
Chapter 11
A PLC-Based System for Advanced Control

Samo Gerkšič, Gregor Dolanc, Damir Vrančić, Juš Kocijan, Stanko Strmčnik,
Sašo Blažič, Igor Škrjanc, Zoran Marinšek, Miha Božiček, Anna Stathaki,
Robert King, Mincho Hadjiski, and Kosta Boshnakov

11.1 Introduction

Industrial control systems are normally based on conventional linear control meth-
ods, although the processes are mostly nonlinear by nature. Modern control theory
offers many alternatives for achieving more efficient control of nonlinear processes.
Advanced control methods are based on more comprehensive and accurate process
models [5, 16, 27]. Surveys of industrial control technology [31, 32, 35] show that
there is a sizeable and growing market for advanced controllers; yet relatively few
vendors offer useful turn-key products.
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Certain advanced control concepts, for example, fuzzy parameter scheduling
[4, 36], multiple-model control [9, 13], adaptive control [14, 18] and nonlinear
model-predictive control [29] offer considerable improvements in the control of
nonlinear or time-varying processes. There are, however, several constraints when
it comes to applying these methods in industrial applications:

1. Narrow field of application. Real-life problems are diverse, and nonlinear control
methods have restrictions regarding their scope of applications. Flexible methods
or toolboxes of methods are needed in industry.

2. Availability. Advanced methods are required in the form of ready-to-use build-
ing blocks for industrial process control development software environments.
Custom design requires considerable effort, time and money and is often not
favoured.

3. Hardware requirements. Due to the complexity of implementation and the com-
putational demands, advanced methods may require resources not normally
available in industrial control hardware.

4. Tuning complexity. Non-specialised field engineers are intimidated by the com-
plexity of tuning and maintenance.

5. Model reliability. With methods heavily dependent on accurate process models,
the long-term reliability of nonlinear modelling is often an issue.

6. High profitability demand. In many cases, nonlinear processes can be controlled
using the ubiquitous PID controller. In order to replace a conventional control
system with an advanced one, a considerable performance increase (financial
gain) must be ensured. The maintenance costs of an inadequate conventional
control solution may be less obvious.

Our aim was to design an advanced controller named ASPECT that addresses
some of the aforementioned issues, with the emphasis on reducing tuning com-
plexity, using the concepts of agent-based systems (ABS) [11, 40]. The controller
configuration procedure is simplified by the partial automation of the commission-
ing procedure, which is typically carried out by a control engineer. The idea be-
hind ABS is that difficult problems may be solved by assigning tasks to networked
software agents. These software agents are characterised by properties such as au-
tonomy (i.e., they operate without the direct intervention of humans), social ability
(i.e., they interact with other agents), reactivity (i.e., they perceive their environ-
ment and respond to it), pro-activeness (i.e., they exhibit goal-directed behaviour,
take the initiative), etc. This work does not address the issues of ABS theory, but
rather the application of basic ABS concepts to the rather conservative field of pro-
cess systems engineering, where a number of restrictions have to be considered. For
example: initiative is restricted, a high degree of reliability and predictability is de-
manded, insight into the problem domain is limited to the sensor readings, specific
hardware platforms are used where object-oriented programming is not supported,
etc.

The outline of this chapter is as follows. Firstly, Sect. 11.2 presents an overview
of the ASPECT controller’s implementation structure. Section 11.3 describes the
Run-time Module’s (RTM) structure and its most important sub-modules (agents),
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including some simulation results and an overview of the implementation on a PLC
(Programmable Logic Controller). Section 11.4 provides a brief description of the
Configuration Tool. Section 11.5 describes the experimental results of the applica-
tion of the controller to a pilot plant where it is used to control the pressure differ-
ence on a hydraulic valve in a valve test apparatus. Finally, the lessons learned are
discussed and the conclusions are drawn.

11.2 ASPECT Controller Concept

The ASPECT controller was designed to be an efficient and user-friendly engineer-
ing tool for the implementation of parameter-scheduling nonlinear control in the
process industry. User-friendliness was addressed by simplifying the commission-
ing of the controller using automatic experimentation and tuning. Both the control
and self-tuning algorithms were adapted for implementation on the PLC or open-
controller industrial hardware platforms.

The key to the concept is the self-tuning mechanism. The controller parameters
are automatically tuned from a nonlinear process model. This model is determined
on the basis of operating process signals by experimental modelling, where a novel
online learning procedure is used. This procedure is based on model identification
using the local learning approach [27, p. 188]. Compared to adaptive methods that
use recursive identification continuously [14], a specific approach is used, where
the measurement data are processed batch-wise, with additional steps performed
before and after the model identification. These additional steps check the validity
of the data prior to the self-tuning actions, and thus the reliability of the modelling
and self-tuning is improved. Recently, similar approaches have been studied in the
framework of evolving systems [2, 10].

The controller is intended for single-input, single-output processes; a measured
disturbance may be included and used for the feed-forward. The application range of
the controller depends on the selected control algorithm. The controller has a modu-
lar structure that permits the use of a range of control algorithms that are suitable for
different processes. The controller also monitors the resulting control performance
and reacts to detected irregularities.

The two main components of the ASPECT system are the Run-time Module
(RTM) and the Configuration Tool (CT). The RTM runs on a PLC or an embedded
controller, performing all the main functionality of real-time control, online learning
and control performance monitoring. The RTM includes a human-machine interface
(HMI) in the form of a hierarchical set of dialogue windows on the PLC operator
panel, which allows the direct configuration of all the RTM parameters and assists
in the execution of the plant experiments. The CT, which is used on a personal com-
puter (PC) only during the initial configuration phase, simplifies the commissioning
procedure by providing guidance and default parameter values.
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Fig. 11.1 Run-time Module structure

11.3 Run-Time Module

11.3.1 RTM Structure

The RTM is made up of a set of interconnected modules, linked in the form of a
multi-agent system. Figure 11.1 shows an overview of the RTM and its main mod-
ules: the Signal Pre-processing Agent (SPA), the Online Learning Agent (OLA), the
Model Information Agent (MIA), the Control Algorithm Agent (CAA), the Control
Performance Monitor (CPM) and the Operation Supervisor (OS).

