
Chapter 5
Model-Based Control of the Ammonia Nitrogen
Removal Process in a Wastewater Treatment
Plant

Darko Vrečko and Nadja Hvala

5.1 Introduction

Ammonia nitrogen removal is one of the most important processes in wastewa-
ter treatment plants (WWTPs). It is performed by microorganisms (referred to as
biomass) in aerobic reactors in an activated sludge process. For normal operation a
sufficiently high oxygen concentration has to be maintained at all times in the re-
actor by appropriate aeration. Aeration should be such that the effluent ammonia
concentration (daily averaged or peak values) never exceeds the limit prescribed by
legislation irrespective of the variable influent, changing weather and plant condi-
tion. At the same time, the lowest possible air consumption must be achieved [19].
The reasons are purely economic. According to a study [10], air consumption is re-
sponsible for more than 50 % of the total electrical energy consumed by the plant.
For example, aeration costs at a WWTP designed for around 100,000 people can be
more than €150,000 per year.

In most plants airflow is manipulated by cascade PI control, where the ammonia
concentration in the last aerobic reactor is controlled in the outer loop and oxygen
concentrations in the aerobic reactors are controlled in the inner loops [13, 29]. One
problem with such a controller is that it generates actions on process input only
when changes in the influent become visible in the last aerobic reactor. Since the
process dynamics are slow, the control actions take a long time to bring the ammonia
concentration back to the desired value.

A better way to control ammonia removal is to apply a model-based feedforward
controller such that airflow is manipulated based on information from the influent
ammonia. Hence, a change in the influent ammonia concentration causes an imme-
diate response in the airflow. The solution requires the installation of an ammonia
sensor on the influent, which is an economically acceptable solution owing to the
fact that prices for such sensors have decreased in recent years. Research has shown
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that a feedforward controller can considerably reduce effluent ammonia peaks and
airflow consumption [10, 12, 16, 31, 32, 34].

The question at issue is whether ammonia removal can be improved and air con-
sumption reduced by using more elaborated control laws. A model predictive con-
troller (MPC) is such an algorithm that has proved successful in many industrial
applications. It utilises a process model to predict the process output and optimisa-
tion to calculate the optimal future control sequence. For example, in various studies
[1, 8, 15, 21, 22, 27, 28, 35] MPCs with complex or reduced nonlinear mathematical
models were proposed for ammonia, nitrate, or oxygen control in WWTPs, while in
[3, 9, 11, 17, 23, 25, 28, 33] MPCs with a linear mathematical model were used.

Thus far, the above-mentioned model-based feedforward and MPC ammonia
controllers have been tested mainly on simulated WWTPs. Despite extensive re-
search, they are almost non-existent in real applications and their validation on real
WWTPs is still needed.

The purpose of this chapter is to investigate what benefit could be achieved from
model-based control algorithms for ammonia removal in the context of various per-
formance criteria both in simulation and on a real plant. A further purpose is to
inform the reader of the problems and limitations of applying advanced control to a
real plant.

This chapter is organised as follows: In the following section, the validation of
ammonia controllers on the WWTP benchmark model is presented. Then, the ap-
plication of the ammonia controllers to a real pilot plant is shown. After that, the
problems and limitations of applying the control theory in practice are described.
Finally, some conclusions are drawn.

5.2 The Validation of Ammonia Controllers on the Benchmark
Simulation Model

5.2.1 The Wastewater Treatment Plant Benchmark Simulation
Model

The simulated WWTP used in this study was the benchmark simulation model No. 1
(BSM1) [4], which describes the common activated sludge process for organic and
nitrogen removal [7]. The BSM1 has been developed by working groups within
the EU COST Actions 624 and 682 for evaluating and comparing different control
strategies for WWTPs. It defines the plant layout, simulation model, influent data,
test procedures and evaluation criteria [4]. The layout of the BSM1 is shown in
Fig. 5.1. It consists of one anoxic and four aerobic reactors. The volumes and default
flow rates of the benchmark are given in Table 5.1.

Organic compounds are merely removed in the anoxic reactor and to some ex-
tent also in the aerobic reactors. The removal of nitrogen compounds is performed
in two steps. In the first step, ammonia nitrogen is removed in the aerobic reac-
tors. This process is called nitrification. It occurs only if there is a sufficiently high
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Fig. 5.1 Layout of the benchmark simulation model

Table 5.1 Benchmark
volumes and flow rates Volumes and flow rates Value

Volume of the anoxic reactor 1000 m3

Volume of the aerobic reactor 1333 m3

Volume of the settler 6000 m3

Internal recycle flow rate 55338 m3/d

External recycle flow rate 18446 m3/d

Waste sludge flow rate 300 m3/d

amount of oxygen available. In the nitrification process nitrate nitrogen is produced,
which is recycled back to the anoxic reactors by the internal recycle. In the second
step, nitrate nitrogen is removed in the anoxic reactor. Removal of the nitrate nitro-
gen in the anoxic reactor is called denitrification. The process of denitrification is
successful only if there is no oxygen. Wastewater treatment takes place only if the
biomass concentration in the reactors is high enough. This is achieved by recycling
biomass back from the settler to the reactors by the external recycle.

The biological processes in the reactors are modelled by means of the activated
sludge model No. 1 (ASM1) [6]. The ASM1 model includes 13 nonlinear differ-
ential equations and 19 parameters. The secondary settler is modelled as a non-
reactive, ten-layer process with the double exponential settling velocity model [30].
The settler model is described with 10 nonlinear differential equations and five pa-
rameters. The state vector of the BSM1 includes 15 variables: 13 ASM1 states, total
suspended solids and flow rate.

The influent data of the benchmark includes 14-days of operation in different
weather conditions, i.e., dry, rainy and stormy weather. In our case, dry weather
influent data is used. The average influent flow rate for the dry weather data is
18446 m3/d.

