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Abstract Recent advances in artificial neural networks (ANN) propose an alter-
native promising methodological approach to the problem of time series assess-
ment as well as point spatial interpolation of irregularly and gridded data. In the
field of wind power sustainable energy systems ANNs can be used as function
approximators to estimate both the time and spatial wind speed distributions based
on observational data. The first part of this work reviews the theoretical back-
ground, the mathematical formulation, the relative advantages, and limitations of
ANN methodologies applicable to the field of wind speed time series and spatial
modeling. The second part focuses on implementation issues and on evaluating the
accuracy of the aforementioned methodologies using a set of metrics in the case of
a specific region with complex terrain. A number of alternative feedforward ANN
topologies have been applied in order to assess the spatial and time series wind
speed prediction capabilities in different time scales. For the temporal forecasting
of wind speed ANNs were trained using the Levenberg–Marquardt backpropa-
gation algorithm with the optimum architecture being the one that minimizes the
Mean Absolute Error on the validation set. For the spatial estimation of wind speed
the nonlinear Radial basis function Artificial Neural Networks are compared
versus the linear Multiple Linear Regression scheme.
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12.1 Introduction

During the past few decades, there has been a substantial increase in the interest on
artificial neural networks (ANN). ANNs have been successfully adopted in solving
complex problems in many fields. Essentially, ANNs provide a methodological
approach in solving various types of nonlinear problems that are difficult to deal
with using traditional techniques. Often, a geophysical phenomenon exhibits
temporal and spatial variability, and is suffering by issues of nonlinearity,
conflicting spatial and temporal scale, and uncertainty in parameter estimation
(Deligiorgi and Philippopoulos 2011). ANNs have been proved to be flexible
models that have the capability to learn the underlying relationships between the
inputs and outputs of a process, without needing the explicit knowledge of how
these variables are related. Kalogirou presented a detailed review of the applica-
tion of ANN in a variety of renewable energy systems (Kalogirou 2001).

Wind power renewable energy generation is growing rapidly in the past two
decades. The accurate forecasting of wind speed is critical for wind power gen-
eration in order to reduce the reserve capacity and to increase the wind power
penetration (Lei et al. 2009). One can find a review on the history of wind speed
short-term prediction for wind power generation (Costa et al. 2008). Traditional
spatial interpolation methods have been used to estimate wind speed at unsampled
locations, using point observations within the same region under study. Cellura
et al. have employed the Inverse distance weighted method and the Kriging
geostatistical approach to produce wind speed maps for the island of Sicily
(Cellura et al. 2008). Furthermore, Luo et al. compared seven spatial interpolation
methodologies in order to determine their suitability for estimating daily mean
wind speed surfaces in England and Wales and found that the cokriging scheme
was most likely to produce the best estimation of a continuous wind speed surface
(Luo et al. 2008). In the field of wind speed prediction, conventional time series
models have been widely employed to generate short-term wind speed predictions
(Cadenas and Rivera 2007; Kamal and Jafri 1997; Poggi et al. 2003). Torres et al.
(2005) utilized ARMA models for forecasting wind speed up to 10 h in advance in
Navarre, Spain and found that they outperform the persistence model especially in
the longer term forecasts.

