

Advances in Applied Self-Organizing Systems

Advanced Information and Knowledge Processing

Series Editors
Professor Lakhmi C. Jain
lakhmi.jain@unisa.edu.au

Professor Xindong Wu
xwu@cs.uvm.edu

For further volumes:
www.springer.com/series/4738

mailto:lakhmi.jain@unisa.edu.au
mailto:xwu@cs.uvm.edu
http://www.springer.com/series/4738

Mikhail Prokopenko
Editor

Advances in
Applied Self-
Organizing
Systems

Second Edition

Editor
Mikhail Prokopenko
ICT Centre
CSIRO
Marsfield, NSW
Australia

ISSN 1610-3947 Advanced Information and Knowledge Processing
ISBN 978-1-4471-5112-8 ISBN 978-1-4471-5113-5 (eBook)
DOI 10.1007/978-1-4471-5113-5
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013938780

© Springer-Verlag London 2008, 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

It has been 60 years since the first time that a system was termed “self-organizing”
in modern scientific literature.1 During this time, the concept of self-organization
developed in many directions and affected diverse fields, ranging from biology to
physics to social sciences. For example, in his seminal book “At home in the Uni-
verse”, Stuart Kauffman argued that natural selection and self-organization are two
complementary forces necessary for evolution: “If biologists have ignored self-
organization, it is not because self-ordering is not pervasive and profound. It is
because we biologists have yet to understand how to think about systems gov-
erned simultaneously by two sources of order . . . if ever we are to attain a final
theory in biology, we will surely, surely have to understand the commingling of
self-organization and selection”.2 A similar dilemma can be re-phrased for various
fields of engineering: If engineers have ignored self-organization, it is not because
self-ordering is not pervasive and profound. It is because we engineers have yet to
understand how to think about systems governed simultaneously by two sources of
order: traditional design and self-organization.

Without claiming an undue comprehensiveness, this book presents state-of-the-
practice of self-organizing systems, and suggests a high-level breakdown of appli-
cations into two general areas:

• Distributed Management and Control;
• Self-organizing Computation.

Each of these areas is exemplified with a selection of invited contributions, written
and peer-reviewed by international experts in their respective fields, convincingly
demonstrating achievements of self-organizing systems. The overall selection bal-
ances many aspects: modelling vs simulation vs deployment, as well as macro- vs
micro-scale.

1Ashby, W. R. (1947). Principles of the self-organizing dynamic system. Journal of General Psy-
chology, 37, 125–128.
2Kauffman, S. (1995). At home in the Universe (p. 112). London: Oxford University Press.

v

vi Preface

We begin with more established fields of traffic management, sensor networks,
and structural health monitoring, building up towards robotic teams, solving chal-
lenging tasks and deployed in tough environments. These scenarios mostly belong
to macro-level, where multiple agents (e.g, robots) themselves may contain compli-
cated components. Nevertheless, the main topic is self-organization within a multi-
agent system, brought about by interactions among the agents. The second half of
the book follows with a deeper look into the micro-level, and considers local in-
teractions between agents such as particles, cells, and neurons. These interactions
lead towards self-organizing resource management, scheduling, and visualization,
as well as self-modifying digital circuitry, immunocomputing, memristive excitable
automata, and eventually to Artificial Life.

We believe that the broad range of scales at which self-organizing systems are ap-
plied to real-world problems is one of the most convincing arguments for acceptance
of the unifying theme—practical relevance and applicability of self-organization.

The second edition revisits these studies, providing concise summaries of the
research during the last 5 years (the chapter “epilogues”), while offering new exten-
sions for several important works. These extensions cover a diverse field, including
a distributed thermal protection system for a spacecraft re-entering the atmosphere;
self-configuring analog (Songline) processors; ad-hoc multi-robot systems with de-
centralized control; memristive cellular automata applicable to spintronic devices,
neuromorphic circuits, and programmable electronics.

The progress demonstrated by the applied self-organizing systems that were de-
veloped in the last years is encouraging. An important general trend that emerged
in the area since the first edition is Guided Self-Organization (GSO): an approach
leveraging the strengths of self-organization while directing the outcome of the self-
organizing process towards some specific goals. The approach builds up on earlier
ideas of “design for emergence” and “emergent functionality” (as Luc Steels called
it in late 1980s), aiming to provide a formal framework for studying and designing
GSO systems. Equipped with such a unifying framework, designers may hope not
only to produce the systems quicker and more reliably, but also to precisely ver-
ify and validate eventual performance of the outcomes—the key prerequisite to a
wide-range adoption of self-organizing applications.

Mikhail ProkopenkoSydney
April 2007 (first edition)
January 2013 (second edition)

Contents

Part I Introduction

1 Design Versus Self-Organization . 3
Mikhail Prokopenko

2 Foundations and Formalizations of Self-Organization 23
Daniel Polani

Part II Distributed Management and Control

3 Self-Organizing Traffic Lights: A Realistic Simulation 45
Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle
Thermal Protection System . 57
Nigel Hoschke, Don C. Price, and D. Andrew Scott

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems . . 91
George Mathews and Hugh Durrant-Whyte

6 Learning Mutation Strategies for Evolution and Adaptation
of a Simulated Snakebot . 135
Ivan Tanev

7 Self-Organization as Phase Transition in Decentralized Groups
of Robots: A Study Based on Boltzmann Entropy 157
Gianluca Baldassarre

8 Distributed Control of Microscopic Robots in Biomedical
Applications . 179
Tad Hogg

vii

viii Contents

Part III Self-Organizing Computation

9 Self-Organizing Computing Systems: Songline Processors 211
Nicholas J. Macias and Lisa J.K. Durbeck

10 Self-Organizing Nomadic Services in Grids 263
Tino Schlegel and Ryszard Kowalczyk

11 Immune System Support for Scheduling 295
Young Choon Lee and Albert Y. Zomaya

12 Formal Immune Networks: Self-Organization and Real-World
Applications . 321
Alexander O. Tarakanov and Alla V. Borisova

13 A Model for Self-Organizing Data Visualization Using
Decentralized Multi-Agent Systems 343
Andrew Vande Moere

14 Memristive Excitable Automata: Structural Dynamics,
Phenomenology, Localizations and Conductive Pathways 379
Andrew Adamatzky and Leon Chua

Part IV Discussion

15 A Turing Test for Emergence . 401
Fabio Boschetti and Randall Gray

Index . 417

Contributors

Andrew Adamatzky University of the West of England, Bristol, UK

Gianluca Baldassarre Laboratory of Autonomous Robotics and Artificial Life, Is-
tituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche
(LARAL-ISTC-CNR), Rome, Italy

Alla V. Borisova St. Petersburg Institute for Informatics and Automation, Russian
Academy of Sciences, St. Petersburg, Russia

Fabio Boschetti Marine and Atmospheric Research, Commonwealth Scientific and
Industrial Research Organisation (CSIRO), Wembley, WA, Australia

Leon Chua EECS Department, University of California, Berkeley, Berkeley, CA,
USA

Seung-Bae Cools Centrum Leo Apostel, Vrije Universiteit Brussel, Brussels, Bel-
gium

Bart D’Hooghe Centrum Leo Apostel, Vrije Universiteit Brussel, Brussels, Bel-
gium

Lisa J.K. Durbeck Cell Matrix Corporation, Blacksburg, VA, USA

Hugh Durrant-Whyte National ICT Australia (NICTA), Australian Technology
Park, Eveleigh, NSW, Australia

Carlos Gershenson Centrum Leo Apostel, Vrije Universiteit Brussel, Brussels,
Belgium

Randall Gray Marine and Atmospheric Research, Commonwealth Scientific and
Industrial Research Organisation (CSIRO), Hobart, TAS, Australia

Tad Hogg Hewlett-Packard Laboratories, Palo Alto, CA, USA

Nigel Hoschke Materials Science and Engineering, Commonwealth Scientific and
Industrial Research Organisation (CSIRO), Lindfield, NSW, Australia

ix

x Contributors

Ryszard Kowalczyk Swinburne Centre for Information Technology Research,
Faculty of Information and Communication Technologies, Swinburne University
of Technology, Melbourne, Australia

Young Choon Lee School of Information Technologies, The University of Sydney,
Sydney, NSW, Australia

Nicholas J. Macias Cell Matrix Corporation, Blacksburg, VA, USA

George Mathews National ICT Australia (NICTA), Australian Technology Park,
Eveleigh, NSW, Australia

Daniel Polani Adaptive Systems Research Group, Department of Computer Sci-
ence, University of Hertfordshire, Hatfield, UK

Don C. Price Materials Science and Engineering, Commonwealth Scientific and
Industrial Research Organisation (CSIRO), Lindfield, NSW, Australia

Mikhail Prokopenko ICT Centre, Commonwealth Scientific and Industrial Re-
search Organisation (CSIRO), Epping, NSW, Australia

Tino Schlegel Swinburne Centre for Information Technology Research, Faculty of
Information and Communication Technologies, Swinburne University of Technol-
ogy, Melbourne, Australia

D. Andrew Scott National Measurement Institute, Lindfield, NSW, Australia

Ivan Tanev Department of Information Systems Design, Doshisha University, Ky-
otanabe, Kyoto, Japan

Alexander O. Tarakanov St. Petersburg Institute for Informatics and Automation,
Russian Academy of Sciences, St. Petersburg, Russia

Andrew Vande Moere Faculty of Architecture, Design and Planning, The Univer-
sity of Sydney, Sydney, NSW, Australia

Albert Y. Zomaya School of Information Technologies, The University of Sydney,
Sydney, NSW, Australia

Part I
Introduction

Chapter 1
Design Versus Self-Organization

Mikhail Prokopenko

1.1 Introduction

The theory of self-organization has sufficiently matured over the last decades, and
begins to find practical applications in many fields. Rather than analyzing and com-
paring underlying definitions of self-organization—the task complicated by a mul-
tiplicity of complementary approaches in literature; e.g., recent reviews (Boschetti
et al. 2005; Prokopenko et al. 2009)—we investigate a possible design space for
self-organizing systems, and examine ways to balance design and self-organization
in the context of applications.

Typically, self-organization is defined as the evolution of a system into an or-
ganized form in the absence of external pressures. A broad definition of self-
organization is given by Haken: “a system is self-organizing if it acquires a spatial,
temporal or functional structure without specific interference from the outside. By
‘specific’ we mean that the structure or functioning is not impressed on the system,
but that the system is acted upon from the outside in a non-specific fashion. For in-
stance, the fluid which forms hexagons is heated from below in an entirely uniform
fashion, and it acquires its specific structure by self-organization” (Haken 1988).

Another definition is offered by Camazine et al. in the context of pattern for-
mation in biological systems: “Self-organization is a process in which pattern at
the global level of a system emerges solely from numerous interactions among the
lower-level components of the system. Moreover, the rules specifying interactions
among the system’s components are executed using only local information, without
reference to the global pattern” (Camazine et al. 2001).

In our view, these definitions capture three important aspects of self-organization.
Firstly, it is assumed that the system has many interacting components (agents), and
advances from a less organized state to a more organized state dynamically, over

M. Prokopenko (B)
ICT Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO),
PO Box 76, Epping, NSW 1710, Australia
e-mail: mikhail.prokopenko@csiro.au

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_1,
© Springer-Verlag London 2013

3

mailto:mikhail.prokopenko@csiro.au
http://dx.doi.org/10.1007/978-1-4471-5113-5_1

4 M. Prokopenko

some time, while exchanging energy, matter and/or information with the environ-
ment. Secondly, this organization is manifested via global coordination, and the
global behaviour of the system is a result of the interactions among the agents. In
other words, the global pattern is not imposed upon the system by an external order-
ing influence (Bonabeau et al. 1997). Finally, the components, whose properties and
behaviors are defined prior to the organization itself, have only local information,
and do not have knowledge of the global state of the system—therefore, the process
of self-organization involves some local information transfer (Polani 2003).

Self-organization within a system brings about several attractive properties, in
particular, robustness, adaptability and scalability. In the face of perturbations
caused by adverse external factors or internal component failures, a robust self-
organizing system continues to function. Moreover, an adaptive system may re-
configure when required, degrading in performance “gracefully” rather than catas-
trophically. In certain circumstances, a system may need to be extended with
new components and/or new connections among existing modules—without self-
organization such scaling must be pre-optimized in advance, overloading the tradi-
tional design process.

It is interesting at this stage to contrast traditional engineering methods with bi-
ological systems that evolve instead of being built by attaching together separately
pre-designed parts. Each biological component is reliant on other components and
co-evolves to work even more closely with the whole. The result is a dynamic sys-
tem where components can be reused for other purposes and take on multiple roles
(Miller et al. 2000), increasing robustness observed on different levels: from a cell
to an organism to an ant colony. Complementarity of co-evolving components is
only one aspect, however. As noted by Woese (2004), “Machines are stable and ac-
curate because they are designed and built to be so. The stability of an organism
lies in resilience, the homeostatic capacity to reestablish itself.” While tradition-
ally engineered systems may still result in brittle designs incapable of adapting to
new situations, “organisms are resilient patterns in a turbulent flow—patterns in an
energy flow” (Woese 2004). It is precisely this homeostatic resilience that can be
captured by self-organization.

However, in general, self-organization is a not a force that can be applied very
naturally during a design process. In fact, one may argue that the notions of design
and self-organization are contradictory: the former approach often assumes a me-
thodical step-by-step planning process with predictable outcomes, while the latter
involves non-deterministic spontaneous dynamics with emergent features.

Thus, the main challenge faced by designers of self-organizing systems is how to
achieve and control the desired dynamics. Erring on the one side may result in over-
engineering the system, completely eliminating emergent patterns and suppressing
an increase in internal organization with outside influence. Strongly favoring the
other side may leave too much non-determinism in the system’s behaviour, making
its verification and validation almost impossible. The balance between design and
self-organization is our main theme, and we hope to identify essential causes behind
successful applications, and propose guiding principles for future scenarios.

1 Design Versus Self-Organization 5

1.2 Background

Self-organization occurs in both biological and non-biological systems, ranging
from physics and chemistry to sociology. In non-biological systems, it is produced
by a flow of energy into or out of the system that pushes it beyond equilibrium: the
winds that produce characteristic ripples in sand, the temperature gradients that pro-
duce Bénard convection cells in a viscous fluid, the thermodynamic forces that lead
to crystal growth and characteristic molecular conformations are all examples of
these external energy inputs. However, the nature of the outcomes depends critically
on the interactions between the low-level components of the systems—the grains of
sand, the molecules in the fluid, the atoms in the crystals and molecules—and these
interactions are determined by the laws of nature and are immutable (Prokopenko
et al. 2006c).

In biological systems, on the other hand, the interactions between components of
a system may change over generations as a result of evolution. There are selection
pressures shaping adaptation of the system (a biological organism) to the environ-
ment. These selection pressures lead to self-organization that is desirable for the
survival of the system in the environment in which it has evolved, but which may
be undesirable in other environments. Similarly, when using evolutionary methods
for the design of applied self-organizing systems, there is a need to identify ap-
propriate selection pressures (described more systematically in Sect. 1.3). These
pressures constrain and channel components’ interactions to produce desirable re-
sponses (Prokopenko et al. 2006c).

Self-organization is typically (but not necessarily) accompanied by emergence of
new patterns and structures. An important distinction between two kinds of emer-
gence is identified by Crutchfield (1994):

• pattern formation, referring to an external observer who is able to recognize how
unexpected features (patterns) “emerge” during a process (e.g., spiral waves in
oscillating chemical reactions)—these patterns may not have specific meaning
within the system, but obtain a special meaning to the observer when detected;

• intrinsic emergence, referring to the emergent features which are important within
the system because they confer additional functionality to the system itself, e.g.
support global coordination and computation—for example, the emergence of
coordinated behaviour in a flock of birds allows efficient global information pro-
cessing through local interactions, which benefits individual agents.

In turn, the functional patterns emerging intrinsically can be further distinguished
in terms of their usage: one may consider an exploitation of the patterns while the
system is near an equilibrium, or an exploration of patterns during the system’s
shift away from an equilibrium. Examples of exploration include auto-catalytic pro-
cesses leading to optimal paths’ emergence, self-organized criticality phenomena,
self-regulatory behaviour during co-evolution, etc., whereas exploitation may be
used during traversing the optimal paths, self-assembly along optimal gradients,
replication according to error-correcting encodings, and so on.

Self-organization has been the topic of many theoretical investigations, while its
practical applications have been somewhat neglected. On the other hand there are

6 M. Prokopenko

many studies reporting various advances in the field, and the lack of a common
design methodology for these applications across multiple scales indicates a clear
gap in the literature. The following short review pinpoints relevant works which,
nevertheless, may set the scene for our effort.

Zambonelli and Rana (2005) discussed a variety of novel distributed comput-
ing scenarios enabled by recent advances in microelectronics, communication, and
information technologies. The scenarios are motivated by a number of challenges
which, on the one hand, make it impossible for application components to rely on a
priori information about their execution context, and on the other hand, make it very
difficult for engineers to enforce a strict micro-level control over the components.
These challenges call for novel approaches to distributed systems engineering, and a
point is made that the industry has also realized the importance of self-organization
and decentralized management approaches (the “Autonomic Computing” program
at IBM Research, the “Dynamic Systems Initiative” at Microsoft, and the “Adaptive
Enterprize” strategy from HP). Zambonelli and Rana conclude that “perhaps one of
the barriers for real-world adoption is the lack of support in existing distributed sys-
tems infrastructure to enable these techniques to be utilized effectively” (Zambonelli
and Rana 2005). One of the aims of our effort is to explore directions towards a bet-
ter adoption of self-organization as a concept for engineering distributed systems.
In addition, we intend to consider several novel applications, extending the range of
applicability of self-organizing systems.

Sahin and Spears (2004) consider swarm robotics—the study of how a swarm
of relatively simple physically embodied agents can be constructed to collectively
accomplish tasks that are beyond the capabilities of a single one. Unlike other stud-
ies on multi-robot systems, swarm robotics emphasizes self-organization and emer-
gence, while keeping in mind the issues of scalability and robustness. These em-
phases promote the use of relatively simple robots, equipped with localized sensing
ability, scalable communication mechanisms, and the exploration of decentralized
control strategies. While definitely very valuable in addressing the task in point, this
work does not expand into related areas (which are out of its scope), thus leaving
inter-scale relationships indistinct.

Self-organizing computation is another example of an emerging application do-
main. Czap et al. (2005) argue that since self-organization and adaptation are con-
cepts stemming from nature, conventional self-organization and adaptation princi-
ples and approaches are prevented from being directly applicable to computing and
communication systems, which are basically artificial systems. Their book discusses
these challenges, as well as a range of state-of-the-art methodologies and technolo-
gies for the newly emerging area of Self-Organization and Autonomic Informatics.
What may be lacking, however, is a well-grounded connection to other application
areas, and identification of possible overlaps.

In summary, self-organization is a multi-faceted phenomenon, present in many
fields, operating at multiple scales, and performing diverse roles. We hope that the
practical case studies described in this book may not only illustrate the richness of
the topic, but also provide guidance to the intricate area.

1 Design Versus Self-Organization 7

1.3 Evolutionary Design

One way to address the “design versus self-organization” dilemma is to consider
possible design parameters that guide the design of a self-organizing system. Let us
begin with a quotation from a topical review by Scaruffi, who considered the task of
a “design without a designer” (Scaruffi 2003):

The physicist Sadi Carnot, one of the founding fathers of Thermodynamics, realized that the
statistical behavior of a complex system can be predicted if its parts were all identical and
their interactions weak. At the beginning of the century, another French physicist, Henri
Poincaré, realizing that the behavior of a complex system can become unpredictable if it
consists of few parts that interact strongly, invented “chaos” theory. A system is said to
exhibit the property of chaos if a slight change in the initial conditions results in large-scale
differences in the result. Later, Bernard Derrida will show that a system goes through a
transition from order to chaos if the strength of the interactions among its parts is gradually
increased. But then very “disordered” systems spontaneously “crystallize” into a higher
degree of order.

An important lesson here is that there are transitions separating ordered and chaotic
regimes, and by varying control parameters (e.g., the system composition and the
strength of interactions within it) one may trigger these transitions. This observa-
tion by itself is not sufficient to identify the generic design space. However, several
approaches, also reviewed by Scaruffi, further develop this idea. In particular, syn-
ergetics—a theory of pattern formation in complex systems, developed by Haken
(1983b)—is relevant. Following the Ginzburg-Landau theory, Haken introduced or-
der parameters in explaining structures that spontaneously self-organize in nature.
When energy or matter flows into a system typically describable by many variables,
it may move far from equilibrium, approach a threshold (that can be defined in
terms of some control parameters), and undergo a phase transition. At this stage,
the behavior of the overall system can be described by only a few order parame-
ters (degrees of freedom) that characterize newly formed patterns. In other words,
the system becomes low-dimensional as some dominant variables “enslave” others,
making the whole system to act in synchrony. A canonical example is laser: a beam
of coherent light created out of the chaotic movement of particles.

The “enslaving principle” generalizes the order parameter concept: in the vicin-
ity of phase transitions, a few slower and long-lasting components of the system
determine the macroscopic dynamics while the faster and short-lasting components
quickly relax to their stationary states (Jirsa et al. 2002). The fast-relaxing com-
ponents represent stable modes, e.g., the chaotic motion of particles. The slower
components represent unstable modes, i.e., the coherent macroscopic structure and
behavior of the whole system (see also Chap. 2 Polani 2008). Thus, the order pa-
rameters can be interpreted as the amplitudes of these unstable modes that determine
the macroscopic pattern and the dynamics of the enslaved fast-relaxing modes. In
particular, the stationary states of fast-relaxing components are determined by the
order parameters.

It can be argued that a layered hierarchical structure emerges where “higher”
levels (the order parameters) “control” or “force order upon” lower levels (short-
lasting and fast-relaxing components) (Liljenström and Svedin 2005). However, we

8 M. Prokopenko

may also point out circular nature of the mechanism: the dynamics of microscopic
short-lasting components brings the system to the phase transition, forcing it over a
threshold and stimulating macroscopic pattern formation. When new macroscopic
patterns emerge, the order parameters enforce the downward enslavement (Haken
1983a):

Because the order parameter forces the individual electrons to vibrate exactly in phase, thus
imprinting their actions on them, we speak of their “enslavement” by the order parameter.
Conversely, these very electrons generate the light wave, i.e. the order parameter, by their
uniform vibration.

The collective synchronization of oscillators is another example of such circular
causality. It is well-known that coupled limit-cycle oscillators tend to synchronize
by altering their frequencies and phase angles (Kuramoto 1984; Pikovsky et al.
2001). Given a pulse, initially a few oscillators become synchronized, then a mean
field forms that drives other oscillators which, in turn, contribute to the mean field.
Thus, such self-organization can be better characterized in terms of tangled hier-
archies exhibiting Strange Loops described by Hofstadter: “an interaction between
levels in which the top level reaches back down towards the bottom level and in-
fluences it, while at the same time being itself determined by the bottom level”
(Hofstadter 1989).

Importantly, tangled hierarchies with circular causality between microscopic and
macroscopic levels result in stable behavior. For example, as noted by M.J.M. Vol-
man in the context of neurobehavioral studies (Volman 1997),

Enslaving provides a parsimonious solution to the degrees of freedom problem: only one
or a few variables have to be controlled by the central nervous system. Two variables play
an essential role: the order parameter or collective variable, and the control parameter. The
collective variable captures the intrinsic order of the system. The control parameter is the
parameter that induces a phase transition from one stable state of the system to another.

A self-organized low-dimensional system with fewer available configurations
may be more efficient than a high-dimensional disorganized system which may,
in principle, access more configurations. The reason for such higher efficiency is
explained by Kauffman (2000) who suggested that the underlying principle of self-
organization is the generation of constraints in the release of energy. According to
this view, the constrained release allows for such energy to be controlled and chan-
nelled to perform some useful work. This work is “propagatable” and can be used in
turn to create better and more efficient constraints, releasing further energy and so
on. Importantly, the ability to constrain and control the release of energy provides
the self-organized system with a variety of behaviors that can be selectively chosen
for successful adaptation (Prokopenko et al. 2009), thus conforming with Ashby’s
Law of Requisite Variety.

These observations further advance our search for a suitable design space: con-
trol parameters become optimization variables, while order parameters contribute
to (multi-)objective functions. The overall optimization is to be solved under the
constraints generated by the release of energy from components in the system. The
three elements (variables, objective functions, and constraints) constitute the de-
sign space. This approach suggests to consider evolutionary design as the method-

1 Design Versus Self-Organization 9

ology for designing self-organizing systems. Typically, evolutionary design may
employ genetic algorithms in evolving optimal strategies that satisfy given fitness
functions, by exploring large and sophisticated search-space landscapes (Crutchfield
et al. 1998; Miller et al. 2000). Using selection and genetic variation of microscopic
components, evolutionary design is capable to discover macroscopic patterns that
correspond to order parameters.

There is a fundamental reason for employing evolutionary methods in design-
ing self-organizing nonlinear systems. As pointed out by Heylighen (2000), many
intricacies associated with nonlinearity (e.g., limit cycles, chaos, sensitivity to ini-
tial conditions, dissipative structures, etc.) can be interpreted through the interplay
of positive and negative feedback cycles. In turn, both types of feedback provide a
selective advantage: when variations positively reinforce themselves (e.g., autocat-
alytic growth) the number and diversity of configurations is increased to the point
where resources may become insufficient, and competition may intensify. On the
other hand, when variations reduce themselves via negative feedback, configura-
tions become more stable. Therefore, a self-organizing system with both types of
feedback is a natural target for evolutionary design.

Heylighen further notes that the increase in organization can be measured quan-
titatively as a decrease of statistical entropy, exported by the self-organizing system
into its surroundings. Prigogine called systems which continuously export entropy
in order to maintain their organization dissipative structures (Prigogine 1980), and
formulated the minimum entropy production principle: stable near-equilibrium dis-
sipative systems minimize their rate of entropy production. While the practical ap-
plicability of this principle is still a subject of an ongoing debate, we believe that it
identifies a very generic guiding rule for evolutionary design, suggesting to incor-
porate minimization of entropy rate in the employed fitness functions.

Consequently, we may approach evolutionary design in two ways: via task-
specific objectives or via generic intrinsic selection criteria (Prokopenko et al.
2006a, 2006b). The latter method—information-driven evolutionary design—
essentially focuses on information transfer within specific channels, enabling “prop-
agatable” work, i.e. self-organization. Various generic information-theoretic criteria
may be considered, for example:

• maximization of information transfer in perception-action loops (Klyubin et al.
2004, 2005);

• minimization of heterogeneity in agent states, measured with the variance of the
rule-space’s entropy (Wuensche 1999; Prokopenko et al. 2005d) or Boltzmann
entropy in agent states (Baldassarre et al. 2007); see also Chap. 7 (Baldassarre
2008);

• stability of multi-agent hierarchies (Prokopenko et al. 2005d);
• efficiency of computation (computational complexity);
• efficiency of communication topologies (Prokopenko et al. 2005b, 2005c); see

also Chap. 4 (Hoschke et al. 2008, 2013);
• efficiency of locomotion and coordination of distributed actuators (Prokopenko

et al. 2006a, 2006b; Der et al. 1999; Tanev et al. 2005); see also Chap. 6 (Tanev
2008), etc.

10 M. Prokopenko

The solutions obtained by information-driven evolution can be judged by their de-
gree of approximation of direct evolutionary computation, where the latter uses task-
specific objectives. A good approximation indicates that the chosen criteria capture
information dynamics of self-organization within specific channels.

In summary, design is possible even when the target is a far-from-equilibrium
nonlinear system with multiple independent and interacting units. One should not
avoid far-from-equilibrium dynamics and symmetry-breaking behavior but rather
exploit the opportunities for creating stable patterns out of fluctuations.1 The re-
gions of macroscopic stability correspond to order parameters. These regions are
separated by phase transitions that can be quantified via entropy rate, and induced by
varying the control parameters. In short, one should design local rules of interaction
among microscopic components (including the constraints and control variables) in
such a way that macroscopic patterns (measured via the objective functions) self-
organize globally, being then selected by information-driven evolution.

1.3.1 Example: Self-Organizing Locomotion

Different internal channels through which information flows within the system may
be chosen for a specific analysis. For example, let us consider a modular robotic
system modelling a multi-segment snake-like (salamander) organism, with actua-
tors (“muscles”) attached to individual segments (“vertebrae”). A particular side-
winding locomotion emerges as a result of individual control actions when the
actuators are coupled within the system and follow specific evolved rules, as de-
scribed in Chap. 6 (Tanev 2008), as well as by Tanev et al. (2005). There is no
global coordinating component in the evolved system, and it can be shown that, as
the modular robot starts to move across the terrain, the distributed actuators become
more coupled when a coordinated side-winding locomotion is dominant. The peri-
odicity of the side-winding locomotion can be related to order parameter(s). Faced
with obstacles, the robot temporarily loses the side-winding pattern: the modules
become less organized, the strength of their coupling (that can be selected as a
control parameter) is decreased, and rather than exploiting the dominant pattern,
the robot explores various alternatives. Such exploration temporarily decreases self-
organization within the system. When the obstacles are avoided, the modules “re-
discover” the dominant side-winding pattern by themselves, manifesting again the
ability to self-organize without any global controller. Of course, the “magic” of
this self-organization is explained by properties defined a priori: the control rules
employed by the biologically-inspired actuators have been obtained by a genetic
programming algorithm, while the biological counterpart (the rattlesnake Crotalus
cerastes) naturally evolved over long time. Our point is simply that these transitions
can be quantitatively measured within the channels of interest (e.g., via generalized

1According to Prigogine (1980), a thermodynamic system can be in a steady state while being not
in equilibrium.

1 Design Versus Self-Organization 11

entropy rate and excess entropy, and used in information-driven evolutionary design
(Prokopenko et al. 2006a, 2006b).

1.4 Information Dynamics

The generation of constraints in the release of energy explains why a low-
dimensional self-organized system with fewer available configurations is more effi-
cient than a high-dimensional disorganized system. One quantitative interpretation
of this is that many actual configurations of a disorganized system may not be sta-
tistically different (Prokopenko et al. 2009). On the other hand, as the system self-
organizes, it reaches a progressively larger number of statistically different configu-
rations. In other words, an increase in organization can be measured via an increase
in statistical complexity of the system’s dynamics (Crutchfield 1994; Shalizi 2001;
Shalizi et al. 2004). The latter approach is formalized within the Computational
Mechanics methodology which equates statistically different configurations with
causal states.2

Recently, Correia (2006) analyzed self-organization motivated by embodied sys-
tems, i.e. physical systems situated in the real world, and established four fun-
damental properties of self-organization: no external control, an increase in or-
der, robustness,3 and interaction. All of these properties are easily interpretable
in terms of information dynamics (Prokopenko et al. 2009). Firstly, the absence
of external control may correspond to spontaneous arising of information trans-
fer within the system without any flow of information into the self-organizing sys-
tem. Secondly, an increase in order or complexity reflects simply that the statisti-
cal complexity is increased internally within the system: C

system
μ (t2) > C

system
μ (t1),

for t2 > t1, where C
system
μ (t) is the statistical complexity at time t . In general,

the distinction between these two requirements may be relaxed (Prokopenko et al.
2009), resulting in the requirement that in a self-organizing system the complexity
of external influence C

influence
μ is strictly less than the gain in internal complexity,

�C
system
μ = C

system
μ (t2) − C

system
μ (t1), within the system:

Cinfluence
μ < �Csystem

μ

Thirdly, a system is robust if it continues to function in the face of perturbations
(Wagner 2005)—in terms of information dynamics, robustness of a self-organizing
system to perturbations means that it may interleave stages of an increased infor-
mation transfer within some channels (dominant patterns are being exploited) with
periods of decreased information transfer (alternative patterns are being explored).

2Statistical complexity is also an upper bound of predictive information, or structure, within the
system (Bialek et al. 2001; De Wolf and Holvoet 2005).
3Although Correia refers to this as adaptability, he in fact defines robustness.

12 M. Prokopenko

Finally, the interaction property is described by Correia (2006) as follows: mini-
mization of local conflicts produces global optimal self-organization, which is evo-
lutionarily stable. Following the review by Prokopenko et al. (2009), we note that
minimization of local conflicts corresponds to a reduction of assortative noise (or
non-assortativeness within the system, increasing therefore the information transfer
within the system.

1.4.1 Example: Self-Organizing Traffic

In the context of pedestrian traffic, Correia (2006) argues that it can be shown that
the “global efficiency of opposite pedestrian traffic is maximized when interaction
rate is locally minimized for each component. When this happens two separate lanes
form, one in each direction. The minimization of interactions follows directly from
maximizing the average velocity in the desired direction.” In other words, the di-
vision into lanes results from maximizing velocity (an overall objective or fitness),
which in turn supports minimization of conflicts. A practical case study of self-
organizing traffic, presented in Chap. 3 (Cools et al. 2008), considers ways to mini-
mize conflicts as well, e.g., via “platoons” or “convoys” of cars that move together
improving the traffic flow.

Another example is provided by ants: “Food transport is done via a trail, which is
an organized behaviour with a certain complexity. Nevertheless, a small percentage
of ants keeps exploring the surroundings and if a new food source is discovered a
new trail is established, thereby dividing the workers by the trails (Hubbell et al.
1980) and increasing complexity” (Correia 2006). Here, the division into trails is
again related to an increase in fitness and complexity.

These examples demonstrate that when local conflicts are minimized, the de-
gree of coupling among the components (i.e. interaction) increases and the infor-
mation flows easier, thus increasing the information transfer. This means that self-
organization as a dynamic process tends to increase the overall diversity of a sys-
tem (more lanes or trails), while keeping in check the interplay among different
channels (the assortative noise within the system, the conflicts). In summary, self-
organization can be quantitatively studied via information dynamics when the ap-
propriate channels are identified (Prokopenko et al. 2009).

1.4.2 Example: Self-Organizing Computation

In illustrating the phenomenon of self-organizing computation we shall use Cel-
lular Automata (CA): discrete spatially-extended dynamical systems that are often
used as models of many computational, physical and biological processes—see,
e.g. Mitchell et al. (1993) and Chap. 14 (Adamatzky 2008; Adamatzky and Chua

1 Design Versus Self-Organization 13

2013). The main conjecture within this application domain is that physical systems
achieve the prerequisites for computation (i.e., transmission, storage, modification)
in the vicinity of a phase transition between periodic and chaotic behavior (Langton
1991).

In classifying CA rules according to their asymptotic behavior, the following
qualitative taxonomy is typically employed: class I (homogeneity); class II (peri-
odicity); class III (chaos); class IV (complexity) (Wolfram 1984). The first class
consists of CA that, after a finite number of time steps, produce a unique, homo-
geneous state (analogous to “fixed points” in phase space). From almost all initial
states, such behaviour completely destroys any information on the initial state, i.e.
complete prediction is trivial and complexity is low. The second class contains au-
tomata which generate a set of either stable or periodic structures (typically having
small periods—analogous to “limit cycles” in phase space)—each region of the final
state depends only on a finite region of the initial state, i.e. information contained
within a small region in the initial state thus suffices to predict the form of a region
in the final state. The third class includes CA producing aperiodic (“chaotic”) spa-
tiotemporal patterns from almost all possible initial states—the effects of changes
in the initial state almost always propagate forever at a finite speed, and a particular
region depends on a region of the initial state of an ever-increasing size (analogous
to “chaotic attractors” in phase space). While any prediction of the “final” state
requires complete knowledge of the initial state, the regions are indistinguishable
statistically as they possess no structure, and therefore the statistical complexity is
low. The fourth class includes automata that generate patterns continuously chang-
ing over an unbounded transient.

The fourth class CA existing near the phase transition between periodic and
chaotic behavior was shown to be capable of universal computation (Wolfram 1984).
These CA support three basic operations (information storage, transmission, and
modification) through static, propagating and interacting structures (blinkers, glid-
ers, collisions). Importantly, the patterns produced along the transient are different
in terms of generated structure, and in fact, their structural variability is highest
among all four classes—i.e. the statistical complexity of the class IV automata is
highest.

Casti (1991) developed an analogy between the complex (class IV) automata
and quasi-periodic orbits in phase space, while pursuing deeper interconnections
between CA, dynamical systems, Turing Machines, and formal logic systems—in
particular, the complex class IV automata were related to formal systems with un-
decidable statements (Gödel’s Theorem). Such interconnections are also explored
in Chap. 15 (Boschetti and Gray 2008), investigating the concept of emergence and
limits of algorithmic approaches. As has been pointed out by Cooper, there is a “con-
nection between the underlying basic causal structure (the ‘design’) and the emer-
gent phenomenon”, creating a certain level of robustness of the emergence (Cooper
2010). Following this view, one may argue that design is related to causality, and
self-organization is related to emergence.

14 M. Prokopenko

1.4.3 Adoption Roadblocks

Our analysis would be incomplete without discussing a few obstacles preventing a
straightforward application of self-organizing systems in industry. The limits of al-
gorithmic approaches to emergence studied in Chap. 15 (Boschetti and Gray 2008)
may manifest themselves in many different ways. Firstly, the “numerous interac-
tions among the lower-level components” (Camazine et al. 2001) that are essential
for self-organization may often be costly in terms of communication overhead. For
example, many decentralized multi-agent (e.g., peer-to-peer) clustering algorithms
deployed in sensor networks form stable clusters only after a significant number of
messages (Prokopenko et al. 2005a), potentially incurring a prohibitive cost. This
highlights even more the role of selecting the most important information chan-
nels and communication topologies, reducing local conflicts (assortative noise) and
maximizing information transfer.

Secondly (and this is probably the most principled impediment), self-organization
results in non-deterministic outcomes. In fact, this is one of its strengths, and as
noted earlier, far-from-equilibrium dynamics and symmetry-breaking behavior may
lead to stable patterns that can and should be exploited. However, in order to be
adopted by industry, non-determinism of self-organizing patterns requires an ap-
propriate verification of the outcomes, and the search for most suitable verification
methodology is still open. For example, Chap. 5 (Mathews et al. 2008; Mathews
and Durrant-Whyte 2013) investigates self-organizing collaboration within a multi-
agent system using analytical techniques, in an attempt to provide a verifiable opti-
mal solution to a decentralised decision problem. Furthermore, Chaps. 8–13 explore
different ways to harness the power of self-organization, while staying within some
constrained design space (Hogg 2008; Macias and Durbeck 2008, 2013; Schlegel
and Kowalczyk 2008; Lee and Zomaya 2008; Tarakanov 2008; Tarakanov and
Borisova 2013; Vande Moere 2008).

Finally, a complete self-organizing system would typically depart too strongly
from incremental advancements accepted by an industry. A more realistic approach
suggests, instead, to deploy hybrid systems (e.g. such as the one described in
Chap. 4 (Hoschke et al. 2008, 2013)), where self-organization is used within sep-
arate components, providing a convenient mechanism for managing communica-
tion overheads and verification requirements. Such hybrid systems are an interme-
diate step on the path towards complete self-organizing solutions, e.g., a completely
self-organizing computation within reaction-diffusion media and memristive ex-
citable automata, explored in Chap. 14 (Adamatzky 2008; Adamatzky and Chua
2013).

In summary, we believe that information-driven evolutionary design can produce
self-organizing systems that can be as reliable as traditionally-engineered verifiable
(provably-correct) systems, and as resilient as homeostatic biological organisms.