11.3.2 Multi-faceted Model (MFM)

In order to accommodate the diverse model requirements of the OLA and the CAAs,
the ASPECT controller is based on the multi-faceted model (MFM) concept. The
concept was proposed by Zeigler [41] and later on elaborated by other authors (e.g.,
[8, 34]). In general, multi-faceted modelling represents the modelling of one system
from different aspects and at different levels of complexity, thus providing a means
to solve different (engineering) tasks or one task in different ways. The original
idea was to have a multi-faceted model that would represent a database of various
models. The appropriate models from this database should be selected according to
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the type of process, the working point of the process, the specifics of the CAAs, etc.
With various types of models the different situations (states) in which the process
is likely to be should be covered, thus enabling a high degree of autonomy of the
system controlling the process.

During development, the original idea was reduced to a less ambitious MFM that
includes a set of local first- and second-order discrete-time linear models with time
delay and offset, and also allows a fuzzy model interpretation. Each local model
corresponds to one value of the scheduling variable s(k). The model equation for
first-order local models is

y(k − 1) = −a1,j y(k) − b1,j u(k − duj ) − c1,j v(k − dvj ) − rj (11.1)

and for second-order models it is

y(k − 1) = −a1,j y(k) − a2,j y(k − 1) − b1,j u(k − duj ) − b2,j u(k − 1 − duj )

+ c1,j v(k − dvj ) + c2,j v(k − 1 − dvj ) + rj (11.2)

where k is the discrete time index, j is the number of the local model, y(k) is the
process output signal, u(k) is the process input signal, v(k) is the optional measured
disturbance signal (MD), du is the delay in the model branch from u to y, dv is the
delay in the model branch from v to y, and ai,j , bi,j , ci,j and rj are the parameters
of the j th local model.

For the OLA, the set of local models is interpreted as a Takagi–Sugeno fuzzy
model, which in the case of a second-order model can be written in the following
form:

y(k + 1) = −
m∑

j=1

βj (k)a1,j y(k) −
m∑

j=1

βj (k)a2,j y(k − 1)

+
m∑

j=1

βj (k)b1,j u(k − duj ) +
m∑

j=1

βj (k)b2,j u(k − 1 − duj )

+
m∑

j=1

βj (k)c1,j v(k − dvj ) +
m∑

j=1

βj (k)c2,j v(k − 1 − dvj )

+
m∑

j=1

βj (k)rj (11.3)

where βj (k) is the fuzzy membership function value of the j th local model at the
current position of the scheduling variable s(k). Normalised triangular membership
functions are used, as illustrated in Fig. 11.2.

The scheduling variable s(k) is calculated as a weighted sum of the process sig-
nals with the coefficients kr , ky , ku and kv as follows:

s(k) = krr(k) − kyy(k) − kuu(k − 1) − kvv(k) (11.4)

The coefficients are configured by the engineer according to the nature of the
nonlinearity of the process.
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Fig. 11.2 Fuzzy membership
functions of local models

Note that the applied modelling approach is very similar to the concept of “local
model networks” [27, 28] but still preserves the idea of different models for differ-
ent purposes present in multi-faceted modelling. In this sense, the process can be
represented by a wide variety of models, starting from one simple, linear, first-order
model without dead-time and ending with a Takagi–Sugeno model that includes 10
second-order sub-models with dead-time.

11.3.3 Online Learning Agent (OLA)

The task of the OLA is to estimate the local models from the process signals using
an experimental modelling procedure. The OLA scans the buffer of recent real-time
signals, prepared by the SPA, and performs a model identification (estimation of the
parameters) of those local models that are excited by the signals. Then, the identified
model is verified by comparing the simulated model output with the process output
measurements. If the new sets of estimated parameters pass the verification test and
are found to be better than the existing sets, they are submitted to the MIA.

The OLA is invoked either upon demand from the OS or autonomously, when an
interval of the process signals with sufficient excitation is available for processing.
Once activated, it processes the signals batch-wise and uses the local learning ap-
proach. An advantage of the batch-wise concept is that the decision on whether to
adapt the model is not performed in real-time but following a delay that allows for
an inspection of the identification result before it is applied. Thus, better means for
control over the data selection is provided. Figure 11.3 illustrates in more detail the
procedure that is executed when the OLA is invoked.

The problem of distributing the computation time required for model identifica-
tion appears with the batch-wise processing of the data (as opposed to the online re-
cursive processing that is typically used in model-based adaptive controllers). This
problem is resolved by using a multi-tasking operation system, so that the OLA
is executed as a low-priority task. The OLA typically requires considerably more
computation than the real-time control algorithm; however, the computational load
is acceptable for microprocessors in modern industrial control equipment, as long as
the processing of the batch does not have to be carried out within a single sampling
period of the control algorithm.
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Fig. 11.3 Online learning procedure

11.3.3.1 Copy Signal Buffer and Active MFM

When the OLA is invoked, the relevant section of the signal buffer is acquired from
the SPA that maintains it. This is required because the signal buffer is being updated
during the OLA computations.

The online learning procedure always compares the newly identified local models
with the previous set of parameters. Therefore, the active MFM is obtained from the
MIA. A default set of model parameters is used for the local models that have not
yet been identified.
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11.3.3.2 Excitation Check

A quick excitation check is performed at the start. If the standard deviations of the
signals r(k), y(k), u(k) and v(k) in the active buffer indicate excitation above their
threshold levels, further processing is initiated, otherwise the OLA terminates.

11.3.3.3 Select Local Models

A local model is selected if the sum of its membership functions βj (k) over the
active buffer normalised by the active buffer length exceeds a given threshold. Only
the selected local models are included in further processing.

11.3.3.4 Model Identification

The local model parameters are estimated using the Fuzzy Instrumental Variables
(FIV) identification method developed by Blažič et al. [7]. This is an extension of the
linear instrumental variables identification procedure [24] for the Takagi–Sugeno
fuzzy model. The method uses the local learning approach [27]. This approach is
based on the assumption that the parameters of all the local models will not be
estimated in a single regression operation. Compared to the global approach, it is
less prone to the problems of ill-conditioning and local minima, and involves a less
complex computation. The FIV identification method is well suited to the needs of
industrial operation (intuitiveness, gradual building of the nonlinear model, modest
computational demands). It allows an inventory of the local models that are not
estimated properly due to insufficient excitation. It is efficient and reliable in the
early stages of controller configuration, when all the local models have not been
estimated yet. On the other hand, the convergence in the vicinity of the optimum
is slow. Therefore, it is likely to yield a worse model fit than methods employing
nonlinear optimisation using the global approach. An alternative approach based on
recursive clustering and recursive least-squares has been investigated recently [10].

