
Chapter 10
Rapid Prototyping Environment for Control
Systems Implementation

Damir Vrančić

10.1 Introduction

Two trends can be highlighted currently in the field of process control. First, the
number of control loops is rapidly increasing. Among them, the share of unstable,
higher order, and nonlinear processes, processes with dead-time, and processes con-
trolled over a network is also increasing [8, 19]. Second, ongoing cost-reduction ac-
tivities in companies have resulted in staff minimisation, especially in the domain of
maintenance. Moreover, this activity is being outsourced to specialised companies.
Thus, the amount of knowledge in industries related to control is rapidly decreas-
ing [18].

In order to cope with the ever-increasing number of control loops, industrial end-
users and engineering companies are facing a need for efficient software support
that would shorten the time required for commissioning and maintaining control
loops. On the other hand, software support should also foster the implementation of
advanced control algorithms in production processes and plants.

Some software tools supporting control design activities in the process indus-
try have been commercially available for approximately two decades. Nowadays,
the most well-known products are INTUNE™ [11], BESTune [1], ExperTune [6],
INCA PID Tuner [12], Sintolab [9], U-Tune PID [21], and LOOP-PRO™ TUNER
[4], which all support PID controller design and tuning. Some of the products also
perform closed-loop analysis and simulation. Yet the main disadvantages remain
that (i) they focus mainly on PID controllers and (ii) validation of closed-loop be-
haviour is carried out off-line.

Recently, the MATLAB®/Simulink® programming environment implemented
real-time connection with processes via OPC (OLE for Process Control) signals
and off-line tuning of PID controllers [16, 17]. Due to the on-line OPC connec-
tion and available control toolboxes, it can also be used for rapid design of more
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complex control algorithms based on mathematical models. However, the software
is relatively expensive and requires the installation of MATLAB/Simulink with se-
lected toolboxes. Moreover, MATLAB is a relatively slow interpreting language and
the experimentation environment is rather complex, hence less suitable for system
integrators, especially those in small- and medium-sized enterprises.

The needs of industry, on the one hand, and the deficiencies of the existing tools,
on the other hand, motivated us to design and develop a new tool that would enable
rapid prototyping of classical and advanced control methods in an industrial envi-
ronment. In this way various control approaches could be quickly verified before
making the final decision on the selection of a particular solution and its implemen-
tation. Such a tool would help control designers and system integrators as well as
process personnel in industry to substantially reduce the time needed for the devel-
opment cycle.

The basic requirements for the tool, referred to as the “Rapid Prototyping (RaPro)
environment” were as follows: the environment should (i) enable simple access to
real plants via OPC, (ii) enable efficient controller design, (iii) enable direct on-line
validation at the target plant, (iv) be independent of the control hardware, i.e., it
should be applicable to a wide family of process platforms, (v) enable execution
of on-line open-loop or closed-loop experiments on the process, data conditioning,
process model identification, controller tuning, and report generation, and (vi) con-
sist of only one executable file without software installation.

The aim of this chapter is to present the concept and architecture of RaPro, to
introduce its main functions, and to illustrate its use with practical examples.

The chapter is organised as follows. First, the concept of the RaPro environment
is explained. Then, the architecture and functions of the rapid prototyping environ-
ment are introduced. The use of the prototyping environment is illustrated with two
examples. The first one is temperature control in a hydrogen fuel cell power mod-
ule, and the second one is level control in a three-water-tank laboratory setup. The
RaPro environment is then evaluated in the context of theory/practice issues. The
chapter ends with conclusions.

10.2 The Concept and Control Structures of the Rapid
Prototyping Environment

The main motive behind the development of the RaPro environment is to shorten
and simplify the design, commissioning and maintenance of control loops and also
to increase the work efficiency of system integrators, engineers and maintenance
staff. In order to achieve these goals a set of control structures, types of experiments,
and verification strategies had to be selected. Namely, careful selection of control
structures, experiments and verification strategies can significantly improve control
efficiency, decrease commissioning time and simplify operation for a broad range
of users.
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10.2.1 The Concept of the Environment

The concept on which the proposed tool is built tries to combine some characteristics
of the existing environments which support the control design stage. In general,
there are two types of control design approaches. The first one is related to control
of machines and devices (e.g., in the aerospace or automotive industries), and the
second one to production processes (e.g., in the chemical, pharmaceutical, or other
kinds of process industries) [20]. The same distinction applies to control engineering
tools [3].

When machines and devices are concerned (like e.g. in mechatronics [13]), the
tools typically support theoretical (first principle) modelling, the design of complex
control schemes and algorithms, testing the algorithms using a mathematical model,
automatic code generation, hardware-in-the-loop verification, etc. The advantage of
this approach, often referred to as “Rapid Control Prototyping” (RCP) [2, 10], is
that it can rely on professional universal tools (e.g., MATLAB/Simulink, dSPACE
[5]) which support a practically unlimited set of solutions, and it also offers on-line
verification of design results. However, the approach is often very time consuming
and requires a high level of expertise of engineers.

In the case of complex production processes, the tools are more oriented towards
experimental modelling, the use of predefined controllers or control structures, the
tuning of parameters, off-line verification of control performance, and download-
ing control parameters into the target platform. These tools are less flexible and do
not support on-line verification on a prototyping platform, but are in turn less time
consuming and more adapted to engineers with a lower level of expertise.

