
Chapter 2
Identification and Control of Nonlinear Systems
Using a Piecewise-Linear Hammerstein Model

Gregor Dolanc and Stanko Strmčnik

2.1 Introduction

This chapter addresses the problem of identification and control of a special class
of nonlinear processes whose dynamics can be approximated by a Hammerstein
model. A Hammerstein model consists of a serial connection of a static nonlinear
function and a linear dynamic transfer function. These models are very relevant to
practice since many industrial processes exhibit this type of nonlinear dynamic be-
haviour. Both identification and control design for this class of processes has there-
fore attracted considerable attention from researchers in academia as well as from
practitioners in industry.

Identification has been addressed by many authors and a rich set of meth-
ods for parameter estimation of the nonlinear and linear part of the model have
been proposed. Examples include iterative methods [28, 30] and non-iterative over-
parameterisation methods [7, 19, 25]. The least squares method is usually employed
to estimate the model parameters [21], although other approaches are also used, e.g.
instrumental variables [31] and the maximum likelihood method [8, 15].

The nonlinear static part of the Hammerstein model was originally proposed in
the form of a polynomial function. However, models with various other representa-
tions were studied as well, e.g. models with two-segment piecewise-linear nonlin-
earity [24], cubic splines [36], preload nonlinearity [25], two-segment polynomial
nonlinearities [33], discontinuous asymmetric nonlinearities [32], hysteresis [20]
and Bezier functions [18]. These methods assume that input signals used for the
identification ensure persistent excitation, which means that signals are distributed
over the entire range of operation. A popular choice for excitation signals is white
noise or related random inputs, although simpler waveforms like the random phase
multisine signals proposed in [9] and [10] can also be used. The main problem with
such signals is that they cannot always be applied to industrial processes, or their
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use is even prohibited because of strict technological limitations as well as system
performance requirements.

All the mentioned methods are parametric methods. Nonparametric methods rep-
resent an alternative approach that has also been used to represent and identify the
Hammerstein model [6, 14].

The use of a Hammerstein model for control is also widely discussed in the lit-
erature. A common approach is to adopt the existing linear controller design, such
as [2, 3, 22, 34, 35], where the linear pole placement method was adapted in vari-
ous ways. A similar approach can be found in [27], where a generalised minimum
variance controller is accommodated to the single polynomial-based Hammerstein
model. In [17] the utilisation of the Hammerstein model is proposed in a way such
that the nonlinearity is approximated by the Bezier function. Several other control
laws based on the Hammerstein model are also discussed in the literature, e.g. dead-
beat control [29], adaptive dead-beat feedforward compensation of measurable dis-
turbances [5], indirect adaptive control based on linear quadratic control and an ap-
proximation of the nonlinear static function using neural networks [23], nonlinear
dynamic compensation with passive nonlinear dynamics [16], etc. Another possi-
bility is to use the Hammerstein model within predictive control laws, e.g. [1, 13],
which has gained in popularity, not only in research, but also in industrial practice.

The problem with the majority of the methods mentioned above is that constraints
and limitations encountered in the commissioning and operation stage are largely ig-
nored in the design stage. A serious issue is the fact that a high level of expertise
is needed to put the controllers mentioned above to work, particularly during the
commissioning and tuning stage. Additional problems may arise due to the high
computational load and limited freedom in selecting the excitation signals. In or-
der to accommodate these issues, we present and demonstrate an approach to iden-
tification and control of nonlinear processes of the Hammerstein type, based on
piecewise-linear approximation of the static nonlinear function.

This chapter is organised as follows. First, we will review the original form of
the Hammerstein model and briefly highlight the shortcomings that limit its prac-
tical applicability. Based on this, we will introduce a new form of the Hammer-
stein model with modified parameterisation, which will eliminate the main practical
limitations inherent in the original formulation of the Hammerstein model. Next,
we will propose a parameter estimation algorithm, accommodated to the proposed
model structure. Finally, we will present a novel pole placement controller, tuned
according to the identified model parameters. The usability of the identification and
control algorithms will be demonstrated by a simulation example and experimental
application on a sintering process.

2.2 Original Form of the Hammerstein Model
and Its Limitations

The Hammerstein model belongs to the class of block-oriented nonlinear models,
which can be decomposed into nonlinear static blocks and linear dynamic blocks.
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Fig. 2.1 Structure of the
Hammerstein model

In the case of a single input, single output Hammerstein model, the nonlinear static
function is followed by a linear dynamic system, as follows from Fig. 2.1. If the
sequence of blocks is reversed, we get a Wiener model.

The nonlinear static function is originally proposed in the form of a polyno-
mial function, while the linear dynamic system is assumed to be either a linear
discrete time or a continuous time transfer function. The internal signal x, which
links the nonlinear static function and the linear dynamic system, is assumed to be
non-measurable. Consequently, the parameters of the nonlinear static function and
the linear dynamic system cannot be estimated separately.

The original form of the Hammerstein model has several practical limitations:

1. Parameter estimation is very sensitive to the type of excitation signal. If the ex-
citation signal is limited within a narrow interval, the model will properly pre-
dict the process output only if inputs are from this interval. Elsewhere, model
predictions might be quite poor. The original Hammerstein model thus requires
excitation signals distributed over the entire range of operation. This is a serious
drawback, since the application of such signals may often be prohibitive in real
processes due to various technological limitations.

2. Polynomial representation of the input nonlinearity of the original Hammerstein
model does not enable the approximation of discontinuous processes; however,
such processes appear quite frequently in practical applications.

3. If the original form of the Hammerstein model is integrated into a control law,
the calculation of the control signal usually requires inversion of the polynomial
equation, which can in general only be done numerically. This inversion has to
be repeated in every control interval, which leads to a high computational load.

To alleviate these drawbacks, we propose a modified model structure, the main
idea of which is to use a piecewise-linear function to represent the model nonlinear-
ity.

2.3 The Piecewise-Linear Hammerstein Model

The model and the essentials of the associated parameter estimation algorithm were
presented in [11]. The idea was to use piecewise-linear representation of the non-
linear static function of the model. It should be noted that the idea of using piece-
wise representations is not new, different kinds of piecewise representations have
been used in the Hammerstein model [9, 10, 36]. But this was usually motivated by
achieving more accurate approximation of the nonlinear static function compared to
that obtained by continuous functions (e.g. single polynomials). Our motivation for
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Fig. 2.2 An example of rich
excitation signal

using piecewise representation is different, we want to improve the practical appli-
cability of the model. We will show that using the piecewise-linear approximation
directly reduces practical limitations presented in the previous section.

First, owing to the piecewise-linear representation of the static nonlinearity, iden-
tification does not require rich excitation signals over the entire range of operation,
as presented in Fig. 2.2. This kind of signal can cause the process to go out of control
or can even cause damage to the process.

Identification can be performed in the presence of more realistic, temporarily
bounded signals. Here we mean signals which can be expressed as a sum of two
components: a slow varying component and a fast varying one. The first component
can be slowly increasing or decreasing signal, e.g. a ramp function (Fig. 2.3, left).
The second component is bounded on an interval which is significantly narrower
than the entire region of the input signal. For example, it can be implemented in
terms of sequence of pulses (Fig. 2.3, centre). The sum of both components is shown
in Fig. 2.3, right.

Such kinds of signals are much more likely to be acceptable for applications in
industrial processes than classical persistent excitation waveforms. Since the ampli-
tude is temporarily bounded within a narrow range, it means that only a tiny section
of the nonlinear static function will be excited at that time. Piecewise-linear repre-
sentation of the static nonlinearity and the corresponding identification algorithm,
which will be presented below, allow for identification of the excited section only,
while keeping unexcited sections unchanged.

The second benefit of a piecewise-linear representation of the nonlinear static
function is the possibility to account for the discontinuous static functions as well
as static functions with a discontinuous first derivative.

And third, the problem of the computational burden of the inversion of the non-
linear static function is completely circumvented since the piecewise-linear function
has a very simple analytical inverse, and thus requires only a minimum computa-
tional effort during each control interval of the controller.

These advantages become extremely important when practical applications of the
control algorithm are considered.

Fig. 2.3 Realistic signal with temporarily bounded amplitude
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2.3.1 Piecewise-Linear Functions

A general nonlinear static function can be approximated by a piecewise-linear func-
tion [26], which is composed of a number of line segments connected to each other

x(u) = l(u,u)T · x (2.1)

In (2.1) u is input to the nonlinear static function and x is an output. The function
is defined by vectors u and x, which determine the positions of the joints of line
segments:

x = [x0 x1 . . . xj . . . xm]T
((m+1)×1)

(2.2)

u = [u0 u1 . . . uj . . . um]T
((m+1)×1)

(2.3)

The vector x contains x-coordinates of joints while vector u contains
u-coordinates, which are called knots. Knots have to be arranged in a monotoni-
cally increasing order

u0 < u1 < · · · < uj < uj+1 < · · · < um (2.4)

Furthermore, in (2.1) l(u,u) is a vector of “tent functions”

l(u,u) = [l0 l1 . . . lj . . . lm]T((m+1)×1) (2.5)

Hereinafter, instead of l(u,u), the shorter denotation l(u) will be used. The ele-
ments of vector l(u) are defined as follows:

l0(u) =
{

u1−u
u1−u0

if u0 ≤ u < u1

0 if u1 ≤ u ≤ um

(2.6)

lj (u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if u0 ≤ u < uj−1
u−uj−1
uj −uj−1

if uj−1 ≤ u < uj

uj+1−u

uj+1−uj
if uj ≤ u < uj+1

0 if uj+1 ≤ u ≤ um

j = 1 . . .m − 1 (2.7)

lm(u) =
{

0 if u0 ≤ u < um−1

u−um−1
um−um−1

if um−1 ≤ u ≤ um

(2.8)

It can be seen that the vector l(u) contains only two nonzero elements for any
value u. Their position and values depend on the amplitude of the input signal u, as
follows from Eqs. (2.6)–(2.8) The situation is illustrated in Fig. 2.4.