The main procedure of the FIV method is outlined as follows. Model identifica-
tion is performed for each selected local model (denoted by the index j ) separately.
θ̂j,MIA, the initial estimate of the parameter vector, is copied from the active MFM,
and the covariance matrix Pj,MIA is initialised to 105 · I (identity matrix). In the
first step, the FLS (fuzzy least-squares) estimates, θ̂j,FLS and Pj,FLS, are obtained
using weighted least-squares identification, with βj (k) used for the weighting. The
calculation is performed recursively to avoid matrix inversion:

e(k + 1) = Dz

(
βjy(k + 1) − ψT

j (k + 1)θ̂j (k)
)

Pj (k + 1) = Pj (k) − Pj (k)ψj (k + 1)ψT
j (k + 1)Pj (k)

1 + ψT
j (k + 1)Pj (k)ψj (k + 1)

(11.5)

θ̂j (k + 1) = θ̂j (k) + Pj (k + 1)ψj (k + 1)e(k + 1)
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where ψj (k+1) = βj [−y(k),−y(k−1), u(k−duj ), u(k−1−duj ), v(k−dvj )]T
is the vector of the measurements, and DZ(·) is the dead-zone operator with the
parameter xdead

Dz(x) =
{

0, |x| ≤ xdead

x, |x| > xdead
(11.6)

In the second step, the fuzzy instrumental variables (FIV) estimates, θ̂j,FIV and
Pj,FIV, are calculated using weighted instrumental variables identification as fol-
lows:

e(k + 1) = Dz

(
βjy(k + 1) − ψT

j (k + 1)θ̂j (k)
)

Pj (k + 1) = Pj (k) − Pj (k)ξj (k + 1)ψT
j (k + 1)Pj (k)

1 + ψT
j (k + 1)Pj (k)ψj (k + 1)

(11.7)

θ̂j (k + 1) = θ̂j (k) + Pj (k + 1)ξj (k + 1)e(k + 1)

where ξj (k +1) = βj [−ŷ(k),−ŷ(k −1), u(k −duj ), u(k −1−duj ), v(k −dvj )]T
is the instrumental variables vector, and ŷ(k) = ∑m

j=1 ψT
j (k)θ̂j (k − 1) is the simu-

lated output. The dead zone is used in the FLS and FIV recursive estimation in order
to prevent result degradation as a result of noise. The vector of the parameters and
the covariance matrix are updated only if the absolute weighted difference between
the process output and its prediction is above the configured noise threshold.

In the case of a lack of excitation in the model branch from u to y or in the
model branch from v to y (or when the measured disturbance is not present at all),
simplified variants of the method with reduced parameter estimate vectors are used.

11.3.3.5 Model Verification/Validation

This step involves local and global verification/validation, where the recent batch
of measurements is compared with the model simulations. The same procedure is
referred to as “verification” with the newly estimated parameter sets θ̂j,FLS and
θ̂j,FIV (over the same data set), or as “cross-validation” with the initial parameter
set θ̂j,MIA.

Local verification is performed by comparing the simulation output ŷ of each
selected local model with the actual process output, recorded in the signal buffer,
in the proximity of the selected local model position. The normalised sum of mean
square errors

MSEj = 1

N

N−1∑

k=0

(
ŷ(k) − y(k)

)
(11.8)

is calculated. The proximity to the selected local model position is defined by the
membership functions βj . For each of the selected local models, this step is carried
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out with three sets of model parameters: θ̂j,MIA, θ̂j,FLS and θ̂j,FIV. From among
θ̂j,MIA and θ̂j,FLS, the set with the lower MSEj is selected.

Global verification is performed by comparing the simulation output of the fuzzy
model, including the selected set with the actual process output. The normalised
sum of mean square errors (MSEG) is calculated. If the global verification result is
sufficiently improved compared to the initial fuzzy model, the selected set is sent to
the MIA as a result of the online learning, otherwise the original set θ̂j,MIA remains
in use.

For each processed local model, the MIA receives the MSEj , which serves as a
confidence index, and a flag indicating whether the model is new or not. Even if no
new model is obtained, this may serve for model validity checking.

11.3.3.6 Model Structure Estimation

Two model structure estimation units are also included in the OLA. The Dead-time
Unit (DTU) estimates the process time delay by comparing the estimation results
with different dead-time values. The Membership Function Unit (MFU) suggests
whether a new local model should be inserted. It estimates an additional local model
in the middle of the interval between the two neighbouring local models that are the
most excited. The model is submitted to the MIA if the global validation of the re-
sulting fuzzy model is sufficiently improved, compared to the original fuzzy model.
The operation of both structure estimation units is only reliable when suitable ex-
citation is present in the process signals, and therefore higher excitation thresholds
apply.

11.3.4 Model Information Agent (MIA)

The MIA maintains the active MFM and its status information.
Its primary function is to process the online learning results. When the OLA

sends a new local model, it is accepted if it passes the stability test and its confidence
index is sufficient. If it is accepted, a “ready for tuning” notification is sent to the
CAA. Each local model contains a flag indicating whether its parameters have been
estimated since start-up or not, facilitating a quick overview of the progress of self-
tuning, and a model confidence index. If the confidence index is below the threshold,
the Automatic Mode may be disabled.

The MIA contains a mechanism for adding additional local models (at new po-
sitions of the scheduling variable) into the MFM. This may occur either by external
request or automatically, using the MFU of the OLA. The MIA may also store the
active MFM to a local database or recall a previously stored one, which is useful if
the process switches between different operating modes.

The process model in the MIA is built gradually. During the initial configura-
tion, the MIA is filled with default local models based on the initial estimation of
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the process dynamics. They are not exact but may provide reliable (although slug-
gish) control performance, similar to the Safe Mode. Using online learning through
experiments or normal process operation (when the conditions are appropriate for
closed-loop identification), an accurate model of the process is estimated by receiv-
ing identified local models from the OLA.

11.3.5 Control Algorithm Agent (CAA)

A CAA is composed of a nonlinear control algorithm and a procedure for automatic
tuning of its parameters. Several different CAAs may be used in the controller and
may be interchanged in the initial configuration phase.

The controller may operate in the following modes:

• Manual Mode: open-loop operation (actuator constraints are enforced).
• Safe Mode: a fixed PI controller with conservatively tuned parameters.
• Auto Mode (or several auto modes with different tuning parameters): a nonlinear

controller.

The CAAs share a common interface of interaction with the OS and a common
modular internal structure, consisting of three layers:

1. The control layer contains the functionality of a local linear controller (or several
local linear controllers simultaneously), including everything required for reli-
able operation in industry, such as the handling of constraints with anti-windup
protection, bump-less mode, parameter switching, etc.

