 40 sec, reported the shape, and then made reports every 5 secs without any additional haptic
feedback

the temporary nature of the effect was disappointing, and suggested an absence of
perceptual learning or other lasting neural modification.

These results are related to earlier results showing statistically significant effects
of haptic feedback on the weighting of texture versus disparity cues [29], and on the
“light from above” prior assumption [1], in perception of 3-D shape from static im-
ages. The light prior study showed that proportion of observers’ percepts reported as
convex or concave spheres, changed as their assumptions about light position were
altered by haptic feedback. Our results are compatible with observers giving greater
weight to the haptic information where it was more reliable than the visual infor-
mation, but the temporary nature of the perceptual modification, makes it unlikely
that observers changed their prior assumption that spatial frequency is a cue to dis-
tance not slant, or learned to increase the weight of the change in element shape
from circular to elliptical as a cue to slant. The lack of a substantial lasting effect in
our experiments, may also explain why the effects of haptic learning on the weight-
ing of different visual cues were extremely small when measured after cessation of
feedback [29].

Since vision functions over longer distances than touch, during everyday activ-
ities, vision generally provides predictions for touching, grasping, stepping, sitting
down etc. Consequently, vision is sometimes claimed to dominate touch [86], but
our experiments show that haptic feedback can substantially alter visual percepts
when the visual percepts are less reliable than the haptic percepts. On the other
hand, our demonstrations of the temporary nature of haptic dominance, and the lack
of substantial visual learning from haptic feedback, argue against Berkeley’s notion
of the primacy of touch for spatial awareness [6]. Instead, it seems that the nervous
system dynamically weighs the reliability of disparate signals in reaching a percept.
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An increasing number of intriguing interactions between touch and vision have
been documented recently [30, 45, 77]. Parallel to our work are demonstrations of
perceiving two flashes from a single flash presented concurrently with two brief
tactile stimuli [98], resolving the perceived rotation of a motion defined sphere by
touching a real rotating sphere [7] and resolving binocular rivalry between oriented
Gabors by touching a real grooved stimulus [63]. The importance of co-ordination
between visual and haptic percepts has generated a search for neural substrates in
single-cells [70, 96] and cortical areas [3, 27, 48]. Shape analysis is a necessary pre-
semantic component of object recognition. Given these robust and specific changes
in qualitative 3-D shapes, it would be interesting to decipher whether the dynamic
shifts from perceived convexity to concavity are due just to shifts in activation of
individual neurons in population coding analyses, or whether they involve changes
in shape-tuning of neurons selective for 3-D object shapes [102].

22.10 Conclusion

Signature orientation flows [50, 56, 58] arise generically in perspective images of
patterned 3-D shapes. It would thus be adaptive for a visual system to evolve hard-
wired mechanisms sensitive to each of these patterns to identify the shapes present
in front of the observer. These mechanisms should ideally take advantage of lower-
level mechanisms, such as cross-orientation inhibition, that enhance the critical in-
formation. We show that Hebbian learning could evolve such hardwired matched
filters if shape information was available form other sensory modalities, for exam-
ple, touch, or other visual modalities, for example, stereo. One disadvantage of being
hardwired, however, is that the decoding of shapes from such mechanisms would be
susceptible to any biases in lower-level orientation processing. Consistent with these
ideas, we show the oblique bias for 3-D depths, and that conflicting haptic feedback
does not modify the link between perceived 3-D shapes and signature orientation
patterns. Since orientation flows have also been implicated in 3-D shape perception
from reflections and shading [5, 13, 34], it is likely that shapes defined by these
cues also show the characteristics of being processed by similar hard-wired mecha-
nisms. Frequency gradients in images, however, can arise from at least two different
causes. Since they are more likely to occur because of changes in distance than be-
cause of surface slant, an observer is well-served by generally using them as a cue
to distance, but revising the percept to slanted when provided with veridical haptic
information. We show that this effect of haptic information is strong, but temporary,
and unlikely to lead to long-term learning. Hardwired and plastic mechanisms thus
serve complementary purposes for the visual system in judging 3-D shapes from
texture cues.
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Chapter 23
Holistic Shape Recognition: Where-to-Look and
How-to-Look

Jianbo Shi

23.1 Introduction

Shape is an expressive abstraction of visual patterns in natural images, in body
movements, even in abstract paintings. In computer vision, different applications
that can benefit from accurate shape recognition, including robot navigation, image
search, video analysis and medical image understanding. Shape is a critical cue for
recognition, as it is sufficiently invariant to represent commonalities of different in-
stances of a particular object category, while preserving enough detail about objects
in order to differentiate them from each other or the background. It also varies sys-
tematically with 3D viewpoint, enabling estimation of the object pose. While there
are many different approaches to using object shape for recognition, there are two
difficulties faced by nearly all approaches: object deformation and the presence of
background clutter.

Shape is a vast topic. We have focused on the three important sub-tasks of object
recognition (Fig. 23.1) which are detection, alignment and segmentation:

– Detection: indicating the presence or absence of an object at a particular location
in the image.

– Alignment: determining the pose of an object by corresponding it to a shape
model.

– Segmentation: determining the boundaries of the object, necessary for manipu-
lating it and interacting with it.
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Fig. 23.1 Three goals of recognition: detection, alignment and segmenting object boundaries

Fig. 23.2 A set of line figures illustrating shape as a global abstraction of visual patterns. The
two left figures are visually very dissimilar. They share similar local patches, but have different
structure as a whole. The third figure has a large overlap with the figure on the right at detail level,
while their shapes are completely different. The right-most figure shows that occlusion and missing
edges do not alter shape perception

23.1.1 What Have We Learned?

To see shape, we need to know not only where to look, but also how to look. We
can think where-to-look as a detection task, and how-to-look as a perceptual group-
ing/segmentation task.

The fundamental difficulty is that where-to-look and how-to-look need to be
tight integrated, one does not always precedes the other (Fig. 23.2). The how-to-
look question is especially difficult, and distinguishes shape recognition from more
generic deformable object recognition problem.

From computational perceptive, shape perception is all about deformation and
de-cluttering. A straight line is not much to look at. It is only when the line starts to
turn, bend, and twist, that the shape emerges. A crowded group of lines are not much
to look at either. It is only when the lines stand out from clutter that we perceive their
shape.

23.1.2 What Were the Challenges We Faced

If an image is uncluttered, for example a giraffe standing against a blue sky, the
task of recognizing the giraffe is a simple one: no matter how the giraffe bends its
neck or lifts its feet off the ground, perception of its shape can be achieved through
precise geometrical analysis of its boundary contours. If the object shape category is
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rigid, no matter how complex is its shape, recognizing it is not hard even in cluttered
environments. This task reduces to a typical problem in statistical learning. Using
supervised learning, a statistical classifier can be used to detect such objects reliably
in the image.

The key challenge is when both deformation and clutter are present in the image
and object category. These two quantities (two ratios) affect our ability to see shape:

1. Deformation ratio: for a category of object shape, it is the ratio between (a) the
range of deformation between the rigidly detectable parts and (b) the size of
these parts. The uncertainties of the deformation can be un-isotropic. For ‘shape’
objects, such uncertainties of deformation are often very large in an unknown
1D space. Most of the success we have seen on object detection has been on
objects with small “deformation ratio”, and with uncertainties of deformation
well constrained in a 2D domain isotropically.

2. Clutter ratio: for an image, it is the ratio between (a) size of the object, and (b)
size of the segmentable region on object. We can allow sampling in the segmen-
tation space, to produce multiple segmentations, so long it is not too large. For
semantic scene recognition, we have seen success when large object shapes can
be segmented using bottom-up cues.

The challenge is dealing with an object category with large deformation ratio
(related to detectable parts), and an image with large clutter ratio (large uncertainties
in segmentation due to clutter).

23.1.3 How Has Our Thinking on the Problem Changed over the
Course of Research? What’s Worked and What Hasn’t?

Shape as an abstract mathematical object has been extensively studied. Algebra is a
perfect and powerful tool to encode geometrical concepts. However, to compute and
encode geometrical properties on images, which live in the signal space, remains a
mystery. The shape story we will explore makes this link between geometry and
signal.

Deformation has to do with geometry and topology. Geometry, the study of dis-
tance and angle, provides a mathematical foundation for shape analysis. The lim-
itation is that we have to start with a clean set of lines (not necessarily limited to
occluding boundaries). De-cluttering has to do with perceptual organization of the
visual elements. A strong statement to make is that no shape can be perceived un-
less the underlying structure can be segmented. There are external de-cluttering and
internal de-cluttering. The internal one has to do with simplification of the shape
(medial axis for example), while the external de-cluttering has to do with separation
of background and foreground.
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Deformable Graphical Model and Co-segmentation-Recognition

Our initial focus was on deformable graphical models for computing shape defor-
mation. Pair-wise attributes are important for reasoning geometric relationship, and
can be conveniently encoded using an attributed graph. Furthermore, probabilistic
graphical models (such as MRFs) seem to be a perfect tool for dealing with un-
certainties in the data: using local features to set up graph node matching, and use
pairwise geometric attributes to add contextual constraints.

Accidental alignment is important issue to deal with, and that requires segmen-
tation. Motivated by a line of work by Ullman, we combined segmentation as a
parallel process, where the parts provide bias to the segmentation. Those segmenta-
tion/parts constraints are combined in a con-current graph partitioning framework.
We build on Spectral graph theory, and produced several solutions for efficient at-
tribute graph matching for object detection and segmentation.

This deformable graphical model did not work well, particularly for free form
objects. The biggest lesson we learned is that pair-wise relationship are unreliable
and uninformative when the distance between the parts are much larger than the part
size. The useful graph connections are mostly short range (distance equal to roughly
the part size). If the patches are about 30 pixels wide, the pairwise relationship are
only reliable up to 30 pixels away.

Shape Jigsaw Model

The second approach is to iteratively construct bottom-up structures into recogniz-
able shape using grammatical rules. Starting from too small elements, such as iso-
lated edges, is not a good idea. While we can recursively group them into larger
structure, the exponential grouping hypothesis expansion leads to huge uncertain-
ties of detected structure. Instead, we start from more salient region segmentation
or long salient contours grouping. We formulated our problem as a “shape jigsaw”
fitting problem where the image segments are the jigsaw parts. The jigsaw problem
can be described as ‘many-to-one’ matching of image segments to an object model,
specifically for articulated body pose estimation.

For the human body, different shape exemplars were specified for different re-
gions of the body. Because the body is compositional in nature, proposals for
a particular body region were created by combining proposals from subregions
(Fig. 23.3). For example, to form a proposal for the lower body, a single segment
could be taken, two proposals for legs could be combined, or a proposal for three-
fourths of the lower body and a lower leg (the remaining one-fourth) could be com-
bined. Because these proposals consist of image segments, a region of the body
could be formed by combining one or more image segments together.

A key insight is to separate the cost function of “proposal” from the one for “eval-
uation”. The proposals are generated by merging segments based on geometrical
grammar. The evaluation process uses “deformable” Inner Distance Shape Context
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Fig. 23.3 Shape Jigsaw fitting. Left: parse rule application procedure. Using a set of binary merg-
ing rules, a pair of parses (segments) that are within 10 pixels of each other are composed via group-
ing, with hole filling provided by segments if needed. For unary rules, the child parses undergo
extension using projected quadrilaterals and segment proposals. Shape matching is performed on
both the original segments as well as the composed parses. For leaf nodes, shape matching is
performed only on the segments. After shape matching, the parses are consolidated, pruned and
ranked. Right: Grouping: two legs, on the left, are grouped into a lower body parse, on the right.
Extension: the leftmost image shows a lower body parse with multiple different torso quadrilaterals
projected from exemplars on to the image using the correspondence between the lower body parse
and the lower body exemplars; the center image shows the exemplar with its torso quadrilateral
that yielded the best torso parse, seen in the right image. Shape matching: two examples of shape
matching. The lower body on the right was detected directly from the segments S, underscoring
the importance of injecting the shapes from S into all levels of the parse tree

(IDSC) to achieve articulation invariant matching. Using large segments helps us to
avoid accidental alignment in clutter, using IDSC allow us to deal with deformation.

We demonstrated our results in ETH Horse dataset, and Baseball set. We learned
holistic shape features are much better in describing and discriminating deformable
shape. However, the biggest drawback is that the deformable proposal generation
can be very fragile, due in part the large search space.

Many-to-Many Shape Packing Model

Saliency of the parts, and holistic deformable matching are two important ingredi-
ents for robust shape detection. Bottom-up image segmentation can yield important
image structures that are useful for object recognition. However, these image struc-
tures may fragment in unpredictable ways (depending on pose and context) result-
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Fig. 23.4 In this image, we have two different swans. Despite being the same object, the Fragmen-
tation of the contours that comprise the swans are very different. Therefore, one-to-one matching
of image contours to model is unlikely to succeed, and would likely require an exponential frag-
mentation of the swan shape model to accommodate all the possible fragmentations that occur in
real images

ing in no possible one-to-one correspondence between image structures and object
parts.

The work of [1] highlights the concept of many-to-many matching as a way of
dealing with this fragmentation problem. The work of Demirci et al. [2] formulated
the many-to-many matching problem between two graphs by first finding an em-
bedding of nodes of each graph using a low-distortion graph embedding technique,
followed by solving an Earth Mover’s Distance (EMD; [3]) problem where the flows
between nodes were interpreted as the many-to-many matching. They applied their
method to match shock graphs of silhouette images for shape matching. Some of
these ideas can be traced to an earlier work of [4].

We [5] developed an alternative approach for many-to-many matching formu-
lated as a ‘Packing’ problem (Fig. 23.4). Given two sets of contours (or segments),
the goal was to find a subset of contours (or segments) that had similar holistic
shape. Shape similarity was measured by comparing shape contexts computed over
the selected subsets of contours, and a computationally efficient approximation to
this combinatorial problem was formulated as a linear program ‘Packing’ problem.
The many-to-many matching was used to detect object parts in the image, which
were then combined via a voting scheme to provide object detection scores. The
approach was evaluated on the ETHZ Shape Classes dataset from [6], and showed
good detection performance.

The key innovation is to construct a holistic shape descriptor that is an algebraic
function of the latent selection variable of foreground and background contours.
As such, we can use computational tools for the combinatorial Packing problem
as a robust computational solution. A drawback of this approach is dependence on
precise segmentation boundary, or long contour grouping.

23.1.4 What Are the Obstacles to the Community’s Success?

The three big areas for shape recognition are: representation of the shape model,
shape features used for matching, and the method of matching the shape features to
the image. All of these choices come with different trade-offs among computational
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efficiency, tractability of good approximate or exact inference, and learnability of
good cost functions for recognition.

Shape Model Representation

On the model side, there are many different methods for representing object shape.
Broadly speaking, representations in the early history of computer vision research
tended towards greater abstraction, representing objects in terms of high-level con-
cepts, such as geometric shapes, such as Generalized cylinders: proposed by Binford
([7]), and Geons by Biederman ([8]). More recently, semantic category based repre-
sentations (e.g., an airport is composed of a runway and a terminal building), such
as AND-OR Graphs [25] have been proposed. Unfortunately, the semantic gap be-
tween these abstract representations and the image pixels has proven to be difficult
to bridge directly. As a result, vision research since 1990 has focused on much sim-
pler template representations of objects. Templates do not capture the same general
properties of object shape, but are much easier to compare against image features
than abstract representations.

Model Obstacles Most of the algorithms today proceed in a pre-set path for shape
detection, which does not know to take advantage of the opportunities presented by
the image itself (images are not trying to hide shape patterns). I wish for a shape
model that knows how to ‘opportunistically’ take advantage of the structures in the
image, explain the plausible bottom-up patterns, and guide them to complete the
shape.

We also need more detailed shape models, that are able to understand the physical
functionality of the shape.

Shape Features

Shape features are statistics about the shape that can be compared with the image in
order to find shape matches in the image. These image features allow us to compare
the template models of objects against bottom-up image structures.

The most successful features are texture histogram features such as HOG fea-
ture [9] and Shape context [10], both are histogram over gradient orientations in a
particular region of the image. However, clutter may corrupt the descriptors in com-
plex scenes, resulting in poor match scores despite the actual object of interest being
present. For this reason, the descriptor support is typically very small relative to the
overall object size, limiting the scale of shape features that can be represented. The
descriptors are often scored using a set of linear weights learned discriminatively,
e.g. from a support vector machine (SVM), that emphasize the important local fea-
tures of object shape for good detection performance.

Related to the shape context, the inner-distance shape context (IDSC) proposed
by Ling et al. ([11]) is a histogram over the locations of object boundary points, but



346 J. Shi

is computed in a way as to be invariant to articulation using shortest paths between
two points on the boundary of the shape through the interior. The length of this
path and the local orientation of the object shape at each of the boundary points are
used to compute an articulation-invariant descriptor. The IDSC was used for shape
matching of silhouette images for shape retrieval in [11].

While most recent works have focused on boundary base shape feature, earlier
works such as [12] have developed volumetric medial axis based shape feature and
shape similarity function.

Feature Obstacles We need shape features that can pick up small subtitle shape
variations that are functionally important, while tolerating deformation and clutter.
We need image features that extract more abstract concepts of topological as well
as physical functionality of the shape elements.

Shape Matching

Given shape features in the image, these features must be matched against the object
shape model in order to achieve recognition. This typically involves at least align-
ment of the model to the image, and may also include segmentation of the object.
Many different methods for shape matching have been developed, implementing a
variety of different cost functions with corresponding trade-offs in computational
complexity and detection accuracy.

Template Matching Using Local Features can be done using Chamfer match-
ing/Distance transform, which can be generalized and computed efficiently [13].
Abstract Representation Matching can be achieved via the interpretation tree, in-
troduced by Gatson and Lozano-Perez in [14]. Local features + pairwise geometric
constraints, can be achieved by graph matching methods. Multiple object parts can
be detected in the image using this method and their scores can be combined via
voting for the object center using the known spatial relationships of the parts rel-
ative to the object center, as in [15]. Arbitrary pair-wise relationships can also be
incorporated, as did Coughlan and Ferreira ([16]), using loopy belief propagation
for inference.

Matching Obstacles The key missing piece is understanding uncertainties in the
matching process, and a computational mechanism to mediate the uncertainties in
both the top-down and bottom-up path. Another key element is turning this matching
process to gain discriminative power.

Above, we see the shape recognition task is ultimately about building up a
parametrization of the image shape, such that geometrical measures can be made.
Recognizing this underlying image structure is what allows us to answer the “how-
to-look” question, which is crucial for shape measurement.
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23.2 Many-to-Many Shape Packing

Given a set of image structures, discovered by bottom-up grouping, recognition typ-
ically requires matching these structures against an object model. Because one-to-
one matching is insufficiently flexible to handle the matching of bottom-up struc-
tures that fragment unpredictably, we need methods for many-to-many matching,
which maps subsets of a set A to subsets of a set B .

23.2.1 Many-to-Many Matching as a Packing Problem

We formulate in [5, 17], the many-to-many matching task for matching object shape
as a combinatorial Packing problem. We are given a set of model contours M and
image contours C, and wish to find a subset of each such that the overall shapes
of the two subsets is similar. In the case where model is made of one deformable
contour, |M| = 1, this reduces to many-to-one matching.

The advantage of many-to-many matching is that groups of image structures can
be holistically matched to the object model without regard to their specific fragmen-
tation. The contours corresponding to the outline of the object in the image could be
fragmented arbitrarily, yet many-to-many matching would be able to match them to
the object shape model with the same cost.

To characterize the shape of the subsets, we can use any spatial histogram, such
as one or more shape contexts [18], or a grid histogram. During matching, we must
find both the subsets of contours in the model and the image as well as an aligning
transformation that aligns the image contours to the object shape model so that shape
similarity can be measured accurately. These quantities can be defined as:

– T ∈ R2: a transformation that describes the alignment of the image contours to
the model contours.

– xsel ∈ {0,1}|C|: an indicator vector that defines which image contours are selected
for matching to the model. Contour Ci is selected if and only if xsel

i == 1.
– ysel ∈ {0,1}|M|: an indicator vector that defines which model contours are selected

for matching to the image. Contour Mi is selected if and only if ysel
i == 1.

Figure 23.5, left, shows a set of contours in two images as input to the matching;
an aligning transformation T aligns the two sets of contours. We define a spatial his-
togram of dimension dm over the edge points of image contours selected by xsel and
transformed by T as: hT(C),xsel . Any type of spatial histogram is allowed, including
grid histograms (as used in [9]) or log-polar radial histograms (as in [18]). We en-
capsulate this property via a histogram function H , which maps a point in R

2 to a
vector in R

dm , or H :R2→R
dm . In general, any possible histogram is permitted as

long as it satisfies the following property: given two sets R and S and the histogram
function H , we require: H(R ∪ S)+H(R ∩ S)==H(R)+H(S). Specifically in
this case, a histogram over the points of several contours is equivalent to summing
the histograms computed for each contour individually, first noted in [5], and also
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Fig. 23.5 Overview of the many-to-many matching process. Top: two sets of contours M and C

are provided as input. An aligning transformation T transforms contours C such that some object(s)
align between the two sets of contours. A histogram function H operates on the contours M and
transformed contours T (C), producing a histogram for each contour, which appears as a column
of matrices GM and HT(C). Middle: our goal is to infer indicator vectors xsel, ysel that specify a
specific subset of contours in the two sets such that the two subsets have similar histograms (and
hence shape). To compare histograms, we use histogram comparison features K(T, xsel, ysel), a
function of the transformation T and the contour subsets. Bottom: our goal is to maximize the
similarity of the two histograms over the choices of subsets of contours to match the contours of
the common aligned object (a car in this instance). The two quantities xsel∗ and ysel∗ together are the
optimal solution (subsets of image contours) to the many-to-many matching problem

depicted in Fig. 23.5. This means that histogram hT(C),xsel can be represented as a
linear function of xsel as shown in Fig. 23.5. We introduce the per-contour histogram
matrix HT(C) and write the histogram over selected-contours hT(C),xsel as a linear
function of xsel:

HT(C) ∈Rdm×|C| hT(C),xsel ⇐⇒HT(C)xsel (23.1)

The k-th column of HT(C) is a histogram over the points in contour Ck . Similarly,
we can also represent the model contour shape contexts with a matrix GM , where
each column is a shape context for a model contour. To compare the histograms
that result from selecting only a subset of the image and model contours, we mea-
sure two types of features: bin-wise difference features −|HT(C)xsel − GMysel| and
intersection features min(HT(C)xsel,GMysel):

K
(
T,xsel,ysel)=

[ −|HT(C)xsel − GMysel|
min(HT(C)xsel,GMysel)

]

(23.2)
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Figure 23.5, middle, shows the comparison of the two histograms resulting from
choosing a subset of contours in both the model and image, and the features used
for histogram comparison. Given a weighting on these features wapp ≥ 0, our goal
is to solve the maximization problem:

max
xsel∈{0,1}|C|
ysel∈{0,1}|M|

wappT
K
(
T,xsel,ysel) (23.3)

An important question is how to perform the above maximization over T,xsel,ysel.
For fixed T, the resulting optimization problem is an integer linear program; if we
can solve (or approximate) this integer linear program, we can directly search over
different possible choices of T, solving a separate optimization problem for each
one. Instead of trying to solve the integer linear program exactly, we can relax
xsel ∈ [0,1]|C| and ysel ∈ [0,1]|M|, resulting in a linear program. This optimization
problem is an instance of the combinatorial Packing problem, as all the variables
take on positive values. An efficient computational solution using Prime-Dual meth-
ods is shown in [5].

Many-to-One Matching An important special case of the many-to-many match-
ing problem is the many-to-one matching problem. In this setting, instead of having
multiple model contours, there is just one, which must always be matched (cannot
be de-selected). The variables for model contour selection ysel can be eliminated,
and the term Gysel can be replaced with a single model histogram hM.

23.3 Shape Detection and Segmentation

For object detection, we use the building block of many-to-one matching of image
contours to a shape model (learned or given by hand drawing), but with a matching
score tuned for discrimination. To accommodate object deformation, we extend to
model to have N + 1 parts: Parts: P0,P1, . . . ,PN . Our parts are typically large and
locally deformed. Parts may deform relative to the root part, P0, that represents
the center of the object. In the model, parts P1, . . . ,PN are located at points of
high curvature on the model shape contours: P ′1, . . . ,P ′N . We use the discrete curve
evolution method of [19] to find these points P ′i from the model shape contours, and
P ′0 on the model is computed as simply the mean of P ′1, . . . ,P ′N in the model. Part
appearances for parts Pi , i = 1, . . . ,N are represented with model part histograms
hiM centered at P ′i computed over the model shape (P0 has no appearance term,
although our formulation can accommodate one); we use shape context histograms.

For an image Ij with contours Cj , a detection of consists of a many-to-one
matching for each part: transformations Ti for each part (which align placement
of the part in the image back to the location of the part on the model), and selected
contours for matching to each part Pi, i = 1, . . . ,N , xsel

i (with the exception of the
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Fig. 23.6 Examples of many-to-one matching. Left: input image; center: two different points on
model to be matched in the image; right: different many-to-one matchings of model to image.
A single shape context was used as the histogram, centered at the highlighted points on the model;
the transformation T relating the image to the model was simply a translation of image contours
derived from the relative locations of the model part point and the corresponding image point.
Correct correspondences are highlighted in green; matched image contours are shown in white,
and unmatched contours are black

root part, which only serves to spatially relate the other parts):

Ti : Pi→R
2

xsel
i : Cj →{0,1}|Cj| (23.4)

We define a detection as D = {T0,T1,xsel
1 ,T2,xsel

2 , . . . ,TN,xsel
N }. For simplicity,

we abuse notation and refer to the correspondence of model point P ′i in the image
using Ti . Following the terminology of [15], we also call Ti a placement of part
Pi , since it refers to the location in the image where part Pi is hypothesized to lie.
Figure 23.7 describes a detection.

Placement Score For each part Pi , we need to be able to score a placement
Ti of the part in the image along with matching contours xsel

i . We use the same
many-to-one shape matching features K , with a part-specific weight vector wapp

i ≥
0: wapp

i

T
K(Ti ,xsel

i ). The corresponding model part shape histogram is hiM.

Deformation Score For each part i = 1, . . . ,N we use a part offset Oi =
(Ox

i ,O
y
i ) that describes the expected spatial position of Pi in the image, Ti , rel-

ative to T0, the position of the root part in the image: T0 +Oi . Oi is computed as
the difference between the locations of parts Pi and P0 in the model: P ′i − P ′0. The
deviation of a part Pi from its expected position relative to the root provides part
deformation features G:

G(T0,Ti )=
[−(Tx

i − (Tx
0 +Ox

i ))
2

−(Ty
i − (Ty

0 +O
y
i ))

2

]
(23.5)
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Fig. 23.7 Step of detection: first for each model part, we try many-to-one matching at multiple
image locations. Figure 23.6 shows the resulting score map and selection of contours for different
placement of each part. The score maps for different parts are combined via center voting using the
known offset of the model part to the center of the object model, to produce an object center vote
map. Local maxima of the object center vote map can be extracted to provide multiple detectors.
For each detection, we can do a simple traceback to find the location of the object parts for that
detection, as well as matching of image contours to each object part. The bounding box can be
estimated by computing the bounding box of the part locations for that detection

A set of parameters wdef
i , i = 1, . . . ,N (to be learned, along with w

app
i ) penalizes

deviation of part Pi from its expected position relative to P0. The overall score
function for a particular detection D is:

DetScore(D)=
N∑

i=1

[
wdef
i

w
app
i

]T [
G(T0,Ti )

K(Ti ,xsel
i )

]
(23.6)

In contrast to [15], our appearance term does not depend simply on the placement
Ti of part Pi , but also on the contours chosen for matching, xsel

i .

Inference for Detection The space of possible detections is exponential in the
number of possible placements for each part and number of image contours. To
cope, we create a regular grid of possible root part locations R in the image and
only keep the highest scoring detection per root part location Rj ∈R, as in [15]. For
each possible root location Rj , we fix T0 = Rj , and then maximize the detection
score subject to this root constraint to obtain score S(Rj ,w):

S(Rj ,w)= max
D|T0=Rj

DetScore(D) =⇒

max
{T1,...,TN ,xsel

1 ,...,xsel
N }

N∑

i=1

[
wdef
i

w
app
i

]T [
G(Rj ,Ti )

K(Ti ,xsel
i )

] (23.7)

We note that wapp
i

T
K(Ti ,xsel

i ) does not depend on T0, and hence for each part
Pi the maximization over xsel

i can be pre-computed for each possible placement Ti .
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In [15], this step corresponds to convolving the image with the filter associated with
a part. In our case, we use the previously described linear programming relaxation
to efficiently and accurately approximate the many-to-one matching score.

Given w
app
i

T
K(Ti ,xsel

i ) for each possible placement Ti of each part Pi ,
maxD|T0=Rj

DetScore(D) can be computed easily by picking the best part place-
ment for each part Pi individually. For fixed T0, the scores for parts P1, . . . ,PN are
independent. The set of possible placements are sampled from points of high curva-
ture along image contours, following the method of [19]. We take as a bounding box
the bounding box of the part locations. A detection with center Rj can be labeled
as a true or false positive (label yj =±1) according the overlap of its bounding box
with a ground truth bounding box. Non-maximum suppression allows us to elimi-
nate many redundant/overlapping detections, reducing the complexity of learning.

Latent SVM for Discriminative Detector Learning Given detections centered
at Rj ∈R with labels yj = ±1 from the training images, we learn discriminative

model parameters w = [wdef
1

T
w

app
1

T · · ·wdef
N

T
w

app
N

T]T to optimize detection perfor-
mance. We in [17] adapt the “coordinate descent” method from [15] for minimizing
a hinge- loss function associated with the above score function in Eq. (23.7).

Joint Many-to-One Matching For a fixed set of part placements, we can solve
the many-to-one matching problem simultaneously for all parts. In essence, this is
like treating the shape contexts of all the object parts as a single large histogram,
and solving the many-to-one matching problem with this unified histogram. The
result is a single xsel that encodes which contours are matched to the object as a
whole. Given an existing detection D = {T0, . . . , Tn,xsel

1 , . . . ,xsel
n }, we can write

the maximization problem as:

max
xsel

N∑

i=1

w
app
i

T
K
(
Ti ,xsel)=max

xsel

⎡

⎢⎢⎢⎢⎢
⎣

w
app
1

w
app
2
...

w
app
N

⎤

⎥⎥⎥⎥⎥
⎦

T⎡

⎢⎢⎢⎢
⎣

K(T1,xsel)

K(T2,xsel)

...

K(TN,xsel)

⎤

⎥⎥⎥⎥
⎦

(23.8)

This can also be approximated via the same linear program (considering of all
the shape contexts together forming a single large histogram) as the usual single-part
many-to-one matching.

Joint Matching and Final Evaluation Given the final part placements, we can
again perform joint matching of image contours to all the object parts. On the his-
togram comparison features and the geometric relationships of parts to the object
center, we can train an SVM classifier to provide a final detection score.
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Fig. 23.8 Left: listing of detection results for the swans class. In the upper right is the preci-
sion-recall curve, annotated at several different points with letters “A”, “B”, etc. . . Shown below
are detections in descending order of detection score, along with the locations on the curve in-
dicated by the letters. Green bounding boxes indicate true positives, while red bounding boxes
indicate false positives. Selected contours for each detection are highlighted in black. Right: Some
of our detection results on the ETHZ Shape Classes dataset. Each image shows segmented object
contours and bounding boxes for one or more detections. Bottom row shows false positives for
Applelogos, Bottles, Giraffes, Mugs and 82 Swans (l-to-r); rest are true positives

23.4 Experiments on ETHZ Shape

We tested our method on the ETHZ Shape Classes dataset ([20]; freely available on-
line), with five classes: Applelogos, Bottles, Giraffes, Mugs and Swans. We follow
the train/test split described in [21]; for training for each category we used the first
half of the images from that category as positive examples, and an equal number of
negative images chosen equally from the remaining classes. Each category had 32
to 86 training images.

During detection, images were searched at 6 different scales, 2 per octave.
Each part had up to 200 different possible placements in the image; for each
part/placement/scale tuple, a separate linear program was solved, taking a few min-
utes per image. Latent SVM parameters w were initialized uniformly as in model
shape learning, and convergence took 3–7 iterations. After training the initial de-
tector, learning was done for part placement refinement, affine transformation esti-
mation and joint selection using high-scoring detections from voting (<200 detec-
tions). All our results used 0.5 overlap score threshold for determining if a detection
bounding box overlaps with a ground truth bounding box (PASCAL criterion). Each
detector was tested on remaining 169 (Giraffe) to 223 (Swan) test images.

We compare our approach against the reported results from [21] and the
method of [15] with the same train/test split. Our APs for the five classes are
(0.845/0.916/0.787/0.888/0.922; mean: 0.872), much better than the next best result
at (mean: 0.771; [21]). Our method is comparable in Applelogos/Bottles and sub-
stantially outperforms on Mugs/Giraffes/Swans which have large deformation com-
paring to [15]. Our detection rates at 0.3/0.4 FPPI of (0.95/0.95; 1/1; 0.872/0.896;
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Table 23.1 Ablative analysis of different components of our method on the ETHZ Shape Classes
dataset. We can see that the additional steps of joint selection (joint sel.) and training produce
significant improvements in performance. Removing discriminative training produces substantially
worse results, and removing both training as well as joint selection severely impacts performance

Components Avg. AP Avg. Rec. at 0.3/0.4 FPPI

Many-to-one Voting (training) 0.822 0.877/0.883

Many-to-one matching (training and joint sel.) 0.872 0.952/0.956

Same as above (no training) 0.712 0.852/0.856

No training, and joint sel. 0.574 0.765/0.790

0.936/0.936; 1/1) and mean across classes of 0.952/0.956, are a substantial improve-
ment over the results of [21], 0.919/0.932 and [22], 0.930/0.952 (hand-drawn mod-
els). We also outperform methods using hand-drawn models [5, 22, 23]. Figure 23.8
shows detections/segmentations from our method. Both internal and external con-
tours (e.g., mug handle/outline) are segmented out.