The inversion of a piecewise-linear function results in another piecewise-linear
function, where vectors x and u exchange roles

u = l(x,x)T · u (2.9)
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Fig. 2.4 Parameterisation of the piecewise-linear function (uj ≤ u < uj+1)

The piecewise-linear function x(u) is always continuous and contains disconti-
nuities of the first derivative, which are located in knots. Therefore, it is possible to
approximate nonlinear functions with the discontinuous first derivative as well as
the discontinuous nonlinear functions. In the first case, the position of the discon-
tinuity of the first derivative and the position of the arbitrary knot should match as
closely as possible. In the second case, a position of discontinuity ud of the nonlin-
ear function has to be surrounded by two knots (ud − �u1) and (ud + �u2), where
�u1 and �u2 represent small distances from the point of discontinuity, as follows
from Fig. 2.5.

2.3.2 Parameterisation of the Hammerstein Model
with Piecewise-Linear Functions

Now, let us merge the piecewise-linear function and the linear dynamic system of
the model. First, let us assume the classical structure of the Hammerstein model
(Fig. 2.1), where u is the input and x is output of the nonlinear static function.
Simultaneously, x is the input and y is the output of the linear dynamic system. The
linear dynamic system is described by the discrete time difference equation
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Fig. 2.5 Approximation of the discontinuous static function

y(k) + a1y(k − 1) + a2y(k − 2) + · · · + any(k − n)

= b0x(k − d) + b1x(k − d − 1) + bnx(k − d − n) (2.10)

where n is the order and d is the delay of the linear dynamic system. Let the output x

from the nonlinear static function be expressed using the piecewise-linear function
(2.1). The terms bix(k − d − i), appearing on the right-hand side of Eq. (2.10), can
then be expressed as

bix(k − d − i) = bi l
(
u(k − d − i)

)T x = l
(
u(k − d − i)

)T
bix, i = 0 . . . n (2.11)

If the rightmost term of Eq. (2.11) is put into Eq. (2.10) and if y(k) is expressed
explicitly, the following discrete time difference equation is obtained, which repre-
sents the piecewise-linear Hammerstein model:

y(k) = −a1y(k − 1) − a2y(k − 2) − · · · − any(k − n) + l
(
u(k − d)

)T
b0x

+ l
(
u(k − d − 1)

)T
b1x + · · · + l

(
u(k − d − n)

)T
bnx (2.12)

Equation (2.12) is multilinear in parameters and can be arranged in the following
vector form:

y(k) = ψT (k)θ (2.13)

In Eq. (2.13) ψ is the data vector and θ is the parameter vector structured as
follows:

ψ = [−y(k − 1) − y(k − 2) . . . − y(k − n) l(u(k − d))T

l(u(k − d − 1))T l(u(k − d − n))T
]T
((n+(n+1)(m+1))×1)

(2.14)

θ = [
a1 a2 . . . an b0xT b1xT . . . bnxT

]T
((n+(n+1)(m+1))×1)

(2.15)
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In the data vector, the terms l(u(k − d − i)), i = 0 . . . n, are vectors of the “tent
functions” in particular time instances, defined by Eqs. (2.5), (2.6), (2.7) and (2.8).
The structure of elements bix, i = 0 . . . n, of the parameter vector θ is the following:

bix = bi[x0 x1 . . . xm]T = [bix0 bix1 . . . bixm]T

= [bxi,0 bxi,1 . . . bxi,m]T((m+1)×1) = bxi (2.16)

In Eq. (2.16) the products bixj represent “linear parameters”, denoted as bxi,j ,
i = 0 . . . n, j = 0 . . .m.

bxi,j = bixj (2.17)

They are called linear since in the model they appear in linear combination with
the data. The linear parameters bxi,j can be arranged in subvectors bxi , i = 0 . . . n of
the data vector θ . Considering this, θ can be rewritten in terms of “linear parameters”

θ = [a1 a2 . . . an | bx0,0 bx0,1 . . . bx0,m | bx1,0 bx1,1 . . . bx1,m |
bxn,0 bxn,1s . . . bxn,m]T

= [
a1 a2 . . . an | bxT

0 bxT
1 . . . bxT

n

]T (2.18)

The identification algorithm, which will be presented below, will estimate the
“linear parameters”. The set of “linear parameters” should be distinguished from
the set of “basic parameters”, which are

a1 a2 . . . an b0 b1 b2 . . . bn x0 x1 x2 . . . xm (2.19)

If the “basic parameters” are known, then the “linear parameters” can be uni-
formly calculated. On the other hand, if the “linear parameters” are known, then the
“basic parameters” cannot be uniformly calculated. If the nonlinear static function
is multiplied by a nonzero real constant c, and if the linear dynamic part is divided
by the same constant, the resulting model has the same input-output behaviour. This
redundancy of “basic parameters” can be resolved, for example, by fixing the static
gain of the linear dynamic part. This means that the following equality must hold
for the parameters of the linear dynamic part, if the static gain is fixed to unity:

n∑
i=0

bi = 1 +
n∑

i=1

ai (2.20)

By summating Eq. (2.17) for i = 0 . . . n, we get

xj =
∑n

i=0 bxi,j∑n
i=0 bi

, j = 0 . . .m (2.21)

In Eq. (2.21) parameters bi are unknown. The sum of parameters bi , i = 0 . . . n,
can be expressed as a sum of parameters ai , i = 1 . . . n, using Eq. (2.20), since
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parameters ai appear explicitly in the vector of the “linear parameters” θ

xj =
∑n

i=0 bxi,j

1 + ∑n
i=1 ai

, j = 0 . . .m (2.22)

After parameters xj are estimated, also parameters bi can be estimated using the
equalities derived from Eq. (2.17)

bi = bxi,0

x0
= · · · = bxi,j

xj

= · · · = bxi,m

xm

, i = 0 . . . n (2.23)

A solution for bi can be obtained using least squares

bi =
∑m

j=0(xj · bxi,j )∑m
j=0 x2

j

, i = 0 . . . n (2.24)

Alternatively, the basic parameters bi and xj can be estimated using an algorithm
based on the singular value decomposition [4], which gives more general results but
also requires more computational effort.

2.3.3 Redundancy of Linear Parameters

Redundancy of “linear parameters” is a special property of the piecewise-linear
Hammerstein model which becomes important during parameter estimation. It
should be distinguished from the already mentioned redundancy of the “basic pa-
rameters”. Let us assume that a process is described by the model with parameters
θ defined in Eq. (2.18). In that case, there exists a model with parameters θ∗ which
has the same transfer function between u and y as the model with parameters θ

θ∗ = [
a1 a2 . . . an | bx∗

0,0 bx∗
0,1 . . . bx∗

0,m |
bx∗

1,0 bx∗
1,1 . . . bx∗

1,m | bx∗
n,0 bx∗

n,1 . . . bx∗
n,m

]T (2.25)

The subvectors bx∗
i of θ∗ differ from the subvectors bxi of θ . The relation between

bxi and bx∗
i , i = 0 . . . n reads

bx∗
i = [

bx∗
i,0 bx∗

i,1 . . . bx∗
i,m

]T
= [bxi,0 bxi,1 . . . bxi,m]T + ci1((m+1)×1) (2.26)

Finally, the model with parameters θ∗ and the model with parameters θ have
identical transfer functions if

n∑
i=0

ci = 0 (2.27)
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To prove this, the difference �y(k) between the output y∗(k) of the model with
parameters θ∗ and the output y(k) of the nominal model with parameters θ has to
be calculated

�y(k) = y∗(k) − y(k) = ψT (k)θ∗ − ψT (k)θ = ψT (k)
(
θ∗ − θ

)
(2.28)

Furthermore, the difference (θ∗ − θ ) can be expressed as

θ∗ − θ = [
�aT �bxT

0 �bxT
1 . . . �bxT

n

]T (2.29)

According to the definition of θ∗, it follows that

�a = 0(n×1) (2.30)

and

�bxi = bx∗
i − bxi = ci1((m+1)×1), i = 0 . . . n (2.31)

By accounting for Eqs. (2.30) and (2.31) in Eq. (2.28), �y(k) can be expressed

�y(k) = ψT (k) · (θ∗ − θ
) =

n∑
i=1

0 · y(k − i) +
n∑

i=0

l
(
u(k − d − i)

)T · ci1((m+1)×1)

(2.32)
According to the definition of the “tent functions” l, in Eqs. (2.5)–(2.8) the right-

most term of Eq. (2.32) can be expressed as

l
(
u(k − d − i)

)T · ci1((m+1)×1)

=
[

01×j

(
ui+1 − u(k − d − i)

ui+1 − ui

)(
u(k − d − i) − ui

ui+1 − ui

)
01×(m−j−1)

]

· ci1((m+1)×1) = ci (2.33)

If this is put into Eq. (2.32), the difference �y(k) can be expressed as

�y(k) =
n∑

i=1

0 · y(k − i) +
n∑

i=0

ci (2.34)

The first sum of the right side of Eq. (2.34) equals zero. Because of the required
condition (2.27) also the second sum of the right side of Eq. (2.34) equals zero,
which means that �y(k) = 0. This proves that the model with parameters θ∗ has an
identical transfer function to the model with parameters θ .