2. The scheduling layer performs real-time blending (switching or scheduling) of
the tuned local linear controllers, so that in conjunction with the control layer,
a fixed-parameter, nonlinear controller is formed.

3. The tuning layer is the automatic tuning procedure of the controller parameters
from the MFM when the MIA reports that a new local model is generated, if
auto-tuning is enabled. The replacement of the parameters of the control and
scheduling layers must be carried out in such a manner that real-time control is
not disturbed.

Three CAAs have been developed and each has proved effective in specific ap-
plications: the Fuzzy Parameter-scheduling Controller (FPSC), the Dead-time Com-
pensation Controller (DTCC) and the Rule-based Neural Controller (RBSC). In the
following subsections, an overview of the three CAAs using the above-mentioned
layers is presented.

11.3.5.1 Fuzzy Parameter-Scheduling Controller

A graphical overview of the FPSC is shown in Fig. 11.4.
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Fig. 11.4 FPSC overview

The control layer includes a single PID controller in a form suitable for con-
troller blending using velocity-based linearisation. It is equipped with anti-windup
protection and bump-less transfer during mode changes.

The scheduling layer performs fuzzy blending of the PID controller parameters
according to the scheduling variable s(k) and the fuzzy membership functions βj (k)

of the local models. The concept of velocity-based linearisation enables the dynam-
ics of the blended global controller to be a linear combination of the local con-
troller dynamics across the entire operating region, not just around the equilibrium
operating points. This provides the potential to improve the performance with a
few local models and more transparent behaviour at the off-equilibrium operating
points [19, 23]. In order to facilitate the velocity-based linearisation approach, the
Kp and Td parameters are blended directly, while in the case of Ti, its inverse value
is blended.

The tuning layer is based on the magnitude optimum (MO) criterion implemented
using the multiple integration (MI) method [38]. By applying the MO criterion, the
magnitude (amplitude) of the system’s closed-loop, set-point response is made as
flat and close to unity as possible for a large bandwidth [39]. This results in a rela-
tively fast and non-oscillatory response of the closed-loop system. The expressions
for calculating the PID controller’s parameters using the MO criterion are quite com-
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plex; however, the MI method significantly simplifies the equations and enables the
calculation of the PID controller’s parameters directly from the open-loop response
of the process.

Some additional steps are required for using MOMI tuning in the ASPECT con-
troller. At the start of the auto-tuning procedure, a discrete-time local model is re-
ceived from the MIA. This model is converted into a continuous-time form. Then,
the so-called areas are calculated using the MI method. Finally, the PI and PID con-
trollers’ parameters are calculated from the areas. Thanks to the transparent concept
of the FPSC, an experienced engineer may choose to configure the control algorithm
manually by specifying the local PID controller’s positions and parameters directly,
without using the model-based tuning procedure.

11.3.5.2 Dead-Time Compensation Controller (DTCC)

The DTCC is a nonlinear scheduling control algorithm based on Predictive Func-
tional Control (PFC), a relatively simple predictive control method that uses an in-
dependent internal model, polynomial control signal parameterisation and perfor-
mance criterion reduced to a few coincidence points [25, 30]; the algorithm is also
closely related to the Smith predictor [33].

The control layer of the DTCC is composed of a set of local linear PFC con-
trollers, one for each local model. The local PFC controller implementation supports
first- or second-order local models with time delay and feed-forward compensation
for the measured disturbance. The storage of the signal buffers for the controller
input, output and four internal signals is required by the algorithm. Fuzzy blending
of the local controllers (the scheduling layer) is performed at the controller outputs.
A schematic diagram of the DTCC structure is displayed in Fig. 11.5.

The auto-tuning algorithm of the DTCC’s tuning layer starts by the conversion
of the local models (11.1)–(11.2) to continuous time; with second-order models
(11.2), the factorisation to two serial first-order transfer functions is applied. Then
it computes the tuning parameters of the local controllers, which are the desired
settling time

TDST,j = 0.6231Tdu,j − 0.0914TP,j (11.9)

and the coincidence-point location (horizon)

Hj = ceil

(
1.1155 − TP,j

Tsamp

)
(11.10)

where Tsamp is the sampling time, Tdu is the time delay in the model branch from u

to y, and TP is the time constant (or the sum of time constants) in the model branch
from u to y. Notice that TDST is a more user-friendly alternative to the exponential
filter coefficient for the reference trajectory λ, which is calculated as follows:

λ = exp

[
−3Tsamp

TDST

]
(11.11)
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Fig. 11.5 DTCC overview

11.3.5.3 Rule-Based Switching Controller

The RBSC is based on safe-switching theory, a relatively recent approach to control-
ling a large class of nonlinear processes whose behaviour varies considerably over
its operating region [1, 21, 22, 26]. The design objectives of the RBSC are to attain
optimum performance in the neighbourhood of any anticipated equilibrium operat-
ing point and generation of the best strategy that will ensure safe transition from
any operating point to another without jeopardising the stability of the closed-loop
system.

A very practical simplification of the general safe-switching theory used in the
RBSC is to make all the candidate local controllers for the different operating points
have the same architecture, in which case only the set of parameters of the controller
needs be changed. It is paramount that safe and bump-less transfer be ensured fol-
lowing every controller parameter change so that the plant is not subjected to switch-
ing transients that can lead to disruption in the operation of the plant. Specifically,
the industrial-standard PID structure of the incremental form is used in the control
layer, and a look-up table of local controller parameters is stored in the switching
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Fig. 11.6 RBSC overview

layer of the RBSC. A schematic diagram of the RBSC structure is displayed in
Fig. 11.6.