To gain further insight into the results, we display selected detections (ordered
by detection score in decreasing order) from the ETHZ test data for each category in
Fig. 23.8 along with the positions on the PR curve of those detections. We can see
that the false positives tend to have the shape of the object we are looking for, while
some true positives have low score due to object deformation (e.g., articulation of
the Giraffe or out of plane rotation of Applelogos) or missing contours.

We also performed an ablative analysis of the different steps of the method:
many-to-one matching and voting, joint selection, and supervised learning as seen
in Table 23.1. While voting with discriminative training is itself effective, the ad-
ditional of joint selection also produce substantial increases in performance. By
contrast, removing learning drastically worsens the results.

23.5 Comments

Our main theme is that shape perception involves both detection (where-to-look) and
segmentation/perceptual organization (how-to-look). The fundamental challenges
are object deformation and image de-cluttering. We focused on objects with large
deformation ratio (related to detectable parts), and on images with large clutter ratio
(large uncertainties in segmentation due to clutter).

Our approach of Contour Packing shows that salient long contours can de-clutter
the image and be organized into a deformable object shape. It specifically addresses
the problem that every image has highly unpredictable bottom-up contour group-
ings. We further conjuncture that this approach would require far fewer training
examples.

The experimental analysis of our algorithm shows that three shape recognition
subtasks, (1) detection (via discriminative pattern matching), (2) alignment (of parts
and local orientation of features), and (3) segmentation (of figure-ground), all need



23 Holistic Shape Recognition: Where-to-Look and How-to-Look 355

to work together for improving shape detection performance. Building on this theme
of integrated detection-alignment-segmentation, we recently developed a joint com-
binatorial optimization solution in [24] which achieved the average AP of 91.1 %
on the ETHZ Shape Classes.

The importance of each subtask varies case-by-case depending on the type of im-
age clutter and amount of object deformation. This points to the need of better shape
recognition benchmarks, which will measure more precisely how an algorithm per-
forms under different image/object conditions. This is important as our community
moves towards a more experimental science.

Acknowledgement The Contour Packing algorithm described here are based on Ph.D. thesis
works of Qihui Zhu and Praveen Srinivasan.
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Chapter 24
Shape Processing as Inherently
Three-Dimensional

Christopher W. Tyler

24.1 The Inherently Three-Dimensional Demand Characteristics
of Visual Encoding

In order to plan and coordinate actions for foraging, procreation and self-preserva-
tion, organisms need a functional representation of the three-dimensional scene lay-
out and of the spatial configuration and dynamics of the objects within it, both in
the 2D visual field and in depth. A primary goal of visual encoding is, therefore, to
determine the inherently three-dimensional shape structure and motion trajectories
of the objects in the surrounding environment.

These demand characteristics pose a problem, however, in relation to the prop-
erties of the visual array, such as edge contours, binocular disparity, color, shading,
texture, and motion vector fields, which have an entirely different metric structure
from that of the spatial configuration of the objects. The laws governing the spatial
relationships within these two domains, the physical array and the visual array, are
strikingly incompatible. Physically, objects consist of aggregates of particles that
cohere together, with empty space (or non-coherent media, such as air or water)
between them. Objects may be rigid or flexible, but in either case, a given object
is formed from a particular set of particles with invariant connectivity. The visual
cues that convey the presence of objects to the brain or to artificial sensing systems,
however, share none of these properties. The visual cues may change in luminance
or color, and they may be disrupted by reflections or disappear entirely from occlu-
sion by intervening objects. Moreover, the information carried by the multiplicity
of visual cues about different aspects of an object may even be non-coherent or
disjunctive across the different cues.

In particular, any of these cues may be sparse, with missing information about
the object structure across gaps where there are no edge or texture cues to carry
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Fig. 24.1 Extension of shape
completion by illusory
contours to illusory 3D shape
in the undefined white region

information about the object shape; or ambiguous, where the cue information is
consistent with multiple interpretations of the object shape. Nevertheless, despite
the sparse, inconsistent, and variable nature of the local cues, we perceive the shape
of solid, three-dimensional (3D) objects by interpolating the sparse depth cues into
coherent spatial structures generally matching the physical nature of the objects.

In the more restricted domain of the surface structure of objects in the world,
surfaces are perceived not just as flat planes in two dimensions, but also as complex
manifolds in three dimensions. Here “manifold” is used in the sense of a continuous
two-dimensional (2D) subspace of the 3D Euclidean space. A striking example of
3D shape completion is the tetrahedral pyramid that can be seen in the occluded
white space in Fig. 24.1. Within the enclosed white area in this figure, there is no in-
formation, either monocular (shading, texture gradient, etc.) or binocular (disparity
gradient) about the object structure. Yet our perceptual system performs a com-
pelling reconstruction of the 3D shape of the pyramid, based on the monocular cues
of the spherical border shapes. This example illustrates the flexibility of the surface-
completion mechanism in adapting to the variety of unexpected demands for shape
reconstruction. Developing a means of representing the proliferation of 3D object
shapes in the world around us is therefore a key stage in the neural representation of
the object structure.

It is important to stress that the 3D shape reconstruction of Fig. 24.1 provides
a perceptually valid sense of depth and encourages the view that the 3D surface
representation is the primary cue to object structure [13, 25]. Objects in the world
are typically defined by contours and local features separated by featureless regions
(such as the gores, or sectors, of a beach ball, or the smooth skin between facial
features). Surface representation is an important stage in the visual coding of shape.
The concept of 3D shape representation requires a surface interpolation mechanism
to represent the surface shape in regions of the field where the information is un-
defined. Such interpolation is analogous to the “shrink-wrapping” of a protective
membrane around an irregular object such as an item of food or domestic hardware.
It takes the information available at defined points and extends a membrane across
the regions of empty space between these anchor points. This is the natural way to
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overcome the sparseness of the representation of object shape on the basis of the
available cues to its depth.

24.2 Theoretical Analysis of Shape Representation as Surface
Manifolds

It may seem self-evident that the shape of objects is three-dimensional, but it is
striking that current computational analysis is largely limited to the 2D projection
of object outlines for shape recognition (e.g., [1, 16]). This may be somewhat un-
derstandable in applications involving the recognition of static 2D images, such
as Internet image search algorithms, but it is even the case for 3D applications in
robotics, such as object manipulation routines. Even in these inherently 3D tasks,
the requirement to grasp arbitrary object shapes is often addressed by the brute-
force approach of storing large numbers of possible 2D views of the likely forms of
objects for viewpoint recognition.

With a sufficiently large number of 2D profile representations of the shape, it
may seem that they amount to an effective 3D representation, but this is not the
case. Each profile is treated as an independent sample of the object and the one best
fitting the current image is the sole current representation, with no formal means of
combining it with past best fits. This is very different from a full 3D representation
of the object form, which would involve an understanding of the dihedral-angle
relationships among the surfaces, not just their cross-sectional cuts. Indeed, the truly
complete 3D representation would include the array of values of material density at
every point in space, as in an MRI scan. However, although this voxel array provides
the full 3D data representing the object structure, it does not do so in a form that
could be considered a shape representation. ‘Shape’ is some abstracted subset of
this full 3D array of structure information, since shape is largely defined by the
surface boundary of the structure, which inherently forms a 2D manifold in 3D.

In general, then, the primary meaning of the term ‘shape’ may thus be concep-
tualized as the properties of a manifold embedded in a higher-dimensional space.
In common usage, it is applied either to one-dimensional manifolds (or loop struc-
tures) in two- or higher-dimensional spaces, or to 2D surface manifolds in three or
higher-dimensional spaces. In more complex or metaphorical informational repre-
sentations, such as in the phrase “the shape of things to come”, it may be extended
to higher dimensional manifolds in the full space of the cultural domain that we
inhabit.

24.3 Neural Aspects of 3D Shape Representation

We have seen that the sparse nature of depth cues requires interpolation to determine
the surface structure, but what is the nature of interpolation? Although it involves a
form of spatial integration, interpolation should be distinguished from the standard
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(2D) receptive-field summation mechanism, which shows a decreasing response as
the amount of stimulus information is reduced. The characteristic of an interpo-
lation mechanism, however, is to increase its response as stimulus information is
reduced, because more extended interpolation is required to cover the empty spaces
with defined surface information. In particular, depth interpolation of the 2D sur-
face manifold in 3-space is an essential prerequisite of a full object representation,
and one that cannot be replaced by 2D luminance or color interpolation mecha-
nisms [5], since such mechanisms are, by definition, restricted to the frontoparal-
lel plane. Such frontoparallel interpolation cannot represent even slanted surfaces,
let alone curved surfaces, which can be either developable or intrinsically curved.
These aspects of object structure are inaccessible to traditional surface propagation
or ‘filling-in’ mechanisms [2, 4, 18]. Some neural mechanism is needed for com-
pleting the surface manifold on the basis of the depth structure implied by the cues
around the edge of the empty regions. Once the 3D interpolation has been used to
generate the complex object surfaces from the sparse depth cue information, speci-
fication of the 3D object shape requires the relevant shape features to be identified
and to be localized relative to each other. Only when the shape features have been
both identified and localized can the shape be said to have been encoded.

24.4 Need for the Surface Representation of 3D Shape

If the neural shape representation takes the form of representing shapes in terms of
their surface structure, surfaces should play a key role in organizing the perceptual
inputs into a coherent shape representation. Such shape recognition is particularly
challenging under conditions where the objects could be considered as “sampled”
by overlapping noise or partial occlusion—the tiger behind the trees, the face be-
hind the window-curtain. Similarly, the edge features of typical objects, such as the
form of a face or the edges of a computer monitor, may be separated by blank re-
gions of many degrees of visual angle. These situations require interpolation, and
low-level filter integration can only account for interpolation behavior up to the tiny
range of 2–3 arc min in foveal vision [15], scaling proportionately with eccentric-
ity. This limitation raises the “long-range depth interpolation problem” that is still
largely unrecognized, although there has been much recent interest in relation to
the position coding for extended stimuli, such as Gaussian blobs and Gabor patches
[6, 12, 13, 15]. Thus, the interpolation required for specifying the shape of most
objects is well beyond the range of the available filters.

To address this problem, Likova and Tyler [13] used a sampling paradigm for
object location in which the objects were defined by sampled luminance profiles in
the form shown in Fig. 24.2. (Sample positions were randomized to prevent them
from being used as the position cue.) This sampled paradigm is a powerful means
for probing the properties of the luminance information contributing to shape per-
ception. Surprisingly, the accuracy of localization by humans is almost independent
of the sample spacing [11]. In the case of the depth task, the Gaussian profile infor-
mation is carried both (a) by the luminance of the sample lines (b) the disparity in



24 Shape Processing as Inherently Three-Dimensional 361

Fig. 24.2 Free-fusion stereogram (three-panel) depicting the sampled Gaussian bulge used by
Likova and Tyler [13] to study the depth surface interpolation process. The panels are defined
for stereoscopic viewing across pairs of panels, providing both crossed and uncrossed disparity
for either a crossed or an uncrossed vergence angle. A. Disparity-defined bulge, seen as forward
in one panel and recessed in the other, depending on whether vergence is crossed or uncrossed.
B. Luminance-defined (non-stereoscopic) bulge, arranged for monocular viewing with a black field
in the non-viewing eye. Note the strong perceived depth despite the lack of disparity information
(or even in the presence of zero-disparity information when viewed directly)

their positions in the two eyes, allowing the separate luminance and disparity depth
cues to be combined or segregated as needed. It should be noticeable in Fig. 24.2
that the luminance profile evokes a strong sense of depth as the luminance fades into
the black background. Both luminance and disparity profiles were identical Gaus-
sians, and the two types of profiles were always congruent in both peak position and
width.

The localization task is depicted in Fig. 24.3. The bars depict the local depth
information in the sample bars, and the continuous curve depicts the Bayesian model
of the interpolated Gaussian surface that needs to be localized by access to the local
depth information, relative to the fiducial markers. (Inspection of Fig. 24.2 should
make it clear that the depth is experienced as a floating surface interpolation. Note
that this is effectively a cyclopean stimulus [10], in the sense that the bars contain no
visible information as to the form of the Gaussian bulge when viewed monocularly.
It is only when they are viewed stereoscopically that the form and its depth sign
become apparent.)

The task was to assess whether, on any given trial, the interpolated surface peaked
to the left or right of the fiducial marker (regardless of the position of the samples).
Localization accuracy from disparity alone was as fine as 1–2 arc min, requiring ac-
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Fig. 24.3 Schematic of the surface interpolation task. The vertical bars represent the sampled
depth information (luminance, disparity, or both). The Gaussian curve represents the perceptual
model of the expected surface to be interpolated onto the stimulus. The up arrow represents the
optimal interpolated location for the peak of the Gaussian, and the down arrow represents the
fiducial marker against which the peak location needs to be judged

curate interpolation to localize the peak of the function between the samples spaced
16 arc min apart. This performance contrasted with that for pure luminance profiles,
which was about ten times worse [13].

The implication to be drawn from these basic results is that some long-range in-
terpolation mechanism is required to determine the 3D shape of extended objects
before us. The ability to encode shape is degraded once the details fall outside the
range of the local filters. However, the location was still specifiable to a much finer
resolution than the sample spacing, implying the operation of an interpolation mech-
anism to determine the location of the peak of the Gaussian despite the fact that it
was not consistently represented within the samples.

Perhaps the most startling aspect of the results was that position discrimination
in sampled profiles could be completely nulled by the addition of a slight dispar-
ity profile to null the perceived depth from the luminance variation. It should be
emphasized that the position information from disparity was identical to the posi-
tion information from luminance on each trial, so addition of the second cue would
be expected to reinforce the ability to discriminate position if the two cues were
processed independently. Instead, the nulling of the luminance-based position infor-
mation by the depth signal implies that the luminance target is processed exclusively
through the depth interpretation. Once the depth interpretation is nulled by the dis-
parity signal, neither the luminance nor the disparity information supported position
discrimination.

This evidence suggests that depth surface reconstruction is the key process in the
accuracy of the localization process. It appears that visual patterns defined by differ-
ent depth cues are interpreted as objects in the process of determining their location.
Only an interpolation mechanism operating at the level of a generic depth repre-
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sentation can account for the data. Specifically, a depth interpolation mechanism
accounts for the impossibility of position discrimination at the cancellation point
and the asymmetric shift of the cancellation point by the luminance cue (Fig. 24.2).
The fine resolution of the performance when disparity information is present clearly
implies that an interpolation process is involved in the performance, because it is
about eight times better than could be supported by the location of the samples
alone (even assuming that the sample nearest the peak could be identified from the
luminance information; see [13]).

Evidently, the full specification of objects in general requires extensive inter-
polation to take place, even though some textured objects may be well defined by
local information alone. The interpolated position task may therefore be regarded
as more representative of real-world localization of objects than the typical Vernier
acuity or other line-based localization tasks of the classic literature. It consequently
seems remarkable that luminance information, per se, is unable to support localiza-
tion for objects requiring interpolation. The data indicate that it is only through the
interpolated depth representation that the position of the features can be recognized.
One might have expected that positional localization would be a spatial form task
depending on the primary form processes [14]. The dominance of a depth represen-
tation in the performance of such tasks indicates that the depth information is not
just an overlay to the 2D sketch of the positional information. Instead, it seems that
a full 3D depth reconstruction of the surfaces in the scene must be completed before
the position of the object is known.

24.5 Hypercyclopean Form Analysis

The concept of ‘hypercyclopean analysis’ refers to the level of processing of stereo-
scopic images defined as cyclopean, and therefore containing no monocular in-
formation about the depth form. It is intended to emphasize the need for specific
mechanisms for shape encoding once the depth map of the visual scene has been
established (as opposed to the cyclopean processes required to establish the depth
map). By analogy with the cortical neurons with receptive fields selective for par-
ticular properties of the retinal image, there must be higher-level processes in cor-
tex operating as ‘receptive fields’ encoding the depth structure at the level of the
‘cleaned’ cyclopean depth image. These receptive fields would have a cyclopean
basis, in the sense of having properties specific to the disparity-selective neurons
in the cyclopean retina, but would perform a hypercyclopean analysis of the spatial
and temporal form of the depth image. Hypercyclopean receptive fields would have
characteristics defined in terms of the figural properties of the cyclopean image, but
independent of its specific disparity characteristics, i.e., which particular disparity
is stimulated at any given retinal location.

A simple example of a cyclopean stimulus is provided in Fig. 24.4, which is
an autostereogram of a sinusoidal stereograting originally published by Tyler [24].
Free-fusion of the red dots give the percept of one binocular dot flanked by two
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Fig. 24.4 Cyclopean
autostereogram of depicting
sinusoidal furrows in depth
(from [24]). Fuse the two
large central dots to see one
binocular dot flanked by two
monocular dots and allow
visual processing to operate
on the rest of the field while
maintaining fixation on the
binocular dot

monocular dots will reveal the stereograting embedded in the repeated dot pattern.
For those experiencing difficulty with free fusion, a couple of cycles of the stere-
ograting are depicted graphically at left. Again, note that the stereograting is cyclo-
pean in the sense that there is no information defining it in the non-fused dot array.
The furrows could be of any orientation or spatial pitch with no visible trace in the
dot array when directly viewed.

The existence of a hypercyclopean level of processing can be demonstrated by
means of a stereograting adaptation paradigm in which the stereograting is moved
continuously across the retina, so as to avoid any stereoscopic depth afterimage.
The obtained threshold elevation, which is specific to both spatial frequency and
orientation of the adapting grating, therefore must be occurring at a higher level of
form processing beyond that of the cyclopean processing for depth per se. Hypercy-
clopean specificity for adaptation to the spatial frequency content of the cyclopean
image was demonstrated by Tyler [23] and Schumer and Ganz [21], for orientation
specificity in a cyclopean tilt aftereffect by Tyler [23] and for motion specificity in
the form of a motion aftereffect to motion of the purely cyclopean depth image by
Papert [17].

The structure of the hypercyclopean form processing channels was measured di-
rectly by Tyler and Kontsevich [28] by means of a spatial summation paradigm.
They were found to be well-approximated by one-cycle Gabor functions that were
generally elongated along the orientation of the cyclopean stimulus (Fig. 24.5), al-
though the summation was isotropic for vertical oriented cyclopean bar stimuli. The
detection functions were tuned to the peak frequency of about half a cycle per de-
gree (as expected from the range of sensitivity to cyclopean stimuli; [22]). This
depth processing capability was evaluated by Hibbard [7], who used notch cyclo-
pean noise to determine the hypercyclopean orientation bandwidths and found them
to be isotropic, implying that the elongated summation fields must follow a (high-
level) processing nonlinearity of some kind. These few studies represent only the
beginning of the exploration of the hypercyclopean processing domain, which can
form the basis for a full paradigm of extended high-level processing investigations.

Another approach to the 2D organization of hypercyclopean processing is to
measure stereoscopic (2D) shape discrimination in the form of the just-noticeable
difference in aspect ratio for cyclopean rectangles defined entirely by disparity. With
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Fig. 24.5 Hypercyclopean
processing field in the form of
a horizontally-oriented
single-cycle Gabor function
operating on the cyclopean
depth image

this paradigm, Regan and Hamstra [19] found that aspect ratio discrimination was
different for crossed and uncrossed disparities, first decreasing and then leveling
out as its disparity increased from zero, while the perceived depth of the rectan-
gle increased smoothly and approximately linearly. The lowest value of aspect ratio
discrimination threshold (3 %) was the same for both crossed and uncrossed dispar-
ities, and occurred at the disparity limit for the onset of diplopia. The implication
here is that larger disparities improved the signal/noise ratio for the shape cue but hit
an upper depth limit beyond which it no longer improved. Interestingly, the shape
discrimination threshold had a precision better than 1 arc min—an order of magni-
tude better than the (cyclopean) stereograting resolution. This performance seems
to reflect the fact that stereoscopic vision can integrate over long edges to deter-
mine detailed shape information even though the local form processing is relatively
coarse.

24.6 Metric Constraints on 3D Shape Perception

In generalizing from 2D to 3D shape perception, there are two main issues that
need to be considered. One is the issue of the 3D perceptual metric and its distor-
tions in the third dimension relative to two primary dimensions of the visual field,
which forms the topic of this section. The other is the core encoding of 3D shape as
such, which will be addressed in the next section. The metric issues are commonly
discussed in terms of shape judgment, but they are really a precondition for shape
perception rather than being an intrinsic property of shape coding. For example, the
study by Johnston [9] of the perceived shapes of cylinders at a range of viewing
distances showed that the depth form was perceived as remarkably distorted away
from the ‘sweet spot’ of the optimal viewing distance. Johnston interpreted these
distortions as a unidimensional failure of the distance encoding metric, an interpre-
tation extended to the depth motion of stereoscopic objects by Scarfe and Hibbard
[20]. If the perceived distances in space are non-veridical, the implied distortion of
the space metric would translate to a distortion of the 3D shape of the cylinders,
being seen as having an elliptical cross-section either flattened or extended relative
to the true circular cross-section. This metric distortion hypothesis accounted for the
distortions that she measured.
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Fig. 24.6 Development of an enhanced version of the Shepard table-top illustration (modified
from [26]). The metric structure of the identical parallelograms is maintained throughout the figure,
as can be verified with a ruler, despite the strong perceived distortion when incorporated as table
tops. The distortion illustrates the power of the depth interpretation to modify perceived shape

In terms of the perceptual shape, a 3D interpretation can give rise to marked
illusions in the perceived 2D shape of even simple figures. A striking example is
the Shepard table-top illusion analyzed in Fig. 24.6 (modified from [26]). Two par-
allelograms of the identical 2D shape are shown with a relative 45 deg rotation.
Figure 24.6A illustrates the construction geometry of each parallelogram from two
right triangles with hypotenuse-to-side ratios of √2 : 1. When viewed rotated, there
is already some shape distortion (Fig. 24.6B), but when the identical shapes are
given strong 3D depth cues in the form of box sides and table legs (Fig. 24.6C), the
depth illusion generates perceived distortion of the order of √2 (∼40 %), such that
the left-hand tabletop seems to be rectangular with about a 2 : 1 aspect ratio while
the right-hand one looks like an oblique square (rhombus). The illustration can be
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checked with a ruler to ensure that this is a fully perceptual effect and not some
fakery in the illustration.

Quantitatively, the two tabletops would need to be slanted in depth by a 45◦
dihedral angle relative to the orientation of the page (or monitor surface) in order
to generate the observed degree of shape distortion. The implication is that the 45◦
angle of the parallelogram sides would need to translate to the same angle in depth
in order to account for the strength of the illusion. Moreover, the shape has to be
assessed as if viewed from directly above the surface, as though we had rotated our
position in space by the same angle as the surface rotation to assess the intrinsic
shape of the two tabletops independent of their physical orientation.

Note all these depth compensation processes are taking place despite the fact that
the tabletop images have conflicted perspective cues, in that the receding sides re-
main parallel rather than converging, as should be expected by the rules of linear
perspective. The tabletops are thus subject to the ‘Chinese perspective’ distortion
that the rear edges appear wider than the front edges. It might be expected that the
perceived aspect-ratio distortion would be even stronger if perspective were intro-
duced, but this would violate the format requirement that the two shapes remain
identical. (Note, conversely, that the legs seem to be subject to the opposite illusion
of seeming shorter in the back, a novel effect analyzed by Tyler [26]).

The general point is that this illusion is a strong example of what Gregory [3]
termed ‘inappropriate constancy scaling’. It is ‘inappropriate’ in the sense that the
explicit task is a 2D shape evaluation, while the depth cues force a slanted 3D in-
terpretation that intrudes into the process to scale the perceived shape as though it
were slanted in 3D. What is surprising is that we do not see the image as having
much of an explicitly 3D slant. It is very clearly being displayed in a flat, 2D format
on the printed page (or computer monitor). Even if asked to suspend the knowledge
that the image is displayed on the printed page, most viewers would say that they
look like cardboard cutouts with a depth of about a quarter of the height, not nearly
enough to account for the illusory slant. Unlike the Johnston [9] 3D shape experi-
ment, therefore, the perceived depth does not appear to be sufficient to account for
the strength of the illusory shape distortion. The implication is that there is some
intermediate stage of ‘pictorial depth’ at which the depth structure of images is un-
derstood but not perceived. This pictorial depth structure is not the same process as
the cognitive assessment of the physical depth of the display being viewed, or as the
perceptual assessment of the local depth actually invoked in the region of the image
being queried.

This triple conceptualization of human depth processing is encapsulated in the
diagram of Fig. 24.7. The diagram begins with the early processing modules for
five types of depth cue, which are treated as feeding with differential weights into
mid-level modules for three types of depth processing: the perceived depth expe-
rienced by the viewer, the pictorial depth understanding in viewing pictures and
photographs, and the cognitive understanding of the physical depth of flatness (or
otherwise) of the image support medium (the paper, wall, canvas or screen display-
ing the image). Under optimal viewing conditions, the cognitive understanding of
flatness may be overcome by the strength of the depth cues such that the image
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Fig. 24.7 Schematic of the three-level processing scheme required to account for the perceptual
experience of illusions such as that in Fig. 24.6. Differential weights from the array of depth cues
(large arrow) form the input to three types of depth processing: perceived depth, pictorial depth and
the cognition of physical depth (or physical distance structure). These depth encoding processes
in turn feed the estimation of three aspects of 3D shape processing: depth shape, 2D frontal shape
and projected perpendicular viewpoint shape, each of which can be quantitatively assessed for the
requisite psychophysical task

is experienced as having physical depth. This achievement is termed trompe l’oeil
(fooling the eye), and is usually followed by some probe action such as moving to
see if the perceived scene undergoes the corresponding transformation. If it does
not, the cognitive interpretation of flatness is reinstated even though the vivid depth
impression remains.

In terms of the shape assessment task that is the explicit processing goal, three
types are identified in the above discussion. (1) One is the assessment 3D depth
shape, as for the cylinders of Johnston [9], which depends purely on the perceived
depth derived from the concatenation of the various depth cues (and perhaps others
not mentioned). (2) The effects of depth variables on the assessment of 2D shape is
an old issue going back to at least the Holway and Boring [8] study of the perceived
(projected, or retinal) shape of an obliquely-viewed circle. There the emphasis was
on the fact that this assessment is affected not only by the perceived depth and the
knowledge of the physical depth (i.e., that it is lying on a physically flat floor), but
is also influenced by the perspective and other pictorial depth cues even when the
perceived depth is relatively nullified by various cues to flatness, as in the case of
the Shepard illusion in Fig. 24.6. Note that this interpretation implies that the same
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array of initial depth cues may be processed with different weights into the perceived
depth and pictorial depth components of the system.

(3) The final form of shape assessment is of the 3D viewpoint shape, i.e., the
‘true’ physical shape assessed from a viewpoint perpendicular to its surface. To
determine this shape from the optic array requires a veridical assessment of its depth,
and is often considered characteristic of children’s drawings and the Cubist approach
to 20th century painting, depicting shapes “as you know they are rather than as
you see them”. This is shown in Fig. 24.7 as having input from the pictorial depth
component only, since it requires this level of reconstruction of the viewpoint shape,
disregarding the physical form of the surface and the net perceived shape, but in
practice it may have distorting influences from either or both of them. Overall, this
scheme implies an extended array of quantitative studies to verify the existence of
this triple scheme and the proposed interactions between them.

24.7 Cortical Organization of 3D Shape Representation

A key question is which part of the visual hierarchy houses the neural apparatus for
the various aspects of depth processing? One part of the answer is the representa-
tion of depth structure, which was provided by the results of a study of cyclopean
disparity structure by Tyler et al. [29]. An example of the activation to static bars
of disparity (presented in a dynamic noise field, with a flat disparity plane in the
same dynamic noise as the null stimulus) is shown in Fig. 24.8. Notice that the early
retinotopic hierarchy delineated by the red, green and blue outlines is not differen-
tially activated at all by this stimulus contrast, implying that it is equally activated by
both the test and null noise fields, regardless of the presence of disparity structure.
The only patches of coherent activation (at the required statistical criterion level)
are in the dorsal retinotopic areas V3A and V3B and in lateral cortex posterior to
V5, in a cortical region identified as KO by the standard localizer for kinetic borders
[30]. Not shown here is the control stimuli for several kinds of luminance-defined
borders, which did not activate KO but did activate the V3AB complex.

Why should the same area be activated by both motion-defined borders and
(static) disparity-defined borders, but not luminance-defined borders? If it were re-
sponsive to border structure per se, it should respond to all three types of borders,
but that is the role played by the V3AB complex (as was also the case for purely
dynamic texture-defined borders [13]. The KO region, on the other hand, was only
activated by the motion- and disparity-defined borders, which have neither motion
nor disparity in common between them. However, the factor that they do have in
common is perceived depth structure, since the motion-defined borders usually elicit
a strong percept of depth separation between the two directions of motion. We are
justified in concluding that this particular region of the lateral occipital complex is
specialized for the processing of perceived depth structure per se (as distinct from
motion structure, disparity structure or luminance structure). For this reason, we
have proposed renaming it the Occipital Depth Structure (ODS) region. What role it
plays in 3D shape processing, and how it relates to the stages delineated in Fig. 24.6,
however, remain to be determined.
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Fig. 24.8 Functional MRI flatmaps of the posterior pole of the two hemispheres of a typical sub-
ject showing the synchronized response to stereoscopic structure (yellowish phases) localized to
fovealV3A/B (yellow outlines) and area KO (cyan outlines) (From [29])

24.8 Conclusion

This brief overview of the components of the human processing of 3D shape has
attempted to lay the groundwork for a fuller investigation of the topic, and to pro-
vide a framework for further conceptualization of the various processing modules
that need to be considered in accounting for the range of perceptual phenomena
involved. In doing so, I have been motivated by the underlying question of how to
think about the nature of 3D shape. As laid out in Tyler and Kontsevich [27], the key
to thinking about any perceptual domain is first to identify the cardinal dimensions
of its representational space and then to identify the channel structure (or ‘primi-
tives’) of the processing throughout the representational space. In the case of 3D
shape, this space is not the easily conceptualized 3D space that the shapes inhabit,
but the much larger configurational space of all recognizable 3D shapes. In this con-
text, ‘shape’ is obviously a conceptual abstraction to fit within the relatively limited
cognitive window. When thinking about a hedge, one does not speak of the ‘shape’
of the concatenation of all the leaves in a hedge, which would be far too complex
to attempt to describe. To be accessible within our cognitive capacities, the concept
of ‘shape’ is restricted to the hedge as a whole. Marr [14], for example, proposed to
restrict it to the concatenation of generalized cylinders. But the variety of 3D shape
configurations seems endless, and one can always think of counterexamples to any
given representational scheme. In fact, the universe of 3D shapes could be consid-
ered to be coextensive with the universe of actual and imaginable objects, since ev-
ery object must have a shape. On the other hand, since we can talk of spheres, cubes,
and so on, independently of the specific objects exhibiting those shapes, there must
be some level of coding of shape into superordinate categories, and we can also ex-
tend this to metric deformation of the shapes, as into ellipsoids, cuboids, and so on,
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which incorporate many different proportions into the same shape descriptor. It is
not the goal of the present remarks to attempt to resolve either the dimensionality or
the neural processing structure of the domain of ‘3D shape’, but to point out that it
seems to be a large-scale problem that few have attempted to address, and perhaps
to stimulate further efforts in this direction.
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Chapter 25
The Role of Shape in Visual Recognition

Björn Ommer

25.1 Regularity, Structure, and Form

Our interaction with the world is constantly defined by the structure and charac-
teristics of the objects around us, in particular by their form. This is only possible
since our world exhibits an astounding degree of regularity. Let us now survey the
prevalence of structure and the implications this has on cognition. Regardless, what
scale we observe our universe on, order and regularity are evident everywhere. On
a large scale, orderless clouds of matter condense due to gravitational attraction to
form stars, stellar systems, and eventually galaxies consisting of billions of stars.
On a scale that is directly accessible with our eyes we can, for instance, observe the
complex, ordered patterns and forms exhibited by animals, plants, and non-living
matter on earth. Examples are the symmetry and self-similarity featured by ferns,
sea stars, or snowflakes. Finally, on an even smaller scale, the highly complex struc-
ture of DNA controls the development, functioning, and eventually the form of all
living organisms. Moreover, the temporal domain features periodical structures such
as the hydrologic cycle, the ever repeating seasons of the year, or our heartbeat.