1 Design Versus Self-Organization 15

1.5 Epilogue

The topic of this chapter, ‘Design Versus Self-Organization’, has received much
attention during the recent years, helping to shape the area of Guided Self-
organization (GSO). The declared goal of GSO is to leverage the strengths of self-
organization while still being able to direct the outcome of the self-organizing pro-
cess (Prokopenko 2009; Ay et al. 2012b). Typically, GSO has the following fea-
tures: (i) an increase in organization (structure and/or functionality) over some time;
(ii) the local interactions are not explicitly guided by any external agent; (iii) task-
independent objectives are combined with task-dependent constraints (Ay et al.
2012b). The last element is the one which incorporates design objectives into the
process, purely at the level of global constraints/objectives, and without any direct
encoding of local interactions. The process of self-organization is then expected
to bring the system to an optimum, guided by both generic objectives and design
characteristics.

This general approach has been applied in different contexts and at broad scales.
Within the field of embodied intelligence, studies of self-organizing perception-
action loops and sensorimotor processes of artificial agents have shown that cog-
nition and action self-organize from interactions between brain, body, and environ-
ment under some appropriate constraints guiding the process (Polani et al. 2007;
Klyubin et al. 2007; Ay et al. 2008; Martius and Herrmann 2012; Capdepuy et al.
2012). A novel information-theoretic framework for distributed computation was
developed over the recent years (Lizier et al. 2008c, 2010, 2012b, 2012c), with ap-
plications to modular robotics (Lizier et al. 2008a), cascading failures in power grids
(Lizier et al. 2009), computational neuroscience (Lizier et al. 2011a), machine learn-
ing (Ay et al. 2012a; Boedecker et al. 2012), swarm dynamics (Wang et al. 2012),
etc.

Underpinning these successes is a new ability to rigorously quantify fundamen-
tal computational properties of self-organizing systems that exhibit very highly
structured coherent computation in comparison to: (a) ordered systems, which are
coherent but minimally interacting, and (b) chaotic systems, whose computations
are dominated by high information transfer and interactions eroding any coher-
ence (Lizier et al. 2012b).

Similar treatment extended to random and small-world Boolean networks (Ger-
shenson 2012; Lizier et al. 2008b, 2011b; Wang et al. 2010, 2011; Prokopenko et al.
2011), with some of these studies demonstrating that critical dynamical regimes
can also be characterized information-theoretically. In particular, transfer entropy
(Schreiber 2000), active information storage (Lizier et al. 2008b, 2012c) and Fisher
information (Prokopenko et al. 2011) were utilized in tracing phase transitions and
divergent rates of change for the relevant order parameters.

The emerging understanding of critical dynamics in complex networks translates
into possibilities for more efficient network design—still within the GSO guide-
lines. This is exemplified by recent investigations into network motifs and their role
in contributing to information dynamics, network evolution and in-network infor-
mation processing (Piraveenan et al. 2009a, 2009b; Lizier et al. 2012a). This, in

16 M. Prokopenko

turn, leads to more efficient strategies to counter spread of undesirable phenomena
in complex networks, such as epidemics, etc. (Bauer and Lizier 2012; Piraveenan
et al. 2012).

Thus, one may expect significant developments of specific self-organizing appli-
cations within the general framework of GSO.

Acknowledgements The Author would like to thank members of the discussion group on “En-
tropy and self-organisation in multi-agent systems”, particularly Vadim Gerasimov, Nigel Hoschke,
Joseph Lizier, George Mathews, Mahendra Piraveenan, and Don Price. The support of the CSIRO
Emergence interaction task and the CSIRO Complex Systems Science Theme is gratefully ac-
knowledged. Special thanks to Fabio Boschetti, Tony Farmer, Tomonari Furukawa, Carlos Ger-
shenson, Geoff James, Antonio Lafusa, Ron Li, Abhaya Nayak, Oliver Obst, Daniel Polani, Geoff
Poulton, Alex Ryan, Ivan Tanev, Tino Schlegel, Phil Valencia, and X. Rosalind Wang for their
insightful comments.

References

Adamatzky, A. (2008). Emergence of traveling localizations in mutualistic-excitation media. In
M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 333–354). London:
Springer.

Adamatzky, A., & Chua, L. (2013). Memristive excitable automata: structural dynamics, phe-
nomenology, localizations and conductive pathways. In M. Prokopenko (Ed.), Advances in ap-
plied self-organizing systems (2nd ed.). London: Springer.

Ay, N., Bertschinger, N., Der, R., Güttler, F., & Olbrich, E. (2008). Predictive information and ex-
plorative behavior of autonomous robots. The European Physical Journal. B, Condensed Matter
Physics, 63, 329–339.

Ay, N., Bernigau, H., Der, R., & Prokopenko, M. (2012a). Information-driven self-organization:
the dynamical system approach to autonomous robot behavior. Theory in Biosciences, 131,
161–179.

Ay, N., Der, R., & Prokopenko, M. (2012b). Guided self-organization: perception-action loops of
embodied systems. Theory in Biosciences, 131, 125–127.

Baldassarre, G. (2008). Self-organization as phase transition in decentralized groups of robots:
a study based on Boltzmann entropy. In M. Prokopenko (Ed.), Advances in applied self-
organizing systems (pp. 129–149). London: Springer.

Baldassarre, G., Parisi, D., & Nolfi, S. (2007). Measuring coordination as entropy decrease in
groups of linked simulated robots. In Y. Bar-Yam (Ed.), Proceedings of the 5th international
conference on complex systems (ICCS2004).

Bauer, F., & Lizier, J. T. (2012). Identifying influential spreaders and efficiently estimating in-
fection numbers in epidemic models: a walk counting approach. Europhysics Letters, 99(6),
68007.

Bialek, W., Nemenman, I., & Tishby, N. (2001). Complexity through nonextensivity. Physica. A,
302, 89–99.

Boedecker, J., Obst, O., Lizier, J., Mayer, N., & Asada, M. (2012). Information processing in echo
state networks at the edge of chaos. Theory in Biosciences, 131, 205–213.

Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., & Camazine, S. (1997). Self-organisation in social
insects. Trends in Ecology & Evolution, 12(5), 188–193.

Boschetti, F., & Gray, R. (2008). A Turing test for emergence. In M. Prokopenko (Ed.), Advances
in applied self-organizing systems (pp. 355–370). London: Springer.

Boschetti, F., Prokopenko, M., Macreadie, I., & Grisogono, A.-M. (2005). Defining and detecting
emergence in complex networks. In R. Khosla, R. J. Howlett, & L. C. Jain (Eds.), Lecture notes

1 Design Versus Self-Organization 17

in computer science: Vol. 3684. Proceedings of the 9th international conference on knowledge-
based intelligent information and engineering systems, KES 2005, Part IV, Melbourne, Aus-
tralia, 14–16 September 2005 (pp. 573–580). Berlin: Springer.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001).
Self-organization in biological systems. Princeton: Princeton University Press.

Capdepuy, P., Polani, D., & Nehaniv, C. L. (2012). Perception-action loops of multiple agents:
informational aspects and the impact of coordination. Theory in Biosciences, 131(3), 149–159.

Casti, J. L. (1991). Chaos, Gödel and truth. In J. L. Casti & A. Karlqvist (Eds.), Beyond belief:
randomness, prediction, and explanation in science. Boca Raton: CRC Press.

Cools, S.-B., Gershenson, C., & D’Hooghe, B. (2008). Self-organizing traffic lights: a realistic
simulation. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 41–50).
London: Springer.

Cooper, S. B. (2010). Incomputability, emergence and the Turing universe. Theory Decis. Libr. A,
46, 135–153.

Correia, L. (2006). Self-organisation: a case for embodiment. In C. Gershenson & T. Lenaerts
(Eds.), Proceedings of the evolution of complexity workshop at artificial life X: the 10th inter-
national conference on the simulation and synthesis of living systems (pp. 111–116).

Crutchfield, J. P. (1994). The calculi of emergence: computation, dynamics, and induction. Physica.
D, 75, 11–54.

Crutchfield, J. P., Mitchell, M., & Das, R. (1998). The evolutionary design of collective compu-
tation in cellular automata (Technical Report 98-09-080). Santa Fe Institute Working Paper,
available at http://www.santafe.edu/projects/evca/Papers/EvDesign.html.

Czap, H., Unland, R., Branki, C., & Tianfield, H. (2005). Frontiers in artificial intelligence and ap-
plications: Vol. 135. Self-organization and autonomic informatics (I). Amsterdam: IOS Press.

De Wolf, T., & Holvoet, T. (2005). Emergence versus self-organisation: different concepts but
promising when combined. In S. Brueckner, G. D. M. Serugendo, A. Karageorgos, & R. Nagpal
(Eds.), Engineering self-organising systems (pp. 1–15). Berlin: Springer.

Der, R., Steinmetz, U., & Pasemann, F. (1999). Homeokinesis—a new principle to back up evolu-
tion with learning. In Concurrent systems engineering series (Vol. 55, pp. 43–47).

Gershenson, C. (2012). Guiding the self-organization of random Boolean networks. Theory in
Biosciences, 131(3), 181–191.

Haken, H. (1983a). Advanced synergetics: instability hierarchies of self-organizing systems and
devices. Berlin: Springer.

Haken, H. (1983b). Synergetics, an introduction: nonequilibrium phase transitions and self-
organization in physics, chemistry, and biology. New York: Springer. 3rd rev. enl. ed.

Haken, H. (1988). Information and self-organization: a macroscopic approach to complex systems.
Berlin: Springer.

Heylighen, F. (2000). Self-organization. In F. Heylighen, C. Joslyn, & V. Turchin (Eds.), Prin-
cipia Cybernetica web. Brussels: Principia Cybernetica. Available at http://pespmc1.vub.ac.be/
SELFORG.html.

Hofstadter, D. R. (1989). Gödel, Escher, Bach: an eternal golden braid. New York: Vintage Books.
Hogg, T. (2008). Distributed control of microscopic robots in biomedical applications. In

M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 147–174). London:
Springer.

Hoschke, N., Lewis, C. J., Price, D. C., Scott, D. A., Gerasimov, V., & Wang, P. (2008).
A self-organizing sensing system for structural health monitoring of aerospace vehicles. In M.
Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 51–75). London: Springer.

Hoschke, N., Price, D. C., & Scott, D. A. (2013). Self-organizing sensing of structures: monitoring
a space vehicle thermal protection system. In M. Prokopenko (Ed.), Advances in applied self-
organizing systems (2nd ed.). London: Springer.

Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B., & Fowler, H. (1980). Foraging by bucket-
brigade in leafcutter ants. Biotropica, 12(3), 210–213.

Jirsa, V. K., Jantzen, K. J., Fuchs, A., & Kelso, J. A. (2002). Spatiotemporal forward solution of the
eeg and meg using network modeling. IEEE Transactions on Medical Imaging, 21(5), 493–504.

http://www.santafe.edu/projects/evca/Papers/EvDesign.html
http://pespmc1.vub.ac.be/SELFORG.html
http://pespmc1.vub.ac.be/SELFORG.html

18 M. Prokopenko

Kauffman, S. A. (2000). Investigations. Oxford: Oxford University Press.
Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2004). Organization of the information flow in the

perception-action loop of evolved agents. In Proceedings of 2004 NASA/DoD conference on
evolvable hardware (pp. 177–180). Los Alamitos: IEEE Computer Society.

Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2005). All else being equal be empowered. In M.
S. Capcarrère, A. A. Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Lecture notes of
computer science: Vol. 3630. Proceedings of the 8th European conference on advances in arti-
ficial life, ECAL 2005, Canterbury, UK, 5–9 September 2005 (pp. 744–753). Berlin: Springer.

Klyubin, A., Polani, D., & Nehaniv, C. (2007). Representations of space and time in the maximiza-
tion of information flow in the perception-action loop. Neural Computation, 19(9), 2387–2432.

Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.
Langton, C. (1991). Computation at the edge of chaos: phase transitions and emergent computa-

tion. In S. Forest (Ed.), Emergent computation. Cambridge: MIT Press.
Lee, Y. C., & Zomaya, A. Y. (2008). Immune system support for scheduling. In M. Prokopenko

(Ed.), Advances in applied self-organizing systems (pp. 247–270). London: Springer.
Liljenström, H., & Svedin, U. (2005). System features, dynamics, and resilience—some intro-

ductory remarks. In H. Liljenström & U. Svedin (Eds.), MICRO-MESO-MACRO: addressing
complex systems couplings (pp. 1–16). Singapore: World Scientific.

Lizier, J. T., Prokopenko, M., Tanev, I., & Zomaya, A. Y. (2008a). Emergence of glider-like struc-
tures in a modular robotic system. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.),
Proceedings of the eleventh international conference on the simulation and synthesis of living
systems (ALife XI), Winchester, UK (pp. 366–373). Cambridge: MIT Press.

Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2008b). The information dynamics of phase tran-
sitions in random Boolean networks. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.),
Proceedings of the eleventh international conference on the simulation and synthesis of living
systems (ALife XI), Winchester, UK (pp. 374–381). Cambridge: MIT Press.

Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2008c). Local information transfer as a spatiotem-
poral filter for complex systems. Physical Review E, 77(2), 026110.

Lizier, J. T., Prokopenko, M., & Cornforth, D. J. (2009). The information dynamics of cascading
failures in energy networks. In Proceedings of the European conference on complex systems
(ECCS), Warwick, UK (p. 54). ISBN 978-0-9554123-1-8.

Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2010). Information modification and particle
collisions in distributed computation. Chaos, 20(3), 037109.

Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J.-D., & Prokopenko, M. (2011a). Multivariate
information-theoretic measures reveal directed information structure and task relevant changes
in fMRI connectivity. Journal of Computational Neuroscience, 30(1), 85–107.

Lizier, J. T., Pritam, S., & Prokopenko, M. (2011b). Information dynamics in small-world Boolean
networks. Artificial Life, 17(4), 293–314.

Lizier, J. T., Atay, F. M., & Jost, J. (2012a). Information storage, loop motifs, and clustered struc-
ture in complex networks. Physical Review E, 86(2), 026110.

Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2012b). Coherent information structure in complex
computation. Theory in Biosciences, 131(3), 193–203.

Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2012c). Local measures of information storage in
complex distributed computation. Information Sciences, 208, 39–54.

Macias, N. J., & Durbeck, L. J. K. (2008). Self-organizing digital systems. In M. Prokopenko (Ed.),
Advances in applied self-organizing systems (pp. 177–215). London: Springer.

Macias, N. J., & Durbeck, L. J. K. (2013). Self-organizing computing systems: songline proces-
sors. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London:
Springer.

Martius, G., & Herrmann, J. M. (2012). Variants of guided self-organization for robot control.
Theory in Biosciences, 131(3), 129–137.

Mathews, G., & Durrant-Whyte, H. (2013). Decentralised decision making for ad-hoc multi-agent
systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). Lon-
don: Springer.

1 Design Versus Self-Organization 19

Mathews, G., Durrant-Whyte, H., & Prokopenko, M. (2008). Decentralized decision making for
multi-agent systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp.
77–103). London: Springer.

Miller, J. F., Job, D., & Vassilev, V. K. (2000). Principles in the evolutionary design of digital
circuits—Part I. Genetic Programming and Evolvable Machines, 1(1), 8–35.

Mitchell, M., Hraber, P. T., & Crutchfield, J. P. (1993). Revisiting the edge of chaos: evolving
cellular automata to perform computations. Complex Systems, 7, 89–139.

Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: a universal concept in non-
linear science. Cambridge: Cambridge University Press.

Piraveenan, M., Prokopenko, M., & Zomaya, A. Y. (2009a). Assortativeness and information in
scale-free networks. The European Physical Journal. B, Condensed Matter Physics, 67, 291–
300.

Piraveenan, M., Prokopenko, M., & Zomaya, A. Y. (2009b). Assortativity and growth of Internet.
The European Physical Journal. B, Condensed Matter Physics, 70, 275–285.

Piraveenan, M., Prokopenko, M., & Hossain, L. (2012). Percolation centrality: quantifying
graph-theoretic impact of nodes during percolation in networks. PLoS ONE, 8(1), e53095.
doi:10.1371/journal.pone.0053095

Polani, D. (2003). Measuring self-organization via observers. In W. Banzhaf, T. Christaller, P. Dit-
trich, J. T. Kim, & J. Ziegler (Eds.), Advances in artificial life—proceedings of the 7th European
conference on artificial life (ECAL), Dortmund (pp. 667–675). Heidelberg: Springer.

Polani, D. (2008). Foundations and formalizations of self-organization. In M. Prokopenko (Ed.),
Advances in applied self-organizing systems (pp. 19–37). London: Springer.

Polani, D., Sporns, O., & Lungarella, M. (2007). How information and embodiment shape intelli-
gent information processing. In M. Lungarella, F. Iida, J. Bongard, & R. Pfeifer (Eds.), Lecture
notes in computer science: Vol. 4850. Proceedings of the 50th anniversary summit of artificial
intelligence, New York (pp. 99–111). Berlin: Springer.

Prigogine, I. (1980). From being to becoming: time and complexity in the physical sciences. San
Francisco: Freeman.

Prokopenko, M. (2009). Guided self-organization. HFSP Journal, 3(5), 287–289.
Prokopenko, M., Piraveenan, M., & Wang, P. (2005a). On convergence of dynamic cluster forma-

tion in multi-agent networks. In M. S. Capcarrère, A. A. Freitas, P. J. Bentley, C. G. Johnson,
& J. Timmis (Eds.), Lecture notes in computer science: Vol. 3630. Proceedings of the 8th Eu-
ropean conference on advances in artificial life, ECAL 2005, Canterbury, UK, 5–9 September
2005 (pp. 884–894). Berlin: Springer.

Prokopenko, M., Wang, P., Foreman, M., Valencia, P., Price, D. C., & Poulton, G. T. (2005b).
On connectivity of reconfigurable impact networks in ageless aerospace vehicles. Robotics and
Autonomous Systems, 53(1), 36–58.

Prokopenko, M., Wang, P., & Price, D. C. (2005c). Complexity metrics for self-monitoring impact
sensing networks. In J. Lohn, D. Gwaltney, G. Hornby, R. Zebulum, D. Keymeulen, & A.
Stoica (Eds.), Proceedings of 2005 NASA/DoD conference on evolvable hardware (EH-05),
Washington DC, USA, 29 June–1 July 2005 (pp. 239–246). Los Alamitos: IEEE Computer
Society.

Prokopenko, M., Wang, P., Price, D. C., Valencia, P., Foreman, M., & Farmer, A. J. (2005d). Self-
organizing hierarchies in sensor and communication networks. Artificial Life, 11(4), 407–426.
Special Issue on Dynamic Hierarchies.

Prokopenko, M., Gerasimov, V., & Tanev, I. (2006a). Evolving spatiotemporal coordination in a
modular robotic system. In S. Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco,
J.-A. Meyer, O. Miglino, & D. Parisi (Eds.), Lecture notes in computer science: Vol. 4095. From
animals to animats 9: 9th international conference on the simulation of adaptive behavior (SAB
2006), Rome, Italy, 25–29 September 2006 (pp. 558–569).

Prokopenko, M., Gerasimov, V., & Tanev, I. (2006b). Measuring spatiotemporal coordination in
a modular robotic system. In L. Rocha, L. Yaeger, M. Bedau, D. Floreano, R. Goldstone, &
A. Vespignani (Eds.), Artificial life X: proceedings of the 10th international conference on the
simulation and synthesis of living systems (pp. 185–191). Bloomington: MIT Press.

http://dx.doi.org/10.1371/journal.pone.0053095

20 M. Prokopenko

Prokopenko, M., Poulton, G. T., Price, D. C., Wang, P., Valencia, P., Hoschke, N., Farmer, A.
J., Hedley, M., Lewis, C., & Scott, D. A. (2006c). Self-organising impact sensing networks in
robust aerospace vehicles. In J. Fulcher (Ed.), Advances in applied artificial intelligence (pp.
186–233). Hershey: Idea Group.

Prokopenko, M., Boschetti, F., & Ryan, A. J. (2009). An information-theoretic primer on complex-
ity, self-organization, and emergence. Complexity, 15(1), 11–28.

Prokopenko, M., Lizier, J. T., Obst, O., & Wang, X. R. (2011). Relating Fisher information to order
parameters. Physical Review E, 84(4), 041116.

Sahin, E., & Spears, W. M. (2004). Revised selected papers. In Lecture notes in computer science:
Vol. 3342. Proceedings of SAB-2004 international workshop on swarm robotics, Santa Monica,
CA, USA, 17 July 2004.

Scaruffi, P. (2003). Thinking about thought: a primer on the new science of mind, towards a unified
understanding of mind, life and matter. San Jose: Writers Club Press.

Schlegel, T., & Kowalczyk, R. (2008). Self-organizing nomadic services in grids. In M.
Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 217–245). London:
Springer.

Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461–464.
Shalizi, C. (2001). Causal architecture, complexity and self-organization in time series and cel-

lular automata. PhD thesis, University of Michigan. Available at http://www.cscs.umich.edu/
~crshalizi/thesis/.

Shalizi, C. R., Shalizi, K. L., & Haslinger, R. (2004). Quantifying self-organization with optimal
predictors. Physical Review Letters, 93(11), 118701-1-4.

Tanev, I. (2008). Learning mutation strategies for evolution and adaptation of a simulated snakebot.
In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 105–127). London:
Springer.

Tanev, I., Ray, T., & Buller, A. (2005). Automated evolutionary design, robustness, and adaptation
of sidewinding locomotion of a simulated snake-like robot. IEEE Transactions on Robotics, 21,
632–645.

Tarakanov, A. O. (2008). Formal immune networks: self-organization and real-world applications.
In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 271–290). London:
Springer.

Tarakanov, A. O., & Borisova, A. V. (2013). Formal immune networks: self-organization and real-
world applications. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd
ed.). London: Springer.

Vande Moere, A. (2008). A model for self-organizing data visualization using decentralized multi-
agent systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 291–
324). London: Springer.

Volman, M. J. M. (1997). Rhythmic coordination dynamics in children with and without a de-
velopmental coordination disorder. PhD dissertation, University of Groningen, available at
http://irs.ub.rug.nl/ppn/163776687.

Wagner, A. (2005). Robustness and evolvability in living systems. Princeton: Princeton University
Press.

Wang, X. R., Lizier, J. T., & Prokopenko, M. (2010). A Fisher information study of phase transi-
tions in random Boolean networks. In H. Fellermann, M. Dörr, M. M. Hanczyc, L. L. Laursen,
S. Maurer, D. Merkle, P.-A. Monnard, K. Stoy, & S. Rasmussen (Eds.), Proceedings of the 12th
international conference on the synthesis and simulation of living systems (Alife XII), Odense,
Denmark (pp. 305–312). Cambridge: MIT Press.

Wang, X. R., Lizier, J. T., & Prokopenko, M. (2011). Fisher information at the edge of chaos in
random Boolean networks. Artificial Life, 17(4), 315–329.

Wang, X. R., Miller, J. M., Lizier, J. T., Prokopenko, M., & Rossi, L. F. (2012). Quantifying and
tracing information cascades in swarms. PLoS ONE, 7(7), e40084.

Woese, C. R. (2004). A new biology for a new century. Microbiology and Molecular Biology
Reviews, 68(2), 173–186.

http://www.cscs.umich.edu/~crshalizi/thesis/
http://www.cscs.umich.edu/~crshalizi/thesis/
http://irs.ub.rug.nl/ppn/163776687

1 Design Versus Self-Organization 21

Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D, 10.
Wuensche, A. (1999). Classifying cellular automata automatically: finding gliders, filtering, and

relating space-time patterns, attractor basins, and the z parameter. Complexity, 4(3), 47–66.
Zambonelli, F., & Rana, O. F. (2005). Self-organization in distributed systems engineering. Special

Issue of IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans,
35(3).

Chapter 2
Foundations and Formalizations
of Self-Organization

Daniel Polani

2.1 Introduction

In the study of complex systems, the relevance of the phenomenon of self-
organization is ubiquitous. For example the stripe formation in morphogenesis
(Meinhardt 1972, 1982), reaction-diffusion automata (Turing 1952), the reorgani-
zation of a self-organizing Kohonen map, the seemingly effortless distributed orga-
nization of work in an ant colony, the formation of flows in pedestrian movement
patterns (Helbing et al. 2005), the maintenance and creation of the complexities
involved with the maintenance of life in living cells all produce a behaviour that, in
one way or another, can be called “organized” and if the source of organization is
not explicitly identified outside of the system, it can be called “self -organized”.

Strangely enough, as much agreement as there is about whether self-organization
is present or absent in a system on visual inspection, as little agreement exists con-
cerning the precise meaning of the word. In other words, while the phenomenology
of the phenomenon is pretty much agreed upon, its formal foundations are not.

Among other problems, this causes a certain amount of confusion. For instance,
the difference between the notions of emergence and self-organization are being
strongly emphasized (Shalizi 2001), notwithstanding the frequent co-occurrence
of these notions. On the other hand, without a clean formal definition of self-
organization and emergence, it is difficult to make strong points in favour (or
against) a separation of these notions.

With recent interest in the exploitation of phenomena of self-organization for
engineering and other applications, the importance of characterizing and under-
standing the phenomenon of self-organization has even increased. It is no longer
sufficient to characterize a system in “ivory-tower” fashion to be in one group or
another according to some human classification. Rather it becomes necessary to

D. Polani (B)
Adaptive Systems Research Group, Department of Computer Science, University
of Hertfordshire, Hatfield, UK
e-mail: d.polani@herts.ac.uk

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_2,
© Springer-Verlag London 2013

23

mailto:d.polani@herts.ac.uk
http://dx.doi.org/10.1007/978-1-4471-5113-5_2

24 D. Polani

work towards a predictable and structured theory that will also allow to make useful
predictions about the performance of a system. The advent of nanotechnology and
bio-inspired engineering architectures increases the immediate practical relevance
of understanding and characterizing self-organization.

In view of the various streams and directions of the field of self-organization, it is
beyond the present introductory chapter to review all the currents of research in the
field. Rather, the aim of the present section is to address some of the points judged
as most relevant and to provide a discussion of suitable candidate formalisms for the
treatment of self-organization. In the author’s opinion, discussing formalisms is not
just a vain exercise, but allows one to isolate the essence of the notion one wishes
to develop. Thus even if one disagrees with the path taken (as is common in the
case of not yet universally agreed upon formal notions), starting from operational
formalisms helps to serve as a compass guiding one towards notions suitable for
one’s purposes. This is the philosophy of the present chapter.

The chapter is structured as follows: in Sect. 2.2, we will present several cen-
tral conceptual issues relevant in the context of self-organization. Some historical
remarks about related relevant work are then done in Sect. 2.3. To illustrate the set-
ting, a brief overview over some classical examples for self-organizing processes
is given in Sect. 2.4. In Sects. 2.5 and 2.6, introduces the two main information-
theoretic concepts of self-organization that the present chapter aims to discuss. One
concept, based on the ε-machine formalism by Crutchfield and Shalizi, introduces
self-organization as an increase of (statistical) complexity with time. The other
concept will suggest measuring self-organization as an increase of mutual corre-
lations (measured by multi-information) between different components of a system.
In Sect. 2.7, finally, important properties of these two measures as well as their
distinctive characteristics (namely their power to identify temporal versus compo-
sitional self-organization) will be discussed, before Sect. 2.8 gives some conclusive
remarks.

2.2 General Comments

In the vein of the comments made above, the present paper does not attempt to an-
swer the question: “what is self-organization?” Rather, the question will be “where
do we agree self-organization exists?” or “what are candidate characterizations of
self-organization?”. Thus, rather than attempting to give ultimate answers to that
question, a number of suggestions will be presented that can form a starting point
for the development of the reader’s own notion.

The distinction of self-organization from emergence is emphasized time and time
again (Shalizi 2001); this is sometimes confusing to outsiders, given that both often
appear in similar contexts and that there is no universally accepted formal definition
for each of them. This distinction emphasizes, though, that there is a general desire
to have them carry different meanings.

2 Foundations and Formalizations of Self-Organization 25

Self-organization, the main focus of the present chapter,1 is a phenomenon under
which a dynamical system exhibits the tendency to create organization “out of it-
self”, without being driven by an external system, in particular, not in a “top-down”
way. This requires clarification of several questions:

1. What is meant by organization?
2. How and when to distinguish system and environment?
3. How can external drives be measured?
4. What does top-down mean?

Question 1 is clearly related to the organizational concept of entropy. However,
it is surprisingly not straightforward to adapt entropy to be useful for measuring
self-organization, and some additional efforts must be made (Polani 2003). This is
the main question the present chapter concentrates upon. All the other questions are
only briefly mentioned here to provide the reader with a feel of what further issues
in the context of formalization of self-organization could and should be addressed
in future.

Question 2 is, basically, about how one defines the boundaries of the system;
this is related with the question of autonomy (Bertschinger et al. 2006). Once they
are defined, we can ask ourselves all kinds of questions about the system under
investigation and its environment, its “outside”. A complication is brought into the
discussion through the fact that, if organization is produced in the “inner” system
out of itself (the “self” in self-organization), in a real physical system, disorder has
to be produced in the outside world, due to the conservation of phase space volume
(Adami 1998).

However, for many so-called self-organizing systems the physical reality is quite
detached, i.e. conservation or other thermodynamic laws are not (and need not be)
part of the model dynamics, so Landauer’s principles (Landauer 1961; Bennett and
Landauer 1985) are irrelevant in the general scenario: for instance, a computer emu-
lating a self-organizing map produces much more total heat in its computation than
the minimum amount demanded by Landauer’s principle due to the entropy reduc-
tion of the pure computation. In other words, the systems under consideration may
be arbitrarily far away from thermal equilibrium and worse, there may be a whole
hierarchy of different levels of organization whose constraints and invariants have
to be respected before one can even consider coming close to the Landauer limit.2

Therefore, unless we are aiming for understanding nano-systems where issues of
Landauer’s principle could begin to play a role, we can and will ignore issues of
the “compulsory” entropy production of a real physical system that exhibits self-
organization. In particular, the systems we will consider in the following are general
dynamical systems. We will not require them to be modeled in a thermodynamically
or energetically consistent way.

1Emergence is briefly discussed in Sects. 2.5.2 and 2.6.1.
2As an example, the energy balance of real biological computation process will operate at the ATP
metabolism level and respect its restrictions—but this is still far off the Landauer limit.

26 D. Polani

As for question 3, it is not as straightforward to respond to, a difficulty that is con-
ceded in Shalizi et al. (2004). There, it has been suggested to study causal inference
as a possible formalism to investigate the influence of an environment onto a given
system. In fact, the concept of information flow has been recently introduced to ad-
dress exactly this question (Ay and Wennekers 2003; Klyubin et al. 2004; Ay and
Krakauer 2007; Ay and Polani 2008), providing an information-theoretic approach
to measure causal inference. At this point these notions are still quite fresh and
not much is known about their possible relevance for characterizing self-organizing
systems, although it will be an interesting avenue for future work.

Question 4, again introduces an interesting and at the same time unclear notion
of “top-down”. Roughly, top-down indicates a kind of downward causation (Em-
meche et al. 2000), where one intervenes to influence some coarse-grained, global,
degrees of freedom as to achieve a particular organizational outcome; or else, the
external experimenter “micro-manages” the system into a particular state. For this
latter view, one could consider using a formalization of an agent manipulating its
environment (Klyubin et al. 2004). This is again outside of the scope of the present
paper. Nevertheless, it is hoped that this section’s brief discussion of general con-
ceptual issues highlights some related open questions of interest that may prove
amenable to treatment by a consistent theoretical framework.

2.3 Related Work and Historical Remarks

Shalizi et al. (2004) track back the first use of the notion of “self-organizing sys-
tems” to Ashby (1947). The bottom-up cybernetic approach of early artificial intel-
ligence (Walter 1951; Pask 1960) devoted considerable interest and attention to the
area of self-organizing systems; many of the questions and methods considered rel-
evant today have been appropriately identified almost half a century ago (e.g. Yovits
and Cameron 1960).

The notions of self-organization and the related notion of emergence form the
backbone for the studies of dynamical hierarchies, and in particular those types of
dynamics that lead to climbing the ladder of complexity as found in nature. Notwith-
standing the importance and frequent use of these notions in the relevant literature,
a both precise and useful mathematical definition remains elusive. While there is
a high degree of intuitive consensus on what type of phenomena should be called
“self-organizing” or “emergent”, the prevailing strategy of characterization is along
the line of “I know it when I see it” (Harvey 2000).

Specialized formal literature often does not go beyond pragmatic characteriza-
tions; e.g. Jetschke (1989) defines a system as undergoing a self-organizing tran-
sition if the symmetry group of its dynamics changes to a less symmetrical one
(e.g. a subgroup of the original symmetry group, Golubitsky and Stewart 2003),
typically occurring at phase transitions (Reichl 1980). This latter view relates self-
organization to phase transitions. However, there are several reasons to approach the
definition of self-organization in a different way. The typical complex system is not

2 Foundations and Formalizations of Self-Organization 27

in thermodynamic equilibrium (see also Prigogine and Nicolis 1977). One possible
extension of the formalism is towards nonequilibrium thermodynamics, identifying
phase transitions by order parameters. These are quantities that characterize the
“deviation” of the system in a more organized state (in the sense of Jetschke) from
the system in a less organized state, measured by absence or presence of symme-
tries. Order parameters have to be constructed by explicit inspection of the system
since a generic approach is not available, although an ε-machine based approach
such as in Shalizi (2001) seems promising. Also, in complex systems, one can not
expect the a priori existence or absence of any symmetry to act as universal in-
dicators for self-organization; in general such a system will exhibit, at best, only
approximate or imperfect symmetries, if at all. Without a well-founded concept of
characterizing such imperfect “soft” symmetries, the symmetry approach to charac-
terize self-organization is not sufficient to characterize general complex systems.

2.4 Examples for Self-Organization

We now consider a number of examples of systems which are typically regarded
as self-organizing. Since the field lacks a consensus on suitable formal definitions,
it is helpful to consider examples of the phenomenon at hand, where there is less
controversy whether or not they exhibit the desired behaviour.

2.4.1 Bifurcation

Consider a dynamical system with state x(t) ∈ R
n at time t , whose state dynamics

governed by a differential equation

ẋ = F(x,μ) (2.1)

where F : Rn × R → R
n is a smooth function, and μ ∈ R is a so-called bifurca-

tion parameter, and the dot denotes the usual time derivative. For a fixed μ, this
defines a particular dynamical system which, amongst other, exhibits a particular
fixed point profile, i.e. a set of points {x0 ∈ R

n | F(x0) = 0}. The existence of fixed
points engenders a possibly highly intricate structure of the system state space R

n.
Of particular importance are the so-called stable and unstable manifolds. The sta-
ble manifold of a fixed point x0 is the continuation (forward in time) of the local
eigenspaces of the Jacobian DF |x0 for negative eigenvalues, the unstable manifold
is the continuation (backward in time) for positive eigenvalues (see Jetschke 1989,
or any good book about dynamical systems for details). The important part of this
message is that the structure of the invariant (stable and unstable) manifolds struc-
tures the state space in a characteristic way. A very simple example is shown in
Fig. 2.1: even in this simple example, the state space is split into four regions. With

28 D. Polani

Fig. 2.1 Stable and unstable
manifold of a fixed point x0

a more intricate fixed points (or attractor) structure, that profile can be quite more
complex.

The importance of above observation stems from a number of facts. In the ex-
ample above (as shown in Fig. 2.1), there are only positive or negative eigenval-
ues of the Jacobian DF |x0 . However, if we consider μ a parameter that is scanned
through, the eigenvalue spectrum of the Jacobian changes smoothly, and eigenvalues
may change sign, i.e. may crossing the 0 level. Generically, an eigenvalue chang-
ing sign on changing μ will travel with nonzero speed through 0, i.e. for which
DFμ|x0 �= 0, where DFμ is the partial derivative of the Jacobian with respect to μ.
If this is the case, the number or character of the fixed points may change, sometimes
dramatically, and with it the whole split of the space into attractor regions of differ-
ent character. This process is known as bifurcation. In systems which have a fast
dynamics F parameterized by a slow-varying (and perhaps externally controlled)
parameter μ, the appearance of new fixed points is often interpreted as a process of
self-organization.

2.4.2 Synergetics

The concept of a slow varying parameter has been made part of the above analysis
by a number of approaches, most notably the synergetics approach (Haken 1983),
but is also known under the name of slow manifold and fast foliation (Mees 1981).
If we consider a dynamical system where the Jacobian of F has a few eigenvalues
very close to 0, and a large number of strongly negative eigenvalues, those com-
ponents of x which fall into the degrees of freedom of the strongly negative eigen-
values will vanish quickly, reducing the essential dynamics of the system to the
low-dimensional submanifold of the whole system which corresponds to the “slow”
degrees of freedom of the system. In the more colourful language of synergetics,
these “slow” degrees of freedom are the “master” modes that “enslave” the fast,
quickly decaying modes belonging to the strongly negative eigenvalues.

Synergetics provided an historically early formal and quantitative approach for
the treatment of self-organization phenomena by decomposing a possibly large sys-
tem into hierarchically separate layers of dynamics. It has been successfully applied
to a number of physical systems and models, including laser pumping, supercon-
ductivity, the Ginzburg-Landau equations and the pattern formation and the Bénard

2 Foundations and Formalizations of Self-Organization 29

instabilities in fluids (Haken 1983). However, it only works properly under certain
conditions (namely the particular structure of the eigenvalue spectrum) and there are
self-organization phenomena it fails to capture fully (Spitzner and Polani 1998).

2.4.3 Pattern Formation in Spatial Media

To define the dynamical system concept from Sects. 2.4.1 and 2.4.2 one requires the
concept of for smooth manifolds, i.e. a space with consistent differentiable struc-
tures. If one adds the requirement that F obeys given symmetries, i.e. that there is a
symmetry group Γ such that γ ∈ Γ operates on R

n and (2.1) obeys

˙(γ x) = F(γ x,μ)

for all γ ∈ Γ , then it can be shown this imposes restrictions on the solution space,
including the bifurcation structure (Golubitsky and Stewart 2003).

A special, but important case is a spatial symmetry governing the state space of
the dynamics. In the most generic case, the state space is not the finite dimensional
space R

n, but rather the space Cm(Rk,R) of sufficiently smooth functions on R
k ,

and the symmetries are the Euclidean symmetries (translations and orthogonal rota-
tions) on R

k , and (2.1) actually becomes a partial differential equation.3 In a discrete
approximation one can replace the space Rk by a lattice L = {∑k

i=1 livi | li ∈ Z} for
linear independent vi ∈R (Hoyle 2006), and thus reobtain a finite-dimensional ver-
sion of (2.1), this time the n components of space not anymore forming an unstruc-
tured collection, but rather being organized as a lattice and subject to its symmetries.
Here, the system dynamics, together with the symmetries governing the system give
rise to particular stable states and attractors where, due to their easily visualizable
spatial structure it is easy to detect phenomena of self-organization.

A classical example for such a model is Turing’s reaction-diffusion model (Tur-
ing 1952). He was among the first to study the dynamics of reaction-diffusion sys-
tems as possible model for computation; his particular interest was to study pattern
formation in biological scenarios. In a time where there was still a debate which
would be the most adequate model for computation, Turing’s suggestion of a spa-
tially organized computational medium with an activator and an inhibitor substance
with differing diffusion coefficients, provides a wide range of spatial organization
dynamics. Depending on the chemical dynamics, there are different instances of
reaction-diffusion machines. Figure 2.2 shows some Turing patterns emerging from
having an activator and an inhibitor with concentrations a, b, respectively, computed
from the definition of their rates of change

∂a

∂t
= δ1�a + k1a

2/b − k2a (2.2)

3Here we ignore technical details necessary to properly define the dynamics.