2.3.4 Active and Inactive Parameters

There is another important property of the proposed piecewise-linear Hammerstein
model. At any time instance the output y(k) only depends on some of the model
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parameters. The output always depends on ai , i = 1 . . . n. In addition, it also depends
on two parameters from each subvector bxi , i = 0 . . . n, which are multiplied by the
two nonzero elements of l(u(k − d − i)). Let the parameters on which the model
output depends be referred to as “active parameters”. The rest are called “inactive
parameters”. Let p be a position index defined as

uj−1 ≤ u(k − d − i) < uj ⇒ p(k − d − i) = j (2.35)

The “active parameters” within subvector bxi can then be expressed as

bxi,p(k−d−i)−1 and bxi,p(k−d−i), i = 0 . . . n (2.36)

2.4 Identification of Model Parameters

The parameters of the proposed piecewise-linear Hammerstein model can be iden-
tified by many standard methods since the model in Eq. (2.13) is linear in parame-
ters. Online methods, simple to implement, are of primary interest. The well known
recursive least squares method (RLS) with forgetting factor λ is appropriate and
summarised below:

ye(k) = ψT (k)θ(k − 1) (2.37)

e(k) = y(k) − ye(k) (2.38)

θ(k) = θ(k − 1) + �θ(k) (2.39)

�θ(k) = K(k) · e(k) (2.40)

K(k) = P(k − 1) · ψ(k)

λ + ψT (k) · P(k − 1) · ψT (k)
(2.41)

P(k) =
[

P(k − 1) − P(k − 1) · ψ(k) · ψT (k) · P(k − 1)

λ + ψT (k) · P(k − 1) · ψ(k)

]
· 1

λ
(2.42)

In principle, this method is convenient for identification of the piecewise-linear
Hammerstein model after the following modifications have been implemented:

• management of active and inactive parameters;
• compensation of parameter offset;
• tracking the inactive parameters.

2.4.1 Management of Active and Inactive Parameters

In Sect. 2.3.4 it was shown that the model output y(k) only depends on “active
parameters”. Since the remaining “inactive parameters” have no influence on the
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model output, there is no information available to update their values. The identifi-
cation algorithm should therefore be modified in such a way as to stop the updating
of “ inactive parameters” and to restart updating parameters in the transition from
“inactive” to “active”. If the identified process is assumed to be time variant, there
may be a need to rapidly update the parameters immediately after they become “ac-
tive”.

To stop identification of a particular parameter in vector θ (to “freeze” its value),
a corresponding element (gain) in vector K in Eq. (2.41) has to be set to zero. This
is achieved by setting the corresponding row and column of matrix P to zero. To
restart identification of the particular parameter in θ , the corresponding element
(gain) in vector K should be set to some high value. This is achieved by setting the
corresponding diagonal element of matrix P to some high value. A way to achieve
the required modifications of matrix P is to perform the following transformation:

Pm(k − 1) = Am · P(k − 1) · Am + Bm (2.43)

and then use Pm(k − 1) instead of P(k − 1) in Eqs. (2.41) and (2.42). Both matrices
Am and Bm are diagonal:

Am = diag(α) (2.44)

Bm = diag(β) (2.45)

The structures of the vectors α and β are

α = [
αT

a αT
bx0 αT

bx1 . . . αT
bxn

]T (2.46)

β = [
βT

a βT
bx0 βT

bx1 . . . βT
bxn

]T (2.47)

αa and βa correspond to the continuously identified parameters ai , i = 1 . . . n. Thus,
both vectors are constants:

αa = 1(n×1) (2.48)

βa = 0(n×1) (2.49)

Other elements correspond to the parameters in vectors bxi , i = 0 . . . n. For each
bxi , two cases are possible depending on the parameter state (active or inactive):

(a) there is no change of state within bxi with respect to the previous step
p(k − d − i) = p(k − d − i − 1)

αbxi = [
0(1×(p(k−d−i)−1)) [1 1] 0(1×(m−p(k−d−i)))

]T
((m+1)×1)

βbxi = 0((m+1)×1)

(2.50)
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(b) there is a change of state within bxi with respect to the previous step
p(k − d − i) �= p(k − d − i − 1).

αbxi = 0((m+1)×1)

βbxi = rval · [0(1×(p(k−d−i)−1)) [1 1] 0(1×(m−p(k−d−i)))

]T
((m+1)×1)

(2.51)

In case a), the combination of αbxi and βbxi allows the identification of “active pa-
rameters” within bxi only. In case b), the combination of αbxi and βbxi restarts the
identification of these parameters within bxi that become “active”. This is achieved
by setting the corresponding elements of βbxi to a high value rval (for example
rval = 105).

2.4.2 Compensation of the Parameter Offset

In Sect. 2.3.3 it was shown that the model with parameters θ∗ described by
Eq. (2.25) has the same transfer function as the model with parameters θ described
by Eq. (2.18) as long as condition (2.27) is fulfilled. This was called redundancy of
the “linear parameters”. Consequently, the identification algorithm has no control
over offsets ci , i = 0 . . . n. There is no guarantee that the result of identification will
be a model with a nominal parameter set θ with ci = 0, i = 0 . . . n. On the contrary,
a set of parameters θ∗ with an arbitrary set of offsets fulfilling condition (2.27) can
be the result of the identification.

In order to estimate the nominal parameters θ from the identified parameters θ∗a
procedure is needed which estimates offsets ci of bx∗

i , i = 0 . . . n, and subtracts
them from the parameters of bx∗

i of the identified model θ∗. It has to be guaranteed
that the procedure does not change the transfer function of the model. Before the
introduction of the compensation procedure, some properties of the piecewise-linear
Hammerstein model have to be discussed.

Assume that the “basic parameters” (2.19) of the piecewise-linear Hammerstein
model are known. Then the particular subvectors of vector θ can be expressed ac-
cording to Eq. (2.16). Assume also that offsets ci , i = 0 . . . n, satisfying condi-
tion (2.27), are known. The subvectors of vector θ∗ can then be expressed using
Eq. (2.26). Now we can calculate the following quantities:

• average values of the parameters of particular subvectors bxi , i = 0 . . . n of vec-
tor θ

bxi = 1

m + 1

m∑
j=0

bxi,j = 1

m + 1

m∑
j=0

bixj = bi

1

m + 1

m∑
j=0

xj = bix (2.52)
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• average values of the parameters of particular subvectors bx∗
i of vector θ

bx∗
i = 1

m + 1

m∑
j=0

bx∗
i,j = 1

m + 1

m∑
j=0

(bixj + ci)

= bi

1

m + 1

m∑
j=0

xj + 1

m + 1
(m + 1)ci = bix + ci (2.53)

• standard deviations of the parameters of particular subvectors bxi of vector θ

σbxi
=

[
1

m + 1

m∑
j=0

(bxi − bxi,j )
2

] 1
2

=
[

1

m + 1

m∑
j=0

(bix − bixj )
2

] 1
2

=
[
b2
i

1

m + 1

m∑
j=0

(x − xj )
2

] 1
2

= |bi |σx (2.54)

• standard deviations of the parameters of particular subvectors bx∗
i of vector θ∗

σ ∗
bxi

=
[

1

m + 1

m∑
j=0

(bx∗
i − bx∗

i,j )
2

] 1
2

=
[

1

m + 1

m∑
j=0

(bix + ci − bixj − ci)
2

] 1
2

=
[
b2
i

1

m + 1

m∑
j=0

(x − xj )
2

] 1
2

= |bi |σx (2.55)

• sum of the average values of all bxi , i = 0 . . . n

n∑
i=0

bxi =
n∑

i=0

bix = x

n∑
i=0

bi (2.56)

• sum of the average values of all bx∗
i , i = 0 . . . n, by taking into account Eq. (2.27)

n∑
i=0

bx∗
i =

n∑
i=0

(bix + ci) =
n∑

i=0

bix +
n∑

i=0

ci =
n∑

i=0

bix = x

n∑
i=0

bi (2.57)
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From the calculations above the following facts are evident:

bx∗
i = bxi + ci

σ ∗
bxi

= σbxi

n∑
i=0

bx∗
i =

n∑
i=0

bxi

Hence, a procedure for the estimation of the unknown nominal model with pa-
rameters θ from the identified model with parameters θ∗ can be proposed. From
Eqs. (2.52) and (2.57) an expression for the estimation of bxi of the nominal model
θ can be derived

bxi = bi∑n
i=0 bi

·
n∑

i=0

bx∗
i (2.58)