It is astonishing that such complex, highly ordered structure even exists, since
the second law of thermodynamics implies that the entropy (the degree of “disor-
der”) of an isolated system—the universe in the most general case—is monotoni-
cally increasing. Moreover, not only the mere existence of order and structure, but
its robustness to disrupting factors is as striking as it is necessary for the existence of
life and our world as we know it. Consequently, it is self-evident that regularity and
structure also play an important role in human thinking. Man has always been striv-
ing for a limited set of simple rules, laws, or relationships that, together with some
simple physical entities, would explain complex entities and thereby make the world
comprehensible. When investigating these laws of nature, the scientific method has

B. Ommer (B)
Heidelberg Collaboratory for Image Processing (HCI) & Interdisciplinary Center for Scientific
Computing (IWR), University of Heidelberg, Heidelberg, Germany
e-mail: ommer@uni-heidelberg.de

S.J. Dickinson, Z. Pizlo (eds.), Shape Perception in Human and Computer Vision,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-5195-1_25, © Springer-Verlag London 2013

373

mailto:ommer@uni-heidelberg.de
http://dx.doi.org/10.1007/978-1-4471-5195-1_25


374 B. Ommer

always exploited the regularity and order of our world. Seminal examples are the
discovery of Newton’s law of universal gravitation, which applies to apples as it
does to extraterrestrial bodies like the moon and the prediction of the periodic table
of (then mostly unknown) elements by Mendeleev. Consequently, only the regular-
ity and order of our world makes it possible to learn from the past about the future,
thus rendering learning and inference feasible.

25.1.1 The Nature of Shape

Recognizing objects and dealing with them depends on their structure and charac-
teristics. With our different senses we observe different modalities and, thus, dif-
ferent properties of objects. For visual perception the most important features are
appearance and shape. Whereas appearance comprises aspects such as the reflectiv-
ity, color, and texture, shape represents the form or Gestalt of objects. Commonly
shape is thought of as a feature of the object silhouette, e.g., the form of a bound-
ary contour [25, 44, 57] or region [3], whereas appearance describes the properties
of the face of the surface surrounded by the boundary. Thus, both can be seen as
dual characteristics of an object, one being based on contour shape, the other on re-
gion appearance. Nevertheless, other notions of shape beyond the form of boundary
contours have been utilized as well, such as the spatial configuration of patches in
part-based models, for example, [21, 22, 33, 42], or the spatial layout of landmark
points in procrustes analysis [17]. Given a set of image patches or coordinates of
landmark points, we need to combine all these distributed observations to obtain a
representation of the object (this is the binding problem in perception [45]) and seg-
regate them from spurious clutter. Individual local features typically do not contain
sufficient information about an object and, thus, there is a large semantic gap [51]
between local measurements and semantic concepts such as object categories. In
this context, shape can be thought of as the “glue” that combines all local features
by ensuring a sound overall spatial layout and thereby capturing the co-occurrence
of all features. This spatial structure or geometric configuration of an object is com-
monly referred to as its shape [8, 17, 29, 50, 52]). Kendall [29] has given an informal
definition of shape that has been aptly paraphrased by Dryden and Mardia [17]:

Shape is all the geometrical information that remains when location, scale and rotational
effects are filtered out from an object.

Visual object recognition requires then to solve the correspondence problem—
features of a test image have to be matched against the descriptors of a learned
representation, for example, the complete boundary contour, patches, or keypoints.
For an optimal assignment of query features to model features, local descriptor cor-
respondences as well as the global spatial structure need to be handled at the same
time [5]. The matching process is based on the assumption that objects do not scatter
features arbitrarily in an image. This assumption is in turn founded on the structure
and regularity of the visual world.
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Fig. 25.1 The emergence of shape. (a) The triangular shape of the flock of birds is an emergent
property that is not inherent in any of its components, i.e., no individual bird exhibits the charac-
teristic of the triangle, only their ensemble does. (b) When removing parts of the block of wood,
structure starts to emerge and it persists even when individual parts such as the leg of the chair are
lost. A further removal, however, destroys the structure again

The Special Role of Shape: Invariance and Emergence Among all visual char-
acteristics, shape plays a special role. As indicated by Kendall’s definition, shape
is not only invariant to geometric transformations such as translation, rotation, and
scaling. It is also invariant to changes of appearance, that is, varying illumination,
reflectivity, color, or texture. Therefore, shape is crucial for rendering vision robust
to our ever-changing environment and it is key to enable recognition in adverse sit-
uations such as under low light.

Shape is, however, special in another respect. Whereas appearance can be di-
rectly perceived or measured by (semi-)locally observing brightness, color, or tex-
ture, shape cannot be captured directly. The shape of a hand is not immanent in
any image pixel or edge; neither is it captured by individual photoreceptors or the
receptive fields of retinal ganglion cells. Similarly, the triangular form of the flock
of birds in Fig. 25.1(a) is not inherent in any single bird. So how can we represent
shape, if it cannot be measured directly? Shape is an emergent property that only
evolves from the ensemble of foreground stimuli once background clutter has been
suppressed. Therefore, perception and modeling of shape directly depend on sev-
eral other processes that are mutually interlinked. A grouping of foreground parts is
needed to obtain object shape and segmentation segregates foreground from distrac-
tors. Grouping again consists of a data-driven bottom-up process and a top-down
registration based on learned object models. As argued by Gestalt psychology [55],
there exist cognitive processes of perceptual organization that follow the law of
Prägnanz thereby seeking simple, robust groupings. Gestalt laws such as good con-
tinuation or closure yield a purely data-driven grouping that is directly based on
the visual stimulus (Fig. 25.2 left). However, there are also complex grouping pro-
cesses that require object knowledge and reasoning about them such as Fig. 25.2
right. These processes are in the spirit of cognitivism and they present a correspon-
dence problem, that is, registering parts of the stimulus to previously learned object
models.

Finally, shape is robust with respect to missing parts and clutter. As can be seen
in Fig. 25.1(b), the operation of part removal creates structure and eventually annihi-
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Fig. 25.2 Left: Kaizsa
triangle, illusionary contours
due to data-driven, bottom-up
perceptual grouping. Right:
young/old lady, ambiguous
optical illusion due to
top-down reasoning

lates it. Removing clutter lets structure (the shape of a chair) emerge. This structure
is robust to further removal of object parts, but eventually it disappears and we are
again left with a mere block of wood. Robustness with respect to missing parts
depends on the content of the parts. As argued by Attneave [2], points of high cur-
vature are especially informative. [6] has proposed psychophysical experiments that
underline this claim and Fig. 25.3 demonstrates how the recognition system of [47]
approximates shape using a sparse representation with variable degree of detail.

25.2 Shape Representation for Visual Recognition

Computer-based object recognition has been actively pursued for half a century and
a wide range of shape representations have been investigated. Over these years of
research on shape models for visual recognition, several major trends evolved, dis-
appeared, and reappeared again. Let us now review these broad movements and the
influence they had on vision research.

25.2.1 The Days of Geometry: Blocks, Cylinders, and Acronyms

The first artificial object recognition systems entered the stage in the late 1950s,
adopting ideas from signal processing, formal logic, and statistics and being tightly
linked to the then newly proposed theme of artificial intelligence coined by John Mc-
Carthy and Marvin Minsky at the Dartmouth conference of 1956. 1963 can then be

Fig. 25.3 Shape is robust with respect to missing parts and shape information is predominantly
concentrated at points of high curvature. Example sparse shape representation taken from [47]
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viewed as the real advent of the field when L.G. Roberts [46] presented his recog-
nition system and proposed an edge detector, a line fitting, and a feature group-
ing procedure. To facilitate these first big steps into computer vision with the lim-
ited hardware resources of the day, significant simplifying assumptions were made.
Systems were confined to a blocks world consisting of only polyhedral shapes on
uniform background. While these restrictions enabled a sound theoretical investi-
gation, they lead to vision algorithms that were founded on numerous unrealistic
assumptions. Thus, later research tried to alleviate these restrictions by allowing
for more and more complex scenes. Examples are Guzman’s system [25] for rec-
ognizing 2-D curved object line drawings and Binford’s generalized cylinders [7]
that were taking curved shapes to 3-D. Based on the generalized cylinders, Brooks
[10] constructed the symbolic reasoning system ACRONYM that utilized geometric
constraints to prove the existence of parameterized configurations. Biederman [6]
then proposed geons, a universally applicable dictionary of volumetric primitives
for compositional recognition. To bridge the gap between 2-D images and the 3-D
world, Marr [37] introduced the primal sketch and the 2 1

2 -D sketch. While many
of these early systems were limited by requiring bottom-up extraction of object
boundaries, Lowe’s SCERPO system [35] directly searches for non-accidental com-
binations of edgels. A main theme of research in these days was model-based vision
by posing recognition as a correspondence problem between a model and contours
in the image, e.g., [27]. However, with aspect graphs the orthogonal movement of
view-based approaches started in the 1970s (e.g., [30] and see [16] for a later bridge
between aspect graphs and geons) although it was later discovered that this frame-
work suffers from severe complexity issues. Moreover, moment invariants [26] re-
ceived considerable interest in this era, but later this theme lost momentum due to
limited representational power in case of only a single view.

All in all a main theme of the 1960s–1980s was geometry especially based on the
shape of boundary contours. Moreover, representations were typically hierarchical
and object centered.

25.2.2 The Dawn of Appearance

As a response to setbacks of geometric approaches based on object boundary shape
and with improvements in computational resources, the 1990s saw the rise of ap-
pearance methods. By applying principle component analysis to the intensity im-
age, Turk and Pentland removed noisy dimensions and obtained eigenfaces [53].
More general eigenspace representations were analyzed by [39] and in the compari-
son by [11] template matching was superior to keypoint geometry. However, global
image transformations such as translation, scaling, or illumination changes have to
be removed in a preprocessing stage before applying appearance models such as
the PCA-based approach. Therefore, sliding window procedures [48] or cascaded
evaluation [54] are typically used. Moreover, the holistic object representation (the
complete object is represented as one appearance patch of intensity values) leads
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to models of high complexity and renders them fragile with regard to variability
in spatial structure as is the case for articulated objects. To address the latter prob-
lem, deformable template matching has been introduced [58] and prototypical de-
formations have been captured by active appearance models [12]. This approach
compensates for variations in the spatial structure by applying a global transforma-
tion when matching templates. Another solution that is currently very popular are
part-based models in spirit of the approach by Fischler and Elschlager [24]. These
models represent an object as consisting of a number of specific parts that feature
characteristic spatial structure which can be modeled using a graph [31], a joint
constellation model of all parts [22], or with probabilistic Hough voting [33].

In retrospective it can be observed how early contributions in the era of appear-
ance models have abandoned spatial structure and shape only to see it reappear a
few years later to handle articulation. Nevertheless, the main focus has been on ap-
pearance and compared to the previous geometric period, shape representation has
become significantly more coarse, e.g., part-based models sampled at few interest
points. Moreover, the view-based paradigm and shallow structures have dominated.

25.2.3 Textons Everywhere

The turn of the millennium clearly marks the advent of powerful semi-local feature
descriptors and interest point detectors. Compared to appearance patches that rep-
resent objects as a matrix of intensities or colors, these features gained invariance
to geometric deformations, illumination changes, and noise by histogramming over
edge pixels and their orientations, thereby again picking up the idea of textons [28].
The influential SIFT features introduced by David Lowe in [34] were followed by
numerous other descriptors such as shape context [4] and histograms of oriented
gradients (HOG) [14]. Popular object representations built upon these descriptors
were bag-of-feature models [13], and models based on probabilistic latent semantic
analysis such as [49]. These approaches model only feature co-occurrence and com-
pletely disregard spatial structure. By evaluating separate bag-of-features in cells of
a regular grid, spatial pyramid kernels were used in [32] to add rigid grid-like struc-
ture to this framework. In effect, this led again to a classical rigid template matching
approach—this time however with bag-of-features over image sites replacing the
intensity values of image pixels. To obtain additional flexibility to geometric defor-
mations, Felzenszwalb et al. [20] combined rigid, regular-grid-like templates with
part-based models. All of these template-based approaches utilize sliding windows.
However, scanning over all locations and scales and evaluating a classifier is not
only computationally costly but also lacks psychophysical motivation. These issues
are tackled by voting methods such as [36, 43].

Texton features have successfully addressed the invariance issues of appear-
ance patches. The potential of these powerful descriptors inspired early models like
bag-of-features that abandoned spatial structure altogether, which returned later on
again. However, compared to the geometric era, the spatial models were fairly sim-
ple, that is, rigid templates, subsequently extended by star-shaped part models in
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the currently popular approach of [20]. All in all the root filter of the currently suc-
cessful approach of [20] is a mere texton template—the whole object is represented
as a spatially varying texture (cf. Fig. 25.4(b)), same being true for the parts as
well.

25.2.4 Half a Century of Evolution—A Critique

Looking back on the development of shape models for visual recognition, some
interesting trends become apparent. There have obviously been orthogonal move-
ments as well, but these could be seen as the mainstream developments of the
field.

Complexity of Shape Models Whereas the early years saw a focus on rich ob-
ject shape and scene models [40], currently popular representations such as [20]
describe objects as a mere texton. After only a few years of development, Roberts
[46] had invented many of the key components of modern recognition systems in
1963. Some 15 years later, models that contained almost anything up to a complete
scene interpretation had been proposed [40], Fig. 25.4(a). Moving another 30 years
forward in time and comparing these rich models of the 1970s with the currently
popular, template-like texton models (e.g., Fig. 25.4(b)) this could be seen as a great
setback. However, the judgment depends on the vantage point and requires further
discussion. So what went wrong, what right, and why?

Real World Benchmarks and Performance Although the representation of
shape has become less intricate, there has been a dramatic improvement in per-
formance. Whereas blocks world (Fig. 25.4(c)) and other early scenarios used for
system evaluation were artificial and simplistic, present day benchmarks made sig-
nificant steps towards the real world recognition challenge, cf. Fig. 25.4(d). Rather
than detecting blocks in front of uniform background, multi-scale detection of di-
verse object categories in cluttered natural scenes [19] has become a main theme,
thus dealing with difficult problems such as large intra-class variability, many cat-
egories, segmentation of clutter, and multi-scale detection. Despite this positive
development it should however be noted that several of the simpler problems in
less realistic scenes are still unsolved, that benchmarks such as [19] are also only
caricatures of reality, and, most importantly, they are blending numerous unsolved
problems of vision and do not allow to evaluate the progress on individual subprob-
lems.

Dimensionality and Flexibility While there has been a trend towards less com-
plex shape models, the complexity of the low-level descriptors has increased enor-
mously. Simple parametrized surfaces were followed by PCA applied to appearance
templates before texton features became popular and increased dimensionality from
128-D (SIFT) over 10 000-D [20] to over 160 000-D in [15]. Dealing with this high
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Fig. 25.4 (a) Full-up scene interpretation from the 1970s, [40] and (b) currently popular, tem-
plate-like texton models [20]. (c) Benchmark problems of the early days, e.g., blocks world and
(d) present day recognition benchmarks such as PASCAL VOC [19]

dimensionality became only possible by adopting landmark contributions from ma-
chine learning and pattern recognition such as kernel methods. However, given the
limited amount of training and test data, curse of dimensionality is a serious concern
in light of these developments. Nevertheless, there are also very promising devel-
opments. Compared to simple condition-action-rules such as the production rules
of [40], machine learning has lead to flexible systems that automatically adapt to
training data.
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25.3 Quo Vadis?

Visual object recognition has made great progress, especially in terms of the real-
ism of its benchmark problems, the flexibility of the developed systems, and the
retrieval performance. However, there has been a shift in mainstream research to fo-
cus on much coarser and less accurate shape representations than in the early days
and on high-dimensional low-level descriptors. Many reasons including practicabil-
ity (complex low-level features are readily available), universality (coarse structure
models make less restricting assumptions), and feasibility (simpler structure models
can be easily adapted from the literature) have led to this trend. Nevertheless, using
textons to represent complete objects and their shape is obviously only a very crude
approximation. In effect the rich spatial structure of shape is basically treated as a
mere texton, cf. Fig. 25.4(b).

25.3.1 Shape: Representing Statistical Dependencies Between
Parts

We have seen that shape is an emergent property that captures statistical depen-
dencies between local features by aggregating descriptors, for example, those that
lie along object boundaries. However, commonly used part-based methods such as
propabilistic Hough voting [33, 36] fail to model these dependencies and simply
treat heavily overlapping features that are sampled close to another as being inde-
pendent. Voting then sums over the mutually dependent feature votes. The same
critique also applies to sliding windows based on texton templates such as the pop-
ular approach [20]. By utilizing a linear classifier to combine the cells of the rootfil-
ter (nonlinear classification is not feasible due to complexity), mutual dependencies
cannot be learned. Consequently, the two most common approaches to visual object
detection—voting and sliding window texton templates—are treating objects to be
a mere sum of their parts, cf. [56]. This assumption is against the fundamental con-
viction of Gestalt theory that the whole object is different from the sum of its parts
[55] and that shape emerges from all constituents by explicitly capturing mutual part
relationships.

Compositionality We cannot measure shape directly in an image. Neither are joint
models of all parts such as constellation models [22] feasible for the usually large
quantities of parts. How can we then model part dependencies effectively in a way
that lets shape emerge? To bridge the large gap between local features and holis-
tic object shape, hierarchical approaches have been proposed. These were highly
popular in the early days when only weak features such as edges or geometric
primitives were used. Hierarchies then lost momentum with the arrival of power-
ful features when some vision problems could be addressed on the level of features
without reasoning about more complex object structure (e.g., bag-of-features). Re-
cently, however, compositional methods have shown to be effective in combining
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local descriptors in hierarchies that culminate in a holistic representation of object
structure with all its flexibility. Compositionality refers to the prominent ability of
human cognition to represent entities as hierarchies of meaningful and generic parts.
As demonstrated by Biederman [6], the atomic constituents are usually much sim-
pler than the scenarios described by their compositions. Moreover, these parts are
generic so that they can be used for representing numerous object categories, thus
being essential for the flexibility of human cognition. The power of composition-
ality is not rooted in the atomic parts but stems from modeling the dependencies
between the parts. In particular, seeking non-accidental [35] part relationships ren-
ders vision robust with regard to clutter and object variability. Written language can
for instance be represented with just a mere 26 letters, where meaning is not inher-
ent in individual characters but only results from their compositions, i.e., words and
sentences.

Based on these ideas, a compositional system for category-level recognition has
been presented in [41]. Using the Gestalt laws of perceptual organization, candi-
date compositions are formed. Then a discriminative strategy is employed to retain
only characteristic compositions. This unsupervised discovery of mid-level discrim-
inative compositions [41, 42] establishes a layer of intermediate abstractions in the
resulting hierarchy. In [42] a graphical model combines multiple layers of composi-
tions and scene context while learning follows a Bayesian approach and is based on
cross-validation. Whereas these methods learn the compositional structure without
supervision, poselets [9] have followed-up on these ideas by requiring additional
supervision information for labeling object specific compositions. Fidler et al. [23]
have build a hierarchy of constellation models to speed-up multi-class classification.

A Compositional Shortcut Compositional hierarchies are ideal for representing
object structure by modeling relationships between parts. However, we cannot
merely stack an arbitrary number of layers on top of each other and expect a func-
tioning hierarchy. Noise and other disturbances at the feature level can be amplified
by successive representation layers. Consequently, a recent development has been
to avoid arbitrarily deep hierarchies by iteratively optimizing a single layer of com-
positions. In [56], this is achieved by integrating compositionality into Hough vot-
ing. Rather than incorrectly assuming parts to be independent, dependent parts are
grouped while solving the correspondence problem and forcing all parts within the
resulting compositions to agree on a concerted object hypothesis, Fig. 25.5(a). As
a result three key problems of vision are addressed jointly, (i) grouping object parts
into meaningful compositions, (ii) establishing correspondences between query ob-
ject and training samples, and (iii) foreground/background segregation. To avoid
bottom-up grouping altogether, [57] applies maximum margin multiple instance
learning to obtain a dictionary of meaningful contours. Shape is then represented
by learning the consistent joint placement of all these contours, Fig. 25.5(b). Object
detection and the assembling of their shape are addressed simultaneously. Contour
co-activation captures part dependencies and a discriminative approach yields con-
sistent joint placements of all model contours. The dual problem of shape-based
compositional region grouping has been addressed in [38]. Finally, compositional-
ity and shape are not limited to representing individual objects. [1] has presented
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Fig. 25.5 (a) Compositions by grouping dependent parts and solving the correspondence prob-
lem [56]. (b) Learning discriminative joint placements of contours yields object shape (sample
support vectors for giraffes) [57]

a video parsing approach to abnormality detection. They parse complete scenes by
establishing a set of shapes that jointly represent all the foreground, thereby taking
interactions between object shapes into account.

25.4 Conclusion and Outlook

Among all visual characteristics, shape is of crucial importance. Shape exhibits im-
portant invariance properties, unites heterogeneous scattered features, and captures
the holistic structure of objects. Being an emergent property, shape cannot be mea-
sured directly, thus rendering its representation challenging. Consequently, a large
body of vision research has focused on modeling object structure during the last half
century. Broad trends during this time were (i) a geometric era with an emphasis
on spatial structure, boundary contours, hierarchies, and model-based approaches,
(ii) appearance models with comparably coarse shape representation, shallow struc-
tures, and a view-based paradigm, and recently (iii) an era of powerful texton-based
features with bag-of-features, part-based models, and texton templates. Over the
years the performance of vision systems, the complexity of recognition benchmarks,
and the flexibility of the learning algorithms has increased, significantly. Compared
to the early days there is, however, an emphasis on relatively coarse models of object
shape (to the point of treating shape as a spatially varying texture) and a trend to-
wards ever increasing dimensionality (addressed in [18]). Moreover, there has been
a back and forth of interest in and complexity of shape models. The arrival of new
features has typically first led to an increased interest in low-level representation
followed by a later reemphasis of shape. Finally, hierarchical models based on com-
positionality have recently shown great potential for bridging the gap between local
features and holistic shape. They capture non-accidental part dependencies to model
structure and they have addressed key problems of vision such as top-down group-
ing, foreground/background segregation, and the correspondence problem.
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Chapter 26
Human Object Recognition:
Appearance vs. Shape

Irving Biederman

26.1 Cortical Pathways for Visual Processing

High-resolution visual information is conveyed from the retina to the cortex via the
lateral geniculate nucleus of the thalamus. The first cortical stage, V1, performs,
essentially, a multiscale, multiorientation, Gabor filtering of the local contrast in the
image through cells with small, local receptive fields (∼0.5–2°). Activation is then
fed forward through two major pathways. The ventral pathway, which we will fo-
cus on in this chapter, mediates recognition—how we know what we are looking
at. This pathway extends from V1, through a series of stages, V2, V3, V4, and, in
the macaque, the inferior temporal (IT) region (Fig. 26.1). The human homologue
to IT—the final visual stage in the ventral pathway—in the macaque appears to be a
region termed the lateral occipital complex (LOC), which will be discussed in detail
below. A dorsal pathway mediates vision for purposes of motor interaction (or “how
to”) and extends from V1 (and V3 and V4) to the parietal cortex, which has exten-
sive connections to the premotor cortex in the frontal lobe. This pathway specifies
where objects are and their characteristics for, say, reaching and grasping. Another
visual function is that of motion perception, with a region termed MT critical for its
specification. MT is often considered to be a dorsal function but a case can be made
that it be considered independently of its role in motor interaction.
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Fig. 26.1 Dorsal and ventral
cortical visual pathways

26.2 The Ventral Pathway

26.2.1 The Lateral Occipital Complex (LOC): An Area Critical
for Perceiving Shape

LOC is operationally defined as the difference in the fMRI BOLD response to those
regions of the cortex that show a heightened BOLD response to intact images of
objects compared to their scrambled counterparts. In a typical study to localize LOC,
subjects view 12 s blocks of images of 24 intact objects, with each image shown for
500 msec. After a 10 s blank period during which nothing is shown (to allow the
BOLD signal to return to its resting state), the same objects can be shown, except
that they are scrambled so that they resemble texture. (For another participant, the
textured block would precede the intact block.) This procedure, when repeated for
several cycles, yields a greater BOLD response in the lateral occipital cortex and
the posterior portion of the fusiform gyrus (Fig. 26.2), which collectively comprise
LOC [22]. LOC is functionally equivalent to the anterior inferior temporal area (IT)
in the macaque in that it is considered the final stage in the ventral cortical pathway
mediating shape recognition. Evidence for this equivalence derives, in part, from
the similarity in the coding of object classes in IT and LOC. Kriegeskorte et al. [20]
showed that the tuning of cells in IT of the macaque revealed the same similarity
structure as fMRI-defined voxels in LOC. For example, if a cell responded strongly
to a face it tended to respond strongly to other faces but not household appliances, a
voxel could be found in human LOC that showed the same similarity relations.

That LOC is not just responsive to images of objects but is critical for their recog-
nition is documented by studies of patient DF, who suffered bilateral lesions to LOC,
with sparing of other cortical areas, as a consequence of carbon monoxide poison-
ing at the age of 34 [23]. DF does not report seeing objects yet she shows normal
motor interaction with them in that her hand normally conforms to an object prior
to its grasping. Specifically, when picking up an object, the span of her pre grip is
accurately tuned to the position and width of the object that she is about to grasp
and her grasping points are optimal in that they pass through the center of mass of
the object, in a manner that is virtually indistinguishable from normal control sub-
jects [11]. She is normal or near normal in perceiving the color and texture of an
object and whether it is moving or stationary.
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Fig. 26.2 Location of the lateral occipital cortex (LO) and the posterior fusiform gyrus which,
together, constitute the lateral occipital cortex (LOC). A left hemisphere of an inflated brain is
shown. Darker regions are sulci. This is the region that shows greater fMRI BOLD activation to
intact objects compared to their scrambled counterparts resembling texture. From Malach, Levi, &
Polat [21] TICS, v. 6, p. 177, Fig. 26.1

DF cannot copy line drawings of simple common objects such as an apple or a
house yet she can draw them reasonably well from memory, as we would if we had
to draw the object in the dark. Her visual memory is excellent and she can process
previously learned shape information in novel tasks, such as judging which capital
letters of the alphabet have vertical lines on their left side and which have curved
segments or whether particular objects are taller than they are wide. In all cases she
is unable to visually recognize the letters or objects that she is judging.

It is possible to get the complementary deficit from a lesion in the parietal cortex
that affects the dorsal pathway. Such individuals have no difficulty in recognizing
objects but they are unable to achieve the fluid and efficient motor interactions of
normal subjects. In picking up an object, they grope for it with open hand, the way
we would when attempting to pick up an object in the dark.

26.2.2 Coding for Shape vs. Surface in LOC

Objects vary in shape, color, texture, and the luminance pattern over their surface
depends on the direction of illumination. LOC represents the object as a line drawing
that codes the orientation and depth discontinuities of an object—that is, its shape—
to the exclusion of the surface features of the original image, such as color, texture,
and direction of illumination. An fMRI experiment by Grill-Spector, Kourtzi, &
Kanwisher [12] used an adaptation design in which subjects viewed a number of
presentations of a sequence of two images. If the images were identical (Cup →
Cup) then the BOLD response was smaller than if the images were different (Cup
→ Violin). The repetition of the identical images is said to produce adaptation and
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the different images are said to produce a release from adaptation, indicating that the
underlying neural representations of the two images differ. (Exactly why repetition
of the identical image reduces the BOLD response, that is, adaptation, is still a
subject of debate with non-exclusive interpretations including fatigue, narrowing
of tuning, and competitive coding.) But what happens if, say, the first image is a
photograph of a cup and the second is a line drawing of the same cup? Remarkably,
the adaptation is unaffected, that is, there is no release of adaptation. Despite the
drastic alteration of the image by the removal of its surface properties, the absence
of an effect on adaption indicates that the coding of LOC is independent of surface
properties.

When we look at the tuning of single units in macaque IT, we can witness the
same equivalence in the coding of line drawings and photographs. Given the pref-
erences, i.e., spike rate, of a neuron over a set of colored photos of objects, that
preference ordering is maintained over line drawings of the objects (e.g., [16, 18]).
That is, if the cells fired at a higher rate to a color photograph of a chair over a lamp,
that ordering was maintained for line drawings of those objects.

The representation of objects in terms of their orientation and depth discontinu-
ities renders them invariant in terms of recognition performance to the direction of
illumination [24]. This invariance to direction of illumination is also witnessed in
the tuning of macaque cells in IT [29].

Although there is no question that humans can readily determine an object’s ori-
entation and depth discontinuities, that is, they can produce an excellent line draw-
ing by depicting those discontinuities, this capacity still remains a great challenge
to the computer vision community. The design of a system for determining those
discontinuities and distinguishing them from shadows, texture, surface markings,
reflection highlights, etc. is still an unsolved problem. In fact, the major motivation
for appearance-based approaches in the computer vision community may arise out
of the inability to model how a line drawing can be extracted from an image of an
object. This challenge is not restricted to those designing computer vision systems.
Vision scientists do not know how line drawings of 3D shape are achieved by the
visual system.

26.2.3 Different Subregions for the Processing Different Stimulus
Dimensions

If LOC does not code for surface properties, where are they coded? Within the ven-
tral pathway, different regions appear to be maximally activated when we attend to
an object’s shape, color, or texture. Consider the unfamiliar shaped-objects that vary
in shape, texture, and color in Fig. 26.3 [8]. Cant and Goodale had subjects view se-
quences of these objects and in separate blocks of trials, the subjects had to press
a key if the object on the current trial matched the shape of the object in the prior
trial. In such blocks, the color and texture could be ignored. In other blocks sub-
jects judged if the prior object matched in texture and in still other blocks of trials,
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Fig. 26.3 Stimuli from the Cant & Goodale [8] experiment that varied in shape, color, texture, and
orientation. From Cerebral Cortex, v. 17 Fig. 26.2

in color (which was varied within textures, although not shown in Fig. 26.3), each
time ignoring the other dimensions of stimulus variation. As noted previously, atten-
tion to shape maximally activated LOC. Attention to texture (or material properties)
activated the collateral sulcus. Attention to color overlapped the collateral sulcus
and LOC. One doesn’t have to give an explicit task to induce attention to a stimulus
dimension. Merely passively viewing objects, such as those shown in Fig. 26.3, that
vary in only one attribute, say texture, while shape and color are held constant, will
be enough to differentially activate the collateral sulcus, the cortical area tuned to
texture.

We should not be surprised to learn that there is independent coding of texture,
color, and shape. Certainly we can look for our car in a parking lot or a garment in
the laundry basket on the basis of its color, ignoring the variations in shape. It has
been known for some time that people can demonstrate perfectly efficient selective
attention to shape and ignore surface color or luminance and vice versa. For exam-
ple, Fitts and Biederman [10] showed that the speed and accuracy in discriminating
all black or all white circles and squares by human subjects was unaffected when
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the shapes varied irrelevantly in luminance. The discrimination of luminance was
similarly unaffected by irrelevant variation in shape. Biederman [1] demonstrated
selective attention between dimensions of color, size, and orientation. Combina-
tions of stimulus dimensions that can be selectively attended, such as luminance
and shape, are said to be analyzable. In contrast, some dimensions, such as hue and
saturation, cannot be efficiently selectively attended. Such dimensions are said to be
integral. The neuroimaging work of Cant and Goodale suggest that efficient (i.e.,
fast and accurate) selective attention to a particular stimulus attribute in the pres-
ence of other varying attributes may be dependent on the coding these attributes at
different cortical loci.

26.2.4 How Efficient are Line Drawings for Object Recognition?

Biederman and Ju [7] investigated the speed and accuracy of naming, in one ex-
periment, and verification, in another, of briefly presented line drawings and pho-
tographs of common objects. In the naming tasks, an image with a common basic-
level name is briefly presented followed by a mask and the subject has to name the
object as quickly as possible. The time from the onset of the presentation to the
onset of naming is measured. In a verification task, following the presentation of a
target name, for example, “chair,” on half the trials a subsequently presented image
matches the target and the subject is to press a key that indicates a match. In the
other half of the trials, the image is not of a chair and the subject presses a non-
match key. Both basic-level naming and verification were as fast and as accurate for
line drawings as they were for color photography of the same instances. That is, the
availability of surface cues—color, texture, luminosity gradients—added nothing to
the recognition speed and accuracy of a line drawing of an object that specified well
its orientation and depth discontinuities.

Some additional results confirmed the dominance of shape over surface for object
classification/recognition. Some objects have diagnostic colors, such as a fish, a
banana, or a fork, all familiar to human subjects. Other objects, such as a chair, pen,
or a mitten do not. In both naming and verification the objects with the diagnostic
colors showed the same equivalence with their line drawing counterparts as did the
objects with non-diagnostic colors.

The equivalence of line drawings and colored photos only holds for concrete
objects with definite boundaries. Linguistically, these tend to be count nouns for
which, as the term implies, we can apply number and the indefinite article, so we
can say three chairs or a chicken. Visual entities specified by mass nouns, such as
sand or water, tend to be identified through their surface properties, for which we
cannot apply number or the indefinite article. Perhaps predictably, the identification
of objects dependent on their surface properties, including the case where an object’s
characteristic shape is altered, as occurs with a balled up shirt in the laundry bas-
ket, is markedly slower and more error prone than object classes with well-defined
discontinuities that can be conveyed by a line drawing [6].
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Table 26.1 Six characteristics of human object recognition supported by behavioral and neural
experiments

1. Objects are represented by a structural description that specifies the parts, and the relations
between the parts.

2. The representation is largely edge-based—specifically, those edges specifying orientation and
depth discontinuities—rather than surface-based (i.e., color, texture).

3. The representation is of simple parts, rather than local features, templates, or concepts.

4. The parts, which can be modeled as generalized cylinders (GCs), are distinguished by nonac-
cidental properties (NAPs) of their GC attributes, e.g., whether the axis is straight or curved or
the sides parallel or not, rendering them geons.