The proposed concept behind our Rapid Prototyping environment is, on the one
hand, similar to what we see in PID-tuners for the process industry because it is
based on fixed control structures in order to simplify the engineering process and
reduce the required expertise of engineers. However, to compensate for the loss of
flexibility and universality caused by this decision, it attempts to introduce a larger
set of predefined structures. On the other hand, it includes on-line verification of the
control algorithms using a prototyping platform which is a typical feature of RCP
environments. Note that on-line verification of algorithms is in practice often very
important because it enables better selection of final HW and SW platforms and/or
proper adaptation of available control algorithms.

Such a concept and the resulting prototyping environment, in our experience, is
in line with what engineers, especially those from small- and medium-sized enter-
prises, need when solving practical control problems.

10.2.2 Feedback Structures and Controller Types

The Rapid Prototyping environment supports several feedback control structures
and controller types. The currently supported feedback structures are single-loop
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Fig. 10.1 A single-loop
controller structure

control, cascade control loop, feed-forward control loop, and a multivariable control
structure with two inputs and two outputs (a TITO structure).

A single control loop structure is shown in Fig. 10.1. It consists of a single-input-
single-output (SISO) controller, a switch for manual (M) to automatic (A) mode,
and the process. The feedback signal uR to the controller is used for anti-windup
(bumpless) protection.

A cascade control loop consists of two controllers and one process with two out-
puts: an inner signal yi and an outer signal yo, and one input (u) to the system (see
Fig. 10.2). Switches for manual/automatic control are present but are not shown for
the sake of brevity. The main task of the inner loop is to speed-up the inner system
in order to decrease lag time for the outer process. Therefore, the outer closed-loop
system can be made faster and more efficient.

The feed-forward (FF) control loop consists of a compensator GFF , which im-
proves the closed-loop disturbance rejection performance by measuring and com-
pensating for disturbance d (see Fig. 10.3). If the compensator transfer function
becomes

GFF(s) = −GDY(s)

GP (s)
(10.1)

where GP (s) is the process transfer function, then the measured disturbance is com-
pletely eliminated.

Multivariable systems have more than one input and output. The RaPro environ-
ment supports a two-input/two-output (TITO) controller structure. A typical closed-
loop control configuration is shown in Fig. 10.4. The TITO controller consists of
two independent controllers c1 and c2 and two decouplers d1 and d2. The decou-
plers’ main task is to decouple a multivariable process into two independent (or less
coupled) SISO systems. In an ideal case, there are no interactions between the first
controller output v1 and the second process output y2, and vice versa. Therefore,
controllers c1 and c2 can be designed independently, as in the SISO case. The TITO

Fig. 10.2 Cascade controller structure
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Fig. 10.3 Feed-forward controller structure

Fig. 10.4 The TITO
controller structure

system in Fig. 10.4 is ideally decoupled when

d1(s) = −g21(s)

g22(s)
(10.2)

d2(s) = −g12(s)

g11(s)
(10.3)

By comparing the TITO controller and FF compensator structures, it can be
seen that they are equivalent when the process transfer function GP is g11, d1 = 0,
d2 = GFF , c2 = 0, g12 = GDY , and g21 = g22 = 0. Therefore, the feed-forward com-
pensator is only a subset of the TITO controller and its parameters can be calculated
from the TITO controller.

The controller types supported by the RaPro environment are the PID controllers
and Smith predictors.

The PID controller structure is shown in Fig. 10.5. It consists of a reference
pre-filter, PID terms, an output filter, limitations and a manual/automatic switch.
Anti-windup protection is realised by the feedback loop with gain 1/Ka . Selection
of Ka = K usually gives the best anti-windup protection.
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Fig. 10.5 Block scheme of the PID controller

The PID controller output can be given by the following expression in Laplace
form:

U(s) = KP + Kds

1 + sTf

E(s)

+ Ki

s(1 + sTf )

(
E(s) − U(s) − Ur(s)

Ka

)
(10.4)

where E denotes control error

E(s) = R(s)

1 + sTfr
− Y(s) (10.5)

and s is a complex variable.
The parameters Kp , Ki and Kd are the proportional, integral and derivative gains

of the PID controller, respectively. The parameter Tf is a filter time constant, which
should be selected according to the process noise. Typical values are

Kd

4Kp

< Tf <
Kd

10Kp

(10.6)

Parameter Tfr is a reference pre-filter and can be used to optimise reference fol-
lowing and disturbance rejection performance.

The Smith predictor is shown in Fig. 10.6. It consists of the process model and
the PID controller. If the process model perfectly matches the actual process, sig-
nals y and ymd are the same. In this case, the PID controller actually controls the
process without a time delay [29]. Therefore, the Smith predictor is very efficient in
controlling processes with larger time delays (compared to the main time constant
of the process).

The compensator GFF (Fig. 10.3), decouplers d1 and d2 (Fig. 10.4), and the pro-
cess model in the Smith predictor (Fig. 10.6) are realised by the following transfer
function:

G(s) = KPRe−sTdel

1 + a1s + a2s2
(10.7)
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Fig. 10.6 Smith predictor block diagram

Fig. 10.7 Block diagram of the RaPro environment

where KPR and Tdel are the steady-state gain and pure time delay, respectively. Pa-
rameters a1 and a2 are dynamic parameters (the sum and multiplication of the two
time constants, respectively).