The unknown parameters bi , i = 0 . . . n, appearing in Eq. (2.58) can be estimated
from the calculated standard deviation of the parameters of the particular subvector
bx∗

i in vector θ∗. From (2.55) it follows that

|bi | =
σ ∗

bxi

σx

(2.59)

To estimate bi , the sign(s) of bi has to be determined. First define

sx = sign(xm − x0) (2.60)

s∗
bxi

= sign
(
bx∗

i,m − bx∗
i,0

)
(2.61)

If Eqs. (2.26) and (2.16) are employed in Eq. (2.61), then it follows

s∗
bxi

= sign
(
(bxi,m + ci) − (bxi,0 + ci)

) = sign(bxi,m − bxi,0)

= sign
(
bi · (xm − x0)

) = sign(bi) · sign(xm − x0) = sign(bi) · sx (2.62)

From Eq. (2.62) we get

sign(bi) = s∗
bxi

sx
(2.63)

Now bi can be completely estimated as follows:

bi = sign(bi) · |bi | =
s∗
bxi

sx
· σ ∗

bxi

σx

(2.64)

Note that in Eq. (2.64) sx and σx are unknown. If Eq. (2.64) is used in Eq. (2.58),
then sx and σx are cancelled and an expression for the estimation of the average
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values of the parameters of the particular subvector bxi of the nominal model θ is
obtained

bxi = s∗
bxi

σ ∗
bxi∑n

i=0 s∗
bxi

σ ∗
bxi

·
n∑

i=0

bx∗
i , i = 0 . . . n (2.65)

The average values bx∗
i and standard deviations σ ∗

bxi
in Eq. (2.65) are calculated

using the leftmost terms of Eqs. (2.53) and (2.55), while signs sbxi
are calculated

using Eq. (2.61). By subtracting Eq. (2.52) from Eq. (2.53) the expression for the
estimation of ci is obtained

c̃i = bx∗
i − bxi, i = 0 . . . n (2.66)

The estimates of bxi can be calculated by subtracting estimates of ci from the
estimated bx∗

i

bxi,j = bx∗
i,j − c̃i , i = 0 . . . n, j = 0 . . .m (2.67)

2.4.3 Tracking the Inactive Parameters

Assume that the excitation signal used for identification is a ramp function (or a
similar signal with the amplitude gradually increasing with time) with an additive
excitation component with bounded amplitude. Particular parameters of subvectors
bxi , i = 0 . . . n are then estimated consecutively as they interfere with the amplitude
of the excitation signal. In the initial phase of identification it is therefore benefi-
cial to introduce a mechanism which would use the already estimated parameters
of bxi to improve the initial values of the parameters of bxi not yet estimated. The
idea is as follows. If the nonlinear static function of the process is continuous, then
the values of adjacent parameters of bxi are very likely close to each other. Setting
the value of the parameter not yet estimated close to the value of the closest esti-
mated parameter provides a better starting point for identification than the original
initial value. A possible way to implement this idea is to introduce a mechanism of
“tracking inactive parameters”. First, note that in each step of the proposed recursive
identification algorithm subvectors bxi , i = 0 . . . n are updated. Note also that only
“active parameters” are changed in every bxi , while “inactive parameters” remain
unchanged

�bxi (k) = [
0(1×(p(k−d−i)−1)) �bxi,p(k−d−i)−1(k)

�bxi,p(k−d−i)(k) 0(1×(m−p(k−d−i)))

]T (2.68)

In this sense, tracking can be interpreted as equalizing the change of the particular
“inactive parameter” of �bxi (k) to the change of the closest “active parameter” of
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Fig. 2.6 Tracking the
inactive parameters not active

the same vector. This means that vector (2.68) has to be replaced with the following
vector:

�bxi (k)′ = [
s1�bxi,p(k−d−i)−1(k)1(1×(p(k−d−i)−1)) �bxi,p(k−d−i)−1(k)

�bxi,p(k−d−i)(k) s1�bxi,p(k−d−i)(k) 1(1×(m−p(k−d−i)))

]T (2.69)

In Eq. (2.69) s1 acts as a two-state switch to enable (s1 = 1) or disable (s1 = 0)
the tracking mechanism. Note that if s1 = 0, then Eq. (2.68) equals Eq. (2.69). The
modified changes of θ considering the tracking mechanism are

�θ = [
�a1 �a2 . . . �an �bx′T

0 �bx′T
1 . . . �bx′T

n

]T (2.70)

It is obvious that tracking takes effect only on “inactive parameters”. Tracking is
not a mandatory procedure but it can speed up convergence of the parameters during
the initial phase of identification, especially if the initial values of the parameters
are only poor estimates of the true values. The effect of tracking is illustrated in
Figs. 2.6 and 2.7, which present the parameters of vector bxi in the initial stage of
identification.

First, consider the situation without tracking (Fig. 2.6), where it is assumed that
parameters bxi,j , j = 0 . . . h + 1 have already been estimated, while parameters
bxi,j , j = h+ 2 . . .m remain at their initial values since they have not yet interfered
with the excitation signal. Then, consider the same situation but with tracking en-
abled (Fig. 2.7). It can be seen that the values of parameters bxi,j , j = h+2 . . .m are
changed in parallel with the closest active parameter (in this particular case bxi,h+1).
Thus, improved initial estimates were obtained, which are obviously closer to the
true values than the original initial values. Due to the much better starting point, the
convergence of the parameters is accelerated. After estimates of all parameters have
been obtained, and if the process is slowly time variant or invariant, the tracking has
no considerable effect and can be switched off. If the process has a discontinuous
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Fig. 2.7 Tracking the
inactive parameters activated

static function at u = ud where (uj < ud < uj+1), then the tracking procedure has
to be rearranged

�bx′′
i (k) =

⎧⎪⎨
⎪⎩

diag([11×(j+1) 01×(m−j)]T ) · �bx′
i (k) if: u < uj

diag([01×(j+1) 11×(m−j)]T ) · �bx′
i (k) if: u > uj+1

diag([01×(j+1) 01×(m−j)]T ) · �bx′
i (k) if: uj ≤ u ≤ uj+1

(2.71)

and finally

�θ = [
�a1 �a2 . . . �an �bx′′T

0 �bx′′T
1 . . . �bx′′T

n

]T (2.72)

2.5 Controller Design

In this section the proposed piecewise-linear Hammerstein model is utilised for con-
trol. We will begin with the design of a general linear controller and then modify
this approach to be integrated with the piecewise-linear Hammerstein model as pre-
sented in [12].

2.5.1 Linear Controller

First, let us recall the well-known general linear controller with two degrees of free-
dom, as shown in Fig. 2.8.

In Fig. 2.8, the transfer function GP represents the process and is defined as

GP

(
z−1) = y(z−1)

x(z−1)
= B(z−1)

A(z−1)
(2.73)
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Fig. 2.8 General linear
controller setup

The design goal is that the closed loop transfer function between yr and y equals
the desired closed loop transfer function GD

GD

(
z−1) = y(z−1)

yr (z−1)
= BD(z−1)

AD(z−1)
(2.74)

The controller consists of two transfer functions, GFF and GFB, which are de-
fined by the polynomials R, S and T :

GFF
(
z−1) = xff (z

−1)

yr (z−1)
= T (z−1)

R(z−1)
, GFB

(
z−1) = xfb(z

−1)

y(z−1)
= S(z−1)

R(z−1)

x
(
z−1) = xff

(
z−1) − xfb

(
z−1) (2.75)

The polynomials R, S and T should be designed in such a way that the closed-
loop transfer function GCL

GCL
(
z−1) = y(z−1)

yr(z−1)
= B(z−1)T (z−1)

A(z−1)R(z−1) + B(z−1)S(z−1)
(2.76)

of the process and the controller equals the desired transfer function GD (2.74).
Polynomials R, S and T are designed by the pole placement method, details can
be found in [3]. It is assumed that all zeros of the process GP are minimum phase
and well damped. Consequently, they can be cancelled within the closed-loop trans-
fer function. To achieve cancellation, the controller polynomial R has to fulfil the
following condition:

R = R1B (2.77)

The two controller polynomials R1 and S are used to match the closed-loop poles
of the transfer function (2.76) to the desired closed-loop poles of the transfer func-
tion (2.74). To achieve this, the following equality, known as a Diophantine equa-
tion, must hold:

AR1 + S = A0AD (2.78)

In Eq. (2.78) A0 represents an observer polynomial that is a part of the controller
but is cancelled within the closed-loop transfer function (2.76). To solve Eq. (2.78),
one must first determine the orders of the polynomials R, S, T and A0, as well
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as the orders of the polynomials of the desired closed-loop transfer function (2.74).
Following the results in [3], the orders of the polynomials have to fulfil the following
conditions:

degAD − degBD ≥ degA − degB (2.79)

degA0 ≥ 2 degA − degAD − degB − 1 (2.80)

degR1 = degA0 + degAD − degA (2.81)

degS < degA (2.82)