5. There is low sensitivity for discriminating complex, irregular shapes (= texture?) compared to
simple shapes but high sensitivity for distinguishing texture from shape.

6. The representation is largely invariant to translation, size, reflection, source of illumination,
and rotation in depth, as long as the originally viewed parts and their relations can be readily
discerned.

26.3 What Aspects of Shape are Coded in LOC?

To pose the above question in a principled manner, we have to first understand
what aspects of shape are apparent in object recognition behavior. There are six
results (Table 26.1) motivated from Geon Theory (also termed Recognition-by-
Components), Biederman’s [2] account of human object recognition that have re-
ceived strong behavioral and neural support but are not expressed by appearance-
based theories of object recognition.

We have previously considered the sufficiency of a line-drawing representation
(#2) Space precludes an extensive account of all six characteristics of human object
recognition so I will just provide a brief overview of the evidence for a parts-based
representation (#3) as well as the evidence for explicit coding of the relations be-
tween object parts (and objects) (#1).

26.3.1 Evidence for the Representation of Objects in Terms of
Parts Rather than Local Features, Templates or Concepts

An object’s shape is coded in terms of its simple parts—its geons—rather than tem-
plates of the whole object or the local features. There are considerable advantages
in coding an object in terms of its parts. Under the most common causes of image
variation, namely partial occlusion or rotation in depth, a template (such as the sil-
houette) can change markedly but only minimal costs in recognition are observed as
long as two or three of the parts remain in view. If an object is missing a part, human
subjects—even young children—can readily describe what it is that is missing.

It is important to note that the invariance to rotation in depth, as well as to changes
in size, position, reflection, and direction of illumination can be witnessed with a
“one shot” brief presentation of a novel object [3]. That is, a single 100 msec view
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Fig. 26.4 Illustration of local feature-deleted stimuli from [5]. From each part, every other line
and vertex was deleted forming a complementary pair of images such that if the two members of a
complementary pair were superimposed they would produce an intact object without any overlap
in contour

of an object never seen previously is sufficient to achieve an invariant representation
of that object so that the gain in speed and accuracy in identifying a subsequent
presentation of the object is unaffected by a change in the viewing conditions. There
is, however, an episodic memory, of the viewing parameters of the object so that we
can remember where the object was, its size, and its orientation (e.g., [4]).

Biederman and Cooper [5] tested whether the representation was indeed parts-
based by employing complementary, contour-deleted line drawings of familiar ob-
jects (Fig. 26.4) to assess the presentation that mediated repetition priming of ob-
jects. Repetition priming, as the name implies, is the increase in the speed and ac-
curacy of recognizing briefly presented, masked images of objects on their second
presentation compared to their first. In their experiment, subjects named the objects,
all of which had a common basic-level name, for example, “elephant,” “piano,” as
quickly and as accurately as possible. In the first of two experiments, the contour
deletion was of every other line and vertex of each part (Fig. 26.4) so that when
both members of a complementary pair were combined they would make for the
original intact object without any overlap in contour. Subjects named the objects in
two blocks separated by approximately 10 minutes. The images in the second block
could be classified into three conditions: (a) images that were identical to those on
the first block, (b) complementary images which had the deleted contour of those
for that object on the first block, and (c) a same name, different exemplar, such as
an upright piano on the first block and a grand on the second.

The Different Exemplar condition was designed to rule out non-visual sources of
facilitation, such as lexical access or basic-level priming. That is, if all the facilita-
tion was just from repetition of the basic-level name or concept, then the Different
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Exemplar condition should have been equivalent to the Identical condition. This was
not the case. The different exemplar condition showed minimal facilitation from the
first to the second presentation compared to the identical condition and most, if not
all, that facilitation was because different exemplars of the same basic level class
share some of the parts and relations, for example, airplanes will have wings emerg-
ing from their bodies and dogs will have four legs. Thus almost all the facilitation
on this task could be considered visual priming and not conceptual or lexical prim-
ing. The remarkable result was the equivalence in the Identical and Complementary
conditions. This indicates that none of the visual priming can be attributed to local
features, as there was zero overlap of the contours and vertices between members of
the same exemplar.

Although the results excluded that repetition of local features or basic level con-
cepts or names accounted for the priming, the possibility remained that the priming
was accounted for by repetition of subordinate-level concepts, that is, that it was
the idea that one had seen a grand piano and not an upright piano or an elephant
in a particular pose that mediated the priming. A complementary-priming exper-
iment was then executed in which the complements were composed of different
parts. Here complex objects were used each requiring at least six parts to look com-
plete. The contour deletion was not of local features but of complete parts so that
each member of a complementary pair had half the parts (and about half the total
contour) of the other member. In this experiment there was absolutely no visual
priming; performance in the Complementary condition was now equivalent to the
Different Exemplar condition with the Identical condition showing a sizable advan-
tage (lower RTs and error rates) compared to the Complementary Condition. These
behavioral results have received confirmation in fast, event-related fMRI-adaptation
experiments [13]. In these experiments, subjects viewed two images of contour-
deleted objects, each presented for 300 msec separated by a blank frame. When the
two images were identical, the BOLD response in LOC was minimal, an indicant of
adaptation. When the images were of local feature-deleted complementary versions
of the same objects, there also was no release from adaptation. However, when the
two images were complements with different parts, there was a significant release of
adaption—a higher BOLD response—indicating that they were coded as different
representations in LOC even though they were of the same exemplar. In brief, the
fMRI-adaptation experiment was completely consistent with the behavioral priming
experiment in indicating that objects are coded in terms of their parts rather than in
their local features or subordinate level concepts.

26.3.2 Relations Between Parts and Between Objects

Just as different orderings of the same set of letters can form different words, dif-
ferent relations among the same set of parts can form different objects [2]. People
have ready access to these relations and not only can describe them verbally but can
quickly judge whether different novel objects composed of different geons, say, are
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in the same or different arrangements in terms of their medial axis structure. More-
over, even when classifying which set of geons makes up a novel object while, pre-
sumably, ignoring axis structure, the pattern of fMRI activation nevertheless shows
sensitivity to the axis structure [19]. This neural sensitivity to the relations among
object parts is also witnessed when viewing minimal scenes composed of differ-
ent objects [14, 17]. When subjects view two frames of a novel scene, say a bus
above a turtle, separated by a brief interval, there is a marked release from adap-
tation (greater BOLD response) if the second frame is that of a turtle above a bus,
and virtually no release if the objects are simply translated by an equal extent but
maintain the same relation. Appearance models posit that local features between the
objects specify the relations but direct tests of such a proposal found no evidence for
such coding [14]. A structural description representation explicitly specifying parts
and relations can be argued to be a necessary prerequisite to support true ‘under-
standing’ of visual structure. By rendering neither parts nor relations explicit, this
prerequisite is not achieved by “bag of features” appearance models, e.g., [27].

To incorporate explicit relations into representations of objects and scenes, it is
necessary to solve the binding problem, minimally, that the bus is ABOVE the turtle.
So the relation of ABOVE is bound to bus and BELOW is bound to turtle. Although
some have claimed that vision can solved without solution to the binding problem,
e.g., [26], it is not clear that image understanding (vs. classification into familiar
categories) can be so achieved, e.g., [15].

26.4 Coda

Probably the greatest challenge to machine vision efforts to achieve object recog-
nition is the extraction of orientation and depth discontinuities and distinguishing
such discontinuities from shadows, reflection edges, texture and color differences,
etc. A secondary challenge is whether machine-based attempts at object recognition
that do not achieve a structural description, as well as capturing the other character-
istics listed in Table 26.1, can rival recognition performance readily evidenced by
humans.
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Chapter 27
Shape-Based Object Discovery in Images

Sinisa Todorovic and Nadia Payet

27.1 Introduction

This paper presents an overview of the shape-based approach to object discovery
and related problems that we have developed over the last several years [1–3]. We
briefly describe the major components of our work, and explain its advantages over
the more common methods based on point features (e.g., [4–11]).

The role of shape in representing and recognizing objects in images is a long-
standing question in computer vision. In psychophysics, it is widely recognized that
shape is one of the most categorical object properties [12]. Yet, most recent work
on object recognition exclusively resorts to appearance features (e.g., color, textured
patches), arguing that they are more stable to variations in imaging conditions (e.g.,
illumination, viewpoint). However, there are a number of unsatisfying aspects asso-
ciated with point features. They are usually defined only in terms of local disconti-
nuities in brightness. The inherent locality of points cannot represent the full spatial
extent of objects in the image. As a direct consequence, point-based object detection
requires the use of scanning windows of pre-specified size and shape, resulting in
overlapping candidate detections that need to be resolved in a postprocessing step
(e.g., non-maxima suppression). This postprocessing is usually based on heuristic
assumptions about the numbers, sizes, and shapes of objects present. Since the final
result of this is identification of the points associated with detected objects, it leads
to only approximate object localization.

A number of approaches, including our previous work, use image contours as
features [11, 13–25]. These methods argue that contours are in general richer de-
scriptors, more discriminative, and more noise-tolerant than interest points. Con-
tours make various constraints, frequently used in object recognition—such as those
dealing with continuation, smoothness, containment, and adjacency—implicit and
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easier to incorporate than points. Contours often coincide with the boundaries of
objects and their subparts. This allows simultaneous object detection and segmenta-
tion. Shape-based recognition typically requires a manually specified shape template
[21, 22], or manually segmented training images to learn the object shape [26]. Such
a high level of supervision in training can be relaxed by combining shape with point
features [27, 28].

It is worth noting that the impact of any shortcomings of a contour detection al-
gorithm should not be confused with the weaknesses of shape-based representation.
For example, oversimplifying assumptions made by some edge detection algorithms
about shape, curvature, size, gray-level contrast, and topological context of objects
to be expected in an image may lead to various errors [29–31]. From our experi-
ence, these errors could be addressed by a higher-level recognition algorithms, as
presented here.

In this paper, we study the role of object shape in the problem of discovering
instances of frequently occurring object categories (e.g., faces, bikes, giraffes, etc.)
in an unlabeled set of images. Object discovery is arguably a more difficult problem
than learning visual properties of objects from labeled images, since the former ad-
ditionally requires identifying a meaningful image content in the background clutter,
whereas the latter exploits human annotation for directly accessing the image con-
tent of interest. Object discovery brings together most recognition related problems
of interest here, and serves well to highlight the strengths and shortcomings of us-
ing shape as object features for recognition. In particular, for object discovery, we
deliberately disregard appearance features, and use only the geometric properties of
image contours. In this way, we are in a position to empirically evaluate if shape is
expressive and discriminative enough to provide robust detection and segmentation
of common objects in the midst of background clutter. Also, we can empirically
show advantages of using only shape-based cues over photometric features for ob-
ject discovery.

Most previous work on unsupervised object discovery exploits photometric prop-
erties of objects. For example, color of image regions is used in [32, 33], and texture
properties of image patches are used in [34, 35]. In our experiments, we outperform
these appearance-based approaches to object discovery in both object detection and
segmentation on benchmark datasets.

The remainder of this paper is organized as follows. Section 27.2 briefly reviews
our approach to object discovery and points out our contributions. Section 27.3 spec-
ifies our shape representation. Section 27.4 describes how to build a graph from all
pairs of image contours to capture shape properties of objects. Section 27.5 presents
our graph multicoloring algorithm for object discovery. Section 27.5 presents our
experimental evaluation. Finally, Sect. 27.7 presents our concluding remarks.

27.2 A Brief Review of Our Approach

This section reviews our approach, originally presented in [2]. It consists of three
steps, illustrated in Fig. 27.1. Step 1: Given a set of unlabeled images, we extract
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Fig. 27.1 Overview: Given a set of unlabeled images (left), we extract their contours (middle left),
and then build a graph of pairs of matching contours. Contour pairs are viewed as collaborating
(straight graph edges), if they similarly deform from one image to another, or conflicting (zigzag
graph edges), otherwise. Such coupling of contour pairs facilitates their clustering with the Coor-
dinate Ascent Swendsen-Wang cut (CASW). The resulting clusters represent shapes of discovered
objects (right). (Best viewed in color)

their contours by the minimum-cover algorithm of [36]. Each contour is character-
ized as a sequence of beam-angle histograms, computed at points sampled along the
contour. Similarity between two contours is estimated by the dynamic time warp-
ing (DTW) of the corresponding sequences of beam-angle descriptors. Step 2 builds
a weighted graph of matching contours, aimed at facilitating a separation of the
background from object shapes in Step 3. We expect that there will be many simi-
larly shaped curves, belonging to the background. Since the backgrounds vary, by
definition, similar background curves will most likely have different spatial lay-
outs across the image set. In contrast, object contours (e.g., curves delineating a
giraffe’s neck) are more likely to preserve both shape and layout similarity in the
set. Therefore, for object discovery, it is critical that we capture similar configura-
tions of contours. We build a graph, where nodes correspond to pairs of matching
contours, and graph edges capture spatial layouts of quadruples of contours. Step 3
conducts a probabilistic, iterative multicoloring of the graph using the Coordinate-
Ascent Swendsen-Wang (CASW) cut. In each iteration, CASW cut probabilistically
samples graph edges, and then assigns colors to the resulting groups of connected
nodes. The assignments are accepted by the Metropolis-Hastings (MH) mechanism.
After convergence, the resulting clusters represent shapes of objects that are discov-
ered in the image set.

27.3 Image Representation Using Shapes and Shape Description

This section presents Step 1 of our approach. In each image, we extract relatively
long, open contours using the minimum-cover algorithm of [36], referred to as gPb+
[36]. Similarity between two contours is estimated by aligning their sequences of
points by the Dynamic Time Warping (DTW). Each contour point is characterized
by the weighted Beam Angle Histogram (BAH), illustrated in Fig. 27.2. BAH is a
weighted version of the standard unweighted BAH, aimed at mitigating the uncer-
tainty in contour extraction. BAH down-weights the interaction of distant contour
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Fig. 27.2 BAH is a weighted
histogram of beam angles θij
at contour points Pi ,
i = 1,2, . . .

Table 27.1 Contour
matching on the ETHZ image
dataset [28]. Top is Precision,
bottom is Recall. The
rightmost column shows
matching results of Oriented
Chamfer Distance [27], and
other columns show DTW
results. Descriptors (left to
right): our BAH, unweighted
BAH, Shape Context [37],
and SIFT [38]

Contour
detectors

BAH BAH-U [37] [38] [27]

Canny 0.23 ± 0.01 0.21 0.18 0.15 0.21

0.59 ± 0.02 0.57 0.48 0.48 0.52

[28] 0.32 ± 0.03 0.30 0.25 0.18 0.29

0.78 ± 0.03 0.75 0.62 0.61 0.72

gPb+ [36] 0.37 ± 0.02 0.34 0.26 0.20 0.34

0.81 ± 0.03 0.78 0.63 0.61 0.74

parts, as they are more likely to belong to distinct objects in the scene, rather than
to the same objects. BAH is invariant to translation, in-plane rotation, and scale.
Experimentally, we find that BAH with 12 bins gives optimal and stable results,
and seems more robust to errors in contour extraction than some alternative shape
descriptors, as reported in Table 27.1.

27.4 Constructing the Graph of Pairs of Image Contours

This section presents Step 2 that constructs a weighted graph, G= (V ,E,ρ), from
contours extracted from all images in the set. Nodes of G represent candidate
matches of contours, (u,u′)∈V , where u and u′ belong to two different images.
Similarity of two contours is estimated by DTW. We keep only the best 5 % of con-
tour matches as nodes of G. The graph is instrumental in capturing both intrinsic
geometric properties of shape parts, and relative layout relationships between shape
parts. This facilitates generating hypotheses of frequently occurring objects in the
image set as similar contours repeating in similar layouts in the images.

Edges of G, e = ((u,u′), (v, v′)) ∈ E, capture spatial relations of correspond-
ing image contours. If contours u and v in image 1, and their matches u′ and v′
in image 2 have similar spatial layout, then they are less likely to belong to the
background clutter. All such contour pairs will have a high probability to become
positively coupled in G. Otherwise, matches (u,u′) and (v, v′) will have a high
probability to become negatively coupled in G, so that they could be placed in dis-
tinct clusters. This probabilistic coupling of nodes in G is encoded by edge weights,
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Fig. 27.3 Estimating layout difference δ(u,u′,v,v′) when contours u and v are in image 1, and their
matches u′ and v′ are in image 2. We use the affine-homography projection of u′ and v′ to image 1,
u′′ = Hvv′u′ and v′′ = Huu′v′, and compute δ as the average distance between u and u′′, and v

and v′′. The figure with projections shows that the contours (u, s′, v, v′) have different layouts in
image 1 and image 2, whereas the contours (u,u′, v, v′) have a similar layout

ρe, defined as the likelihood ρ+e ∝ exp(−w+δ δe), given the positive polarity of e, and
ρ−e ∝ exp(−w−δ (1−δe)), given the negative polarity of e. w+δ and w−δ are the param-
eters of the exponential distribution, and δe ∈ [0,1] measures a difference in spatial
layouts of u and v in image 1, and their matches u′ and v′ in image 2.

We specify δe so as to account for small object pose and camera viewpoint dif-
ferences across the images. From our experiments, this is critical for enabling ro-
bustness in the face of noise in contour extraction and representation. We make a
distinction between the following two cases.

Case 1 (u,u′) and (v, v′) come from two images, where u and v are in image 1,
and u′ and v′ are in image 2, as illustrated in Fig. 27.3. We estimate δe in terms
of affine homographies between the matching contours, denoted as Huu′ , and Hvv′ ,
as follows. From the DTW alignment of points along u and u′, we estimate their
affine homography Huu′ . Similarly, for v and v′, we estimate Hvv′ . Then, we project
u′ to image 1, as u′′ =Hvv′u′, and, similarly, project v′ to image 1 as v′′ =Huu′v′
(Fig. 27.3 right). Next, in image 1, we measure distances between corresponding
points of u and u′′, where the point correspondence is obtained from DTW of u and
u′. Similarly, we measure distances between corresponding points of v and v′′. δe is
defined as the average point distance between u and u′′, and v and v′′.

Case 2 (u,u′) and (v, v′) come from three images, where u and v belong to
image 1, u′ is in image 2, and v′ is in image 3, as illustrated in Fig. 27.4. In this
case, we can neither use Hvv′ to project u′ from image 2 to image 1, nor Huu′
to project v′ from image 3 to image 1. Instead, we resort to context provided by
auxiliary contours s′ in a vicinity of u′, and auxiliary contours t ′ in a vicinity of v′.
For every neighbor s′ of u′ in image 2, we find its best DTW match s in image 1,
and compute homography Hss′ . Similarly, for every neighbor t ′ of v′ in image 3,
we find its best DTW match t in image 1, and compute homography Htt ′ . Then, we
use all these homographies to project u′ to image 1, multiple times, as u′′s =Hss′u′,
for each neighboring contour s. Similarly, we project v′′ to image 1, multiple times,
as v′′t = Htt ′v′, for each neighboring contour t . Next, as in Case 1, we measure
distances between corresponding points of all u and {u′′s } pairs, and all v and {v′′t }
pairs. δe is defined as the average point distance.
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Fig. 27.4 Estimating layout difference δ(u,u′,v,v′) when contours u and v are in image 1, and
their matches u′ and v′ are in image 2 and image 3, respectively. We use auxiliary contours s

in the neighborhood of u to estimate multiple affine-homography projections of u′ to image 1,
u′′s = Hss′u′, where s′ is the best matching contour of s in image 2. Also, we use auxiliary con-
tours t in the neighborhood of v to estimate multiple projection of v′ to image 1, v′′t =

∑
s Htt ′v′,

where t ′ is the best matching contour of t in image 3. On the right, we show example projections
u′′s =Hss′u′ and v′′t =Htt ′v′. Finally, we compute δ as the average distance between u and {u′′s },
and v and {v′′t }

27.5 Coordinate-Ascent Swendsen-Wang Cut

This section presents Step 3. Our goal is to perform multicoloring of the graph of
contour matches, G = (V ,E,ρ), specified in the previous section. The multicol-
oring partitions G into two subgraphs. One subgraph will represent a composite
cluster of nodes, consisting of a number of connected components (CCPs), receiv-
ing distinct colors. This composite cluster contains contours of the discovered object
categories. Nodes outside of the composite cluster are interpreted as the background.
An edge, e ∈E, can be negative or positive. A negative edge indicates that the nodes
are conflicting, and thus should not be assigned the same color. A positive edge in-
dicates that the nodes are collaborative, and thus should be favored to get the same
color. If nodes are connected by positive edges, they form a CCP, and receive the
same color. A CCP cannot contain a negative edge. CCPs connected by negative
edges form a composite cluster. The amount of conflict and collaboration between
two nodes is defined by the likelihood ρ, defined in Sect. 27.4.

For multicoloring of G, we use the Coordinate Ascent Swendsen-Wang cut
(CASW) that iterates the following three steps: (1) Sample a composite cluster from
G, by probabilistically cutting and sampling positive and negative edges between
nodes of G. This results in splitting and merging nodes into a new configuration of
CCPs. (2) Assign new colors to the resulting CCPs within the selected composite
cluster, and use the Metropolis-Hastings (MH) algorithm [39] to estimate whether
to accept this new multicoloring assignment of G, or to keep the previous state. (3)
If the new state is accepted, go to step (1); otherwise, if the algorithm converged,
re-estimate parameters of the pdf’s controlling the MH iterations, and go to step
(1), until the pdf re-estimation does not affect convergence. CASW is characterized
by large MH moves, involving many strongly-coupled graph nodes. This typically
helps avoid local minima, and allows fast convergence, unlike other related MCMC
methods (e.g., [40]). In the following, we present our Bayesian formulation of the
CASW cut.
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27.5.1 Bayesian Formulation

Multi-coloring of G amounts to associating labels li to nodes in V , i = 1, . . . , |V |,
where li ∈ {0,1, . . . ,K}. K denotes the total number of target objects, which is
a priori unknown, and (K + 1)th label is the background. The multicoloring can
be formalized as M = (K, {li}i=1,...,|V |). To find M, we maximize the posterior
p(M|G), as

M∗ = arg max
M

p(M|G)= arg max
M

p(M)p(G|M). (27.1)

We define the prior as p(M)∝ exp(−wKK) exp(−wNN), where N is the num-
ber of nodes that are labeled as background, and wK and wN are the parameters of
the exponential distribution. p(M) penalizes large K and N .

We specify the likelihood, p(G|M), in terms of independent Bernoulli edges
of G. We define binary functions 1li �=lj and 1li=lj , which indicate whether node
labels li and lj are different, or the same. Then we have

p(G|M)∝
∏

e∈E+
ρ+e

∏

e∈E−
ρ−e

∏

e∈E0

(
1− ρ+e

)
1li �=lj ·

(
1− ρ−e

)
1li=lj , (27.2)

where E+ and E
− are the sets of positive and negative edges present in the compos-

ite cluster, and E
0 is the set of edges that are probabilistically cut.

27.5.2 Inference Using the CASW Cut

The CASW cut iterates the following two steps in inference. In step (1), edges of G
are probabilistically sampled. If two nodes have the same label, their positive edge
is sampled, with likelihood ρ+e . Otherwise, if the nodes have different labels, their
negative edge is sampled, with likelihood ρ−e . This re-connects all nodes into new
connected components (CCPs). The negative edges that are sampled will connect
CCPs into a number of composite clusters, denoted by Vcc. This configuration is
referred to state A. In step (2), we choose at random one composite cluster, Vcc ,
and probabilistically reassign new colors to the CCPs within Vcc, resulting in a new
state B .

The CASW accepts the new state B as follows. Let q(A→ B) be the proposal
probability for moving from state A to B , and let q(B→A) denote the reverse. The
acceptance rate, α(A→B), of the move from A to B is defined as

α(A→ B)=min

(
1,

q(B→A)p(M= B|G)
q(A→ B)p(M=A|G)

)
. (27.3)

If α(A→ B) is low, state B cannot be accepted, and CASW remains in state A.
q(A→ B) is defined as a product of two probabilities: (i) the probability of

generating Vcc in state A, q(Vcc|A); and (ii) the probability of recoloring the CCPs
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within Vcc in state B , where Vcc is obtained in state A, q(B(Vcc)|Vcc,A). Thus, we
have

q(B→A)

q(A→B)
= q(Vcc|B)

q(Vcc|A) =
∏

e∈Cut+B
(1−ρ+e )

∏
e∈Cut−B

(1−ρ−e )
∏

e∈Cut+A
(1−ρ+e )∏e∈Cut−A

(1−ρ−e )
. (27.4)

Note that complexity of each move is relatively low, since computing q(B→A)
q(A→B)

involves only those edges that are probabilistically cut around Vcc in states A

and B—not all edges. Also, p(M=B|G)
p(M=A|G) = p(M=B)p(G|M=B)

p(M=A)p(G|M=A) can be efficiently
computed. p(M= B) can be directly computed from the new coloring in state B ,
and p(G|M=B)

p(G|M=A) depends only on those edges that have changed their polarity.

27.6 Results

This section reviews the empirical validation of our approach, presented in [2]. The
experiments demonstrate advantages of using shape-based representations and mod-
eling of objects for recognition versus alternative approaches.

Given a set of images, we perform object discovery in two stages, as in [34, 35,
41]. We first coarsely cluster images based on their contours using CASW cut, and
then again use CASW to cluster contours from only those images that belong to the
same coarse cluster. The first stage serves to discover different object categories in
the image set. The second, fine-resolution stage serves to separate object contours
from the background, and identify characteristic parts of each discovered object
category.

We use the following benchmark datasets: Caltech-101 [42], ETHZ [28], La-
belMe [43], and Weizmann Horses [44]. In the experiments on Caltech-101, we use
all Caltech images showing the same categories as those used in [34]. Evaluation
on ETHZ and Weizmann Horses uses the entire datasets. For LabelMe, we keep the
15 first images retrieved by keywords car side, car rear, face, airplane and motor-
bike. ETHZ and LabelMe increase complexity over Caltech-101, since their images
contain multiple object instances, which may: (a) appear at different resolutions,
(b) have low contrasts with textured background, and (c) be partially occluded. The
Weizmann Horses are suitable to evaluate performance on articulated, non-rigid ob-
jects.

In the first stage of object discovery, CASW finds clusters of images. This is
evaluated by purity. Purity measures the extent to which a cluster contains images
of a single dominant object category. In the second stage, on each of these image
clusters, we use Bounding Box Hit Rate (BBHR) to verify whether contours detected
by CASW fall within the true foreground regions. The ground truth is defined as all
pixels of the extracted image contours that fall in the bounding boxes or segments
of target objects. A contour detected by CASW is counted as “hit” whenever the
contour covers 50 % or more of the ground-truth pixels. Since we discard contours
that are less than 50 pixels, this means that at least 25 ground-truth pixels need to
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Table 27.2 Mean purity of category discovery for Caltech-101 (A: Airplanes, C: Cars, F: Faces,
M: Motorbikes, W: Watches, K: Ketches), and ETHZ dataset (A: Applelogos, B: Bottles, G: Gi-
raffes, M: Mugs, S: Swans)

Caltech
categories

Our method [35] [34] [41]

A,C,F,M 98.62 ± 0.51 98.03 98.55 88.82

A,C,F,M,W 97.57 ± 0.46 96.92 97.30 N/A

A,C,F,M,W,K 97.13 ± 0.42 96.15 95.42 N/A

ETHZ categories Our method [35]

A,B,G,M,S (bbox) 96.16 ± 0.41 95.85

A,B,G,M,S (expanded) 87.35 ± 0.37 76.47

A,B,G,M,S
(entire image)

85.49 ± 0.33 N/A

be detected within the bounding box. Our accuracy in the second clustering stage
depends on the initial set of pairs of matching contours (i.e., nodes of graph G)
input to CASW. This is evaluated by plotting the ROC curve, parameterized by
a threshold on the minimum DTW similarity between pairs of matching contours
which are included in G.

We evaluate the first and second stages of object discovery. First Stage: We build
a weighted graph whose nodes represent entire images. Edges between images in
the graph are characterized by weights, defined as an average of DTW similarities
of contour matches from the corresponding pair of images. A similar characteri-
zation of graph edges is used in [34, 35]. For object discovery, we apply CASW
to the graph, resulting in image clusters. Each cluster is taken to consist of images
showing a unique object category. Unlike [34, 35], we do not have to specify the
number of categories present in the image set, as an input parameter, since it is au-
tomatically inferred by CASW. Evaluation is done on Caltech-101 and the ETHZ
dataset. Table 27.2 shows that our mean purity is superior to that of [34, 35, 41]. On
Caltech-101, CASW successively finds K = 4,5,6 clusters of images, as we grad-
ually increase the true number of categories from 4 to 6. This demonstrates that we
are able to automatically find the number of categories present, with no supervision.
On ETHZ, CASW again correctly finds K = 5 categories. As in [35], we evaluate
purity when similarity between the images (i.e., weights of edges in the graph) is
estimated based on contours falling within: (a) the bounding boxes of target objects,
(b) twice the size of the original bounding boxes (called expanded in Table 27.2),
and (c) the entire images. On ETHZ, CASW does not suffer a major performance
degradation when moving from the bounding boxes, to the challenging case of us-
ing all contours from the entire images. Overall, our purity rates are high, which
enables accurate clustering of contours in the second stage. Second Stage: We use
contours from all images grouped within one cluster, found in the first stage, to
build our graph G, and then conduct CASW. This is repeated for all image clusters.
The clustering of contours by CASW amounts to foreground detection, since the
identified contour clusters are taken to represent parts of the discovered object cate-
gory. We evaluate BBHR and FPR on Caltech-101, ETHZ, LabelMe, and Weizmann
Horses. Figure 27.5 shows that our BBHR and FPR values are higher than those of
[34, 35] on the Caltech and ETHZ. CASW finds K = 1 for Airplanes, Cars Rear,
Faces, Ketches, Watches in Caltech-101, Apples, Bottles, Mugs in ETHZ, and Car
rear, Face, Airplane in LabelMe. These objects do not have articulated parts that
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Fig. 27.6 Unsupervised detection and segmentation of objects in example images from LabelMe
(top left), ETHZ (top right), and Weizmann Horses (bottom right). For LabelMe and ETHZ, each
row shows images that are grouped within a unique image cluster by CASW in the first stage.
Contours that are clustered by CASW in the second stage are highlighted with distinct colors in-
dicating cluster membership. CASW accurately discovers foreground objects, and delineates their
characteristic parts. E.g., for LabeMe Cars sideview CASW discovers two contour clusters (yel-
low and magenta), corresponding to the two car parts wheels and roof. (Bottom left) ROC curves
for LabelMe and Weizmann Horses, obtained by varying the minimum allowed DTW similarity
between pairs of matching contours which are input to CASW. (Best viewed in color)

move independently, hence, only one contour cluster is found. On the other hand, it
finds K = 2 for Giraffes, Swans in ETHZ, Cars side, Motorbikes in Caltech and La-
belMe, and K = 3 for Weizmann Horses. In Fig. 27.6, we highlight contours from
different clusters with distinct colors. Figure 27.6 demonstrates that CASW is ca-
pable not only to discover foreground objects, but also to detect their characteristic
parts, for example, wheels and roof for Cars side, wheels and seat for Motorbikes,
head and legs for Giraffes, etc. The plot in Fig. 27.6 evaluates our object detection
on LabelMe and Weizmann Horses. Detection accuracy is estimated as the stan-
dard ratio of intersection over union of ground-truth and detection bounding boxes,
(BBgt ∩ BBd)/(BBgt ∪ BBd), where BBd is the smallest bounding box that en-
closes detected contours in the image. The average detection accuracy for each cate-
gory is: [Face(F): 0.52, Airplane(A): 0.45, Motorbike(M): 0.42, Car Rear(C): 0.34],
whereas [35] achieves only [(F): 0.48, (A): 0.43, (M): 0.38, (C): 0.31]. For Weiz-
mann Horses, we obtain Precision and Recall of 84.9± 0.68 % and 82.4± 0.51 %,
whereas [33] achieves only 81.5 % and 78.6 %.

The C-implementation of our CASW runs in less than 2 minutes on any dataset
of less than 100 images, on a 2.40 GHz PC with 3.48 GB RAM.
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27.7 Conclusion

We have argued in this paper that using contours as basic image features: (a) Fa-
cilitates capturing shape properties of objects; (b) Allows a unified computational
framework that can jointly address object discovery, recognition, and segmentation;
and (c) Enables efficient and robust learning and inference. Our claims are supported
by the state-of-the-art performance of our shape-based approach to object discovery,
recognition, and segmentation, which we have reviewed in this paper. Our approach
clusters image contours based on their intrinsic geometric properties, and spatial
layouts. The resulting clusters are interpreted as shapes of parts of discovered ob-
jects.

We have derived two key insights. First, shape alone is sufficiently discriminative
and expressive to provide robust and efficient object discovery in unlabeled images,
which even outperforms related point-based methods. As image contours are dimen-
sionally matched with shape they are more suitable features for object discovery
than point features. Second, due to background clutter, there could be many simi-
lar image features—both contours and point features—coinciding with true object
occurrences and the background. To separate the background from foreground in ob-
ject discovery, one usually makes the assumption that the background clutter cannot
generate occurrences of similar spatial configurations of features in distinct images
with a high probability. This probability is arguably lower for similar spatial con-
figurations of contours than that of points, since contours have a lager spatial extent
than points. Thus, identifying similar contour layouts in the images is expected to
yield more accurate foreground-background separation than finding similar layouts
of points. In summary, using contours facilitates discovering frequently occurring
objects in images.
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Chapter 28
Schema-Driven Influences in Recovering 3-D
Shape from Motion in Human and Computer
Vision

Thomas V. Papathomas and Doug DeCarlo

28.1 Introduction

One of the fundamental questions in vision is how the visual system recovers a
nearly veridical representation of the world, given that the retinal optic flow has an
infinite number of possible interpretations, especially if one considers that there are
moving objects in the environment. This one-to-many mapping from retinal optic
flow onto the real-world surfaces and objects that provide the stimulation is known
as the inverse problem in optics [35, 40, 45–47].