The test procedure for evaluating the controllers is prescribed within the bench-
mark. First, the process has to be brought to a steady state by simulating the plant at
the defined constant influent. Then, the simulation continues by applying one of the
dynamic weather influent data. The performance of the benchmark is evaluated for
the last seven days of simulation.

In our case, the control variables are oxygen transfer coefficients in the aerobic
reactors (KLa2, KLa3, KLa4 and KLa5). Note that the air dosing into reactors in
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Fig. 5.2 Plant layout with the ammonia feedforward-feedback control

the BSM1 is not performed by air valves, but by directly manipulating the oxy-
gen transfer coefficients KLai (i = 2, . . . ,5). Other possible control inputs such as
the internal recycle flow rate, external recycle flow rate and waste sludge flow rate
were set to constant values (see Table 5.1). The controlled variables were the oxy-
gen concentrations in the aerobic reactors (SO2, SO3, SO4, SO5) and the ammonia
concentration in the last aerobic reactor (SNH5).

5.2.2 Feedforward-Feedback Control of Ammonia Nitrogen

The ammonia concentration in the last aerobic reactor can be controlled by cas-
cade control (see Fig. 5.2). The outer ammonia controller determines the oxygen
set-point in the aerobic reactors while the inner oxygen controllers maintain oxygen
at the desired set-point by changing the airflows, in our case, KLa in the reactors
[13, 29]. To reduce effluent ammonia peaks, the outer controller applies the feedfor-
ward term by using the influent flow rate and ammonia concentration as measurable
disturbances. Such a feedforward-feedback ammonia control has been suggested by
[10, 12]. In those studies, a reduced model derived from a complex ASM1 model
[6] was used for the feedforward term. If we apply the reduced model and assume
that all four aerobic reactors are considered as one aerobic reactor, the following
equation for the ammonia removal rate holds approximately [32]:

dSNH5(t)

dt
= Q(t)(SNH0(t) − SNH5(t))

V

− μAmXBA(t)

YA

SNH5(t)

(SNH5(t) + KNH)

SO(t)

(SO(t) + KOA)
(5.1)

where Q is the total incoming flow rate (the sum of the influent and recirculated flow
rates), V is the total volume of the aerobic reactor, SNH0 is the ammonia concentra-
tion in the total incoming flow, SNH5 is the ammonia concentration at the outlet of
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Table 5.2 Parameters of the
feedforward controller Model parameter Value

V 5000 m3

μAm 0.5 1/d

YA 0.24

KNH 1.0 g/m3

KOA 0.4 g/m3

the aerobic reactor, XBA is the concentration of the autotrophic biomass in the aer-
obic reactor, μAm is the maximum specific growth rate of the autotrophic biomass,
YA is the yield for the autotrophic biomass, KNH and KOA are the ammonia and
oxygen half saturation constants and SO is the oxygen concentration in the aerobic
reactor.

The first term on the right-hand side of Eq. (5.1) represents ammonia transport
and the second term the ammonia reaction rate. By considering model shown by
Eq. (5.1) in a steady state, the following equation for the oxygen set-point can be
derived:

SOsetFF(t) = KOA
XBA(t)V SNH5setμAm

Q(t)(SNH0(t)−SNH5set)(SNH5set+KNH)YA
− 1

(5.2)

where SNH5set is the set-point for the ammonia concentration at the outlet of the
aerobic reactor. In the feedforward term (5.2) the concentration of the autotrophic
biomass is needed but it cannot be measured on line. Since this concentration
changes slowly in practice, it may be determined by laboratory tests and entered
into the controller as a constant. In our case, it is assumed that this concentration is
known, whereas for the other parameters (μAm, YA, KNH and KOA) the default val-
ues are used [4]. The values of the feedforward parameters are given in Table 5.2.

The feedforward control gives an approximate oxygen set-point in the reactor and
hence should be used in combination with the slow feedback. The outer ammonia
feedforward-feedback controller used in our case can be written as follows:

SOset(t) = SOsetFF(t) + KpNH

TiNH

∫ t

0

(
SNH5set − SNH5(τ )

)
dτ (5.3)

where KpNH is the proportional gain and TiNH is the integral time constant of the am-
monia I controller. The oxygen concentration was controlled by inner PI controllers
[2] changing the KLa in each reactor

KLaj (t) = KpO
(
SOset(t) − SOj(t)

) + KpO

TiO

∫ t

0

(
SOset(τ ) − SOj(τ )

)
dτ,

j = 2,3,4,5 (5.4)

where KpO is the proportional gain and TiO is the integral time constant of the
oxygen PI controller.
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Table 5.3 Parameters of the
PI controllers Controller Parameter Value

Oxygen PI controller KpO 100 m3/g/d

TiO 0.01 d

minKLa 0 1/d

maxKLa 360 1/d

Ammonia PI controller KpNH −1

TiNH 0.2 d

minSOset 0 g/m3

maxSOset 4 g/m3

By using the ammonia feedforward-feedback controller as described above, the
oxygen set-point is the same in all four aerobic reactors.

At the outer and inner control outputs anti-windup protection was added in order
to avoid long settling times caused by the limited set of feasible values of the control
variables [20]

uAW(t) = 1

Ti

∫ t

0

(
ulim(τ ) − u(τ)

)
dτ, (5.5)

where

ulim(t) =
⎧⎨
⎩

umin, if u(t) < umin

u(t), if umin ≤ u(t) ≤ umax

umax, if u(t) > umax

(5.6)

The parameter Ti is the integral time constant and the umin and umax are the lower
and the upper limits of the control variable u.