10.3 The Architecture and Functions of the Rapid Prototyping
Environment

The RaPro environment consists of three modules: the on-line module, the off-line
module, and the main module. The on-line module enables users to measure process
signals and to perform open-loop or closed-loop experiments on the process. The
main task of the off-line module is to filter the data obtained by the experiments and
to calculate the process model and controller parameters. The main module enables
communication among the sub-modules and supports human-machine interaction.
The block scheme of the RaPro environment is given in Fig. 10.7.
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Fig. 10.8 OPC settings for SISO systems

The RaPro environment has been realised as a program package. The main func-
tions are the following:

• selection of the OPC server and OPC points for the process signals and controller
parameters;

• setting the experiment parameters and execution of the experiment;
• data treatment;
• calculation of the process model;
• calculation of controller parameters; and
• automatic report generation.

The HMI of the RaPro environment consists of the main program window (con-
sisting of several tabs) and some smaller windows which are opened during exe-
cution of an experiment or for filling in some specific data related to the current
task. The main program window is shown in Fig. 10.8. Tabs at the top of the main
window define the different functions which can be performed with the RaPro envi-
ronment. A detailed explanation of each function with related tasks will be given in
the following sub-chapters.

Due to the complexity of multivariable systems, the RaPro environment was
separately developed for single-input/single-output (SISO) and for two-input/two-
output (TITO) systems. Herein, the main emphasis will be devoted to the SISO de-
velopment environment. However, the TITO environment will be mentioned where
it significantly differs from the SISO environment.
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Fig. 10.9 OPC settings for TITO systems

10.3.1 Selection of the OPC Server and OPC Points for the Process
Signals and Controller Parameters

Figure 10.8 shows the OPC window (tab “OPC”). The main task of the OPC window
is to select the OPC server, process signals, and controller terms. Here we can se-
lect the appropriate OPC server and start or stop communication. The required pro-
cess signals are the following: the process input (usually the same as the controller
output), the process output (a measured or controlled variable), and the manipula-
tive (manipulating) signal. The manipulative signal is the signal which can actually
change the process steady-state. In an experiment with an external controller1 con-
nected to the process and running in the open-loop configuration (manual mode),
the manipulative signal is the manual control signal. On the other hand, if an exter-
nal controller is running in the closed-loop configuration (the external controller is
in automatic mode), the manipulative signal is the reference (set-point) of the con-
troller. In order to be able to switch between the manual and automatic mode of
the controller, the signal which defines the manual and automatic modes should be
selected as well.

Similarly as for SISO systems, the OPC window for the TITO system is shown
in Fig. 10.9. Consequently, two manipulative and two process input signals should
be selected.

1The external controller is a PID controller which actually controls the process. It is either a stand-
alone controller or running within the PLC.
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Fig. 10.10 Setting the parameters of the experiment

10.3.2 Setting the Parameters and Execution of the Experiment

This function is activated by clicking the tab “Experiment” in the upper part of the
main program window (see Fig. 10.10). The window which appears is intended for
setting the parameters of the experiment and starting the execution of the experi-
ment.

10.3.2.1 Setting the Parameters of the Experiment

There are two types of experiments: manual and automatic. A manual experiment is
executed entirely by the user (by changing sliders for manipulative signal during the
experiment), while an automatic experiment is carried out without user interaction.

Both types of experiment require the definition of the slider range for the manip-
ulative signal (MV) and sampling time. Here we can also define the controller mode
during and after the experiment (open-loop or closed-loop mode) and whether the
manipulative signal should change when starting the experiment. There is an addi-
tional “Don’t write to OPC” checkbox. If it is ticked, the RaPro environment will
only read OPC signals and will not write to the OPC. This option is added for secu-
rity reasons.

The TITO version of the experiment screen is very similar, except that it contains
a definition of two MV and reference sliders.
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Fig. 10.11 Definition of the
parameters for the
manipulative signal in an
automatic experiment on the
process

The automatic experiment is more complex, since several additional parameters
should be defined to run the experiment without user interaction. The most impor-
tant ones are the idle time (waiting time) before applying a step-change to the ma-
nipulative signal, the amplitude of the step-signal, and the duration of one step. It is
also possible to apply several steps (with the option to return back to the initial value
of the manipulative signal). An automatic experiment also enables the selection of
the starting time of the experiment (with the date and time). The meaning of some
of the parameters is more clearly depicted in Fig. 10.11.

10.3.2.2 Execution of an Experiment

An experiment (manual or automatic) is started by clicking the button “Activate
experiment”. When the experiment is started (note that an automatic experiment
will actually start at a defined date/time), an experiment window is opened (see
Fig. 10.12). The most important functions of the experiment window are the follow-
ing:

• displays the process input and output signals; and
• modifies the manipulative signal (process input or reference) in order to change

the steady-state of the process (by changing the slider position).

When performing a manual experiment, an experiment on the process should be
simple but informative enough to be able to calculate a process model of sufficient
quality. One of the simplest experiments on the process is to change the process
steady-state by applying a step-change at the process input. Note that it is not re-
quired that the process transients die out completely.

The experiment is terminated by clicking the button “Terminate experiment” or
if the amount of time for an automatic experiment has expired.