There is a long-standing debate in vision on whether visual perception, which is
based on the solution to the inverse problem in optics, is influenced by schema-
driven processes or it is entirely stimulus-driven and automatic. Helmholtz [26]
was among the first researchers to hypothesize that perception is a process that
involves “unconscious inference” at a time when it was commonly believed that
perception was a purely data-driven process. This view has been adopted and ex-
tended by more recent formulations based on experimental evidence [11, 20, 22–
24, 42, 52]. This view is also adopted by researchers who use a Bayesian formula-
tion [8, 15, 19, 34, 71]; according to this view, the visual system uses “priors”, such
as the convexity bias [39, 60] or the “light-from-above” assumption [1, 6, 7, 36], to
arrive at the most probable interpretation of the visual input, given the ambiguity of
the solution to the inverse problem in optics. Proponents of this view posit that, in
addition to the “bottom-up” processing that starts with data-driven sensory signals
and activates progressively higher brain areas, there are also schema-driven “top-
down” cognitive influences (such as experience, memory, suggestions, knowledge,
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etc.) that start at higher brain areas that “interpret” their input and modulate the acti-
vation of lower brain areas ([3, 17, 30, 32, 41]; but see [18] for an argument against
top-down influences).

One approach to studying the interaction of bottom-up (data-driven) and top-
down (prior-knowledge-driven) processes is to select stimuli in which these two
processes compete against each other, such that the percept elicited by the bottom-up
signals is quite different from—and often opposite from—the percept that is favored
by the top-down processes. Specifically, the value of visual illusions in this effort
has long been recognized [5, 22–24, 52, 69]. Illusions have been used extensively
to study normal brain mechanisms and stages of processing [2, 16, 20, 38, 49]. In
particular, there is a fascinating class of three-dimensional (3-D) stimuli in which the
data-driven cues elicit one depth percept while the schema-driven processes elicit a
strong depth-inversion illusion. Two members of this class that produce very reliable
illusions are the hollow mask [21, 27–29, 43, 70] and the reverse perspective [9, 42,
43, 55, 61, 67]. In this chapter, we will consider the role of top-down influences
on the hollow-mask illusion both for human and machine vision. We observe that
a face-tracking algorithm that recovers the 3-D shape from animation sequences of
moving faces is susceptible to the hollow-mask illusion just as humans are, when
it incorporates a top-down schema of convex faces, even though the data-driven
motion parallax signals are adequate to recover the veridical concave 3-D shape.
We discuss the implications of this observation.

28.2 The Hollow-Mask Illusion for Humans

The hollow-mask illusion, along with reverse perspectives, is one of the best-known
depth inversion illusions, where one can distinguish cues and processes that give
rise to competing percepts. In the case of the hollow mask, the prior knowledge of
faces being convex, based on life-long exposure to faces, is the only schema-driven
influence in favor of the illusion. It would be instructive to summarize briefly the ba-
sic data-driven influences that provide cues for the true depth structure, against the
illusion, with the exception of the kinetic depth effect cue that provides ambiguous
information (see item 2b.2 below). (1) There are two main extraretinal signals: (1a)
Vergence is a binocular signal: it refers to the simultaneous but opposite-directed
movement of the two eyes to achieve fixation of both on the point of interest. Since
it can be expressed as an angle (vergence angle) that is formed by the two eyes’ lines
of sight, it is a single-valued function. (1b) Lens accommodation is self-explanatory
monocular signal: the shape of the eye lenses has to vary in order to achieve the
proper optical power, also single valued, to obtain a sharp “image” on the retina.
Theoretically, at least, if viewers had access to the motor signals that control the
muscles affecting vergence and accommodation, they could have used them as cues
to depth, provided they were derived over time, as they fixate various points on the
object/surface of interest. In practice, there is a long-standing debate on whether
such motor signals are indeed used as cues to depth [4, 50, 68]. (2) We next move
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to some of the retinal-based cues: (2a) The most important binocular signal is the
stereoscopic disparity between the two-eyes’ “images”, which comprises both hor-
izontal and vertical components; disparity provides continuous 3-D shape cues that
recover the true depth ordering of a scene or object; however, disparity needs to be
processed further to yield true accurate depth information [51, 64]. (2b) Some of the
monocular cues that are most relevant to the hollow-face illusion are: (2b.1) Motion
parallax, due to the observer’s self-motion as he/she views a scene, produces an op-
tic flow field that also provides continuous 3-D shape cues with properties that are
similar to those of stereopsis; they recover the correct depth ordering but they need
to be scaled for recovering true depth [53, 54]. (2b.2) For a stationary observer, a
moving object provides depth-from-motion cues, the so-called kinetic depth effect
or KDE [31, 62]. KDE also provides continuous 3-D shape cues, but the depth or-
dering is ambiguous; as an example, a rotating wire-frame globe can be perceived
either veridically, rotating in the physical direction, or in reverse depth, rotating in
the opposite direction. (2b.3) Occlusion is a powerful cue to depth but it only pro-
vides depth-ordering information. (2b.4) Shading can also provide cues to the 3-D
shape of an object [48, 65]. (2b.5) Finally, image blur can be used for assessing
depth relationships in a scene [25, 66]. Blur is closely related to lens accommoda-
tion because only the point that the viewer fixates on and its close surroundings are
in sharp focus, whereas more distant points are blurred. The degree of blur can be
used to estimate the depth differential between a blurred image point and the fix-
ation point, but it does not inform us of the depth polarity (is it in front or behind
fixation). In addition, there are other depth cues in the general case (texture gradient,
atmospheric perspective, size familiarity, etc.) that may not be strongly relevant in
the hollow mask illusion. Nevertheless, the plethora of depth cues makes the prob-
lem of recovering depth too complex for a thorough scientific analysis. Here, we
lump together all the depth cues that provide good estimates of depth (items 1a,
1b, 2a, 2b.1, 2b.3) and observe that they are more powerful at small viewing dis-
tances.

Thus, when observers view a hollow mask up close, the bottom-up signals of
stereopsis, motion parallax, vergence eye movements and lens accommodation,
among others, provide powerful signals that dominate and enable viewers to re-
cover the veridical concave 3-D shape of the mask. These signals, however, be-
come weaker as the viewing distance increases. At an adequately long viewing dis-
tance, the top-down influences—familiarity with convex faces in the case of a facial
mask—dominate, causing depth relationships to be inverted; points that are physi-
cally further away appear to be closer than points that are physically closer. Conse-
quently, concavities appear as convexities and vice versa, resulting in the percept of
an overall convex face.

Figures 28.1a and 28.1b illustrate an essential feature of the hollow-mask il-
lusion. Namely, even though the hollow mask of Fig. 28.1b faces to the left, the
(mis-)perceived convex mask appears to face to the right (more details on this are
provided later in reference to Fig. 28.2). This gives rise to two related motion il-
lusions: (1) When a viewer moves laterally in front of a static hollow mask, the
perceived convex mask appears to turn and “follow” the viewer. An explanation of
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Fig. 28.1 (a) A convex mask that faces to the right of the viewer (θ = 22.5◦ in the notation
of Fig. 28.2). (b) A concave mask that actually faces to the left (θ = 157.5◦) but it appears to
be a convex mask facing to the right. (c) A mask with significant self-occlusion (θ = 117.3◦).
(d) A mask that involves a marginal self-occlusion (θ = 135◦). See also Fig. 28.2

this illusory motion that is based on the depth inversion has been proposed by Pap-
athomas [42]. (2) When the hollow mask is rotated in front of a stationary viewer,
the perceived convex mask appears to rotate in a direction opposite to the physical
direction of rotation. An extension of the explanation by Papathomas can be applied
in this case. In this paper, we will concentrate on the second type of illusory motion
that is elicited by a rotating mask for a stationary observer.

Figure 28.2a is a top view that illustrates the notation we use to describe the ori-
entation of the mask. Angle θ specifies the spatial orientation of the mask, starting
from zero when the convex side of the mask faces straight ahead toward the viewer,
shown with solid lines, and increasing in the counter-clockwise (CCW) direction; a
mask is shown in dashed lines as it rotates CCW by an angle θ1. This mask orienta-
tion is very similar to the one used to obtain the image in Fig. 28.1a. In Fig. 28.2b
the mask starts at θ = 180◦ − θ1 (dashed lines) and it rotates CCW by an angle θ1

to the straight ahead concave position at θ = 180◦ (solid lines). The viewer sees
the concave side of the mask in this case. The image in Fig. 28.1b was obtained
using a mask orientation similar to that at θ = 180◦ − θ1. Notice that, if we think
of the dashed-line hollow mask (θ = 180◦) as pointing toward the viewer, then the
solid-line hollow mask of Fig. 28.2b points to the left of the viewer by an angle
θ =−θ1.

Importantly, as masks in Figs. 28.2a and 28.2b illustrate, for small rotation an-
gles that avoid self-occlusions on the mask, and under orthographic projection, the
image of the concave mask at θ = 180◦ − θ1 is very similar to that of the con-
vex mask at θ = θ1. For example, the sizes of the left and right eyes of the masks
will be roughly equal under orthographic projection. In contrast, for a perspective
projection—which, after all, is what one obtains on the retina or with a camera—
there are ample cues, for small viewing distances, to distinguish between the images
obtained for the masks at θ = 180◦ − θ1 and at θ = θ1; this ability to distinguish be-
tween the two images decreases with increasing viewing distance.
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Fig. 28.2 Notation for the mask orientation. In these top views the viewer is at the bottom
of the figure. For each mask orientation, the straight-ahead solid arrow—NOT the thick ar-
row—extending outward from the convex side is used to indicate its spatial orientation. The ori-
entation angle θ is measured counter-clockwise from the reference position (θ = 0), in which the
convex mask faces the viewer. (a) The convex mask rotates CCW by an angle θ1 from θ = 0 (solid
lines) to θ = θ1 (dashed lines). (b) The mask rotates CCW by an angle θ1 from θ = 180◦ − θ1
(solid lines) to θ = 180◦ (dashed lines); both of these masks show their concave side to the viewer.
The dashed-line mask in part a and the solid-line mask in part b were used to obtain the images of
Fig. 28.1a and 28.1b, respectively

For example, for the dashed-line mask in Fig. 28.2a (θ = θ1), the eye to the
left of the viewer, being closer than the eye to the right of the viewer, will form a
larger image. The opposite will be true for the solid-line mask in Fig. 28.2b (θ =
180◦ − θ1); the eye to the right of the viewer will form a larger image than the eye to
the left of the viewer. Of course, the size difference depends on the viewing distance
of the imaging device (retina or camera) from the mask. This size difference between
the left and the right eyes extends to the entire left and right sides of the face and the
resulting size gradient can theoretically be used to recover the true 3-D shape. The
images of Figs. 28.1a and 28.1b were obtained from a relatively large distance and,
hence, these size differences are not evident.

The essence of the illusion is obtained when one compares what is perceived in
the following two cases: (a) The convex masks starts from a straight-ahead position
(θ = 0◦) and moves CCW by an angle θ1 to position θ = θ1, as in Fig. 28.2a. (b)
The concave masks starts from a straight-ahead position (θ = 180◦) and moves CW
by an angle θ1, to position θ = 180− θ1, in the opposite direction to that shown in
Fig. 28.2a. Under viewing conditions that favor the illusion, these two motions will
produce the same percept, namely a convex masks that rotates CCW, because the
concave mask will appear to rotate in the opposite direction to that of its physical
direction of rotation. Notice that, because the kinetic-depth-effect cue (item 2b.2 in
this section) is ambiguous, when we perceive the concave mask in inverted depth
(convex), we perceive it rotating in the opposite direction.

The question is: will this size-differential cue, as well as other bottom-up cues
(motion parallax, stereoscopic disparity, blur and possibly vergence angle and ac-
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commodation,1 among others) overcome the schema of a convex face to recover the
true concave mask shape? The answer is: it depends on several factors but primarily
on the viewing distance. As explained above, the size gradient is negligible for large
viewing distances and increases with decreasing viewing distance. The same is true
for the differential signals provided by most of the bottom-up cues we mentioned
earlier. Namely, the binocular disparity differential signals provided by mask fea-
tures that are at different depths, such as the tip of the nose and lips, are very weak
at long viewing distances and grow stronger as the distance decreases; ditto for mo-
tion parallax signals, and differences in vergence and accommodation. Because the
strength of these bottom-up signals diminishes with increasing viewing distance,
the prior experience with convex faces dominates and thus the prediction is that the
illusion strength will increase with increasing distance. This is precisely what has
been observed in experimental studies [21, 27–29, 43, 70].

28.3 The Hollow-Mask Illusion and Computer Vision

Most computer vision algorithms that have been developed to recover the 3-D struc-
ture of human faces include the schema for the convex form of faces as part of their
knowledge base. Naturally, one would expect this schema to influence the recov-
ery of 3-D shape when such algorithms are provided an animation sequence that
involves a hollow mask. This is what we consider below for a representative face-
tracking algorithm.

28.3.1 Model and Algorithm

The particular 3-D face model and tracking algorithm we used is that of DeCarlo
and Metaxas [10]. The model itself is a handcrafted 3-D polygon model which has
motion parameters that describe head movements (3-D translation and rotation) and
facial motions (mouth movements, eyebrow raises, etc.), and shape parameters that
enable the model to approximate the geometry of an individual’s face. See Fig. 28.3.
The 3-D face model uses about 80 spatial geometry variables (distance between
eyes, length of nose, distance between upper lip and tip of nose, width of lips, etc.)
that the algorithm adjusts to obtain a physical 3-D surface that conforms best to the
face features that are present in the animation sequence being processed. The algo-
rithm uses a combination of optical flow and feature alignment in order to maintain
track of moving subjects. Essentially, the 3-D model, along with a simple model of
image formation, is used to explain the changing appearance of a face in a series of
images, in terms of its parameters.

1As Christopher Tyler commented, “vergence and accommodation would have to be derived over
time by eye movements to provide shape information.”
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Fig. 28.3 The deformable face model from DeCarlo and Metaxas [10] has separate parameters that
describe the static shape of the face and dynamic parameters that describe face and head motion

In Fig. 28.3, the light regions of the shape are the explicitly parameterized parts
of the shape, e.g., a hand-crafted 3D deformable model of the lips. The dark regions
connect the vertices of the deformable models together using triangles (and no new
vertices), e.g., the space between the lips and nose is “filled in”. These dark regions
are only used for modeling occlusion and are use for predicting the locations of
occluding contours. The shape and motion models are formulated the same way,
except that the shape parameters are static quantities, and the motion parameters are
time-varying. For instance, one particular shape parameter describes the width of
the lips. One particular motion parameter is the horizontal translation of the entire
head.

We developed two versions of the tracking framework, which differed only in
the schema used to interpret the input images: (1) The original algorithm used the
assumption that human faces are convex. It tracked faces and, naturally, the 3D
face model implicitly constrained geometry to be convex overall, with depth undu-
lations that are typical of human faces. (2) To explore the interaction of top-down
and bottom-up processes on the behavior of the algorithm, the second version of the
algorithm did not use the assumption that faces are convex. We allowed it to accept
concave faces, as well as convex faces, and to conduct feature tracking based on this
new schema. In some sense, this second version enables the algorithm to recognize
a thin mask that has both a convex and a concave side, like Halloween masks.

28.3.2 Algorithm Input—Results

The input to the algorithm was a video animation of a mask that was painted real-
istically on both sides, as shown in Fig. 28.1. The concave side was painted to give
the impression of a convex face. The mask rotated by 360◦ about a vertical axis
in the CCW direction. The animation can be viewed in http://videos.springer.com.
Examples of tracking results are shown in Fig. 28.4.

http://videos.springer.com
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Fig. 28.4 Tracking results of the algorithm with a convex face schema (model 1). On top is the
original sequence, and on the bottom the 3D model is superimposed on top of the images. The
superimposed grid lines indicate the results of the 3D model

The results of the original version are graphed in Fig. 28.5a. The horizontal axis
represents the orientation θ of the physical mask that varies from −180◦ (concave
part facing viewer) through−90◦ (mask facing left), 0◦ (convex part facing viewer),
90◦ (mask facing right), all the way to 180◦ (concave part facing viewer). As θ varies
continuously along the horizontal axis, the mask can be thought of as rotating CCW.
The vertical axis represents the orientation that the algorithm recovers, based on the
visual input, as modulated by the algorithm’s schema.

If the algorithm recovers the true orientation of the mask, we would expect a line
with a slope of 1. On the contrary, if the algorithm is susceptible to the hollow-mask
illusion then, as Fig. 28.2 illustrates, a hollow mask at an orientation θ = 180◦ − θ1
will be perceived as a convex mask at θ = θ1; thus, as the physical concave mask
rotates CCW from θ = 180◦ − θ1 to θ = 180◦, the perceived convex mask will be
seen rotating CW from θ = θ1 to θ = 0◦, producing a line with a slope of −1 on the
graphs of Fig. 28.5.

This is precisely what the results of the algorithm indicate: The algorithm recov-
ers the orientation of the convex mask perfectly for −90◦ ≤ θ ≤ 90◦. However, in
the approximate range 132◦ < |θ | ≤ 180◦, the data indicate that the algorithm “ex-
periences” the hollow-mask illusion as evidenced by the slope of −1; see Fig. 28.6.
Interestingly, but predictably, the algorithm does not recover a face at all in the ap-
proximate range 90◦ < |θ |< 132◦. This is the range for which there is a significant
extent of self-occlusions, as illustrated in Fig. 28.1c. The marginal orientation of
132◦ is shown in Fig. 28.1d, for which the algorithm barely recovered a face.

The results of the modified algorithm that recognizes the existence of both convex
and concave faces are shown in Fig. 28.5b. As expected, the rich optic flow signals,
without the constraint of a convex face, allow the algorithm to recover the true 3-D
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Fig. 28.5 The results of the algorithm under two different 3-D schemata, as applied to the an-
imation sequence. The horizontal axis denotes the actual mask orientation of the stimuli during
the rotation; icons at the top display the mask view for the corresponding orientation (the stimuli
are identical in the two cases). The vertical axis denotes the mask orientation estimated by the
algorithm. (a) Results with model 1 that assumes a convex mask schema. The algorithm tracks the
mask well when the convex part is visible (−90◦ ≤ θ ≤ 90◦). However, the estimate is in the op-
posite direction from the actual motion (it approximately has slope −1), when the concave part is
visible without any self-occlusions (135◦ ≤ |θ | ≤ 180◦). The algorithm experiences tracking prob-
lems and is unable to explain the image when parts of the mask occlude other parts (roughly in the
range 90◦ < |θ |< 135◦). (b) Results with model 2, a schema that accepts both convex and concave
faces. The estimated mask orientation approximately matches the actual mask orientation for all
360 degrees (it has slope 1)

shape and spatial orientation of the mask over the entire range of 360◦. Indeed, the
slope of the line is 1 for −180◦ ≤ θ ≤ 180◦.

28.4 Discussion

In some sense, these findings can be thought of as evidence for the existence of
schema-driven influences in visual perception for the particular case of human faces.
Liberated from these top-down influences—in this case the knowledge that faces are
convex—the algorithm uses the bottom-up signals to recover exactly the true shape
and orientation of facial masks. However, when the algorithm is imbued with the
knowledge of faces being convex, it behaves just as humans in being “fooled” by the
hollow-mask illusion. As Theo Pavlidis [44] commented, “I have not seen any other
demonstration where machine vision algorithms also suffer from optical illusions.”

There are at least two pieces of evidence for top-down influences. The first is the
inversion effect, that is, the reduced strength of the illusion when the hollow mask is
displayed upside-down [27, 28, 43]. Apparently, the cause for the reduced strength
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Fig. 28.6 Tracking results for the concave side of the mask. On top is the original sequence. In
the middle are tracking results using model 2 (the convex-concave 3D model), which estimates the
mask position correctly; it recovers a hollow mask rotating CW. On the bottom are tracking results
using model 1 (the convex-face 3D model), which has the rotational direction reversed; it recovers
a convex mask rotating CCW

is the lack of familiarity with inverted faces. The second piece of evidence is the re-
duced strength of the hollow-mask illusion in cases where the cognitive influences
are impaired. Examples of such impairment are observed with subjects who are
sleep-deprived [63] or under the influence of cannabis [13, 14, 56] or alcohol [58].
Schizophrenia (SZ) patients also experience a weaker illusion than controls, i.e.,
they tend to perceive the hollow mask as hollow [13, 33, 37, 57, 59]. One possible
explanation is that SZ patients have a reduced ability to exert top-down influences
in perception. Evidence for such weak feedback connections in SZ patients was
presented by Dima et al. [11], based on fMRI data; Dima et al. [12] presented ad-
ditional evidence on the basis of reduced P300 and P600 electro-encephalography
(EEG) components, which signal late-stage processing, in SZ patients.

In addition to the explanation that the illusion is based on face familiarity, another
possibility is that the illusion may not be stimulus-specific but instead may owe
to a bias in favor of convexity [39, 60]. This hypothesis was tested by Hill and
Bruce [28]. They reported that a hollow human mask produces a much stronger
illusion than a “hollow potato” by comparing the switching distance, namely the
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average of the viewing distance at which the illusion breaks down on approach—
starting with the illusory percept from a long distance—and the viewing distance
at which the illusion sets in on retreat—starting with the veridical percept at a very
close distance. Thus, the human mask enhances the bias to see concave surfaces as
convex.

A third possibility, raised by Barlow [5], is that the sensory mechanisms analyze
the redundancy that exists inherently in the sensory signals and the associations
between input variables. According to Barlow, neural mechanisms respond to the
“established associative structure in the input messages by recoding them . . . [thus]
making new structure more easily detectable” [5]. In the case of faces, he argues
that our vast prior experiences resulting from moving past normal faces—as they
themselves move or remain stationary—have resulted in an efficient neural coding
scheme for the representation of our own motion and the visual motion signals gen-
erated by the 3D geometry and the parts of a normal face. Thus, when we move past
a stationary hollow mask, this recoding scheme now works in the wrong direction
to compensate for the visual motion that it expects. The result is that the scheme in-
terprets the visual motion signals as elicited by a normal (convex) face that moves.
The weaker illusion for an upside-down hollow mask is accounted by Barlow’s [5]
hypothesis as resulting from less exposure to upside-down faces and therefore less
recoding mechanisms.

What happens for 90◦ < |θ | < 132◦? Figure 28.1c shows a mask oriented at
θ = 117.3◦. The algorithm, as well as the human visual system, is unable to recog-
nize a normal face in this and other cases where there are extensive self-occlusions.
Apparently, the algorithm that has a convex-face schema cannot resolve the discon-
tinuities in the 3-D shape that are recovered by the optic flow and provides no output
for a face. When the extent of the self-occlusions is limited, as in the marginal ori-
entation of Fig. 28.1d (θ = 132◦), the algorithm can still—barely—recover a face.
The same occlusion that acts as noise for tracking a convex face in the convex-face
schema algorithm can be used as signal in the thin-mask schema algorithm.

At this point, we can conjecture about how a computer vision algorithm for scene
perception would operate when presented with an animation sequence of a rotat-
ing reverspective. A reverspective is a 3-D piece that is constructed and painted
realistically such that the painted perspective cues depict a depth structure that is
exactly opposite to the physical structure, which is recovered correctly by binocu-
lar disparity and motion parallax signals [61, 67]. A computer vision scene anal-
ysis system that is driven mainly by data-driven signals (motion parallax, stereo-
scopic disparity, etc.) would recover the veridical 3-D structure. We conjecture that,
if such a scene analysis system is endowed with schema-driven modules for perspec-
tive, it will likely experience the illusion that human experience, that is, perceiving
the direction of rotation to be the opposite from the physical direction, in analogy
with the behavior of the face tracking algorithm (see pertinent video animation in
http://videos.springer.com).

This raises an interesting issue. Ideally, computer vision systems need to be en-
dowed with some schemata that help them process the visual input more efficiently

http://videos.springer.com
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and accurately. For example, face-processing systems benefit greatly from a built-
in deformable model of a generic face that is characterized by several deformation
parameters. This allows the systems, when provided the input video sequence of a
particular face, to optimize the parameters so as to fit the best possible model to that
particular face. The price they pay is that such systems are fooled by the hollow-
mask illusion, as humans are.

Humans, however, have the advantage of changing the viewing conditions
(shorter viewing distance, binocular viewing, etc.), not to mention handling the stim-
ulus by touch, to gain more knowledge about the true 3-D structure of the stimulus.
We can see two extreme options for computer vision systems. The first—easy—
approach involves endowing such systems with additional schemata, such as the
schema of a thin facial mask in the case of face perception. The second—difficult—
approach is to enable these systems to explore possibilities that are not covered by
the initial repertory of schemata they were provided with at inception. In the case
of face tracking algorithms, the system would have to analyze the optic flow in the
video, recognize that it fails to arrive at a solution in some instances and search
for alternative schemata that, if successful, it would add it to its own repertoire.
The first approach is one of “spoon feeding” schemata to the system and it requires
constant supervised learning; the second approach is one of “learning from experi-
ence” and it appears more promising but requires fundamental advances before it
can be implemented. Of course, these two approaches are applicable to cases where
we are limited to images derived from the visible spectrum only. Obviously, sys-
tems equipped with range finders can provide 3D signals to recover the true depth
structure.
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Chapter 29
Detecting, Representing and Attending to Visual
Shape

Antonio J. Rodríguez-Sánchez, Gregory L. Dudek, and John K. Tsotsos

29.1 Introduction

In 1962, Harry Blum wrote a report titled “An Associative Machine For Dealing
With the Visual Field And Some of its Biological Implications” [3]. The title re-
veals that he was not only inspired by, but also wished to impact biological vision.
Blum was later motivated by the Gestalt psychologists in developing algorithms for
extracting shape descriptors [4] and even tried to map his algorithm onto the results
of Hubel and Wiesel’s [23] study of visual cortical neurons. Blum points out that the
Gestaltists used field theoretic concepts and proposed diffusion/propagation models.
These ideas motivated Blum, but he realized they were unsatisfactory as presented
due to their lack of precision and detail. Blum thus took those ideas and developed
the now well-known Medial Axis Transform (MAT or ‘grass fire’ algorithm). The
concept has reached its most sophisticated form in the shock graphs of Siddiqi et al.
[53]. Our research looks at the detection and description of single object 2D silhou-
ettes, the same kind of silhouettes on which MAT or shock graphs might operate. In
our case, however, the quest is to develop a formalization of the stages of processing
the primate visual cortex uses for this task and to show the correspondence between
the computational result and the responses of single neurons to the same stimuli. In
addition to constraining our design by the biological plausibility goal, we are further
constrained by the quest to make the result amenable to attentional processes such
as those required for spatial and shape reasoning [33, 61].
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Shape computation in the primate visual system may be considered as part of the
object recognition pathway covering areas V1, V2, V4 and the inferotemporal cortex
(or IT) in the visual cortex. The first studies in area V1 found neurons that respond
to bars and edges [24]. Already in those studies, three cell-types were differentiated:
simple cells, responding to bars at specific locations; complex cells, which respond
to a bar irrespective of its position inside the cell’s receptive field; and hypercomplex
(today known as end-stopped) cells, sensitive to the termination of an edge or a bar.
End-stopped cells were extensively studied in later studies [2, 31, 37, 38], which
reported the existence of end-zone inhibitory areas.

V2 neurons respond to real and illusory contours [63] as well as angles, cor-
ners, and provide submaximal responses to bars [6, 26]. V4 is important for the
perception of form and pattern/shape discrimination [36]. The series of studies by
Pasupathy and Connor [40–42] showed that populations of V4 neurons would re-
spond to shapes and their responses could be approximated with an angular position-
curvature representation of the shape. Posterior inferotemporal (PIT) neurons inte-
grate contour elements with both linear and nonlinear mechanisms [7]. That study
showed that some contours had an excitatory effect on the neuron response, while
for others, it had an inhibitory effect. Anterior inferotemporal (AIT) neurons are
responsible for the representation of objects, including faces, hands and other body
parts. This representation includes shape as one of its components, this area receives
inputs from V4 and PIT neurons at different retinal positions [57], which may ex-
plain its scale, position and view invariant cell responses [5].

The developmental importance of shape is unquestionable [9, 19, 30, 49, 55, 56].
Spelke showed how in both adults and children, shape is an important component
of object perception, and that Gestalt properties of shape are adhered to from a very
young age. Smith et al. examined object name learning in young children (3 yrs) and
found that learning object names tunes children’s attention to the properties relevant
for naming, namely, to the property of shape. Gershfokk-Stowe & Smith further
showed this to be true for noun-learning in even younger children (17 months).

Finally, experimental work has clearly shown that humans and non-human pri-
mates can attend to shape [8, 10, 27, 50, 54, 59], and that this capacity interacts
with other visual qualities or sensory modalities. Corbetta et al., using PET scan-
ning, observed, that attention to shape activated the collateral sulcus, fusiform and
parahippocampal gyri, and temporal cortex along the superior temporal sulcus. They
concluded that selective attention to different features modulates activity in distinct
regions of extrastriate cortex specialized for the selected feature. The disjoint pattern
of activations suggests that perceptual judgments involve different neural systems,
depending on attentional strategies. Todd, in a very nice survey paper, concludes that
the perceptual representation of 3D shape may be primarily based on qualitative as-
pects of 3D structure that involve arrangements of salient image features, such as
occlusion contours or edges of high curvature, whose topological structures remain
relatively stable over viewing directions. He also points to empirical studies that
have shown that the neural processing of 3D shape is broadly distributed throughout
the ventral and dorsal visual pathways, suggesting that processes in both pathways
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are fundamental to human perception and cognition. Sereno & Amador found that
during the presentation of a sample stimulus and test array to monkeys, some LIP
neurons show stronger responses to the stimulus in the shape-matching task when
the animal must attend to the shape of a stimulus, the first evidence that attention
to shape can be seen in primate cortex. Cant & Goodale, using fMRI, showed that
attending to shape activated the contour-sensitive lateral occipital (LO) area, whose
organization seems complex, with neurons tuned not only to the outline shape of
objects, but also to their surface curvature independent of contour. James et al. also
found evidence that lateral occipitotemporal cortex (LO) is involved in represent-
ing object shape information. A specialization of LO, the tactive-visual area (LOtv)
seems to integrate visual with haptic shape elements and even with auditory shape
elements [27].

Although research on the detection and representation of shape has been strong
over the years (see the chapters in this volume, for example), few shape models seem
to support attentional processes beyond the usual region-of-interest kind of methods.
A notable exception is the MetriCat model of Hummel & Stankiewicz [25]. It sug-
gests two roles for visual attention in shape recognition: attention for binding and
attention for signal-to-noise control. MetriCat implements both as special cases of a
single mechanism for controlling the synchrony relations among units representing
separate object parts.

Our goal is to develop a shape detection and representation methodology that
supports the attentional processes as described by the Selective Tuning (ST) model
of attention [60]. The choice of this model is that it includes a very broad set of at-
tentional mechanisms and has already received very strong experimental support for
the many predictions it has made regarding human and non-human primate visual
processing [22, 60].

It is not difficult to use ST to constrain the quest for a shape detection framework.
The requirements are all found in Tsotsos [60] and include both representation as
well as processing constraints:

1. Visual representations (or areas to draw the direct comparison to cortical
anatomy) are organized into a Lattice of Pyramids (or P-Lattice), defined in
[60].

2. Receptive fields of individual neurons are spatiotemporally localized.
3. Objects, and their shapes, are presented using a parts-based composition of less

abstract elements represented hierarchically in the P-Lattice.
4. The basic process of recurrent branch-and-bound operating over the P-Lattice is

required for attentional tuning.

These are sufficient requirements for a shape representation scheme to be ‘attentive’
and thus play a critical role in the definitions of components that follow.

The next sections will briefly overview an early and then a very recent exploration
into appropriate shape detection and representation ideas.
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29.2 An Early Use of Curvature: Curvature-Tuned Smoothing

The original work on curvature-tuned smoothing (CTS) attempted to address this
by representing shape in terms of curvature data and to allow a family of alternative
interpretations via a nonlinear scale space [13, 14]. Since curvature is a differential
property that must be inferred over noisy data, its extraction requires smoothing
or regularization which, in turn, implies a biasing prior over the estimates to be
extracted. The basis of the CTS approach is to employ a richer prior distribution
than what is normally used. When one reflects on the importance of a prior, it is
only a small step to realize that top-down influence can be used to moderate or
accelerate the estimation process, a step that was not taken in the original work
on curvature-tuned smoothing which was based on exhaustive consideration of all
possible curvatures, but which relates to later work on attentive processing.