A classification of the various methods with different time scales for the esti-
mation of wind speed has been presented recently (Soman et al. 2010). Among
them, ANNs are characterized as an accurate approach for the short-term (i.e.,
30 min–6 h ahead) prediction and their hybrid structures useful for the medium to
long-term forecasts. Beyer et al. (1994) used an ANN with a rather simple
topology for wind speed prediction, while more complex ANN structures did not
improve the results further. Kariniotakis et al. developed a recurrent high order
ANN for the prediction of the power output profile of a wind park (Kariniotakis
1996). Mohandes et al. (1998) applied an ANN for wind speed prediction and
compared its performance with an autoregressive model for the area of Jeddah,
Saudi Arabia. More and Deo (2003) used both Feed Forward as well as recurrent
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ANNs to forecast daily, weekly as well as monthly wind speeds at two coastal
locations in India. Barbounis and Theocharis used local recurrent ANNs with on-
line learning algorithms, based on the recursive prediction error, for the wind
speed prediction in wind farms (Barbounis and Theocharis 2007). Li and Shi
presented a comparative study on the application of three typical ANN in one-
hour-ahead wind speed forecasting for two sites in North Dakota (Li and Shi
2010). Fadare used ANNs to produce monthly maps for the assessment of wind
energy potential for different locations within Nigeria (Fadare 2010). In order to
improve the performance of the wind speed prediction process, Bouzgou, and
Benoudjit proposed a multiple architecture system that combines ANNs, Multiple
Linear Regression (MLR), and Support Vector Machines (Bouzgou and Benoudjit
2011). Finally, Philippopoulos and Deligiorgi assess the spatial predictive ability
of ANNs to estimate mean hourly wind speed values in a region with complex
topography and compare the results with five traditional spatial interpolation
schemes (Philippopoulos and Deligiorgi 2012). Moreover, in their work the effect
of the inclusion of wind direction is assessed and the ANNs are examined for their
capacity to incorporate the mean wind characteristics in the study area.

An important aspect of a wind resource assessment program is the wind
resource evaluation, which relies heavily on the quality and the availability of
wind speed data. A common approach to overcome the problem of limited on-site
data availability is the measure–correlate–predict (MCP) method, which makes
use of the long-term wind data from nearby climatological stations and a short-
term wind speed record from the site under study. The method, based on various
correlation techniques, employs the statistical relationship between the two wind
speed time series. Under this framework, ANNs have been used as a nonlinear
MCP model (Oztopal 2006; Bilgili et al. 2007) and are found, compared to linear
MCP algorithms, to decrease significantly the associated wind speed estimation
error (Velázquez et al. 2011).

In this work first we review the theoretical background, the mathematical
formulation, the relative advantages, and limitations of ANN methodologies
applicable to the field of wind speed time series and spatial modeling. In the
second part we focus on implementation issues and on evaluating the accuracy of
the aforementioned methodologies using a set of metrics in the case of a specific
region with complex terrain at Chania, Crete Island, Greece. A number of alter-
native feedforward ANN topologies are applied in order to assess the spatial and
time series wind speed prediction capabilities in different time scales.

12.2 Artificial Neural Networks

Artificial neurons are process element (PE) that attempt to simulate in a simplistic
way the structure and function of the real physical biological neurons. A PE in its
basic form can be modeled as nonliner element (see Fig. 12.1) that first sums its
weighted inputs x1, x2, x3,…xn (coming either from original data, or from the
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output of other neurons in a neural network) and then passes the result through an
activation function W (or transfer function) according to the formula:

yi ¼ W
Xn

i¼1

xiwji þ hj

 !
ð12:1Þ

where yj is the output of the artificial neuron, hj is an external threshold (or bias
value) and wji are the weight of the respective input xi which determines the
strength of the connection from the previous PE’s to the corresponding input of the
current PE. Depending on the application, various nonlinear or linear activation
functions W have been introduced (Fausett 1994; Bishop 1995) like the: signum
function (or hard limiter), sigmoid limiter, quadratic function, saturation limiter,
absolute value function, Gaussian and hyperbolic tangent functions (Fig. 12.2).
ANN are signal or information processing systems constituted by an assembly of a
large number of simple Processing Elements, as they have been described above.
The PE of a ANN are interconnected by direct links called connections and
cooperate to perform a Parallel Distributed Processing in order to solve a specific
computational task, such as pattern classification, function approximation, clus-
tering (or categorization), prediction (or forecasting or estimation), optimization,
and control. One of the main strength of ANNs is their capability to adapt
themselves by modifying the interaction between their PE. Another important
feature of ANNs is their ability to automatically learn from a given set of repre-
sentative examples.