30 D. Polani

Fig. 2.2 Turing patterns of the concentration a of the activator, as emerging from (2.2) for different
parameters k. See Bar-Yam (1997) for discussion how to obtain different patterns

∂b

∂t
= δ2�b + k3a

2 − k4b (2.3)

in the discrete approximation of a square lattice (Bar-Yam 1997). The starting con-
figuration were randomly initialized concentration fields for a and b. The simula-
tions show the dynamics is constrained to produce structured patterns from virtually
arbitrary initial states.

Other reaction-diffusion systems exhibiting spatial self-organization phenomena
are, for instance the Belousov-Zhabotinsky reaction which can be implemented in
vitro. Reaction-diffusion processes are believed to influence the morphogenesis pro-
cesses in living beings (Meinhardt 1982) and, as such, of central importance to un-
derstand how morphological complexity can be obtained by “unpacking” the rela-
tively compact genotype.

2.5 Information-Theoretic Approaches to Self-Organization

The models from Sect. 2.4 have in common that they require the dynamical system
to “live” on a differentiable manifold to describe self-organization. In addition, the
synergetics model of self-organization requires a particular grouping of the eigenval-
ues of the Jacobian and the pattern formation models require the presence of a spa-
tially structured state space. These are relatively specific requirements. In a unified
treatment of self-organization, it would be very limiting to exclude self-organization
in discrete, not differentiable, worlds. Similarly, it would be inappropriate to assume
that systems must have a Euclidian spatial organization similar to reaction-diffusion
systems. It is easy to envisage scenarios where a system may possess other topolog-
ical/structural properties, such as social or food web networks.

In addition, the example systems from Sect. 2.4 were implicitly assumed to be
deterministic, which is usually far too strong an assumption. Neither this assumption

2 Foundations and Formalizations of Self-Organization 31

nor the assumption from the last paragraph needs to hold: one can imagine self-
organization in an agent system (such as relevant for engineering problems) which
is neither deterministic nor organized on a regular spatial structure, and certainly
nothing can be assumed in terms of distributions of eigenvalues close to fixed points
(if these at all exist).

Can anything at all be analyzed in such structurally impoverished scenarios? In-
deed, it turns out that still a lot can be said with much less structure, and the toolbox
of choice is information theory. In the following, we will outline two approaches to
model self-organization using information theory.

Information theory operates on probability distributions. These require only min-
imal structure (a probability measure) on the space of interest, and make no assump-
tion about differentiability or spatial structure. Information theory has crystallized
as a promising common language for the study of general systems, to tackle issues
of complex phenomena exhibiting a wide variety of seemingly incompatible prop-
erties.

2.5.1 Notation

Due to space limitations, the formalization of the exposition is restricted to a mini-
mum. Consider a random variable X assuming values x ∈ X , X the set of possible
values for X. For simplicity, assume that X is finite. Define the entropy of X by

H(X) := −
∑

x∈X
p(x) logp(x),

the conditional entropy of Y as

H(Y |X) :=
∑

x∈X
p(x)H(Y |X = x)

with

H(Y |X = x) := −
∑

y∈Y
p(y|x) logp(y|x)

for x ∈ X . The joint entropy of X and Y is the entropy H(X,Y) of the random
variable (X,Y). The mutual information of random variables X and Y is I (X;Y) :=
H(Y) − H(Y |X) = H(X) + H(Y) − H(X,Y). A generalization is the intrinsic
information: for random variables X1, . . . ,Xk , the intrinsic or multi-information is

I (X1; . . . ;Xk) :=
[

k∑

i=1

H(Xi)

]

− H(X1, . . . ,Xk).

This notion is also known e.g. as integration in Tononi et al. (1994). Similar to
the mutual information, it is a measure for the degree of dependence between the
different Xi .

32 D. Polani

2.5.2 Self-Organization as Increasing Statistical Complexity

One influential approach to study complex systems and the notions of self-
organization and emergence is based on the ε-machine formalism which provides a
model to describe complex temporal processes (Crutchfield and Young 1989). Using
this formalism, Shalizi (2001) develops a quantifiable notion of self-organization. In
the following, we briefly describe the ε-machine formalism and the ensuing model
for self-organization.

Consider a stochastic process (with, say, infinite past and future):

X = . . .X(t−3),X(t−2),X(t−1),X(t),X(t+1),X(t+2),X(t+3),

Denote the (ordered) sequence of variables up to X(t) by
←−
X (past) and the sequence

of variables from X(t+1) upwards by
−→
X (future). Consider the equivalence relation

that identifies all pasts ←−
x for which the probability distribution P(

−→
X |←−x) of the

possible futures is exactly the same. This equivalence relation partitions the pasts
into disjoint sets, which, for the sake of simplicity, we name x̃. Any past ←−

x is
member of exactly one equivalence class x̃.

To construct an ε-machine from a given process X, define an automaton such that
its states are identified one-to-one by the equivalence classes x̃ arising from above
procedure. When a transition from t to t + 1 is made, it means replacing a past
. . .X(t−3),X(t−2),X(t−1),X(t) by a past . . .X(t−2),X(t−1),X(t),X(t+1), and thus is
acts as a transition from an equivalence class x̃ to an equivalence class x̃′, corre-
sponding to the new past. Together with labeling the transition by the realization
x(t+1) of X(t+1), this defines the automaton.

The ε-machine, when it exists, acts as the unique minimal maximally predic-
tive model of the original process (Shalizi and Crutchfield 2002), including highly
non-Markovian processes which may contain a significant amount of memory.4

It allows to define the concept of statistical complexity as the entropy H(X̃) =
−∑

x̃ p(x̃) logp(x̃) of the states of the ε-machine. This is a measure of the memory
required to perform the process X.

Note that the statistical complexity is, in general, different from another im-
portant quantity, known, among other, as excess entropy and which is given by
η(X) := I (

←−
X ;−→X) (see e.g. Grassberger 1986). One always has η(X) ≤ H(X̃)

(Shalizi 2001). The interpretational distinction between statistical complexity and
excess entropy is subtle. Of the selection of interpretations available, the author
prefers the view inspired by the “information bottleneck” perspective (Tishby et al.
1999; Shalizi and Crutchfield 2002): The excess entropy is the actual information

4Note that, in general, the construction of an ε-machine from the visible process variables X is not
necessarily possible, and the reader should be aware that the Shalizi/Crutchfield model is required
to fulfil suitable properties for the reconstruction to work. I am indebted to Nihat Ay and Wolfgang
Löhr for pointing this out to me.

2 Foundations and Formalizations of Self-Organization 33

contained in the complete past (for a given time) about the complete future as it
could be reconstructed if the complete past were available as a whole. As opposed
to that, to obtain the statistical complexity one has to force this information through
the “bottleneck” given by the ε-machine state at the present time slice which has
to provide a sufficient statistics about the past concerning the future constrained to
the current time. Because of the constraint of this bottleneck to the present time
slice it is, in general, less parsimonious in description than the “idealized” excess
entropy that, in principle, assumes availability of the whole process (past and future)
to produce its prediction. In the bottleneck picture, we have the sequence

X̃ ←− ←−
X ←→ −→

X

where the left arrow indicates the projection of
←−
X to the ε-machine state and the

arrows between the past and future variables indicate their informational relation.
The process of “squeezing” their mutual information into the bottleneck variable X̃

produces in general a variable with a larger entropy than the actual mutual infor-
mation content between

←−
X and

−→
X (this is a general property of the information

bottleneck, of which the relation between statistical complexity and excess entropy
is just a special case).

In computing the ε-machine, the picture of an infinite time series is idealized. In
the empirical case one will consider finite time series, giving rise to a “localized”
ε-machine, operating on a certain window size. Here, one will expect to encounter
a slow drift superimposed on the fast dynamics of the process which will slowly
change the localized ε-machine with the passing of time. Shalizi (2001) calls a
system self-organizing if this statistical complexity grows with time. We will call
this flavour of self-organization SC-self-organization (“SC” for statistical complex-
ity).

This approach basically considers organization to be essentially the same as com-
plexity. In this model, self-organization is an intrinsic property of the system and
unambiguously measurable. In particular, this approach makes the relation to emer-
gence unambiguously clear, as Shalizi gives a definition of emergence based on the
ε-machine notion in the same work. The essence is that in the ε-machine perspec-
tive emergence is present if there is a coarse-grained description of the system that
is more predictively efficient than the original description of the process, i.e. if it has
a higher ratio η(X)/H(X̃) of excess entropy vs. statistical complexity, a better ratio
between the total amount of process information that ideally needs to be processed
and the process memory that is actually necessary to achieve that.

This approach to emergence is descriptive, as it characterizes a property of the
particular description (i.e. perspective or “coordinate system”) through which one
looks into a system. As opposed to that, self-organization in the ε-machine model is
a purely intrinsic property of the system. Through this split into description and in-
trinsic properties, Shalizi (2001) argues that while emergence may allow to simplify
descriptions of a system, there may be cases of self-organization which humans do
not recognize as such because there is no appropriate simplified (emergent) coordi-
nate system through which the self-organization would become apparent. It is only

34 D. Polani

visible through the ε-machine construction. This provides a transparent picture how
self-organization and emergence turn out to be two mathematically distinct con-
cepts that represent different aspects of a system. While this is a motif that one finds
repeatedly emphasized in the scientific discourse, it is rarely formulated in an as
compelling and crisp language.

One interesting aspect of the ε-machine view is how it reflects the bifurcation
concept from Sect. 2.4.1. Consider as process an iterator map for t → ∞. As long
as there is only a single fixed point attractor, the ε-machine will (asymptotically)
have only one state. As a bifurcation into two fixed point attractors occurs, these
two attractors will be reflected by the ε-machine. With the bifurcation behaviour
becoming more intricate (as would happen, say, in the logistic map example with
an adiabatically slowly growing bifurcation parameter), the ε-machine also grows
in complexity. In this way, the ε-machine can grow significantly in size and with it
the statistical complexity.

2.5.3 Observer-Induced Self-Organization

Conceptually, pattern formation which we gave in Sect. 2.4.3 as a prominent exam-
ple of self-organization, does not fit smoothly into the picture of growing statistical
complexity. One reason for that is that statistical complexity by its very foundations
is a concept that operates on an process that has no a priori structure on the X(t),
except for the ordered-ness (and, implied, directed-ness) of time.

Quite different from that, spatial pattern formation inextricably requires a spatial
structure on its state space X . The patterns that develop during the experiments form
in space, and space has strong structural constraints. For this purpose, in Shalizi
(2001), a spatial ε-machine is developed to deal specifically with this problem. Thus,
the spatial structure is brought in explicitly as a part of the model.

An alternative approach to model self-organization using information theory is
suggested in Polani (2003). This approach no longer considers an unstructured dy-
namical system on its own, but adds the concept of an observer which acts as a
particular “coordinate system” through which the given system is represented at
a given time step. For this model of self-organization, an observer or coordinate
system needs to be specified in addition to the dynamics of the system. The suspi-
cion that observers may be of importance to characterize complex systems has been
voiced quite a few times in the past (Crutchfield 1994; Harvey 2000; Baas and Em-
meche 1997; Rasmussen et al. 2001). In formalizing this idea here, we follow the
particular flavour from Polani (2003).

2.6 Organization via Observers

A (perfect) observer of a (random) variable X is a collection X1,X2, . . . ,Xk of ran-
dom variables allowing full reconstruction of X, i.e. for which H(X|X1,X2, . . . ,Xk)

2 Foundations and Formalizations of Self-Organization 35

vanishes. We define the organization information with respect to the observer as
the multi-information I (X1; . . . ;Xk). We call a system self-organizing (with re-
spect to the given observer) if the organization information increase with respect
to the observer variables is positive as the system dynamics progresses with time.
I (X1; . . . ;Xk) quantifies to which extent the observer variables X1,X2, . . . ,Xk de-
pend on each other. We call this flavour of self-organization O-self-organization
(“O” for observer-based).

The set of observer variables can often be specified in a natural way. For instance,
systems that are composed by many, often identical, individual subsystems, have a
canonical observer, defined via the partition of the system into subsystems. For in-
stance, the observer variables could denote the states of agents that collectively make
up a system. An increase in the multi-information of the system with respect to the
agent states then indicates an increasing degree of coordination between the agents:
this is consistent with our intuitive understanding of self-organization. Reaction-
diffusion systems are also naturally described in this framework. Each point in space
becomes an observer variable; in the attractor states with spot-and-wave patterns,
these observer variables are intrinsically correlated.

Note, however, that for the multi-information not to vanish, it is still necessary
that the whole system has some degree of freedom and that there is not just a single
fixed pattern the system converges to. This makes sense, since otherwise one would
just be talking about a single-attractor, and thus trivial, system.

Using the Self-Organizing Map as model system, and the individual neuron
weights as observer variables, Polani (2003) discusses in detail the advantage
of multi-information as a measure for self-organization as compared to other
information-theoretic candidates for such a measure (except for the comparison with
SC-self-organization, which is discussed in the present chapter for the first time).
Many of the arguments carry over to other typical scenarios.

Note that compared to SC-self-organization (Sect. 2.5.2), O-self-organization is
different in several respects. SC-self-organization does not require observers, and
arises from the intrinsic dynamics of the system. This is orthogonal to the view
of O-self-organization. In principle, the need for fewer assumptions by SC-self-
organization is a conceptual advantage. On the other hand, to model the appearance
of regular patterns (e.g. of a reaction-diffusion system) as a self-organization process
one must anyway specify the extra spatial structure in which the patterns appear.
In O-self-organization, this can be directly made a part of the specification. Thus,
O-self-organization would be a natural candidate for these types of scenarios.

2.6.1 Observer Dependence

For the observer-based measure, a central question is how the measure changes
as one moves from one observer to another, i.e. what happens to the measure on
change of the “coordinate system”. It turns out that it is possible to formulate an
interesting relation between fine-grained observers and a coarse-graining of the very
same observers. We will discuss this relation in the following.

36 D. Polani

Let Xi, i = 1 . . . k be a collection of jointly distributed random variables; this
collection forms the fine-grained observer. Obtain the coarse-grained observer by
grouping the Xi according to

X1, . . . ,Xk1︸ ︷︷ ︸
X̃1

,Xk1+1, . . . ,Xk2︸ ︷︷ ︸
X̃2

, . . . ,Xk
k̃−1+1, . . . ,Xk

︸ ︷︷ ︸
X̃

k̃

, (2.4)

i.e. each of the coarse-grained variables X̃j , j = 1 . . . k̃ is obtained by grouping
several of the fine-grained variables Xi together.

Then the multi-information of the fine-grained observer can be expressed as5

I (X1;X2; . . . ;Xk) = I (X̃1; X̃2; . . . ; X̃k̃
) +

k̃∑

j=1

I (Xkj−1+1; . . . ;Xkj
), (2.5)

(where we adopt the convention k0 := 0 and k
k̃
:= k). Relation (2.5) states that the

multi-information as measure of self-organization in the fine-grained case can be
expressed as the multi-information for the set of coarse-grained variables, corrected
by the intrinsic multi-information of all these coarse-grained variables, or to put it
snappily, “the fine-grained system is more than the sum of its coarse-grained ver-
sion”. The proof is sketched in Appendix.6

Equation (2.5) states how the intrinsic information of a system changes under
a “change of coordinates” by regrouping the random variables that represent the
system. This “bookkeeping” of multi-information while changing the basis for the
system description in general only applies to regrouping of variables, but not to
recoding. Under recoding of variables (i.e. re-representing the variables Xi by ran-
dom variables Yi = fi(X1, . . . ,Xi, . . . ,Xk) where fi is some deterministic func-
tion), there is no canonical way of transforming multi-information in a simple and
transparent manner.

To see that, note that recoding may entirely remove dependencies between the
recoded Xi (e.g. in Independent Component Analysis, Comon 1991). In fact, further
requirements can be added to the component independence; indeed, this has been
proposed as a way of discovering degrees of freedom representing emergent levels
of description (Polani 2004, 2006). In this sense, O-self-organization is distinct from
and effectively conjugate to the “emergent descriptions” concept. This dichotomy
mirrors the analogous dichotomy exhibited by the formalization of self-organization
and emergence using the ε-machine formalism (Sect. 2.5.2).

5This is a generalization of Eq. (3) from Tononi et al. (1994) for the bipartite case to the multipartite
case.
6This property is related to a property that can be proven for graphical models, see e.g. Proposi-
tion 2.1 in Slonim et al. (2001).

2 Foundations and Formalizations of Self-Organization 37

2.7 Discussion

2.7.1 SC- and O-Self-Organization

We have emphasized that self-organization is a phenomenon often discussed in con-
junction with complex systems. While there is a manifold selection of processes
that are associated with this phenomenon, most notions used to characterize self-
organization are either too vague to be useful, or too specific to be transferable from
a system to another. The information-theoretic notions of (statistical complexity)
SC-self-organization (Shalizi 2001; Shalizi et al. 2004) and that of (observer-based)
O-self-organization (Polani 2003) strive to fill this gap. While similar to each other
in the general philosophy, they are essentially “orthogonal” as quantities.

SC-self-organization takes in a single time series and measures the growth in
statistical complexity during time. O-self-organization requires an observer, i.e. a
set of variables through which the system state is observed. Such a set of vari-
ables is often naturally available, for instance, in multi-agent systems. Similar to
SC-self-organization, O-self-organization seems to capture essential aspects of self-
organization—for instance, the freezing of seemingly unrelated degrees of freedom
(the observer variables) into highly coordinated global behaviour.

While SC-self-organization concentrates on the complexity of the temporal dy-
namics, O-self-organization concentrates on the compositional aspects of the sys-
tem (this compositionality can, but need not be spatial). This distinction is also what
indicates the use of each of the measures. If one focuses on the temporal dynam-
ics, SC-self-organization may be more relevant, if on the spatial or compositional
dynamics, O-self-organization may be the measure of choice. As the precise math-
ematical conceptualizations of self-organization are relatively recent, it will take
some time until enough experience is accumulated to make an informed decision
which measure is appropriate to use in a given constellation, or whether still other,
more suitable measures will need to be discovered.

A word of caution at this point: the calculation of multi-information is difficult
if the number of variables is large (Slonim et al. 2005). Particularly in unorganized
and random states a Monte-Carlo estimate of the entropies and multi-information
is likely to be undersampled and to overestimate the organization of the system in
that state. Research is underway to develop general methods that are able to prop-
erly estimate the organization of unstructured states (and to distinguish it from the
organized states).

2.7.2 Introducing Observers

For O-self-organization, we have assumed the existence of natural observers. What
if none exist? Which ones to introduce and to use? The multi-information term con-
sists of the entropies of the individual variables as well as the entropy of the joint

38 D. Polani

variables. The latter depends only on the total system, not the observer. It is there-
fore the entropies of the individual variables that will change if we choose different
observers. In general, it is quite possible to choose them in such a way as to make
them independent—while this choice of observer is interesting (it essentially cor-
responds to Independent Component Analysis, Sect. 2.6.1), it makes the system
maximally un-self-organized. This clearly shows that O-self-organization is not in-
trinsic. O-self-organization is “in the eye of the beholder” (Harvey 2000), but in a
formally precise way.

Now, for O-self-organization to be present at all, the whole system must have
some degrees of uncertainty, otherwise the individual variable entropies will also
collapse and the multi-information will vanish. This is a property of the whole sys-
tem. Thus, one could consider a natural observer one that maximizes the multi-
information (as opposed to minimizing it), and thus making the system as self-
organized as possible. If this is the case, O-self-organization could be viewed as
the opposite to independent component decomposition.

But there is yet another way of constructing a natural observer: if one considers
units (agents) that operate in the system and which possess sensors and actuators, the
former which attain information about the system, and the latter which act upon and
modify the system, then the perception-action loop of these agents forms a struc-
tured information channel. It can be shown (Klyubin et al. 2004) that maximizing
the information flow through this channel allows the units to extract features from
the system that are pertinent to the structure of the system.

This view is particularly interesting since it does not look at a system with a
pre-ordained temporal dynamics, but rather the units (agents) have the option to
choose their own actions. Nevertheless, once they perform the information flow
maximization, they attain perceptual properties specially appropriate for the sys-
tem at hand. The thus attained filters or feature detectors could act as another form
of natural observer variables for the given system. Similarly, principles of informa-
tional organization can lead to a joint coordination of a sensorimotor device (Klyu-
bin et al. 2005; Prokopenko et al. 2006) and direct systems to an equipment with
embodiment-appropriate pattern detector loops.

2.8 Conclusion

The present chapter discussed the general problem of defining self-organization and
presented two operational approaches, both based on information-theoretic princi-
ples. One approach, based on the ε-machine formalism, defines self-organization as
an intrinsic property of a system, as a growth of the memory required to process a
time series of random variable. The other approach defines self-organization via an
observer, in typical cases realized as a family of variables of more-or-less similar
type; a growing coordination between these variables with time is then identified
as self-organization. Depending on one’s aims, one will choose one or the other
model to identify self-organization in a system. In particular, SC-self-organization

2 Foundations and Formalizations of Self-Organization 39

will be the notion of choice if one is interested in characterizing the increase in
complexity of the temporal dynamics, while O-self-organization emphasizes the
self-organization process in a system composed of many individual subsystems.

The advantage of using information-theoretic notions for quantifying self-
organization is that they provide a precise language for identifying the conditions
of self-organization and the underlying assumptions, as opposed to vague or un-
computable qualitative characterizations. The quantitative character of information
measures also allows one to actively search for “more self-organized” systems in
a given context, rather than just state whether a system possesses or does not pos-
sess this property (as e.g. an algebraic characterization would do). In addition, the
information-theoretic language forces one to specify exactly the assumptions and
requirements underlying the notions one is using.

In short, information theory proves to be a powerful language to express self-
organization and other central concepts relevant to complex systems. Even if one
ultimately should prefer a different route to characterize self-organization in a com-
plex system, it is probably a good first bet to strive towards a formulation that profits
from the clarity and transparence of the information-theoretic language.

Appendix: Proof of Relation Between Fine and Coarse-Grained
Multi-Information

Proof First, note that a different way to write the composite random variables X̃j is
X̃j = (Xkj−1+1, . . . ,Xkj

) for j = 1 . . . k̃, giving

H(X̃j) = H(Xkj−1+1, . . . ,Xkj
) . (2.6)

Similarly, the joint random variable (X̃1, . . . , X̃k̃
) consisting of the composite ran-

dom variables X̃j can be seen as a regrouping of the elementary random variables
X1, . . . ,Xk .Therefore the joint random variable constructed from the X̃j and that
constructed from the Xi have both the same entropy:

H(X̃1, . . . , X̃k̃
) = H(X1, . . . ,Xk) . (2.7)

For consistency of notation, write k0 = 0 and k
k̃
= k. One then obtains

I (X̃1; X̃2; . . . ; X̃k̃
) +

k̃∑

j=1

I (Xkj−1+1; . . . ;Xkj
)

=
k̃∑

j=1

H(X̃j) − H(X̃1, . . . , X̃k̃
)

40 D. Polani

+
k̃∑

j=1

(kj∑

j ′=kj−1+1

H(Xj ′) − H(Xkj−1+1, . . . ,Xkj
)

)

=
k̃∑

j=1

kj∑

j ′=kj−1+1

H(Xj ′)

︸ ︷︷ ︸
=∑k

i=1 H(Xi)

+
k̃∑

j=1

(
H(X̃j) − H(Xkj−1+1, . . . ,Xkj

)
)

︸ ︷︷ ︸
=0

− H(X̃1, . . . , X̃k̃
)

︸ ︷︷ ︸
=H(X1,...,Xk)

where the first term results from a regrouping of summands, the second term results
from Eq. (2.6) and the third from rewriting the whole set of random variables from
the coarse-grained to the fine-grained notation, thus giving

=
k∑

i=1

H(Xi) − H(X1, . . . ,Xk)

= I (X1; . . . ;Xk)

which proves the equation. �

References

Adami, C. (1998). Introduction to artificial life. New York: Springer.
Ashby, W. R. (1947). Principles of the self-organizing dynamic system. The Journal of General

Psychology, 37, 125–128.
Ay, N., & Krakauer, D. C. (2007). Geometric robustness theory and biological networks. Theory

in Biosciences, 125(2), 93–121.
Ay, N., & Polani, D. (2008). Information flows in causal networks. Advances in Complex Systems,

11(1), 17–41.
Ay, N., & Wennekers, T. (2003). Dynamical properties of strongly interacting Markov chains.

Neural Networks, 16(10), 1483–1497.
Baas, N. A., & Emmeche, C. (1997). On emergence and explanation. Intellectica, 2(25), 67–83.
Bar-Yam, Y. (1997). Dynamics of complex systems. Studies in nonlinearity. Boulder: Westview

Press.
Bennett, C. H., & Landauer, R. (1985). The fundamental limits of computation. Scientific Ameri-

can, 253(1), 48–56.
Bertschinger, N., Olbrich, E., Ay, N., & Jost, J. (2006). Autonomy: an information theoretic per-

spective. In Proc. workshop on artificial autonomy at Alife X, Bloomington, Indiana (pp. 7–12).
Comon, P. (1991). Independent component analysis. In Proc. intl. signal processing workshop on

higher-order statistics, Chamrousse, France (pp. 111–120).
Crutchfield, J. P. (1994). The calculi of emergence: computation, dynamics, and induction. Physica

D, 11–54.
Crutchfield, J. P., & Young, K. (1989). Inferring statistical complexity. Physical Review Letters,

63, 105–108.

2 Foundations and Formalizations of Self-Organization 41

Emmeche, C., Køppe, S., & Stjernfelt, F. (2000). Levels, emergence, and three versions of down-
ward causation. In P. B. Andersen, C. Emmeche, N. O. Finnemann, & P. V. Christiansen (Eds.),
Downward causation. minds, bodies and matter (pp. 13–34). Århus: Aarhus University Press.

Golubitsky, M., & Stewart, I. (2003). The symmetry perspective. Basel: Birkhäuser.
Grassberger, P. (1986). Toward a quantitative theory of self-generated complexity. International

Journal of Theoretical Physics, 25, 907–938.
Haken, H. (1983). Advanced synergetics. Berlin: Springer.
Harvey, I. (2000). The 3 Es of artificial life: emergence, embodiment and evolution. Invited talk at

Artificial Life VII, 1–6 August, Portland, Oregon.
Helbing, D., Buzna, L., Johansson, A., & Werner, T. (2005). Self-organized pedestrian crowd dy-

namics: experiments, simulations, and design solutions. Transportation Science, 39(1), 1–24.
Hoyle, R. (2006). Pattern formation. Cambridge: Cambridge University Press.
Jetschke, G. (1989). Mathematik der Selbstorganisation. Braunschweig: Vieweg.
Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2004). Organization of the information flow in the

perception-action loop of evolved agents. In Proceedings of 2004 NASA/DoD conference on
evolvable hardware (pp. 177–180). Los Alamitos: IEEE Computer Society.

Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2005). Empowerment: a universal agent-centric mea-
sure of control. In Proc. IEEE congress on evolutionary computation (CEC 2005), Edinburgh,
Scotland, 2–5 September 2005 (pp. 128–135). New York: IEEE.

Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of
Research and Development, 5, 183–191.

Mees, A. I. (1981). Dynamics of feedback systems. New York: Wiley.
Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik, 12, 30–39.
Meinhardt, H. (1982). Models of biological pattern formation. San Diego: Academic Press.
Pask, G. (1960). The natural history of networks. In M. C. Yovits & S. Cameron (Eds.), Com-

puter science and technology and their application. Self-organizing systems—proceedings of
an interdisciplinary conference, 5–6 May 1959 (pp. 5–6). New York: Pergamon.

Polani, D. (2003). Measuring self-organization via observers. In W. Banzhaf, T. Christaller, J.
Ziegler, P. Dittrich, J. T. Kim, H. Lange, T. Martinetz, & F. Schweitzer (Eds.), Advances in
artificial life. Proc. 7th European conference on artificial life, Dortmund, 14–17 September.
Berlin: Springer.

Polani, D. (2004). Defining emergent descriptions by information preservation. InterJournal Com-
plex Systems, 1102.

Polani, D. (2006). Emergence, intrinsic structure of information, and agenthood. InterJournal
Complex Systems, 1937.

Prigogine, I., & Nicolis, G. (1977). Self-organization in non-equilibrium systems: from dissipative
structures to order through fluctuations. New York: Wiley.

Prokopenko, M., Gerasimov, V., & Tanev, I. (2006). Evolving spatiotemporal coordination in a
modular robotic system. In S. Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco,
J.-A. Meyer, O. Miglino, & D. Parisi (Eds.), Lecture notes in computer science: Vol. 4095. From
animals to animats 9: 9th international conference on the simulation of adaptive behavior (SAB
2006), Rome, Italy (pp. 558–569). Berlin: Springer.

Rasmussen, S., Baas, N., Mayer, B., Nilsson, M., & Olesen, M. W. (2001). Ansatz for dynamical
hierarchies. Artificial Life, 7, 329–353.

Reichl, L. (1980). A modern course in statistical physics. Austin: University of Texas Press.
Shalizi, C. R. (2001). Causal architecture, complexity and self-organization in time series and

cellular automata. PhD thesis, University of Wisconsin-Madison.
Shalizi, C. R., & Crutchfield, J. P. (2002). Information bottlenecks, causal states, and statistical

relevance bases: how to represent relevant information in memoryless transduction. Advances
in Complex Systems, 5(1), 91–95.

Shalizi, C. R., Shalizi, K. L., & Haslinger, R. (2004). Quantifying self-organization with optimal
predictors. Physical Review Letters, 93(11), 118701.

Slonim, N., Friedman, N., & Tishby, T. (2001). Agglomerative multivariate information bottleneck.
In Neural information processing systems (NIPS 01), La Jolla (pp. 929–936).

42 D. Polani

Slonim, N., Atwal, G. S., Tkačik, G., & Bialek, W. (2005). Estimating mutual information and
multi-information in large networks. arXiv:cs.IT/0502017.

Spitzner, A., & Polani, D. (1998). Order parameters for self-organizing maps. In L. Niklasson, M.
Bodén, & T. Ziemke (Eds.), Proc. of the 8th int. conf. on artificial neural networks (ICANN 98),
Skövde, Sweden (Vol. 2, pp. 517–522). Berlin: Springer.

Tishby, N., Pereira, F. C., & Bialek, W. (1999). The information bottleneck method. In Proc. 37th
annual Allerton conference on communication, control and computing, Urbana-Champaign, IL.

Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: relating func-
tional segregation and integration in the nervous system. Proceedings of the National Academy
of Sciences of the United States of America, 91, 5033–5037.

Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society of London. Series B, Biological Sciences, 327, 37–72.

Walter, W. G. (1951). A machine that learns. Scientific American, 185(2), 60–63.
Yovits, M. C. & Cameron, S. (Eds.) (1960). Computer science and technology and their applica-

tion. Self-organizing systems—proceedings of an interdisciplinary conference, 5–6 May 1959.
New York: Pergamon.

http://arxiv.org/abs/arXiv:cs.IT/0502017

Part II
Distributed Management and Control

Chapter 3
Self-Organizing Traffic Lights: A Realistic
Simulation

Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe

3.1 Introduction: Catch the Green Wave? Better Make Your
Own!

Everybody in populated areas suffers from traffic congestion problems. To deal
with them, different methods have been developed to mediate between road users
as best as possible. Traffic lights are not the only pieces in this puzzle, but they
are an important one. As such, different approaches have been used trying to re-
duce waiting times of users and to prevent traffic jams. The most common consists
of finding the appropriate phases and periods of traffic lights to quantitatively op-
timize traffic flow. This results in “green waves” that flow through the main av-
enues of a city, ideally enabling cars to drive through them without facing a red
light, as the speed of the green wave matches the desired cruise speed for the
avenue. However, this approach does not consider the current state of the traffic.
If there is a high traffic density, cars entering a green wave will be stopped by
cars ahead of them or cars that turned into the avenue, and once a car misses the
green wave, it will have to wait the whole duration of the red light to enter the
next green wave. On the other hand, for very low densities, cars might arrive too
quickly at the next intersection, having to stop at each crossing. This method is
certainly better than having no synchronization at all, however, it can be greatly
improved.

Traffic modelling has enhanced greatly our understanding of this complex phe-
nomenon, especially during the last decade (Prigogine and Herman 1971; Wolf et al.
1996; Schreckenberg and Wolf 1998; Helbing et al. 2000; Helbing 1997; Helbing

B. D’Hooghe is deceased.

S.-B. Cools · C. Gershenson (B) · B. D’Hooghe
Centrum Leo Apostel, Vrije Universiteit Brussel, Krijgskundestraat 33, 1160 Brussels, Belgium
e-mail: cgg@unam.mx

S.-B. Cools
e-mail: secools@vub.ac.be

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_3,
© Springer-Verlag London 2013

45

mailto:cgg@unam.mx
mailto:secools@vub.ac.be
http://dx.doi.org/10.1007/978-1-4471-5113-5_3

46 S.-B. Cools et al.

and Huberman 1998), suggesting different improvements to the traffic infrastruc-
ture. One of these consists of adapting the traffic lights to the current traffic condi-
tions. Indeed, modern “intelligent” advanced traffic management systems (ATMS)
use learning methods to adapt phases of traffic lights, normally using a central com-
puter (Federal Highway Administration 1998; Hunt et al. 1981). The self-organizing
approach we present here does not need a central computer, as the global synchro-
nization is adaptively achieved by local interactions between cars and traffic lights,
generating flexible green waves on demand.

We have previously shown in an abstract simulation (Gershenson 2005) that self-
organizing traffic lights can greatly improve traffic flow for any density. In this chap-
ter, we extend these results to a realistic setting, implementing self-organizing traf-
fic lights in an advanced traffic simulator using real data from a Brussels avenue.
In the next section, a brief introduction to the concept of self-organization is given.
The SOTL control method is then presented, followed by the moreVTS simulator.
In Sect. 3.5, results from our simulations are shown, followed by Discussion, Future
Work, and Conclusions.

3.2 Self-Organization

The term self-organization has been used in different areas with different mean-
ings, as is cybernetics (von Foerster 1960; Ashby 1962), thermodynamics (Nico-
lis and Prigogine 1977), biology (Camazine et al. 2003), mathematics (Lendaris
1964), computing (Heylighen and Gershenson 2003), information theory (Shalizi
2001), synergetics (Haken 1981), and others (Skår and Coveney 2003) (for a gen-
eral overview, see Heylighen 2003). However, the use of the term is subtle, since
any dynamical system can be said to be self-organizing or not, depending partly on
the observer (Gershenson and Heylighen 2003; Ashby 1962): If we decide to call
a “preferred” state or set of states (i.e. attractor) of a system “organized”, then the
dynamics will lead to a self-organization of the system.

It is not necessary to enter into a philosophical debate on the theoretical aspects
of self-organization to work with it, so a practical notion will suffice (Gershenson
2006):

A system described as self-organizing is one in which elements interact in
order to achieve dynamically a global function or behavior.

This function or behavior is not imposed by one single or a few elements, nor
determined hierarchically. It is achieved autonomously as the elements interact with
one another. These interactions produce feedbacks that regulate the system. If we
want the system to solve a problem, it is useful to describe a complex system as
self-organizing when the “solution” is not known beforehand and/or is changing
constantly. Then, the solution is dynamically sought by the elements of the system.
In this way, systems can adapt quickly to unforeseen changes as elements interact lo-
cally. In theory, a centralized approach could also solve the problem, but in practice

3 Self-Organizing Traffic Lights: A Realistic Simulation 47

such an approach would require too much time to compute the solution and would
not be able to keep the pace with the changes in the system and its environment.

In engineering, a self-organizing system would be one in which elements are
designed to dynamically and autonomously solve a problem or perform a function
at the system level. Our traffic lights are self-organizing because each one makes a
decision based only on local information concerning its own state. Still, they manage
to achieve robust and adaptive global coordination.

3.3 Self-Organizing Traffic Lights: The Control Method

In the SOTL method (originally named sotl-platoon in Gershenson (2005)), each
traffic light, i.e. intersection, keeps a counter κi which is set to zero when the light
turns red and then incremented at each timestep by the number of cars approaching
only the red light (i.e. the next one a car will reach) independently of the status
or speed of the cars (i.e. moving or stopped). When κi (representing the integral
of cars over time) reaches a threshold θ , the green light at the same intersection
turns yellow, and the following time step it turns red with κi = 0, while the red
light which counted turns green. In this way, if there are more cars approaching or
waiting behind a red light, it will turn to green faster than if there are only few cars.
This simple mechanism achieves self-organization in the following way: if there
are single or few cars, these will be stopped for more time behind red lights. This
gives time for other cars to join them. As more cars join the group, cars will wait
less time behind red lights. With a sufficient number of cars, the red lights will turn
green even before they reach the intersection, generating “green corridors”. Having
“platoons” or “convoys” of cars moving together improves traffic flow, compared
to a homogeneous distribution of cars, since there are large empty areas between
platoons, which can be used by crossing platoons with few interferences.

The following constraint is considered to prevent traffic lights from switching too
fast when there are high densities: A traffic light will not be changed if the number
of time steps is less than a minimum phase, i.e. ϕi < ϕmin (ϕi is the time since the
light turned green).

Two further conditions are taken into account to regulate the size of platoons.
Before changing a red light to green, the controller checks if a platoon is crossing
through, in order not to break it. More precisely, a red light is not changed to green
if on the crossing street there is at least one car approaching within a distance ω

from the intersection. This keeps crossing platoons together. For high densities, this
condition alone would cause havoc, since large platoons would block the traffic flow
of intersecting streets. To avoid this, we introduce a second condition. Condition one
is not taken into account if there are more than μ cars approaching the green light.
Like this, long platoons can be broken, and the restriction only comes into place if
a platoon will soon be through an intersection.

The SOTL method is formally summarized in Algorithm 3.1.

48 S.-B. Cools et al.

Algorithm 3.1: Self-organizing traffic lights (SOTL) controller

foreach (timestep) do1:

κi+ = carsapproachingRed in ρ2:

if (ϕi ≥ ϕmin) then3:

if not (0 < carsapproachingGreen in ω < μ) then4:

if (κi ≥ θ) then5:

switchlighti ()6:

κi = 07:

end8:

end9:

end10:

end11:

This method has no phase or internal clock. If there are no cars approaching a
red light, the complementary one can stay green. We say that this method is self-
organizing because the global performance is given by the local rules followed by
each traffic light: they are “unaware” of the state of other intersections and still
manage to achieve global coordination.

The method uses a similar idea to the one used by Porche and Lafortune (1999),
but with a much simpler implementation. There is no costly prediction of arrivals
at intersections, and no need to establish communication between traffic lights to
achieve coordination and there are not fixed cycles.

3.4 A Realistic Traffic Simulator: moreVTS

Our simulator (moreVTS 2006) (A More Realistic Vehicle Traffic Simulator) is the
third of a series of open source projects building on the previous one, developed in
Java. Green Light District (GLD) was developed by the Intelligent Systems Group
at the University of Utrecht (GLD 2001; Wiering et al. 2004). Then, GLD was im-
proved by students in Argentina within the iAtracos project, which we used as a
starting point for our simulator, which introduces realistic physics into the simula-
tion. Among other things, acceleration was introduced, and the scale was modified
so that one pixel represents one meter and one cycle represents one second.

The simulator allows the modelling of complex traffic configurations, enabling
the user to create maps and then run simulations varying the densities and types of
road users. Multiple-lane streets and intersections can be arranged, as well as spawn
and destination frequencies of cars. For implementation details of moreVTS, the
reader is referred to Cools (2006).