The perceptual relevance of curvature, particularly for 2D curves, has been ap-
parent for decades while the use of a multi-scale representation sidesteps the issues
of more simplistic representations. In prior work, the stable extraction and measure-
ment of curvature information in the presence of noise was addressed in several
ways, but was usually based on the assumption that there is a single unique curva-
ture measurable at each point. While this is, of course, true in the analytic case, the
assumption introduces significant difficulty for estimation problems involving noisy
signals, such as those that occur in vision. Despite the respectable results that have
been achieved by some researchers, the need for scale-specific operators to deal with
noise problems (which also manifests itself as the need to choose a best smoothing
scale, or the choice of an appropriate neighborhood for measurements) causes an in-
herent preference for certain ranges of curvature value and involves strong implicit
assumptions about the underlying signal. The actual curvature of a signal depends
on what we call noise and what we call signal, and hence may take on differing
values depending on our goals.

The extent and shape of the neighborhood used for this processing asserts an
implicit scale specificity as a result of the interpolant of support function used for
estimation. For example, a polynomial model of a portion of a curve limits the num-
ber of inflection points over the region and hence bounds the amount of structure
that can occur. In general, high curvatures with correspondingly small spatial ex-
tents relative to the neighborhood size will be lost or drastically attenuated. This
attenuation is, in fact, the key objective of the non-local estimation methods. On the
other hand, low curvatures may remain difficult to measure since the neighborhood
being used will often be too small to reduce local noise. To a large degree, this too
is the objective of non-local modeling: to discard structure at the wrong scale. The
difficulty is compounded in practice by the fact that scale-specific constraints are
usually stated only implicitly and the single correct scale is difficult to control or
select. In most modeling problems, the objective is to map the data to its most likely
causative models, that is, the most reasonable real curves that it could actually de-
scribe. In doing so we regularize the measurement process, discarding implausible
structure in the data. The method described here exploits the relationship between
curvature and scale to produce a set of alternative descriptions of the data based on
structure at different scales.
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Our approach begins with shape primitives that are extracted using a variational
formulation called curvature-tuned smoothing [12–14]. This description has several
desirable properties including its basis in perceptually-relevant curvature measure-
ments [1, 32], and its properties in the face of sparse data or noise [43, 58]. The
multi-scale nature of the representation allows multiple alternative possible descrip-
tions for portions of a curve to be retained. It produces a description of a curve where
a single region may be described in terms of one or more arcs of different curvatures
(and hence sizes), and hence makes explicit information and different spatial scales
(by the term scale we refer to the size or spatial extent of a processing operation or
feature).

The curve representation is produced by repeatedly minimizing the following
energy functional with respect to a piecewise C2 solution ū(t)= (x(t), y(t)):

E
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∫ ke

le

∥
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(
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dt

where t is arc length, d̄(t) = (x(t), y(t)) is a list of initial data points estimating
the input curve, p(x, y) is a potential function derived from the input image (i.e.,
a measure of edginess), with φ being an associated weight, κa(t) is the curvature
of ū(t), λ(c) provides the relative weight of the stabilizing term, c is the “curvature
tuning”, and I is the stabilizing constant selected as a function of c. The term φ can
be set to zero if pure 2D curves are the input data (as opposed to edges embedded
in a larger image). This solution is determined for various values of c, denoted by
ci . The first two terms constrain the solution to be consistent with an initial input
description and with image support for the curve position. The third term expresses
an “internal” bias for a solution with a specific curvature given by c. The result is
a multi-scale decomposition of a curve such that segments that can be interpreted
as being characterized by different natural curvatures are simultaneously extracted.
These are the regions having low energy in terms of the above functional. An ex-
ample of the result is shown in Fig. 29.1. The figure shows a poison sumac leaf in
silhouette and the portions of it that are detected at specific curvature tunings along
the silhouette.

The matching methods most commonly used for curved data deal with recogni-
tion by organizing cues along the arc-length axis. That is, a correspondence between
features is established as the curve is traversed in a given direction. The presence
of structure along the curvature (non-linear scale) dimension is an additional and
unique aspect of the description produced from curvature-tuned smoothing. For ex-
ample, the leaves of the poison sumac plant are typified by large rounded leaf tops
containing a particular arrangement of three “sub-bumps” at the same location.

By using the multi-scale representation to match curves in scale space, a poten-
tially richer description was obtained that what would be extracted by comparable
regularization-based smoothing techniques. These multi-scale descriptions could
then be used for recognition, for example using dynamic programming [13]. Most
notably, this representation using various prior expectations in curvature space can
“tune” the regularization process. Whether this tuning should be applied selectively
instead of exhaustively was never explored in the original work, but is a natural
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Fig. 29.1 Poison sumac leaf and scale-space. The CTS description of the poison sumac leaf is
shown, with the segments corresponding to certain features on the leaf illustrated. Each line cor-
responds to a segment with discontinuities at its ends. The length of each line corresponds to the
segment length

candidate of top-down bias in the interests of either computational efficiency of se-
lective search and thus a natural hook into attentional processes.

29.3 2DSIL: End-Stopped and Curvature Computations for
Silhouette Recognition

Our most recent efforts have focused on trying to create a shape model with bio-
logical relevance if not also plausibility. Recent experiments in area V4 [42] and
TEO [7, 57] of the macaque monkey seem to agree with a recognition of objects by
parts strategy, clearly suitably satisfying for constrains the ST attention model. In
the case of V4 and TEO, those parts would be local curvatures [7, 40–42]. 2DSIL
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Fig. 29.2 Architecture of 2DSIL (see text and [47, 48], for more information)

[48] (see Fig. 29.1) is our resulting model. Different from other models, such as
[44, 52], 2DSIL does not consist of the addition of new layers over the Neocognitron
[18] with a repetition of S and C neurons. Rather, new types of neurons select for
different curvatures and include inhibitory surround. Cell types comprising 2DSIL
(Fig. 29.2) are the following:

• Simple cells of visual area V1 are sensitive to bar and edge orientations. Gabor
filters [35] and Difference of Gaussians have been shown to provide a good fit
when modeling simple cells from area V1, although a better fit to neuronal re-
sponses has been found with Difference of Gaussians [21]. The latter formulation
is the one used in 2DSIL for modeling simple cells. 48 different groups of simple
cells were designed, varying sizes, orientation and values of Gaussian width and
length.
• Complex cells have a sensitivity for bars and orientations as well, but their re-

ceptive fields are larger than those of simple neurons. Hubel and Wiesel [23, 24]
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Fig. 29.3 Curvature selectivity from end-stopped neurons. Smaller cell sizes (a, b) are selective
for sharper curvatures, larger neuron scales are selective for broader curvatures (c, d). Simple cell
sizes that combined into end-stopped cells were: 40 (a), 80 (b), 100 (c) and 120 (d) pixels

found that simple cells have one or more subfields in which the response is ei-
ther on or off while complex cells yield both on and off responses, which suggest
that complex cells integrate the responses of simple cells. In our model, a com-
plex cell is the sum of 5 laterally displaced model simple cells Gaussian weighted
with position and later rectified (any value less than 0 is set to 0).
• End-stopped cells can be of two types. One provides band-pass selectivity for de-

gree of curvature. The tuning for degree of curvature can range from very sharp
to very broad as can be seen in Fig. 29.2 for four cell sizes. This type of cell is
composed of a simple and two complex cells [11]. Complex cells are laterally
displaced and provide an inhibitory input with respect to the centered excita-
tory simple cell. Depending on the orientation of the complex cell component
with respect to the simple cell we obtain neurons that are selective to degrees of
curvature (if that orientation is the same). The combination from smaller model
end-stopped neurons is selective for sharper curvatures and the combination of
larger cells responds strongly to broader curvatures (Fig. 29.3). The second type
of end-stopped neuron is selective for the sign of curvature, by using displaced
neurons at different orientations (Fig. 29.2).
• Local curvature cells are obtained due to the neural convergence of the two types

of model end-stopped cells. By combining model end-stopped cells selective to
the degree of curvature and model sign end-stopped cells responses, we obtain
twice the number of curvature classes than the number of end-stopped cells. For
example, if we have four types of degree of curvature end-stopped cells, through
the use of the sign of curvature of those cells we obtain eight curvature classes.
For the case where the response from end-stopped cells is small, a high response
from a model orientation simple cell means the contour is a straight line, so its
curvature is set to 0. Local curvature cells are computed at each location.
• Shape cells are at the top of the hierarchy (Fig. 29.2) and integrate the responses

from local curvature cells. Shape-selective cells respond to curvature configura-
tions with respect to their position in the cell’s receptive field. A model shape cell
will respond to a shape, and depending on how close the stimulus is to its selectiv-
ity, its response will be stronger or weaker. In the example provided in Fig. 29.2,
the input to a shape cell that respond to the silhouette of a frog is composed of
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Fig. 29.4 Capability of shape neurons for encoding stimuli from Pasupathy and Connor [42].
Stimuli (in black background) were created using a Matlab program for that purpose provided by
Dr. Pasupathy. Compare the plots at the right of the stimuli with the neural responses and plots in
Fig. 3 from Pasupathy and Connor [42]

local curvature cells with high responses to sharp curvatures at the bottom (the
right hand of the frog), local-curvature cells selective to broad curvatures at the
left and top-left (two back legs), etc., providing a cell that has a high response to
different local curvatures at specific locations. A similar shape would also provide
a high response from the 2DSIL shape-selective cell.

2DSIL shape-cell responses were compared with the responses from neurons in
area V4 [48]. Neurons in area V4 of the visual cortex encode shapes as curvature
parts relative to their position in the object [42]. The stimuli used in that study were
silhouettes created using convex and concave boundary elements to form closed
shapes (see Fig. 29.4, silhouettes on black background).

Figure 29.4 shows the results of applying 2DSIL over the stimuli (left columns)
from [42]. The encodings from model shape cells are in the right columns. The blue
plots not only reproduce the curvatures for the stimuli that appear at their left but are
also very close on how populations of V4 neurons encode shape, compare this figure
with Fig. 3 of [42] or refer to [46]. When computing the difference from the plot
values in Fig. 29.3 with those of [42], the reported error was of 0.074 (stdev= 0.037,
error range = [0,1]) which shows that the model shape cells in 2DSIL faithfully
replicate the population results obtained in area V4 of the visual cortex.

We further tested 2DSIL on real images. We selected eight commonly used
databases with clutter (Leaves from Fergus et al. [16], cars back, faces, motorcy-
cles, leopards, bottles and airplanes from Caltech256, and cars from Leung [34]).
The task was an object present/absent classification, where the model has to detect
if the object in question is present in the image or not. We used the background
database as negative (absent) samples.

The details of the test have been presented previously [47]. The key here is to
simply show that the curvature cells in the model do indeed capture sufficient salient
aspects of shape to enable classification. Values from local curvature cell responses
were used to construct a feature vector (2640 elements) that was the input to an Ad-
aboost classifier (300 iterations). Training consisted of presenting randomly half the
images containing the object (positive samples: 93 for leaves, 263 for cars back, 258
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for cars-MIT, 225 for faces, 95 for leopards, 50 for bottles, 413 for motorbikes and
537 for airplanes) and half the background images (negative samples: 225 randomly
chosen images). The remaining images were used to test the model (same number
as in training, but different randomly chosen images).

We obtained the percentage of correctly classified images (as containing ob-
jects or background). The model outperforms classical systems such as for most
databases. Correct classifications were: 98.6 % for cars back (1.9 % false negatives
and 0.9 % false positives), 96.9 % for cars-MIT (5 % false negatives and 0.9 % false
positives), 89.2 % for faces (12 % false negatives and 10 % false positives), 94.0 %
for leaves (10 % false negatives and 0.7 % false positives), 96.9 % for leopards (4 %
false negatives and 2.6 % false positives), 83.3 % for bottles (35 % false negatives
and 16.5 % false positives) and 92.8 % for airplanes (5 % false negatives and 1.2 %
false positives). Results are similar as well to another biologically inspired model
[51], and the very recent Bag-of-features approach by Han et al. [20].

Finally, since the ability to connect to an attentional system such as Selective
Tuning provided key constraints for the overall design, it is important to show that
these constraints are indeed satisfied. In Rodriguez-Sanchez et al. [45], we showed
exactly this capacity demonstrating how the shape cells provide sufficient informa-
tion for simple shape recognition in common visual search tasks. The performance
of the overall shape attentive system was directly compared to psychophysical ex-
perimental data in common search tasks: a color similarity search where feature
search can be inefficient if the differences in color are small and a set of feature
and conjunction searches that show the continuum of search slopes from inefficient
to efficient using stimuli such as circles, crosses, and letters. It was shown that the
qualitative performance comparison was virtually identical.

29.4 Conclusions

Our foray into shape representation, detection and attentive recognition, has led to
a sophisticated and successful model, 2DSIL, of processing in the early stages of
visual cortex and also to a high performance computer vision shape framework.
This work, however, suggests as many questions as it might answer. Questions that
motivate the next stages of research include:

• How would higher order processes use 2DSIL as input, such as those examined
by Brincat & Connor [7]?
• Can the model be extended to surfaces or 3D shapes, and precisely how? Al-

though the CTS model was extended to operate over range data, how might it be
applied to natural imagery with implicit 3D structure, and how could this exten-
sion be made for 2DSIL? Moreover, while curvature extrema regions of constant
curvature and vertices are both computationally natural primitives with exten-
sive evidence with respect to perceptual relevance, the choice of tractable yet
perceptually-relevant descriptions for surfaces is much less clear. Despite exten-
sive evidence for the importance of 3D structure, are the mathematically or com-
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putationally elegant model extensions of 2D shape suitable for modeling human
perception?
• Several researchers have reported selectivity for 3D shape in IT [28, 29, 62]).

The lower bank of STS (superior temporal sulcus—a subarea of TE) was found
selective to 3D shape, while lateral TE was selective to 2D shape [29]. How in
the context of 2DSIL, can local curvature neurons be extended from curves in
2D-silhouettes to surfaces and shape cells to encode from shapes in a plane to
shapes in 3D space [39, 64]?
• How can the model, which permits all potential shapes, be tailored via learning to

represent the set of real objects in a given domain of interest? Should it be done
through incorporating prior knowledge following the Gestalt principles (such as
symmetry, proximity, and continuity)? Or should it be done through learning as
infants seem to do [17]?
• Lastly, the models described here focus mainly on the representation of shape,

and while each is validated using a recognition of classification mechanism, that
important stage of processing remains to be more carefully examined, especially
in a probabilistic context. With respect to recognizing 3D surfaces embedded in
images, a natural extension would be to explore Markov Random Fields or Deep
Learning as computational frameworks for recognition.

In answering these questions, the main inspiration, as was true with Blum’s work,
will remain the same: the belief that by understanding human visual processing
better we may develop better computer vision methods.
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Chapter 30
Toward a Dynamical View of Object Perception

Mary A. Peterson and Laura Cacciamani

In this chapter, we review our research demonstrating that object perception is a
dynamical, integrated process in which (a) high-level memory representations are
accessed before objects are perceived; (b) potential objects compete for perception
and only the winners are perceived; and (c) there is no clear dividing line between
perception and memory. Our review begins with results that led us to reject the tradi-
tional serial hierarchical view of object perception as well as modern versions in the
form of feedforward processing models. We then outline the accumulating evidence
that led us to favor a more dynamical, interactive model that involves feedforward
as well as feedback processing between high- and low-levels of the visual hierarchy.
In our review, we highlight how our views changed over time.

30.1 Object Perception: What Happens When?

When objects are perceived, they appear clearly separated from regions of the vi-
sual field immediately outside their borders; those outside regions appear to sim-
ply continue behind the objects as local backgrounds, or as the space surrounding
them. Since the time of the Gestalt psychologists, a commonly held assumption was
that objects and their grounds are segregated very early in visual processing, and
that memory representations are accessed later in time and only for objects, not for
grounds (see Fig. 30.1). The Gestalt psychologists referred to objects as “figures;”
subsequently, the term “figure-ground segregation” has been used by many inves-
tigators to refer to temporally early memory-free components of object perception.
These scientists have assumed that figure-ground segregation occurs at low levels
in the visual hierarchy, and that object memories are located in higher levels. The
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Fig. 30.1 Schematic illustrating the traditional serial hierarchical view of object perception in
which figure-ground segregation occurs at low levels. For the bipartite black and white display,
assume that at this low-level stage the black region is determined to be figure (i.e., the object) and
the white region is determined to be the ground. On the traditional view, information pertaining to
the region perceived as figure is sent via feedforward connections (black arrows) to higher levels
where object memories and semantics are accessed (i.e., that the perceived object is a face, and
associated semantics), whereas information pertaining to the region perceived as ground is not sent
to higher levels (note the white horizontal bar illustrating truncation of high-level processing of
the ground)

conflation of temporal order and hierarchical level is consistent with a serial hier-
archical processing assumption in which visual processes are localized at a certain
level in the visual hierarchy, processes located in lower levels are completed earlier
in time than those located in higher levels, and there is no feedback from higher to
lower levels. Indeed, many scientists refer to figure-ground segregation as an early,
low-level stage of processing.1

There has never been any evidence that figure-ground segregation is a low-level
stage, however. Certainly, ample evidence indicates that image factors such as con-
vexity, symmetry, enclosure, and small area are sufficient for figure-ground percep-
tion, and that past experience is not necessary (e.g., [11, 15, 21, 23, 24, 30, 59, 73]).
Such results were long taken as evidence that figure-ground perception is based on
low-level assessments of image factors and precedes access to object memories. But
this conclusion was not warranted: evidence that past experience is not necessary

1A figure-ground segregation stage could be placed at mid- rather than low-levels in the visual hier-
archy, as in other models of visual perception that remain serial feedforward models (e.g., [35, 36]).
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Fig. 30.2 Figure-ground displays used by Peterson et al. [50]. The white ground regions depict
(A) (portions of) standing women, (B) portions of upside-down women, and (C) the parts of the
standing women in (A) spatially-rearranged. Reprinted with permission from Peterson, M.A., Har-
vey, E.H., and Weidenbacher, H.L. (1991). Shape recognition inputs to figure-ground organization:
Which route counts? Journal of Experimental Psychology: Human Perception and Performance,
17, 1075–1089, American Psychological Association

for figure-ground perception does not rule out the possibility that, when present, it
influences figure-ground perception.2 A systematic investigation of whether past ex-
perience (i.e., memory) can affect figure-ground perception (i.e., object perception)
was lacking.3

30.2 Systematic Tests of Whether Past Experience Influences
Figure-Ground Perception

My colleagues and I conducted a series of experiments to investigate whether ob-
ject memory influences figure-ground segregation. Using a variety of stimuli and
methods, we found strong evidence that it does (e.g., [9, 45–50, 52]). The set of
displays used by Peterson et al. [50] are shown in Fig. 30.2. In each display, a cen-
tral black region shares a border with a surrounding white region. The black region
was closed, symmetric, smaller than, and enclosed by the white region; these im-
age properties favored the percept that the center black region was the figure, and
that the surrounding white region simply continued behind the figure as its ground.
The critical manipulation concerned the white regions. In Fig. 30.2A, the left and
right vertical borders shared by the black and white regions portray portions of well-
known objects—women—in their typical upright orientation on the white side. Fig-

2Note that none of the image factors was shown to be necessary for figure-ground perception either.
3An experiment reported by Rubin [61] suggested that past experience can influence figure assign-
ment, and a subsequent experiment by Schafer & Murphy [63] made the same claim for motivation,
which was based on prior experience. These initial claims were rejected because they were open
to alternative interpretations (e.g., [65]; see [40] for review).
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ure 30.2B is an upside-down version of Fig. 30.2A; now the well-known objects (the
women) on the white side of the border are portrayed in an unfamiliar upside-down
orientation. In Fig. 30.2C, the parts portrayed on the white side of the border are the
same familiar parts as in Fig. 30.2A, but they have been spatially rearranged so that
the configurations they form are no longer familiar (in Fig. 30.2C, the parts arrayed
from top to bottom are, using the part names from Fig. 30.2A: the woman’s skirt;
her shoulders and arms; her feet; and her head).

Peterson et al. [50] asked observers to report about reversals of perceived figure-
ground status in the displays shown in Fig. 30.2. They found that the white regions
were more likely to be perceived as figures at the borders they shared with the black
regions when they portrayed portions of familiar objects that were upright (in their
typically-experienced orientation) rather than inverted (Fig. 30.2A vs. Fig. 30.2B).
Inverting the stimuli rendered the configurations on the white side of the border un-
familiar, but did not change other image features (e.g., convexity) known to affect
figure assignment. Moreover, inverted familiar configurations are not permanently
unfamiliar; it simply takes longer for inverted versions of familiar stimuli to be rec-
ognized (e.g., [16, 69]) because access to memory representations is delayed [37].
Thus, the finding that familiar configurations influenced border assignment when
the stimuli were upright and not when they were inverted showed that object memo-
ries can contribute to figure-ground segregation, but only when the object memories
are accessed rapidly. Finally, the presence of upright, familiar parts arranged in an
unfamiliar configuration, as in Fig. 30.2C, did not result in more reports of the white
regions as figure than in Fig. 30.2B, leading Peterson et al. to conclude that effects
of past experience originated at high levels of processing where familiar configura-
tions were represented and not at lower levels where familiar parts are represented.
Notably, Peterson et al. [50] found that informing participants of the correspondence
between the upright and inverted displays, or between the intact and part-rearranged
displays, did not alter the pattern of results, indicating that these effects of past ex-
perience required stimulus input; knowledge alone without fast access to memories
of familiar objects was insufficient.

The pattern of results described above was evident both in the duration that sub-
jects maintained the white regions as figures once they were perceived as figures
and also in the likelihood that the white regions were obtained as figures by rever-
sal out of the black-region-as-figure percept. The latter result in particular led us to
conclude that, contrary to the traditional assumption that figure-ground perception
precedes access to past experience, past experience exerts an influence on figure-
ground perception, at least when it is accessed quickly via upright familiar con-
figurations. Peterson and Gibson [9, 48] showed the same pattern of results when
subjects reported their first figure-ground percept for briefly exposed displays.

The experiments reviewed above showed that representations of familiar configu-
rations at high levels in the visual hierarchy are accessed sufficiently early in time to
influence figure-ground perception. High levels were implicated because the recep-
tive fields of cells mediating these effects of object memories had to be large enough
to encompass the configuration of parts (up to ∼5° of visual angle). For converging
evidence using different stimuli and/or different methods see [45, 47, 49, 52].
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Fig. 30.3 Figure-ground perception is not the only possible outcome when two contiguous re-
gions share a border. Shared borders can delimit regions of a flat pattern (A) or the corners of a
three-dimensional object (B). Adapted from Goldreich, D., & Peterson, M.A. (2012). A Bayesian
observer replicates convexity context effects in figure-ground perception. Seeing and Perceiving,
25, 365–395, with permission from Brill and Martinus Nijhoff

30.3 Where Is Object Perception Accomplished?

The results reviewed so far showed that figure-ground perception takes input from
high-level representations, but they were agnostic as to where in the visual hierarchy
figure-ground segregation takes place. At first there seemed to be no reason to reject
the idea of a low-level figure-ground computation. Seemingly consistent with that
view, Lamme and colleagues (e.g., [26, 75]) had shown that V1 neurons respond
differentially when a figure versus a ground lies in their receptive fields (cf., more
recently [74]). Therefore, we originally maintained the assumption that the compu-
tations leading to figure-ground perception took place in a low level in the visual
hierarchy (V1 or V2) and that contributions from past experience were mediated by
feedback from the higher-level regions implicated by the past experience effects we
had observed (see also [26, 38, 39, 49, 71, 72]).

We later moved beyond the assumption that a figure-ground computation occurs
at a low level in the visual hierarchy, and argued instead that figure-ground percep-
tion is simply one possible outcome of perceptual organizing processes [41], one
that we now understand to span multiple hierarchical levels [1, 51]. We took this
position because it is only sometimes the case that one of two abutting regions in
the visual field is perceived as an object (figure) and the other region is perceived as
a shapeless ground [10, 17]. Other outcomes are possible; for instance, two abutting
regions can be perceived as sections of a two-dimensional pattern (Fig. 30.3A) or
as two sides of a three-dimensional object, such as a cube (Fig. 30.3B). The per-
ceived outcome depends on a host of factors, among them the context surrounding
the abutting regions (e.g., [10, 53, 56]).

These observations call into question the notion of a figure-ground “computa-
tion” (or “process” or “stage”). As an alternative, we proposed that (1) candidate
objects that might be perceived on opposite sides of borders are processed to high
levels (e.g., object memories, semantics) in a first fast feedforward pass of pro-
cessing in which properties relevant to object status (figural status) are detected;
(2) these candidate objects compete to be perceived as the object (i.e., as the figure)
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Fig. 30.4 In our current dynamical view of object perception, candidate objects that might be per-
ceived on opposites sides of borders are processed to high levels (e.g., semantics, object memories)
in a first feedforward pass of processing. (Upward pointing black and white arrows symbolize that
this feedforward pass occurs for both the black region and the white region sharing a border in the
bipartite stimulus below.) Feedback from high levels then influences processing at multiple lower
levels (see curved, downward pointing black and white arrows). (For simplicity, the illustration
shows feedback to one low-level region.) The opposing candidate objects compete for represen-
tation at many levels; the competition is inhibitory. (See the horizontal gray bars with caps on
the ends.) The candidate object that wins the competition is perceived as the object shaped by
the border (i.e., the figure). The losing candidate object is not perceived; its side of the border is
simply perceived as a shapeless ground to the object. The outcome of the competition is repre-
sented across high and low levels of processing. Object perception emerges from this dynamical
interactive system

at many levels in the visual hierarchy; and (3) the competition, and ultimately the
perceived outcome, is influenced by context and by dynamical interactions between
high and low levels of visual processing. Object perception—which may entail the
assignment of a shared border as the edge of an object on one side but not the other
(figure-ground assignment)—emerges from this dynamical interactive system. (See
Fig. 30.4.) In the sections that follow, we review the evidence that led us to our
current view.

30.4 Competition

We were not the first to propose that figure-ground perception entails competi-
tion. Sejnowski and his colleagues [19, 64] proposed the first competitive model
of figure-ground perception. Their model included figure units separated by pairs of
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edge units facing in opposite directions (e.g., edge-left and edge-right units). These
opposing edge units inhibited each other but engaged in mutual excitation with fig-
ure units lying on their preferred side. Kienker et al. [19] used focused attention as
a seed to increase the activity in one set of figure units and their associated edge
units; these edge units suppressed edge units facing in the opposite direction, which
in turn suppressed the figure units on the opposite side of the edge. The authors con-
cluded that this relatively enhanced activity in the figure units on one side of an edge
was the mechanism behind figural assignment (see also [13, 14]; and more recently,
[7, 22]). Vecera and O’Reilly [71, 72] extended Kienker et al.’s model to account
for Peterson et al.’s [46–48, 50] effects of familiar configuration by using feedback
from high-level cells to increase the activity of the feature units lying on one side of
an edge. Although many of the competitive models reviewed above implement in-
fluences on figure-ground perception from levels somewhat higher in the hierarchy,
none implements semantic influences and all assume that inhibitory competition
occurs only between low-level edge units.

Peterson, de Gelder, Rapcsak, Gerhardstein, and Bachoud-Lévi ([44], see [55],
for a review; [54]) proposed instead that object perception entails inhibitory compe-
tition between ensembles of object properties (i.e., familiar configuration and tradi-
tional image-based factors) on opposite sides of a border rather than, or in addition
to, competition between edge units or figure units. In Peterson et al.’s framework,
object properties on the same side of the edge cooperate, and those on opposite sides
compete. We use the term “candidate objects” to refer to these ensembles of object
properties on opposite sides of borders. Ceteris paribus, the more strongly cued side
of the edge wins the competition and the border is perceived as a bounding edge of
the candidate object on that side of the border. Critically, Peterson et al. proposed
that the candidate object on the relatively weakly cued side of a border (the side that
loses the competition for object (figure) status) is inhibited. They suggested that this
inhibition accounts, in part, for the patently unshaped nature of grounds near the
border they share with perceived objects. It is important to emphasize that none of
the other models of figure-ground perception predicted the inhibition of a candidate
object on the losing side of a border; they predicted inhibition of edge units facing
in the ground direction, and enhanced neural responses to the features comprising
the object (i.e., the figure).

In support of the competitive model proposed by Peterson et al. [44], Peterson
and Skow [54] observed suppression of responses to object candidates on the per-
ceived ground side of a border. Their participants classified line drawings as de-
picting real-world objects or novel objects. The line drawings were preceded by
briefly-exposed silhouettes that were designed so that the inside, bounded region
would be perceived as the figure/object: they were closed, symmetric, smaller in
area than, and enclosed by a large surrounding white backdrop (see Fig. 30.5 for
sample stimuli). A portion of a familiar configuration was suggested on the outside
of half of these novel black silhouettes, but participants were unaware of these fa-
miliar configurations; they perceived the outside of these “experimental silhouettes”
as a shapeless ground to the novel black silhouette (because the ensemble of object
properties favoring the inside as the object was stronger than the familiar configura-
tion cue on the outside). For the other half of the novel black silhouettes, no portion
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Fig. 30.5 Sample stimuli used by Peterson & Skow [54]. Subjects categorized line drawings as
portraying real-world or novel objects. (Only real-world objects are shown in this figure; line draw-
ings of novel objects came from the Kroll and Potter [25] set.) Line drawings were preceded by
small, symmetric, enclosed, black silhouettes with a novel shape. For half of these novel black
silhouettes, a portion of a familiar object was suggested on the outside; these were experimen-
tal silhouettes (Exp Silh). Participants were unaware that these familiar objects were potentially
present. A portion of a house is suggested on the outside of the experimental silhouettes in this
figure. For the other half of the novel black silhouettes, no familiar objects were suggested on
the outside; these were control silhouettes (Ctrl Silh). Left panel: the “Same Category” condi-
tion, where the familiar object suggested in white on the outside of the experimental silhouette
(here, a house) was from the same basic-level category as the line drawing that followed (also a
house). Right panel: the “Different Category” condition, where the familiar object suggested in
white on the outside of the experimental silhouette (again, a house) was from a different category
from the subsequent line drawing (here, a duck). The same line drawings also followed control sil-
houettes in both conditions. Reprinted with permission from Peterson, M.A., & Skow, E. (2008).
Suppression of shape properties on the ground side of an edge: Evidence for a competitive model
of figure assignment. Journal of Experimental Psychology: Human Perception and Performance,
34(2), 251–267, American Psychological Association

of a familiar object was suggested on the outside. Participants also perceived the
outside of these “control silhouettes” as a shapeless ground to the novel black sil-
houette.

Despite the fact that observers were unaware of the familiar object suggested on
the outside of the experimental silhouettes, they took longer to classify line draw-
ings of objects from the same basic level category as the unseen object rather than
a different category. After ruling out alternative interpretations (including the inter-
pretation that edge units facing toward the ground were suppressed), Peterson and
Skow [54] attributed the longer response times to suppression of the candidate ob-
ject that lost the competition for figural status. They suggested that the competition
for figural status was an instance of the competition for representation investigated
by Desimone and Duncan [6] and their colleagues, described next.

Moran and Desimone [31, 32, 60] found that the response of a neuron is reduced
when two stimuli are present in its receptive field, even when one of the stimuli
elicits a vigorous response when presented alone and the other elicits little or no
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response when presented alone. These effects are observed only when the stim-
uli lie close enough to each other to fall within the same receptive field [29, 32].
Desimone and his colleagues concluded that the response reduction they observed
occurred because the two stimuli were competing for representation by the neuron.
They found that the competition is resolved in favor of the stimulus that is higher
in contrast or that is attended ([6, 8, 58]; see [57], for a review). For instance, if an
animal attends to one of two stimuli within a neuron’s receptive field, the neuron’s
response pattern changes to resemble the pattern obtained when only the attended
stimulus is present (regardless of whether the attended stimulus elicits a strong or
a weak response). Duncan and Desimone’s model has come to be called the Biased
Competition Model of Attention (although note that in addition to attention, contrast
can bias the competition).

Peterson and Skow [54] considered it natural to extend the Desimone and Duncan
model to figure-ground perception because the two objects potentially represented
on opposite sides of a border necessarily lie in the same receptive field.4 Moreover,
like Desimone and colleagues, they found that responses to object properties that
lose the competition are suppressed. Biased competition has been shown to occur at
many levels of the visual system (i.e., V2, V4, TE, IT) via a variety of methods (i.e.,
single cell recording, event related potentials, and functional magnetic resonance
imaging [fMRI]).

30.5 High-Level Object Memories and Dynamical Interactions
Between High and Low Levels

Peterson and Skow’s [54] results are consistent with the hypothesis that competition
for object (i.e., figure) status can occur at high levels: In their experiment, the famil-
iar configurations that lost the competition were approximately 3° in vertical extent;
hence they are represented in high-level brain regions with large receptive fields.
It is likely that competition for object (figure) status can occur in lower-level brain
regions as well, given that simple image properties like convex parts, small area,
and closure can influence figure assignment. We originally thought that familiar
parts, represented in lower levels than familiar configurations, could not influence
the competition for figural status, however. This was because in tests with neuro-
logically normal individuals, no effects of past experience were evident when the
(familiar) parts of familiar configurations were rearranged to form a novel configura-
tion: Participants were no more likely to see regions portraying such part-rearranged
novel configurations as figure than regions portraying inverted versions of familiar
configurations (see Sect. 30.2 and Fig. 30.2C). Therefore, Peterson [42, 54] hy-
pothesized that only familiar configurations and not familiar parts can affect figure

4We were not the first investigators to see a relationship between the biased competition model and
figure-ground perception (cf. [18, 70]), but previous authors neither elaborated on nor explored
their suggestion.
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assignment. They further hypothesized that familiar configuration effects on object
perception were mediated by brain regions such as V4 with receptive fields large
enough to encompass their configurations.