For a brief illustration of the safe-switching strategy, we consider a simplified
case with a second-order local linearised discrete-time model about every equilib-
rium operating point (approximant θ̂j )

(
1 + a1q

−1 + a2q
−2)y(k) = (

b1 + b2q
−1)u(k) (11.12)

where the coefficients are real and 0 < b1 < b2, and q−1 is the delay operator, and a
PI controller that allows the discrete-time representation

(
1 − q−1)u(k) = (

c0 + c1q
−1)(r(k) − y(k)

)
(11.13)

The stability of the closed loop can now be examined from the closed system
polynomial

Ac

(
q−1) = 1 + ac1q

−1 + ac2q
−2 + ac3q

−3

= (
1 + a1q

−1 + a2q
−2)(1 − q−1) + (

b1 + b2q
−1)(c1 + c2q

−1)

(11.14)

Given the coefficients of the plant approximant, the closed system is asymptoti-
cally stable if the following inequalities are satisfied:
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(a) b1 �= 0, b2 �= 0

|c0| ≤ 3 + |a1 + a2 − 1| + |a2|
|b1| and |c1| ≤ 1 + |a2|

|b2| (11.15)

(b) b1 = 0, b2 �= 0

|c0| ≤ 5 + 4a2
2 + 2|a1a2| + 7|a2| + 2|a1|

|b2| and |c1| ≤ 1 + |a2|
|b2| (11.16)

(c) b1 �= 0, b2 = 0

|c0| ≤ 2 + |a1 + a2 − 1|
|b1| and |c1| ≤ 3 + 2a2

2 + 2|a1a2| + 5|a2| + |a1|
|b1|

(11.17)

The proposed rule-based switching algorithm requires information on the current
operating conditions and the intended target set-point of the process. The iterative
design procedure consists of the following rules:

Step 1: Assume that at a countable set of nominal equilibrium points Y1,Y2, . . . ,Ym

the parameters of the corresponding plant approximants θ̂1, θ̂2, . . . , θ̂m have been
identified and are available.

Step 2: Satisfy the design requirements for all process approximants. This implies
that the closed system is optimal in every sector and stable during transition.

Step 3: Consider the controller Cj applied to the plant model θ̂j . Determine the
regions Rj , j = 1, . . . ,m so that the controllers satisfy the requirements set in
Step 2.

Step 4: If the intersection Rj ∩ Rj+1 �= ∅, go to Step 5, otherwise go to Step 6.
Step 5 (Switch): For Y ∈ [Yj ,Yj+1] use a controller Cj ∈ Rj ∩Rj+1. Repeat until
j − 1 = m.

Step 6: Select one of the following and repeat the algorithm:

(a) Relax the requirements in Step 2.
(b) Identify the process at points lying between existing operating points, thereby

increasing the available knowledge regarding the process.

As long as the output value is close to a nominal operating point at which an
approximant has been identified, the candidate controller in region Rj will result
in optimum performance. Depending on whether the target set-point is set higher or
lower than the current operating point, the transition strategy can be simply stated
as follows:

1. If a new target set-point lies in the same region as the current one, then do noth-
ing.

2. If a new target set-point is in a region above the current one, then switch to the
target region controller.

3. If the new target set-point is in a region below the current one, then remain with
the current controller.

4. If quiescence is reached in any target region, then revert to the target region
controller.
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Fig. 11.7 Regions of
stability for the three closed
subsystems and the optimum
controller parameters for each
case

The foregoing logic-based switching strategy is suitable for processes whose
steady-state input-output relationship yss = f (uss) is increscent, i.e., f ′(uss) > 0,
in which case the stability regions satisfy the condition Rj−1 ⊂ Rj ⊂ Rj+1. The
switching strategy can be generalised. For illustration, a diagram of the regions of
stability and the optimum controller parameters of a pH controller with three steady-
state operating points (pH 6, 7 and 8) is displayed in Fig. 11.7.

Given the coefficients of each approximant θ̂ j , it is necessary to determine the
optimum controller parameter set (c0, c1) with respect to a certain performance cri-
terion. Here, the ITAE criterion was used because it leads to a compromise between
rise time and overshoot. An initial estimate of the set of local controller parame-
ters by using the Åström and Persson technique [3] is used as a starting point for the
stochastic search using the Metropolis–Hastings simulated annealing algorithm. The
search region is determined by the chord defined by the stability bounds. However,
a rectangular search space whose boundaries are defined by the algebraic criterion
was found to reduce the computational effort significantly. To increase computa-
tional effort further, a modified Jury stability test was carried out for each trial pa-
rameter set, immediately discarding over 90 % of the candidate sets of parameters.

11.3.6 Control Performance Monitor (CPM)

The CPM is a software agent that assesses the behaviour of the control loop. It con-
sists of three modules: the Buffer Pre-processor (BP), the Situation Classifier (SC)
and the Performance Estimator (PE). Just like the OLA, it is invoked autonomously
or upon demand from the OS and runs as a low-priority task. A block diagram of
the CPM’s operation is shown in Fig. 11.8.

When the CPM is invoked, the BP scans the buffer of the recent real-time signals,
which is maintained by the SPA. It starts by making a copy of the buffer. Then, it
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Fig. 11.8 CPM overview
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checks if the process is in a steady state; if there is no external excitation and the
standard deviations of the signals are within the limits, it terminates the processing.
Otherwise, it filters the signals and performs a low-level analysis.

The SC searches the pre-processed buffer for the last recognisable event that may
be evaluated or is otherwise important. Firstly, if oscillation is detected, a warning
is issued to the OS and the processing is aborted. Then, the event classification
takes place, where a step change in the reference signal or the measured distur-
bance signal, or an unmeasured disturbance transient may be identified. In the case
of an unrecognised event, the processing is terminated. The final task of the SC is to
assess whether the event is eligible for an estimation of features by the PE. Unmea-
sured disturbance transients do not qualify because their causes are generally not
known. In the case of step changes, the SC verifies whether the signal/noise ratio is
sufficient, whether the transient after the event has settled and whether there was a
steady-state period before the event.

When an eligible event is detected, the PE estimates the appropriate features, de-
pending on the event type. The following features may be estimated: overshoot, set-
tling time, rise time, oscillation decay rate and tracking-error measure or regulation-
error measure. Using a fuzzy evaluation procedure, an overall performance index
(PI) is also calculated from the features.

The CPM results are sent to the human-machine interface for display and to
the OS for further automatic actions. If poor performance is detected, an automatic
switchover to the Safe Mode may be triggered. Other automatic actions include,
for example, blocking the OLA if an oscillation is detected (oscillatory signals may
appear to contain rich excitation; however, their frequency spectrum is not suitable
for model identification by the OLA). Generally, the OS does not perform a “direct”
adaptation of the CAA parameters based on the CPM results because the primary
concept of the ASPECT controller is “indirect” model-based, self-tuning and the
role of the CPM is supervisory; however, direct adaptation could also be imple-
mented for specific applications.

11.3.7 Operation Supervisor (OS)

The OS coordinates the control, modelling and tuning activities of the agents and
user interaction through the hierarchical set of dialogue windows of the human-
machine interface (HMI). The OS and the HMI include the functionality required for
automatic, user-friendly experimentation, which is usually required for controller
commissioning. The controller-commissioning procedure includes the phases of the
basic settings, an approximate estimation of the process dynamics for safe controller
tuning, nonlinear modelling and tuning of the CAA, and configuration of the regime
for regular operation.