The self-organizing traffic light controller described in the previous section was
implemented in moreVTS. Using data provided by the Brussels Capital Region, we
were able to build a detailed simulation of the Rue de la Loi/Wetstraat, a four-lane

3 Self-Organizing Traffic Lights: A Realistic Simulation 49

Table 3.1 Average vehicle count per hour at the beginning of the Wetstraat. Data kindly provided
by the Brussels Capital Region

0 1 2 3 4 5 6 7 8 9 10 11

476 255 145 120 175 598 2933 5270 4141 4028 3543 3353

12 13 14 15 16 17 18 19 20 21 22 23

3118 3829 3828 3334 3318 3519 3581 3734 2387 1690 1419 1083

westwards one-way avenue in Brussels which gathers heavy traffic towards the cen-
tre of the city. We used the measured average traffic densities per hour on working
days for 2004 (shown in Table 3.1) and the current “green wave” method, which has
a period of 90 seconds, with 65 seconds for the green phase on the Wetstraat, 19 for
the green phase on side streets, and 6 for transitions. This enabled us to compare our
self-organizing controller with a standard one in a realistic setting. Figure 3.1 shows
the simulation view of the Wetstraat and its surrounding streets.

The data from Table 3.1 is for the cars entering the Wetstraat on the East, so the
spawn rates for the two nodes in the simulation representing this were set according
to this data. For the other nodes, the spawn and destination frequencies were set
based on a field study we performed in May 2006, comparing the percentage of cars
that flow through the Wetstraat and those that flow through side streets, enter, or
leave the Wetstraat. These percentages were kept constant, so that when the density
of cars entering the Wetstraat changed, all the other spawn rates changed in the same
proportion. On average, for each five cars flowing through a side street, one hundred
flow through the Wetstraat. This is not the case of the Kuststraat, a two way avenue
at the West of the Wetstraat (second and third crossing streets from left to right on
Fig. 3.1), where for 100 cars driving through the Wetstraat, about 40 turn right, 40
turn left, and only 20 go straight, while 20 more drive through the Kuststraat (about
10 in each direction). The precise spawn rates and destination frequencies are given
in Cools (2006, pp. 55–57).

3.5 Results

To measure the performance of the current green wave method and our self-
organizing controller, we used the average trip waiting times (ATWT). The trip
waiting time for one car is the travel time minus the minimum possible travel time
(i.e. travel distance divided by the maximum allowed speed, which for the Wetstraat
simulation is about sixty seconds).

Several simulation runs were performed to find the best parameters for the SOTL
method. For each parameter and traffic density, five simulation runs representing one
hour, i.e. 3600 cycles, were averaged. The results were robust and consistent, with

50 S.-B. Cools et al.

F
ig

.3
.1

Si
m

ul
at

io
n

of
th

e
W

et
st

ra
at

an
d

in
te

rs
ec

tin
g

st
re

et
s.

C
ar

s
flo

w
w

es
tw

ar
d

on
th

e
W

et
st

ra
at

.R
ed

do
ts

re
pr

es
en

t
tr

af
fic

lig
ht

s
fo

r
ea

ch
in

co
m

in
g

la
ne

at
in

te
rs

ec
tio

ns
(C

ol
or

fig
ur

e
on

lin
e)

3 Self-Organizing Traffic Lights: A Realistic Simulation 51

Fig. 3.2 Average trip waiting times (ATWT) at different hours of the day, green wave controller
and SOTL controller with ϕmin = 5 and θ = 5;10

SOTL performing better than the green wave method for a wide range of parameters
θ and ϕmin (Cools 2006). Only the best ones are shown in Fig. 3.2, together with
the results for the green wave method. The cruise speed used was 14 m/s, ω = 25
and μ = 3. Since some densities from Table 3.1 are very similar, we averaged and
considered the same densities for 2:00, 3:00 and 4:00; 8:00 and 9:00; 10:00, 17:00
and 18:00; 11:00, 15:00 and 16:00; 13:00, 14:00 and 19:00; and 21:00 and 22:00.

As Fig. 3.2 shows, there is considerable reduction in ATWT using SOTL instead
of the current green wave method. The ATWT for the densities at different hours
using SOTL were from 34 % to 64 % of the ATWT for the green wave method,
and on average 50 %. Since the minimum travel time for the Wetstraat is about
one minute, while the overall ATWT for the green wave method is also about one
minute and for SOTL about half, the improvement in the average total travel times
would be of about 25 %, i.e. cars under a green wave method would take 33 % more
time to reach their destination than those under SOTL. This shows with a realistic
simulation that SOTL improves greatly traffic flow compared to the current green
wave method.

3.6 Discussion

The green wave method works well for regulating traffic on the Wetstraat, since
most of the traffic flows through it. Still, having no consideration about the actual
state of the traffic has several drawbacks. It can give a green light to a side street

52 S.-B. Cools et al.

even if there are no cars on it, or when a group of cars is about to cross. Also, if
the traffic density is high, the speed of the cars will be slower than that of the green
wave. And when a car misses a green wave, it will have to wait a full cycle to enter
the next one.

Having actual information about the traffic state enables SOTL to adapt to the
current situation: it only gives green lights on demand, so time will not be wasted
for streets without cars, and the street with more cars will have more demand, thus
more green lights. Cars do have to wait behind red lights, but since while doing so
they are demanding to cross, it is very unlikely that a car will have to wait more than
φmin. Moreover, when a car is stopped, a platoon is likely to be formed, accelerating
the switching of green lights.

Another advantage of platoons is that they reduce entropy in the city, defined via
the probability of finding a car in any part of the city. If there is maximal entropy,
there is the same probability of finding a car anywhere on the city. This increases
the probability of interference, i.e. that two cars will meet at an intersection, thus
one needs to stop. The opposite extreme is less desirable: if we have a certainty
of the position of every car, it is because they are stopped, i.e. in a traffic jam.
However, platoons offer a useful balance: there is a high probability that a car will
be close to another car, i.e. in a group. Thus, there are many free spaces left between
platoons, that other platoons can exploit to cross without interferences. There will
be interferences, but these will be minimal.

3.7 Future Work

The following list summarizes the future work.

• A method similar to SOTL has been used successfully in the United Kingdom for
some time, but only for isolated intersections (Vincent and Young 1986). Indeed,
it is not obvious to expect that traffic lights without direct communication would
be able to coordinate robustly. In any case, the technology to implement it is
already available, so a pilot study could be quickly deployed in a real city. Since
the traffic lights are adaptive, only a few intersections could be changed, which
would adapt to the control method used in the rest of the city. This also would
make it easy to incrementally introduce them in large cities.

• We have observed that there is a monotonic relation between the best θ and the
traffic density (Cools 2006). Exploring this relation better could allow us to set a
variable θ depending on the current traffic density measured by the traffic lights.
However, since SOTL performs very well for a broad range of parameters, it does
not require the calculation of precise parameters. In other words, SOTL is not
sensitive to small changes in parameters, making it a robust method.

• The SOTL method could also be used to give preference to certain users, e.g.
public transport or emergency vehicles. Simply, a weight would be given to each
vehicle in the count κi , so that vehicles with preference would be able to trigger
green lights by themselves. They would be equivalent to a platoon of cars, thus

3 Self-Organizing Traffic Lights: A Realistic Simulation 53

being seamlessly integrated into the system. This might be a considerable im-
provement compared to current methods where some vehicles (e.g. buses in Lon-
don, trams in Brussels) have preference and the rest of the users are neglected, in
some cases even when there are no preferred vehicles nearby.

• The “optimal” sizes of platoons, depending on different features of a city, is an
interesting topic to research. The parameters of SOTL can be regulated to pro-
mote platoons of a certain size, so knowing which size should be aimed at would
facilitate the parameter search.

• It would be interesting to compare SOTL with the Dresden method (Helbing et al.
2005; Lämmer et al. 2006), which couples oscillators using self-organization,
whereas SOTL has no internal phases nor clocks.

3.8 Conclusions

In this chapter we presented results showing that a self-organizing traffic lights con-
trol method considerably improves the traffic flow compared to the current green
wave method, namely reducing on average waiting times by half. These results
are encouraging enough to continue refining and exploring similar traffic light con-
trollers and to implement them in real cities, starting with pilot studies. However,
we would not like to motivate further the use of cars with an efficient traffic con-
trol, since this would increase traffic densities and pollution even more. Any city
aiming at improving its traffic flow should promote in parallel alternative modes of
transportation, such as cycling, walking, car pooling, or using public transport.

3.9 Epilogue

After this chapter was initially published (Gershenson 2008), the self-organizing
method was improved with three more rules (Gershenson and Rosenblueth 2012a),
now achieving close to optimal performance for all densities. This was evaluated
with an elementary cellular automaton model of city traffic (Rosenblueth and Ger-
shenson 2011). This abstract model is useful for comparing methods against a
theoretical optimum and for detecting phase transitions. Since the self-organizing
method is close to the theoretical optimum, there is little which can be further
improved in traffic light coordination. We have also generalized the algorithm to
complex intersections (Gershenson and Rosenblueth 2012b), implementing the el-
ementary cellular automaton model on an hexagonal grid. The green wave method
performs even worse when more streets have to be coordinated, while the self-
organizing method manages to scale to the increased complexity of the traffic light
coordination. In one case, as vehicle density varied, six phase transitions were iden-
tified. In another case, ten phase transitions occurred. Currently we are planning a
pilot study to test the effectiveness of the self-organizing method with real traffic.

54 S.-B. Cools et al.

Self-organization has also been applied to other aspects of urban mobility (Ger-
shenson 2012). One interesting example involves public transportation systems
(Gershenson 2011), where self-organization manages to achieve better than optimal
performance. Self-organizing systems are promising not only for improving mobil-
ity, but for a broad variety of urban problems (Gershenson 2013). To contribute to
this goal, a methodology for designing and controlling self-organizing systems has
been developed (Gershenson 2007).

Acknowledgements We should like to thank the Ministerie van het Brussels Hoofdstedelijk
Gewest for their support, providing the data for the Wetstraat.

References

Ashby, W. R. (1962). Principles of the self-organizing system. In H. V. Foerster & G. W. Zopf Jr.
(Eds.), Principles of self-organization (pp. 255–278). New York: Pergamon.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2003).
Self-organization in biological systems. Princeton: Princeton University Press.

Cools, S. B. (2006). A realistic simulation for self-organizing traffic lights. Unpublished BSc The-
sis, Vrije Universiteit Brussel.

Federal Highway Administration (1998). Traffic control systems handbook. Washington: U.S. De-
partment of Transportation.

Gershenson, C. (2005). Self-organizing traffic lights. Complex Systems, 16(1), 29–53.
Gershenson, C. (2006). A general methodology for designing self-organizing systems (Technical

Report 2005-05). ECCO.
Gershenson, C. (2007). Design and control of self-organizing systems. Mexico: CopIt Arxives.

http://tinyurl.com/DCSOS2007.
Gershenson, C. (2008). Self-organizing traffic lights: a realistic simulation. In M. Prokopenko

(Ed.), Advances in applied self-organizing systems (1st ed.). London: Springer.
Gershenson, C. (2011). Self-organization leads to supraoptimal performance in public transporta-

tion systems. PLoS ONE, 6(6), e21469.
Gershenson, C. (2012). Self-organizing urban transportation systems. In J. Portugali, H. Meyer,

E. Stolk, & E. Tan (Eds.), Complexity theories of cities have come of age: an overview with
implications to urban planning and design (pp. 269–279). Berlin: Springer.

Gershenson, C. (2013, in press). Living in living cities. Artificial Life.
Gershenson, C., & Heylighen, F. (2003). When can we call a system self-organizing? In W.

Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, & J. Ziegler (Eds.), LNAI: Vol. 2801. 7th Eu-
ropean conference on advances in artificial life, ECAL 2003 (pp. 606–614). Berlin: Springer.

Gershenson, C., & Rosenblueth, D. A. (2012a). Adaptive self-organization vs. static optimization:
a qualitative comparison in traffic light coordination. Kybernetes, 41(3), 386–403.

Gershenson, C., & Rosenblueth, D. A. (2012b). Self-organizing traffic lights at multiple-street
intersections. Complexity, 17(4), 23–39.

GLD (2001). Green Light District.
Haken, H. (1981). Synergetics and the problem of selforganization. In G. Roth & H. Schwegler

(Eds.), Self-organizing systems: an interdisciplinary approach (pp. 9–13). New York: Campus.
Helbing, D. (1997). Verkehrsdynamik. Berlin: Springer.
Helbing, D., & Huberman, B. A. (1998). Coherent moving states in highway traffic. Nature, 396,

738–740.
Helbing, D., Herrmann, H. J., Schreckenberg, M., & Wolf, D. E. (Eds.) (2000). Traffic and granular

flow ’99: social, traffic, and granular dynamics. Berlin: Springer.

http://tinyurl.com/DCSOS2007

3 Self-Organizing Traffic Lights: A Realistic Simulation 55

Helbing, D., Lämmer, S., & Lebacque, J.-P. (2005). Self-organized control of irregular or perturbed
network traffic. In C. Deissenberg & R. F. Hartl (Eds.), Optimal control and dynamic games (pp.
239–274). Dordrecht: Springer.

Heylighen, F. (2003). The science of self-organization and adaptivity. In L. D. Kiel (Ed.), The
encyclopedia of life support systems. Oxford: EOLSS.

Heylighen, F., & Gershenson, C. (2003). The meaning of self-organization in computing. IEEE
Intelligent Systems, 72–75.

Hunt, P. B., Robertson, D. I., Bretherton, R. D., & Winton, R. I. (1981). SCOOT—a traffic respon-
sive method of coordinating signals (Technical report, TRRL).

Lämmer, S., Kori, H., Peters, K., & Helbing, D. (2006). Decentralised control of material or traffic
flows in networks using phase-synchronisation. Physica. A, 363(1), 39–47.

Lendaris, G. G. (1964). On the definition of self-organizing systems. Proceedings of the IEEE,
52(3), 324–325.

moreVTS (2006). A more realistic vehicle traffic simulator.
Nicolis, G., & Prigogine, I. (1977). Self-organization in non-equilibrium systems: from dissipative

structures to order through fluctuations. Chichester: Wiley.
Porche, I., & Lafortune, S. (1999). Adaptive look-ahead optimization of traffic signals. Journal of

Intelligent Transportation Systems, 4(3), 209–254.
Prigogine, I., & Herman, R. (1971). Kinetic theory of vehicular traffic. New York: Elsevier.
Rosenblueth, D. A., & Gershenson, C. (2011). A model of city traffic based on elementary cellular

automata. Complex Systems, 19(4), 305–322.
Schreckenberg, M. & Wolf, D. E. (Eds.) (1998). Traffic and granular flow ’97, Singapore. Berlin:

Springer.
Shalizi, C. R. (2001). Causal architecture, complexity and self-organization in time series and

cellular automata. PhD thesis, University of Wisconsin at Madison.
Skår, J. & Coveney, P. V. (Eds.) (2003). Self-organization: the quest for the origin and evolution of

structure. Philosophical Transactions of Royal Society of London A, 361(1807). Proceedings of
the 2002 Nobel Symposium on self-organization.

Vincent, R. A., & Young, C. P. (1986). Self optimising traffic signal control using
microprocessors—the TRRL MOVA strategy for isolated intersections. Traffic Engineering &
Control, 27(7–8), 385–387.

von Foerster, H. (1960). On self-organizing systems and their environments. In M. C. Yovitts & S.
Cameron (Eds.), Self-organizing systems (pp. 31–50). New York: Pergamon.

Wiering, M., Vreeken, J., Veenen, J. V., & Koopman, A. (2004). Simulation and optimization of
traffic in a city. In IEEE intelligent vehicles symposium (IV’04) (pp. 453–458). New York: IEEE.

Wolf, D. E., Schreckenberg, M., & Bachem, A. (Eds.) (1996). Traffic and granular flow ’95. Sin-
gapore: World Scientific.

Chapter 4
Self-Organizing Sensing of Structures:
Monitoring a Space Vehicle Thermal
Protection System

Nigel Hoschke, Don C. Price, and D. Andrew Scott

4.1 Introduction

This Chapter describes the development and operation of an experimental struc-
tural health monitoring system whose functionality is based on self-organization
in a complex multi-agent system. Self-organization within a system of many in-
teracting components is generally understood to mean the formation of global pat-
terns, or the production of coordinated global behaviours, solely from the inter-
actions among the lower-level components of the system. The important charac-
teristics are that the resulting patterns or behaviours occur at a larger scale than
the individual system components, and that the interactions between the compo-
nents are not influenced by a central controller or by reference to the emergent
pattern or behaviour: they are purely local interactions. Self-organization in bio-
logical systems has been defined and discussed by Camazine et al. (2001), and
Prokopenko et al. (2008) have discussed self-organization from an information-
theoretic perspective.

The system that will be described in this Chapter consists of a large number
(∼200) of semi-autonomous local sensing agents, each of which can sense, process
data, and communicate with its neighbours. In this context self-organization means
that the agents will produce a system-level response to external events or damage
that is produced entirely by the local communications between the agents, and is not
influenced by a central controller or by any system-level design. The main benefits

D.C. Price is deceased.

N. Hoschke (B) · D.C. Price
Materials Science and Engineering, Commonwealth Scientific and Industrial Research
Organisation (CSIRO), PO Box 218, Lindfield, NSW 2070, Australia
e-mail: nigel.hoschke@csiro.au

D.A. Scott
National Measurement Institute, PO Box 264, Lindfield, NSW 2070, Australia
e-mail: andy.scott@csiro.au

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_4,
© Springer-Verlag London 2013

57

mailto:nigel.hoschke@csiro.au
mailto:andy.scott@csiro.au
http://dx.doi.org/10.1007/978-1-4471-5113-5_4

58 N. Hoschke et al.

of this approach lie in scalability (the system performance is not limited by the com-
putational and communication capability of a central controller) and in robustness
(there is no single point of vulnerability, such as would be represented by a central
controller).

4.1.1 The Requirements of Structural Health Monitoring

Structural Health Monitoring (SHM) is a new approach to monitoring the integrity
and functionality of structures. It is expected to enhance, and ultimately replace,
the traditional approach of periodic inspection for the maintenance of, for exam-
ple, aerospace and other transport vehicles, bridges, buildings, and other safety-
critical infrastructure. SHM uses information from sensors permanently embedded
in the structure to detect events or conditions that may lead to damage, and/or to
detect damage at an early stage and monitor its development with time. Initially,
SHM systems will be used to plan maintenance as required, rather than the current
practice of maintenance at pre-determined intervals, but ultimately it is likely to
be used to manage and monitor materials and structures with self-repair capabili-
ties.

SHM systems will be required to monitor very large numbers of sensors, to use
the information deduced from the sensor data, to diagnose damaging situations and
consequent damage, to form a prognosis of the future safety and functionality of the
structure, and to initiate and monitor mitigation and repair procedures as required.
Different forms of damage can develop on very different spatial and temporal scales
(compare, for example, the effects of a sudden major impact with those of slowly-
developing corrosion or fatigue), and the SHM system must be able to respond ef-
fectively in all cases.

Of paramount importance for SHM of safety-critical structures are the require-
ments for system robustness and scalability. The system must be capable of continu-
ing to operate effectively in the presence of damage to itself and/or to the structure,
and it must be able to operate efficiently, both locally and globally, even though
it may be monitoring very large numbers of sensors. These requirements mitigate
against the use of traditional centrally-controlled engineered systems, with their
inherent points of vulnerability and communications limitations, in favour of dis-
tributed adaptive systems.

4.1.2 The Approach to SHM System Development

CSIRO, with support from NASA, has been developing an experimental structural
health monitoring concept demonstrator (CD) test-bed system for the detection of
high-velocity impacts, such as may occur due to the impact of a micrometeoroid on
a space vehicle. The distinguishing feature of this system is that its architecture is

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 59

based on a complex multi-agent system and its behaviours and responses are devel-
oped through self-organization. It has no central controller. This approach endows
the system with a high degree of robustness, adaptability and scalability.

The test-bed has been built as a tool for research into sensor design, sensing
strategies, communication protocols, and distributed processing using multi-agent
systems. Each of the semi-autonomous sensing agents contains a suite of sensors to
enable it to gather data related to the state of the structure (generally, but not nec-
essarily, referring to the agent’s local region), a facility to perform some processing
of this data, and the ability to communicate with neighbouring agents. These agents
may also have the capability to perform active tasks (e.g. repair functions), or there
may be other agents to perform these functions. Agents may be embedded in the
structure, eventually being integrated into the materials, or may be mobile and free
to roam regions of the structure.

A number of recent articles have described the development of the hardware and
software of the basic CD system of embedded piezoelectric sensors and processing
electronics distributed throughout the structure, along with some multi-agent algo-
rithms to characterize impacts and subsequent damage, see e.g. Prokopenko et al.
(2006), Hoschke et al. (2006), Price et al. (2004), and Scott et al. (2005). The CD
system has been designed to be highly flexible: by replacing the sensors and their
associated interface and data acquisition electronics, the system can be readily re-
configured for other applications.

This Chapter provides more detail on the system described in our earlier works,
with an emphasis on the communications between agents, the development of the
tracking field algorithm for this system, and the incorporation of a robotic mobile
agent which can move over the surface of the CD skin as an independent agent of
the self-organizing system. This mobile agent can carry out sensing functions that
the embedded agents cannot, and it is able to communicate with embedded agents
of the CD structure in its vicinity. It is envisaged to be the forerunner of a swarm
of small robots that will cooperatively perform both inspection and repair functions.
The essential point is that the functions and behaviours of the mobile agent (or
agents) are determined by self-organization of the entire system of fixed and mobile
sensing agents.

In addition, an application of the principles of the CD to a practical damage
scenario, the detection and evaluation of impact damage to the thermal protection
systems (TPS) of spacecraft that re-enter the atmosphere, is described.

4.1.3 Overview of the Experimental System Operation

The CD system consists of a basic structure to be monitored, which is a rigid frame-
work in the form of a hexagonal prism (∼1 m in height and ∼1 m across the hexag-
onal section) covered by an aluminium skin 1 mm thick. Bonded to the inner surface
of the aluminium are 768 small (2.5 mm diameter) piezoelectric sensors in groups
of four, in the form of a regular array. A block of electronics that constitutes an agent

60 N. Hoschke et al.

Fig. 4.1 The hexagonal prism physical implementation of the CD test-bed structure, lying on its
side with the end open to reveal the cellular internal structure of the electronics

of the system is connected to each group of four sensors. There are 192 such agents,
distributed in a square array with 32 on each of the hexagonal faces of the structure.
Each agent monitors its group of four sensors, acquires and analyses the data they
produce, and communicates with its four neighbours. Figure 4.1 is a photograph of
this structure, showing the array of agents covering the inner surface. An agent, and
the region of the skin that it monitors, is referred to as a cell, though the terms agent
and cell will be referred to interchangeably throughout this Chapter.

An impact on the surface of the aluminium skin excites elastic waves which are
detected by the piezoelectric sensors. High-velocity impacts are simulated using
short laser pulses and/or steel spheres fired using a light gas-gun. Repeatable low-
velocity impacts are produced using a pendulum. The agents that detect the impact
also locate its position and estimate the damage severity from the sensor signals.

A number of multi-agent algorithms have been developed (Prokopenko et al.
2005b, 2006; Hoschke et al. 2006; Price et al. 2004; Scott et al. 2005) to identify
impacts, the extent of damage caused, and networks of multiple impacts. The state
of the system at any time is monitored on an external computer (the system visu-
alizer) which acts as another agent of the system that requests and displays state
information from the embedded agents. The visualizer does not have any control
function: it simply monitors and displays the states of the other agents.

A robot has been developed to move around the outer surface of the skin to pro-
vide a mobile sensing capability. At this stage it carries a video camera to record
visual images of damage, but it could carry other sensors. This robot can commu-

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 61

nicate through the aluminium skin, using ultrasonic signals, with the agent in its
immediate vicinity. It is guided towards damage sites by information it obtains from
the embedded agents as it moves: the necessary information to guide the robot is
produced collectively by the multi-agent system—it is a self-organized response
to the detection of an impact by a local agent. The robotic agent is not controlled
centrally: it navigates purely by the local information it obtains from the agents in
the underlying structure as it passes by, and therefore the robot movement is a self-
organized response of the system of agents to the impact. This agent-based response
of the robot is robust, scalable and adaptable, similar to the agent-based response of
the system to impact detection, and the overarching principles of the project.

4.1.4 Structure of the Chapter

The next sections contain more detailed descriptions of the two major components
of the system, the fixed structure with its embedded agents, and the mobile robotic
agent. Section 4.2 describes the fixed structure of the CD and its embedded sens-
ing agents, including details about the sensors, the impacts and their diagnosis, the
development of self-organizing algorithms for robot guidance, and details about the
ultrasonic signals used by the embedded agents to communicate with the robotic
agent. Section 4.3 describes the robotic agent—its hardware, modes of motion and
communications with the fixed agents on the CD structure. The communications
protocol is outlined in Sect. 4.3, followed by a description of the way in which the
communications with the embedded agents are used by the robot for stepping and
navigation. These sections are followed by a short description of the system visual-
izer (Sect. 4.4), a description of an application of the principles of the CD system to
a practical damage scenario (Sect. 4.5) and a summary of what has been achieved
along with an indication of the next steps in this development program.

4.2 CD Embedded System Components: Hardware and Software

4.2.1 CD Architecture and Hardware

The initial goal of the test-bed is to detect and characterize impacts on the skin, and
to form a diagnosis of the accumulated damage. The skin consists of 48 aluminium
panels (eight on each side of the hexagon), each of which contains four cells (see
Fig. 4.2). Cells are the fundamental building blocks of the system: they are the elec-
tronic modules containing the sensing, processing and communication electronics,
along with the sensors and the region of skin they monitor. Each cell is an agent of
the distributed multi-agent system. It communicates with its four immediate neigh-
bours.

62 N. Hoschke et al.

Fig. 4.2 Aluminium panel containing four cells. Each cell consists of a data acquisition sub–
module (DAS) below a network application sub-module (NAS). Each cell is connected to its four
immediate neighbours, via the ribbon cables that can be seen in the photograph, to form a square
network array

Each cell occupies an area of ∼100 mm × 100 mm of the skin, mounted on the
inside of which are four piezoelectric polymer (PVDF) sensors to detect the acoustic
waves that propagate through the skin as a result of an impact. Thus the complete
test-bed contains 192 cells. One of the panels, and its four cells, is shown in Fig. 4.2.

The cell electronics are constructed as two sub-modules mounted directly on top
of each other. One of the sub-modules, called the network application sub-module
(NAS), contains the communications and processing hardware, while the data ac-
quisition sub-module (DAS) contains the analogue electronics and digitization hard-
ware specific to the attached sensors. A benefit of this division is that the NAS is
flexible enough for almost any SHM sensor network application, and only the DAS
needs to be changed to accommodate the different sensors that may be required in
different applications. Further details of the electronics can be found in Hedley et al.
(2003).

4.2.2 Piezoelectric Sensors

The aluminium panels that form the CD skin have dimensions 200 mm×220 mm×
1 mm. Each panel has an array of piezoelectric sensors bonded to one side. This con-
sists of sixteen polyvinylidene fluoride (PVDF) discs (110 µm in thickness, 2.5 mm

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 63

in diameter, coated on one side with silver ink, while the other side is bonded to
the aluminium) and four lead zirconate titanate (PZT) discs (0.5 mm in thickness,
2.5 mm in diameter, with fired-on silver electrodes on the two flat faces). The sen-
sors that detect the elastic waves caused by impacts were made from PVDF, as this
piezoelectric material has high sensitivity as a receiver (but is a relatively poor trans-
mitter), is inexpensive, is relatively easy to fabricate into transducers, and would not
significantly mass-load the surface. The four associated with each cell are bonded to
the aluminium in a square of 75 mm on each side, directly under the corresponding
DAS board. The single transducer at the centre of each cell, designed primarily as a
transmitter to communicate with the robot and, at a later stage, to generate signals
for damage evaluation, is made from PZT, which is a more efficient transmitter than
PVDF. In the fully populated Demonstrator there are 48 panels, and therefore 768
PVDF and 192 PZT transducers.

The initial role of the PVDF sensors was simply to enable the detection, charac-
terization and location of impacts on the aluminium skin. Each group of four PVDF
sensors in each cell would detect elastic waves resulting from an impact travelling
on the aluminium plate, and the agent would use this information to determine the
location and severity of the impact. This role has now been expanded: these sensors
also act as the receivers of communication signals from the mobile robotic agent.

The PZT transducers, located in the centre of each group of four PVDF sensors,
fulfil a number of functions. They can be used as transmitters to send ultrasonic
waves through the panel for subsequent detection by the PVDF sensors before and
after impacts on the panels. This allows firstly the calibration of the PVDF sensor (or
at least a measurement of their sensitivity), and secondly the possible determination
of the state of damage of the panel after the impact has occurred. The PZT transducer
in each cell is also used to transmit communications from the embedded agent to the
mobile agent when it is positioned on the skin in the region of that cell.

4.2.3 Impacts and Simulated Damage

As outlined above, the CD’s present function is to detect impacts and diagnose the
level of damage to its operation. The software system has been designed to distin-
guish between hard impacts (those with a high impulsive force) resulting in damage
to the panel (a critical impact, requiring attention by the robot, or mobile agent),
lesser impacts (low impulsive force) resulting in damage that does not need imme-
diate repair (a non-critical impact), and electronics and/or communications failures
not caused by an impact. During system development so far, real damage has been
avoided, to avoid costly replacement of panels. The simulation of the two levels of
damage has been done by using a pendulum to strike the panel with either a high
impulsive force (for a critical or hard impact), or a low impulsive force (for a non-
critical or soft impact). Neither of these types of impact cause damage to the panel,
but they do generate elastic waves in the panel of higher or lower amplitude re-
spectively. By manually attaching a red marker to the cell that has suffered a hard

64 N. Hoschke et al.

impact (or a green marker for a low impact), a visual difference between critically
and non-critically damaged cells is provided. This allows the secondary inspection
system (using the robot with a small video camera and simple frame-grabbing soft-
ware to determine the colour of the marker) to visually distinguish between the
consequences of hard and soft impacts by colour recognition rather than by visually
detecting real damage such as a penetration of the panel. The location and diagnosis
of the damage by this secondary inspection technique may then be compared with
estimates made from the piezoelectric sensor data.

During system development and testing, repeatable hard and soft impacts were
applied by using a pendulum apparatus, which could be set to deliver any impul-
sive force repeatably and reliably, only limited by the highest potential (and hence
kinetic) energy obtainable from the pendulum. The apparatus was held against a
panel (using three felt-covered stand-offs), and the pendulum drawn back to the de-
sired and repeatable height for striking the panel with the selected impulsive force.

Following such an impact, the PVDF sensor data was used to estimate the posi-
tion (using the triangulation method outlined in Prokopenko et al. 2006) and severity
(using self-organized maps, as described in next sub-section) of the measured im-
pact.

4.2.4 Impact Signals and Sensor-Based Diagnosis:
Use of Self-Organized Maps (SOMs)

A general discussion of the approach to damage diagnosis by self-organization is
given in Price et al. (2004). In this case self-organizing maps (Kohonen maps, see
Kohonen 2001, 2003) have been implemented to classify impact severity, distin-
guishing critical impacts for which the skin has been ruptured, from non-critical
impacts. A previous discussion of the application of SOMs to the analysis of impact
data is given in Prokopenko et al. (2005b). Electronic failures, which are detected
when a cell loses its communication capability, are distinguished from critical im-
pacts that have damaged the electronics by the absence of an impact recorded by a
neighbouring cell.

The aim of this signal-based diagnosis is to identify high- and low-severity im-
pacts in different regions of a panel: specifically, whether an impact has occurred
within the cell that has recorded the signals or within one of the other three cells
of the panel. In general, a cell’s sensors will detect an impact that occurs anywhere
on the panel on which the cell is located, but usually not if the impact occurs on
another panel. The diagnosis should be able to unequivocally identify on which cell
the impact occurred (even if that cell has been damaged to the extent that it can
no longer communicate), an approximate position within that cell, and whether the
impact was of high or low severity.

Training of the SOMs was done on a single panel, using hard and soft impacts
produced by the pendulum apparatus at a number of locations within each of the
four cells on the panel.

The initial aim was to use the SOM to identify the following four conditions:

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 65

• A soft impact occurred within the cell.
• A hard impact occurred within the cell.
• A soft impact occurred outside the cell.
• A hard impact occurred outside the cell.

If this diagnosis can be made for each cell on a panel that has suffered an impact,
then the cell on which the impact occurred can be identified unambiguously.

For a particular cell on the panel, 100 soft and 100 hard impacts at random po-
sitions within the area of the cell were sampled. These samples covered most of
the cell’s area thoroughly, giving roughly two impacts per square centimetre within
the cell. Further, for impacts outside the cell, 100 soft and 100 hard impacts were
sampled from the areas of the three remaining cells.

An impact event is recognized when a sensor signal threshold is exceeded. The
cell’s DAS board then acquires 256 samples from each of its four sensors. It cannot
be assumed that any of the signals reflect an accurate time of arrival of the impact
pulse, because of the use of a constant threshold. In order to reduce the memory
requirement for each SOM, and to maximize the size of the SOM array that can
be stored, the string length was reduced to 64 by 4-point sub-sampling of each 256-
sample signal. A data input vector used for training the SOM consists of the 64-point
data string from each of its four sensors in the relevant cell. This allowed a 10 × 10
SOM array to be stored in binary format in 50 kB of flash memory on each agent.

In order to evaluate the accuracy with which signals can be identified with the
resulting SOM, only half of the training signals were used to train the SOM and
the other half were used to evaluate the accuracy of recall and precision. Several
separate runs showed a consistent accuracy of ∼93±1 %, independent of the signal
trigger threshold over a range from ∼1.2 % to ∼3.6 % of the maximum signal
amplitude. Given that each impact is detected by four cells, the probability of an
incorrect assignment of an impact location is very small.

For greater accuracy, the SOM on each agent could have been trained separately
—this would have individualized the SOMs to take account of the inevitably differ-
ent sensitivities of the sensors in different cells. Ultimately, it is expected that SOMs
will learn on-line, so even if they are initially trained with a common data set, the
subsequent learning will develop a set of individualized SOMs.

So far the SOM-based impact diagnoses have proved to be highly reliable, but
tests to date have all been carried out using the same impact mechanism with which
they were trained. It remains to be seen whether the SOMs will retain this high
accuracy with impacts of different origin but similar spectral characteristics.

4.2.5 Self-Organized Robot Guidance: Tracking Field Algorithms

There are two related methods by which navigation of the robot may be achieved,
both directed by self-organization. Firstly, algorithms based on ant colony optimiza-
tion (ACO) (Dorigo and Di Caro 1999; Dorigo and Stützle 2004; Prokopenko et al.
2005a) have been developed in earlier work to link sub-critical impact locations

66 N. Hoschke et al.

by a simulated pheromone trail and a dead reckoning scheme (DRS) that form a
minimum spanning tree (Prokopenko et al. 2005a). The decentralized ACO-DRS
algorithm has low communication cost, is robust to information loss within any in-
dividual cells, and allows navigation around critically damaged regions in which
communication capability has been lost.

An alternative scheme evaluated in Prokopenko et al. (2005a) is a distributed dy-
namic programming algorithm, employing a gradient field (GF) set by each impact
cell. In this Chapter this field is known as the tracking field (TF) as it determines
the track the robot will follow: the robot moves along the steepest gradient of the
tracking field.1

While the concept of the robot following the self-organized pheromone trails
produced by ACO is appealing, there is a trade-off between the low communica-
tion cost of the ACO-DRS algorithm and a better quality of the minimum spanning
tree approximation computed by the gradient-based algorithm (Prokopenko et al.
2005a). The TF algorithm also ensures that each cell in the system has a valid field
value: the ACO-DRS algorithm does not guarantee a pheromone value in every cell.

The approach that has been implemented is the tracking field (TF) algorithm.
The basic principle of field propagation is very simple. All cells are initiated with
a high integer value for the tracking field (255). When a cell detects an impact, its
field value is set to zero. At each time-step, each cell compares its field value with
that of each of its neighbours. If a cell finds a neighbour with a field value lower
than its own, it takes this value plus one as its new field value. This is repeated at
subsequent time-steps until a stable tracking field is produced over the whole array
of cells, i.e. the field produced by the impact propagates throughout the system of
agents. It is independent of the number of neighbours each cell has, so it is robust in
the presence of failed cells. Multiple impacts produce a tracking field with multiple
minima, analogous to a topographic map of a surface with minima that correspond
to impact sites, or the surface of a trampoline that has a number of separated weights
on it.

Figure 4.3 illustrates a grid of 23 × 15 simulated cells each containing a number
representing the value of the gradient field (at that cell position) that has resulted
from three impacts (denoted by black cells). The positions of two robots are de-
noted by the two white cells, and the shortest paths found by the robots from these
positions to the impact sites are shown in dark grey. Non-operational cells that are
unavailable for the robot to traverse are denoted by crosses. As each damaged cell
is attended to, the gradient field will be updated and the robot(s) will move to the
remaining damaged site(s).

The modification to the tracking field (when the damage is repaired or inspection
shows that it may be ignored) is achieved as follows. The previously impacted cell
resets its impact flag, and then increases its field to a value that is one greater than
that of its neighbour with the lowest field value. All cells then check all their neigh-
bours. If a cell has a field value lower than those of all its neighbours, and it hasn’t

1The tracking field referred to here is identical to the gradient field defined by Prokopenko et al.
(2005a). The robot’s path is determined by the gradient of this field.

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 67

Fig. 4.3 A grid of simulated cells showing the value of the gradient field in each cell resulting
from three impacts (black cells). The initial positions of two robots are shown with white squares.
Crosses denote cells that are not operational. The paths taken by the robots to the impact sites are
shown in dark grey

been impacted, its field value is incremented by one. The new field values reach
equilibrium in less than the time it takes the robot to perform one step. Repetition of
this algorithm removes the minimum associated with the repaired cell. This action
is analogous to one of several separated weights being removed from the surface of
a trampoline.

To allow the robot to identify and respond to different classes of event, a tracking
field could be set up with minima of varying depths corresponding to the sever-
ity/importance of each event. However, steps would have to be taken to avoid the
complication of the robot being attracted to nearby minima in preference to more
distant but perhaps more important minima. A simple solution to this problem is to
model different classes of event on separate tracking fields, and set all minima on a
single tracking field to be equally important (deep). The multiple classes of tracking
field may all model different routes to their respective sites of importance. This ap-
proach means that the robot makes the decisions on which field to follow. One way
to process this tracking information is for the robot to respond to events in order of
priority by exhausting one class of field before switching to a field class with lower
priority, and so on. It should be noted that each time the robot makes contact with
the panel, the value of the tracking field for each type of damage is communicated
to it. If, for example, the robot is following a lower priority tracking field such as
the non-critical impacts field, and a critical impact occurs, the appearance of the up-
dated critical impact field values will cause the robot to follow this higher priority
field on its next and subsequent steps.

This multiple gradient field solution has been implemented and currently the
robot responds to four classes of gradient/event:

68 N. Hoschke et al.

• High severity impacts, representing critical damage—perhaps penetrating im-
pacts and/or cell destruction.

• Low severity impacts, representing non-critical damage—non-penetrating im-
pacts and damage which does not affect system behaviour.

• Damage not caused by an impact, such as communications and/or electronic fail-
ure.