The TITO version of the experiment window shows more signals (two manipula-
tive variables, two process inputs, and two process outputs) (see Fig. 10.13). During
an experiment on the TITO system, the first process input should be modified. When
both process output signals settle, a change to the second process input should be
performed, as shown in Fig. 10.13.
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Fig. 10.12 An experiment window during execution of an experiment on the SISO system

Fig. 10.13 Experiment window during execution of an experiment on the TITO system
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Fig. 10.14 Data treatment window for SISO systems

10.3.3 Data Treatment

The data treatment window (Fig. 10.14) is opened after the experiment is terminated
(or by clicking the tab “Data” in the main window). Its main purpose is to display the
measurements. The measurements can be additionally truncated (by using sliders)
or filtered by applying a first-order filter if the signals are too noisy.

Moreover, it often happens that the actuator signal is limited (e.g., the opening
of the valve cannot be higher than 100 % or lower than 0 % and the actual opening
time depends on the speed of the actuator motor). Since the actual process input
can be different from the controller output signal, the process model might become
inaccurate. Therefore, the prototyping environment offers additional fields to enter
the actuator’s constraints in order to calculate the actual process input signals and
therefore reduce process model error in subsequent stages. The required parameters
are the minimum and maximum values of the actuator signal and the time required
for the actuator to change from the minimum to the maximum value.

If the displayed signals are too small, they can be enlarged by double clicking the
corresponding graph (see Fig. 10.15). A histogram of the selected signal is obtained
by right-clicking the graph. The minimum and maximum values and the standard
deviation (STD) of the signals are given on the right side of the displayed signals.
Decimal points are denoted with commas due to local operating system.

When the data is truncated, filtered, and limited, the RaPro environment can cal-
culate the process model by clicking the button “Calculate model”.
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Fig. 10.15 Detailed view of the measured signal (by double-clicking signal graph) and histogram
of the measured signal (by right-clicking signal graph)

Fig. 10.16 Data treatment window for TITO systems

The TITO user interface (Fig. 10.16) shows four time responses. Each combi-
nation of process input-output responses can have different start and/or termination
times. Therefore, they should be defined separately by clicking the button “Time
windows, limiters, filters”, as shown in Fig. 10.17.

10.3.4 Calculation of the Process Model

The model is shown in graphic and analytic form under the tab “Model” (see
Fig. 10.18). It displays the process model parameters and provides a comparison
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Fig. 10.17 Definition of the time window, limiter, and filter for a chosen process input and/or
output

between the measurement and the model in graphic form. The obtained linearised
continuous-time process model is a second-order model with delay, as shown in
Eq. (10.7).

The process model is obtained by using a least-squares system identification with
instrumental variables and state-variable filters [7]. The algorithm calculates the
most appropriate process structure (a delayed process, first-order delayed process,
or second-order delayed process) from measured data for different time delays. The
process model with the smallest sum of squared error between the model response
and the measurements is then selected.

It is important to validate the obtained model. If the quality of the model is inap-
propriate, the calculated controller parameters can be far from ideal. In some cases
we have to change the truncating, filtering, and/or limiting parameters in the data
treatment stage, change the model manually, or even repeat the experiment. Some
model identification and validation methods (e.g., correlation of error vs. input sig-
nals) were omitted since we are using a linearised process model around a selected
working point.

The relative model error is calculated as the ratio between two standard devia-
tions,

ER = σ(ym − y)

σ (y)
(10.8)
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Fig. 10.18 Process model window

where y and ym represent the measured and the process model responses, respec-
tively.

The TITO user interface is very similar, therefore it will not be shown here. The
only difference is that the user selects the desired process sub-model by choosing
the proper process input and the proper process output.

When the quality of the process model is high enough, the controller parameters
can be calculated by clicking the button “Calculate controller parameters”.

10.3.5 Calculation of Controller Parameters

The user interface for the tab “Controller” is shown in Figs. 10.19 and 10.20 for
SISO and for TITO systems, respectively. The difference is in the higher number of
controllers and additional decouplers in the TITO interface.

The most important tasks of the window for the controller parameters are to:

• select the controller type and structure;
• select the tuning method;
• select the degree of robustness;
• select the closed-loop sampling time;
• select the tracking/disturbance rejection response;
• display the controller parameters; and
• graphically present the anticipated closed-loop response.
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Fig. 10.19 Controller parameters user interface for SISO systems

Fig. 10.20 Controller parameters user interface for TITO systems

Two different controller structures can be selected: a PID controller and a Smith
predictor (a PFC controller is under development). All of them use the same PID
controller structure, as given by Fig. 10.5 and Eq. (10.4).
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Fig. 10.21 Process gain, lag
and rise times

Table 10.1 PID controller
parameters for several tuning
methods

Kp Ki Kd

ZN tuning method

P Tr

TlKPR
– –

PI 0.9Tr

TlKPR

0.3Tr

T 2
l KPR

–

PID 1.2Tr

TlKPR

0.6Tr

T 2
l KPR

0.6Tr

KPR

CHR tuning method for tracking

PI 0.35Tr

TlKPR

0.3
TlKPR

–

PID 0.6Tr

TlKPR

0.6
TlKPR

0.3Tr

KPR

CHR tuning method for disturbance

PI 0.6Tr

TlKPR

0.15Tr

T 2
l KPR

–

PID 0.95Tr

TlKPR

0.4Tr

T 2
l KPR

0.4Tr

KPR

BT tuning method

PI
0.5(1+(

a1
a1+Tdel

)2)

KPR

1
KPR(a1 +Tdel)

–

Several different tuning methods can be selected. Besides the Ziegler–Nichols
(ZN) and Chien–Hrones–Reswick (CHR) tuning methods, the Magnitude Optimum
Multiple Integration (MOMI) tuning method for reference tracking [27] and distur-
bance rejection [25, 28] or the Balanced Tuning (BT) method [15] can be chosen.