A recent experiment by Barense et al. [1] caused us to change these views:
Barense et al. showed (1) that a brain region higher than V4 is involved in effects of
past experience on figure assignment and (2) that competition for figural status can
be biased by part familiarity responses. They reached these conclusions after exam-
ining effects of past experience on figure assignment in patients with damage to the
perirhinal cortex of the medial temporal lobe. The perirhinal cortex lies anterior to
the brain regions traditionally thought to be involved in visual perception; it has long
been thought to be involved in declarative memory only, and not in perception (e.g.,
[3, 20, 66–68]). An alternative view has emerged in the last decade—that the repre-
sentations and computations in the perirhinal cortex subserve perception as well as
memory when the task-relevant stimulus set contains many complex conjunctions
constructed from similar features (e.g., [2, 4, 12, 28, 33, 34]).

To test whether the perirhinal cortex was involved in effects of familiar configu-
ration on figure-ground perception, Barense et al. asked perirhinal cortex-damaged
individuals to report the perceived figure-ground organization of displays like those
in Fig. 30.6. Each display had a critical region and a matched complementary re-
gion. The critical regions depicted either intact familiar configurations (Fig. 30.6A);
novel configurations created by rearranging the parts of the familiar configurations
(part-rearranged novel configurations, Fig. 30.6B); or novel configurations com-
posed of a novel ensemble of parts created by inverting the part-rearranged novel
configurations (control novel configurations, Fig. 30.6C).5 In contrast to non-brain-
damaged participants, perirhinal cortex-damaged individuals perceived regions de-
picting part-rearranged novel configurations as figure approximately equally as of-
ten as intact familiar configurations and more often than control novel configurations
(see Fig. 30.6D). In other words, participants with perirhinal cortex damage showed
effects of familiar parts on figure assignment—an effect that has not been observed
with non-brain-damaged participants.

To account for their results, Barense et al. [1] hypothesized that when part-
rearranged novel configurations are present and the perirhinal cortex is intact (as
in the control participants), the perirhinal cortex detects the mismatch between the
familiarity of the parts and the novelty of the configuration and suppresses part-
familiarity responses in lower levels of the visual hierarchy so that the familiarity
responses at low and high levels correspond. As a consequence, part familiarity can-
not exert an influence on the competition for object perception in part-rearranged
novel configurations. However, when the perirhinal cortex is damaged (as it is in
the patients), it does not distinguish between novel and familiar configurations;
hence it does not inhibit low-level familiarity responses to the familiar parts in part-
rearranged novel configurations. Because low-level part familiarity responses are

5Further exploration is necessary to determine whether the individual parts of the novel configu-
rations are novel, but we do know that as an ensemble, the parts in the novel configurations are
novel, whereas the ensemble of parts in the part-rearranged novel configuration is familiar.
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Fig. 30.6 (A)–(C) Stimuli Barense et al. [1] used to test effects of configuration familiarity on
figure assignment. Each stimulus was divided into two regions by a central border. One of the two
regions was a critical region. Here, the critical regions are shown in black on the left; black/white
color and left/right location of critical regions were balanced in the experiment. (A) Familiar Con-
figurations. The critical regions depict portions of familiar objects (from left to right: a woman,
a lamp, and a guitar). (B) Part-Rearranged Novel Configurations. The critical regions in (B) were
created by cutting the familiar configurations in (A) into parts at minima of curvature along the
central border and spatially rearranging them into novel configurations. The parts in (B) are the
same familiar parts as in (A), albeit in a different spatial relationship. (C) Control Novel Config-
urations. The critical regions are inverted versions of those shown in (B). Inversion is known to
reduce familiarity of configurations; here we use it to reduce the familiarity of the parts of a novel
configuration. The parts are unfamiliar when inverted, because the familiar configuration from
which they were extracted has not often been seen in this orientation. (A, B, and C are reprinted
with permission from Barense et al. [1] Fig. 1A.) (D) The percentage of trials on which subjects
reported perceiving the critical regions as figures in the three types of stimuli. The data from two
patients with perirhinal cortex damage (RFR and JN) are shown on the right. The data from age–
matched control subjects are shown on the left. Config = Configuration. Adapted from Barense,
M.D., Ngo, J.K.W., Hung, L.H.T., Peterson, M.A. (2012). Interactions of memory and perception
in amnesia: the figure-ground perspective. Cerebral Cortex, 22, 2680–2691, with permission from
Oxford University Press

not suppressed, their effects on the competition for object perception are revealed in
figure reports regarding the part-rearranged novel configurations. Thus, familiarity
responses at low levels can affect object perception, but tests of brain-damaged par-
ticipants revealed these effects. For non-brain-damaged individuals, the effects of
familiar parts and familiar configurations cannot be distinguished because feedback
from the perirhinal cortex of the medial temporal lobe reduced low-level familiarity
responses to familiar parts that are arranged to form a novel configuration.

Peterson, Cacciamani, Barense, and Scalf [43] tested Barense et al.’s [1] pro-
posal using fMRI in non-brain-damaged participants. They found that, for stimuli
presented in the right visual field, the perirhinal cortex does distinguish between
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intact familiar configurations and part-rearranged novel configurations, responding
most strongly to the former and least strongly to the latter, with responses to control
novel configurations in between. They also found a stronger response to the familiar
parts in the low-level cortical region V2 (left hemisphere) when the familiar parts
were arranged in a familiar configuration rather than a novel configuration. Peterson
et al. took the differential responses to the same familiar parts in V2 as evidence of
feedback from higher levels where the configurations were represented; the perirhi-
nal cortex was a candidate given the similarity between its response pattern and
the pattern observed in V2. Thus, the fMRI results confirmed the feedback model
proposed by Barense et al. [1].

The results of the experiments by Barense et al. [1] and Peterson et al. [43]
showed that memory representations at higher levels than previously supposed—the
perirhinal cortex—are involved in effects of past experience on figure assignment.
They also confirmed the hypothesis that object perception in general, and figure-
ground perception in particular, is a dynamical, interactive process—one in which
there is no clear dividing line between perception and memory.

30.6 Conclusion

Object perception seems immediate and unambiguous to human perceivers, yet it is
neither. At first blush, it seems that serial processing assumptions and feedforward
models can account for perception, yet they cannot. Our investigation of whether
past experience can affect object perception revealed that object perception is the
result of dynamical feedforward and feedback interactions between low- and high-
level brain regions—both regions traditionally thought to be involved in perception
and those traditionally thought to be involved in declarative memory only. A chal-
lenge for the future is to unpack the entire dynamical system, to identify (1) the
levels where competition for object perception occurs (our recent results suggest it
can occur both where part familiarity and where configuration familiarity are rep-
resented), (2) which levels only influence the competition (e.g., does the perirhinal
cortex only influence the competition?), and (3) which levels reflect the outcome
of the competition [a candidate for the latter is V1; see [27, 62], although critical
computations may occur there as well (e.g., [5, 74])]. This is a fertile program of
research, the results of which promise to elucidate object perception.

Acknowledgements MAP acknowledges the support of NSF BCS 0960529 while writing this
chapter.
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Chapter 31
Modeling Shapes with Higher-Order Graphs:
Methodology and Applications

Chaohui Wang, Yun Zeng, Dimitris Samaras, and Nikos Paragios

31.1 Introduction

Shape matching and inference aims at determining the correspondence between a
source shape instance (or shape model) and a target shape instance (or the observed
data where the target shape is embedded). It is a fundamental problem in computer
vision, computer graphics, medical image analysis and has been widely investigated
in numerous important applications such as 3D surface matching and reconstruction
[5, 7, 12, 21, 30, 32], statistical shape modeling and knowledge-based segmentation
[15, 16, 22, 34], feature correspondence and image registration [1, 20, 28, 38], shape
similarity and object recognition [2, 3, 29]. Let S ⊂ R3 denote a shape.1 The gen-

1The shape can also be associated with a texture model if photometric information is available.
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eral idea for solving this problem is usually based on an optimization problem as
follows:

τ opt = arg min
τ∈T

{
ES1,S2(τ )= ρ

(
τ(S1), S2

)+ χ(τ)
}

(31.1)

where ρ(τ(S1), S2) denotes a measure on the geometric and/or photometric dif-
ference (often referred to as data likelihood) between the transformed source
shape (model) τ(S1) and the target shape S2, χ(τ) denotes a prior or regulariza-
tion on the transformation τ , and T is the feasible solution set (e.g., diffeomor-
phisms).2

One main difficulty in solving shape matching and inference lies in the fact that
the shape is usually embedded in a high-dimensional space and exhibits large and
complex deformation/variance. This poses a challenge to the design of an efficient
algorithm for the search of the optimal transformation between two shapes or the
optimal shape model from the observed data. Another main difficulty originates
from the facts that the problem is inherently ill-posed and that the input data are
often noisy and can be partially occluded. That is why prior knowledge on the de-
formation/variance of the shape is often introduced to address the ill-posedness of
the problem and to make the algorithm more robust to noise. However, this raises
another challenge in the choice of the representation of prior knowledge, which
should be effective in the aspect of modeling and efficient in the aspect of learning
and inference.

31.1.1 Main Obstacle—Extrinsic Factors

A ubiquitous phenomenon in vision perception is that a single object can exhibit
infinite geometric variation in the observed data following the change of extrinsic
factors such as sensor parameters and global object pose.3 In the case of 3D data
where the observation also lies in a 3D Euclidean space, different sensor parameters
and/or global object poses usually lead to observations that differ by a similarity
transformation (translation/rotation/scaling). In a broad sense, extrinsic factors refer
to all that would cause a shape to have different extrinsic manifestations which are
nevertheless intrinsically equivalent.4 An extrinsic factor is often associated with a
certain transformation group G (e.g., the Euclidean group, the similarity group and
the isometry group) and globally affect the configuration of a shape. Accordingly,

2When a bijective mapping between S1 ⊂R3 and S2 ⊂R3 is required, the feasible solution can be
defined as all diffeomorphisms that map S1 to S2.
3Photometric variation can be caused by the change of illumination. We mostly focus on the geo-
metric aspect here but the extension to the photometric aspect can be done analogously.
4The definition of the intrinsically equivalence depends on the problem to be addressed. For in-
stance, when dealing with nonrigid 3D surface matching, we often assume that two surfaces dif-
fering by an isometric transformation (with geodesic metrics) are intrinsically equivalent.
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for a shape instance, the set of all intrinsically equivalent shapes is the orbit of that
instance under the corresponding transformation group G.

Actually, extrinsic factors pose a main obstacle to addressing the aforementioned
challenges efficiently, in particular in the following two major aspects.

Regarding the problem complexity and the algorithm design, we can see from
the above discussion that such extrinsic factors are a main source of shape variability
[36], the removal of which will largely reduce the complexity of shape matching and
inference. The problem can become much easier if we only need to deal with the
intrinsic shape variability, which refers to the residual (e.g., intra-class variability,
noise) after ruling out the effect of extrinsic factors.

The main issue in the design of the algorithm is how to define and minimize the
cost function in Eq. (31.1) efficiently. To account for the effect of extrinsic factors,
the most commonly used scheme in the literature is: decompose the transforma-
tion τ in Eq. (31.1) into a transformation g ∈ G that corresponds to the extrinsic
factors and a residual transformation r that accounts for the intrinsic shape variabil-
ity, that is, τ = g ◦ r , then optimize g and r in a successive or alternating manner
(e.g., EM-style approaches). A typical example is the iterative closest points (ICP)
algorithms [5, 32] for rigid shape matching, which alternates between establishing
correspondences given the Euclidean transformation and estimating the Euclidean
transformation given the correspondences. Another important example is related to
the incorporation of shape priors and will be discussed a bit later.

Such a scheme requires initializing g and is prone to be trapped at local minima
during the alternating search. Therefore, it usually works well only when the two
shapes are close enough under the given initialization of g. Another important limi-
tation is that it cannot directly deal with the case where g is difficult to be explicitly
represented (e.g., the isometric transformation that is often considered in nonrigid
3D surface matching). Last, the search for optimal r (i.e., the global minimum with
respect to r) for a fixed g is actually difficult in general and its complexity increases
sharply as g deviates from the true transformation.

Regarding the incorporation of the shape prior, extrinsic factors pose an ob-
stacle for connecting the shape instance and the prior model in the matching and
inference process. In fact, the prior information on a shape class lies in the residual
transformation r after factoring out g corresponding to extrinsic factors from the
transformation τ . Based on this, most existing shape prior models [22], for exam-
ple, the well-known active shape/appearance models (ASMs/AAMs) [15, 16], are
built by first aligning all the training samples into a reference space (to factor out
the similarity group) and then learning the shape distribution on these registered
samples.

However, such prior models often exhibit two main limitations. On the one hand,
the estimation of the similarity transform g is required both in the training and the
inference stages, since the learned model and an observed shape instance are in dif-
ferent coordinate frames in general. Besides the computational complexity, such an
estimation also introduces certain bias on the learned prior model, since the optimal
decomposition of τ into g and r actually is an ill-posed problem. One the other hand,
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the optimal search in the inference stage with such prior models requires initializing
g and is prone to be trapped at local minima.

31.1.2 Key Strategy—Encoding Shape Invariance in Higher-Order
Graphs

In fact, due to the intrinsic equivalence of the shape, the distance function in
Eq. (31.1) should be invariant to extrinsic factors, that is, ρ(τ(S1), S2) and χ(τ)

should be g-invariant. Hence, if we can explore shape invariance with respect to ex-
trinsic factors by choosing g-invariant data term ρ(τ(S1), S2) and prior model χ(τ),
then we will be able to efficiently search for the optimal transformation τ opt without
searching for g. In particular, when extrinsic factors correspond to a transforma-
tion group, such a scheme can be interpreted as representing a shape in an intrinsic
shape space that is g-invariant and the correspondence is then determined in such
an intrinsic shape space, where the shape variability is largely reduced.

To this end, we are particularly interested in discrete representations of shapes,
which have been widely employed in the literature, where the transformation τ in
Eq. (31.1) is represented by the correspondences between the points of two shapes.
Then the shape matching and inference problem boils down to determining the cor-
respondence from the target shape (or the observed image data) for each point on
the source shape (model). Recent significant development in graph-based methods
and inference techniques (e.g., Markov Random Field (MRF) inference algorithms
[10, 25, 27] and graph matching [28, 37, 38]) have demonstrated their potential in
solving such a correspondence problem. In particular, the newly developed tech-
niques for higher-order models [17, 23, 24, 27] enhance significantly the applicable
extent and the performance of graph-based methods. In such a context, we employ
higher-order potentials to characterize measures/statistics that are g-invariant (e.g.,
similarity-invariant and isometry-invariant) and optimize the energy function using
discrete optimization methods to address 3D shape matching and inference (e.g.,
[39–42]). One important advantage of such a scheme is that the problem can be
solved in a one-shot optimization algorithm with optimality guarantee.

In the next two sections, we will show via our recent works [39, 42] how this
methodology can be implemented for two typical problems: nonrigid 3D surface
matching and knowledge-based 3D segmentation, and demonstrate the superior per-
formance of our approaches. Finally, we will conclude the chapter with a discussion
of future directions in Sect. 31.4.

31.2 Nonrigid 3D Surface Matching

We present our approach [42] to robustly establishing correspondences between two
surfaces via a higher-order graph-based formulation, where the similarity between
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local structures and the distortion of global structures are isometry-invariant and
incorporated together via singleton terms and third-order interactions, respectively.

Let us denote by P1 and P2 the two point sets from surfaces S1 and S2, re-
spectively. Our goal is to find the correspondence from P2 for each point of P1, if
it exists. This can be formulated as selecting a subset (referred to as matching) M
from the set of all possible correspondences A � P1 ×P2 that leads to the least
dissimilarity while respecting matching constraints (e.g., one-to-one mapping). For
each correspondence a = (i, j) ∈A , we assign a Boolean variable xa to indicate if
a is included in the matching M (xa = 1) or not (xa = 0). By doing so, the matching
M can be represented by a tuple of Boolean variables x = (xa)a∈A . The feasible
solution space X of x depends on the matching constraints. Here, we impose the
constraint that each point in P1 is mapped to at most one point in P2 and vice
versa, leading to the following feasible solution space X :

X =
{

x ∈ {0,1}|A |
∣∣∣∣
∑

i∈P1

xi,j ≤ 1,
∑

j∈P2

xi,j ≤ 1,∀ i ∈P1 and ∀j ∈P2

}
(31.2)

The dissimilarity induced by a matching between two surfaces can be defined
based on the distortion encoded within various numbers of correspondences. We
then formulate the surface matching problem as finding the optimal matching that
minimizes the dissimilarity function as follows:

xopt = arg min
x∈X

{
E(x)=

∑

a∈A
θaxa +

∑

(a,b)∈A 2

θabxaxb +
∑

(a,b,c)∈A 3

θabcxaxbxc

}

(31.3)

In the following, we discuss the definitions of the potential functions in Eq. (31.3),
which capture the information of both local structures and global deformation.

The singleton potential encodes geometric and/or photometric compatibility be-
tween the local structures of each correspondence. For simplicity, we use the Gaus-
sian curvature curv(i) at point i as geometric descriptor, which is invariant to iso-
metric transformation [14], as well as the texture value tex(i) at point i as photo-
metric descriptor if texture information is available. Then, the singleton potential θa
for a correspondence a = (i, j) is defined as follows:

θa =
(
curv(i)− curv(j)

)2 + λ0
(
tex(i)− tex(j)

)2 (31.4)

where λ0 is a positive weight that balances the contribution between curvature and
texture information. Similarly, other features can also be considered within such
potentials, such as multiscale heat kernel signatures [35] and eigenfunctions of the
Laplace-Beltrami operator [33].

The higher-order potential encodes the intrinsic deformation priors of global
structures which are invariant to isometric transformation. Theories in Riemann sur-
face [19] reveal that when two surfaces are isometrically deformed from one to the
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other, the correspondences (mapping) between them can be sufficiently character-
ized by a Möbius transformation, which has only six degrees of freedom and can
be uniquely determined by a triplet of point-wise correspondences. Hence, we can
measure the deviation from isometry for the mapping (implied by the Möbius trans-
formation) between two surfaces determined by a triplet of point-wise correspon-
dences, which serves as an intrinsic deformation prior term that can be encoded in
a third-order potential.

According to the uniformization theorem [19], any 3D surface can be flattened
conformally to a canonical 2D domain. Then for any triplet of correspondences,
(p1

i , p
1
j ,p

1
k) ∈P1 and (p2

i , p
2
j ,p

2
k) ∈P2, we first recover the associated Möbius

transformation m1(z) and m2(z) that maps each triplet to a constant configuration

(ei
2π
3 , ei

4π
3 , ei2π ). Under this transformation, each point p in the sets P1 and P2 is

equipped with coordinates in Ĉ (i.e., the complex plane C∪{∞}) denoted by z(p) ∈
Ĉ. Similar to [30], we establish correspondences between P1 and P2 by searching
the mutually closest point correspondences set Mijk under the new coordinates, and
define the deformation deviation from isometry as:

Eijk =
∑

(p1,p2)∈Mijk

∣∣z(p1)− z(p2)
∣∣2 (31.5)

Then we define the intrinsic deformation prior term as follows:

θMöbius
ijk =

{
Eijk/|Mijk|2 − 1 if Eijk/|Mijk|2 < δ

1/|Mijk| otherwise
(31.6)

Here δ is a lower bound value to rule out unlikely correspondences (in our exper-
iment δ = 0.1). Intuitively, if there are more matching pairs and the distances be-
tween those matching pairs are smaller, the potential will be lower. Such a prior
term is invariant with respect to isometric transformation, due to the fact that Eijk

is computed in the canonical 2D domain and an isometric transformation applied to
a surface will not change the representation of the surface in the canonical domain.

Since the mirror symmetry group is a subset of the isometry group, the intrinsic
deformation prior term in Eq. (31.6) cannot resolve symmetry ambiguity. In prac-
tice, we often want to eliminate such an ambiguity, for which we can define another
type of third-order terms based on the Gaussian map of the surface. The Gaussian
map is defined as the mapping of the normal at each point on the surface to the
unit sphere [14]. Due to the fact that two triplets have the same orientation of the
Gaussian maps if and only if the determinant of their normals have the same sign,
we can define the below higher-order term as a penalty for extrinsic orientation in-
consistency:

θGaussian
ijk =

{
0 if det(n1

i ,n1
j ,n1

k) · det(n2
i ,n2

j ,n2
k)≥ 0

1/|Mijk| otherwise
(31.7)
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where ni ∈ R3 denotes the normal at point i, and det(ni ,nj ,nk) denotes the deter-
minant of the 3×3 matrix [ni ,nj ,nk]. With such an additional term, the third-order
potential for each triplet of correspondences (p1

i , p
1
j ,p

1
k)→ (p2

i , p
2
j ,p

2
k) is defined

as a weighted sum of the two types of potentials, that is,

θijk = λ1θ
Möbius
ijk + λ2θ

Gaussian
ijk (31.8)

Here, only singleton and third-order terms are considered for simplification. Pair-
wise potentials defined based on different metrics (e.g., geodesic [12], diffusion met-
rics [13] and commute time [31]) can also be considered in this general formulation
to integrate more geometric information towards improving the performance.

Dual-decomposition-based optimization An advantage of the pseudo-boolean for-
mulation is that higher-order terms can be reduced into a quadratic term and then
be solved by existing efficient optimization algorithms such as QPBO techniques
[9, 26]. Inspired by [38], the dual-decomposition optimization framework [4, 27]
and the order-reduction technique proposed in [23] are adopted to deal with the
problem in Eq. (31.3). More specifically, the original problem is decomposed into
a linear subproblem, a higher-order pseudo-boolean subproblem and a set of lo-
cal subproblems. The linear subproblem and the local subproblems used in the ex-
periments are similar to those of [38]. Then, a higher-order pseudo-boolean sub-
problem is introduced to deal with the higher-order terms in Eq. (31.3). After solv-
ing the subproblems, the dual variables are updated using a projected subgradient
method [27, 38] to maximize the lower bound.

Towards efficient dense surface matching, we propose a two-stage optimization
pipeline which consists of sparse feature matching and dense point matching. In
the sparse matching stage, we establish the correspondences between two small sets
of sparse features using the high-order graph matching algorithm presented above.
Since any three correspondences determine a mapping between the two surfaces
and provide a correspondence candidate on S2 for each point on S1, a large num-
ber of correspondence candidates can be obtained for each point by considering all
distinct triplets of correspondences in the sparse feature matching result. This can
be followed by a clustering process to find the modes of the candidates so as to
significantly reduce the number of candidates. Finally, a similar high-order graph
matching scheme is employed to determine the optimal dense surface matching.

Experimental results The evaluation of our framework is done based on a number
of challenging examples, which demonstrates its accuracy and efficiency, notably in
challenging cases of very large deformations, or meshes that are partially occluded
(see sample results in Fig. 31.1). Due to the lack of a ground truth regarding the
dense correspondence, we quantitatively measure the quality of dense registration
as follows: after performing the Delaunay triangulation of the points on the source
surface, we compute the ratio of the area of each facet to the area of its matched facet
(see Fig. 31.1). For natural deformations (e.g., expression change, stretched arms or
bending fingers) such as those in our experiments, the local area is not expected to
undergo abrupt change. Therefore the log area ratio is expected to be close to 0.
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Fig. 31.1 Matching results (from left to right: sparse matching, dense matching and log area ratio)
(figure partially courtesy of [42])

31.3 Pose-Invariant Prior and Knowledge-Based Segmentation

In this section, higher-order interactions are considered to build pose-invariant shape
priors and are exploited for the development of a novel one-shot optimization ap-
proach for knowledge-based 3D segmentation in medical imaging [39].

Pose-invariant shape modeling The shape model consists of a set V of landmarks
on the boundary of the object of interest. In the 3D case, we use xi (i ∈ V ) to
denote the 3D position of landmark i and x= (xi)i∈V denote the positions of all the
landmarks. Our goal is to learn priors on x from the training data that consists of a set
of M shapes. Instead of registering all the surfaces into a reference space, we only
assume that point-wise correspondences have been determined for the landmarks in
the training set. We propose to learn statistics on similarity invariants, such as the
relative distances between pairs of landmarks in a clique. Let Pc = {(i, j)|i, j ∈
c and i < j} denote all the pairs for a clique c (c ⊆ V and |c| ≥ 3) of landmarks,
and dij = ‖xi − xj‖ denote the Euclidean distance between points i and j ((i, j) ∈
Pc). We compute the relative distance d̂ij by normalizing dij over the sum of the
distances between all the pairs of points involved in the clique c, i.e.,

d̂ij = dij∑
(i,j)∈Pc

dij
(31.9)
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Since the distance d̂ij is normalized (i.e.,
∑
{i,j}∈Pc

d̂ij = 1), it is sufficient to con-

sider a vector d̂c of relative distances corresponding to |Pc| − 1 pairs of points. For
instance, let us consider a third-order clique c= {i, j, k} (i, j, k ∈ V and i < j < k),
the corresponding three points compose a triangle $ijk and d̂c denotes the relative
lengths (d̂ij , d̂jk) of the sides (i, j) and (j, k), that is,

d̂c =
(

dij

dij + djk + dki
,

djk

dij + djk + dki

)
(31.10)

We can learn the statistics ψc(d̂c) of d̂c from the training data, with standard prob-
abilistic models such as Gaussian Distributions, Gaussian Mixtures and Parzen-
Windows. Finally, we build the higher-order shape model S = (V ,C , {ψc(·)}c∈C ),
where V and C determine the topology of the model and {ψc(·)}c∈C characterizes
the statistical geometric priors between the points contained in each clique c ∈ C . In
the case where third-order cliques are used, C is defined as C = {{i, j, k}|i, j, k ∈
V and i < j < k}. Such statistical constraints can be easily encoded in a higher-
order MRF with a set of cliques that includes C , leading to a prior probability on
the 3D configuration of the shape model as follows:

p(x)∝
∏

c∈C
ψc

(
d̂c(xc)

)
(31.11)

where d̂c(xc) denotes the mapping from the 3D positions xc of the three points
contained in the clique c to the relative distance vector d̂c. It is easy to verify that
d̂c is similarity-invariant. However, other similarity invariants (such as angles of a
triangle) can also be adopted in the above shape prior model.

Landmark candidate detection In order to explore image support through feature
vectors and to avoid a prohibitive computational complexity, we perform landmark
detections to find a set of correspondence candidates in the observed image for each
landmark i (i ∈ V ) in the 3D shape model. To this end, we first learn a classifier
for each landmark, then compute a score for each possible location, and finally
select the L positions that have the best scores to compose the candidate set for the
landmark. We employed Random Forests [11] to perform the classification.

Higher-order MRF segmentation formulation The shape model, together with
the evidence from the image support, is formulated within a higher-order MRF to
perform image segmentation. To this end, we associate each node of the MRF with
a landmark i (i ∈ V ), and the latent variable Xi corresponding to the node i de-
notes the 3D position of the associated landmark. The candidate set of each variable
Xi is denoted by Xi , which consists of the detected landmark candidates. Thus,
the Cartesian product X =∏i∈V Xi denotes the candidate set of the configuration
x= (xi)i∈V of the MRF model. In order to introduce the pose-invariant shape prior
(of third order) into the MRF formulation, we associate a triplet of landmarks to
a third-order clique c and use the potential function of the clique c to encode the
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statistical geometric constraints between the three landmarks. Finally, the segmen-
tation problem is transformed into estimating the optimal configuration xopt of the
higher-order MRF, which is formulated as a minimization of the MRF energy E(x):

xopt = arg min
x∈X

E(x) (31.12)

The energy of MRF is defined as a sum of singleton potentials Ui(xi) (i ∈ V ) and
third-order potentials Uc(xc) (c ∈ C ), that is,

E(x)=
∑

i∈V
Ui(xi)+

∑

c∈C
Hc(xc) (31.13)

The singleton potential Ui(xi) (i ∈ V ) consists of the negative log-likelihood,
imposing penalty for landmark i to be located at position xi in image I, that is,

Ui(xi)=− logp(I|xi) (31.14)

p(I|xi) is defined using the classifier’s output probability value for landmark i to be
located at xi . The higher-order clique potential Uc(xc) (c ∈ C ) encodes the statisti-
cal geometrical constraints on the triplet c of points and is defined as:

Uc(xc)=−α · logψc

(
d̂c(xc)

)
(31.15)

where α > 0 is a positive weight, d̂c(xc) and ψc(·) have been presented previously.
Regional terms can also be factorized and incorporated in such an MRF model [41].

Higher-order MRF inference We adopt the dual-decomposition optimization
framework [4, 27] to solve the inference (Eq. (31.12)). More specifically, we de-
compose the original problem into a set of subproblems, each corresponding to a
factor-tree [6] and perform the exact inference efficiently in each subproblem in
polynomial time using the max-product belief propagation algorithm [6], with com-
plexity O(NLK), where N , L and K denote the number of nodes, the number of
candidates for each node, and the maximum order of the factors, respectively. The
solutions of the subproblems are combined using projected subgradient method to
solve the Lagrangian dual so as to obtain the solution of the original problem [27].

Experimental results The dataset for experimental validation consists of 3D MRI
scans of the calf muscles of 25 subjects (Fig. 31.2(a)). Standard of reference was
available, consisting of annotations provided by experts for the Medial Gastrocne-
mius (MG) muscle. To segment MG muscle from such images is challenging since
there is no evident difference of tissue properties between neighbor muscles and
boundaries between adjacent muscles are visible very sparsely and heterogeneously.
We performed a leave-one-out cross-validation on the whole dataset. For compari-
son purposes, we considered those methods presented in [18]. Figure 31.2(b) shows
two examples of the surface reconstruction results obtained using the estimated posi-
tion of landmarks and thin plate spline (TPS) [8]. Figure 31.2(c) presents the average
distance between the real and estimated landmark positions using different methods,
which confirms the superior performance of the proposed similarity-invariant shape
prior and the inference using higher-order MRFs.
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Fig. 31.2 Muscle segmentation. (a) A slice of a 3D MRI image of calf muscle with expert an-
notation. (b) MG muscle segmentation results (green: reference; red: result). (c) Boxplots of the
average landmark error measure in voxel (1. our method. 2. method in [18]. 3. standard ASM
method.). On each box, the central mark in red is the median, the edges are the 25th and 75th per-
centiles, the whiskers extend to the most extreme data points (figure partially courtesy of [18, 39])

31.4 Conclusion

We have shown, via two specific applications, the idea of encoding shape invariance
in higher-order graphs for shape matching and inference, resulting in a one-shot
optimization algorithm without initializing and estimating extrinsic factors. Similar
ideas can be applied to address other extrinsic factors. For example, we introduced
in [40] a unified paradigm for 3D landmark model inference from monocular 2D im-
ages to simultaneously determine both the optimal 3D model and the corresponding
2D projections without explicit estimation of the camera viewpoint. As the next
step, it is interesting to study the optimal invariants and to recover the optimal sub-
set of higher-order interactions that can best express the 3D geometric manifold.
Besides, faster optimization algorithms of higher-order MRFs could be beneficial
both in terms of the considered applications as well as in terms of modularity with
respect to other shape matching and inference applications.
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Chapter 32
Multisensory Shape Processing

Christian Wallraven

32.1 Introduction

The vast majority of research into shape processing in the perceptual, cognitive,
and neurosciences so far has dealt only with the visual modality. From a devel-
opmental standpoint, however, this strong focus on one modality only seems less
well-motivated. Anyone who has watched an infant interacting with objects has ob-
served multisensory processing in its purest form: usually objects are never only
looked at, but picked up, turned around and looked at from all sides, squeezed,
banged on the floor, taken in the mouth, thrown around, etc. In all of these inter-
actions, the haptic modality is crucial. As soon as grasping, reaching, and touching
objects become available to an infant, the sensory information about objects is vastly
enhanced. The interaction that is made possible by this enables a host of material
and object properties to be sensed and combined with the visual input (as well as
input from other modalities). Examples of material and object properties that the
haptic modality gives access to, include: weight, size, temperature, elasticity, and
general information about the texture and shape (see [20] for an in-depth discus-
sion of haptic perception; see also [21] for an interesting list of over 400 nouns and
the way they relate to each sensory modalities, including vision and haptics). In-
deed, haptic exploration thus can be seen as a bootstrapping for our visual expertise,
given that analysis of these properties from visual information alone is either not
possible at all (the weight of an object would be one example, small temperature
differences another) or at best only in a comparative sense (for monocular vision,
the two-dimensional projection of an object on the retina does not uniquely spec-
ify its size). Proprioceptive and kinaesthetic information, for example, provide an
embodied reference frame in which one can immediately determine that an object
fits into the hand, is at arm’s length, etc. Similarly, texture information derived from
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the high-frequency sensors and temperature information from the nerve ends in the
skin can be coupled to the observed visual texture to create material categories of
“wood” and “stone” that can then be later recognized from visual input alone.

It is perhaps because of our finely tuned visual expertise which has been trained
over many years in this fashion to allow easy, visual access to object properties,
that research on how we learn and process shape and object representations has so
far mainly focused on the visual modality. In recent years, however, this bias has
become less pronounced and a large number of publications have appeared that fo-
cus on all aspects of visual and haptic processing in the perceptual, cognitive, and
neurosciences. More specifically, with the advent of new technologies in computer
graphics, virtual reality, and rapid prototyping, investigations are not limited any-
more to low-level properties of visuo-haptic interaction, but are instead focusing
increasingly on higher-level perceptual processing, including learning, as well as
object recognition and categorization. The main topic of this chapter is therefore
to provide an overview of results in the area of high-level multisensory processing
using vision and touch. We have identified five key research areas that have led to a
deeper understanding of how touch and vision interact for creating our highly tuned
and efficient multisensory interpretation skills. These five areas are briefly sketched
in the following.