Typically, the commissioning of the controller is performed by conducting a set
of experiments that are intended to explore the process dynamics over the whole op-
erating range of the process. The OS supports the control engineer by automatically
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executing the experiments for the identification of local models. These experiments
consist of a series of step changes about the operating point of the model, in ei-
ther an open or closed loop. In addition, the OS coordinates the OLA, the MIA and
the CAA to automatically process the signals, build the model and tune the local
controllers. This is the fastest and most reliable way to tune the controller when ex-
perimentation with the plant is allowed. The automatic conducting of experiments
for a closed-loop performance evaluation using the CPM is also supported.

Alternatively, if experimentation is not allowed, it may be possible to per-
form controller commissioning without the scheduling of experiments by gathering
model information during normal plant operation. In this case, the controller is ini-
tialised in the Safe Mode, and processing of the signals for modelling and tuning
is triggered by the OLA autonomously. However, it is required that sufficient ex-
citation over the whole operating region is available during regular operation. The
progress of the modelling is indicated by the status flags of the local models in the
MIA. The flags show which models have been tuned and their respective confidence
indices.

A range of operating regimes may be configured by enabling or disabling the
agents and changing their configuration parameters. This results in a flexible control
system that covers the requirements of a wide range of applications, and may help
diagnose problems. Thus, although designed for the control of nonlinear processes,
the ASPECT controller may also be used for adaptive control using a single linear
model or as a tool for PID controller tuning. Some specific operating-regime options
include the following:

• The OLA and/or the CPM may be invoked autonomously (during regular opera-
tion) or upon OS demand (following scheduled experiments), or both.

• The OLA may estimate the process dead-time continuously or not.
• The OLA may attempt to insert additional local models when appropriate, or

estimate the local models at the fixed pre-selected positions only.
• Controller retuning may be triggered automatically immediately after each

change of the model in MIA (“adaptive” operation), or following the confirmation
by the engineer (“self-tuning” operation).

• The OLA may also be used for monitoring the process dynamics by cross-
validation of the model, without the intention of controller tuning.

While the initiative and suggestions of the agents are helpful during system con-
figuration, this may not be desirable during regular operation. Therefore, at the end
of the commissioning procedure, the system may be reconfigured to deactivate self-
tuning activity.

11.3.8 Simulation Results

In order to test the concept of the control system and the performance of
particular algorithms, the prototype of the RTM was first developed in the
MATLAB®/Simulink® environment.
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Fig. 11.9 A simulated
neutralisation benchmark
process

In the initial simulation tests [6], the performance of the controller was evaluated
on the pH control benchmark of Henson and Seborg [15], shown in Fig. 11.9. In the
benchmark process, an acid stream Q1, a buffer stream Q2 and a base stream Q3

are mixed in a tank T1. The pH of the mixture is measured with a sensor located
downstream. The effluent pH is the controlled variable y, and the manipulated vari-
able u is the flow of the base stream Q3. The static characteristic of the process is
highly nonlinear and its open-loop gain changes by a factor of 8, and therefore it is
very difficult to control with a conventional PID controller.

The nonlinear model of the benchmark simulated by using MATLAB/Simulink
was used in the role of the real process, while the controller used a model in the
form of the MFM obtained by online learning. The operating range between pH
values 6 and 8 was covered with five local models placed at positions 6, 7, 7.15,
7.4 and 8. These positions were determined based on the known shape of the titra-
tion curve. s(k) = 0.3y(k)+0.7r(k) was used as the scheduling variable. Each local
model was trained with online learning using an open-loop experiment consisting of
three step-changes of u of small amplitude about the operating point, and the local
controllers were tuned automatically from the local models. Figure 11.10 shows the
performance comparison between PI control in the Safe Mode (top), FPSC control,
DTCC control and RBSC control (bottom). The process output follows the refer-
ence signal reasonably well under FGSC control, while the performance of a fixed
PI controller is sluggish in some areas. The PI controller is tuned for stable perfor-
mance in the high-gain operating area around pH 8; however, its operation in the
low-gain region below pH 7 is sluggish.

The presented tests as well as some other tests performed on the pH model
demonstrated that the proposed concept of the system for advanced control is vi-
able and that further work towards implementation on PLC platforms is reasonable.

11.3.9 PLC Implementation

Despite the careful selection and modification of the algorithms to reduce the com-
putational demand, the OLA and CPM modules are not suitable for implementation
in typical PLCs. A DSP or an open controller add-on module tends to be a more cost-
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Fig. 11.10 Simulated pH control performance comparison: PI (top), FPSC, DTCC and RBSC
control (bottom)

effective solution than an upper-market PLC. The platform for running the RTM of
the ASPECT controller in the pilot application presented in this paper consists of
a Mitsubishi A1S series PLC with an INEA IDR SPAC20 coprocessor, based on
the Texas Instruments DSP TMS320C32 at 40 MHz with 2 MB of RAM, and a
Mitsubishi MAC E700 HMI unit.
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The RTM is implemented as an extension for INEA IDR BLOK1 v. 4.22, a graph-
ical development tool for closed-loop control applications in the process industry us-
ing Mitsubishi Electric MELSEC AnSH PLC controllers [17]. The FPSC algorithm
is included as an additional controller block “PID/FPSC”. Other RTM components
are implemented as separate PLC tasks, coded in C and downloaded to the PLC in
the compiled form. They are supervised using the HMI unit through a hierarchical
set of menus (such as Operator Display, Trends Display, Settings Overview, Experi-
ment Parameters, Online Learning Settings, Model Parameters, Model Status, FPSC
Settings, FPSC Parameters, etc.). Two sample HMI menus are shown in Fig. 11.11.

11.4 Configuration Tool

The CT is intended to assist the control-system designer in the commissioning of
the nonlinear controller during the initial configuration phase. It simplifies the com-
missioning procedure by providing guidance and default parameter values. It runs
on a PC which is connected to the PLC running the RTM, and takes advantage of
the better graphical-user-interface capabilities of the PC platform.

Two implementations of the CT were developed:

1. The original CT facilitates self-configuration of the RTM, closely following the
above-described project concept, and mostly relies on the functionality of the
RTM.

2. The alternative CT is an extension of the single-loop PID tuning tool “Lek Tuner”
[37] for the tuning of non-adaptive, stand-alone FPSC controllers for applications
on less-capable PLC platforms that cannot host the whole RTM.