Fig. 12.1 Functional model
of an artificial neuron or
process element (PE)

Fig. 12.2 Examples of activation functions W: a hyperbolic tangent sigmoid transfer function,
b Gaussian: radbas(n) = exp(-n2) and c linear
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The architectures of ANNs can be classified into two main topologies: (a)
Feedforward multilayer networks (FF-ANN) in which feedback connections are
not allowed and (b) Feedback recurrent networks (FB-ANN) in which loops exist.
FF-ANNs are characterized mainly as static and memory-less systems that usually
produce a response to an input quickly (Jain et al. 1996). Most FF-ANNs can be
trained using a wide variety of efficient conventional numerical methods. FB-
ANNs are dynamic systems. In some of them, each time an input is presented, the
ANN must iterate for a potentially long time before it produces a response.
Usually, they are more difficult to train FB-ANNs compared to FF-ANNs.

FF-ANNs have been found to be very effective and powerful in prediction,
forecasting or estimation problems (Zhang et al. 1998). Multilayer perceptrons
(MLPs) (Fig. 12.3) and Radial basis function (RBF) topologies (Fig. 12.4) are the
two most commonly used types of FF-ANNs. Essentially, their main difference is
the way in which the hidden PEs combine values coming from preceding layers:
MLPs use inner products, while RBF constitutes a multidimensional function
which depends on the distance r ¼ x� ck k between the input vector x and the
center c (where �k k denotes a vector norm) (Powell 1987). As a consequence, the
training approaches between MLPs and RBF-based FF-ANN is not the same,
although most training methods for MLPs can also be applied to RBF ANNs. In
RBF FF-ANNs the connections of the hidden layer are not weighted and the
hidden nodes are PEs with a RBF, however, the output layer performs simple
weighted summation of its inputs, like in the case of MLPs. One simple approach
to approximate a nonlinear function is to represent it as a linear combination of a
number of fixed nonlinear RBFs ziðxÞf g, according to:

UðxÞ ¼
Xl

i¼1

zi xð Þwi ð12:2Þ

Fig. 12.3 Multilayer
perceptron Feedforward ANN
network architecture
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Typical choices for RBFs zi ¼ F x� ck kð Þ are: piecewise linear approxima-
tions, Gaussian function, cubic approximation, multiquadratic function, and thin
plate splines.

A MLP FF-ANN can have more than one hidden layer. But theoretical research
has shown that a single hidden layer is sufficient in that kind of topologies to
approximate any complex nonlinear function (Cybenco 1989; Hornik et al. 1989).

There are two main learning approaches in ANNs: (1) supervised, in which the
correct results are known and they are provided to the network during the training
process, so that the weights of the PEs are adjusted in order its output match the
target values and (2) unsupervised, in which the ANN performs a kind of data
compression, looking for correlation patterns between them and by applying
clustering approaches. Moreover, hybrid learning (i.e., a combination of the
supervised and unsupervised methodologies) has been applied in ANNs. Numer-
ous learning algorithms have been introduced for the above learning approaches
(Jain et al. 1996).

The introduction of the back propagation learning algorithm (Rumelhart et al.
1986) to obtain the weight of a multilayer MLP could be regarded as one of the
most significant breakthroughs for training ANNs. The objective of the training is
to minimize the training mean square error Emse of the ANN output compared to
the required output for all the training patterns:

Emse ¼
Xp

k¼1

Ek ¼
1

2N

X

j¼Y

Xp

k¼1

yi � dkj

� �2 ð12:3Þ

where: Ek is the partial network error, p is the number of the available patterns and
Y the set of the output PEs. The new configuration in time t [ 0 is calculated as
follows:

Fig. 12.4 Radial basis
function FF-ANN
architecture
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wjiðkÞ ¼ wjiðk � 1Þ � a
oE

owji
þ b wjiðk � 1Þ � wjiðk � 2Þ
� �

ð12:4Þ

where 0 \ a\ 1 is the speed of learning, b is the momentum and the constant a
determines the speed of the training. If a low a value is set, the network weights
react very slowly. On the contrary, high a values cause divergence, i.e., the
algorithm fails. Therefore, the parameter a is set experimentally.