The parameters of the PI controllers were tuned from step response experiments
using the internal model control (IMC) tuning rules [19]:

Kp = 1

Kpr
(5.7)

Ti = Tpr (5.8)

where Kpr is the process gain and Tpr is the main process time constant. Accord-
ing to these rules, the proportional gain of the controller Kp and the integral time
constant Ti are set equal to the inverse of the process gain and the process time con-
stant, respectively. This approximately equalises the closed-loop time constant with
the open-loop time constant and in most cases gives satisfactory results. The mini-
mum and maximum values of the KLa in the reactors were set to the values defined
in the BSM1, whereas the maximum value of the oxygen set-point SOset was man-
ually set to such a value to prevent over-aeration of the reactors. The values of the
parameters of the PI controllers are given in Table 5.3. Note that the parameters of
the PI controllers provide basic information about the gain and the time constant of
the process.
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5.2.3 Model Predictive Control of Ammonia Nitrogen

The feedforward-feedback controller above uses a limited number of disturbances
and dominant dynamics of the process. A question that arises is whether full infor-
mation on the process disturbances and a more detailed process description can give
a better response.

In order to answer this question, a nonlinear model predictive controller (MPC)
of ammonia was designed and tested. The ideal process model was assumed, which
means the plant BSM1 with perfect measurements was employed as the process
model for the predictive controller design. Moreover, all influent disturbances were
assumed to be known in advance over the future prediction horizon. The aim of this
ideal setup was to investigate the upper limit of what can be achieved by ammonia
control.

The control sequence of the MPC is calculated at each time step based on the set-
point, a process model, measured disturbances and output [14]. The cost function
used in our MPC can be written as follows [27]:

J (k) =
Hp∑
i=1

Qe

(
ŷ(k + i) − r(k + i)

)2 +
Hu∑
i=1

R�u�u(k + i)2

+
Hu∑
i=1

Ru

(
u(k + i) − u0

)2 + ρ

Hp∑
i=1

ε(k + i) (5.9)

where k denotes the sampling instants, ŷ(k+i) is the predicted output value, r(k+i)

is the future set-point value, �u(k + i) is the future input change, u(k + i) is the
future input value, ε(k + i) is a slack variable which is non-zero only when the
constraint is violated [14], Hp is the prediction horizon, Hu is the control horizon,
Qe is a weight penalising the error between the predicted process output and the
set-point, R�u is a weight to penalise changes in the control signal, Ru is a weight
to penalise deviations of the future input from the desired steady-state value (u0),
while ρ is a weight to penalise soft constraint violations.

A cascade control scheme with the ammonia MPC is shown in Fig. 5.3. It is
similar to that of the ammonia feedforward-feedback control (see Fig. 5.2). The only
difference is that the ammonia MPC is used in the outer loop instead of the ammonia
feedforward-feedback controller.

The output and input of the ammonia MPC were the following:

y = SNH5, u = SOset (5.10)

where SNH5 is the ammonia concentration in the last aerobic reactor and SOset is
the oxygen set-point for the inner oxygen PI controllers. The MPC parameters, i.e.,
the prediction and control horizon and the weights, affect the closed-loop behaviour
of the plant. In our case, MPC parameters were tuned based on process knowledge
and tuning guidelines given in [14]. Since the dynamics of ammonia removal pro-
cesses is on the time scale of hours, the prediction horizon was set to 1.5 h, which
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Fig. 5.3 Plant layout with the ammonia MPC

Table 5.4 Parameters of the
MPC controller Parameter Value

Qe 10

R�u 1

Ru 0

u0 0

ρ 10

Hp 6

Hu 1

equals six time steps (one time step was 15 minutes). To simplify calculation of the
input sequences, only one control move �u was optimised at each sampling instant
(Hu = 1), meaning that the control signal was assumed to be constant during the
prediction horizon. The weight Qe was set to 10 so that a deviation of SNH5 from
the desired set-point of 2 g/m3 was penalised. Other values were chosen according
to Table 5.4.

5.2.4 Comparison of the Ammonia Controllers Tested
on the Simulation Benchmark Model

To determine how much can be gained from the control strategies, a comparison of
the controllers was performed on the simulated process. The controllers described
above were compared with the commonly used ammonia feedback cascade control
which employs PI controllers in the outer and inner loops. The parameters of the
outer ammonia PI controller were in this case the same as the parameters of the
feedback part of the outer ammonia feedforward-feedback controller (see Table 5.3).
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Table 5.5 Performance criteria of the validated ammonia controllers by simulation

Controller Ammonia in the last reactor Average KLa in the reactors

Average
(g/m3)

Maximum
(g/m3)

Maximum (1/d)

Ammonia feedback controller 2.05 6.02 149

Ammonia feedforward-feedback
controller

2.00 5.79 136 (−9 %)

Ammonia MPC 2.05 4.30 138 (−7 %)

The parameters of the oxygen PI controllers were the same in all cases. The chosen
ammonia set-point SNH5 set at the outlet of the aerobic reactors was set to 2 g/m3.

Note that the comparison of the controllers is not completely objective because
the parameters of the controllers were set by using different tuning rules and guide-
lines and considering different performance criteria. Nevertheless, we assumed that
such comparison still provides the reader with the most important differences in
control performance.

A comparison of the ammonia controllers for four days of operation under the
dry weather influent is shown in Fig. 5.4. Note that the influent data are prescribed
by the benchmark. They include typical variations of the influent flow rate and con-
centrations during the dry weather period.

The performance of the controllers was evaluated according to the legislated cri-
teria used. In most countries upper limits for daily averaged effluent values or for
effluent peak values are prescribed. Therefore, averaged ammonia concentrations
and ammonia peaks in the last reactor were used as performance criteria. Average
KLa values in the reactors were also calculated in order to estimate the air con-
sumption. Note that the KLa values are proportional to the air consumption in the
reactors. Values of the performance criteria are shown in Table 5.5.

In the upper diagram of Fig. 5.4 the influent ammonia mass flow rate is shown.
This represents a measurable disturbance to the plant. It can be seen that the dis-
turbance changes by up to 300 % during the day. Such huge changes have a large
effect on the ammonia concentration in the last reactor. Controllers can attenuate
disturbances up to some extent, but cannot completely remove them mainly because
of the limitations in the actuators.