Finally, by solving Eq. (2.78), polynomials R1 and S are determined. Polynomial
R is then determined using Eq. (2.77) and polynomial T using Eq. (2.83)

T = BDA0 (2.83)

The controller difference equation can be expressed using polynomials R, S

and T

r0x(k) =
degT∑
i=0

tiyr (k − i) −
degS∑
i=0

siy(k − i) −
degR∑
i=1

rix(k − i) (2.84)

and finally the control signal x(k) can be calculated

x(k) = 1

r0

[degT∑
i=0

tiyr (k − i) −
degS∑
i=0

siy(k − i) −
degR∑
i=1

rix(k − i)

]
(2.85)

In Eqs. (2.84) and (2.85), ri , si and ti are parameters of polynomials R, S and T ,
respectively. Note that the polynomial R is the result of polynomial multiplication,
as follows from Eq. (2.77). Consequently, the corresponding vector of parameters
r of polynomial R can be expressed using the convolution (∗) of the vectors of
parameters r1 and b of polynomials R1 and B , respectively

r = r1 ∗ b (2.86)

The particular element of vector r can be expressed as

ri =
hmax∑

h=hmin

r1
i · bi−h, i = 0 . . .degR (2.87)

where

hmin = max(0, i − degB) (2.88)

hmax = min(i,degR1) (2.89)
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2.5.2 Controller Design Based on a Piecewise-Linear
Hammerstein Model

Let us now move on to the control design of nonlinear processes described by a
piecewise-linear Hammerstein model. Let the linear part of the piecewise-linear
Hammerstein model be equal to the linear process model described by Eq. (2.10)
or Eq. (2.74) and let the nonlinear static function be expressed using the piecewise-
linear function defined by Eq. (2.1). The idea is to design the nonlinear controller
in such a way that the closed loop transfer function of the resulting controller and
the piecewise-linear Hammerstein model given by Eq. (2.12) become equivalent to
the desired closed loop transfer function (2.74). This means that the controller must
compensate for the input nonlinearity (2.1) of the process. If the basic parameters
(2.19) were known, the input nonlinearity (2.1) could be compensated for simply
by inserting its inverse into the input of the piecewise-linear Hammerstein model.
In such a case, the linear controller (2.84) could be used with parameters tuned ac-
cording to the parameters of Eq. (2.10). But the result of the identification algorithm
is a set of linear parameters (2.18), while the basic parameters are in general not
known. Consequently, the controller in Eq. (2.84) has to be modified to take into
account the input nonlinearity, which is integrated in the set of linear parameters.
The idea is to express x(k − i) in Eq. (2.84) by u(k − i) using Eq. (2.1). In this way,
the terms rix(k − i) can be expressed as follows:

rix(k − i) = ri · l
(
u(k − i),u

)T · x = l
(
u(k − i),u

)T · ri · x (2.90)

In Eq. (2.90), rix represents a vector with elements

ri · x = [rix0 rix1 . . . rixm]T (2.91)

Using expression (2.87), a particular element rixj of vector (2.91) can be ex-
pressed as

rixj = xj ri = xj

hmax∑
h=hmin

r1
i · bi−h =

hmax∑
h=hmin

r1
i · (bi−hxj ), i = 0 . . .degR (2.92)

The terms (bi−hxj ) appearing in Eq. (2.92) represent “linear parameters” of the
piecewise-linear Hammerstein model. This means that it is not necessary to know
the basic parameters (2.19) of the model. The set of linear parameters given by
Eq. (2.18) is sufficient to express the controller parameters. This is an important
fact, since the set of linear parameters is a direct result of the proposed identification
procedure.

If the rightmost term of Eq. (2.90) is used in Eq. (2.84), then the following equa-
tion is obtained:

l
(
u(k),u

)T · r0 · x =
degT∑
i=0

tiyr (k − i) −
degS∑
i=0

siy(k − i) −
degR∑
i=1

l
(
u(k − i),u

)T · ri · x

(2.93)
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The equation can be arranged in a vector form

l
(
u(k),u

)T · r0 · x = ψT
C(k) · θC (2.94)

where ψC is the data vector and θC is the parameter vector, as follows:

ψC = [−l
(
u(k − 1),u

)
. . . − l

(
u(k − degR),u

) | yr(k) yr(k − 1) . . .

yr (k − degT ) | . . . − y(k) − y(k − 1) . . . − y(k − deg S)
]T

(2.95)

θC = [
r1xT . . . rdegRxT | t0 t1 . . . tdegT | s0 s1 . . . sdegS

]T
(2.96)

Note that Eq. (2.94) does not express the control signal u explicitly; instead it
expresses the following product, denoted as g(k):

l
(
u(k),u

)T · r0 · x = g(k) (2.97)

To express the control signal u(k) explicitly, Eq. (2.97) has to be inverted. As
explained above, this is very simple because inversion of a piecewise-linear function
is also a piecewise-linear function, while the roles of u and x are reversed, as follows
from Eq. (2.9),

u(k) = l
(
g(k), (r0x)

)T · u (2.98)

The equation represents the inversion of the nonlinear static function embedded
in the model and not explicitly known. Note that due to the simplicity of expression
(2.98), calculation of the control signal u(k) is a computationally undemanding task.
This is not so in the case of the classic, i.e. single-polynomial-based Hammerstein
model. In this case it is necessary to invert the embedded polynomial, of a possibly
high degree, in order to calculate the control signal u(k), as shown in, e.g., [2].
The inversion of a polynomial can, in general, only be done numerically, which
is a very demanding computational task that needs to be repeated in each sampling
interval of the controller. The advantage of a controller based on the piecewise-linear
Hammerstein model thus becomes obvious.

2.6 Simulation Study

The simulation study is divided in two parts: identification and control. First the
identification algorithm was tested. The process was simulated by a continuous time
system arranged in the form of the Hammerstein model. The static function of the
process, shown in Fig. 2.9, was nonlinear and discontinuous

x(u) =
{

0.1953u + 0.6233u
1
2 if: 0.0 ≤ u < 0.6

−6.6229 − 6.4046u + 14.0275u
1
2 if: 0.6 ≤ u ≤ 1.0

(2.99)
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Fig. 2.9 The nonlinear static
function of the process

The linear dynamic system of the process implemented in terms of the following
second order continuous time transfer function is

GP (s) = y(s)

u(s)
= (15s + 1)

(35s + 1)(10s + 1)
(2.100)

The input signal u was a sum of two components. The first component was a
periodic slowly increasing/decreasing ramp (Tperiod = 2000 s, umin = 0.0, umax =
1.0). The second component was a periodic square pulse sequence (Tperiod = 37.7 s,
umin = −0.006, umax = 0.006, duty cycle δ = 50 %). The sum of both components
was bounded in the range of operation (0 ≤ u ≤ 1). The measurement noise v was
added to the process output to achieve a more realistic situation. The time profiles of
the resulting signal u, the process output y and the measurement noise v are shown
in Fig. 2.10.

It can be seen that the amplitude of the signal u is temporarily bounded in the
range, which is relatively narrow when compared to the range of operation. As men-
tioned above, the identification of the classical (single polynomial based) Hammer-

Fig. 2.10 Time profiles of the signals during identification
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stein model would require an excitation signal with amplitude fairly distributed over
the entire range of operation.

The linear dynamic part of the piecewise-linear Hammerstein model was chosen
to be of the second order (n = 2) and the number of knots of the piecewise linear
static function was 11 (m = 10). Note that the position of knots u has to be chosen
by the user considering possible a priori information on the degree of nonlinearity
and positions of possible discontinuities:

• if the nonlinear static function of the process is highly nonlinear, then equidistant
positioning of knots may not be optimal, instead the density of knots should be
increased in the regions where higher nonlinearity is expected;

• if the nonlinear static function is discontinuous, then each point of discontinuity,
ud , has to be surrounded by two knots at positions ud ± �u, where �u is a small
deviation from the point of discontinuity;

• if the input static nonlinearity has a discontinuous first derivative at ud , then
one of the knots should be placed at this point, since the first derivative of the
piecewise-linear function is discontinuous at knots u.