To speed up the training process, the faster Levenberg–Marquardt Back
propagation Algorithm has been introduced (Yu and Wilamowski 2011). It is fast
and has stable convergence and it is suitable for training ANN in small-and
medium-sized problems. The new configuration of the weights in the k ? 1 step is
calculated as follows:

wðk þ 1Þ ¼ wðkÞ � JT J þ kI
� ��1

JTeðkÞ ð12:5Þ

The Jacobian matrix for a single PS can be written as follows:

J ¼

oe1

ow1
� � � oe1

own

oe1

ow0

..

. ..
. ..

.

oep

ow1
� � � oep

own

oep

ow0

2

6666664

3

7777775
¼

x11 � � � xn1 1

..

. ..
. ..

.

x1p � � � xnp 1

2
664

3
775 ð12:6Þ

where: w is the vector of the weights, w0 is the bias of the PE and e is the error
vector, i.e., the difference between the actual and the required value of the ANN
output for the individual pattern. The parameter k is modified based on the
development of the error function E.

12.3 Application of ANN in Wind Speed Estimation

The present work aims to quantify the ability of ANNs to estimate and model the
temporal and spatial wind speed variability at a coastal environment. We focus on
implementation issues and on evaluating the accuracy of the aforementioned
methodologies in the case of a specific region with complex terrain. A number of
alternative ANN topologies are applied in order to assess the spatial and time
series wind speed prediction capabilities in different time scales.

Moreover, this work presents an attempt to develop an extensive model perfor-
mance evaluation procedure for the estimation of the wind speed using ANNs. This
procedure incorporates a variety of correlation and difference statistical measures. In
detail, the correlation coefficient (R), the coefficient of determination (R2), the mean
bias error (MBE), the mean absolute error (MAE), the root mean square error
(RMSE), and the index of agreement (d) are calculated for the examined predictive
schemes. The formulation and the applicability of such measures are extensively
reported in (Fox 1981; Willmott 1982; Willmott et al. 1985).
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12.3.1 Area of Study and Experimental Data

The study area is the Chania plain, located on the northwestern part of the island of
Crete in Greece. The greater area is constricted by physical boundaries, which are
the White Mountains on the south, the Aegean coastline on the northern and
eastern part, and the Akrotiri peninsula at the northeast of Chania city (Fig. 12.5).
The topography of the region is complex due to the geophysical features of the
region. The influence of the island of Crete on the wind field, especially during
summer months and days where northerly etesian winds prevail, is proven to cause
a leftward deflection and an upstream deceleration of the wind vector (Koletsis
et al. 2009, 2010; Kotroni et al. 2001). Moreover, the wind direction of the local
field at the broader area of Chania city varies significantly due to the different
topographical features (Deligiorgi et al. 2007).

In this study, mean hourly wind speed and direction data are obtained from a
network of six meteorological stations, namely TEI, Souda, Platanias, Malaxa,
Pedio Volis, and Airport (Fig. 12.5). The measurement sites cover the topo-
graphical and land-use variability of the region (Table 12.1). TEI, Souda, and
Malaxa stations are situated along the north–south axis, perpendicular to the
Aegean coastline. Moreover, TEI and Platanias stations are representative of
the coastal character of the region and the climatological station at the Airport of
the meteorological conditions that prevail at the Akrotiri peninsula. TEI station is
located at the east and in close proximity to the densely populated urban district of
Chania city and in this application it will be used as the reference station for
examining the performance of the temporal and spatial ANN models. Its wind
speed characteristics are presented in Fig. 12.6 in terms of the resulting wind rose

Fig. 12.5 Area of study and location of meteorological stations
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diagram (Fig. 12.6a), the wind speed distribution for the overall experimental
period along with the corresponding Weibull distribution fit (Fig. 12.6b). The
mean wind speed is 2.706 ms-1 and the higher wind speed values are associated
with northern to northeastern flows during the cold and the transitional (spring and
autumn) periods of the year, as a consequence of the combined effect of the
synoptic, regional, and small-scale systems.