11.4.1 Original CT

The original CT contains a configuration “wizard” that guides the engineer through
the typical scheduling-controller commissioning procedure. It was designed for
plant engineers who may not have an in-depth knowledge of nonlinear modelling
and control. The procedure is broken down into small steps (25 dialogue windows).
In each step, instructions are displayed and default values are suggested by using
rules of thumb, based on the information already available. Inconsistency warnings
may be displayed. Notice that an experienced engineer may conduct a similar pro-
cedure directly with the RTM via the HMI.

1The concept of IDR BLOK is closely related to the more recent “Function Block Diagram” of
the IEC 61131-3 standard. An IEC 61131-3 compliant version of IDR BLOK has been developed
recently.
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Fig. 11.11 Sample HMI menus: Operator Display (top), Experiment Parameters (bottom)
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The main phases of the commissioning procedure are:

A. Basic settings: the selection of the control signals, the signal constraints, the
sampling time, the CAA, the scheduling variable and the model order.

B. Safe-mode configuration: the estimation of the process dynamics, where exper-
imentation and identification using the RTM may be used; self-tuning of the
“safe” controller parameters; optional performance verification.

C. MFM initialisation: initialisation of the local model positions and their parame-
ters; display of the local model parameters and step responses.

D. CAA settings: the initialisation of the default values and the advanced auto-
tuning parameters.

E. OLA settings: the initialisation of the default values and the advanced OLA set-
tings.

F. CPM settings: the initialisation of the default values and the advanced CPM
settings.

G. Experiment settings: the initialisation of the default experimentation parameters
and advanced automatic experimentation settings.

H. Local controller tuning: conducts the sequence of automatic (open- or closed-
loop) experimentation, online learning and tuning using the RTM around each
local model position.

I. Performance verification: conducts the sequence of automatic experimentation
and performance evaluation using the RTM around each local model position.

Sample dialogue windows for OLA settings (stage E) are shown in Fig. 11.12.

11.4.2 Alternative CT

The alternative CT is built on a tab-based user interface and designed to allow expe-
rienced engineers closer interaction with the stand-alone, non-adaptive FPSC con-
troller configuration. It assumes the self-tuning functionality of the RTM, and allows
detailed supervision or overriding of all the self-tuning steps.

The user interface is composed of the following tabs:

1. Overview: a condensed overview of the basic configuration parameters, an
overview of the status of the local model estimation and local controller tuning,
with buttons that trigger actions for the experimental tuning of local controllers.

2. Connection: OPC communication settings with the corresponding FPSC con-
troller block on a PLC.

3. Experiment: contains a list of experiments for local controller tuning, scheduled
in the Overview tab. Untypical plant experiments may also be triggered. When
an experiment is active, its progress is displayed in a separate window.

4. Measurements processing: displays the experimental results, estimates the exci-
tation of local models, enables import, export, filtering and trimming of measure-
ments for model identification.
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Fig. 11.12 OLA Configuration in original CT. Basic OLA settings (top) and advanced OLA pa-
rameters (bottom)
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5. Local model: displays the estimated local model parameters (MIA vs. OLA) and
the model simulation results.

6. Local controller: displays the tuned local-controller parameters and a simulated
response of the closed-loops system to a step change in the reference or distur-
bance signal.

Tabs 4–6 refer to each configured local controller (scheduling variable position,
shown in the upper right quadrant) individually. For illustration, tabs 1 and 5 are
shown in Fig. 11.13.

11.5 Experimental Application to a Valve-Testing Apparatus

The ASPECT controller was tested in several pilot applications, for example, on a
gas-liquid separator [20] and a hydraulic pilot plant [7]; in this section we present a
pilot application on an apparatus for testing hydraulic valves, located in a hydraulic-
equipment production plant. A simplified scheme of the apparatus is shown in
Fig. 11.14. The apparatus is composed of a boiler with local temperature con-
trol, three pumps P1–P3, a pressure sensor PT, a valve test stand with a pressure-
difference sensor �PT, three flow meters QT1–QT3 that may be connected alter-
nately for different measurement ranges, and an expansion vessel. The pumps are
connected in parallel and may be activated in different combinations so that different
flow ranges may be achieved. They are equipped with frequency converters; when
switched on, all of them receive the same control signal u.

The apparatus is used for testing various types of valves in a range of controlled
operating conditions. The most important control task is to control the pressure dif-
ference on the tested valve �pv (also denoted as the process output y), by adjusting
the control signal u that is connected to the active pumps. The process is nonlinear
and time-varying because:

1. The steady-state relation between the pressure difference on the valve �pv and
the mass flow through the valve Qm (related to the pump rotation speed ω) is
quadratic;

2. The openness of the valve Sv is sometimes changed during a test, but the signal
Sv is generally not available (manual valves);

3. Different pumps (or combinations of pumps) may be used, according to the size
of the valve.

These factors severely affect the process dynamics; therefore, the performance of
the previously existing control system based on a fixed PI controller was considered
unsatisfactory.

The scheduling variable selection is a crucial step when applying a parameter-
scheduling controller. While the nonlinearity (a) alone may be easily solved using
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Fig. 11.13 Alternative CT sample tabs (in Slovene). Overview tab (top) and Local Model tab
(bottom)

scheduling from �pv , the condition (b), in particular, makes the problem consid-
erably more difficult, because it is necessary that the system should find the proper
tuning autonomously, not by entering the unknown process parameters manually.
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Fig. 11.14 Apparatus for testing a hydraulic valve (simplified)

Process modelling was used2 to determine a suitable scheduling variable, namely
the quotient �pv/Qm, which is easily computed from the available signals [12].
To improve the reliability of the computation of this quotient at low measurement
values of Qm, the latter was replaced by the control signal u filtered by a first-order
lag filter that approximates the pump dynamics.

Once the scheduling variable s is configured, the commissioning of the ASPECT
controller is an empirical procedure, supported by the automatic experimentation
functionality of the OS. Firstly, the Safe Mode is tuned, so that its PI controller main-
tains stable control over the whole operating region. Then, the local model/controller
positions are selected; a default equidistant distribution of six positions over the op-
erating range of s is used in this application. Because experimentation with the pro-
cess is allowed, the typical procedure involving a batch of experiments is used, with
each experiment being made in the vicinity of one local model position. In practice,
this is the simplest way to ensure proper excitation of the signals. Using the Safe
Mode, the process is consecutively brought to each of the s positions, where auto-
tuning experiments are activated by the push of a button. The OS conducts a mode
switch (open-loop experiments are preferred), injects the excitation signal contain-
ing four step changes, invokes model identification and CAA tuning at the end of the
experiment, and finally restores the original mode. For the first two local models, the
excitation signal amplitude is 4 %. Due to lower process gain, it is increased to 8 %
for other local models, in order to improve the signal-to-noise ratio. An overview of
the MIA status shows that all the local models have been identified successfully. The
Auto Mode is configured after the engineer confirms the new controller parameters.
Table 11.1 displays the results of this experimental tuning procedure on the process.