32.2 Measuring Perceptual Spaces

When the brain is faced with the task of categorizing an object based on shape, a
computational account of what needs to be done is as follows: first, shape features
need to be extracted from the stimulus, which are then compared in a second step
to stored representations of other objects or object categories. The closest match
among the stored representations is then selected as the potential match candidate,
unless the match strength is too low, in which case the object should be tagged as
‘unknown’. Much of the success of this computational account hinges on defin-
ing a concept of similarity between shape representations in order to evaluate the
match strength. Ever since the seminal work by Tversky [28], and especially Shep-
ard [24, 25], similarity has been proposed as a core concept for object and shape
representations in particular, and knowledge representations in general. Shepard
proposed a “universal law of generalization” [24] derived from first principles in
which objects are represented in a metric perceptual space, with distances between
objects depending on their (dis-)similarity. Accordingly, similarity judgments have
been used extensively to investigate visual shape and object representations and to
relate them to physical properties (e.g., [4, 25]).

Edelman and Shahbazi (2012) discuss the importance of similarity for (visual)
object representations from a computational modeling perspective. In their proposed
computational framework, objects are represented based on a “chorus transform”,
which measures the similarities of any given object to a set of stored prototypes
in memory. As the number of stored prototypes is usually much smaller than the
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Fig. 32.1 Framework for investigating multisensory shape processing based on comparing para-
metrically-defined input spaces to perceptually reconstructed spaces via similarity ratings and mul-
tidimensional scaling. See text for more details

number of dimensions in which similarity is measured (say, pixels, or histograms
of gradients in an image for visual comparisons), this chorus transform achieves
dimensionality reduction and hence allows for efficient indexing. Critically, this way
of representing objects is based on evaluating the similarity between objects in a
(perceptual or cognitive) measurement space.

The general framework for investigating high-level mental representations (see
Fig. 32.1) is based on obtaining similarity ratings of objects created from a
parametrically-defined input space. These ratings are then analyzed with multidi-
mensional scaling (MDS) which recovers a lower-dimensional embedding of the
objects in a perceptual space. First, a well-defined parameter space of objects needs
to be created—if the goal is to investigate shape representations, for example, some
suitable parametric model for creating shapes is selected (the method of course
works for any well-defined input parametrization of physical parameters). A crit-
ical decision at this stage concerns the number of parameter dimension and hence
number of objects that will be of interest to the experimental question at hand. Since
the main experimental task for participants will be to rate similarities between all
exemplars, the number of trials will depend quadratically on the number of objects.
The most common way to gather similarity ratings is to ask participants to rate sim-
ilarity of two objects on a Likert-type Scale of 1–7 (where 1 means fully dissimilar
and 7 fully similar). If one has N objects, this will result in N ×N comparisons for
a full design comparing object A to object B and vice versa. Alternatively, one could
run a time saving version which only compares object A to object B thus resulting
in N +N · (N − 1)/2 comparisons—note, that this assumes perceptual symmetry
in the comparison of object A to object B.

The similarity ratings are then used to create a matrix of perceptual dissimilar-
ities. A good sanity check during this step is to confirm that participants, indeed,
rated same object pairs (A–A and B–B) with the highest similarity rating. If this
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fails for a larger number of cases, something must have gotten mixed up in the data
analysis or even in the experimental design. All MDS algorithms require as input
a symmetric matrix for which the diagonal elements are all 1. This means that the
experimental data may have to be re-normalized to fit this assumption.

As a next step, multidimensional scaling is used to embed each object in a lower-
dimensional space, where object-object distances confirm as closely to the observed
dissimilarity ratings as possible. The optimization of the embedding is performed
according to one of several stress-functions as well as according to metric or non-
metric distance relationships—the choice of stress-function and distance relation-
ship is given by one of the flavors of MDS-algorithms available (see also [1], it is
interesting to note that the “standard” MDS—the so-called classical, metric MDS—
bears similarity to a principal component analysis (PCA)).

All MDS algorithms require the user to specify the dimensionality of the em-
bedding space as an input parameter. Usually, however, this is an experimental
unknown—that is, one would like to know how many perceptual dimensions are
best suited for explaining the data. A post-hoc analysis consists of running the MDS
algorithm with different number of dimensions and looking for a sharp dip in the
stress output (cf. the method to determine the dimensionality in PCA according to
the magnitude of Eigenvalues). For most flavors of MDS, the stress value is normal-
ized between 0 and 1, and previous simulations have shown 0.2 to be an acceptable
value [1].

The final step in MDS consists of comparing the perceptual representation to the
input space—this, of course, can only be done if the dimensionality of both spaces
is compatible. In doing so, one has to be careful that most MDS-algorithms deter-
mine only the inter-feature distances, leaving the reconstructed (perceptual) space
ambivalent up to a rotation. Hence, both in interpreting the axes (dimensions) of the
MDS solution, as well as in comparing the MDS solution to the input space, one
needs to keep in mind that the solution may still need to be rotated. A typical algo-
rithm for mapping the MDS solution to the input space is the Procrustes algorithm
which finds the rigid rotation that best aligns the two spaces—the remaining (Eu-
clidean) distance between the two spaces can be used together with the stress value
to assess the veridicality of the perceptual representation.

As shown in Fig. 32.1, the same strategy can also be used to compare several per-
ceptual representations among each other. One may, for example, compare results
from an experiment obtained from visual similarity ratings with those obtained from
haptic similarity ratings. If the resulting dimensionality and topology between the
two perceptual representations is similar, then this may indicate similar process-
ing strategies in the two modalities (e.g., [3, 12] and see below). In addition, the
similarity ratings need not be obtained from human experiments—computational
approaches can also be used to assess the similarity between two objects according
to any number of features. Indeed, such an approach may help to identify potential
processing strategies of the human mental representations by identifying algorithms
that create similar MDS solutions to the human data.
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Fig. 32.2 (a) Combined modality-independent map reconstructed from visual, haptic, and vi-
suo-haptic similarity ratings for 25 objects. The input parameter space is shown in light grey,
the black grid represents the MDS solution. Note how close the perceptual reconstruction is to the
input space. (b) Texture (T) and shape (S) weights for the visual (V), haptic (H), and visuo-haptic
(VH) conditions for this experiment. Vision is slightly dominated by the shape dimension, whereas
the other two conditions are equally weighted

32.3 Multisensory Perceptual Spaces

In several recent studies, similarity ratings have been used to investigate the link be-
tween physical and multisensory perceptual spaces with the help of parametrically-
defined novel objects [3, 10–12]. The results of these studies have shown that visual
and haptic perceptual spaces can represent highly complex physical shape spaces
with surprising fidelity. In the following, we will briefly describe this work in the
context of perceptual spaces in relation to a multisensory experience of shape pro-
cessing.

In [3], the relative importance of shape and texture was investigated using a
parametrically-defined set of novel, three-dimensional objects (shown in the left
panel of Fig. 32.1). A base object was progressively smoothed to create varia-
tions in shape (or macro-geometry); similarly, texture was added gradually to in-
troduce changes in texture (or micro-geometry). The resulting object-models were
then printed to obtain tangible objects using a 3D printer. Similarity ratings were
then obtained for visual, haptic, and visuo-haptic conditions of the same objects.
In addition, objects had to be grouped into consistent categories in order to iden-
tify the relation between similarity ratings and category judgments. Interestingly,
an MDS analysis of the data showed that two dimensions were sufficient to explain
the data and that the reconstructed perceptual space was highly similar to the input
space (Fig. 32.2a)). For the given stimuli, the shape dimension dominated over tex-
ture in the visual condition, while texture and shape were equally weighted in the
haptic condition. In the bimodal condition, texture and shape were also weighted
equally (Fig. 32.2b)). In addition, the resulting perceptual spaces of all conditions
were highly similar, such that the data was very well explained by one single percep-
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Fig. 32.3 (a) Top panel: Input space generation of shell-like objects according to a five-parameter
equation. Bottom panel: Examples of computer-generated shells and real sea shells. (b) Visual and
haptic reconstruction of the three y-shaped input parameter spaces. Note how well the perceptual
reconstruction matches the input space

tual map (independent of modality), and modality-dependent weightings of shape
and texture.

The framework was extended in [10–12] in order to investigate whether a more
complex shape parameter space would still be able to be reconstructed using the vi-
sual and the haptic modality. For these experiments, a three-dimensional parameter
space of shell-like objects was generated (Fig. 32.3a)). In the first series of exper-
iments [12], the task was to rate the similarity between two sequentially presented
objects. Using these similarity ratings and multidimensional scaling (MDS) analy-
ses, the perceptual spaces of the different modalities were visualized. Interestingly,
participants were again able to reconstruct the topology of this much more com-
plex parameter space visually as well as haptically. Moreover, the visual and haptic
perceptual spaces had virtually identical topology (Fig. 32.3b)).

As similarity is thought to underlie our ability to categorize, the next study in-
cluded three different types of categorization tasks (free sorting, semi-supervised
categorization, and fully supervised categorization) [10]. The results showed that
the haptic modality was able to compete with the visual modality in all three tasks.
Comparing the underlying perceptual spaces obtained from similarity ratings to the
categorization behavior, the results demonstrated consistently that within-category
similarity was higher than across-category similarity for all categorization tasks.
In addition, the higher the degree of supervision in the task, the more the objects
clustered together. This study showed that similarity rating tasks and categorization
tasks can be viewed as lying on a continuum with similarity judgments producing
the least and supervised categorization producing the most clustered perceptual rep-
resentations.
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The previous two studies used computer-generated, shell-like objects. In order
to check how well the results would generalize to the real-world sea-shells, [11] re-
peated the experiments with a set of real sea shells (Fig. 32.3a)). Again, perceptual
spaces were found to be extremely similar in the visual and the haptic domain. Al-
though the natural shells vary in a variety of object features (including shape, color,
texture, and material), haptic object exploration still resulted in a very consistent per-
ceptual reconstruction. As these perceptual spaces showed a clear clustering, three
categorization experiments were performed to test whether the similarity data would
be able to predict categories. Again, the results clearly showed that the perceptual
spaces are able to correctly predict human categorization behavior.

32.4 Visuo-haptic Face Recognition—The Role of Expertise

Faces are arguably one of the most common and socially most important stimulus
classes for humans and hence have received special attention in the perceptual, cog-
nitive and neurosciences. Faces are especially interesting as their variations in shape
are relatively homogeneous compared to other natural object categories, such as dif-
ferent types of animals or plants, or artifactual categories, such as chairs or houses.
The human brain therefore has had to develop special expertise for face recogni-
tion in order to fine-tune its machinery to deal with the relatively small intra-class
variability. Indeed, research in neuroscience suggests that the brain possesses a ded-
icated processing area for faces.

From a developmental standpoint, it is interesting to note that perceptual exper-
tise in face processing takes years to develop [6, 23]—one of the hallmark tests for
this development is to compare recognition of upright and inverted (upside-down)
faces. For adults, face inversion results in a remarkably large deterioration of recog-
nition performance, which is commonly explained as the failure of the perceptual
system to perform a so-called ‘holistic processing’ of the face in the inverted con-
dition. Holistic processing in this context refers to the fact that each facial feature
is processed in interaction with multiple other features (e.g., [5, 22]). In [6] it was
found that 6–12 year old children still perform worse than adults on both upright
and inverted faces, but that performance for upright faces improves during this pe-
riod much more than performance for inverted faces. This tuning is interesting from
a shape processing perspective as it relates to a specific strategy in which informa-
tion about shape elements (such as facial features) is integrated at multiple levels.
The face processing system, however, is faced with more challenges when it comes
to dealing with environmental changes: faces have to be recognized under changes
in illumination, pose, facial expression, accessories, etc. Several researchers have
demonstrated that recognition performance under such changes is fairly robust for
unfamiliar faces, but that performance is remarkably stable for familiar or famous
faces (e.g., [26]). In other words, expertise not only plays a role during the develop-
ment of shape processing skills for faces as opposed to other stimulus classes, but
in addition, face processing becomes also optimized within the category of faces.
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Studies with morphable models, which allow for efficient, high-level manipula-
tions of shape and face attributes have shown that humans are highly sensitive to
face shape [27]. Recently, several authors have used the unusual task of haptic or
even cross-modal face recognition to shed light on uni- and multisensory process-
ing of faces. In [15], it was shown for the first time that humans can haptically
discriminate and identify faces at levels well above chance. These experiments were
conducted with blind-folded participants using either live faces or face masks. In-
terestingly, the natural texture afforded by the live faces in contrast to the plastic
face masks increased face recognition performance by only a small amount, show-
ing the importance of shape information in recognition of these complex stimuli.
A follow-up study showed that—similar to visual information—haptic face recog-
nition was also orientation-sensitive [16], although this result is still under debate
[8, 9]. Perhaps most interestingly, information can be shared across the haptic and
visual modalities bi-directionally to a certain extent [2, 9, 15]. In [9], for example, it
was shown that faces learned haptically can be recognized visually at equal perfor-
mance levels—similarly, faces learned visually can be recognized haptically, albeit
at a performance drop. In addition, overall, haptic face recognition was lower than
visual face recognition. The study suggested that the haptic modality represents the
bottleneck in this information transfer.

One of the reasons for the lower face recognition performance in haptics may be
the nature of haptic exploration: in order to encode and recognize objects haptically,
one needs to move the fingers and the hand over the object, integrating information
in a serial fashion. Given the results mentioned previously about the quality of haptic
shape encoding, the question arises whether the haptic modality is limited in terms
of its shape processing capabilities, or whether it is limited due to serial encoding.
This question was addressed in a recent study in which the visual modality was
changed to serial encoding [8]. For this, face viewing was restricted to an aperture
that could be moved via the mouse over the face. Surprisingly, visually restricted
face recognition levels dropped to those of haptic recognition. Interestingly, for this
exploration mode, the inversion effect disappeared, showing that serial encoding at
this stage may solely rely on local processing of features. A series of follow-up
experiments has investigated whether one may able to train face recognition in the
serial encoding mode [29]. Participants were trained for a few hours on consecutive
days in this (unusual) encoding mode. Interestingly, recognition performance im-
proved very quickly, generalized well to other faces, was retained for at least two
weeks, and even began to show signs of an inversion effect. Hence, at least for the
visual modality, serial encoding can be trained very efficiently such that the efficient
processing of complex face shapes becomes possible.

32.5 Summary and Open Questions

Shape is one of the most important features for the human perceptual system. Ac-
cordingly shape processing has evolved to expert levels allowing effortless learning
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and categorization of a large number of objects. Here, we have argued that shape
processing should be regarded and studied as an innately multisensory problem.
Most importantly, the development of shape processing is critically dependent on
the haptic modality, which not only allows for interaction and manipulation with
objects (coupling perception and action), but also affords the extraction of important
object properties. These properties are either not accessible to the visual modality
(temperature and weight), or they can be grounded in the haptic experience (tex-
ture and material properties, size). We have proposed a framework for studying the
perceptual representation of shape through the use of similarity ratings and multidi-
mensional scaling techniques. A number of experiments in this context has shown
that haptic shape processing can be on par with that of visual processing in terms of
the ability to capture and represent complex input shape spaces.

Of course, haptic processing, also has its limits—haptic recognition of face
shapes, for example, is worse than expert visual face recognition. This may in part
be due to the serial processing mode of haptic exploration (as opposed to the rapid,
parallel processing of vision). Indeed, if vision is restricted to serial exploration, face
recognition drops to haptic levels—interestingly, however, this drop can be quickly
reversed through a few hours of training on face recognition. Whether this also holds
true for haptic face recognition remains to be tested—nevertheless, even for shapes
as complex as faces, some information can be shared across modalities.

Indeed, one of the central questions in multisensory processing is whether there
are two separate object representations, or whether there is one amodal representa-
tion that combines information from two (or more) modalities [18]. Findings from
several recent studies that have investigated the neural correlates of multisensory
processing using fMRI together show that very similar brain areas are activated for
both visual and haptic processing, but that the activation pattern differs depending
on the modality [13, 17, 19]. More studies are needed to fully elucidate the nature
of shape representations in the brain.

The following list summarizes some open questions for multisensory shape pro-
cessing:

• What are the different mechanisms for multisensory shape and object perception
in sighted, visually impaired and blind people?
• What are the complexity limits for shape and object representations in vision and

haptics?
• To what extent are properties of visual object processing shared across modali-

ties?
• What are the brain mechanisms responsible for shared representations across

modalities?
• How can we use these results to create novel human machine interfaces?
• How can we extend the similarity rating framework to recent results from ma-

chine learning [7, 14]?
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Chapter 33
Shape-Based Instance Detection Under
Arbitrary Viewpoint

Edward Hsiao and Martial Hebert

33.1 Introduction

Object instance detection under arbitrary viewpoint is a fundamental problem in
Computer Vision and has many applications ranging from robotics to image search
and augmented reality. Given an image, the goal is to detect a specific object in a
cluttered scene from an unknown viewpoint. Without prior information, an object
can appear under an infinite number of viewpoints, giving rise to an infinite number
of image projections. While the use of discriminative point-based features, such as
SIFT [21, 28], has been shown to work well for recognizing texture-rich objects
across many views, these methods fail when presented with objects that have little
to no texture.

Objects range from being completely uniform in color, to having stochastic tex-
tures from materials, to repeatable point textures found on man-made items (i.e.,
soup cans). In the following, texture-rich objects refer to those where discrimina-
tive, point-based features (e.g., SIFT) can be extracted repeatably. Weakly-textured
objects, on the other hand, refer to those that contain stochastic textures and/or
small amounts of point textures, but which are insufficient for recognizing the ob-
ject by themselves. Examples of objects of different texture types can be seen in
Fig. 33.1.

Weakly-textured objects are primarily defined by their contour structure and ap-
proaches for recognizing them largely focus on matching their shape [12, 18, 24,
41]. Many object shapes, however, are very simple, comprised of only a small num-
ber of curves and junctions. Even when considering a single viewpoint, these curves
and junctions are often locally ambiguous as they can be observed on many different
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Fig. 33.1 View-invariance vs. texture for current state-of-the-art methods

objects. The collection of curves and junctions in a global configuration defines the
shape and is what makes it more discriminative.

Introducing viewpoint further compounds shape ambiguity as the additional
curve variations can match more background clutter. Much research has gone into
representing shape variation across viewpoint. Figure 33.1 shows a rough layout of
current state-of-the-art methods with respect to the type of texture they are designed
to recognize versus how much view-invariance they can handle. Current models can
roughly be divided into two main paradigms: invariant and non-invariant.

Invariant models create a unified object representation across viewpoint by ex-
plicitly modeling the structural relationships of high level shape primitives (e.g.,
curves and lines). Non-invariant models, on the other hand, use view-based tem-
plates and capture viewpoint variations by sampling the view space and matching
each template independently. In this article, we discuss the advantages and disad-
vantages of invariant and non-invariant methods. We conclude that non-invariant ap-
proaches are well-suited for capturing viewpoint variation for specific object recog-
nition since they preserve the fine-grained details. We follow with a discussion on
additional techniques that are necessary for addressing shape ambiguities under ar-
bitrary viewpoint.
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Fig. 33.2 Invariant methods
consider properties of shape
primitives that are invariant
across viewpoint. Common
invariant properties that are
used are parallelism,
co-termination, co-linearity
and symmetry

33.2 Invariant Methods

Invariant methods are based on representing structural relationships between view-
invariant shape primitives [4, 17]. Typically, these methods represent an object in
3D and reduce the problem of object detection to generating correspondences be-
tween a 2D image and a 3D model. To facilitate generating these correspondences,
significant work has gone into designing shape primitives [3] that can be differen-
tiated and detected solely from their perceptual properties in 2D while being rela-
tively independent of viewing direction. Research in perceptual organization [29]
and non-accidental properties (NAPs) [44] have demonstrated that certain proper-
ties of edges in 2D are invariant across viewpoint and unlikely to be produced by
accidental alignments of viewpoint and image features. These properties provide a
way to group edges into shape primitives and are used to distinguish them from each
other and from the background. Example of such properties are collinearity, sym-
metry, parallelism and co-termination as illustrated in Fig. 33.2. After generating
candidate correspondences between 2D image and 3D model using these proper-
ties, the position and pose of the object can then be simultaneously computed.

In earlier approaches, 3D CAD models [13, 24, 46] were extensively studied
for view-invariant object recognition. For simple, polyhedral objects, CAD models
consist of lines. However for complex, non-polyhedral objects, curves, surfaces and
volumetric models [25] are used. In general, obtaining a compact representation of
arbitrary 3D surfaces for recognition is very challenging. Biederman’s Recognition-
by-Components (RBC) [3] method decomposes objects into simple geometric prim-
itives (e.g., blocks and cylinders) called geons. By using geons, structural relation-
ships based on NAPs can be formulated for view-invariant detection.

Given geometric constraints from NAPs and an object model, the recognition
problem reduces to determining if there exists a valid object transformation that
aligns the model features with the image features. This correspondence problem
is classically formulated as search, and approaches such as interpretation trees
[16, 17], Generalized Hough Transforms [17] and alignment [6, 23] are used.

Interpretation trees [16, 17] consider correspondences as nodes in a tree and se-
quentially identify nodes such that the feature correspondences are consistent with
the geometric constraints. If a node does not satisfy all the geometric constraints, the
subtree below that node is abandoned. Generalized Hough Transforms (GHT) [17],
on the other hand, cluster evidence using a discretized pose space. Each pair of
model and image feature votes for all possible transformations that would align them
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together. Geometric constraints are combined with the voting scheme to restrict the
search of feasible transformations. Finally, alignment-based techniques [6, 23] start
with just enough correspondences to estimate a hypothesis transformation. Verifi-
cation is then used to search for additional model features satisfying the geometric
constraints. The hypothesis with the most consistent interpretation is chosen.

While CAD models and geons have been shown to work well in a number of
scenarios, automatically learning 3D models is a considerable challenge [5, 16].
In addition, geons are unable to approximate many complex objects. To address
these issues, recent approaches [26, 33] try to learn view-invariant features and non-
accidental properties directly from 2D data. A common paradigm is to align and
cluster primitives that have similar appearance across viewpoint. For example, the
Implicit Shape Model (ISM) [26] considers images patches as primitives and uses
Hough voting for recognition. To determine view-invariant features, images patches
from all viewpoints of the object are clustered. Each cluster corresponds to a lo-
cally view-invariant patch and is associated with a probabilistic set of object centers.
A match to a cluster casts a probabilistic vote for its corresponding object positions.

While patches are simple to extract, those on the object boundary contain back-
ground clutter and can result in incorrect matches. A more direct approach to mod-
eling shape is to use contours. In the following, we use an approach we developed
to illustrate the challenges of learning and using view-invariant curves for object
detection. We follow the ISM approach and learn view-invariant curves by grouping
curves with similar appearance together. Unlike patches which have a fixed num-
ber of pixels, the length of curves varies across viewpoint. We maintain the same
number of points by using Coherent Point Drift [32] to generate point-to-point cor-
respondences between curves of nearby views. Given a sequence of object images,
we start with the curves of a single view and track the curve deformations by linking
the pairwise correspondences. As each frame is processed, a new track is initialized
if a curve fragment does not correspond to one that is already being tracked. Tracks
are stopped if the number of unique points remaining is less than 50 % of the origi-
nal curve. Each tracked curve is then represented by its mean and deformations, and
is associated with a probabilistic set of object centers as shown in Fig. 33.3.

At recognition time, a modified Iterative Closest Point (ICP) [37] matches image
curves with model curves, accounting for the local deformations. If an image curve
matches a significant portion of the model curve, it casts a vote for all correspond-
ing poses. The critical issue with allowing local deformations is that it is difficult to
enforce global consistency of deformations without storing the constraints for each
viewpoint individually. Figure 33.3d shows an example where the local deforma-
tions are valid but the global configuration is not consistent. If the constraints are
defined individually for each viewpoint, however, the view-invariance is lost and the
approach is equivalent to matching each view independently (i.e., non-invariant).

Another common issue with invariant approaches is that they rely on stable ex-
traction of shape primitives. This is a significant limitation since reliable curve ex-
traction and grouping [29] still proves to be a considerable challenge. While there
has been significant development in object boundary detection [1, 8], no single
boundary detector is able to extract all relevant curves. The Global Probability of
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Fig. 33.3 Modeling the deformation of curves across viewpoint. (a) Curves tracked across view-
point. The arrows specify the centers and upright poses of the object. (b) Aligned curves with their
associated centers and pose. (c) Mean curve with deformations computed from aligned curves.
(d) Global consistency is difficult to enforce without storing the viewpoint information

Fig. 33.4 Edge extraction. Current state-of-the-art methods in boundary detection (gPb) are un-
able to stably extract interior contours which are essential for recognizing specific objects. Canny,
on the other hand, can detect these edges, but will also fire on spurious texture edges

Boundary (gPb) detector, which is designed to ignore stochastic textures, often con-
fuses interior contours with stochastic texture as seen in Fig. 33.4. These interior
edges provide distinctiveness that is necessary for recognizing specific objects.

Due to the challenges of creating 3D models, extracting shape primitives and
learning geometric constraints from data, many recent approaches have moved away
from using invariant shape primitives. In the next section, we discuss how non-
invariant, view-based methods are able to address the above issues and why they are
more effective for specific object recognition under arbitrary viewpoint.

33.3 Non-invariant (View-Based) Methods

Non-invariant methods represent an object under multiple viewpoints by creating
a “view-based” template [35] for each object view (Fig. 33.5). Each template cap-
tures a specific viewpoint, only allowing slight deformation from noise and minor
pose variation. Unlike invariant methods which define geometric constraints be-
tween pairs or sets of shape primitives, non-invariant methods directly fix both the
local and global shape configurations. To combine the output of view-based tem-
plates, the scores from each view are normalized [30, 38] and non-maximal sup-
pression is applied.

Non-invariant methods have a number of benefits over invariant ones. First, using
view-based templates bypasses the 3D model generation and allows the algorithm
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Fig. 33.5 Non-invariant
methods create a template for
each viewpoint of the object

to directly observe the exact projection of the object to be recognized. This has
the benefit of not approximating the shape with volumetric primitives (e.g., geons),
which can lose fine-grained details needed for recognizing specific objects. Sec-
ondly, template matching approaches can operate directly on low-level features and
do not require extraction of high-level shape primitives. Finally, many non-invariant
approaches achieve recognition performances on par or better than invariant ones,
while being relatively simple and efficient to implement. Recent results show that
they can be successfully applied to tasks such as robotic manipulation.

A number of methods exist for representing object shape from a single view.
These range from using curves and lines [11, 12, 39] to sparse edge features [18, 27]
and gradient histograms [7]. Methods which use curves and lines often employ 2D
view-invariant techniques, similar to the approaches described in Sect. 33.2, to re-
duce the number of view samples needed. Interpretation trees [17], Generalized
Hough Transforms [17] and alignment techniques [6] which are used for 3D view-
invariance are similarly applied to 2D geometric constraints. However, this repre-
sentation suffers from the same limitations of using high-level shape primitives.

While some approaches use 2D view-invariance, others simply brute force match
all the possible viewpoints using low-level features. The Dominant Orientation Tem-
plate (DOT) method [19] considers the dominant orientation in each cell of a grid.
Starting with a single template of an arbitrary viewpoint, new templates are added
if the detection score using the previous templates becomes too low. By carefully
designing the algorithm for efficient memory access and computation, the approach
is able to recognize thousands of templates in near real-time. More recently, the
LINE2D [18] approach has demonstrated superior performance to DOT while main-
taining similar computation speeds. LINE2D represents an object by a set of sparse
edge points, each associated with a quantized gradient orientation. The similarity
measure between a template and image location is the sum of cosine orientation
differences for each point within a local neighborhood. While LINE2D works well
when objects are largely visible, Hsiao et al. [22] showed that considering only the
points which match the quantized orientations exactly is a much more robust met-
ric when there are occlusions. Finally, the popular Histogram of Oriented Gradients
(HOG) [7, 10] approach represents objects by a grid of gradient histograms.

While using low-level features avoids edge extraction, a drawback is the loss of
edge connectivity and structure. For example, the HOG descriptor is unable to dif-
ferentiate between a single line and many lines of the same orientation because their
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Fig. 33.6 Stability. (a) In static environments, most objects rest on surfaces. Objects detected
in unstable poses can be down-weighted or filtered. We illustrate the usefulness of knowing the
support surface orientation with an example of finding image ellipses that correspond to circles
parallel to the ground in 3D. These circles are commonly found on household objects. (b) Raw
ellipse detections. (c) Ellipse detections remaining after filtering with the ground normal

descriptors would be similar. The LINE2D method matches each point individually,
resulting in high scoring false positives where neighboring edge points are not con-
nected. These drawbacks, however, are often outweighed by the benefit of operating
on low-level features and observing the exact projection of the object in the image.

An additional criticism of non-invariant methods is that they require a large
number of templates to sample the view space. For example, LINE2D requires
2000 templates per object. While this many templates may have resulted in pro-
hibitive computation times in the past, advances in algorithms [18, 19] and process-
ing power have demonstrated that template matching can be done very efficiently
(e.g., LINE2D and DOT are able to match objects at 10 frames per second). To in-
crease the scalability, template clustering and branch-and-bound [19] methods are
commonly used. In addition, templates are easily scanned in parallel and many can
be implemented efficiently on Graphics Processing Units (GPUs) [36].

33.4 Ambiguities

Regardless of whether invariant or non-invariant methods are used, shape recogni-
tion under arbitrary viewpoint has many inherent ambiguities. Allowing corners and
smooth contours to deform results in a wide range of contours that can match the
background, especially for simple shapes. Without additional information, introduc-
ing view-invariance in shape recognition produces many improbable false positives
that align very well to the image.

Objects in real world environments, however, do not appear in arbitrary configu-
rations. Especially when recognizing multiple objects simultaneously, the relation-
ships between object poses are constrained. An approach used in many scenarios
is to determine the supporting plane [20] of the objects, such as road in outdoor
scenes or table for indoor scenes. Given the supporting surface, the possible stable
configurations (Fig. 33.6) of objects on the surface are drastically reduced. Object
hypotheses that are in unstable configurations can be filtered or down-weighted.
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Fig. 33.7 Occlusion reasoning. Objects in natural scenes are often occluded by objects resting on
the same surface. This information can be used to rank the occlusion configurations of an object.
(a) The left cup has a more likely occlusion configuration than the right cup. (b) Example false
detection window of a cup without occlusion reasoning. (c) Model points that match well to the
edgemap are shown by solid points and those that match poorly are shown by open points. The
occlusion configuration is unlikely

Other approaches, along these lines, reason about scene layout and object recogni-
tion together. Given a set of object hypotheses, the approach of [2] determines the
best object poses and scene layout to explain the image.

Most shape-based recognition approaches focus solely on finding locations with
good matches to the object boundary. However, not all object hypotheses with the
same match percentage are equally plausible (Fig. 33.7). For example in natural
scenes, the bottom of an object is more likely to be occluded than the top [9]. Meth-
ods for occlusion reasoning [17, 34, 40] range from enforcing local coherency [14]
of regions that are inconsistent with object statistics [15, 31, 43] to using relative
depth ordering [42, 45] of object hypotheses. Most of these approaches, however,
require learning the occlusion structure for each view independently. Recently, our
results have shown that explicitly reasoning about 3D interactions of objects [22]
can be used to analytically represent occlusions under arbitrary viewpoint and sig-
nificantly improve shape-based recognition performance.

Finally, while regions with uniform texture are often ignored for recognizing
weakly-textured objects, our recent experiments show that they are actually very
informative. In Fig. 33.8, the object shape aligns very well to the background, but the
texture-less object interior matches poorly. By combining both region and boundary
information, many high scoring false positives in cluttered scenes can be filtered.

33.5 Conclusion

Shape-based instance detection under arbitrary viewpoint is a challenging problem
and has many applications from robotics to augmented reality. Current approaches
for modeling viewpoint variation can roughly be divided into two main categories:
invariant and non-invariant models. Invariant models explicitly represent the de-
formations of view-invariant shape primitives, while non-invariant models create a
non-invariant, view-based template for each view. While invariant models provide



33 Shape-Based Instance Detection Under Arbitrary Viewpoint 493

Fig. 33.8 Region information is necessary for robust shape recognition. The false positive shown
aligns well to the edgemap but the interior matches poorly. (a) Model object. (b) False positive
detection. (c) Zoomed in view of the false positive. (d) Edge points matched on top of the edgemap
(solid is matched, open is not matched). (e) Activation scores of individual HOG cells [43]

a unified representation of objects across viewpoint, they require generation of 3D
models and extraction of high level features which are challenges in themselves.
Non-invariant methods are able to bypass these issues by directly operating on low-
level features in 2D. They are also able to directly observe the 2D projection without
needing to approximate the 3D shape. Recent advances in algorithms and processing
power have demonstrated efficient template matching approaches which simultane-
ously detect thousands of templates in near real-time. Since shape recognition under
arbitrary viewpoint introduces ambiguities that result in a large number of false pos-
itives, additional information such as surface layout estimation, occlusion reasoning
and region information are needed for robust recognition.
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