Table 12.1 Geographical characteristics of the meteorological stations

Latitude (�N) Longitude (�W) Elevation (m) Characterization

TEI 35�310090 0 24�020330 0 38 Suburban–Coastal
Souda 35�300300 0 23�540400 0 118 Suburban
Platanias 35�290460 0 24�030000 0 23 Rural–Coastal
Malaxa 35�270570 0 24�020330 0 556 Rural
Pedio Volis 35�340110 0 24�100200 0 422 Rural

Fig. 12.6 Wind speed
characteristics for the
meteorological station TEI
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12.3.2 Temporal Forecasting of Wind Speed

12.3.2.1 ANN Implementation Methodology

For the temporal forecasting of wind speed, ANNs are used as function approxi-
mators aiming to estimate the wind speed in a location using the current and
previous wind speed observations from the same site.

In this application the FeedForward Neural Network architecture with one
hidden layer is selected for predicting the wind speed time series. The wind speed
characteristics (rose diagrams and wind speed frequency distributions) for the
meteorological station of TEI are presented in Fig. 12.6.

Separate ANNs are trained and tested for predicting the 1 h (ANN_T1), 2 h
(ANN_T2), and 3 h (ANN_T3) ahead wind speed at TEI, based on the current and
the five previous wind speed observations from the same site. Therefore, the input
in each ANN is the wind speed at t, t - 1, t - 2, t - 3, t - 4, and t-5 and the
output is the wind speed at: t ? 1 for the ANN_T1, t ? 2 for the ANN_T2, and
t ? 3 for the ANN_T3.

The study period is from August 2004 to September 2006 and due to missing
observations the input datasets consist of 11,607 samples of six consecutive hourly
observations for the ANN_T1 model, 11,537 and 11,540 six-element vectors for
the ANN_T2, and ANN_T3 models, respectively. In all cases, the first 60 % of the
dataset is used for training the ANNs, the subsequent 20 % for validation and the
remaining 20 % for testing.

The optimum architecture (number of PEs in the hidden layer) is related to the
complexity of the input and output mapping, along with the amount of noise and
the size of the training data. A small number of PEs result to a non-optimum
estimation of the input–output relationship, while too many PEs result to over-
fitting and failure to generalize (Gardner and Dorling 1998). In this study the
selection of the number of PEs in the hidden layer is based on a trial and error
procedure and the performance is measured using the validation set. In each case,
ANNs with a varying number from 5 to 25 PEs in the hidden layer were trained
using the Levenberg–Marquardt backpropagation algorithm with the optimum
architecture being the one that minimizes the MAE on the validation set.

The dimensioned evaluations of model-performance error should be based on
MAE (Willmott and Matsuura 2005), although the RMSE or the Mean Square
Error (MSE) are widely used in the literature. A drawback of the backpropagation
algorithm is its sensitivity to initial weights.

During training, the algorithm can become trapped in local minima of the error
function, preventing it from finding the optimum solution (Heaton 2005). In this
study and for eliminating this weakness, each network is trained multiple times (50
repetitions) with different initial weights. A hyperbolic tangent sigmoid transfer
function tansig(n) = 2/(1 ? exp(-2n))-1 (Fig. 12.2a) was used as the activation
function W for the PEs of the hidden layer. In the output layers, PEs with a linear
transfer function were used (Fig. 12.2c).
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12.3.2.2 Results

The optimum topologies of the selected ANNs that minimized the MAE on the
validation set are presented in Table 12.2. In all cases, the architecture includes six
PEs in the input layer and one PE in the output layer. The results indicate that the
number of the neurons in the hidden layer is increased as the lag for forecasting the
wind speed is increased.