The ZN and CHR methods are based on measured process gain (KPR), lag time
(Tl), and rise time (Tr ) (see Fig. 10.21). The mentioned parameters are obtained
from the process model by means of simulation. The PID controller tuning pa-
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rameters, when using ZN and CHR tuning methods (for tracking and disturbance
rejection), are given in Table 10.1.

The BT and MOMI tuning methods are based on the calculated process model.
The PI controller parameters for the BT method are also given in Table 10.1 (the
method is not defined for PID controllers).

The MOMI method is defined for tracking response [27] and for disturbance
rejection [25, 28]. The method can be used on process transfer functions of an ar-
bitrary order with a time delay or on non-parametric process data in a time-domain
(e.g., process step-response) by multiple integration of the process response. Here
we applied the method to the second-order process model (10.7). The PID controller
parameters for tracking the response are as follows [27]:

⎡
⎣Ki

Kp

Kd

⎤
⎦ =

⎡
⎣−A1 A0 0

−A3 A2 −A1
−A5 A4 −A3

⎤
⎦

−1 ⎡
⎣−0.5

0
0

⎤
⎦ (10.9)

where the so-called characteristic areas Ai are defined as follows:

A0 = KPR

A1 = KPR(a1 + Tdel)

A2 = KPR

(
−a2 + T 2

del

2!
)

+ A1a1

A3 = KPR

(
T 3

del

3!
)

+ A2a1 − A1a2

A4 = KPR

(
T 4

del

4!
)

+ A3a1 − A2a2

A5 = KPR

(
T 5

del

5!
)

+ A4a1 − A3a2

(10.10)

Note that area A1 is graphically depicted in Fig. 10.21. The PI or I (integral) con-
troller parameters can be calculated by reducing the matrix and vector dimensions
in Eq. (10.9). The PI controller parameters are as follows:

[
Ki

Kp

]
=

[−A1 A0
−A3 A2

]−1 [−0.5
0

]
(10.11)

The I controller can be simply calculated as

Ki = 0.5

A1
(10.12)

Note that the PI and I controller do not require output filtering in Eq. (10.4).
Therefore, TF = 0.
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The MOMI tuning method for disturbance rejection [28] defines the PI controller
parameters as:

KP =
ξ2 − sgn(ξ2)A1

√
A2

2 − A1A3

ξ1

Ki = (1 + KP A0)
2

2A1

(10.13)

where

ξ1 = A2
0 A3 − 2A0A1A2 + A3

1

ξ2 = A1A2 − A0A3

(10.14)

The parameters A0 to A3 depend on the process parameters, as given in (10.10).
The PID controller parameters for disturbance rejection are calculated according to
the following expression [25]:

KP = A0A3 − A1A2 + Kd(A2
0A2 − A0A

2
1) + √

α

2A0A1A2 − A3
1 − A2

0A3

Ki = (1 + KP A0)
2

2(A1 + A2
0Kd)

α = [
A2

2 − A1A3 + Kd

(
2A0A1A2 − A2

0A3 − A3
1

)](
A1 + A2

0Kd

)2

(10.15)

where derivative gain Kd is calculated from Eq. (10.9).
The user can modify the closed-loop sampling time and immediately observe

a change in the predicted closed-loop response. There is a slider for choosing the
trade-off between the robustness and the speed of the closed-loop response and but-
tons for selection of the reference following or disturbance rejection closed-loop
response.

If a Smith predictor is chosen instead of an ordinary PI(D) controller, the Smith
predictor’s PI controller parameters are calculated according to the process model
(10.7) without a pure time delay (Tdel = 0).

Calculation of the controller and decoupler parameters for TITO systems is more
complex. In principle, the calculation is based on Eqs. (10.2), (10.3), and (10.9).
However, the actual calculation of the decoupler and controller parameters is, due
to its simplicity, based on the MOMI tuning method. More details about the tuning
procedure can be found in [26].

10.3.6 Automatic Report Generation

A report in the form of a Microsoft Word® file can be generated by clicking the
tab “Report” and choosing the appropriate parameters. The report can contain mea-
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Fig. 10.22 Photo of the fuel cell made by Hydrogenics

surement data (in graphical form), the process model, and the calculated controller
parameters with predicted closed-loop responses.

10.4 Experimental Testing

The RaPro environment thus far has been tested on several laboratory and indus-
trial plants. Among others, it has been used in the pharmaceutical industry (HVAC
control), the production of TiO2 (temperature and level control), the production of
plastics (temperature and pressure control), and plasma coating processes (pressure
control).

In order to illustrate the features and characteristics of the environment, its use in
two examples will be presented. The first one is temperature control in a hydrogen
fuel cell power module, which is a single input/single output system, and the second
one is level control in a laboratory setup with three water tanks, which is a two
input/two output multivariable system.

10.4.1 Temperature Control in a Hydrogen Fuel Cell Power
Module

The system under consideration is a HyPM HD8 8 kW hydrogen fuel cell power
module manufactured by Hydrogenics (see Fig. 10.22). The fuel cell produces elec-
tricity and heat from hydrogen gas and oxygen from the air. In order to maintain
the normal working temperature of the hydrogen cell, the excess heat should be
removed from the stack of cells (the upper-left part of the picture) by means of
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Fig. 10.23 Fuel cell stack
temperature control loop

a motorised fan connected to a radiator (the bottom-left side of the picture). The
reference temperatures should be kept tightly under control. Otherwise, the cell is
automatically switched off.