• Dock. Models the shortest route to the robot’s docking station for re-charging,
downtime, etc.

The robot can adopt different criteria to prioritize the order in which it visits
impact sites. A possible modification to the behaviour outlined above would be to
allow the robot to visit sites of lesser importance if they are on or near the intended
path to a site of greater importance.

Major benefits of this algorithm are its stability and its fast dynamic response.
A mobile agent in the system may determine the direction of the shortest path to
the nearest impact location through interrogation of the local cell group. This is
analogous to a ball on a slope; the ball need not know where the bottom of the hill
is to know which way to roll—simply knowing the gradient of its local piece of hill
is sufficient. In the TF algorithm, the shortest distance to an impact location can be
determined simply from the value of the field in a particular cell, since each cell
increments the lowest gradient value of its group of neighbours by one unit. Note
that this algorithm, with a separate tracking field for each type of damage, does not
suffer the ‘local minima problem’. Within each tracking field each damage site has
equal priority, with the same ‘depth’ or field value—damage of different priority is
represented by values contained in different fields.

Figure 4.4 shows a real tracking field produced on the CD as a result of two non-
critical impacts, located in the black cells. The field value at each cell is indicated by
the shade of grey. White cells are those with which the robot cannot communicate.
This may be due to electronic failure or, as is the case here, sensors have not yet
been fitted.

4.2.6 Communications with the Robot: Distinguishing Impact
and Communication Signals

Communication between an embedded agent (cell) and the robot utilizes ultrasonic
signals propagated through the aluminium skin of the cell. The robot transmits and
receives ultrasonic signals using transducers mounted in the centre of each foot.
Further details about the robot’s transducers and communications are given in the
next section. The agent transmits via the PZT element in the centre of the cell, and
receives signals through one of the four PVDF elements that are used for impact
detection.

A communication is initiated when the robot places one of its feet on the region
of skin monitored by agent A (say). In order to initiate a communication sequence,

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 69

Fig. 4.4 An image of the tracking field produced by two non-critical impacts that occurred at
the black cells. The squares indicate the cells on the surface of the hexagonal prism test-bed. The
field values are shown as shades of grey, with a lower field value being darker. The white cells are
those with which the robot cannot communicate. Absent cells in the image are those that have been
physically removed from the CD

the robot then transmits a tone burst from the ultrasonic transducer in this foot,
which consists of 5 cycles at a driving frequency of 400 kHz. This corresponds
approximately to the lowest order radial mode of the robot transducer disc, and
it excites the zeroth order anti-symmetric (A0) guided elastic wave mode of the
aluminium plate (see e.g. Rose 1999). The agent A distinguishes this signal from
that due to an impact on the basis of its spectral content.

A 5-cycle tone burst has a spectral width of ∼20 % of the centre frequency,
and this will be increased by the spectral response of the transmitting and receiving
transducers. Nevertheless, it is expected to have significantly different spectral char-
acteristics to an impact-generated signal. At this stage the agents use a simple com-
bination of the responses of two band-pass filters with different cut-off frequencies
to distinguish impact events from communications events, but more sophisticated
processing could be readily implemented.

A communications sequence is completed when the agent receives a specific
acknowledgement signal from the robot. The issue of an impact that occurs during a
communications sequence has not yet been dealt with: at this stage it may result in a
corrupted communications packet, but will not otherwise be recorded. This is not an
urgent issue for the present system, since the robot foot would shield the cell during
a communications sequence, though an impact might damage the robot. However, it

70 N. Hoschke et al.

raises potential issues of impact damage to the robot, and impact damage to the cell
when much smaller robots are in use.

More details of the cell-robot communications are given in the next section.

4.3 The Mobile Robotic Agent

An important feature of the CD system is an ability to support mobile (robotic)
agents that can roam the exterior surface of the test-bed, communicating with the
fixed agents embedded in the underlying structure. The function and operation of
such an agent will be described in this section, and it should be emphasized that it
is not controlled centrally, but cooperatively with the network of fixed local agents
with which it communicates.

It should also be emphasized that the system described here is no more than a
test-bed, whose primary purpose is for investigation of the practicality of the self-
organized complex system approach to damage diagnosis and response. Thus, de-
tails of the specific hardware implementation (such as the use of air suction for the
robot’s attachment, which is obviously inconsistent with a space-based application)
are not considered to be important at this stage. While the present implementation
of the robot is bulky and represents a single point of failure, the eventual aim is to
develop a swarm of very small robots that can perform internal or external tasks co-
operatively. The work described in this Chapter represents a first step towards that
ultimate goal.

Why is a robotic agent needed in an SHM system? When sensing impacts using
passive sensors, the information received may be insufficient to characterize the
damage, and where damage is detected it may need to be repaired. One approach to
obtaining additional damage data, and to providing a crude repair capability, is the
development of a mobile robot that can move around the outside skin (Fig. 4.5).

The robot moves rather like an inch-worm, with its design based on an articulated
box section with six degrees of freedom. The joints are driven by commercial model
aircraft servos and have no position feedback to the controlling processor. The robot
is equipped with six suction cups on each of its two feet, and a pneumatic system
with a variable speed vacuum pump and electrically controlled valves that allow
it to selectively attach and detach its feet to and from the surface. To allow the
robot to find the surface and attach to it reliably there are two optical rangefinders
on each foot that measure the distance to the surface and the angle of the surface.
A lithium polymer battery supplies power to the robot for approximately 30 minutes
of operation before recharging is necessary.

The robot has two modes of locomotion. The first mode is very much like an
inch-worm, as mentioned above: to move forward the robot alternately stretches
out and contracts whilst detaching and attaching its feet in sequence. The second
mode requires the robot to detach one foot, pivot 180◦ around the other (attached)
foot and then reattach the first. It can change direction by pivoting through any
angle up to 360◦. Initially the robot will carry two small video cameras, one on

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 71

Fig. 4.5 The robot on a vertical face of the CD test-bed

each foot, which will send images back to the network for further analysis. In the
future other sensors may be included, such as an active ultrasonic transducer that can
interact with the piezoelectric receivers embedded in the skin for ultrasonic damage
evaluation.

The robot communicates with the fixed agents in the network using piezoceramic
(PZT) ultrasonic transducers in both feet to pass messages through the aluminium
skin to the underlying cells. The fixed agents receive messages via one of the four
piezoelectric polymer sensors that are used for detecting impacts. A fifth transducer,
in this case a piezoceramic, has been added at the centre of each cell for transmission
of messages from the cell to the robot.

Further details concerning the physical communications mechanisms and the
communications sequences have been given by Hoschke et al. (2008).

Because the robot has no global navigation capabilities and can only move from
one cell to the next using dead reckoning, large positional errors could rapidly ac-
cumulate as the robot moves over the surface. To avoid such positional errors, the
underlying cell measures the robot’s foot position by triangulation, as described
above, and reports it to the robot. The robot can then either physically correct the

72 N. Hoschke et al.

foot position, or take it into account in calculating the step required for the next
move.

A complication with this method of positional feedback is that the cell and the
robot must have a common knowledge of the orientation of the cell relative to other
cells and the structure. One way to avoid this issue is to build the CD structure with
all cells in a prescribed orientation. However, it can be argued that this solution is
inconsistent with the concept of an adaptive, self-organizing structure, and a more
satisfactory solution involves the cells cooperatively determining their relative ori-
entations. This is also necessary for algorithms such as ant colony optimization.

Nevertheless, there is a need for the robot to have some basic knowledge about
the structure, since it cannot be allowed to step on the gaps between panels, and
it needs to know where the face edges of the prism are located in order to be able
to step from one face to another. A robot with more computational power than the
present one could, for example, use its video camera to resolve local issues such as
these, but for the time being the robot has been given this basic knowledge of the
cell layouts.

The robot’s navigation and functions are determined cooperatively with the local
agents embedded in the test-bed skin with which it is in contact. The robot navi-
gates around the surface of the test-bed using tracking field data available from the
underlying cell to which it is attached at the time. This data is specific to the cell’s
local neighbourhood, and does not contain any global information about the system.
Further information about the tracking fields was provided in Sect. 4.2 above.

4.4 The System Visualizer

As described in earlier reports (Prokopenko et al. 2006; Price et al. 2004; Hoschke
et al. 2008), the system visualizer is a computer that is used for initializing the multi-
agent system and displaying the state of the system, but which plays no essential
role in the operation of the system. It can be attached via a USB port at a number of
points around the edge of the CD system (in principle it could be anywhere), and its
function is to request state information from the embedded agents and display this
information.

The visualization function also shows the robot position, and this is illustrated in
Fig. 4.6. This information is not obtained from the robot itself, which in principle
doesn’t need to know its absolute position on the structure, but from the agents with
which the robot is communicating. Thus, an observer doesn’t need to be able to see
the robot to be able to monitor its activities. This principle can of course be extended
to more than one robot.

Four views of the Concept Demonstrator have been developed to display and
debug the gradient algorithm. Each view uses a different colour and represents the
value of the gradient field on a particular cell by the shade of colour (Fig. 4.4).
Lighter shades represent higher gradient values, which are further away from im-
pact locations. Cells that the robot cannot reach because they have no DAS board

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 73

Fig. 4.6 Visualizer screen (left), showing an animation of the robot in its actual position on the
CD structure (right)

attached are displayed in white. By double-clicking on a cell in the display the nu-
merical values of the cell’s gradients are displayed.

While the damage sensing capability of the system is currently limited to a video
camera mounted on the robot, in the longer term it will be desirable to make a diag-
nostic decision based on data from a range of sensors, possibly with the assistance
of material or structural models. The use of data from multiple sensing modalities
for damage diagnosis and prognosis will be the subject of future work.

In cases when major damage occurs suddenly, which will usually be the result of
an external influence such as an impact, it may be necessary to initiate a response
to an initial indicator (such as the sensing of the impact) without waiting for a sub-
sequent detailed inspection and diagnosis. In such a perceived emergency situation
a precautionary principle must clearly be adopted: rapid action should be taken first
and a more detailed diagnosis made later.

4.5 A Practical Damage Scenario: Impact Damage in Thermal
Protection Systems

4.5.1 Introduction

Although the task described in the preceding sections required further work to en-
able the robot to perform functions required to gather diagnostic information, such
as the manipulation of a video camera or some other sensing function, subsequent

74 N. Hoschke et al.

work has concentrated on adaptation of the system to apply it to a practical damage
scenario: the detection and evaluation of impact damage in the thermal protection
systems of spacecraft.

The thermal protection system (TPS) of a vehicle that travels at high velocity
in a planetary atmosphere, such as a spacecraft re-entering the atmosphere, or per-
haps a future hypersonic aircraft operating in the atmosphere, is the material that
protects the vehicle from frictional heat damage or incineration. There are a num-
ber of types of materials that have been (and will be) used for thermal protection
of space vehicles. These may be usefully categorised as re-useable (or passive) and
non-reusable. The ceramic foam tiles and carbon-carbon composites used on the
NASA Space Shuttle fall into the first category, while the ablative materials such as
that used on the Apollo spacecraft (e.g. Venkatapathy et al. 2010) and a number of
others, fall into the second. The relatively new structurally integrated TPS materials
are intended to be re-useable.

The main source of potential damage is considered to be impacts by foreign
objects such as micrometeoroids or orbital debris (MMOD). MMOD consists of
millions of man-made debris particles and naturally occurring micrometeoroids or-
biting in and around Earth’s space environment at hypervelocity speeds, typically
∼10 km/s (22,000 mph). At these velocities even small particles can produce sig-
nificant damage to the TPS layer. Impact damage during launch, such as occurred
to the Space Shuttle Columbia during STS-107, must also be considered a possible
hazard. Thus, the primary source of damage for which the SHM system is designed
is that due to impact by high-velocity (or high-energy) objects.

The aim of the SHM system is to detect and evaluate damage to the TPS prior
to entry into the atmosphere. It is assumed that if the TPS is undamaged on entry,
and if the entry is made at an appropriate velocity, angle and vehicle orientation,
it will function correctly and protect the vehicle from catastrophic failure. Once
atmospheric entry is under way it is generally considered to be too late to respond
to malfunction of the TPS.

A straightforward application of the system outlined in the preceding sections
could, in principle, have satisfied the requirements of this task, but it was decided to
adopt a different approach to characterising the damage by monitoring its effect on
the relevant functional properties of the TPS material. The primary concern, at least
for passive materials, is whether any damage to the TPS has adversely affected its
thermal resistance properties, although its ability to retain structural integrity in the
presence of the large thermal and mechanical stresses of re-entry are also important.
The initial focus of this work will be on monitoring the thermal resistance of the
TPS layer, i.e. on monitoring the functional consequences of damage rather than the
damage itself.

The general requirements of the SHM system are as follows:

1. It should detect impacts on the TPS materials, locate the positions of impacts,
and evaluate the severity of damage caused. The effect of the damage on the
thermal properties of the TPS is of primary concern.

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 75

2. A further requirement is the ability to scan the TPS surface to verify the thermal
integrity of the layer prior to re-entry. This could be carried out as a routine safety
check, regardless of whether or not an impact had been detected during the flight.

As described in Sect. 4.1.1, further requirements are:
3. Robustness to sensor failure and structural damage. Components of a sensing

system can fail for a variety of reasons, including damage that is consequential
to structural damage of the TPS (e.g. impact-induced damage). It is a requirement
that the TPS health monitoring system should continue to operate effectively in
the presence of moderate amounts of component failure or damage.

4. The system should be scalable, or capable of monitoring a large number of sen-
sors without loss of performance or response time.

With these requirements in mind, the SHM system was designed following the
general approach outlined in Sects. 4.1 and 4.2 above. Impacts are detected and lo-
cated using a network of passive piezoelectric acoustic emission sensors that moni-
tor the elastic waves produced in the TPS material by the impacting particle. Dam-
age evaluation is conducted as a second stage of sensing, by monitoring the thermal
conductivity of the material in the region of the impact. This is done using temper-
ature sensors embedded within the TPS material, which measure the temperature
rise produced by an externally-applied heat source. The heat source could be natu-
rally occurring, such as the Sun, or a localised heat source applied by, for example,
the mobile robot described above. This process is effectively a thermographic tech-
nique using embedded thermal sensors. Damage will appear as a local anomaly in
the measured temperature distribution in the region of the impact.

In order to satisfy requirements 3 and 4, a local agent-based system architecture
is employed as outlined above. The local agents control and monitor the piezo-
electric impact sensors, they “order” the application of the heat source, monitor the
thermal sensors, and collectively evaluate the presence and significance of a thermal
anomaly associated with impact damage.

The purpose of the work undertaken to date is to design and build a laboratory-
scale demonstration that will establish the feasibility of this novel, robust SHM sys-
tem. This is not yet complete, but the remainder of this section will outline funda-
mental aspects of the design and operation of the system, and describe results of the
testing carried out on fabricated components of the demonstration system. Aspects
of this work have been reported by Scott et al. (2009), Hoschke and Price (2012)
and Hoschke et al. (2013).

4.5.2 Design Fundamentals of the Agent-Based Thermal Sensing
System

The earlier sections of this Chapter have described the design and implementation of
an agent-based network of piezoelectric sensors for detecting and locating impacts.
The general issues discussed there apply to this application, with the exception that

76 N. Hoschke et al.

the acoustic properties of TPS materials must be taken into account in designing
sensor placements and the impact location algorithms. These issues will be dis-
cussed in the next sub-section. The main focus of this sub-section is on the network
of temperature sensors required to evaluate the effects of impact damage.

The most obvious approach to measuring temperature distributions in this situa-
tion is to use an array of local electronic temperature sensors attached to each agent,
similarly to the piezoelectric acoustic emission sensors. Thermocouples or resis-
tance sensors would be likely candidates. However, this approach has the following
draw-backs:

• It is likely that a higher density of temperature sensors than piezoelectric sensors
will be required. Elastic waves propagate over relatively large distances, but the
lateral spatial extent of a damage-related thermal anomaly will depend on the
location of thermal sources/sinks and the thermal conductivity of the material,
and may be relatively small. This means that a relatively large number of sensors
would be required to be connected to each agent.

• Each sensor would need to be separately wired to its local agent. Individual wiring
of large numbers of sensors will add both significant weight and complexity to
the structure, neither of which is desirable.

• Importantly, for TPS materials with very low thermal conductivity and specific
heat, the presence of a web of wiring is likely to significantly affect the ther-
mal properties of the structure, and seriously perturb the measurements required
of the sensor network, i.e. the presence of the sensors may complicate, or even
compromise, the interpretation of their measurements.

An alternative means of measuring temperature within or on the surface of a ma-
terial with a high sensor density is through the use of optical fibre Bragg grating
(FBG) sensors. Bragg gratings written in optical fibres are sensitive to tempera-
ture through the thermal expansion of the fibre and the temperature-dependence of
the refractive index of the fibre core material, the latter being the dominant effect.
Optical fibres can contain a large number of sensors on a single fibre (typically at
∼1 cm spacing), and the thermal conduction of an optical fibre is very low: the
fibres are thin (typically ∼150 µm diameter for a single-mode clad fibre) and the
thermal conductivity is orders of magnitude less than for a metal wire. Therefore,
both the weight and thermal conduction problems associated with electronic sensors
are greatly reduced by the use of FBG sensors.

However, the use of FBG sensors for temperature measurement in a local sensing
architecture is not straightforward, and presents the following challenges.

1. The first and foremost challenge is that a fibre containing FBG sensors is essen-
tially a distributed rather than a local sensing system. A single fibre may contain
a large number (up to several thousand) of sensors and a sophisticated optical
measurement instrument is required to measure the properties of each individual
grating. While a single FBG is a local sensor, the principal advantage of FBGs
it to obtain a large number (density) of sensors—a distributed system. At this
stage of technology development it is not practical to have a separate sensing
and measurement system incorporated in each local agent.

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 77

2. While one of the strengths of FBG sensing is that a single fibre can contain many
sensors, it is also a weakness in situations where there is potential for damage
and a robust sensing system is required: a single break in a fibre can remove
many sensors from the system.

3. FBGs are sensitive to strain as well as temperature. For accurate measurement
of temperature, steps must be taken to eliminate effects of strain on the measure-
ment. Various methods have been developed and reported in the literature to deal
with this issue, so it will not be considered further here.

A novel approach has been developed in this work to address points 1 and 2. The
critical idea, introduced by Scott and Price (2007, 2009), is to employ a switched
network of optical fibres in which the routing of the light through the fibres in the
network is controlled electronically by the local agents. In this way the agents con-
trol in which areas of the structure sensing takes place, and broken segments of
fibre can be by-passed by re-routing light around them. A schematic showing the
principle of the approach is shown in Fig. 4.7.

It is clear from the schematic of Fig. 4.7 that the local agents control the routing
of the light from and back to the measurement instrument. The multiplexer (large
box at top) is controlled by another agent. Operation of the system is as follows.

When an impact has been detected and its location identified, the agents act col-
lectively to establish the shortest path for laser light from the measurement instru-
ment to reach the region of the impact. Segments of fibre known to be damaged are
avoided. This is a similar procedure to the guiding of the mobile robot to the site of
an impact, as described in Sect. 4.2.5 above, and the algorithm developed to achieve
it is outlined below. Because the light path is established by self-organization, the
measurement instrument neither has nor requires any information about it.

Results of the measurement take the form of temperature vs path length, or grat-
ing number, along the measured fibre path. This data is returned to the agents, be-
ing communicated by a back-propagation method. The data string is communicated
back along the route of the light path. Each agent along the path holds informa-
tion about which of its fibre segments was active, and the number of gratings in
that segment. The agent controlling the first segment along the path keeps the data
measured from its fibre segment(s) and passes the remainder of the data string to
the next agent along the path. This process continues until all agents along the path
have extracted the data that corresponds to their active fibre segments. This data
is then used to construct the temperature distribution in the region near the im-
pact.

When used as described above, the essentially non-local FBG measurement sys-
tem can be operated as a group of local sensors controlled by the local agents. Fur-
thermore, the robustness of the system is enhanced because a fibre breakage will
cause the loss of only the sensors in one segment of fibre rather than in an entire
fibre. While the measurement instrument represents a single point of failure in the
system, this vulnerability could be mitigated by the use of multiple instruments in-
jecting their light into different points of the network.

78 N. Hoschke et al.

Fig. 4.7 Schematic of a switched FBG sensing network. The six square cells are regions of struc-
ture monitored by a single agent. Each contains four segments of optical fibre containing FBG
sensors, arranged in a loop and joined by square grey boxes that each represent an electronical-
ly-controlled optical switch. Each switch has three optical inputs/outputs—the direction of light
propagation is immaterial—and electronic controls to allow any two to be connected together leav-
ing the third unconnected (open). Each switch is connected to two fibre segments on its own cell
and one, without, FBGs, that connects it to a neighbouring cell. The configuration of each switch
is controlled electronically by the agent on the local cell. The large box at the top is an optical
multiplexer that connects the measurement instrument (not shown) to a number of different points
in the network

4.5.3 Specific Design and Operating Issues

The demonstrator to be built will be based on a passive TPS that is circular in shape.
Because none of the TPS materials developed by NASA were available for this
work, a commercial alumina-based ceramic foam, with properties similar to those
of the Space Shuttle tile material (see, for example Alers and Zimmerman 1980)
has been used. This material, designated ZAL 15 (Zircar 2012), is manufactured by
Zircar Ceramics Inc. (NY, USA) and has specified density ρ = 0.24 g cm−3, ther-
mal conductivity k = 0.06 W (m K)−1 and specific heat C = 1047 J (kg K)−1. It is
composed of alumina fibres with 15 % high-purity silica as binder. An advantage of
this material over some other available ceramic foams is its fine open pore structure
with homogeneous microstructure and consistent binder distribution. It is supplied
as boards, of various thicknesses from 0.50 in (12.7 mm) to 1.50 in (38.1 mm), with

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 79

Fig. 4.8 A schematic plan view of part of the proposed cellular structure The four triangular areas
that make up each 60◦ segment of the circular TPS demonstration structure each represents a cell
(or tile) whose sensors and optical switches are controlled by a single local agent. Within each cell,
the dark circles represent piezoelectric AE sensors, the square elements represent 3-way optical
switches and the light lines joining them represent the optical sensing fibres (though the fibre
layouts are more complex that shown in this schematic). Each agent controls the routing of the
light through the fibre network: communications between the agents enable self-organizing routes
to be established between the measurement instrument (FOID) and an impact site

the alumina fibres preferentially oriented in the plane of the board. It is therefore ex-
pected to exhibit anisotropic elastic and thermal properties (the thermal conductivity
quoted above is for the through-thickness (z) direction of the boards).

The proposed network structure, in this case designed for monitoring a circular
heat shield, is shown schematically in Fig. 4.8. The local agents that manage the
piezoelectric sensors also control the optical switches that route the light through
the fibre network. The instrument that monitors the FBGs is referred to as the fibre
optic interrogation device (FOID).

4.5.4 Realisation of Switched Fibre Network

Measurement of temperature in materials with low thermal conductivity and low
heat capacity is challenging. If the amount of heat removed by conduction by the
sensor is comparable with or greater than the in-flow of heat through the material,
the temperature measured by the sensor will not be representative of the temperature

80 N. Hoschke et al.

in the material in the absence of the sensor. In order that the sensors provide a
reliable temperature measurement, the following conditions are required:

1. The sensors are in good thermal contact with the TPS material.
2. The sensor has a relatively low heat capacity, so its temperature can follow that

of the measurement point with minimal heat transfer.
3. The connections to the sensors have low thermal conductivity and small cross-

sectional area, to reduce heat transfer from the sensing point.
4. The connections to the sensors are in good thermal contact with a heat bath close

to the temperature of the measurement point so that the thermal gradient along
the connections is small.

Relevant thermal properties of fused silica, the starting material of the optical fi-
bres, are: thermal conductivity k ∼ 1.3 W (m K)−1, specific heat C ∼ 703 J (kg K)−1

and fibre diameter (incl. core, cladding and polymer coating) ∼150 µm. Therefore,
silica optical fibres satisfy requirements 2 and 3 quite well, and certainly better than
do metallic sensors/connectors.

Conditions 1 and 4 are addressed by bonding the fibres between two sheets of
ZAL 15 board using an alumina cement, designated AL-CEM, produced by Zircar
Inc (Zircar 2012) specifically for bonding these ceramic foam materials. Its thermal
conductivity when cured is not known, but it should ensure intimate contact between
the fibres and the boards and forms a thin (typically ∼250 µm thick) bond layer. The
fibre layout, designed to satisfy condition 4 and to provide a high spatial density of
FBG sensors, is shown in Fig. 4.9.

The fibres are sandwiched between two ZAL 15 boards, each 3
4
′′

(19 mm) thick
to ensure they are in good thermal contact with the TPS material and well-insulated
from the surrounding environment. Particular care has been taken to provide a long
entry/exit path for the fibres from the bond region, via the sides of the tiles (in the
gap between the tiles), to the optical switches that are mounted on the substrate
below the TPS. The arrangement of the fibres shown in Fig. 4.9 (lower image) was
chosen to provide spatial redundancy. The three separate fibre segments on each
tile run approximately parallel and each provides sensing distributed over the whole
tile area. Therefore if one, or even two, fibre segments are damaged, some sensing
capability over the area of the tile is provided by the undamaged segment(s). This
would not be as effective if each segment was localised in a different region of the
tile.

The FBG sensors are monitored using the technique of optical frequency do-
main reflectometry (OFDR), initially developed at NASA Langley Research Center
(Froggatt 1996; Froggatt and Moore 1998) and further refined at the NASA Dryden
Flight Research Center (Richards et al. 2012). This technique is capable of monitor-
ing up to several thousand FBG sensors on a single fibre, all written with the same
nominal wavelength, at a rate of ∼ 20 Hz. Feasibility testing has been carried out
(see below) to ensure that the technique is capable of providing accurate measure-
ments in a switched network, which will have points of attenuation at the switches
and fibre connections. Connections may be either permanent splices or removable
connectors, but both impose some attenuation on the propagating light.

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 81

Fig. 4.9 A schematic diagram of the optical fibre sensing layout within a typical TPS tile. The
upper image is a schematic view of the tile cross-section, and the lower image shows the fibre
layout prior to bonding the upper ZAL 15 board in place. The lower image shows how the three
fibre segments are run in parallel, as described, and how the fibres enter/exit the tile

4.5.5 AE Sensor Network

In order to design the layouts of the sensor networks, knowledge of the elastic and
thermal properties of the material is required. Detailed measurements of the elastic
properties have been carried out, in part using a high-energy focussed laser pulse to
generate elastic waves in the material. Such pulses provide a reasonable simulation
of high-energy particle impacts, so the measurements give a good insight into the
detectability of particle impacts. This work has been described by Hoschke and
Price (2012) and Hoschke et al. (2013).

Measurements of the times of arrival of either the first minimum or the first max-
imum of the received pulse yield a propagation velocity for longitudinal waves in
this direction of 0.40 mm/µs. This is very small, and compares with the velocity of
sound in dry air at room temperature of ∼0.34 mm/µs. Similar measurements for
propagation in the (in-plane) x- and y-directions indicate propagation velocities of
longitudinal waves in both cases of ∼1.89 mm/µs. Thus, the elastic properties of the

82 N. Hoschke et al.

material are highly anisotropic, with effective isotropy in the plane of the boards:
the effective elastic symmetry is orthotropic with planar isotropy. This suggests that,
as expected from our knowledge of the material microstructure, the alumina fibres
lie in the x, y plane, i.e. in the plane of the boards, with random orientation.

The elastic constant tensor for materials of this symmetry contains only five in-
dependent constants, which in the Voigt or reduced matrix notation (see e.g. Nye
1985; Rose 1999), are: C11, C33, C12, C13, C44, with the only other non-zero ele-
ments being C22 = C11, C23 = C13, C55 = C44, C66 = 1

2 (C11–C12) and Cij = Cji

(Nye 1985; Rose 1999; Hoschke and Price 2012). Measurements yielded estimates
of all five elastic constants, which are:

C11 = 857 MN m−2

C33 = 40 MN m−2

C44 = 40 MN m−2

C13 = 40 MN m−2 or −120 MN m−2 (ambiguous from velocity measurements)
C12 ≈ 330 MN m−2 (insufficient measurements for reliable estimation).

The fact that C44 ≈ C33 means that shear waves propagate in the z-direction
with the same phase velocity as longitudinal waves, another unusual feature of this
material.

Alers and Zimmerman (1980) reported measurements of the elastic constants of
the ceramic foam used in the Space Shuttle TPS tiles, which is also orthotropic with
planar isotropy, as C11 = 240 MN m−2, C33 = 46 MN m−2, C44 = 21 MN m−2,
C12 = 145 MN m−2 and C13 = 82 MN m−2 (with the C13 value corrected to ac-
count for an apparent error in the authors analysis). Thus, this material is also highly
anisotropic, but not quite to the same extent as ZAL 15.

An important consequence of the large elastic anisotropy of the TPS material is
that the arrival time at a sensor of the first elastic pulse produced by an impact is
almost independent of the distance of the impact from the sensor over a range of
the order of 1.5 times the thickness of the material. Calculations of wave arrivals at
points at a range of angles from an impact site are shown in Fig. 4.10, for the waves
of the three orthogonal polarizations, showing an almost angle-independent first
arrival time out to an incident angle of ∼60◦. Further details of these calculations
are given by Hoschke and Price (2012).

This implies that for tiles of the structure shown in Fig. 4.9 there will be a region
of ∼55 mm radius around each sensor within which the time of arrival of the signal
from an impact will be effectively independent of the impact location. This will
place a limit on the accuracy with which impact locations can be determined, unless
signals can be detected on multiple sensors.

The piezoelectric acoustic emission (AE) sensors are PVDF discs, similar to
those described in Sect. 4.2.2 above. There are four on each tile, and therefore four
for each of the electronic agents. They are placed with one approximately at the
centroid of the tile and the other three on lines that bisect the angles of the tile
corners.

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 83

Fig. 4.10 Arrival times of the three principal modes at a range of angles to the sample z-axis for
a ZAL 15 panel 38.2 mm thick, with z-axis normal to the sample surface

4.5.6 Self-Organizing Agent-Based Algorithm and Simulation

An initial algorithm to establish the optical path connecting the FBG measuring in-
strument (FOID) to the impact region has been developed and trialled in a computer
simulation. This algorithm is based on the tracking field algorithm developed for
guiding a mobile robot to a damage site, described in Sect. 4.2.5 above. This basic
algorithm will be described briefly, results of simulations shown, and aspects that
require modification outlined.

Within the distributed multi-agent system architecture, the FBG network requires
distributed local algorithms (i.e. algorithms that reside and run on the individual lo-
cal agents) to control the optical switches that will determine the path by which the
probe laser light will propagate through the network structure. The goal of the algo-
rithm is to form a connected path through the network from the OFDR measurement
system (FOID) to an agent that had detected an impact. The FOID, which controls
the probe laser and processes the returned optical signals, is required to commu-
nicate with the local sensing agents on the TPS. Just as in the work described in
previous sections, in which an autonomous robot was treated as another agent in the
multi-agent system, in this case the FOID will be treated as an agent with commu-
nication links to some “neighbouring” agents.

The tracking field algorithm described in Sect. 4.2.5 results in a contour map set
up by the local agents. This map essentially maps the distance of an agent and its
physical cell from the damage site, and is generated by two rules; firstly if an agent
senses an impact in its own cell it sets its tracking field value to 0; all other agents
set their field values to 1 higher than the minimum value of their neighbours. This

84 N. Hoschke et al.

Fig. 4.11 A connected
optical path from the FOID
(square at the bottom) to an
impacted agent (large grey
circle) for triangular cells.
The agents that control the
cells are shown as dark grey
circles, and the optical
switches as smaller light grey
circles. Cells filled in lighter
shades of grey are closer to
the impacted cell

means agents directly adjacent to impacted agents will have a field value of 1, agents
connected to them will have a value of 2 and so on (see Fig. 4.3).

The optimal path through the fibre network is then determined using an algorithm
that employs a connection message—an information packet that can be communi-
cated around the network. The FOID sends a message that travels through the net-
work following the maximum gradient of the contour map and configures switches
appropriately as it goes. When an agent receives the connection message it passes it
on to its neighbour with the lowest tracking field value. In the case that two neigh-
bours have equal field values the choice is made randomly (this is an issue that
needs further attention, and will be discussed further below). Once the message has
reached an impact site, for which the agent has a tracking value of 0, the connection
message follows the path it has established back to the FOID, and the measurement
process for the sensors along the path is initiated.

As shown in Sect. 4.2.5, the tracking field algorithm can handle multiple impacts
if required, leading to more complicated contour maps. After an impact region has
been inspected using the optical fibre sensors the impact can be cleared as described
in Sect. 4.2.5. The contour map then reorganizes and the cycle can start again to
connect the FOID to the next impact location. Figure 4.11 shows a path formed
with the algorithm using the connection agent

The measurement process results in a set of temperature (in this case) measure-
ments as a function of the propagation time, or equivalently of the distance, along

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 85

the probed fibre. The FOID has no information that allows it to associate these read-
ings with physical locations in the structure, since it has no information about the
path the light has taken through the network. However, these measurements are re-
turned to the network, along the switched optical path, and the agents can deduce
the data readings appropriate to their own sensors. Therefore, the measurement pro-
cess results in the local agents receiving local sensed information, even though a
wide-area sensing system was used to obtain the data.

An important requirement of the system is that it must be able to form con-
nected paths, and preferably minimal connected paths, that avoid damaged sections
of the network. The detection and avoidance of failed agents has been discussed in
Sect. 4.2.5, but there is also a requirement in this system to detect and avoid dam-
aged segments of fibre.

Damage to the optical fibre network can be detected either by periodic scanning
of the entire network, or more localised scanning following the detection of an im-
pact. Scanning is done by a procedure that systematically simulates an impact at all
cells in turn. Optical paths joining the FOID to each agent would be sequentially
established, and sensor information returned to the agents along each path. A dam-
aged fibre segment would be revealed as a large broadband reflector (assuming that
physical damage to a fibre, such as a break, would reflect all wavelengths in the rel-
atively narrow pass-band of the fibre), and the relevant agent would recognise this
as fibre damage.

Another possibility, yet to be investigated, may be to incorporate a small laser
diode and photodiode detector into each agent, to enable the agent to carry out a
direct interrogation of the integrity of the fibre segments within its cell. This would
come at some cost in additional hardware and power demand across the structure,
but would provide the agents with direct information about their sensing integrity.
The addition of a basic capability on the agents to inject light into the network and
detect optical signals from it would allow the fibre network to be used for commu-
nications as well as sensing, and thus avoid the need for a parallel communications
network.

The method of dealing with damage in the network depends on where in the
network it has occurred. If the segment of fibre that connects one cell to another
is damaged, it is managed using the tracking field values and contour map. In this
situation cells that have a damaged connection ignore each other when finding the
minimum of their neighbours tracking field values. The damaged connections result
in a discontinuity in the gradient across the cells, as can be seen in Fig. 4.12. In
the simulation the damaged connecting links are represented with short black lines
between switches on the adjoining cells.

Damage in the sensing segments of the fibres within a cell is dealt with by the
agent on that cell, and the strategy depends on the extent of the damage. If a single
segment of fibre is damaged, the agent can simply route the light around its sub-
network in the other direction. If more segments are damaged the solution is more
complicated and will not be elaborated here.

An issue that is still to be resolved is ensuring that the optical path in the vicinity
of the impact site provides sufficient sensor data to enable any resultant thermal

86 N. Hoschke et al.

Fig. 4.12 Distance contour
map for an array of triangular
cells, and the optimal path
from a damaged cell,
indicated by the large grey
circle, to the FOID (grey
square at bottom), in the case
of damage to several
interconnect fibre segments.
The damaged fibre segments
are indicated by thick solid
black lines joining optical
switches (small light grey
circles). The optical path
established is shown

anomaly to be detected. This may require the agent at the impact site to select which
fibre segments are interrogated, possibly including some on neighbouring cells if an
impact occurs near the edge of a cell. As the thermal conductivity in the plane of the
TPS materials has not yet been measured—it is assumed to be anisotropic as are the
elastic properties, but the relative anisotropy is unknown—the lateral extent of the
thermal anomaly associated with point impact damage is not yet known.

4.5.7 Fabrication and Testing

As stated in Sect. 4.5.1 above, fabrication of a demonstrator to establish the feasi-
bility of the techniques outlined above is not yet complete, but solutions have been
developed and tested for most of the significant design, operational and fabrication
issues. System fabrication is in progress.

An important issue has been establishing the feasibility of the proposed switched
optical fibre network. As is evident from the network schematics of Figs. 4.7 and 4.8,
the network requires electronically-controlled 3-way switches, capable of connect-
ing any of the three input/output optical ports to either of the other two to provide
a bidirectional optical path with low attenuation. Suitable MEMS switches were
sourced from DiCon Fiberoptics, Inc (CA, USA) but these are not yet an off-the-
shelf item. For the purpose of the demonstrator, the three switches associated with
each agent/cell are mounted on the agent circuit board. The sensing fibres have a
5 µm silica core, with 1542 nm wavelength Bragg gratings 5 mm long written with
10 mm spacing. They were obtained from Luna Technologies Inc. (VA, USA).

Feasibility testing has been carried out to ensure that the OFDR technique is ca-
pable of providing accurate measurements in a switched network, which will have

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 87

points of attenuation at the switches and fibre joins. The tests, described by Hoschke
et al. (2012, 2013), showed that the method provided accurate FBG measurements
in the presence of attenuation in the network, limited only by the signal-to-noise
ratio in the measurement instrument. For the FOID instrument used for the tests,
this limit was reached when the added attenuation from switches, fibre connections,
etc. was ∼7.5 dB, but it is expected that this can be increased substantially by in-
creasing the laser power and reducing system noise. The switches each contribute
∼0.24 dB attenuation, but fibre splices and standard FC/APC optical fibre connec-
tors also contribute significantly.

The fibre networks have been laid out on two tiles, and the two boards that sand-
wich the fibres have been bonded using the alumina cement Zircar AL-CEM, as
shown in Fig. 4.9. Preliminary tests of impact detection, using a short (∼6.3 ns)
250 mJ pulse from a Q-switched Nd:YAG laser to simulate a fast particle impact,
have been carried out.

4.5.8 Summary and Future Directions

The work completed so far on this application has shown how to extend the system
described in the earlier sections in two significant ways. Firstly, it has incorporated
a second embedded sensing modality and demonstrated its use in a simple sequen-
tial two-stage sensing strategy. Secondly, it has developed a technique to enable an
inherently distributed sensing modality to be accommodated within a local sens-
ing architecture. The control aspect of the switched optical fibre network is closely
analogous to the control of the mobile robot described in Sects. 4.2 and 4.3 above,
but the robot was envisaged to carry local sensors whose measured data could be
transmitted directly back to the local agent concerned. The difference with the FBG
network is that data will be obtained for all fibre segments along the selected path,
and this can be communicated to all the agents concerned. This can be very useful if
the thermal effects of the impact damage extend over more than the area of a single
tile. Furthermore, it may be noted that the mobile robot could be incorporated into
the present TPS monitoring system to apply a source of heat (a point source or a
broad-area lamp) and/or to carry other sensors to probe the impact damage, such as
a video camera as envisaged earlier.