Since the nonlinear static function defined in Eq. (2.99) is discontinuous at
u = 0.6, the position of the knots had to be arranged so as to closely surround the po-
sition of the discontinuity by positioning two knots at u = 0.6 ± 0.05, i.e. u = 0.595
and u = 0.605

u = [0.0 0.12 0.24 0.36 0.48 0.595 0.605 0.7 0.8 0.9 1.0]
(2.101)

During the experiment all modifications of the identification algorithm (described
in Sects. 2.4.1, 2.4.2 and 2.4.3) were activated. Signals were sampled with a sam-
pling interval TS = 3 s. To compare the identified model and the process, the con-
tinuous transfer function of the process GP (s) was transformed into the discrete
time transfer function GP (z−1) assuming signal sampling using the zero-order hold
element

GP

(
z−1) = y(z−1)

u(z−1)
= b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
= 0 + 0.1176z−1 − 0.0963z−2

1 − 1.6587z−1 + 0.6800z−2

(2.102)
The identified model parameters ai , i = 1 . . . n can be directly compared with the

corresponding ideal parameters of the process GP (z−1), given by Eq. (2.102). The
model parameters bi , i = 0 . . . n, and xj , j = 0 . . .m are not expressed explicitly in
the set of identified parameters θ , but only implicitly within the identified subvectors
bxi , i = 0 . . . n. Therefore, we compared elements of the identified subvectors bxi

with the elements of the ideal subvectors, which were calculated using Eq. (2.16),
by taking the ideal parameters bi and xj . The ideal parameters bi were taken from
the discrete time transfer function of the linear part of the process in Eq. (2.102).
The ideal parameters xj were calculated by Eq. (2.99) for u = uj , j = 0 . . .m, as
given by (2.101). Thus we obtain



2 Identification and Control of Nonlinear Systems 61

x = [0.0 0.2394 0.3522 0.4443 0.5256 0.5970 0.4132 0.6301 0.80

0.9206 1.0]T (2.103)

Based on this, we can write down a complete set of ideal process parameters:

[a1 a2]T = [−1.6587 0.6800]T

bx0 = [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]T
bx1 = [0.0000 0.0281 0.0414 0.0523 0.0618 0.0702 0.0486

0.0741 0.0941 0.1083 0.1176]T
bx2 = [0.0000 − 0.0231 − 0.0339 − 0.0428 − 0.0506 − 0.0575

− 0.0398 − 0.0607 − 0.0770 − 0.0887 − 0.0963]T
(2.104)

The result of identification is the following set of parameters:

[a1 a2]T = [−1.6271 0.6520]T
bx0 = [0.0001 0.0004 0.0018 0.0013 0.0013 0.0014 − 0.0009

− 0.0005 − 0.0007 − 0.0009 − 0.0012]T
bx1 = [0.0006 0.0225 0.0364 0.0479 0.0577 0.0660 0.0526

0.0783 0.0990 0.1131 0.1227]T
bx2 = [0.0004 − 0.0194 − 0.0286 − 0.0374 − 0.0452 − 0.0521

− 0.0417 − 0.0622 − 0.0787 − 0.0897 − 0.0974]T
(2.105)

We can observe good agreement between the ideal and identified parameters a1

and a2. Comparison of the ideal and identified subvectors bxi can most easily be
performed graphically, as in Fig. 2.11. Also in this case we observe good agree-
ment. The minor deviation is mainly a consequence of the measurement noise added
during the identification.

Once the model parameters are known, the control system can be designed. The
controller was designed according to the identified set of “linear parameters” given
in Eq. (2.105) and the desired closed-loop transfer function, which was chosen to be

GD(s) = y(s)

yr(s)
= (s + 1)

(5s + 1)2
(2.106)

The discrete time equivalent of this function is
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Fig. 2.11 Comparison between the ideal and the identified subvectors bx0, bx1, bx2

GD

(
z−1) = y(z−1)

yr (z−1)
= bd1z

−1 + bd2z
−2

1 + ad1z−1 + ad2z−2

= 0.1878z−1 + 0.0158z−2

1 − 1.0976z−1 + 0.3012z−2
(2.107)

Note that the orders of the polynomials in this transfer function have to ful-
fil the condition in Eq. (2.79). The orders of the other polynomials are as fol-
lows: degA0 = 0, degR1 = 0 and degS = 1. This fulfils conditions (2.80)–(2.82).
The controller parameters were expressed in terms of the linear parameters of the
piecewise-linear Hammerstein model and the parameters of the desired closed-loop
transfer function. First, by solving Eq. (2.78) the parameters of R1 and S were ex-
pressed. Next, using Eq. (2.83) the parameters of T were obtained. Finally, using
Eq. (2.92) the controller parameters rxi were expressed in terms of the linear pa-
rameters bxi . The result is the following set of controller parameters, which is auto-
matically tuned based on identified model parameters:[

rxT
0 rxT

1

]T = [
bxT

1 bxT
2

]T
[s0 s1]T = [

(ad1 − a1) (ad2 − a2)
]T (2.108)

[t0 t1]T = [bd1 bd2]T

To test the control performance of the control system, the output y of the con-
trolled process was compared to the output yd of the desired closed-loop transfer
function. During the simulation, both the controlled process and the desired closed-
loop transfer function were exposed to the same reference signal yr as the input. In
Fig. 2.12 it can be seen that the output of the controlled process y agrees very well
with the output of the desired closed-loop transfer function yd . The nonlinearity
and discontinuity of the process are almost completely compensated for. In fact, the
presence of the nonlinearity can only be seen from the control signal u. A minor de-
viation (e = yd − y) is only noticeable in case the control signal u is saturated and
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Fig. 2.12 Controller
operation (u—control signal,
y—process output,
yd —output of the desired
closed-loop transfer function,
yr —reference signal,
e = yd − y)

around the point of discontinuity. This simulation example confirms the usability
of the proposed controller. The controller successfully compensates for the process
nonlinearity as well as for the discontinuity.

2.7 Experimental Implementation

Let us now demonstrate the usability of the piecewise-linear Hammerstein model
on an industrial case study, i.e. oxygen concentration control in a sintering process
of ferromagnetic material.

2.7.1 Description of the Process and the Experimental
Environment

Sintering is a process that produces solid objects from powder by heating the mate-
rial in sintering furnaces. The sintering process is also widely used in the production
of ferromagnetic materials. The properties of a ferromagnetic material strongly de-
pend on the process parameters during sintering (i.e. the time profiles of the temper-
ature and atmosphere composition). During the development of the material produc-
tion process it is therefore necessary to determine the optimal time profile of the pro-
cess parameters which lead to the desired properties of the ferromagnetic material.
In order to do this, a theoretical background is usually combined with experimental
optimisation, which takes place in a laboratory environment using special sintering
furnaces and corresponding control equipment providing accurate and repeatable
control of the main process parameters, i.e. the temperature and atmosphere com-
position. In this example we will focus on a specific experimental sintering process
where the atmosphere is composed of oxygen and nitrogen. During the process, the
oxygen concentration and temperature in the furnace have to follow the prescribed
time profiles. We will focus only on the problem of the oxygen concentration, which
is controlled by adjusting the flow rates of oxygen and nitrogen. The two gasses con-
tinuously mix, enter the furnace, mix with the gas inside the furnace, and finally exit
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Fig. 2.13 Setup for oxygen
concentration control during
the sintering process

to the atmosphere. The flow rates of the oxygen and nitrogen are controlled by mass
flow control valves. Depending on the material produced, the oxygen concentration
time profile may be required to vary over a very wide range, e.g. from 100 % vol.
down to very low values, such as 0.01 % vol. To achieve such a wide control range
of the oxygen concentration, the oxygen flow rate has to be adjusted over a very
wide range, too. Since the useful control range of a typical mass flow control valve
is limited to, e.g., 2–100 % of the full scale range, several mass flow control valves
with different maximum flow rates must be used, and a wide enough range of the
oxygen flow rate is achieved by valve switchover. In the installation considered two
valves are used, V1 with a small range and V2 with a big range. V3 is the mass flow
control valve for nitrogen. The simplified situation is shown in Fig. 2.13.

The process equipment consists of the following three subsystems (see Fig. 2.14):
A—electrically heated sintering furnace, B—oxygen concentration sensor and C—
oxygen concentration and temperature control device, containing the mass flow
control valves (V1, V2 and V3), the auxiliary on/off valves and the Mitsubishi pro-
grammable logic controller (PLC), series A1S. The PLC reads concentration from
the oxygen concentration sensor and adjusts the control signals to the mass flow
control valves using a PID control algorithm.

Fig. 2.14 Experimental setup: A—sintering furnace, B—oxygen concentration sensor and
C—oxygen concentration and temperature control device
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For the purpose of experimental assessment of the piecewise-linear Hammerstein
control algorithm, a personal computer was connected to the PLC via an RS-232
serial communication. On the personal computer the identification and control en-
vironment for the piecewise-linear Hammerstein model was implemented.

Two types of experiments were performed, identification and control. During the
identification experiments, the personal computer generated the control signal u,
sending it to the PLC and simultaneously sampling the oxygen concentration re-
sponse. As soon as the experiment was completed, the parameters of the piecewise-
linear Hammerstein model were identified and the controller parameters were calcu-
lated. The controller parameters were then downloaded from the personal computer
to the PLC, where controller Eqs. (2.94)–(2.98) were implemented in addition to the
existing default PID algorithm. During the control experiment, the control signal u

was generated by the PLC and sampled together with the oxygen concentration by
the personal computer for the purpose of documenting and evaluating the results.

2.7.2 Process Analysis and Controller Design

Application of the piecewise-linear Hammerstein controller was motivated by prob-
lems caused by drifts in the control valves V1, V2 and V3. These drifts result in dis-
continuities during valve switchover which seriously compromise the control per-
formance of the existing PID controller.

In order to better understand the problem of oxygen concentration control, let us
analyse the process of gas mixing by mathematical modelling. The resulting math-
ematical model will also help us to determine the structure of the piecewise-linear
Hammerstein model.