The model evaluation statistics for the TEI station are presented in Table 12.3
and the observed and predicted time series are compared in the scatter plots of
Fig. 12.7 and in Fig. 12.8, where a fraction of both time series is illustrated. A
general remark is that the ANNs performance is decreased with increasing the
forecasting lag. In all cases the MAE is less than 1 ms-1 and the explained
variance decreases from 79.74 % for the ANN_T1 to 55.98 % for the ANN_T3
model.

The ANN_T1 model exhibits very good performance, as it is observed from the
limited dispersion along the optimum agreement line of the 1 h wind speed pre-
diction (Fig. 12.7a). The data dispersion for the ANN_T2 (Fig. 12.7b) and for the
ANN_T3 (Fig. 12.7c) scatter plots is increased and a small tendency of over-
estimation of the low wind speed values along with an under estimation of the high
wind speed values is observed. The effect of this finding in the overall model
performance is minimal for the ANN_T2 model (Fig. 12.8b) and becomes rela-
tively important for the 3 h ahead prediction (Fig. 12.8c). Regarding the residuals
distributions (Fig. 12.9), the errors for the ANN_T1 and for the ANN_T2 are
approximately centered at 0 ms-1, while for the ANN_T3 model the maxima of
the distribution is shifted to the left (negative residual values).

12.3.3 Spatial Estimation of Wind Speed

12.3.3.1 ANN Implementation Methodology

For the spatial estimation of wind speed the nonlinear RBF-ANN are compared
versus the linear MLR scheme.

Table 12.2 Optimum ANN architecture—number of PEs at the input, hidden, and output layer

ANN_T1 ANN_T3 ANN_T2

6-7-1 6-20-1 6-15-1

Table 12.3 ANN-based model performance

R R2 MBE (ms-1) MAE (ms-1) RMSE (ms-1) d

ANN_T1 0.8930 0.7974 0.0150 0.5942 0.8969 0.9377
ANN_T2 0.8056 0.6490 0.0070 0.8156 1.1801 0.8855
ANN_T3 0.7482 0.5598 -0.0258 0.9494 1.3149 0.8321
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The target station is located at TEI, while the concurrent wind speed obser-
vations from the remaining sites—control stations (Souda, Malaxa, Platanias,
PedioVolis, and Airport) are used as inputs in the RBF-ANN model. In an anal-
ogous procedure for the MLR scheme, the wind speed at TEI is regarded as the
response variable and the wind speed observations at the control stations as the
explanatory variables.

The 60 % of the available data (7,300 cases) was used for building and training
the models (training set), the subsequent 20 % as the validation set and the
remaining 20 % (2433 cases from 2006/01/24 to 2006/08/31) as the test set which
is used to examine the performance of both the RBF-ANN and the MLR models.
In the case of the RBF-ANN, the validation set is used for selecting the optimum
value of the spread parameter, using the trial and calculating the error procedure by
minimizing the MAE.

The ANN used had five inputs, a hidden layer with radial basis with 7,300
artificial neurons with Gaussian activation functions radbas(n) = exp(-n2)
(Fig. 12.2b) and the output layer has one PE with linear activation function
(Fig. 12.2c).

Fig. 12.7 Comparison of the observed and ANN-based predicted wind speed values for t ? 1
(a), t ? 2 (b) and t ? 3 (c)
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12.3.3.2 Results

The parameters of the MLR equation calculated from the experimental data were:

WSTEI ¼� 0:2031þ 0:3762WSSOU þ 0:4064WSPLA

þ 0:0318WSMAL þ 0:0577WSPBK þ 0:0370WSAIR

ð12:7Þ

Fig. 12.8 Time series
comparison from 2006/06/30
to 2006/07/10 for t ? 1
(a), t ? 2 (b) and t ? 3 (c)
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The higher partial regression coefficients are associated with the wind speed at
Platanias (0.4064) and at Souda station (0.3782), attributed to the coastal char-
acteristics of the TEI and Platanias stations and to the proximity of the TEI and
Souda measurement sites.
Regarding the RBF-ANN model and the selection of the optimum spread
parameter value, the minima of the MAE error on the validation set is observed
after a sharp MAE decrease. In this spread parameter region the neurons do not
respond to overlapping regions of the input space. For larger values, the MAE
error increases gradually, reaching a secondary maximum and remains constant
thereafter as all the neurons respond with the same manner.