All the controllers involved demonstrate very similar performance with regard to
the average ammonia obtained in the last reactor (see Table 5.4). If nothing is impor-
tant other than the fact that the daily averaged effluent ammonia is below a certain
limit, then all the controllers do the job equally well. However, assessment criteria
should always include air consumption (average KLa in reactors) and in this light a
significant difference between the controllers exists. With the feedforward-feedback
controller about 9 % lower and with the MPC about 7 % lower air consumption was
achieved in comparison with the feedback controller.

From the point of view of the ammonia peaks obtained in the last reactor, a large
difference between the controllers can be observed. If effluent ammonia peaks have
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Fig. 5.4 Comparison of ammonia feedback control (the blue solid line), ammonia feedfor-
ward-feedback control (the black dashed line) and ammonia MPC control (the red dotted line)

to be below a certain limit, then much better performance can be obtained with
the MPC and slightly better with the feedforward-feedback controller than with the
feedback controller. At the same time, much lower air consumption is needed. But
it has to be noted that the MPC controller in our case uses the ideal process model
and provides too optimistic results.

5.3 Application of Ammonia Controllers to the Pilot Plant

In order to test the performance of ammonia controllers in a real environment, we
applied them to the large-scale pilot plant in the Domžale–Kamnik WWTP. Note
that controllers cannot be tested on the pilot plant in the same form as they were
used in the simulation. As will be shown, they have to be simplified and properly
accommodated when applied to a real plant.

5.3.1 Description of the Pilot Plant

Testing of the controllers was done on the pilot plant with moving bed biofilm re-
actor technology (MBBR). In this technology biomass is attached to the small free-
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Fig. 5.5 Photo of the pilot plant

floating plastic carriers that are added into the reactors [18]. Consequently, much
lower concentrations of the suspended solids are obtained in the liquid in com-
parison with the conventional suspended biomass technology. Therefore, a smaller
sludge settler can be used and the external recycle can be omitted. However, higher
oxygen concentrations are needed in the aerobic reactors to obtain successful am-
monia removal, because oxygen has to diffuse into biofilm. The pilot plant consists
of two anoxic reactors, two aerobic reactors, the non-aerated fifth reactor and a set-
tler. A photo of the pilot plant is shown in Fig. 5.5, the scheme of the pilot plant
equipped with sensors is presented in Fig. 5.6 and the volumes and the flow rates of
the pilot plant are given in Table 5.6.

In the pilot plant’s aeration system, the total airflow into the aerobic reactors can
be manipulated. Half of the total airflow goes into the first and the other half into the
second aerobic reactor. Mixers are installed in the anoxic reactors to maintain mix-
ing, while the aerobic reactors are mixed by airflow. The influent of the pilot plant
is wastewater after mechanical treatment. The influent flow rate is kept constant to
fix the hydraulic retention time of the pilot plant.

Several sensors are installed on the pilot plant for monitoring and control pur-
poses, i.e., an airflow sensor (Qair) that measures the total airflow into the aerobic
reactors, an oxygen sensor in the last aerobic reactor (SO4), two ammonia sensors,
one in the last aerobic reactor (SNH4) and the other in the pilot plant influent (SNHin),
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Fig. 5.6 Scheme of the pilot plant equipped with sensors

Table 5.6 The pilot plant’s
volumes and flow rates Volumes and flow rates Value

Volume of the anoxic reactor 88 m3

Volume of the first aerobic reactor 130 m3

Volume of the second aerobic reactor 117 m3

Volume of the fifth reactor 115 m3

Volume of the settler 600 m3

Influent flow rate 1296 m3/d

Internal recycle flow rate 3158 m3/d

External recycle flow rate 312 m3/d

a wastewater temperature sensor (T ), etc. All sensors were serviced for maintenance
purposes at least once per week to ensure normal operation.

5.3.2 Feedforward-Feedback Control of Ammonia Nitrogen

The ammonia feedforward-feedback control scheme tested on the pilot plant was
different from the one used on the benchmark model. One difference was that an
additional airflow controller was used in the cascade structure. Another difference
was that the ammonia feedforward controller used a simple linear model in contrast
to the nonlinear feedforward controller applied in the simulation. This is so because
the nonlinear feedforward controller used in the simulation includes various vari-
ables which are hard to measure in practice, and it is therefore difficult to implement
on a real plant. The cascade control scheme of the ammonia feedforward-feedback
control tested on the pilot plant is shown in Fig. 5.7 [34].

The outer ammonia PI controller determines the oxygen set-point in the last aer-
obic reactor (SO4set) from the difference between the desired (SNH4set) and the mea-
sured ammonia concentration in the last aerobic reactor (SNH4). The oxygen set-
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Fig. 5.7 Control scheme of the ammonia feedforward-feedback control tested on the pilot plant

point is maintained by the oxygen PI controller that calculates the airflow set-point
(Qairset) from the difference between the desired oxygen concentration and the ac-
tual oxygen concentration in the last aerobic reactor (SO4). The airflow set-point is
maintained by the inner airflow PI controller that adjusts the air valve.

Since the inner oxygen PI control is much faster than the outer ammonia PI con-
trol, disturbances that appear inside the oxygen concentration process are quickly
compensated for. The inner airflow PI control is much faster than the outer oxygen
PI control, which improves disturbance rejection inside the aeration system. The in-
ner airflow PI control also linearises the nonlinear characteristic of the air valve.