The model should describe the dynamic relation between the control input u and
the process output, i.e. the oxygen concentration cO2 inside the furnace. Let us start
with modelling of the input flow rate φs , which is the sum of the volumetric flow
rates of oxygen φO2 and nitrogen φN2 entering the furnace. Due to technological
reasons, φs must always be constant and in our case is 30 standard litres per hour
(sl/h)

φO2 + φN2 = φs = 30 sl/h (2.109)

The above requirement can be fulfilled by controlling both gas flow rates by
means of the common control signal u(0 . . .1) using the following functions:

φO2(u) = 30u (2.110)

φN2(u) = 30(1 − u) (2.111)

As explained above, the system has two mass flow control valves for oxygen
(V1, V2) and one for nitrogen (V3). The flow rates of valves are proportional to their
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voltage command signals (v1, v2 and v3) as follows:

φO2(v1) = k1
v1

5
+ n1, φO2(v2) = k2

v2

5
+ n2,

φN2(v3) = k3
v3

5
+ n3

(2.112)

whereby the valve gains k1, k2 and k3 represent maximum flow rates. Nominally,
they have the following values: k1 = 20 l/h, k2 = 100 l/h and k3 = 30 l/h. Constants
n1, n2 and n3 represent offsets of the control valves and are ideally zero. All three
command signals (v1, v2 and v3) are in the range 0 . . .5 V, where 0 V means zero
flow and 5 V means the maximum flow rate. They are generated by analogue out-
puts of the programmable logic controller and are functions of the common control
signal u:

v1 = g1u, v2 = g2u, v3 = g3(1 − u) (2.113)

where g1, g2 and g3 are gains implemented in the programmable logic controller.
Let us now express flow rates as functions of the common control signal u(0 . . .1).
For the oxygen flow rate we take into account the switchover between the small (V1)

and big (V2) mass flow control valves. The switching point is set at 15 l/h, which
corresponds to u = 0.5, as follows from Eq. (2.110). Below 15 l/h, valve V1 is used
and V2 is closed, above 15 l/h valve V1 is closed and V2 is in use:

φO2(u) =
{

k1
g1u

5 + n1 if 0 ≤ u ≤ 0.5

k2
g2u

5 + n2 if 0.5 < u ≤ 1
(2.114)

φN2(u) = k3
g3(1 − u)

5
+ n3 (2.115)

Since relations (2.114) and (2.115) must equal relations (2.110) and (2.111), the
gains g1, g2 and g3 must be appropriately determined:

g1 = 30 · 5

k1
= 7.5, g2 = 30 · 5

k2
= 1.5, g3 = 30 · 5

k3
= 5 (2.116)

If gains (g1, g2 and g3) equal the values calculated above in Eq. (2.116) and if the
valve gains (k1, k2 and k3) and offsets (n1, n2 and n3) equal their nominal values,
then Eq. (114) is continuous and linear. But if valve gains and offsets differ from the
nominal values, Eq. (114) becomes discontinuous. Since the valve gains and offsets
are defined by the analogue electronic circuits of control valves which are subject to
drift, the nonlinearity and discontinuity of the relation between the control signal u

and the flow rate of oxygen is a common situation during normal operation.
The outputs of mass flow control valves are connected together and gasses then

enter the furnace via a common pipeline. Within the pipeline, gases are blended
into a uniform gas mixture. Since the cross section of the pipeline is small (4 mm),
the nitrogen and oxygen are assumed to blend completely already before entering
the furnace. The oxygen concentration in the gas mixture entering the furnace is
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denoted by cO2_IN and it can be expressed as a ratio between the oxygen flow rate
and the total flow rate

cO2_IN = φO2

φs

(2.117)

Equations (2.114), (2.115) and (2.117) are all static relations and represent the
nonlinear static function of the Hammerstein system.

Let us now concentrate on the dynamic part of the process. We are interested in
the dynamic relationship between the oxygen concentration cO2_IN in the gas mix-
ture entering the furnace and the oxygen concentration cO2 in the mixture leaving
the furnace. If gas diffusion inside the furnace was instantaneous, the relationship
between the input and output concentration could be represented by a linear first
order differential equation with static gain equal to one and a time constant pro-
portional to the furnace volume. However, due to the specific shape of the furnace
volume (a tube with an internal diameter of approximately 6 cm and length 1.3 m),
gas diffusion is not instantaneous and introduces additional dynamics into the sys-
tem. Theoretical modelling of the mixing and diffusion dynamics would be complex
and possibly inaccurate. Instead, we estimated the actual gas mixing process dynam-
ics by observing the response of the output concentration to the step change of the
control signal u. We found that the response follows a second order linear system
with a dominating time constant around 600 s. In our analysis we did not take into
account the following two phenomena:

• the transport delay due to the transport of the gas via pipelines from the mass flow
control valves to the furnace and from the furnace to the oxygen concentration
sensor;

• the dynamic response of the oxygen concentration sensor mounted at the outlet
of the furnace.

However, further evaluation shows that the transport delay in the pipes and the
time constant of the oxygen sensor are both within a few seconds, which can obvi-
ously be neglected.

The analysis performed up to this point shows that the process under considera-
tion can be described by a Hammerstein model. The relations (2.114), (2.115) and
(2.117) represent the nonlinear static function of the model, while the dynamic re-
lation between cO2_IN and cO2 represents the linear dynamic part. As explained, the
linear dynamic part can be described in terms of a second order linear differential
equation with static gain equal to one.

In order to implement the piecewise-linear Hammerstein controller, it was first
necessary to determine its structure. We have chosen the order of the dynamic linear
part to be n = 2, which is in accordance with the measured process response. The
number of knots was kept at the default value (m = 10), although a lower number
would probably also be acceptable, since the characteristics of both valves are ex-
pected to remain more or less linear. The knots were arranged to surround the point



68 G. Dolanc and S. Strmčnik

Fig. 2.15 Identification and
model evaluation (u—control
signal, cO2
measured—oxygen
concentration response, cO2
model—simulated
concentration)

of switchover (u = 0.5)

u = [0.0 0.1 0.2 0.3 0.4 0.495 0.505 0.625 0.750 0.875 1.0]T
(2.118)

Note that just before experimenting, all three mass flow control valves were cal-
ibrated, which means that all three valve gains and offsets (k,n) were close to their
ideal values. To demonstrate the effect of non-ideal valve gains and offsets, we sim-
ulated a change in the valve gain k1 of the oxygen valve V1 from a nominal 20 l/h to
24 l/h by multiplying gain g1 by a factor of 1.2. As explained above, such a change
in the valve characteristic may happen in reality due to drift.

The next step was to determine the time profile of the excitation signal u. For
model identification, the excitation signal u should skim across the whole opera-
tion region. This was achieved by changing the signal in steps from 0.06 to 0.8
and back to 0.06. The level of each step was 0.02 and the step duration was 500
seconds, which is comparable to the estimated predominant time constant of the
process. Figure 2.15 shows the time profile of the excitation signal u and the re-
sulting oxygen concentration response (cO2 measured) on which the effect of the
discontinuous static function is clearly visible. During identification, the sampling
interval was chosen to be TS = 30 sec, which is adequate for the estimated time
constants of the process. The identification procedure provided the following set of
“linear parameters”:

[a1 a2]T = [−1.6647 0.6775]T

bx0 = [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]T
bx1 = [0.0000 0.0135 0.0269 0.0404 0.0538 0.0666 0.0680

0.0841 0.1010 0.1178 0.1346]T
bx2 = [0.0000 − 0.0116 − 0.0232 − 0.0347 − 0.0463 − 0.0573

− 0.0585 − 0.0724 − 0.0868 − 0.1013 − 0.1158]T
(2.119)
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Fig. 2.16 Piecewise-linear
Hammerstein controller
operation (u—control signal,
cO2—concentration,
cO2d —output of the desired
closed-loop transfer function,
cO2r —reference signal)

Figure 2.15 also shows the response of the identified piecewise-linear Hammer-
stein model (the cO2 model). It can be seen that the actual concentration and the
model response are very similar, which means that the model quality is adequate.