The existing temperature controller has a relatively large gain, causing large
changes in the fan motor speed, similar to an on/off controller. Our goal was to
determine if the existing control loop can be made more stable.

A simplified scheme of the temperature control loop is given in Fig. 10.23. The
coolant temperature (T) is controlled by the speed of the fan motor M. The process
input is the voltage on the motor M (the voltage and current boost are externally pro-
vided by a 3 kW power supply, EA-PSI 8080-120 from Elektro Automatik GmbH)
and the process output is the stack coolant temperature (converted into voltage by
the Pt100 temperature sensor). Voltage signals are measured and provided by a Mit-
subishi Melsec Q62P PLC controller with A/D and D/A modules. The D/A module
has an output span from 0 to 16,000 digits, which corresponds to fan motor voltages
from 0 to 10.11 V. The A/D module has input span values from 3200 (live zero)
to 16,000 digits, which corresponds to stack temperatures from 0 °C to 100 °C.
A Beijer Electronics OPC Server was running on a personal computer.

After connecting the OPC server, which defined the process input and output
OPC signals and sampling time Ts = 0.2 s, the manual experiment was initiated. The
fuel cell was loaded by a 20 A current drawn by a PLW9K-120-1000E load from
Amrel and the process input value was set to a value of 2.4 V (3800 digits). After the
stack reached a steady-state temperature of approximately 47.2 °C (9240 digits), the
process input changed to a value of 3.03 V (4800 digits). The experiment window
during execution of the experiment is shown in Fig. 10.24. The stack temperature
changed to about 40.5 °C (8380 digits). The process input and output signals during
the open-loop experiment are shown in Fig. 10.25.

When the experiment is terminated, the signals are shown in a data management
window (Fig. 10.26). Note that both process outputs are the same, since the process
is single-input/single-output. Since the measurements are relatively smooth, addi-
tional filtering was not applied.

Now we can define the start and end of the measurements which will be taken
into consideration for calculating the process model. The start of the measurement
is set just before the first change in the process input (the fan motor voltage) signal
and the end of the measurement is set when the temperature change becomes almost
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Fig. 10.24 The experiment window during execution of the experiment on the fuel cell

Fig. 10.25 The process input and output signals during the open-loop experiment on the fuel cell
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Fig. 10.26 Collected data during an open-loop experiment on the fuel cell (SISO system)

constant. The calculated process model is the following:

GP (s) = −0.8503

1 + 333.7s + 8356s2
(10.16)

Note that the process model has been obtained from the actual A/D and D/A
signals (Fig. 10.26) instead of the physical values (Fig. 10.25).

A comparison of the model response and the process measurement is depicted in
Fig. 10.27.

It can be seen that the model quality is good (yellow dot), and the calculated
model fits the actual measurements tightly (the relative model error is only 2.3 %),
so we can proceed to the next stage: calculation of the controller parameters.

The MOMI tuning method for tracking was chosen for the calculation of the
controller parameters since the actual stack temperature should follow the inter-
nal temperature reference profile. The chosen controller closed-loop sampling time
was the same as in the open-loop experiment (0.2 s) and the PID controller filter
time constant was 5 s. The calculated PI and PID controller parameters are given
in Table 10.2 and Fig. 10.28. Note that the PI and the Smith predictor parameters
were calculated for filter time constant Tf = 0 s and are therefore not equal to the
calculated parameters in Fig. 10.28 (which were calculated for filter time constant
Tf = 5 s).

The calculated Smith predictor and the PI controller parameters are the same.
The reason is that the process model does not contain a pure time delay. Therefore,
the Smith predictor cannot improve the closed-loop response and will not be tested
herein.
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Fig. 10.27 The process model and the actual measurement of the fuel cell temperature

Table 10.2 PI, PID, and
Smith predictor controller
parameters for the
temperature loop of the fuel
cell

Kp Ki Kd

PI −6.66 −0.0217 –

PID −11.76 −0.0365 −179.2

Smith −6.66 −0.0217 –

The predicted closed-loop responses are given in Fig. 10.28. It can be seen that
the anticipated closed-loop responses are relatively fast and stable. Therefore, we
decided to test the calculated controllers by using the embedded controllers.

To do this, we started a new experiment by clicking “Activate experiment” un-
der the “Experiment” Tab. The experimentation window was the same as before
(Fig. 10.25). Before switching from manual to automatic mode in “Internal con-
troller”, the appropriate reference value should be set for the embedded controller
(e.g., by changing the R slider position). The controller parameters can be veri-
fied by clicking the button “Controller parameters”. A new window then appears
(Fig. 10.29) which displays the chosen controller parameters. The controller param-
eters can be imported by clicking on the button “Insert given and calculated param-
eters” and copied to the embedded controller by clicking the button “Use controller
parameters”.