Future directions for this application are initially to complete development of
the damage diagnosis algorithm and fabrication of the demonstrator hardware. At-
tractive possibilities to enhance the sensing capability of the system are to use the
mobile robot as described above, and to use the FBG network to measure strain as
well as temperature (see, e.g. Richards et al. 2012) as this could be utilised to eval-
uate the effect of damage on the structural integrity of the TPS, an issue that has not
been addressed so far. Application to other current or prospective TPS materials,
such as the ablative and newer structurally integrated materials (Venkatapathy et al.
2010) is desirable, though this would be more of an adaptation than a new direction.

88 N. Hoschke et al.

4.6 Conclusions

This Chapter has described the development of the first stages of an experimental
structural health monitoring system whose operation is based on self-organization
in a complex multi-agent system. Damage identification, location and the first stage
of evaluation have been demonstrated, as has the deployment of a secondary robotic
inspector. This is all achieved without central control.

A key feature has been the development of a mobile robotic agent, and the hard-
ware and software modifications and developments required to enable the fixed
and mobile agents to operate as a single, self-organizing, multi-agent system. This
single-robot system is seen as the forerunner of a system in which larger numbers of
small robots perform inspection and repair tasks cooperatively, by self-organization.

Recent work, outlined in Sect. 4.5, has been directed towards application of the
principles of the original demonstrator to a realistic damage scenario: health moni-
toring of the thermal protection systems of spacecraft that re-enter the Earth’s atmo-
sphere. This work has involved extension of the system to two sensing modalities,
and the development of a novel approach for incorporating a distributed optical fi-
bre sensing system into the local agent architecture, which results in a much more
robust fibre network.

The eventual goal of demonstrating self-organized damage diagnosis using infor-
mation from multiple sensors has not yet been achieved, but this recent work is an
important step in that direction. Concurrent work on corrosion monitoring at “hot
spots” in aircraft is in progress (Trego et al. 2005; Muster et al. 2005; Cole et al.
2009), and this utilizes multi-sensor data to form data-driven damage models that
are used for prognostic purposes.

While the present demonstration systems are clearly not suitable for large-scale
implementation in a current aerospace vehicle, it is envisaged that the sensing, com-
putation and self-repair functions of the embedded system will eventually be inte-
grated into advanced materials. Recent advances in materials science and nanotech-
nology give confidence that this will be achieved in the foreseeable future, as will
the development of micro-sized, intelligent robots. We believe that the basic ap-
proach outlined in this Chapter, of developing self-organizing, adaptive solutions in
distributed multi-agent systems, will form the basis of future developments in this
area.

It is our view that structural health monitoring is an interesting and fertile ap-
plication area in which to study engineered self-organization. The wide range of
spatial and temporal scales on which events can occur and damage develop, and the
consequent variety of responses and response requirements, ensure that this general
application will provide a more complete challenge for self-organized sensing and
response than many others.

Acknowledgements It is a pleasure to acknowledge the continued support for this work of Drs.
Ed Generazio and Bill Prosser of NASA Langley Research Center, and of Dr. Lance Richards of
NASA Dryden Flight Research Center. We also gratefully acknowledge the contributions of Adam
Batten, Graeme Edwards, Tony Farmer, Peter Isaacs and Chris Lewis (all from CSIRO Materials
Science and Engineering), as well as Mikhail Prokopenko and Peter Wang (CSIRO ICT Centre) to
this work.

4 Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal 89

References

Alers, G. A., & Zimmerman, R. M. (1980). Ultrasonic characterization of the thermal protection
tiles for the space shuttle. In B. R. McAvoy (Ed.), 1980 ultrasonics symposium proceedings (pp.
894–896). New York: IEEE Press.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001).
Self-organization in biological systems. Princeton: Princeton University Press.

Cole, I. S., Corrigan, P. A., Edwards, G. C., Ganther, W., Muster, T. H., Patterson, D., Price,
D. C., Scott, D. A., Followell, D., Galea, S., & Hinton, B. (2009). A sensor-based learning
approach to prognostics in intelligent vehicle health monitoring. Materials Forum, 33, 27–35
[in Proceedings of the 2nd Asia-Pacific workshop on structural health monitoring (2APWSHM),
Melbourne, December 2008].

Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In Proc. 1999
congress on evolutionary computation, Washington DC, July 1999 (pp. 1470–1477).

Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.
Froggatt, M. (1996). Distributed measurement of the complex modulation of a photoinduced Bragg

grating in an optical fiber. Applied Optics, 35, 5162–5164.
Froggatt, M., & Moore, J. (1998). Distributed measurement of static strain in an optical fiber with

multiple Bragg gratings at nominally equal wavelengths. Applied Optics, 37, 1741–1746.
Hedley, M., Johnson, M. E., Lewis, C. J., Carpenter, D. A., Lovatt, H., & Price, D. C. (2003).

Smart sensor network for space vehicle monitoring. In Proceedings of the international signal
processing conference, Dallas, Texas, March 2003. http://www.gspx.com/GSPX/papers_online/
papers_list.php.

Hoschke, N., & Price, D. C. (2012). Monitoring of thermal protection systems using robust self-
organizing optical fibre sensing networks (Report 3: Completion of Design Study). CSIRO Ma-
terials Science & Engineering.

Hoschke, N., Lewis, C. J., Price, D. C., Scott, D. A., Edwards, G. C., & Batten, A. (2006). A self-
organising sensing system for structural health management. In B. Gabrys, R. J. Howlett, &
L. C. Jain (Eds.), Lecture notes in artificial intelligence: Vol. 4253. Proceedings of 10th inter-
national conference on knowledge-based intelligent information and engineering systems, Part
III, KES 2006, Bournemouth, UK, 9–11 October 2006 (pp. 349–357). Berlin: Springer.

Hoschke, N., Lewis, C. J., Price, D. C., Scott, D. A., Gerasimov, V., & Wang, P. (2008).
A self-organizing sensing system for structural health monitoring of aerospace vehicles. In
M. Prokopenko (Ed.), Advances in applied self-organizing systems (1st ed.). London: Springer.

Hoschke, N., Price, D. C., Wood, A., & Walker, D. (2012). Fibre Bragg grating networks for robust
sensing systems. In Proceedings of the 37th Australian conference on optical fibre technology
(ACOFT 2012), Sydney, December 2012.

Hoschke, N., Price, D. C., Scott, D. A., & Richards, W. L. (2013, to be published). Structural health
monitoring of space vehicle thermal protection systems. Key Engineering Materials [in Pro-
ceedings of the 4th Asia-Pacific Workshop on Structural Health Monitoring (2APWSHM), Mel-
bourne, December 2012].

Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer.
Kohonen, T. (2003). Self-organized maps of sensory events. Philosophical Transactions of the

Royal Society of London, Series A: Mathematical and Physical Sciences, 361, 1177–1186.
Muster, T., Cole, I., Ganther, W., Paterson, D., Corrigan, P., & Price, D. (2005). Establishing a

physical basis for the in-situ monitoring of airframe corrosion using intelligent sensor networks.
In Proceedings of the 2005 tri-service corrosion conference, Florida, USA, November 2005.

Nye, J. F. (1985). Physical properties of crystals. London: Oxford University Press.
Price, D. C., Batten, A., Edwards, G. C., Farmer, A. J. D., Gerasimov, V., Hedley, M., Hoschke,

N., Johnson, M. E., Lewis, C. J., Murdoch, A., Prokopenko, M., Scott, D. A., Valencia, P., &
Wang, P. (2004). Detection, evaluation and diagnosis of impact damage in a complex multi-
agent structural health management system. In Proceedings of the 2nd Australasian workshop
on structural health monitoring, Melbourne, Australia, December 2004 (pp. 16–27).

http://www.gspx.com/GSPX/papers_online/papers_list.php
http://www.gspx.com/GSPX/papers_online/papers_list.php

90 N. Hoschke et al.

Prokopenko, M., Wang, P., Foreman, M., Valencia, P., Price, D., & Poulton, G. (2005a). On con-
nectivity of reconfigurable impact networks in ageless aerospace vehicles. Robotics and Au-
tonomous Systems, 53, 36–58.

Prokopenko, M., Wang, P., Scott, D. A., Gerasimov, V., Hoschke, N., & Price, D. C. (2005b).
On self-organising diagnostics in impact sensing networks. In R. Khosla, R. J. Howlett, & L.
C. Jain (Eds.), Lecture notes in computer science: Vol. 3684. Proceedings of 9th international
conference on knowledge-based intelligent information and engineering systems, Part IV, KES
2005, Melbourne, Australia, 14–16 September 2005 (pp. 170–178). Berlin: Springer.

Prokopenko, M., Poulton, G., Price, D. C., Wang, P., Valencia, P., Hoschke, N., Farmer, A. J. D.,
Hedley, M., Lewis, C., & Scott, D. A. (2006). Self-organising impact sensing networks in robust
aerospace vehicles. In J. Fulcher (Ed.), Advances in applied artificial intelligence (pp. 186–233).
Hershey: Idea Group.

Prokopenko, M., Boschetti, F., & Ryan, A. J. (2008). An information-theoretic primer on complex-
ity, self-organisation and emergence. Complexity, 15, 11–28.

Richards, W. L., Parker, A. R., Ko, W. L., Piazza, A., & Chan, P. (2012) Flight test instrumenta-
tion series: Vol. 22. Application of fiber optic instrumentation, NATO RTO AGARDograph 160.
http://www.cso.nato.int/Pubs/rdp.asp?RDP=RTO-AG-160-V22.

Rose, J. L. (1999). Ultrasonic waves in solid media. Cambridge: Cambridge University Press.
Scott, D. A., & Price, D. C. (2007). Health monitoring of thermal protection systems. Report 1: pre-

liminary measurements and design specifications (NASA Contractor Report NASA/CR-2007-
215092). NASA, Washington DC, USA.

Scott, D. A., Batten, A., Edwards, G. C., Farmer, A. J., Hedley, M., Hoschke, N., Isaacs, P., John-
son, M., Murdoch, A., Lewis, C., Price, D. C., Prokopenko, M., Valencia, P., & Wang, P. (2005).
An intelligent sensor system for detection and evaluation of particle impact damage. In D. E.
Chimenti (Ed.), Review of progress in quantitative nondestructive evaluation (Vol. 24, pp. 1825–
1832). New York: AIP

Scott, D. A., Price, D. C., Hoschke, N., & Richards, W. L. (2009). Structural health monitoring
of thermal protection systems. Materials Forum, 33, 457–464 [in Proceedings of the 2nd Asia-
Pacific workshop on structural health monitoring (2APWSHM), Melbourne, December 2008].

Trego, A., Price, D., Hedley, M., Corrigan, P., Cole, I., & Muster, T. (2005). Development of
a system for corrosion diagnostics and prognostics. In Proceedings of 1st World congress on
corrosion in the military: cost reduction strategies, Sorrento, Italy, June 2005.

Venkatapathy, E., Szalai, C. E., Laub, V., Hwang, H. H., Conley, J. L., & Arnold, J. (2010).
Thermal protection system technologies for enabling future sample return missions (White
paper submitted to the NRC Planetary Science Decadal Survey, Primitive Bodies Sub-panel).
http://www.lpi.usra.edu/decadal/sbag/topical_wp/EthirajVenkatapathy.pdf.

Zircar (2012). Information in http://www.zircarceramics.com/pages/rigidmaterials/specs/zal15.
htm. http://www.zircarceramics.com/pages/cem-rig/specs/al-cem.htm.

http://www.cso.nato.int/Pubs/rdp.asp?RDP=RTO-AG-160-V22
http://www.lpi.usra.edu/decadal/sbag/topical_wp/EthirajVenkatapathy.pdf
http://www.zircarceramics.com/pages/rigidmaterials/specs/zal15.htm
http://www.zircarceramics.com/pages/rigidmaterials/specs/zal15.htm
http://www.zircarceramics.com/pages/cem-rig/specs/al-cem.htm

Chapter 5
Decentralised Decision Making for Ad-hoc
Multi-Agent Systems

George Mathews and Hugh Durrant-Whyte

5.1 Introduction

Decision making in large distributed multi-agent systems is a fundamental problem
with a wide range of applications including distributed environmental monitoring,
area search and surveillance, and coordination of transportation systems. In general,
for an agent to make an good decision, it must consider the decisions of all the other
agents in the system. This coupling between decision makers has two main causes:
(i) the agents share a common objective function (e.g. they operate as a team), or
(ii) the agents have individual goals but share constraints (e.g. they must cooperate
in sharing a finite resource). This chapter is focused on the first issue, and assumes
the agents are designed to operate as a team.

The classical approach to solve this type of decision or planning problem is to
collect all the information from the agents in a single location and solve the result-
ing optimisation problem (e.g. see Furukawa et al. 2003). However, this centralised
approach has two main problems:

• The required communication bandwidth grows at least linearly with the number
of agents.

• The resulting optimisation complexity is in general exponential in the number of
agents.

Thus, for a sufficiently large number of agents this problem becomes impractical to
solve in a centralised fashion.

However for physically distributed systems, sparsity in the interdependencies be-
tween the agents should be exploited and the agents allowed to cooperate or self-

G. Mathews (B) · H. Durrant-Whyte
National ICT Australia (NICTA), Australian Technology Park, 13 Garden St, Eveleigh, NSW
2015, Australia
e-mail: George.Mathews@nicta.com.au

H. Durrant-Whyte
e-mail: h.durrant-whyte@cas.edu.au

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_5,
© Springer-Verlag London 2013

91

mailto:George.Mathews@nicta.com.au
mailto:h.durrant-whyte@cas.edu.au
http://dx.doi.org/10.1007/978-1-4471-5113-5_5

92 G. Mathews and H. Durrant-Whyte

organise in solving the distributed decision problem. The main issue with this decen-
tralised approach now becomes identifying what local processing is required, which
agents need to communicate, what information should be sent and how frequently.

This chapter approaches the multi-agent collaboration problem using distributed
optimisation techniques and presents results on the structure of the decision problem
and how to exploit sparseness. Although distributed optimisation methods have been
studied for over two decades (Baudet 1978; Bertsekas and Tsitsiklis 1989, 1991;
Tsitsiklis et al. 1986; Tseng 1991; Patriksson 1997; Camponogara and Talukdar
2007), the existing results and algorithms generally require significant prior con-
figuration that defines the structure of the local interactions and are generally not
suitable ad-hoc multi-agent systems.

This chapter defines a simple and intuitive decentralised optimisation algorithm
which enables multiple decision makers to propose and refine decision to optimise a
given team objective function. A subsequent convergence analysis of this procedure
provides an intuitive relationship between the communication frequency, transmis-
sion delays and the inherent inter-agent coupling in the system. From this, an ap-
proximate algorithm is defined that can be easily implementable in an ad-hoc team
without the need to define the coupling information up front. Finally, a generalisa-
tion of the objective function is introduced that allows the specific capabilities and
individual models of the agents to be abstracted away.

The algorithm is applied to the control of multiple mobile robots undertaking
an information gathering task. The specific scenario considered requires the robotic
agents to actively localise a group of objects. For this scenario the inter-agent cou-
pling loosely relates to the amount of overlap between the information two agents
will receive when undertaking their respective plans. This requires communications
only between coupled agents and results in a scalable system with sparse interac-
tions.

Section 5.2 defines the multi-agent decision problem and introduces a general
distributed optimisation method to solve it. Section 5.3 defines the convergence con-
ditions and introduces an inter-agent coupling metric, and links it to the structure of
inter-agent communications. Section 5.4 extends the optimisation algorithm to ah-
hoc systems by defining an on-line approximation method for the inter-agent cou-
pling. The resulting algorithm is applied to a simple example problem in Sect. 5.5.
Section 5.6 extends the algorithm further by considering a decomposition of the
objective function that explicitly specifies what local information is required about
the capabilities and models of other agents. Section 5.7 describes the general multi-
agent information gathering problem and formulates it as a distributed sequential
decision problem. This is specialized for an object localisation problem in Sect. 5.7
with results given in Sect. 5.8. Section 5.9 provides a summary and directions for
future work.

5.2 Distributed Optimisation

Distributed algorithms can be categorised into synchronous and asynchronous (Bert-
sekas and Tsitsiklis 1991) methods. Synchronous algorithms require iterations to be

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 93

executed in a predetermined order and can be broken down into Gauss-Seidel and
Jacobi types (see Fig. 5.1). The iterations in a Gauss-Seidel algorithm must be com-
puted sequentially, possibly causing the agents to be idle while waiting for their
turn. The underlying optimisation algorithm presented in Inalhan et al. (2002), and
used for collision avoidance, is an example of this type.

A Jacobi type algorithm allows the agents to work on subproblems in parallel,
but still requires each agent to wait until information from all other agents has been
received prior to starting a new iteration. The formation control algorithm presented
in Raffard et al. (2004) falls in this category.

An asynchronous algorithm is similar to a Jacobi type, but does not require each
agent to wait before starting the next iteration, an agent simply uses all the informa-
tion it has available at the time. This type of algorithm allows each agent to compute
and communicate at different rates without the overall progress being limited by the
slowest agent.

Asynchronous algorithms can be further separated into totally asynchronous and
partially asynchronous (Bertsekas and Tsitsiklis 1991). For totally asynchronous
algorithms, the age of the information an agent has about another can become arbi-
trary large. While a partially asynchronous algorithm requires this to be bounded.
The ADOPT algorithm (Modi et al. 2005) for distributed constraint optimization
problems with discrete decisions is an example of a totally asynchronous algorithm.

The remainder of this section defines the general team decision problem that
will be considered in this paper and introduces the proposed asynchronous solution
method.

5.2.1 Problem Formulation

Consider a team of p agents, where each agent i ∈ {1, . . . , p} is in charge of a
local decision variable vi that is constrained to be an element of the feasible local
decision set Vi ⊆ �di . The team decision vector1 is given by collection of decisions
from each of the agents

v = [v1,v2, . . . ,vp]
and is defined on the product set V = V1 ×· · ·×Vp ⊆ �d , where d = d1 +· · ·+ dp .
In regards to notation, normal italics is used for scalars, bold type for vectors and
matrices, and calligraphic for sets.

Assumption 1 (Decisions) The set of feasible decisions Vi is convex for all agents
i ∈ {1, . . . , p}.

1All vectors are assumed to be column vectors. For simplicity the ‘transpose’ has been omitted.
Formally, v should be defined as [vT

1 , . . . ,vT
p]T .

94 G. Mathews and H. Durrant-Whyte

Fig. 5.1 Synchronous vs
asynchronous iterations for a
system of three agents

As the joint decision set is defined as V = V1 × · · · × Vp , Assumption 1 also
guarantees V is convex.

The team decision problem of interest requires the agents to jointly select deci-
sions such that a given team objective function J : V → � is minimised

v∗ = arg minv∈V J (v), (5.1)

where v∗ is the desired optimal joint decision. It is noted that this definition of the
decision problem, incorporates local constraints on the individual decisions of the
agents but excludes hard inter-agent constraints. Coupling between the agents only
through the team objective function J .

Assumption 2a (Objective Function) The objective function J has a minimum, is
continuous and twice differentiable.

Assumption 2b (Convexity) The objective function J obeys Assumption 2a and is
also convex.

Under the convexity conditions of Assumptions 1 and 2b, a necessary and suffi-
cient condition (Bertsekas 1999) for v∗ to be optimal is

(
ν − v∗)T ∇J

(
v∗)≥ 0, for all ν ∈ V, (5.2)

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 95

where ∇J (v) ∈ �d is the gradient vector of J (v). In terms of each agents local
decision, this can be rewritten as

(
νi − v∗

i

)T ∇iJ
(
v∗)≥ 0, for all νi ∈ Vi , (5.3)

for all i, where v∗
i is the ith agent’s component of the optimal decision v∗ and

∇iJ (v∗) ∈ �di is the gradient vector with respect to the ith agent’s decision, evalu-
ated at v∗.

It is noted that if only Assumption 2a holds (i.e. the objective function is not
convex), (5.3) corresponds to the first order necessary condition for the point v∗ to
be a local minimum (Bertsekas 1999).

5.2.2 Asynchronous Optimisation Model

The asynchronous solution method pursued in this chapter is based on Tsitsiklis
et al. (1986) and allows each agent to propose an initial decision and then to in-
crementally refine it, while intermittently communicating these refinements to the
team. Under the condition of asynchronous execution and communication, it is ini-
tially required that each agent maintains a local copy of the team decision vector,
containing the (possibly out of date) decision of each agent. The copy maintained
by agent i at discrete time t ∈ {0,1,2, . . . } is denoted by

iv(t) = [
iv1(t),

iv2(t), . . . ,
ivp(t)

]
. (5.4)

Here, pre-superscripts represents a copy held by a specific agent, while subscripts
represent a specific agents decision, e.g. ivj (t) represents agent i’s local copy of
agent j ’s decision. Here, the variable t is used to represent when discrete events
take place, such as when an agent computes an update or communicates.

To represent the effects of communication delays and asynchronous execution,
the variable τji(t) will be used to denote when agent j ’s local copy j vi (t) was
generated by agent i and hence j vi (t) = ivi (τji(t)). It is assumed that τii(t) = t

and thus agent i always has the latest copy of its own decision. Using this notation,
(5.4) can be rewritten as

iv(t) = [1v1
(
τi1(t)

)
, . . . , pvp

(
τip(t)

)]
. (5.5)

5.2.2.1 Local Decision Update

To formalise the notion of decision refinement a local update rule fi : V → Vi is
defined for each agent i that modifies its local decision ivi , based on its copy of the
team decision vector iv. To allow each agent to perform updates asynchronously a

96 G. Mathews and H. Durrant-Whyte

set of times T U
i ⊆ {0,1,2, . . . } is associated with agent i that represents when the

agent computes a local update

ivi (t + 1) =
{

fi(
iv(t)) if t ∈ T U

i ,
ivi (t) else.

(5.6)

To explicitly define the capabilities of each agent, and ensure the complexity of the
local decision refinement is only dependent on the size of the local decision space,
the following restriction is made on what basic operations an agent can perform on
the objective function.

Assumption 3a (Local Operations) Each agent can only compute the gradient of
the objective function with respect to its own decision vector vi , ∇iJ (v) ∈ �di .

An extension, also considered in this work, is defined in the following assump-
tion.

Assumption 3b (Local Operations, ext.) In addition to Assumption 3a, each agent
can compute the second order derivatives of the objective function with respect to
its own decision vector vi , corresponding to ∇2

iiJ (v) the di × di submatrix of the
full Hessian.

Based on these constraints it is proposed to use a scaled gradient projection up-
date method. Thus, for an agent i to update its decision, it first determines the lo-
cal gradient vector ∇iJ (iv(t)) and applies a positive definite scaling matrix Ai (t)

(e.g. the local Hessian ∇2
iiJ (iv(t)) or simply the identity matrix I), producing an

update direction di = [Ai (t)]−1∇iJ (iv(t)). The decision is then updated by moving
it in this direction and, if needed, projecting it back onto the feasible decision set

fi

(
iv(t)

)= ProjAi (t)

Vi

(
ivi (t) − γi

[
Ai (t)

]−1∇iJ
(
iv(t)

))
, (5.7)

where γi is a step size to be defined and ProjAi

Vi
(·) denotes the projection onto the

set Vi under the scaling of Ai . This projection is defined for any vector μi ∈ �di as

ProjAi

Vi
(μi) = arg min

νi∈Vi

(νi − μi)
T Ai (νi − μi). (5.8)

The projection operation requires only local knowledge of the feasible set Vi and
the scaling matrix Ai (t).

There is a slight, but very important, difference between this formulation of the
update rule and those presented in Bertsekas and Tsitsiklis (1989), Tsitsiklis et al.
(1986), Tseng (1991), and Patriksson (1997). The difference lies in the assignment
of a possibly different step size γi to each agent and will have significant practical
implications.

To ensure that the interval between updates computed by each agent is bounded
and thus, as t tends to ∞ the number of updates computed by each agent also tends
to ∞ the following assumption is required.

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 97

Assumption 4 (Continuous Computation) There exists a finite positive constant Q,
such that for all t and i

∃q ∈ T U
i , such that q ∈ [t, t + Q]. (5.9)

5.2.2.2 Communication

Inter-agent communication is modelled in a high level fashion and requires all
agents be able to send and receive messages from all other agents. Although the
physical communication network is not likely to be fully connected, this high-level
model allows the specific routing protocol and topology to be ignored, while retain-
ing the important effects of asynchronous execution and message delivery delays.
In this model, communications are initiated by an agent i sending a message at
some time t ∈ T C

ij ⊆ {0,1,2, . . . } to another agent j containing its latest decision
ivi (t). After some communication delay bij (t) agent j receives it and incorporates
it into its local copy of the team decision vector. Thus, when the message is received
j vi (t + bij (t)) = ivi (t) and hence τji(t + bij (t)) = t .

There are two basic assumptions that can be made about the sets of communi-
cation times {T C

ij : ∀i, j �= i} and delivery delays {bij (t) : ∀l, i, j �= i}. These will
be made indirectly by simply considering the age of the information one agent has
about another, represented by the variables τji(t).

Assumption 5a (Arbitrary Delays) Given any time t1, there exists a time t2 > t1
such that for all i and j

τji(t) > t1, for all t > t2. (5.10)

Thus, the delays in the system can become arbitrarily large, while enforcing that
after a sufficiently long time (t2) all old information (from before t1) is removed
from the system.

Assumption 5b (Bounded Delays) There exists finite positive constants Bij for all
i and j such that

t − τji(t) ≤ Bij , for all t. (5.11)

Informally, this can be relaxed so that Bij represents the maximum difference, mea-
sured in numbers of updates computed by agent i, between ivi (t) and j vi (t).

It is noted that Assumption 5b implies Assumption 5a. The difference between
these two assumptions differentiate totally and partially asynchronous algorithms
(Bertsekas and Tsitsiklis 1989).

It is noted that the delay bounds in Assumption 5b can be determined by know-
ing: (i) the maximum rate iterations are computed by agent i, denoted by Ri ; (ii) the
minimum rate messages are communicated from i to j , denoted by Cij ; and (iii) the

98 G. Mathews and H. Durrant-Whyte

maximum delivery delay between agent i sending and j receiving a message, de-
noted by Dij . This results in the relation

Bij = Ri

Cij

+ RiDij . (5.12)

5.3 Convergence Results

The previous section defined a general gradient-based optimisation method that al-
lows each agent to incrementally refine its local decision, while intermittently com-
municating with the rest of the team. What is of interest now is if such an approach
will converge to an optimal solution of the original problem defined in (5.1). This
section will present two sufficient conditions under which the algorithm method
will converge to a team decision obeying the optimality condition (5.3). The first
requires a restrictive assumption on the structure of the problem, but allows very
simple algorithms to be create. While the second can be applied to any problem, but
leads to slightly more complex algorithms.

5.3.1 Weak Coupling Convergence

The first condition requires the system to be weakly coupled, which will be defined
below. For simplicity the following restrictions will be made in this section: (i) de-
cisions are scalar (Vi ⊆ � for all i); (ii) unity scaling is employed (Ai = 1 for all i);
and (iii) all agents share a common step size (γi = γ for all i).

Assumption 6 (Weak Coupling) The Hessian of the objective function is diagonally
dominate over all feasible decisions. That is, for all i and all v ∈ V

∇2
iiJ (v) >

∑

j �=i

∣
∣∇2

ij J (v)
∣
∣, (5.13)

where the second order derivatives are scalars, i.e. ∇2
iiJ (v), ∇2

ij J (v) ∈ �, and | · |
denotes the absolute value.

Informally, this condition requires the gradient of the objective function with re-
spect to the ith agent, ∇iJ (v), to have a greater dependence on the local decision
vi than the sum of all dependencies from other agents. It is noted that this is satis-
fied by all 2 dimensional strictly convex functions but does not necessarily hold for
higher dimensional convex functions (p > 2).

Under this Assumption, convergence can be demonstrated using a contraction
mapping approach that ensures, after successive iterations, the team decision moves
closer to the optimum.

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 99

Theorem 1 (Weak Coupling Convergence (Bertsekas and Tsitsiklis 1989)) The As-
sumptions 1, 2b, 4, 5a and 6 provide sufficient conditions for the asynchronous op-
timisation algorithm, defined by (5.6) and (5.7), to converge to the global minimum
of J , provided the step size γ obeys

0 < γ <
2

K
, (5.14)

where K is related to the maximum curvature of J and is given by2

K = max
v∈V

∥
∥∇2J (v)

∥
∥. (5.15)

Here, ‖·‖ represents the induced L2 matrix norm and ∇2J (v) denotes the Hessian
matrix of the objective function J .

This theorem can be used to guarantee convergence for a class of algorithms
based on the generalisation of the Jacobi method for solving linear equations. Utilis-
ing Assumption 5a, if each agent i only communicates after they have minimised the
objective function with respect to their local decision vi , the totally asynchronous
version of the nonlinear Jacobi algorithm is obtained.

Corollary 1 (Nonlinear Jacobi Method (Bertsekas and Tsitsiklis 1989)) Under
the same assumptions of Theorem 1, the asynchronous nonlinear Jacobi algorithm,
defined by (5.6) with the local update rule given by

fi

(
iv(t)

)= arg min
vi∈Vi

J
(
iv1(t), . . . ,

ivi−1(t),vi ,
ivi+1(t), . . . ,

ivp(t)
)
, (5.16)

will also converge to the global minimum of J .

The form of the nonlinear Jacobi algorithm is very simple and it is unsurprising
it has been applied to cooperative control problems in multi-robot systems (Gro-
cholsky 2002; Bourgault et al. 2004). However, the only known sufficient condition
guaranteeing convergence requires the system to be weakly coupled and possess a
convex objective function, conditions which are often not satisfied. For this reason
algorithms based on Theorem 1 will not be pursued further.

5.3.2 General Convergence

Due to the restrictions imposed by Assumptions 2b and 6, more general results
have been developed (Tsitsiklis et al. 1986; Tseng 1991; Patriksson 1997), which

2In Bertsekas and Tsitsiklis (1989), K is defined using a Lipschitz continuity condition of ∇J .
Here, a simpler, but less general, definition is used by considering the Hessian.

100 G. Mathews and H. Durrant-Whyte

Fig. 5.2 Visualisation of the inter-agent coupling Kij for a quadratic function with scalar decisions

are applicable to a wider range of problems. A key difference of these methods is
they require the time between communications be bounded, utilising Assumption 5b
instead of Assumption 5a.

These partially asynchronous methods are guaranteed to converge provided the
step size is small enough. However, previous results are generally only concerned
with the existence of a bound on the step size and not in the specific form of it. The
condition developed here extends the results of Tsitsiklis et al. (1986) and presents
a bound on the step size of each agent that only depends on the local coupling and
communication properties of that agent. As will be shown, this provides significant
insight into the structure of the problem and the requirements of which agents actu-
ally need to communicate.

To start, a scalar coupling metric is defined for each pair of agents that captures
the maximum curvature of the objective function in the subspace of their decisions.

Assumption 7 (Coupling) For every i and j , there exists a finite positive con-
stant Kij , such that

Kij = max
v∈V

∥
∥∇2

ij J (v)
∥
∥, (5.17)

where again, ‖(‖·) is the induced L2 matrix norm and ∇2
ij J (v) corresponds to the

di × dj submatrix of the Hessian of the objective function.

The term Kii will be referred to as the internal coupling of agent i, while for
j �= i the term Kij will be referred to as the inter-agent coupling of agents i and j .
The inter-agent coupling represents the strength of the dependency of the gradient
of one agent’s decision on the decision of another and is depicted for a quadratic
function in Fig. 5.2.

Theorem 2 (General Convergence) The Assumptions 1, 2b, 4, 5b and 7 provide
sufficient conditions for the asynchronous optimisation algorithm defined by (5.6)
and (5.7) to converge to a limit point obeying the optimality criterion (5.3), provided

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 101

γi ∈ (0,Γi) where

Γi = 2ai

Kii +∑
j �=i Kij (1 + Bij + Bji)

(5.18)

and ai is a scaling normalisation factor given by

ai = min
t

s
(
Ai (t)

)
. (5.19)

Here, s(M) represents the minimum singular value of matrix M. See the Appendix
for a proof.

This Theorem is applicable to any problem with any coupling structure, how-
ever, it becomes increasingly conservative for weakly coupled systems. In addition,
under the weaker condition of Assumption 2a, any limit point of the algorithm will
be guaranteed to satisfy the first order necessary condition (5.3), such as a local
minimum.

Based on the definition of Γi in Theorem 2, an algorithm can be developed by
defining the step size as

γi = βai

Kii +∑
j �=i Kij (1 + Bij + Bji)

, (5.20)

for any β ∈ (0,2).
It is noted that the step size is inversely related to the product of the inter-agent

coupling to an agent j (Kij) and the associated maximum round trip communication
delay (Bij + Bji). This provides a unified way of relating the inherent inter-agent
coupling of the decision problem and communication structure of the team, to the
rate at which each agent can refine its local decision.

5.3.3 Efficient Communication Policies

For the general problem under consideration, for each agent to receive the decisions
of each other agent, there must exist a communication channel between all agents
in the system. Regardless of the implementation, the only relevant features of this
communication network are the inter-agent communication frequencies and trans-
mission delays. It is important to capture the effects of the communication network
on the step size γi as the magnitude of the step size used in gradient based algo-
rithms have a critical impact on their overall convergence speed. This is known for
typical centralised or synchronous algorithms (Bertsekas 1999), and asynchronous
algorithms (Tseng 1991). Although a detailed analysis of the convergence rate is
beyond the scope of this work.

102 G. Mathews and H. Durrant-Whyte

For constant computation rates Ri , communication rates Cij and transmission
delays Dij , the delay terms Bij are given by (5.12), allowing (5.20) to be rewritten
as the relation

β

γi

= Kii +
∑

j �=i

Kij

(

1 + Ri

Cij

+ RiDij + Rj

Cji

+ RjDji

)

. (5.21)

Although both the communication frequencies and transmission delays both influ-
ence the step size, only the communication frequency is generally controllable by
the agents (up to a limit), while the transmission delays are determined by the topol-
ogy of the communication network, routing policies and the nature of the physical
communication medium. Thus, the remainder of this section will focus on defining
a communication policy that determines appropriate communication frequencies,
based on the local coupling structure.

5.3.3.1 Communication Rate

Now, consider the computation rates (Ri and Rj) and inter-agent communication
delays (Dj→i and Di→j) as fixed and uncontrollable, (5.21) can be rewritten as

β

γi

= Kii +
∑

j �=i

Kij

(

Wij + Ri

Cij

+ Rj

Cji

)

(5.22)

where Wij = 1 + RiDij + RjDji and is now a fixed constant. Thus, the only terms
that are controllable by the agents are the communication rates. From (5.22), the
step size γi is maximised when all the communication rates are minimised, that is
every agent communicates to every other agent after every local iteration.

However, this policy is impractical for large systems containing many agents.
Potential this can be overcome by allowing each pair of agents to communicate at a
rate proportional to the coupling, i.e.

Cij = ηiKij (5.23)

for some constant ηi . However, this will also be impractical for large systems since
the step size will become directly related to the number of agents. This can be
demonstrated by considering all agents to have a fixed computation rate Ri = R

and proportionality constant ηi = η, and substituting (5.23) into (5.22)

β

γi

= Kii +
∑

j �=i

KijWij + 2(p − 1)
R

η
. (5.24)

Thus, for large p, the last term will dominate causing the step size γi to approach 0
regardless of how small the actual inter-agent coupling may be. Thus a communica-
tion rate proportional to the coupling is in general too low.

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 103

To overcome this it is proposed to set the communication rate proportional to the
square root of the coupling.

Cij = ηi

√
Kij . (5.25)

This represents a compromise between fast convergence, requiring a high commu-
nication rate, and the practical requirements of a slow communication rate. The step
size γi , and hence the possible convergence rate, is now only dependent on the cou-
pling, which is in turn determined by the inherent complexity of the problem. This
can be demonstrated by substituting (5.25) into (5.22)

β

γi

= Kii +
∑

j �=i

(
KijWij +√

Kij (ηiRi + ηjRj)
)

(5.26)

The constant ηi can be chosen such that the strongest coupled agent is sent a mes-
sage after every local iteration, or to satisfy some bandwidth limitations. More com-
plex considerations could be taken into account when choosing ηi , but this will not
be considered here.

5.3.4 Algorithm

The overall optimisation algorithm built from Theorem 2 and the communications
policy defined above, defines a set of local procedures for each agent and is outlined
in Algorithm 5.1. A significant drawback of this algorithm is the requirement to
have access to inter-agent coupling values Kij prior to running the algorithm. This
is a strong condition and will require some external mechanism that can calculate
them. Such a situation will be unlikely to exist in ad-hoc teams and approximation
methods will be introduced in the next section.

5.4 Ad-hoc Implementation and Coupling Estimation

To overcome the strong requirement of knowing the inter-agent coupling structure,
this section defines an approximation method that allows each agent to estimate the
coupling on-line using only locally available information.

Consider the Taylor expansion of J about a decision vector v with a perturbation
�v = [�v1, . . . ,�vp]

J (v + �v) ≈ J (v) +
p∑

i=1

�vT
i ∇iJ (v) + 1

2

p∑

i=1

p∑

j=1

�vT
i ∇2

ij J (v)�vj . (5.27)

The use of the coupling term Kij gives a maximum bound on the value of the last
term (see (5.17)). Thus, it is proposed to approximate the inter-agent coupling by
estimating this term over successive iterations.

104 G. Mathews and H. Durrant-Whyte

Algorithm 5.1: Local algorithm for agent i. This algorithm requires the inter-agent
coupling to be calculated before execution

Input: J , {Kij }pj=1, v0, ηi , β

Output: v∗
1: iv ⇐ v0 // Initialise local copy of team decision vector
2: for all j �= i do
3: Cij = ηi

√
Kij // Comm. rate to agent j

4: Initialise communication link to j

5: Send (receive) computation rate Ri (Rj)
6: Send (receive) communication rate Cij (Cji)
7: Determine transmission delays Dij and Dji

8: Bij = Ri/Cij + RiDij // Total delay in info. to agent j

9: Bji = Rj/Cji + RjDji // Total delay in info. from agent j

10: end for

11: γi = βai

Kii +∑
j �=i Kij (1 + Bij + Bji)

// Calculate step size

12: repeat
13: Ai ⇐ ∇2

ii
J (iv) or I // Generate scaling matrix

14: di ⇐ −A−1
i

∇iJ (iv) // Evaluate update direction

15: ivi ⇐ ProjAi

Vi
(ivi + γidi) // Update local plan

16: for all j �= i do {Manage communications}
17: if Req. to send msg to j then {Determined from Cij }

18: Send mij = ivi to j

19: end if
20: if Msg mji = j vj received from j then
21: ivj ⇐ j vj // Update local copy
22: end if
23: end for
24: until Converged
25: return iv

If only perturbations in the decisions of agents i and j are considered, then the
cross derivative term can be estimated using

�vT
i ∇2

ij J (v)�vj ≈ �vT
i ∇iJ (v + �vj) − �vT

i ∇iJ (v).

With some abuse of notation, the vector v + �vj represents v + [0, . . . ,0,

�vj ,0, . . . ,0]. The inter-agent coupling Kij can now be estimated using

Kij ≈ 1

‖�vj‖
∣
∣
∣
∣

�vT
i

‖�vi‖∇iJ (v + �vj) − �vT
i

‖�vi‖∇iJ (v)

∣
∣
∣
∣,

where the absolute value is used to maintain a positive estimate. By defining ei =
�vi‖�vi‖ , the above equation can be considered as the difference between the gradient

of J in the direction ei before and after a perturbation in agent j ’s decision.