2Generally, the ASPECT controller is intended to be tuned empirically through experimentation,
and process modelling is not required for simpler scheduling control applications.
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Table 11.1 Experimental tuning results—local model and controller parameters

Local model
positions

Local model parameters Local
controller
parameters

OLA model parameters (Tsamp = 0.5 s) Derived parametersa

s = α
ȳ
ū

du b1 b2 a1 a2 r Kol T90 % T1 T2 Kp Ti

0.10 1 0.002 0.009 −1.212 0.256 −0.002 0.25 20.0 8.01 0.38 5.78 8.03

0.26 1 0.003 0.014 −1.369 0.410 −0.002 0.41 16.5 6.55 0.61 2.58 6.56

0.42 1 0.004 0.017 −1.392 0.432 −0.005 0.52 16.5 6.41 0.66 1.95 6.29

0.58 1 0.003 0.022 −1.401 0.442 −0.005 0.61 15.5 6.09 0.68 1.54 6.12

0.74 1 0.001 0.026 −1.471 0.508 −0.008 0.73 15.0 5.77 0.85 1.14 5.92

0.90 1 −0.001 0.044 −1.397 0.440 −0.019 1.00 15.0 5.80 0.69 0.86 5.97

aKol is the open-loop model gain. T90 % is the rise time from 0 to 90 % of the open-loop step
response in s. T1 and T2 are the denominator time constants of the continuous-time equivalent
model in s. α = 1.89 is a scaling factor

The open-loop gain of the local models obviously rises with s, which results in a
decrease in Kp. A decreasing trend of T1 with s can also be noticed, which is asso-
ciated with the pump dynamics and which has the most influence on Ti. There is a
considerable but acceptable difference in Kp between the first two local controllers.
The differences between the local controller parameters in the higher range of s are
small; fewer local controllers could be used in that region.

The control performance is shown for the PI controller, realised using the Safe
Mode of the ASPECT controller, and the FPSC controller. Figure 11.15 shows the
measured process response to a sequence of step changes in the set-point signal over
the whole operating range when using the PI controller. The parameters of the PI
controller were determined so that the optimal response was achieved at lower val-
ues of �pv . As the pressure increases, the response became oscillatory. Figure 11.16
shows the response when using the FPSC control algorithm. Here, the performance
is very good over the entire operating range. In addition to the signals shown in
Fig. 11.16, the scheduling variable s is also shown in the bottom graph of Fig. 11.16.

11.6 Discussion in the Context of Theory/Practice Issues

The main motivation in pursuing the present work was to build an advanced con-
trol system for nonlinear processes that would be simple to use and would run
on PLC platforms. In this way, some theoretically already-established approaches
could be brought closer to everyday use. Although the basic goals of the project were
achieved, some important problems were encountered that substantially influenced
the final results, such as the following:

• The entire concept of the control system relies on models identified from process
data; therefore, the quality of control depends on the quality of models. We were
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Fig. 11.15 Control of pressure difference pv using the PI controller. Process output pv and its
set-point (top), pump control signal u (bottom)

aware of this fact right from the beginning of the project and planned to have an
even larger set of models available for various situations. Although such an ap-
proach would certainly improve the versatility and usability of the control system,
this idea had to be abandoned due to time and financial limitations.

• The three CAAs come from substantially different theoretical backgrounds. How-
ever, when tested in pilot applications in an industrial environment, they pro-
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Fig. 11.16 Control of pressure difference pv using the FPSC algorithm. Process output pv and its
set-point (top), pump control signal u and scheduling variable s (bottom)

duced similar results, with only a slight performance advantage with regard to
the DTCC. This is mainly due to the same underlying model structure and be-
cause the performance is limited by the achievable model accuracy. The latter is
constrained by the time considered feasible for modelling and tuning in the pro-
cess industry. The differences among the algorithms become more pronounced
in the case of specific process requirements; for example, the DTCC shows ad-
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ditional advantages with processes that involve more significant dead-time, while
the RBNC could show more value in the case of additional safety requirements.

• One of the main concerns was how to implement the rather complex structure of
the control system on the target PLC platforms. To do this gradually, we decided
to first develop the algorithms in MATLAB, then build the controller on the in-
termediate PC platform in the C programming language, and to finally transfer
it to the target PLC platform. It turned out that overcoming the platform differ-
ences was underestimated; major implementation redesigns of the software were
required due to the differences in the operating systems and GUI implementation.

• An important lesson learned was that the main restrictions for the implementa-
tion of advanced algorithms on the PLC platform are not the computation and
storage capabilities, but rather the limitations of the human-machine interaction
for operator interaction and even more for application development.

• One of the basic ideas of the project was to develop a system which would be
appropriate for less-experienced users. Such a system must have a high degree
of autonomy in its actions, a large set of “safety jackets” to prevent undesired
behaviour, and as small an interaction with operators as possible. Although an
important step in this direction was made in the frame of this project, it turned
out that there is still much room for improvement. It is also quite obvious that
the solution to these problems has very little to do with control algorithms, and
much more to do with the system around the algorithms. Therefore, much more
research-and-development effort will have to be devoted to this area. However,
to make a real breakthrough, some knowledge from other fields (e.g., cognitive
systems) will also have to be employed.

11.7 Conclusion

An advanced, self-tuning, nonlinear controller was successfully implemented on an
industrial PLC platform. An experimental pilot application for pressure control in
a hydraulic apparatus was presented. Compared to the industry-standard PI con-
troller, a considerable improvement in control performance was achieved using the
advanced control algorithms. Moreover, this performance was easily achieved in
practice with self-tuning using an online learning procedure, by performing a se-
quence of short experiments around a few operating points. The modular, multi-
agent structure contributes to the remarkable flexibility of the control system, such
that it is easily reconfigured for various requirements. Parts of the applied algo-
rithms are incorporated into the software for the design of the PLC systems control
solutions of Mitsubishi Electric.
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