In all control loops the discrete version of the linear PI controller with the anti-
windup protection which was used in the simulation is applied [2]

u(k) = Kp

(
e(k) + Ts

Ti

k∑
j=1

e(j)

)
− Ts

Ti

k−1∑
j=1

(
u(j) − ulim(j)

)
, (5.11)

where

ulim(k) =
⎧⎨
⎩

umin, if u(k) < umin

u(k), if umin ≤ u(k) ≤ umax

umax, if u(k) > umax

(5.12)

Parameter Kp is the proportional gain of the controller, Ti is the integral time
constant, Ts is the sampling time, e is the control error (the difference between the
set-point and the measured value of the controlled variable), and umin and umax are
minimum and maximum values of the manipulated variable. The first term on the
right-hand side of Eq. (5.11) represents the PI algorithm, and the second term the
anti-windup protection.

In order to obtain good performance with the described ammonia cascade con-
troller it is necessary to select minimum and maximum airflow set-point limits,
which are realisable with the inner airflow PI controller. The limit value of the oxy-
gen set-point uNHlim in the ammonia PI controller was calculated as follows [20]:

uNHlim(k) = uNH(k) − uO(k) − uOlim(k)

KpO
(5.13)

where uO is the airflow set-point calculated by the oxygen PI controller, uOlim is the
limit value of the airflow set-point, and KpO is the proportional gain of the oxygen
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PI controller. The oxygen set-point limits depend on the airflow limits. The oxygen
set-point is limited between the lower and upper limits, which change according to
the airflow limits.

The proposed feedforward control changes the oxygen set-point only proportion-
ally to the influent ammonia concentration. The influent flow rate is not included as
a measurable disturbance because the pilot plant operates at a constant influent flow
rate.

The proposed ammonia feedforward-feedback controller calculates the oxygen
set-point as a sum of the feedforward and PI controls

u(k) = uFF(k) + uPI(k) (5.14)

where uFF is the output of the ammonia feedforward controller and uPI is the out-
put of the ammonia PI controller. In our case, the feedforward controller was im-
plemented with a linear first order model, which was realised in the discrete form
[24]

uFF(k) =
(

1 − Ts

TFF

)
uFF(k − 1) +

(
KFFTs

TFF

)
SNHin(k − 1) (5.15)

where SNHin is the ammonia concentration in the influent, KFF is the gain, TFF is the
time constant of the feedforward controller and Ts is the sampling time. The feed-
forward controller uses only two parameters, which can be tuned manually, and is
therefore very appropriate for practical implementation.

The parameters of the PI controllers were first calculated from step response
experiments using internal model control (IMC) tuning rules [19] (see Eqs. (5.7)–
(5.8)). To ensure non-oscillatory performance of the controllers the proportional
gains were manually reduced and the integral time constants were increased.
The gain of the feedforward controller KFF was manually adjusted by a trial and
error procedure, whereas the feedforward time constant TFF was set to the estimated
delay of the ammonia transport in the pilot plant. The minimum and maximum val-
ues of the total airflow were selected with due care to prevent clogging of the plastic
carriers in the reactors due to too low or too high airflow.

Measurements of the oxygen concentration in the last aerobic reactor (SO4) con-
tain significant noise. Noise in the oxygen measurement can be attributed mainly
to the imperfect mixing of reactors. In our case, noise was reduced by filtering the
measurement of the oxygen concentration with the first order filter

SO4f (k) =
(

1 − Ts

Tf

)
SO4f (k − 1) +

(
Ts

Tf

)
SO4(k − 1) (5.16)

where SO4f (k) is the filtered oxygen concentration at the current sampling instance,
SO4f (k − 1) is the filtered oxygen concentration from the previous sampling in-
stance, SO4(k − 1) is the oxygen measurement from the previous sampling instance,
Tf is the filter time constant and Ts is the sampling time. The filter time constant
Tf was manually set to a value high enough to ensure substantial noise reduction.
The values of the parameters of the controllers are given in Table 5.7.
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Table 5.7 The parameters of
the controllers Controller Parameter Value

Airflow PI controller Kp 0.1 %·h/m3

Ti 30 s

umin 0 %

umax 100 %

Oxygen PI controller Kp 300 m6/g/h

Ti 400 s

Tf 200 s

umin 500 m3/h

umax 2200 m3/h

Ammonia PI controller Kp −0.7

Ti 2 h

Ammonia feedforward controller KFF 0.15

TFF 1.5 h

5.3.3 Model Predictive Control of Ammonia Nitrogen

The control scheme of the ammonia MPC tested on the pilot plant was similar to
that of the feedforward-feedback control scheme, except that the ammonia MPC
was used in the outer loop. The control scheme of the ammonia MPC applied on the
pilot plant is shown in Fig. 5.8 [35].

The MPC tested on the pilot plant was different from that tested in the simulation.
The main difference was that the MPC tested on the pilot plant used a simplified pro-
cess model and a limited number of measured disturbances, while the MPC tested in
the simulation applied an ideal process model and all disturbances were assumed to
be known. Another difference is that a reduced cost function was used in the MPC
algorithm.

Fig. 5.8 Control scheme of the ammonia MPC tested on the pilot plant
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5.3.3.1 Mathematical Model of the Ammonia Nitrogen for Model Predictive
Control

A good mathematical model is essential for predictive control of ammonia nitrogen.
Various models have been used thus far, for example linear models [25, 28, 33],
reduced nonlinear models [1, 8, 22], fuzzy models [15], etc.