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 105

By evaluating this at each iteration, and defining ei and �vj to lie in the update
directions of agents i and j respectively, the estimate will track the local curvature
of the objective function in the vicinity of the actual team decision and in directions
where the decisions are actively being refined. This is in contrast to using an absolute
maximum over all positions and directions, as suggested in (5.17), and will result in
a more appropriate value.

Thus, if agent i maintains the two most recent decisions communicated from
agent j , ivj and ivold

j , the coupling can be estimated by agent i at each iteration t

using

iK̂ij (t) = 1

‖�vj‖
∣
∣eT

i ∇iJ
(
iv
)− eT

i ∇iJ
(
ivold,j

)∣
∣, (5.28)

where �vj = ivj − ivold
j , ivold,j = iv−[0, . . . ,�vj , . . . ,0], and ei is chosen to lie in

the direction the local decision will be updated in, defined in (5.6) as −A−1
i ∇iJ (iv).

This allows the inter-agent coupling to be evaluated locally by each agent using
only gradient evaluations. Furthermore, only the inner product between the gradi-
ent and a unit vector is required, which can be significantly cheaper than a direct
gradient evaluation.

5.4.1 Internal Coupling

The same method can be used by agent i to produce an estimate iK̂ii of its internal
coupling. However, if the stronger condition of Assumption 3b holds, the Hessian
submatrix ∇2

iiJ (v) is available locally and the internal coupling can be estimated
directly using

iK̂ii (t) = eT
i ∇2

iiJ
(
iv
)
ei . (5.29)

5.4.2 Dynamic Communication Rates

Through the communication policy (5.25), the communication rate is determined by
the inter-agent coupling, which is now estimated on-line and may change through-
out the optimisation procedure in response to the local curvature of the objective
function. Thus, the communication rate can also be updated on-line based on the
current value of the coupling estimate

Cij (t) = ηi

√
iK̂ij (t). (5.30)

However, this dynamic communication rate will prevents the delay bounds Bij from
being calculated accurately. To address this it is proposed to simply let agent i ap-

106 G. Mathews and H. Durrant-Whyte

proximate on-line the delays to agent j using the current communication rates

iB̂ij (t) = Ri

Cij (t)
+ RiDij . (5.31)

The delays from agent j can be estimated using a communication rate Cji deter-
mined from the time between received messages

iB̂j i (t) = Rj

Cji

+ RjDji . (5.32)

5.4.3 Scaling Normalisation Approximation

This idea of producing estimates of quantities based only on their current values,
can be extended to the scaling normalisation constant ai

âi(t) = eT
i Ai (t)ei . (5.33)

This leads to an estimate that more appropriately reflects the normalisation required
for the current scaling matrix in the update direction that will be used. It is noted
that if the scaling matrix Ai (t) is the local Hessian submatrix ∇2

iiJ (iv), the scaling
normalisation âi (t) is equal to the internal coupling estimate iK̂ii (t).

5.4.4 Dynamic Step Size

Finally, these approximations are used to calculate the step size γi of the current
iteration

γi(t) = βâi(t)

iK̂ii(t) +∑
j �=i

iK̂ij (t)(1 + iB̂ij (t) + iB̂j i (t))
. (5.34)

This step size will vary in response to the coupling estimates, which in turn are
dependent on the properties of the objective function at the current iteration, and
influence the inter-agent communication rates.

5.4.5 Approximate Algorithm

Incorporating the above approximations, a new distributed optimisation procedure
is defined by Algorithm 5.2. This algorithm determines the value of ηi such that
agent i communicates once per iteration to the agent it has the greatest coupling to,
however this could also be set to obey some bandwidth constraint. It is assumed the

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 107

Algorithm 5.2: Local algorithm for agent i. This algorithm approximates the inter-
agent coupling terms on-line

Input: J , v0, β

Output: v∗
1: iv ⇐ v0 // Initialise local copy of team decision vector
2: for all j �= i do
3: Initialise communication link to j

4: Send (receive) computation rate Ri (Rj)
5: Determine transmission delays Dij and Dji

6: end for
7: repeat
8: gi ⇐ ∇iJ (iv) // Local gradient
9: Ai ⇐ ∇2

iiJ (iv) or I // Generate scaling matrix

10: di ⇐ −A−1
i gi // Update direction

11: ei ⇐ di/‖di‖ // Unit vector in update direction
12: âi ⇐ eT

i Aiei // Scaling normalisation
13: gei

⇐ eT
i gi // Gradient in update direction

14: iK̂ii ⇐ eT
i ∇2

iiJ (iv)ei // Or via finite diff. approx.
15: for all j �= i do {Calculate coupling and delay terms}
16: ivold,j ⇐ iv − [0, . . . ,�vj , . . . ,0] // Perturbed decision
17: gold

ei
⇐ eT

i ∇iJ (ivold,j) // Perturbed gradient

18: iK̂ij ⇐ |gei
− gold

ei
|/‖�vj‖ // Inter-agent coupling†

19: B̂ij ⇐ Ri/Cij + RiDij // Inter-agent delay term to j

20: B̂ji ⇐ Rj/Cji + RjDji // Requires comm. rate of j

21: end for

22: γi ⇐ βâi

i K̂ii +∑
j �=i

iK̂ij (1 + iB̂ij + iB̂j i)
// Step size

23: ivi ⇐ ProjAi

Vi
(ivi + γidi) // Update local decision

24: for all j �= i do {Manage communications}

25: ηi ⇐ Ri/maxj �=i

√
iK̂ij // Or via bandwidth constraint

26: Cij ⇐ ηi

√
iK̂ij

27: if Req. to send msg to j then {Determined from Cij }
28: Send mij = ivi to j

29: end if
30: if Msg mji = j vj received from j then
31: �vj ⇐ ivj − j vj // Determine change in decision of j

32: ivj ⇐ j vj // Update local copy
33: Use time between messages to estimate Cji

34: end if
35: end for
36: until Converged
37: return iv
† The inter-agent coupling iK̂ij can only be estimated after two messages have been received
from j , prior to this it can be set to zero. For simplicity the additional logic to deal with this has
been ignored.

108 G. Mathews and H. Durrant-Whyte

message delivery delays (Dij) are fixed and estimated at the start of the algorithm,
when the local computation rates are exchanged, however these estimates could also
be refined during execution.

It is noted that the inter-agent coupling terms iK̂ij are estimated using infor-
mation from the two previous messages communicated by j , and thus, before this
information has been received, no estimate can be made. During this time the esti-
mate can be set to zero, or a value similar to the internal coupling, iK̂ij = iK̂ii . For
simplicity, the extra logic required to deal with this situation has been ignored.

The results of Theorem 2 only guarantee convergence when the step sizes are
smaller than the limit defined in (5.18). However, the proposed approximations may
lead to step sizes that do not obey this condition. Thus, even for convex objective
functions, Algorithm 5.2 is not strictly guaranteed to converge and it is expected
that some tuning of the parameter β may be necessary. This issue will be explored
empirically in Sect. 5.5 for a quadratic objective function. Alternative methods are
also defined in Mathews (2008).

5.5 Example: Quadratic Optimisation

This section explores the convergence properties of Algorithm 5.2 to understand
it’s performance and allow suitable values for β can be determined. Consider a
quadratic objective function of the form

J (v) = 1

2
vT Qv + bv, (5.35)

where Q is a positive definite matrix of dimension d ×d . For simplicity and without
loss of generality the coefficient b will be set to 0. Now, the gradient and Hessian
are given by

∇J (v) = Qv, ∇2J (v) = Q. (5.36)

The vector v is partitioned into p components with the ith component of dimen-
sion di . The partitioned elements of the gradient and Hessian are given by

∇iJ (v) =
p∑

j=1

Qij vj , ∇2
ij J (v) = Qij (5.37)

where Qij is the appropriate di × dj submatrix of Q.
Since the Hessian matrix is constant, the coupling between agent i and j is given

by

Kij = ‖Qij‖. (5.38)

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 109

5.5.1 Numerical Convergence Results

The specific example considered here consists of three agents, each in control of a
2 dimensional local decision. The Hessian is defined as

Q =
⎡

⎢
⎣

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎤

⎥
⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 1 1 2 1 1
1 4 2 2 2 1

1 2 5 3 2 4
2 2 3 5 2 3

1 2 2 2 6 2
1 1 4 3 2 6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For this system the weak coupling condition is not obeyed and the nonlinear Jacobi
algorithm, defined in Corollary 1, diverges.

Although not used in Algorithm 5.2, the coupling can be easily calculated us-
ing (5.38)

⎡

⎣
K11 K12 K13
K21 K22 K23
K31 K32 K33

⎤

⎦≈
⎡

⎣
5 3.56 2.62

3.56 8 5.73
2.62 5.73 8

⎤

⎦ . (5.39)

In this system agents 2 and 3 are strongly coupled (K23 ≈ 5.73), while agents 1
and 2 have a medium amount of coupling (K12 ≈ 3.56) and agents 1 and 3 are
weakly coupled (K13 ≈ 2.62).

The algorithm is initialised with the normalised sum of the eigenvectors

v0 =
∑6

�=1 ε�(Q)

‖∑6
�=1 ε�(Q)‖ ≈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.09
−0.44
0.66

−0.29
0.25
0.46

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.40)

where ε�(Q) is the �th eigenvector of the matrix Q. This guarantees that the initial
guess does not lie along some degenerate direction, with a simplistic solution.

Each agent computes iterations at the same rate, with a system wide delivery
delay, i.e. Dij = D, for all i, j �= i. Figure 5.3 plots the convergence ratio of the
algorithm for different delivery delays D and values of β . The theory accurately
predicts convergence up to β = 2, after which the algorithm may become unstable
and for most β > 3 diverges. This result suggests that to achieve a reasonable con-
vergence speed, without the possibility of diverging, a suitable choice for β is 1.5.
This value will be used in the numerical examples presented in Sect. 5.10.

110 G. Mathews and H. Durrant-Whyte

Fig. 5.3 Convergence rate, averaged over 300 iterations, for different β values and communication
delays (D, defined relative to the time to compute a single iteration), using (a) the scaled and (b)
steepest descent variants. Black represents the algorithm diverged

5.6 Heterogeneous System and Modularity

Until now it has been an implicitly requirement that each agent has a full represen-
tation of the systems objective function. In general this requires detailed operational
information of the other agents, for instance if the agents are mobile robots the oper-
ational information will include the state and sensor/actuator models. This may not
be a problem for a small number of agents, but poses a significant issue for a large
distributed system.

Ideally, each agent should only require a detailed knowledge about itself and
relatively little knowledge of the other agents. This issue has been examined previ-
ously in Mathews et al. (2006, 2009) and a composable or partially separable form
of the objective function introduced that enables the separation of information about
the local agent and more abstract information about other agents. This section will
introduce this concept and reformulate the previous optimisation algorithm to build
on this framework.

5.6.1 Partial Separability

An objective function in partially separable form allows the agent specific opera-
tions that are required to be performed on its local decision to be separated from
operations that allow the effects, or impacts, of multiple agents to be combined to
form a single scale objective function value. This will be useful in further defining
what information each agent needs to know about the others, and also save com-
putational resources by allowing each agent to perform these local operations be-
fore communicating decision updates, which will remove the need for all receiving
agents to perform a same set of operations.

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 111

Definition 1 (Partial Separability) A partially separable system has an objective
function of the form

J (v) = ψ
(
Υ1(v1) ∗ Υ2(v2) ∗ · · · ∗ Υp(vp)

)
, (5.41)

where Υi : Vi → I is the ith agents impact function and maps a decision to an
element of an impact space I . An element α ∈ I of this space will be referred
to as an impact. The composition operator ∗ : I × I → I allows impacts to be
summarised without losing any task relevant information. The generalised objective
function ψ : I → � maps a combined team impact to a scalar cost.

The impact function of a mobile robotic agent would define an abstraction of
its state and sensor/actuator models and maps a given decision onto a task specific
impact space. It is assumed each agent i only has knowledge of its own impact
function Υi and thus requires the impacts αj = Υj (vj) from each other agent j �= i

for the objective function to be evaluated. Thus, instead of each agent maintaining
a local copy of each agents decision vector vj , it simply maintains their impact αj .
This definition allows the information about the operational models of other agents
to be abstracted out and defines a common language of impacts that the agents use
to communicate.

For simplicity, the cumulative composition operator
⊙

will be used, such that
(5.41) can be written as

J (v) = ψ

(
p⊙

i=1

Υi(vi)

)

. (5.42)

5.6.1.1 Example: Collision Avoidance

To provide an example of an impact, consider a multi-agent path planning scenario
with a separation requirement. For this task the objective function will be dependent
on the separation between the agents, which in turn requires the individual paths
(possibly represented by a fixed number of points) from all the agents. In this case
each agents path abstracts away its motion model and corresponding control inputs.
Thus, an agents path can be consider its impact and the composition operator sim-
ply collects the paths. The generalised objective function is used to calculate the
associated cost of these specific paths.

It is noted that for this example the size of the impact space is proportional to the
number of agents (the number of paths is the same as the number of agents). This
differs from the example presented in Sect. 5.8, which has a composition operator
given by addition. For this case the size of the impact space is independent of the
number of agents (the sum of many numbers is still a number).

112 G. Mathews and H. Durrant-Whyte

5.6.2 Modular Decision Refinement

Using the partially separable form of the objective function, the local decision re-
finement process, presented in Sect. 5.2.2.1, can be modified such that each agent i

is only required to maintain a local copy of the impact of each other agent
{
iαj (t) : ∀j �= i

}
.

The explicit maintenance of the team decision vector, as defined in (5.4), is no longer
required. The locally stored impacts are updated via messages from the other agents
in the system and may contain delayed information (according to Assumption 5b).

From this modification, the local decision refinement equations for agent i (cor-
responding to (5.7)) can be rewritten as

fi

(
iv(t)

)= ProjAi (t)

Vi

(
ivi (t) − γi

[
Ai (t)

]−1∇iJ
(
iv(t)

))
, (5.43)

where the local gradient ∇iJ (iv(t)) is now calculated according to given by

∇iJ
(
iv(t)

)= ∇iψ

(

Υi

(
ivi (t)

) ∗
⊙

j �=i

iαj (t)

)

. (5.44)

With this straight forward change, the decision refinement process can be modified
to use the communicated impacts instead of the raw decisions.

5.6.3 Coupling Estimation

Previously, the inter-agent coupling terms were estimated locally by each agent from
the two most recent decisions received from each other agent using (5.28). If only
the impacts of the remote agents are known and not the specific decisions, the gra-
dient calculations required for this formula can be calculated in a similar fashion
to (5.44). The only additional information required to estimate the coupling terms is
the distance the underlying decision vector moved between the two communication
events. Unfortunately, this information cannot be calculated from the abstract im-
pacts and must be communicated separately. Thus, for each communicated impact
an agent i sends to agents j , it must also send the distance the underlying decision
moved since the last message was sent.

5.6.4 Modular Algorithm

With the above changes define the major modifications required to allow Algo-
rithm 5.2 to exploit the abstractions of a partially separable objective function. The
new algorithm is defined in Algorithm 5.3.

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 113

Algorithm 5.3: Local algorithm for agent i that exploits partially separable objec-
tive function that abstracts away the details of other agents
Input: φ, Υi , v0

i , β

Output: v∗
i

1: ivi ⇐ v0
i // Initialise local decision vector

2: for all j �= i do
3: Initialise communication link to j

4: Send (receive) computation rate Ri (Rj)
5: Determine transmission delays Dij and Dji

6: iαj ⇐ ∅ // Initialise impacts of remote agents with the null impact
7: end for
8: repeat
9: gi ⇐ ∇iψ(Υi(

ivi) ∗⊙
j �=i

iαj) // Local gradient

10: Ai ⇐ ∇2
iiψ(Υi(

ivi) ∗⊙
j �=i

iαj) or I // Generate scaling matrix

11: di ⇐ −A−1
i gi // Update direction

12: ei ⇐ di /‖di‖ // Unit vector in update direction
13: âi ⇐ eT

i Aiei // Scaling normalisation
14: gei

⇐ eT
i gi // Gradient in update direction

15: iK̂ii ⇐ eT
i ∇2

iiψ(Υi(
ivi) ∗⊙

j �=i
iαj)ei // Or via finite diff. approx.

16: for all j �= i do {Calculate coupling and delay terms}
17: gold

ei
⇐ eT

i ∇iψ(Υi(
ivi) ∗ iαold

j ∗⊙
k �=i,j

iαk) // Perturbed gradient

18: iK̂ij ⇐ |gei
− gold

ei
|/δj // Inter-agent coupling†

19: B̂ij ⇐ Ri/Cij + RiDij // Inter-agent delay term to j

20: B̂ji ⇐ Rj/Cji + RjDji // Requires comm. rate of j

21: end for

22: γi ⇐ βâi

i K̂ii +∑
j �=i

iK̂ij (1 + iB̂ij + iB̂j i)
// Step size

23: ivi ⇐ ProjAi

Vi
(ivi + γidi) // Update local decision

24: iαi = Υi(
ivi) // Compute local impact

25: for all j �= i do {Manage communications}

26: ηi ⇐ Ri/maxj �=i

√
iK̂ij // Or via bandwidth constraint

27: Cij ⇐ ηi

√
iK̂ij

28: if Req. to send msg to j then {Determined from Cij }

29: δi = ‖ivi − ivold,j
i ‖ // Distance raw decision has moved since last

msg
30: Send mij = (iαi , δi) to j

31: ivold,j
i = ivi // Store current decision

32: end if
33: if Msg mji = (j αj , δj) received from j then
34: Update δj using communicated value
35: iαold

j ⇐ iαj // Save current impact for use in coupling
calculation

36: iαj ⇐ j αj // Update local copy of impact
37: Use time between messages to estimate Cji

38: end if
39: end for
40: until Converged
41: return iv
† The inter-agent coupling iK̂ij can only be estimated after two messages have been received from j , prior to this it
can be set to zero. For simplicity the additional logic to deal with this has been ignored.

114 G. Mathews and H. Durrant-Whyte

5.7 Active Information Gathering

The application considered in this work consists of multiple mobile robotic agents
undertaking a reconnaissance or information gathering task. This type of scenario
requires the agents to actively gather information on a particular external random
variable x ∈X . In general this may include the positions and identities of stationary
or mobile objects, terrain properties of a given region, or any other state of interest.
In Sect. 5.7 this will be specialised for the active localisation of a group of objects.

5.7.1 Agent Models

The mobile robotic agents are modelled as discrete time dynamical systems, with
the ith agents state given by si ∈ Si . The agent is controlled from discrete time
k − 1 to k by applying a particular control input uk

i ∈ Ui . In general this causes
the agents state to change according to the probabilistic discrete time Markov mo-
tion model P(sk

i |sk−1
i ,uk

i). However, for simplicity it is assumed that the agent’s
motion is know with precision, i.e. sk

i = fi (s
k−1
i ,uk

i). The joint system state and
transition model is given by sk = f(sk−1,uk) = {f1(s

k−1
1 ,uk

1), . . . , fp(sk−1
p ,uk

p)} =
{sk

1, . . . , sk
p}.

The observations made by the ith agent regarding the variable of interest x, are
modelled by the conditional density P(zk

i |xk; sk
i) which describes the probability of

obtaining a particular observation zk
i given the external state xk and agents state sk

i .
The notation zk will denote the set of observations made by all the agents at time
step k, i.e. zk = {zk

1, . . . , zk
p} ∈ Z = ∏p

i=1 Zi . Assuming that the observations are

conditionally independent given the states xk and sk
i , the combined sensor model

can be written as P(zk|xk; sk) =∏p

i=1 P(zk
i |xk; sk

i).
It is desired that the agents are controlled such that the combined observations

they receive produce the most informative (or least uncertain) belief about the value
of the random variable x. To accomplish this the distribution’s entropy will be used
as a measure of its associated uncertainty. The entropy of a distribution P(x), is the
negative of the expectation of its logarithm

HP(x) = −Ex
{
logP(x)

}
. (5.45)

This can be used for continuous variables, where P(x) is the probability density
function, or for discrete variables, where P(x) is the probability distribution func-
tion. For a detailed description of the properties of this metric see Cover and Thomas
(1991).

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 115

5.7.2 Bayes Filtering

This section details the process of maintaining an accurate belief (as a probability)
about the state x. Further details of this process can be found in Mathews (2008).
Bayes Filtering will be used for two purposes: (i) to maintain a current belief for the
state x that is updated as new observations are made, and (ii) to predict the effect
future observations will have on a future belief of x. The Bayesian approach allows
the system to be given some prior belief, however, if nothing is known this may
simply be a noninformative uniform distribution. Once this has been established the
belief at any later stage can be constructed recursively. To avoid potential confusion,
instantiated variables (i.e. random variables with a known value) will be denoted
using a tilde, e.g. P(x̃) ≡ P(x = x̃).

Consider the system at a given time step k. The system’s state is given by s̃k and
the belief about xk , conditioned on all past observations and agent configurations, is
P(xk|Z̃k; S̃k), where Z̃k = {z̃1, . . . , z̃k} and S̃k = {s̃1, . . . , s̃k} and Z̃0 = S̃0 = {∅}.

When a joint control action, ũk+1 is taken, the new state of the agents becomes
s̃k+1 = f(s̃k, ũk+1), and an observation z̃k+1 is received. To update the belief about
xk+1, it must first be predicted forward in time using the Chapman-Kolmogorov
equation

P
(
xk+1

∣
∣Z̃k; S̃k

)=
∫

X
P
(
xk+1|xk

)
P
(
xk|Z̃k; S̃k

)
dxk. (5.46)

The belief can now be updated using Bayes rule

P
(
xk+1

∣
∣Z̃k+1; S̃k+1)= 1

μ
P
(
xk+1

∣
∣Z̃k; S̃k

)
p∏

i=1

P
(
z̃k+1
i

∣
∣xk+1; s̃k+1

i

)
(5.47)

where z̃k+1 = {z̃k+1
1 , . . . , z̃k+1

p } are the actual observations taken by the agents. The

term P(z̃k+1
i |xk+1, s̃k+1

i) is the ith agents observation model evaluated at the ac-
tual observation and agent configuration, resulting in a likelihood over xk+1. The
normalisation constant μ is given by

μ = P
(
z̃k+1

∣
∣Z̃k; S̃k+1)

=
∫

X
P
(
xk+1

∣
∣Z̃k; S̃k

)
p∏

i=1

P
(
z̃k+1
i

∣
∣xk+1; s̃k+1

i

)
dxk+1. (5.48)

For each agent to maintain this belief, each agent must communicate the observation
likelihood function λ(xk+1) = P(z̃k+1

i |xk+1, s̃k+1
i) after each observation is made.

The field of Decentralised Data Fusion examines efficient ways for this to commu-
nicated around a sensor network (Liggins et al. 1997; Manyika and Durrant-Whyte
1994), however for this work it is assumed each agent simply communicates it to
every other agent.

The key problem of interest in this process is deciding on the systems control
inputs uk such that the future uncertainty in the state x is minimised.

116 G. Mathews and H. Durrant-Whyte

5.7.3 Control Parameterisation

Although the goal of the system is to minimise its uncertainty in its joint belief
about x. There are many ways to formally define this control problem, the best be-
ing a discounted infinite horizon dynamic programming problem (Bertsekas 2005).
However, for any relatively complex scenario this becomes intractable and approx-
imate techniques must be used.

Thus, a finite look ahead will be considered and an open loop control policy, or
plan, for each agent developed. To accommodate feedback, a rolling time horizon
will be employed. This requires the open loop control policies to be recomputed at
short intervals to keep the look ahead approximately constant and allows the system
to adapt to changes.

The control policy shall be parameterised by a piecewise constant function, de-
fined over N equal time partitions of M times steps each (Goh and Teo 1988).
This results in a look ahead of NM time steps. Thus, the open loop control pol-
icy for a time interval [k + 1, k + NM] can be specified with the parameters
vk
i = {vk

i (1), . . . ,vk
i (N)} ∈ Vi = (Ui)

N with actual controls given at each time step

k + q by uk+q
i = vk

i (� q
M

�), where q ∈ {1, . . . ,NM} and �·� represents the round up
operator.

5.7.4 Objective Function

For a given time k, the utility of a joint open loop control policy, or joint plan,
vk = {vk

1, . . . ,vk
p} ∈ V = V1 × · · · × Vp and observation series zk+1:k+NM =

{zk+1, . . . , zk+NM} is defined by the amount of uncertainty in the resulting posterior
belief at time k +NM . Actions and observations that produce a smaller uncertainly
in the posterior belief are favored over others. The cost function used to measure
uncertainty is the entropy of the posterior distribution

Ck
(
zk+1:k+NM,vk

)

= H
P(xk+NM |zk+1:k+NM,sk+1:k+NM(vk),Z̃k,S̃k)

= −Exk+NM

{
logP

(
xk+NM

∣
∣zk+1:k+NM, sk+1:k+NM

(
vk
)
, Z̃k, S̃k

)}
. (5.49)

However, the actual observations that will be made in the future will not be known
in advance. Thus, an expectation over all possible future observations must be per-
formed, resulting in the expected team cost or objective function

J k
(
vk
)= Ezk+1:k+NM

{
Ck

(
zk+1:k+NM,vk

)}
. (5.50)

The finite horizon optimal control problem, at time k, becomes the parameter opti-
misation problem

vk∗ = arg min
vk∈V

J k
(
vk
)
. (5.51)

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 117

For a rolling time horizon, this must be resolved every Nr ≤ NM time steps.
This parameter optimisation problem translates directly to the distributed deci-

sion problem discussed earlier and, provided the objective function is partially sep-
arable, can be solved using the distributed optimisation algorithm defined in Algo-
rithm 5.3. It is noted that this approach can only be applied if the time required to
compute the solution is significantly less that the time scale of the system dynamics.

5.8 Example: Object Localisation

The proposed distributed control strategy has been implemented in a simulated ob-
ject localisation task. For this scenario, robots equipped with bearing only sensors
(e.g. Fig. 5.4) and moving in a 2D plane, are required to cooperatively localise a
collection of stationary point objects.

The multi-agent control problem for this type of scenario has been previously ex-
amined by Grocholsky et al. (2003). In this work each agent shared past observations
but developed a plan independently. This section extends the work of Grocholsky
by applying the distributed optimisation procedure to find the optimal joint plans.

5.8.1 Modelling

5.8.1.1 Objects

The state x is separated into m independent objects, thus

x = {xo1, . . . ,xom}. (5.52)

Since the objects are stationary the time index has been dropped.
Each object oj is specified by a 2D position xoj

= [xoj
, yoj

]T that is independent
of all other objects.

5.8.1.2 Agent Motion

The agents are described by their position and orientation, sk
i = [xk

i , yk
i , θk

i]T ,
travel at a constant velocity Vi = 50 m/s and are controlled via a single scalar
defining the robots rate of turn uk

i = θ̇ k
i . Thus, the deterministic motion model

sk+1
i = fi (sk

i ,uk+1
i) is given by

xk+1
i = xk

i + 2Vi

uk+1
i

sin

(
1

2
uk+1

i �t

)

cos

(

θk+1
i + 1

2
uk+1

i �t

)

(5.53a)

118 G. Mathews and H. Durrant-Whyte

Fig. 5.4 Typical mobile
robot equipped with a bearing
only sensor (vertically
mounted panoramic camera)

yk+1
i = xk

i + 2Vi

uk+1
i

sin

(
1

2
uk+1

i �t

)

sin

(

θk+1
i + 1

2
uk+1

i �t

)

(5.53b)

θk+1
i = θk

i + uk+1
i �t (5.53c)

where �t is the time between k and k + 1.

5.8.1.3 Observations

It is assumed each agent i receives an independent bearing observation zk
i,oj

from

each object oj at each time k, thus zk
i = {zk

i,oj
: ∀j}. The independency assumptions

allows the observations of the objects to be modelled separately.
The ith agents observation model for object oj , defined as the conditional prob-

ability density, is assumed Gaussian and is given by

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 119

P
(
zk
i,oj

∣
∣xoj

; sk
i

)= N
(
zk
i,oj

;hi,oj

(
xoj

, sk
)
,Rk

i,oj

)
. (5.54)

Here, the notation N(ξ ;mξ ,Cξ) represents a Gaussian (or normal) density defined
on the state ξ with a mean of mξ and variance Cξ .

The mean observation for a given object oj with state xoj
when the agent is in

state sk
i is given by the nonlinear function

z̄k
i,oj

= hi,oj

(
xoj

, sk
i

)

= tan−1
(

yoj
− yk

i

xoj
− xk

i

)

. (5.55)

The variance of the bearing observations is set to Rk
i,oj

= 25 (degrees)2 for all agents
and objects.

5.8.2 Filtering

Consider some time k − 1, where the teams belief about xoj
is Gaussian with mean

x̄|k−1
oj

and covariance P|k−1
oj

P
(
xoj

∣
∣Z̃k−1; S̃k−1)= N

(
xoj

; x̄|k−1
oj

,P|k−1
oj

)
. (5.56)

Here the notation (·)|k−1 represents “given information up to k − 1”.
Since all the objects are independent, the belief is simply given by the product of

the individual probability densities for each object

P
(
xk−1

∣
∣Z̃k−1; S̃k−1)=

m∏

j=1

P
(
xk−1
oj

∣
∣Z̃k−1; S̃k−1). (5.57)

Thus, only the belief P(xk−1
oj

|Zk−1;Sk−1) of a single object needs to be considered.
Due to the static nature of the objects, the prediction step (corresponding

to (5.46)) can be skipped. If the update step, defined in (5.47), is implemented di-
rectly, the nonlinearity in the observation model, will cause the posterior to become
non-Gaussian (even if the prior is Gaussian). The extended Kalman filter (Maybeck
1979–1982) overcomes this by linearising the observation model about a nominal
state nxk

oj
, usually defined by the prior mean x̄|k−1

oj
.

Using a first order Taylor expansion on hi,oj
(xoj

, sk
i) about nxk

oj
yields

hi,oj

(
xoj

, sk
i

)≈ nzk
i,oj

+ Hk
i,oj

[
xoj

− nxk
oj

]
(5.58)

120 G. Mathews and H. Durrant-Whyte

where nzk
i,oj

= hi,oj
(nxk

oj
, sk

i) is the nominal observation and the matrix Hk
i,oj

=
∇xhi,oj

(nxk
oj

, sk
i) is the Jacobian of the observation function evaluated at the nomi-

nal object state and agent state.
For a bearing observation these become

nzk
i,oj

= tan−1
(

ny
k
oj

− yk
i

nxk
oj

− xk
i

)

(5.59)

and

Hk
i,oj

= 1

nr
k
i,oj

[− sin
(
nzk

i,oj

)
, cos

(
nzk

i,oj

)]
(5.60)

where nr
k
i,oj

=
√

(ny
k
t − yk

i)2 + (nxk
oj

− xk
i)2 is the range from the agent to the nom-

inal object state.
With this linearised model the posterior will remain Gaussian for a Gaussian

prior. The following equations define the update step and take as input the prior
mean and covariance and an observation, and produce the associated posterior mean
and covariance. They are given in information form, which propagates the Fisher
information matrix Y, defined as the inverse covariance matrix Y ≡ P−1 instead of
the covariance matrix

Y|k
oj

= Y|k−1
oj

+
p∑

i=1

(
Hk

i,oj

)T (Rk
i,oj

)−1Hk
i,oj

, (5.61)

and

Y|k
oj

x̄|k
oj

= Y|k−1
oj

x̄|k−1
oj

+
p∑

i=1

(
Hk

i,oj

)T (Rk
i,oj

)−1(z̃k
i,oj

− nzk
i,oj

+ Hk
i,oj

x̄|k−1
oj

)
. (5.62)

An interesting property of this representation is that the updated or posterior in-
formation matrix Y|k

oj
(and hence covariance P|k

oj
) is independent of the actual ob-

servations, zk
i , taken (see (5.61)). This is an important property and will allow the

expected entropy required for the objective function to be calculated very efficiently.

5.8.3 Objective Function

The objective function, defined in Sect. 5.7.4, represents the expected posterior en-
tropy of the team belief at the end of an NM step time horizon. Since the objects
are independent (the density can be decomposed into the product of the densities of

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 121

each object alone) the entropy becomes a sum of the entropies of each individual
object, thus

H
P(x|Z̃k+NM ;S̃k+NM)

=
m∑

j=1

H
P(xoj

|Z̃k+NM ;S̃k+NM)
. (5.63)

Where the entropy of the Gaussian density, for the object state, is given by

H
P(xoj

|Z̃k+NM ;S̃k+NM)
= −1

2
log

(
(2πe)dx

∣
∣Y|k+NM

oj

∣
∣
)

(5.64)

where dx = 2 is the dimension of the state xoj
.

It is noted that the entropy is only dependent on the information matrix Y|k+NM
oj

.
By examining the modelling and filtering equations of Sect. 5.8.2, it can be seen
that the observations only influence the covariance or information matrix (hence
the posterior entropy), by changing the point at which the observation model is
linearised (through changing the prior densities mean).

Thus, to remove this dependency, and the requirement to perform the expectation
in (5.50), the nominal state about which the observation model is linearised will be
given by the mean object state at time k

nxk+l
oj

= x̄k
oj

, ∀l ∈ {1, . . . ,NM}. (5.65)

Hence, the posterior information matrix will be independent of the observation se-
quence z̃k+1:k+NM

oj
and may be evaluated directly using

Y|k+NM
oj

= Y|k
oj

+
p∑

i=1

NM∑

l=1

Ik+l
i

(
vk
i

)
(5.66)

where Ik+l
i,oj

(vk
i) is the observation information matrix and is given by

Ik+l
i,oj

(
vk
i

)= (
Hk+l

i,oj

)T (Rk+l
i,oj

)−1Hk+l
i,oj

. (5.67)

The posterior entropy of object oj is now given by

J k
oj

(vk) = H
P(xoj

|Z̃k+NM ;S̃k+NM)

= −1

2
log

(
(2πe)dx

∣
∣Y|k+NM

oj

∣
∣
)

(5.68)

and the final team objective function, corresponding to the joint entropy of all ob-
jects, is

J k
(
vk
)=

m∑

j=1

J k
oj

(
vk
)
. (5.69)

122 G. Mathews and H. Durrant-Whyte

5.8.3.1 Partial Separability

For each agent to evaluate the objective function, it requires the sum of the obser-
vation information matrices from all other agent and over all steps in the planning
horizon. The actual observation models, Hk

i,oj
and Rk

i,oj
, and the position of the

agents sk
i are irrelevant once this information is obtained.

• Impact Space: Due to this structure, an impact space can be defined that is the
product set of the m copies of the vector space MS

2×2, which contains all sym-
metric 2 × 2 matrices

I = ×m
j=1MS

2×2 (5.70)

• Impact Function: The impact function for an agent i maps a decision onto an
element of this space by summing the individual information matrices Ik+l

i,oj
(vk

i)

for the entire planning horizon l ∈ {1, . . . ,NM} for each object j ∈ {1, . . . ,m}
and, i.e.

Υi

(
vk
i

)=
{

NM∑

l=1

Ik+l
i,oj

(
vk
i

) : ∀j ∈ {1, . . . ,m}
}

. (5.71)

• Composition Operator: This operator combines impacts from different agents. It
is given by matrix addition and simply adds corresponding observation informa-
tion matrices. Thus, if αk

a = Υa(vk
a) and αk

b = Υb(vk
b), the composition operator

is given by

αk
a ∗ αk

b =
{

NM∑

l=1

Ik+l
a,oj

+
NM∑

l=1

Ik+l
b,oj

: ∀j ∈ {1, . . . ,m}
}

. (5.72)

• Generalised Objective Function: This function evaluates the cost (expected pos-
terior entropy) of the agents decisions directly from the combined system impact.
Consider the combined impact αk

T =⊙p

i=1 Υi(vk
i) given as

αk
T = {

αk
T,oj

: ∀j ∈ {1, . . . ,m}} (5.73)

where αk
T,oj

=∑p

i=1

∑NM
l=1 Ik+l

i,oj
. Now, the generalised objective function ψk(αk

T)

is given by

ψk
(
αk

T

)= −
m∑

j=1

1

2
log

(
(2πe)dx

∣
∣Y|k

oj
+ αk

T,oj

∣
∣
)
. (5.74)

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 123

5.8.4 Collaborative Control

With the above definition the multi-agent decision problem becomes for a given
time k becomes

vk∗ = arg min
vk∈V

ψk
(
αk

T

)
(5.75)

where αk
T = ⊙p

i=1 Υi(vk
i), and can be solved using Algorithm 5.3. Once this is

generated and implemented by the team, the problem is resolved after Nr time steps.

5.9 Results

5.9.1 Two Agents—Single Object

To demonstrate the workings of the distributed optimisation algorithm, a system
comprising two agents observing a single stationary object is considered. The initial
configuration is shown in Fig. 5.5. For this scenario each agent has to decide on
an open loop control policy consisting of a single control parameter (N = 1) that
defines its rate of turn over a planning horizon of 12 s.

The optimal joint plans are found by each agent executing Algorithm 5.3. Al-
though this procedure is designed to allow asynchronous execution, it was executed
synchronously for demonstration purposes. Agents communicated after every local
iteration with an imposed communication delay corresponding to three iterations.

As each agent only has a bearing sensor, individually they have a very poor abil-
ity to localise the object. However, if they cooperate and observe the object from
perpendicular directions they can greatly minimise the position uncertainty of the
object. However, there is also a dependency on the range at which they observe the
object. such that a smaller range will give a smaller uncertainty in the measured
position.

These seemingly opposing objectives are capture by the single objective func-
tion defined in (5.69). As shown in Fig. 5.5, the optimal decisions cause the agents
to move toward the object and separate such that a better triangulation angle is ob-
tained.

Although this resulting behaviour is intuitive to the observer, each agent cannot
reason about this sort of global behaviour. Each agent only knows about the other
through the communication of abstract impacts, the position of the other agent and
its planned trajectory is completely unknown.

Figure 5.6(a) displays the evolution of the agents decisions throughout the opti-
misation procedure. Although the communication delay causes a significant differ-
ence in the perceived trajectories through the decision space, the system still con-
verges to the optimum. It is noted, each agent never knows what the actual decision
of the other agent is, it only knows its impact, Fig. 5.6(a) simply plots the deci-
sion corresponding to this impact. Figure 5.6(b) plots the inter-agent coupling, as

124 G. Mathews and H. Durrant-Whyte

Fig. 5.5 The dashed trajectories corresponding to the jointly optimal plans, under the defined
control parameterisation. The dotted trajectories represent the optimal solution to the correspond-
ing single agent problem and was used to initialise the negotiated solution. The prior probability
density of the position of the object is given by a Gaussian with mean given by the cross (×) and
variance by the dotted circle

approximated by both agents. The curves have similar shapes, but are not identical.
This occurs because they are measuring the curvature of the objective function at
different points in the decision space.

5.9.2 Nine Agents—Eighteen Objects

This scenario consists of 9 agents cooperatively localising 18 objects. The agents
start from the left side of Fig. 5.7(a), in an arrow formation. The agents take obser-
vations at a rate of 2 Hz and plans a trajectory 16 s into the future (corresponding to
an 800 m path). The trajectory is parameterised by 4 variables defining the required
turn rates for each quarter of the trajectory. This corresponds to N = 4, M = 8 and
�t = 0.5 s and results in a optimal planning problem consists of 36 parameters
distributed over the 9 agents.

A rolling planning horizon is employed, requiring a new plan to be developed
every second (i.e. Nr = 2). When generating the very first plan, the agents initialise
their decisions using the locally optimal decision, however at all later stages the
decisions are initialised using the solution from the previous decision problem.