When changing to automatic mode for the internal (embedded) controller
(Fig. 10.30), we actually started the closed-loop control experiment with the cal-
culated controller. By changing slider R (reference), the temperature set-point can
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Fig. 10.28 The predicted closed-loop responses for the fuel cell temperature control

Fig. 10.29 Parameters of the
embedded PI controller for
the fuel cell temperature
control

be modified. The temperature set-point has been changed from 40.6 °C (8400 dig-
its) to 46.9 °C (9200 digits) by using the calculated PI controller, and from 46.9 °C
(9200 digits) to 43.8 °C (8800 digits) by using the calculated PID controller. The
results are shown in Figs. 10.31 and 10.32. The resulting closed-loop responses
are relatively fast and stable. The PID controller resulted in a faster closed-loop
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Fig. 10.30 Experiment window during the closed-loop control of the fuel cell temperature with
embedded PID controller

Fig. 10.31 The temperature of the fuel-cell stack under closed-loop control using the calculated
PI controller
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Fig. 10.32 The temperature of the fuel-cell stack under closed-loop control using the calculated
PID controller

response with slightly smaller overshoot when compared to the PI controller, all
according to the responses predicted in Fig. 10.28. The closed-loop response, when
using both controllers, is significantly improved when compared to the response of
the factory built-in controller.

The disturbance rejection properties of the PID controller were tested by chang-
ing the load from 20 A to 30 A at approximately t = 700 s. The closed-loop re-
sponses are shown in Fig. 10.33. It can be seen that the controller response is rel-
atively fast and the highest error is about 0.6 °C. However, the approach to the
reference is relatively slow. Namely, the PID controller parameters were tuned for
tracking, since tracking the response of the internal stack temperature reference is
more important than disturbance rejection properties.

10.4.2 Level Control in a Three-Water-Tank System

The second experiment was performed on the three-water-tank system shown in
Fig. 10.34 [14]. The system was chosen in order to test more complex features of
the environment, i.e., control of TITO multivariable systems.
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Fig. 10.33 The temperature of the fuel-cell stack under closed-loop control using the calculated
PID controller with changed load

The three-water-tank setup consists of two water pumps, a reservoir and three
water tanks. The water tanks can be connected by means of electric valves. In our
setup, two water tanks were used (R1 and R2), as depicted in the block diagram
shown in Fig. 10.35.

The selected multivariable system consists of reservoir R0, pumps P1 and P2,
electric (on/off) valves V1 (open) and V2 (open), and water tanks R1, R2, and R3.
Valve V3 is closed. The process inputs are the voltage on pumps P1 and P2 and
the process outputs are the water levels in the first (h1) and the third tank (h3),
measured by the pressure to the voltage transducer. Similarly as in the previous case,
the voltage signals are measured and provided by a Mitsubishi Melsec Q62P PLC
controller with A/D and D/A modules. The D/A module has an output span from
0 to 4000 digits, which corresponds to voltages on the pumps from 0 to 10 V. The
A/D module, which measures voltages from the pressure to the voltage transducers,
has input span values from 0 to 4000 digits, which corresponds to 10 V. A Beijer
Electronics OPC Server was running on a personal computer.

After connecting the OPC server and defining the process input and output OPC
signals and sampling time Ts = 0.5 s, the manual experiment was initiated, where
voltages on both pumps were modified by introducing step-changes between 800
digits (2 V) and 1100 digits (2.75 V) at a particular process input. The experi-
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Fig. 10.34 Picture of the laboratory hydraulic setup

Fig. 10.35 Block diagram of the laboratory hydraulic setup

ment window and voltages on the pumps and water levels h1 and h3 are shown
in Figs. 10.36 and 10.37.

From Fig. 10.37 it can be seen that the process output has significant fluctua-
tions in the steady-state. The process response from t = 900 s to t = 1400 s has
been chosen for the process identification, since it shows the least fluctuation in the
steady-state.

A detailed process response is shown in Fig. 10.38.
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Fig. 10.36 The process signals in the experiment window during the open-loop experiment

The start of the experiment considered for the calculation of the model is set just
before the first changes in the process input signals and the end of the experiment
is set when the liquid level almost settles. The calculated transfer functions of the
multivariable model are the following:

gP 11(s) = 0.722

1 + 19.46s

gP 12(s) = 0.448e−1.5s

1 + 39.2s + 382s2

gP 21(s) = 0.69e−2s

1 + 77.79s + 29s2

gP 22(s) = 0.79

1 + 19.9s

(10.17)

Note that the process model has been obtained from the actual A/D and D/A
signals (digits) instead of the physical values (voltages).

A comparison of the model response and the process measurement for the first
process input (the voltage on pump 1) and the second process output (the liquid
level h3) is depicted in Fig. 10.39.
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Fig. 10.37 The process input and output signals (in digits) during the open-loop experiment on
the three-water-tank setup. The solid lines represent the first and the broken lines the second input
and output

The calculated models approximately fit the actual measurements (note that the
model quality in the window is assessed as “fair” and the relative model error is
about 6.7 %), so we started the calculation of the controller parameters. The param-
eters are calculated in accordance with the MOMI tuning method for multivariable
processes [23].

The calculated decouplers and the PI controllers parameters were

d1(s) = 0.873(1 + 20.1s)

1 + 80s + 199.4s2

d2(s) = 0.62(1 − 1.39s)

1 + 19.85s

c1(s) = 6.92s + 0.39

s

c2(s) = 6.33s + 0.35

s

(10.18)

Since the embedded TITO controller is not yet incorporated into the RaPro en-
vironment, the experiment on the process, with the calculated decouplers and con-
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Fig. 10.38 A detailed view of the chosen process input and output signals (in digits)

Fig. 10.39 The process model and the actual measurement for the first process input and the
second process output
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Fig. 10.40 The process outputs under closed-loop control using the calculated decouplers and PI
controllers

trollers, was performed in the MATLAB/Simulink program environment with a Na-
tional Instruments A/D and a D/A converter (NI USB 6215).