In our study a reduced nonlinear model of ammonia nitrogen similar to the one
proposed in [26] was used. The model was additionally simplified by merging the
first and second anoxic reactors into a single anoxic reactor, and the first and sec-
ond aerobic reactors into one aerobic reactor. Hence, the reduced nonlinear model
consists of three nonlinear differential equations:

dSNH2(t)

dt
= 1

V12
Qin(t)SNHin(t) + 1

V12
Qint(t)SNH5(t)

− 1

V12

(
Qin(t) + Qint(t)

)
SNH2(t) (5.17)

dSNH4(t)

dt
= 1

V34

(
Qin(t) + Qint(t)

)(
SNH2(t) − SNH4(t)

)

− rNH

(
SNH4(t)

KNH + SNH4(t)

)(
1

1 + e−KOA1SO4(t)+KOA2

)
Θ(T (t)−20◦)

(5.18)

dSNH5(t)

dt
= 1

V5

(
Qin(t) + Qint(t)

)(
SNH4(t) − SNH5(t)

)
(5.19)

The model variable SNH2 represents the ammonia concentration at the outlet of
the second anoxic reactor, Qin is the influent flow rate, Qint is the internal recy-
cle flow rate, SNHin is the influent ammonia concentration, SNH4 is the ammonia
concentration at the outlet of the second aerobic reactor, SNH5 is the ammonia con-
centration at the outlet of the fifth reactor, SO4 is the oxygen concentration in the
second aerobic reactor and T is the wastewater temperature. Model parameter V12

is the volume of the combined anoxic reactors, V34 is the volume of the combined
aerobic reactors, V5 is the volume of the fifth reactor, rNH is the nitrification reac-
tion rate parameter, KNH is the ammonia half-saturation coefficient, KOA1 and KOA2

are the parameters of the exponential switching function and Θ is the temperature
coefficient.

The anoxic reactors as well as the fifth reactor were not aerated, hence only am-
monia transport processes were modelled. In aerobic reactors an exponential func-
tion was used to model the ammonia reaction rate instead of the commonly used
Monod function. An exponential function was applied to get a better description
of the reaction rate limitation at lower oxygen concentrations in the biofilm [26].
The model shown in Eqs. (5.17)–(5.19) describes the relationship between oxygen
and ammonia concentrations in the pilot plant.
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Table 5.8 Values of the flow
rates and volumes used in the
reduced nonlinear model

Model parameter Value

Qin 1296 m3/d

Qint 3158 m3/d

V12 176 m3

V34 247 m3

V5 115 m3

Table 5.9 Values of the
kinetic parameters of the
reduced nonlinear model

Model parameter Value Optimisation range

rNH 1200 g/m3/d [0, 2000]

KNH 0.56 g/m3 [0, 5]

KOA1 0.46 m3/g [0, 2]

KOA2 3.93 [0, 10]

Θ 1.1 –

The differential equations of the reduced mathematical model were discretised
using the Euler method before use in the MPC algorithm. A sampling time of 5 min-
utes was considered small enough since the order of magnitude of the time constant
of ammonia removal processes is in hours. An additional time delay of two hours
was introduced at the output of the model shown in Eqs. (5.17)–(5.19). Hence, we
compensate for the delay between the peaks of the measured and modelled ammo-
nia concentrations caused by delayed response of the ammonia sensor. The reason
is that the sensor was not located in situ but in the laboratory building close to the
pilot plant reactors. A time delay significantly reduces the performance of ammonia
control.

The values of the flow rates and volumes that were used in the model were taken
from the project documentation and are given in Table 5.8.

Our mathematical model is nonlinear in unknown parameters; hence their val-
ues can be estimated from measurements only by applying some optimisation tech-
nique. Since some model parameters are not identifiable from the plant measure-
ments, the kinetic parameter Θ has to be tuned manually, whereas the parameters
rNH , KNH , KOA1 and KOA2 can be tuned by an optimisation algorithm so that the
best fit in the least-squares sense is achieved between the model and the measure-
ments. In our case, a gradient optimisation algorithm with constraints was used
to tune the parameters. The values of the estimated parameters are given in Ta-
ble 5.9.

The model parameters were estimated using the data from 8 days of pilot plant
operation. The comparison between modelled and measured ammonia concentra-
tions in the last aerobic reactor during the validation period is seen in Fig. 5.9.
The modelled ammonia follows the measured ammonia in the last reactor poorly. An
offset between the modelled and measured ammonia of around 1 g/m3 can be also
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Fig. 5.9 Comparison between modelled and measured ammonia concentrations in the last aerobic
reactor

observed. This offset was not so visible when the model was calibrated because the
ammonia concentration was not controlled and its values were much higher. How-
ever, offset is not a problem in our case because it can be compensated for inside
the controller. In the middle of the validation period a large peak in the measured
ammonia occurred which cannot be seen in the modelled ammonia. The reason for
that was the failure of the influent ammonia sensor, which caused the ammonia
model to be fed with different influent ammonia than the pilot plant. It can be no-
ticed that the measured and simulated ammonia concentrations do not start from the
same initial value. This is so because only the last part of the validation period is
shown.

The mean relative squared error of the obtained model was large and similar to
that presented in [26], i.e., around 50 %. There are different reasons for such poor
model accuracy. One is that various process disturbances that also have a strong
impact on ammonia removal (i.e., soluble substrate concentration, nitrate nitrogen
concentration), are not included in the model because they were not measured at
the plant. Another reason is that the model structure and parameter values are not
accurate. The model can be improved, for example, by estimating unmeasured dis-
turbances and including them in the model. Another possibility is to slowly adjust
the model parameters, such as rNH , to compensate for the slow changes in the pro-
cess [26]. However, the model is nonlinear in parameters and the adjustment of its
parameters cannot easily be made. Note that none of the mentioned approaches are
simple and they do not warrant a substantial improvement in the model.
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Fig. 5.10 Operation of the
ammonia MPC algorithm

5.4 The Model Predictive Control Algorithm

Once the mathematical model of the plant is available, the structure and values of
the parameters of the control algorithm have to be defined. The operation of the
ammonia MPC algorithm used is shown in Fig. 5.10. At every sampling instance
the ammonia nitrogen (SNH4) is predicted for the finite prediction interval by using
the model described above. The MPC calculates the oxygen set-point (SO4set) along
the prediction interval. A reduced cost function was used in the MPC by consider-
ing only the difference between the predicted and set-point ammonia concentrations
(SNH4set) at the end of the prediction interval. Furthermore, only a single oxygen
set-point move is calculated inside the prediction interval, i.e., a constant oxygen
set-point within the prediction interval is considered. Its value is constrained within
a limited range. These two presumptions simplify the optimisation problem signifi-
cantly. By taking a long enough prediction interval, the relation between the oxygen
set-point and the ammonia concentration is a monotonically decreasing function.
Hence, a simple bisection method can be applied to solve the optimisation problem.
The bisection optimisation ends as soon as a change in the manipulated variable in
the last iteration is smaller than some defined value. Another simplification used
was that measurable disturbances (the concentration of the influent ammonia and
temperature of the wastewater) are assumed to be constant for the whole prediction
interval.