The model evaluation statics for the TEI station for both RBF-ANN and MLR
approaches are presented in Table 12.4. A general remark is that the nonlinear
RBF-ANN model outperforms the linear MLR scheme and that both models
perform reasonably well. The explained variance is 73.77 % for the RBF-ANN
model and close to 70 % (69.1 %) for the MLR scheme and both scheme exhibit
high index of agreement values (0.9213 and 0.8925 respectively) and minimal bias
errors.

The comparison of the observed and the predicted wind speed values for both
models are presented in Fig. 12.10 scatter plots and the respective residuals’

Fig. 12.9 Residuals’ distributions for t ? 1 (a), t ? 2 (b) and t ? 3 (c) ANN-based predictions
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Table 12.4 Model performance metrics for the TEI station

R R2 MBE (ms-1) MAE (ms-1) RMSE (ms-1) d

MLR 0.8313 0.6910 0.0089 0.7487 1.0760 0.8925
RBF-ANN 0.8589 0.7377 0.0092 0.6944 0.9853 0.9213

Fig. 12.10 Comparison of
the predicted and observed
wind speed at the TEI station
for the RBF-ANN (a) and for
the MLR scheme (b)
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distributions are given in Fig. 12.11. Limited data dispersion is observed for both
models, while the linear model exhibits signs of under-prediction for the higher
wind speed values. In both cases the residuals are symmetrically distributed
around 0 ms-1.

Moreover, a time series comparison between the observed and the predicted
wind speed from the RBF-ANN model are presented in Fig. 12.12 for the period
21/6/2006–19/7/2006. The predicted wind speed time series follows closely the
observed values with no signs of systematic errors. An additional statistical
comparison of the observed and the RBF-ANN predicted time series is performed
based on their resulting wind speed frequency distributions and the corresponding
two-parameter Weibull distribution fits (Fig. 12.13). The two Weibull probability
density functions are assessed for statistically significant differences, using the
paired t test. The null hypothesis that the frequency differences have zero mean is
accepted the 0.05 significance level (p value = 0.6439).

Fig. 12.11 Residuals
distribution for the RBF-
ANN (a) and the MLR
(b) model
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12.4 Conclusions

The ability of neural networks to spatial estimate and predict short-term wind
speed values is studied extensively and is well established. We reviewed the
theoretical background, the mathematical formulation, the relative advantages, and
limitations of ANN methodologies applicable to the field of wind speed time series
and spatial modeling. Then, we have applied ANNs methodologies in the case of a
specific region with complex terrain at Chania coastal region, Crete island, Greece.
Details of the implementation issues are given along with the set of metrics for
evaluating the accuracy of the methodology. A number of alternative feedforward

Fig. 12.12 Time series comparison of wind speed between observed and RBF-ANN-based
estimation

Fig. 12.13 Weibull
probability distributions fits
to the observed time series
(k = 1.558 and
c = 3.102 ms-1) (a) and to
the RBF-ANN predicted time
series (k = 1.794 and
c = 3.148 ms-1)
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ANN topologies have been applied in order to assess the spatial and time series
wind speed prediction capabilities. For the 1, 2, and 3 h ahead wind speed tem-
poral forecasting at a specific site ANNs were trained based on the current and the
five previous wind speed observations from the same site using the Levenberg–
Marquardt backpropagation algorithm with the optimum architecture being the one
that minimizes the MAE on the validation set. For the spatial estimation of wind
speed at a target site the nonlinear RBF-ANN were compared versus the linear
MLR scheme, using the concurrent wind speed observations from five sites at the
same region. The underlying wind speed temporal and spatial variability is found
to be modeled efficiently by the ANNs.
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