The next step was the determination of the controller parameters. To do this, we
first defined the desired closed loop response in terms of the following continuous
time transfer function:

GD(s) = 1

(200s + 1)3
(2.120)

Note that in the preceding simulation study a second order transfer function was
used to define the desired closed loop response. But in this case we designed the
controller with additional integral action, which required a third order transfer func-
tion. The continuous time transfer function was then converted to a discrete time
form using a 30 sec sampling interval

GD

(
z−1) = bd1z

−1 + bd2z
−2 + bd3z

−3

1 + ad1z−1 + ad2z−2 + ad3z−3

= 0.0005z−1 + 0.0018z−2 + 0.0004z−3

1 − 2.5821z−1 + 2.2225z−2 − 0.6376z−3
(2.121)

Finally, the controller parameters were determined from the identified linear pa-
rameters (2.119) and the parameters of the desired closed loop transfer function
(2.121). Note that the presence of the integrator in the controller required an ex-
tended set of parameters:

[
rxT

0 rxT
1 rxT

2

]T = [
bxT

1

(
bxT

2 − bxT
1

) − bxT
2

]T
[s0 s1 s2]T = [

(ad1 − a1 + 1) (ad2 − a2 + a1) (ad3 + a2)
]T (2.122)

[t0 t1 t2]T = [bd1 bd2 bd3]T

The operation of the controller was tested on the real process and the results are
shown in Fig. 2.16. It can be seen that the measured oxygen concentration (cO2)
follows the desired closed loop response (cO2d ) very well, which means that the
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Fig. 2.17 PID controller
operation (u—control signal,
cO2—concentration,
Ref —reference signal)

controller is well tuned to the process dynamics. Note that the parameters of the
piecewise-linear controller are derived directly from the identified model parameters
and no manual tuning is necessary. In addition, the presence of the process discon-
tinuity can only be observed from the control signal (u) and not from the oxygen
concentration, which means that the controller effectively identifies and compen-
sates for the discontinuity.

In Fig. 2.16 one can notice a time delay between the desired closed loop response
(cO2d ) and the concentration setpoint (cO2r ). This delay is induced by the closed
loop transfer function (2.120). By reducing the time constants of the poles of (2.120)
we could reduce the time delay but then we would also increase the risk of system
instability. Note that the existence of the time delay is tolerable in all cases where the
setpoint (cO2r ) is prescribed in advance in terms of a time profile. In such cases the
time delay is easily compensated for by modifying the time profile of the setpoint
(cO2r ). The considered oxygen concentration control problem belongs to this class
of problems, so the time delay does not entail any drawback.

For comparison, the results of control using the built-in PID controller are shown
in Fig. 2.17. Here we can see the non-ideal time profile of the concentration at the
point of valve switchover since the discontinuity is not compensated for by the con-
troller. The effect is visible in time intervals 6000–7000 and 12,000–13,000 seconds.
We can also notice overshoots when the setpoint signal changes from ramp to con-
stant value. The overshoots are a consequence of the imperfect manual tuning of
the PID controller parameters. Note that overshoots do not appear in Fig. 2.16 since
the piecewise-linear Hammerstein controller is tuned according to the identification
results, which means nearly perfect tuning.

2.8 Problems and Limitations in Applying the Theory

As explained above in Sect. 2.2, several problems and limitations may occur while
applying the concept of the original form of the Hammerstein model in practice. We
identified three major properties of the model which restrict the practical applicabil-
ity and lead to potential problems. The main goal of this chapter was to overcome
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the identified drawbacks and to improve the practical applicability by modifying the
original form of the model. A theoretical analysis along with the simulation results
and experimental implementation demonstrate that the principal goal was achieved
and the main drawbacks were eliminated relatively effectively.

However, both the identification procedure and the control algorithm may still
face some problems or limitations when applied to particular processes. Below we
identify them briefly.

One of the problems is related to the number and arrangement of knots. Both the
number and the position of the knots are not determined automatically, but rather are
a matter of designer decision. In cases of mild nonlinearity, the identification will
most likely provide good results with the default arrangement, i.e. 11 equidistantly
distributed knots. But in cases of functions with a higher degree of nonlinearity, dis-
continuities, or a discontinuous first derivative, the default arrangement is no longer
optimal and must be set manually. This can be done either by using prior knowledge
about the process or from information gathered during initial identification with de-
fault parameters.

The identification algorithm of the piecewise-linear Hammerstein model is based
on recursive least squares identification of linear systems. It is well known that this
kind of algorithm is sensitive to the presence of measurement noise in the measured
process output signal. If noise level is relatively low or moderate (as in the presented
simulation study and experimental implementation), the estimated model parame-
ters are expected to be close to true values. However, if the level of noise is high,
then the estimated parameters will likely be inaccurate and the model will not de-
scribe the process well enough. If such model is employed for control, the control
performance is not expected to be good. Therefore special attention has to be de-
voted to the quality of the signals, and the proper measures must be taken to either
prevent the noise or at least minimise it. Sometimes the noise is not a consequence
of the measurement method and/or signals, but it originates from the process itself.
In such cases the noise cannot easily be reduced and identification will most likely
face problems. A possible solution would be the application of an identification al-
gorithm less sensitive to noise, e.g. instrumental variables.

For successful identification, special attention has to be devoted to the selection
of the input signal and sampling of the process response. If the input signal is com-
posed of serial step functions (as in the experimental implementation presented in
Fig. 2.15), then the duration and amplitude of the step is important. Step duration
should be sufficiently long to capture the response of the largest time constant of the
process and the sampling interval should be short enough to not miss the response of
the shortest time constant. The amplitude of the steps is also important. It should be
smaller than the distance between knots, but also big enough so that the amplitude
of the process response is well above the measurement noise. In order to determine
the right excitation signal, some a priori information about the process dynamic
structure is very useful. Alternatively, preliminary identification based on a single
step response should be performed in order to obtain the initial information about
the process dynamics. Once this is done, the identification signal can be determined
and complete identification can be performed.
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The control algorithm is based on a linear pole placement controller for linear
processes. This method is relatively simple and theoretically sound, but the major
problem is that its design parameters are not directly related to the classical perfor-
mance requirements. More specifically, the design parameters of the pole placement
controller are given in terms of poles and zeros of the desired closed loop transfer
function (2.74), (2.106). But the typical performance requirements are less specific
and they are usually given in terms of rise time, settling time, etc. The problem is
related to the fact that a given set of performance requirements can be fulfilled by
many different desired closed loop transfer functions, and some of them may lead to
a less robust controller, i.e. one that is sensitive to the mismatch between the process
and the identified model. In such a case, several different desired transfer functions
may need to be tested before a satisfactory result is obtained.

The pole placement controller may also be sensitive to the measurement noise,
which can be reflected in the control signal u, which can harm the performance of
the closed-loop system and increase wear in the actuators. The problem of measure-
ment noise can be reduced by filtering the process output. However, the presence
of the filter generally changes the process dynamics, which may decrease control
performance and stability due to mismatch between the process and the model. If
filtering is used, it is necessary to treat it as part of the process and identification
should be performed according to the filtered process output.

If the mentioned problems and limitations occur, they can be handled in most
cases, but they require designer intervention and experience. Unfortunately, this in-
teraction cannot easily be generalised since it is very case-dependent.

2.9 Conclusion

The research presented in this chapter was a response to the challenge presented
by the need to modify the standard form of the Hammerstein model in order to
alleviate the drawbacks which hinder its implementation in practice. We proposed
a piecewise-linear Hammerstein model with piecewise-linear representation of the
nonlinear static function, as opposed to the single polynomial that is used in the
original version of the Hammerstein model. Thanks to this, three improvements
were obtained which directly increase the practical applicability of the model.

Firstly, the proposed algorithm does not require persistent excitation over the
entire range of operation. Instead, an excitation signal with temporarily bounded
amplitude is sufficient. This is important when industrial processes are considered,
since in this case only signals with a bounded amplitude region are allowed to
be applied. Due to the linearity in the model parameters, a classic least squares-
based identification algorithm could be used as a basis for the development of the
new identification approach. This algorithm was then adapted and enhanced to take
into account the specifics of the identification signal and properties of the applied
piecewise-linear Hammerstein model.

Secondly, the proposed model is very convenient for describing processes with
highly nonlinear and/or discontinuous memoryless static functions. In the case of



2 Identification and Control of Nonlinear Systems 73

highly nonlinear static functions, the density of knots can be increased in the re-
gion of high nonlinearity, thus increasing the precision. In the case of discontinuous
static functions, each point of discontinuity can be surrounded by two close-standing
knots, thus enabling approximation of the discontinuity.

Finally, it was shown that the proposed model can very easily be integrated into
a self-tuning control algorithm with a simple structure and low computational ef-
fort, which enables execution also in programmable logic controllers. This is due to
simple analytical inversion of the embedded nonlinear static function of the model,
implemented as a piecewise-linear function. In addition, it was shown that the con-
troller parameters can be expressed in terms of “linear model parameters”, which are
a direct result of the identification, while the basic parameters of the piecewise-linear
Hammerstein model do not have to be expressed explicitly. This enables automatic
tuning of the controller parameters.

Although the motivation of the work was to improve the practical applicability
of the control method, there are still some remaining issues which may hinder im-
plementation in some cases and reduce control performance. One such problem is
the level of measurement noise, which can worsen both identification and control if
it is too high. Experience also shows that the proper selection of the time profile of
the identification signal and the sampling interval are very important for successful
identification. Furthermore, the structure of the model (the order of the linear part
and the distribution of knots) has to be determined manually, which may be diffi-
cult when the process is not well understood or no information exists. Finally, the
control goal is expressed in terms of the desired closed loop transfer function. This
is not directly related to traditional engineering design criteria and leads to redun-
dancy, since many different transfer functions may satisfy the particular engineering
criteria. The mentioned issues can be handled, but they require manual interaction,
based on designer experience.
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11. Dolanc G, Strmčnik S (2005) Identification of non-linear systems using a piecewise-linear
Hammerstein model. Systems & Control Letters 54:145–158
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