The mathematical model used has a large model error. This error can be com-
pensated for to some extent by estimating the unmeasurable disturbance using a
constant output disturbance model. The unmeasurable disturbance d̂(k) can be cal-
culated at each sampling instance k as (following [5])

d̂(k) = y(k) − ŷ(k) (5.20)

where y(k) and ŷ(k) are measured and modelled ammonia concentrations, respec-
tively, in the last aerobic reactor at sampling instance k. The unmeasurable distur-
bance d̂(k) is added to the predicted model output at every sampling instance. In
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Table 5.10 Values of the
parameters of the ammonia
MPC

Parameter Value

P 144 samples

Ts 5 minutes

Kf 0.97

�SO4max 0.2 g/m

SO4min 2 g/m

SO4max 9 g/m

this way the steady-state control error is compensated for and feedback control is
incorporated into the predictive controller [5].

However, a constant output disturbance model can result in too high control gain,
especially when the process model has a large error [5]. This can lead to the unstable
operation of the controller. The controller’s gain can be reduced by filtering the
unmeasurable disturbance

df (k) = Kf · df (k − 1) + (1 − Kf ) · d(k − 1) (5.21)

where df (k − 1) is the filtered unmeasurable disturbance from the previous sam-
pling instance, Kf is the constant of the filter and d(k − 1) is the unmeasurable
disturbance from the previous sampling instance. The filtered unmeasurable distur-
bance df (k) is added to the predicted model output at every sampling instance.

Note that a constant output disturbance model was not applied in the simulation
since a perfect model of the process was used.

The ammonia MPC includes several control parameters that have to be properly
tuned. These parameters are: the sampling time Ts , the prediction interval P , the
constant of the model error filter Kf , the maximum oxygen set-point change at
sampling time instance �SO4max and the minimum and the maximum values of the
oxygen set-point, SO4min and SO4max, respectively.

The prediction interval P was set to a high value of 12 hours (144 samples of
5 minutes). Oscillations of the control signal can be reduced with such a high pre-
diction interval. Other parameters of the ammonia MPC were manually tuned so
that satisfactory control performance was obtained. Values of the parameters of the
oxygen and airflow PI controllers were the same as in the ammonia feedforward-
feedback control described above. The parameter values of the ammonia MPC are
given in Table 5.10.

5.4.1 The Experimental Environment for Testing the Ammonia
Nitrogen Controllers

The required experimental environment needed to test the ammonia controllers is
shown in Fig. 5.11.
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Fig. 5.11 The experimental environment for testing the ammonia controllers

This environment is based on MATLAB®, which was running at the Jožef Ste-
fan Institute (JSI) and was linked on-line through the Internet to the existing con-
trol system at Domžale–Kamnik WWTP. For this purpose, a VPN (Virtual Pri-
vate Network) connection was established between the JSI and the Domžale–
Kamnik WWTP. On-line real plant data were accessed by MATLAB through the
MATLAB-OPC server connection. The OPC server (OLE for Process Control) was
implemented at Domžale–Kamnik WWTP and provided information on the pilot
plant data on a PLC (Programmable Logic Controller) level. The MATLAB-OPC
server connection was established by OPC for MATLAB software from IPCOS
(http://www.ipcos.be/). Calculations were performed by MATLAB in real time.
The airflow controller was realised in the PLC while all other controllers were im-
plemented in MATLAB. The calculated process variable was the airflow set-point,
which was sent every 20 seconds to the OPC server at the Domžale–Kamnik WWTP
and from there to the PLC.

5.4.2 Comparison of the Ammonia Controllers Tested on the Pilot
Plant

The ammonia feedforward-feedback controller and ammonia MPC described above
were compared with a commonly used ammonia feedback controller. The parame-
ters of the ammonia feedback controller were the same as those in the feedback part
of the ammonia feedforward-feedback controller (see Table 5.7).

During the testing period the daily average of influent ammonia did not change
much (there were no rain or other special conditions) and the wastewater temper-
ature was around 15 °C the whole time. The set-point for the ammonia controllers
was set to 1 g/m3.

The results of testing different ammonia controllers are shown in Figs. 5.12 to
5.14. The variables shown are different from those presented in the simulation (com-
pare with Fig. 5.4). The influent ammonia concentration instead of the influent am-

http://www.ipcos.be/
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Fig. 5.12 Results of the ammonia PI controller

monia mass flow rate is shown and the total airflow rate instead of the KLa value is
presented.

It can be seen that the inner oxygen and airflow PI controllers follow the cor-
responding set-points very accurately. In the case of feedforward-feedback control,
the ammonia concentration is maintained close to the desired value (see Fig. 5.13)
in spite of considerable changes in the influent ammonia concentration.

The MPC successfully controls the ammonia concentration in the last aerobic
reactor at the selected set-point (see Fig. 5.14), except for the short interval in the
middle of the testing period when the influent ammonia sensor failed. During this
interval the MPC was out of operation and the dissolved oxygen set-point concen-
tration was kept constant at the last calculated value. A peak in the ammonia in the
last aerobic reactor occurred as the oxygen concentration was too low. When the in-
fluent ammonia sensor measurement was restored, the MPC reduced the ammonia
peak by rapidly increasing the oxygen-set point to the upper limit.