The liquid level set-points were changed between 1.6 V and 2 V. The closed-loop
responses of the process outputs (liquid levels h1 and h3) are shown in Fig. 10.40,
while the process inputs (the voltages on pumps V1 and V2) are shown in Fig. 10.41.
We can see that the closed-loop responses are relatively fast (compared to the open-
loop responses) and stable. It can also be observed that the cross-coupling between
both channels is relatively small.

10.5 Discussion in the Context of Theory/Practice Issues

The aim of the project was to develop a tool which would simplify the work of
control engineers in solving industrial control problems and to bring some more ad-
vanced methods nearer to system integrators and maintenance engineers. Although
the tool is still under development, the experience gained so far has shown that
it really helps in making things quicker and better. However, during development
also many problems were encountered, and we had to surmount several obstacles to
make the environment really useful.
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Fig. 10.41 The process inputs under closed-loop control using the calculated decouplers and PI
controllers

Reliable process modelling is one of the most important stages, since controller
tuning and closed-loop performance depend on the process model. One of the first
challenges was noisy processes. It is important to stress once again that the use
of the ordinary least squares procedure for process identification is not enough.
Namely, it often happens that the obtained process model is far from ideal or is
biased if the process noise is substantial and/or the number of samples is low. Our
experience confirms that the identification method with instrumental variables sig-
nificantly improves the quality of the process model and should thus be used as a
standard approach in noisy environments.

It is frequently not possible to obtain a reliable process model even though the
process is relatively linear and noise-free. Such anomalies often happen with pro-
cesses containing motor-driven valves or flaps. In this case, the actual process in-
put (e.g., liquid/air flow) is different from the controller output for some amount
of time. Since process identification in our tool was based on the controller output
and process output signals, the calculated process transfer function was inaccurate.
Therefore, data fields for the actuator’s hard limitations (the maximum and min-
imum values) and velocity limitations (the actuator’s speed) were added for more
reliable estimation of the actual process input signal (instead of the controller output
signal). The process model quality was therefore substantially improved.
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The first versions of the RaPro environment used very small fixed sampling times
for calculating the anticipated (predicted) closed-loop responses. However, when
applying the calculated controller parameters in practice, the actual closed-loop re-
sponses were sometimes considerably different from the predicted ones (usually
with much larger overshoots and with an oscillatory response). It was determined
that in most cases the main reason for degraded closed-loop response was the much
larger sampling time of the external controller. Therefore, we added an option to
modify the controller sampling time of the internal (RaPro) controller and instantly
observe the difference in the predicted closed-loop response. Additionally, the rec-
ommended sampling time for the PID controller is calculated and shown as well.

While testing the RaPro environment some users wanted a slower response than
that predicted by the calculated controller. Therefore, we added a slider for the se-
lection of a slower or faster (usually accompanied by a larger overshoot) closed-loop
response.

The number of controller input and output signals is usually high in industrial
plants. Therefore, it is very important to have OPC signals for control loops and
processes hierarchically organised and well documented. Namely, users with well-
organised OPC signals were much faster in finding the required control signals and
therefore faster in commissioning the loop.

In practice, we often found some control-loops which perform poorly due to
inappropriate design of the controller, ill-chosen size of the actuators, high non-
linearity of the process, stiction or hysteresis of the valves or due to disturbances
influenced by the neighbouring control loops. The RaPro environment can identify
some of these problems when selecting an automatic experiment with several input
steps in both directions. However, the mentioned problems cannot be solved by the
environment. The only cure is better control loop design and careful selection of the
actuators.

Since the RaPro environment is aimed at tuning more generalised control struc-
tures, it lacks a few specific controller structures which are used by some ven-
dors. Moreover, due to its generality, the number of parameters which should be
set/selected is somehow larger when compared to some vendor-specific controller
tuning packages. However, during the development of the environment, we tried
to find a sweet spot between complexity and ease-of-use. The number of feedback
structures, controller types, and functions performed by the environment is there-
fore chosen so as to cover a broader range of control solutions, on one hand, and to
remain efficient, on the other.

10.6 Conclusion

The Rapid Prototyping (RaPro) environment for control systems implementation
has been presented. The main functions of the environment are setting the parame-
ters of and executing the experiment, data treatment, process modelling, controller
tuning, and automatic report generation. The current version of the environment
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enables tuning and testing of PID types of controllers, including cascade control
loops, and Smith predictor controllers for SISO and TITO processes. A predictive
functional controller is the next type of controller to be implemented, but such is
still under development.

The RaPro environment has been tested on several laboratory and industrial pro-
cesses. The results of experiments showed that it enables design and experimental
evaluation of control loops in an easy and relatively fast way and thus contributes to
more efficient implementation of control systems. Note that a simpler version of the
developed prototyping environment is available for free on the Internet [22, 24].

A disadvantage of the RaPro environment, especially for TITO systems, is its
relatively complex user interface, which is sometimes less intuitive. Moreover, the
environment calculates parameters for generic PID controller structures and does
not take into account some specific controller structures from different vendors.
Therefore, in some cases, users are forced to re-calculate controller parameters for
some specific controller structures.
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