The performance of the applied controllers was evaluated by calculating different
performance criteria addressing ammonia removal and air consumption. In the eval-
uation of the ammonia MPC the period when the influent ammonia sensor failed
to work was not considered. The values of the performance criteria are given in
Table 5.11.
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Fig. 5.13 Results of the ammonia feedforward-feedback controller

All the controllers provided a similar average ammonia concentration in the last
aerobic reactor. This means that if performance had to be judged only from the
achieved average effluent ammonia, then all the controllers tested did the job equally
well. If, at the same time, air consumption is also considered, the difference between
the controllers immediately becomes apparent. Compared to the feedback controller,
with the feedforward-feedback controller it takes 29 % less air to remove a kg of
ammonia. Though not that high, the reduction obtained by MPC is still significant,
i.e., about 15 %. This shows that a certain amount of energy savings can be achieved
on a yearly basis if more advanced control is used. Furthermore, if penalties on
effluent ammonia peaks were introduced, the distinction between the controllers
becomes even more apparent. Significantly lower ammonia peaks could be obtained
with the ammonia feedforward-feedback controller and MPC.

The ammonia feedforward-feedback controller and ammonia MPC give better
results than the ammonia feedback controller because they use an additional measur-
able disturbance of the influent ammonia. Surprisingly, poorer results were obtained
with the ammonia MPC than with the ammonia feedforward-feedback controller.
This shows that a greater improvement in ammonia removal could be achieved by
applying feedforward action based on measurable disturbances than by applying a
more complex MPC algorithm.
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Fig. 5.14 Results of the ammonia MPC

Table 5.11 Performance criteria of the validated ammonia controllers on the pilot plant

Controller Ammonia concentration
in the last aerobic reactor

Air volume needed to
remove a kg of ammonia
(m3/kg)Average

(g/m3)
Maximum
(g/m3)

Ammonia feedback controller 1.12 3.70 849

Ammonia feedforward-feedback
controller

0.98 2.20 602 (−29 %)

Ammonia MPC 1.05 2.8 719 (−15 %)

One possible explanation for the poorer performance of the MPC could be asso-
ciated with the insufficient accuracy of the reduced nonlinear model of the ammonia
nitrogen. The less than expected performance of the MPC could be explained by the
fact that only one input and one output of the process was used. An advantage of
the MPC is normally expected when multiple process inputs and outputs are used.
Thus, better results are expected when both ammonia nitrogen and total nitrogen are
controlled. Potential improvements in the ammonia MPC are also to be expected by
upgrading the control criteria from the control error at the end of the prediction
interval to the sum of all the square control errors inside the prediction interval.
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The above results were obtained during a relatively short period of operation and
are used as an indication of what the potential of different control strategies might
be. The controllers were also evaluated under different influent conditions, which
influence the comparison. A longer testing period is needed for a more reliable eval-
uation of controllers.

5.5 Problems and Limitations in Applying the Theory

When advanced controllers are applied to a real plant various problems limit their
performance:

• Model inaccuracy. Models used for the control of activated sludge processes are
usually not very accurate. This can be attributed to the bio-chemical processes of
the activated sludge, which are complex and time-varying and therefore it is very
hard to find a proper model structure and obtain adequate model parameter values.
Because of the model inaccuracy, the feedback gain of the controller should be
significantly reduced.

• Unmeasurable disturbances. Various disturbances, i.e., the soluble bio-degradable
substrate, inert substrate, active biomass, etc., which have a strong impact on the
bio-chemical process, cannot be measured on-line at a real plant. An accurate
process model cannot be obtained and the process cannot be properly controlled
without knowing all the important disturbances. Therefore, estimation of unmea-
sured disturbances at the real plant can be of great importance.

• Sensor failures. Sensor failures are quite common in real plants, especially with
the sensors used for feedforward control. This is so because these sensors are lo-
cated in the initial stages of the plant, which are subject to more polluted wastew-
ater. Therefore, controllers applied to a real plant should always use some sort of
sensor failure detection algorithm.

• Imperfect measurements. Measurements of the variables in real plants commonly
contain significant noise and time delay. Such noise can be attributed to the im-
perfect mixing of reactors, whereas the time delay can be attributed to the fact
that sensors are usually not located in situ but in a laboratory removed from the
reactors. Measurements at the real plant should be filtered before they are used
for control. The control parameters should be properly adjusted due to the mea-
surement time delay.

• Design effort. Advanced controllers are more demanding as regards implementa-
tion in a real plant. The reason for this lies in the fact that they require a nonlinear
process model and in most cases a complex optimisation algorithm to calculate
the control sequence. Modelling of the activated sludge process is a very time-
consuming process. An appropriate model structure is difficult to obtain and op-
timisation techniques have to be used to estimate unknown model parameters.
Once the model is available, an optimisation algorithm has to be applied to cal-
culate the control sequence. The optimisation algorithm should be robust enough
to provide a feasible solution at every sampling instance. In order to ensure this,
various limitations on the control variables should be imposed.
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5.6 Conclusion

The aim of this chapter was to investigate what can be gained with model-based
ammonia controllers in terms of various performance criteria in simulation and
on a real wastewater plant. The simulation results indicate that the feedforward-
feedback controller and ammonia MPC result in reduced air consumption in com-
parison with the feedback controller while achieving the same or better ammonia
removal. The application of ammonia controllers to the pilot plant confirmed that
the ammonia feedforward-feedback controller and MPC give better results than the
ammonia feedback controller. The main reason for this lies is the fact that they use
the additional measurable disturbance of the influent ammonia. Surprisingly, the
ammonia MPC gave poorer results than the feedforward-feedback controller at the
real plant. The explanation for this could be associated with the various limitations
in applying a more complex MPC in a real environment.
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26. Stare A, Vrečko D, Hvala N (2006) Modeling, identification, and validation of models for

predictive ammonia control in a wastewater treatment plant—a case study. ISA Trans 45:159–
174
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