The snapshots of the system are shown in Fig. 5.7(a)–(d). Figure 5.7(d) shows
the final state of the system after all the objects have been sufficiently localised,
however, for completeness the current optimal plans are also shown.

Figure 5.8 shows data of a typical run of the optimisation algorithm. It displays
the estimated coupling terms, communication events and the evolution of the de-
cision parameters from the perspective of a single agent. This data is for agent 6
for the very first decision problem (the results of which are shown in Fig. 5.7(a))

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 125

Fig. 5.6 (a) Evolution of agents decisions through the global decision space V during the optimi-
sation procedure, overlaid with contours of the objective function. The true path v = [1v1,

2v2]T
is shown with circles (◦), while the pluses (+) and crosses (×) represent the perceived path
iv = [iv1,

iv2]T for agents i = 1, 2 respectively. The difference is caused by the communication
delays. (b) Coupling estimates 1K̂12 (top) and 2K̂21 (bottom) calculated by each agent 1 and 2
respectively

126 G. Mathews and H. Durrant-Whyte

Fig. 5.7 Snap shots throughout the scenario at (a) k = 0, (b) k = 30, (c) k = 60, and (d) k = 90.
Current agent positions are shown with a circle (◦), and the optimal future planned trajectory with
a dotted line. The current probability density of the location of each object is represented by its
mean (×) and covariance (dotted circle)

and demonstrates the relation between coupling (top graph) and communication
frequency (middle graph). The agent communicates at a high frequency to agent 5,
which it is coupled to the most and at a much lower frequency to other agents (es-
pecially agent 1) where the inter-agent coupling is smaller.

Figure 5.9 displays the inter-agent coupling for the whole system for each snap
shot in Fig. 5.7. The ith row of each matrix represents the average of iK̂ij over
the all iterations of Algorithm 1 for each other agent j . As expected, the matrix is
reasonably symmetric (the coupling terms correspond to cross derivatives, which
by definition are symmetric) and shows a large amount of structure. The matrix in
Fig. 5.9(a) displays the intuitive result that agents close to each other are highly
coupled (due to the diagonal structure). However, agent separation is not directly
important, the coupling loosely measures the sensitive in the information content of
one agents future observations on the decisions (and observations) of another. This
is demonstrated in the last matrix corresponding to Fig. 5.7(d). At this time in the
mission all the objects are well localised and for the agents to gather more informa-
tion (and reduce the uncertainty) about the positions of the objects, the agents must
travel very close to them. Thus, only agents with planned trajectories passing by a
common object are coupled, e.g. agents 8 and 9; and agents 3 and 4.

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 127

Fig. 5.8 Typical data during a single run of the distributed optimisation algorithm. This data cor-
responds to agent 6 for k = 0, corresponding to Fig. 5.7(a). Top: Estimated coupling terms 6K̂6j for
j ∈ {1,2,3,4,5,7,8,9}. Middle: Each cross indicates the time a message to each specific agent
in the system (the frequency of these events are determined by the coupling metric, according
to (5.25)). Bottom: Evolution of the agents decision parameters (corresponding to the agents rate
of turn during the planning horizon)

This coupling metric captures how the underlying agent models interact through
the systems objective function, and in turn defines which agents should communi-
cate and how often.

5.10 Discussion and Future Work

This chapter has approached the problem of multi-agent decision making and plan-
ning using the tools of asynchronous distributed optimisation. This analytical ap-
proach lead to the definition of a coupling metric that intuitively links the rate at
which an agent may refine its local decision to its inter-agent communication fre-
quency and transmission delays. The coupling is determined by the cross derivatives
of the objective function and captures how the underlying agent models interact with
the definition of the systems goals.

This decentralised negotiation algorithm was used to control a simulated multi-
agent system involving multiple mobile robots undertaking an object localisation

128 G. Mathews and H. Durrant-Whyte

Fig. 5.9 Coupling matrix for
the initial decision problem.
The checker board type
appearance (especially the
two minor diagonals)
represent that generally
agents closer to each other are
more strongly coupled (see
Fig. 5.7(a))

task. This example demonstrated that agent are only required to communicate often
to other agent that it is coupled to.

5.10.1 Toward Network Design

The algorithms presented in this chapter requires each agent to communicate to ev-
ery other (coupled) agent. For simplicity this work assumed that lower level struc-
ture of the communications network was fixed and could not be controlled. The
ability to link the performance of the optimisation algorithm with the structure of
the communication system, via the step size and convergence speed has significant
potential that has not been explored here. It is envisaged that the communication
system design problem can be formulated as a higher level optimisation problem,
which will enable communication networks and routing algorithms to be selected
that maximises the convergence speed of the lower level distributed decision making
algorithm. For this system level design problem to be fully defined, further analysis
will be needed to extend the process outlined in Sect. 5.3.3 to enable an accurate link
between the convergence speed and the properties of the communications system.

Acknowledgements This work is partly supported by the ARC Centre of Excellence pro-
gramme, funded by the Australian Research Council (ARC) and the New South Wales State Gov-
ernment; and by CSIRO Industrial Physics.

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 129

Appendix

Lemma 1 For all scalars a and b the following holds

ab ≤ 1

2

(
a2 + b2), (5.76)

which can easily be proved from the identity (a − b)2 ≥ 0.

Lemma 2 For any vector μi ∈ �di

(
νi − ProjAi

Vi
(μi)

)T Ai

(
μi − ProjAi

Vi
(μi)

)≤ 0, for all νi ∈ Vi . (5.77)

Proof This can be proved by considering the definition of the projection (5.8) with
the optimality condition (5.2) and noting

∇νi

(
(νi − μi)

T Ai (νi − μi)
)= 2Ai (νi − μi). �

For ease of notation, the following abbreviations will be made

J (t) � J
(
Gv(t)

)
,

Ji(t) �∇iJ
(
Gv(t)

)
,

iJi(t) �∇iJ
(
iv(t)

)
,

where Gv(t) = [1v1(t), . . . ,
pvp(t)] is the global decision vector, constructed using

the latest decision from each agent.
Define the actual update direction of the ith agent, for all t ∈ T U

i , as

si (t) = 1

γi

(
ProjAi (t)

Vi

(
ivi (t) − γiAi (t)

−1iJi(t)
)− ivi (t)

)
(5.78)

and for t /∈ T U
i as si (t) = 0. Thus, the update equation (5.6) can be written as

ivi (t + 1) = ivi (t) + γisi (t), for all t. (5.79)

Lemma 3 For all i and t

si (t)
T iJi(t) ≤ −ai

∥
∥si (t)

∥
∥2

. (5.80)

Proof This can be proved by considering the definition of si (t) and substituting
into (5.77), Ai � Ai (t), νi � ivi (t) and μi � ivi (t) − γiAi (t)

−1iJi(t) and noting
si (t)

T Ai (t)si (t) ≥ ai‖si (t)‖2 where ai is defined in (5.19). �

130 G. Mathews and H. Durrant-Whyte

Proof of Theorem 2 Consider the 2nd order Taylor expansion of J (Gv(t +1)) about
Gv(t) and using Assumption 7

J (t + 1) ≤ J (t) +
p∑

i=1

γisi (t)
T Ji(t) + 1

2

p∑

i=1

p∑

j=1

∥
∥γisi (t)

∥
∥Kij

∥
∥γj sj (t)

∥
∥. (5.81)

The third term of (5.81) can be bounded from above using (5.76)

1

2

p∑

i=1

p∑

j=1

∥
∥γisi (t)

∥
∥Kij

∥
∥γj sj (t)

∥
∥

≤ 1

2

p∑

i=1

p∑

j=1

Kij

1

2

(
γ 2
i

∥
∥si (t)

∥
∥2 + γ 2

j

∥
∥sj (t)

∥
∥2)

= 1

2

p∑

i=1

p∑

j=1

Kijγ
2
i

∥
∥si (t)

∥
∥2

. (5.82)

Examining the second term of (5.81) and using (5.80)

p∑

i=1

γisi (t)
T Ji(t) ≤ −

p∑

i=1

γiai

∥
∥si (t)

∥
∥2 +

p∑

i=1

γisi (t)
T
(
Ji(t) − iJi(t)

)
. (5.83)

The final term in (5.83) can be further bounded using (5.17) and (5.76) and noting
Gv(t) = [1v1(t), . . . ,

pvp(t)]
p∑

i=1

γisi (t)
T
(
Ji(t) − iJi(t)

)

≤
p∑

i=1

γi

∥
∥si (t)

∥
∥

p∑

j=1

Kij

∥
∥j vj (t) − ivj (t)

∥
∥

≤
p∑

i=1

γi

∥
∥si (t)

∥
∥

p∑

j=1

Kij

t−1∑

m=t−Bij

γj

∥
∥sj (m)

∥
∥

≤ 1

2

p∑

i=1

p∑

j=1

t−1∑

m=t−Bij

Kij

(
γ 2
i

∥
∥si (t)

∥
∥2 + γ 2

j

∥
∥sj (m)

∥
∥2)

. (5.84)

Substituting (5.82), (5.83) and (5.84) into (5.81) and summing the inequalities from
t = 0 to t = n

J (n + 1) ≤ J (0) −
n∑

t=0

p∑

i=1

γiai

∥
∥si (t)

∥
∥2 + 1

2

n∑

t=0

p∑

i=1

p∑

j=1

Kijγ
2
i

∥
∥si (n)

∥
∥2

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 131

+ 1

2

n∑

t=0

p∑

i=1

p∑

j=1

t−1∑

m=t−Bij

Kij

(
γ 2
i

∥
∥si (t)

∥
∥2 + γ 2

j

∥
∥sj (m)

∥
∥2)

. (5.85)

By expanding the summation over t , the last term can be bounded by

1

2

n∑

t=0

p∑

i=1

p∑

j=1

t−1∑

m=t−Bij

Kij

(
γ 2
i

∥
∥si (t)

∥
∥2 + γ 2

j

∥
∥sj (m)

∥
∥2)

≤ 1

2

n∑

t=0

p∑

i=1

p∑

j=1

γ 2
i

∥
∥si (t)

∥
∥2

(BijKij + BjiKji). (5.86)

It is noted that this is a strict inequality for non-zero sj (t) when t ∈ {n−Bij , . . . , n}.
Using Kij = Kji and (5.86), inequality (5.85) can be written as

p∑

i=1

Ei

n∑

t=0

∥
∥si (t)

∥
∥2 ≤ J

(
v(0)

)− J
(
v(n + 1)

)
, (5.87)

where Ei = γi(ai − 1
2γi

∑p

j=1 Kij (1 + Bij + Bji)). Let

Γi = 2ai
∑p

j=1 Kij (1 + Bij + Bji)

= 2ai

Kii +∑
j �=i Kij (1 + Bij + Bji)

,

then for all γi ∈ (0,Γi), Ei > 0. Furthermore, the objective function J is bounded
from below (Assumption 2b), and thus, allowing n → ∞ and restricting γi ∈ (0,Γi),
(5.87) must imply

∞∑

t=0

∥
∥si (t)

∥
∥2

< ∞, for all i,

which requires limt→∞‖si (t)‖ = 0. This, along with Assumptions 4 and 5b, re-
quires each agents local copy of the team decision to converge to the same limit. Let
this fixed point be v∗

lim
t→∞

iv(t) = v∗, for all i.

For this fixed point, the following must hold

v∗
i = ProjAi (t)

Vi

(
v∗
i − γiAi (t)

−1∇iJ
(
v∗)), for all i.

Using this and (5.77), the fixed point v∗ obeys the optimality condition (5.3)

(
νi − v∗

i

)T ∇iJ
(
v∗)≥ 0, for all νi ∈ Vi and all i.

132 G. Mathews and H. Durrant-Whyte

This corresponds to the first order condition for v∗ to be a minimum of J . If the
stronger condition of Assumption 2b holds the objective function is convex), the
limit point v∗ is a global minimum. �

References

Baudet, G. M. (1978). Asynchronous iterative methods for multiprocessors. Journal of the ACM,
25(2), 226–244.

Bertsekas, D. P. (1999). Nonlinear programming. Belmont: Athena Scientific.
Bertsekas, D. P. (2005). Dynamic programming and optimal control. Belmont: Athena Scientific.
Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed computation: numerical meth-

ods. New York: Prentice-Hall.
Bertsekas, D. P., & Tsitsiklis, J. N. (1991). Some aspects of parallel and distributed iterative

algorithms—a survey. Automatica, 27(1), 3–21.
Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2004). Decentralized Bayesian negotiation

for cooperative search. In Proc. IEEE/RSJ int. conf. on intelligent robots and systems.
Camponogara, E., & Talukdar, S. (2007). Distributed model predictive control: synchronous

and asynchronous computation. IEEE Transactions on Systems, Man and Cybernetics, 37(7),
732–745.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.
Furukawa, T., Dissanayake, G., & Durrant-Whyte, H. F. (2003). Time-optimal cooperative control

of multiple robot vehicles. In Proc. IEEE int. conf. on robotics and automation.
Goh, C. J., & Teo, K. L. (1988). Control parametrization: a unified approach to optimal control

problems with general constraints. Automatica, 24(1), 3–18.
Grocholsky, B. (2002). Information-theoretic control of multiple sensor platforms. PhD thesis,

Univ. of Sydney, Australia.
Grocholsky, B., Makarenko, A., Kaupp, T., & Durrant-Whyte, H. F. (2003). Scalable control of

decentralised sensor platforms. In Int. workshop on information processing in sensor networks,
Palo Alto, CA, USA.

Inalhan, G., Stipanovic, D., & Tomlin, C. (2002). Decentralized optimization, with application to
multiple aircraft coordination. In Proc. IEEE conf. on decision and control.

Liggins, M. E. II, Chong, C.-Y., Kadar, I., Alford, M. G., Vannicola, V., & Thomopoulos, S. (1997).
Distributed fusion architectures and algorithms for target tracking. In Proceedings of the IEEE,
New York.

Manyika, J., & Durrant-Whyte, H. F. (1994). Data fusion and sensor management: a decentralized
information-theoretic approach. New York: Ellis Horwood.

Mathews, G. M. (2008). Asynchronous decision making for decentralised autonomous systems.
PhD thesis, The University of Sydney.

Mathews, G. M., Durrant-Whyte, H. F., & Prokopenko, M. (2006). Scalable decentralised decision
making and optimisation in heterogeneous teams. In Proc. int. conf. on multisensor fusion and
integration for intelligent systems.

Mathews, G., Durrant-Whyte, H., & Prokopenko, M. (2009). Decentralised decision making in
heterogeneous teams using anonymous optimisation. Robotics and Autonomous Systems, 57(3),
310–320.

Maybeck, P. S. (1979–1982). Stochastic models, estimation and control. New York: Academic
Press.

Modi, P., Shen, W., Tambe, M., & Yokoo, M. (2005). ADOPT: asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence, 161(1–2), 149–180.

Patriksson, M. (1997). Decomposition methods for differentiable optimization problems over
Cartesian product sets. Computational Optimization and Applications, 9(1), 5–42.

5 Decentralised Decision Making for Ad-hoc Multi-Agent Systems 133

Raffard, R. L., Tomlin, C. J., & Boyd, S. P. (2004). Distributed optimization for cooperative agents:
application to formation flight. In Proc. IEEE conf. on decision and control.

Tseng, P. (1991). On the rate of convergence of a partially asynchronous gradient projection algo-
rithm. SIAM Journal on Optimization, 1(4), 603–619.

Tsitsiklis, J. N., Bertsekas, D. P., & Athens, M. (1986). Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control, 31(9),
803–812.

Chapter 6
Learning Mutation Strategies for Evolution
and Adaptation of a Simulated Snakebot

Ivan Tanev

6.1 Introduction

Wheelless, limbless snake-like robots (Snakebots) feature potential robustness char-
acteristics beyond the capabilities of most wheeled and legged vehicles—ability to
traverse terrain that would pose problems for traditional wheeled or legged robots,
and insignificant performance degradation when partial damage is inflicted. Some
useful features of Snakebots include smaller size of the cross-sectional areas, stabil-
ity, ability to operate in difficult terrain, good traction, high redundancy, and com-
plete sealing of the internal mechanisms (Dowling 1997; Hirose 1993).

Robots with these properties open up several critical applications in exploration,
reconnaissance, medicine and inspection. However, compared to the wheeled and
legged vehicles, Snakebots feature (i) more difficult control of locomotion gaits and
(ii) inferior speed characteristics. In this work we intend to address the following
challenge: how to automatically develop control sequences of Snakebot’s actuators,
which allow for achieving the fastest possible speed of locomotion.

In principle, the task of designing the code of a Snakebot could be formalized and
the formal mathematical models could be incorporated into direct programmable
control strategies. However, the eventual models would feature enormous complex-
ity and such models are not recognized to have a known analytically exact optimal
solution. The complexity of the model stems from the large number of degrees of
freedom of the Snakebot, which cannot be treated independent of each other. The
dynamic patterns of position, orientation, velocity vectors, and the points and in-
stances of contact with the surface (and consequently—the vectors of resulting trac-
tion forces, which propel the Snakebot) of each of the morphological segments of
the Snakebot have to be considered within the context of other segments. Further-
more, often the dynamic patterns of these parameters cannot be deterministically

I. Tanev (B)
Department of Information Systems Design, Doshisha University, 1-3 Miyakodani, Tatara,
Kyotanabe, Kyoto 610-0321, Japan
e-mail: itanev@mail.doshisha.ac.jp

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_6,
© Springer-Verlag London 2013

135

mailto:itanev@mail.doshisha.ac.jp
http://dx.doi.org/10.1007/978-1-4471-5113-5_6

136 I. Tanev

inferred from the desired velocity characteristics of the locomotion of the Snakebot.
Instead, the locomotion of the Snakebot is viewed as an emergent property at higher
level of consideration of a complex hierarchical system, comprising many relatively
simple entities (morphological segments). Higher-level properties of the system as
a whole and the lower-level properties of entities comprising it cannot be induced
from each other. Evolutionary approaches (Mahdavi and Bentley 2003; Takamura
et al. 2000) are considered an efficient way to tackle such ill-posed problems due to
their ability to find a near-optimal solution in a reasonable runtime.

As an instance of evolutionary algorithms, Genetic Algorithms (GA) differ from
Genetic Programming (GP) mainly in the genotypic representation (i.e., the chro-
mosome) of potential solutions (Goldberg 1989). Instead of representing the solu-
tion as a computer program (usually—a parse tree) featuring arbitrary structure and
complexity as in GP, a GA employs a fixed-length linear chromosome. This differ-
ence implies a favorable computational advantage of the GA over GP for simple
problems, because linear chromosomes are computationally more efficient to ma-
nipulate and interpret. For complex tasks however, such as evolution of locomotion
gaits of a Snakebot the runtime overhead associated with manipulation of the geno-
type is negligible compared to the more significant overhead of the fitness evaluation
of evolved (either simulated or real) artifacts. Moreover, an efficient GA (in terms
of computational effort, or number of fitness evaluations) often requires incorpo-
ration of computationally heavy probabilistic learning models (Pelikan et al. 1999)
aimed at discovering and maintaining the complex interrelations between variables
in the genome. In addition, the fixed-length genome usually implies that the latter
comprises various carefully encoded domain-dependent parameters of the solution
with an a priori known structure and complexity. This might be a concern if no
such knowledge is available in advance, but rather needs to be automatically and
autonomously discovered by the evolving artifact. The latter is especially true when
the artifact has to perform in unanticipated, uncertain environmental conditions or
under its own (possibly degraded) mechanical abilities.

An example of the successful implementation of evolution (using a GA) and
adaptation (via hierarchical, two-layered Q-learning) of locomotion gaits of real-
world snake-like robot is demonstrated by Ito et al. (2003). Each gene in the linear
chromosome represents the angle of the corresponding joint in the snake, and the
number of genes is the same as the number of joints. This work demonstrates the
efficiency of a canonical GA for the particular complexity of the task—evolution of
two-dimensional gaits of a snake having five joints. The efficiency of the GA is ade-
quate even without the need to consider either the scalability problem (the inflation
of search space with the increase of the number of joints) or the linkage problem
(the correlation between the genes in linear chromosomes). Several similar meth-
ods of adaptation combining evolutionary algorithms (either GA or GP for off-line
evolution of a model of the artifact) and learning (for on-line adaptation of the real
artifact) have been recently proposed (Kamio et al. 2003; Kimura et al. 2001). The
learning component in these approaches is usually intended to tune, in an online
mode, the solution obtained off-line via simulated evolution. Such approaches, as
an on-line parametric optimization of solution via local search, are efficient when

6 Learning Mutation Strategies for Evolution and Adaptation 137

changes to the fitness landscape are assumed to be insignificant. However, adapta-
tion to unanticipated, unknown or uncertain changes in fitness landscapes might re-
quire the discovery of completely new solutions, which often could not be achieved
by parametric optimization of already existing solutions. We assume that GP alone,
which is able to balance inherently the exploration (of completely new solutions)
and exploitation (of previously obtained solutions) by maintaining a diverse popu-
lation of solutions, offers good opportunities to discover these new solutions.

An inverse approach, based on the evolution (estimation) of the morphology of a
potentially damaged robot given a controller (instead of evolving a controller given
a morphology of the damaged robot) allows to evolve a damage hypothesis after
failure and then to re-evolve a compensatory neural controller to restore the robots
functionality (Bongard and Lipson 2004). Conversely, in our work we adhere to the
conventional approaches of employing simulated evolution to develop the compen-
satory traits of a controller given the unanticipated changes of morphology due to
partial damage of the Snakebot.

The objectives of our work are (i) to explore the feasibility of applying GP for ef-
ficient automatic design of the fastest possible locomotion of realistically simulated
Snakebot and (ii) to investigate the adaptation of such locomotion to challenging
environment and degraded abilities (due to partial damage) of simulated Snakebot.
In Tanev and Ray (2005) we discussed the very feasibility of applying an evolution-
ary approach for automated development of locomotion gaits of Snakebots. Later
we demonstrated the evolution of non-periodic postures of the Snakebot and veri-
fied the versatility of genetic programming for evolution and adaptation to environ-
mental challenges and to damages (Tanev et al. 2005). In this work we discuss the
biologically plausible (Caporale 2003; Kirschner and Gerhart 2005) non-random
mutations implemented through learning mutation strategies (LMS) in GP. We are
especially interested in the implications of LMS on the efficiency of evolution and
adaptation of Snakebot.

Presented approach of incorporating LMS is implemented via learning proba-
bilistic context-sensitive grammar (LPCSG), employed to express the preferable
syntactical bias of mutation operation in GP. LPCSG is related to approaches of
using a grammar to define the allowed syntax of the evolved artifacts. Examples
of such approaches are the grammatical evolution (GE) (O’Neill and Ryan 2003),
grammar-based genetic programming (Wong 2005) and grammar-based genetic al-
gorithms (Antonisse 1991). The genotype, evolved via GE encodes the sequence of
grammar rules, which should be applied during the simulated gene expression phase
in order to generate the phenotype.

From another perspective, our work is also related to the incorporation of estima-
tion of distribution algorithms (EDA) for biased mutations in evolutionary computa-
tions, mostly in GA (Pelikan et al. 1999). Motivated by the demonstrated advantages
of both the GE and EDA in GA, we intend to merge both approaches in a way that
allows for the biased mutation in GP (rather than GA, as in EDA) to be implemented
via adjustable, learned preferences (rather than “hard coded” in the chromosome, as
in GE) in choosing the appropriate rule from the set of alternative, potentially ap-
plicable grammar rules. Although a few grammar-based EDAs have been recently

138 I. Tanev

proposed (Bosman and de Jong 2004; Shan et al. 2004), in neither of these methods
the incorporation of LPCSG in GP has been explored.

The remainder of the chapter is organized as follows. Section 6.2 emphasizes the
main features of GP proposed for evolution of locomotion of the Snakebot. Sec-
tion 6.3 introduces the proposed approach of incorporating LPCSG in GP. Sec-
tion 6.4 presents the empirically obtained results of efficiency of evolution and
adaptation of Snakebot to challenging environment and partial damage. Section 6.5
discusses an alternative, interactive mechanism of learning the mutation strategies.
Section 6.5 draws a conclusion.

6.2 Genetic Programming for Design of Gaits of the Snakebot

6.2.1 Morphology of Snakebot

Snakebot is simulated as a set of identical spherical morphological segments (“ver-
tebrae”), linked together via universal joints. All joints feature identical (finite) angle
limits and each joint has two attached actuators (“muscles”). In the initial, standstill
position of Snakebot the rotation axes of the actuators are oriented vertically (verti-
cal actuator) and horizontally (horizontal actuator) and perform rotation of the joint
in the horizontal and vertical planes respectively. Considering the representation of
Snakebot, the task of designing the fastest locomotion can be rephrased as develop-
ing temporal patterns of desired turning angles of horizontal and vertical actuators
of each segment, that result in fastest overall locomotion of Snakebot. The proposed
representation of Snakebot as a homogeneous system comprising identical morpho-
logical segments is intended to significantly reduce the size of the search space of
the GP. Moreover, because the size of the search space does not necessarily increase
with the increase of the complexity of Snakebot (i.e. the number of morphological
segment), the proposed approach allows achievement of favorable scalability char-
acteristics of GP.

In the representation considered, we use a pyramid approximation of the
Coulomb isotropic friction model. No anisotropic (directional) friction between the
morphological segments and the surface is considered. Despite the anticipated ease
of simulation and design of eventual morphological segments featuring anisotropic
friction with the surface (using passive wheels (Hirose 1993; Ito et al. 2003) or
“belly” scales), such an approach would have the following drawbacks:

(i) Wheels, attached to the morphological segments are mainly effective in two-
dimensional locomotion gaits. However, neither the fastest gaits in uncon-
strained environments nor the adaptive gaits in challenging environments
(narrow tunnels, obstacles etc.) are necessarily two-dimensional. In three-
dimensional locomotion gaits the orientation (the pitch, roll and yaw angles)
of morphological segments at the instant of contact with the surface is arbi-
trary, which renders the design of effective wheels for such locomotion gaits a
non-trivial engineering task.

6 Learning Mutation Strategies for Evolution and Adaptation 139

(ii) Wheels may compromise the potential robustness characteristics of the Snake-
bot because they can be trapped easily in the challenging environments (rugged
terrain, obstacles, etc.).

(iii) Wheels potentially reduce the application areas of the Snakebot because their
engineering design implies lack of complete sealing of all mechanisms.

(iv) Belly scales would not promote any anisotropic friction if the Snakebot op-
erates on a smooth, flat, clean and/or loose surface. Therefore the generality
of locomotion gaits and their robustness with respect to various environmental
conditions would be compromised.

(v) Belly scales are efficiently utilized as a source of anisotropic friction in some
locomotion gaits of natural snakes. However, these gaits usually require an
involvement of large amount of complex muscles located immediately under
the skin of the snake. These muscles lift the scales off the ground, angle them
forward, and then push them back against the surface. In the Snakebot, imple-
menting actuators which mimic such muscles of natural snakes would be too
expensive and thus infeasible from an engineering point of view.

6.2.2 GP

6.2.2.1 Algorithmic Paradigm

GP (Koza 1992) is a domain-independent problem-solving approach in which a pop-
ulation of computer programs (individuals’ genotypes) is evolved to solve problems.
The simulated evolution in GP is based on the Darwinian principle of reproduction
and survival of the fittest. The fitness of each individual is based on the quality with
which the phenotype of the simulated individual is performing in a given environ-
ment.

6.2.2.2 Set of Functions and Terminals

In applying GP to evolution of Snakebot, the genotype is associated with two alge-
braic expressions, which represent the temporal patterns of desired turning angles of
both the horizontal and vertical actuators of each morphological segment. Because
locomotion gaits, by definition, are periodical, we include the periodic functions
sin and cos in the function set of GP in addition to the basic algebraic functions.
Terminal symbols include the variables time, index of the segment of Snake-
bot, and two constants: Pi, and random constant within the range [0,2]. The main
parameters of the GP are shown in Table 6.1.

The introduction of variable time reflects our objective to develop temporal pat-
terns of turning angles of actuators. The choice of the trigonometric functions sin
and cos reflects our intention to verify the hypothesis, as first expressed by Mi-
turich in 1920s (Andrusenko 2001), that undulate motion mechanisms could yield
efficient gaits of snake-like artifacts operating in air, land, or water.

140 I. Tanev

Table 6.1 Main parameters of GP

Category Value

Function set {sin, cos,nop,+,−,∗, /}
Terminal set {time, segment_ID, Pi, random constant, ADF}

Population size 200 individuals

Selection Binary tournament, selection ratio 0.1, reproduction ratio 0.9

Elitism Best 4 individuals

Mutation Random subtree mutation, ratio 0.01

Fitness Velocity of simulated Snakebot during the trial

Trial interval 180 time steps, each time step account for 50 ms of “real” time

Termination criterion (Fitness > 100) or (Generations > 40)

From another perspective, the introducing the trigonometric functions we would
attempt to mimic (at functional, rather than neurological level) the central pattern
generator (CPG) in the central nervous system. The CPG, usually located in the gan-
glia or spinal cord of animals, is believed to be necessary and sufficient for the gen-
eration of rhythmic patterns of activities (Levitan and Kaczmarek 2002). CPG for
robot control typically comprises coupled neural controllers, which generate (with-
out the need of external feedback) the motion pattern of actuators in the respective
morphological segments of the artifact. The approach of employing CPG for devel-
oping the locomotion gaits of the Snakebot would be based on an iterative process
(e.g., employing the machine learning and/or evolutionary computations paradigms)
of tuning the main parameters of CPG including, for example, the common single
frequency across the coupled oscillators, the fixed phase-relationship between the
oscillators, and the amplitude of each of oscillations. The proposed approach of ap-
plying GP for evolution of locomotion gaits of Snakebot shares some of the features
of CPG-based approaches such as the open-loop, sensorless control scheme and the
incorporation of coupled oscillators. Conversely to the CPG-based approaches how-
ever, the proposed method incorporates too little domain-specific knowledge about
the task.

The rationale of employing automatically defined functions (ADF) is based on
empirical observation that although the straightforward, independent encoding of
the desired turning angles of both horizontal and vertical actuators allows GP to ad-
equately explore the huge search space and ultimately, to discover the areas which
correspond to fast locomotion gaits in solution space, the evolvability of such en-
coding is relatively poor. We discovered that (i) the motion patterns of horizontal
and vertical actuators of each segment in fast locomotion gaits are highly correlated
(e.g., by frequency, direction, etc.) and that (ii) discovering and preserving such cor-
relation by GP is associated with enormous computational effort. ADF, as a way of
limiting the search space by introducing modularity and reuse of the evolved code is
employed in our approach to allow GP to explicitly evolve the correlation between
motion patterns of horizontal and vertical actuators in a form of shared fragments
in algebraic expressions of desired turning angles of the actuators. Moreover, we

6 Learning Mutation Strategies for Evolution and Adaptation 141

observed that the best result is obtained by (i) allowing the use of ADF as a ter-
minal symbol in algebraic expression of desired turning angle of vertical actuator
only, and (ii) by evaluating the value of ADF by equalizing it to the value of the cur-
rently evaluated algebraic expression of the desired turning angle of the horizontal
actuator.

6.2.2.3 Context-Free Grammar for Canonical GP

The context-free grammar (CFG) G, usually employed to define the allowed syntax
of individuals in GP consists of (N , Σ , P , S) where N is a finite set of nonterminal
symbols, Σ is a finite set of terminal symbols that is disjoint from N,S is a symbol
in N that is indicated as the start symbol, and P is a set of production rules, where
a rule is of the form

V → w

where V is a non-terminal symbol and w is a string consisting of terminals and/or
non-terminals. The term “context-free” comes from the feature that the variable
V can always be replaced by w, in no matter what context it occurs. The set of
non-terminal symbols of G of GP, is employed to develop the temporal patterns of
desired turning angles of horizontal and vertical actuators of segments, that result in
fastest overall locomotion of Snakebot, is defined as follows:

N = {GP, STM, STM1, STM2, VAR, CONST_x10, CONST_PI, OP1, OP2}

where STM is a generic algebraic statement, STM1—a generic unary (e.g., sin,
cos, nop) algebraic statement, STM2—a generic binary (dyadic, e.g. +, −, ∗,
and /) algebraic statement, VAR—a variable, OP1—an unary operation, OP2—
a binary (dyadic) operation, CONST_x10 is a random constant within the range
[0 . . .20], and CONST_PI equals either 3.1416 or 1.5708. The set of terminal sym-
bols is defined as:

Σ = {sin,cos,nop,+,−,∗, /,time,segment_id}
where sin, cos, nop, +, −, ∗ and / are terminals which specify the functions in
the generic algebraic statements. The start symbol is GP, and the set of production
rules expressed in Backus-Naur form (BNF) are as shown in Fig. 6.1. GP uses the
defined production rules of G to create the initial population and to mutate genetic
programs. In the canonical GP the production rules with multiple alternative right-
hand sides (such as rules 2, 4, 6, 7 and 9, shown in Fig. 6.1) are usually chosen
randomly during these operations.

6.2.2.4 Fitness Evaluation

The fitness function is based on the velocity of Snakebot, estimated from the dis-
tance, which the center of the mass of Snakebot travels during the trial. Fitness of

142 I. Tanev

Fig. 6.1 BNF of production rules of the context free grammar G of GP, employed for automatic
design of locomotion gaits of Snakebot. The following abbreviations are used: STM—generic al-
gebraic statement, STM1—unary algebraic statement, STM2—binary (dyadic) algebraic statement,
VAR—variable, OP1—unary operation, and OP2—binary operation

100 (the one of termination criteria shown in Table 6.1) is equivalent to a velocity,
which displaced Snakebot a distance equal to twice its length.

6.2.2.5 Representation of Genotype

Inspired by its flexibility, and the recently emerged widespread adoption of doc-
ument object model (DOM) and extensible markup language (XML) (Bray et al.
2000), we represent the evolved genotypes of the Snakebot as DOM-parse trees
featuring equivalent flat XML-text. Both (i) the calculation of the desired turning
angles during fitness evaluation and (ii) the genetic operations are performed on
DOM-parse trees via API of the off-the shelf DOM-parser.

6.2.2.6 Genetic Operations

Selection is a binary tournament. Crossover is defined in a strongly typed way in
that only the DOM-nodes (and corresponding DOM-subtrees) of the same data type
(i.e. labeled with the same tag) from parents can be swapped. The sub-tree muta-
tion is allowed in strongly typed way in that a random node in genetic program is
replaced by syntactically correct sub-tree. The mutation routine refers to the data
type of currently altered node and applies the chosen rule from the set of applica-
ble rewriting rules as defined in the grammar of GP. The selection of the grammar
rule, which should be applied to the currently altered tree node during the muta-
tion is random in the canonical implementation of GP; and biased in the proposed
approach of applying LMS as shall be elaborated in the following Sect. 6.3.

6.2.2.7 Open Dynamic Engine

We have chosen Open Dynamics Engine (ODE) (Smith 2006) to provide a realistic
simulation of physics in applying forces to phenotypic segments of the Snakebot.
ODE is a free, industrial quality software library for simulating articulated rigid
body dynamics. It is fast, flexible and robust, and it has built-in collision detection.

6 Learning Mutation Strategies for Evolution and Adaptation 143

6.3 Incorporating LMS in GP

6.3.1 Learning Probabilistic Context-sensitive Grammar

The proposed approach is based on the idea of introducing bias in applying the
most preferable rule from the grammar rules with multiple, alternative right-hand
sides (RHS). We presume that the preferences of applying certain production rules
depend on the surrounding grammatical context, defining which rules have been
applied before. The probability distributions (PD) pi

1,p
i
2, . . . , p

i
N for each contexti

for each grammar rule with multiple RHS are initially uniform, and then learned
(tuned) incrementally at each generation from the subset of the best performing
Snakebots. The learned PD is then used as a bias to steer the mutation of Snakebots.

In the proposed approach, the learning probabilistic context-sensitive grammar
(LPCSG) G∗ is proposed as a formal model describing such mutation. G∗ is in-
troduced as a set of the same attributes (N∗, Σ∗, P ∗, S∗) as the CFG G defined in
Sect. 2.2. The attributes N∗, Σ∗, and S∗ are identical to the corresponding attributes
N , Σ , and S of G. The set of production rules P ∗ of G∗ are derived from P of G

as follows:

(i) Production rules of PS (PS ⊂ P) of G which have a single right-hand side are
defined in the same way in P ∗ as in P , and

(ii) Production rules in PM (PM ⊂ P) of G, which feature multiple right-hand side
alternatives V → w1|w2| . . . |wN are re-defined for each instance i of the con-
text as follows:

contextiV → contexti w1 (pi
1)

contextiV → contexti w2 (pi
2)

. . .

contextiV → contexti wN (pi
N)

where pi
1,p

i
2, . . . , p

i
N (

∑N
1 pi

n = 1) are the probabilities of applying each al-
ternative rule with the left-hand side non-terminal V for the given contexti .

Applying the IF-THEN stimulus-response paradigm, which usually expresses
the reactive behavioral strategies of intelligent entities in AI (e.g., software agents,
robots, etc.) to such biased mutation operations in GP, and viewing the evolved
genotype not only as an evolving, but also as a learning intelligent entity, the
above considered sample rule of G∗ could be modeled by the following behavioral
IF-THEN statement:

if Context_of_[V] is [contexti] then
Apply_Rules_With_Probabilities(pi

1,p
i
2, . . . , p

i
N)

The LMS strategy in our approach comprises the dynamic set of IF-THEN rules
created and tuned by parsing the syntax of the best performing Snakebots of the cur-
rent generation. A sample of biased application of production rules of G∗ according
to the learned PD and the corresponding IF-THEN rule of LMS for the considered
leftmost non-terminal and the context are shown in Fig. 6.2.

144 I. Tanev

Fig. 6.2 Sample of biased application of production rules of G∗: the current leftmost non-terminal,
as shown in (a) is STM, which requires applying one of the production rules 2.1–2.5 (refer to
Fig. 6.1). For the considered context (a), the LMS of applying rules 2.1–2.5 (b) suggests a highest
probability for applying the production rule 2.4, yielding the genetic program as shown in (c)

6.3.2 GP Incorporating LMS

The principal steps of algorithm of GP incorporating LMS via LPCSG are shown
in Fig. 6.3. As Fig. 6.3 illustrates, additional Steps 6 and 9 are introduced in
the canonical algorithm of GP. The LMS is updated on Step 6, and the new off-
spring, created applying the proposed biased mutation via LPCSG on Step 9 are
inserted into already reproduced—via canonical crossover (Step 7) and mutation
(Step 8)—growing new population of Snakebots. The parameter KLMS defines
the ratio of the number of offspring #NLMS created via biased mutation using LMS
and the number of offspring #NCO created via canonical crossover. KLMS is dy-
namically tuned on Step 6 based on the stagnation counter CS , which maintains
the number of most recent generations without improvement of the fitness value. In
our implementation, KLMS is kept within the range [0,5]. It is defined according to
the following rule:

6 Learning Mutation Strategies for Evolution and Adaptation 145

Step 0: Creating Initial Population and Clearing PDD;
Step 1: While (true) do begin
Step 2: Evaluating Population;
Step 3: Ranking Population;
Step 4: if Termination Criteria then Go to Step 10;
Step 5: Selecting the Mating Pool;
Step 6: Updating LMS and KLMS ;
Step 7: Creating #NCO offspring via canonical crossover;
Step 8: Mutating current population via canonical mutation;
Step 9: Creating #NLMS offspring via mutation of mating pool using LMS;
Step 10: end;

Fig. 6.3 Algorithm of GP incorporating LMS. Steps 6 and 9 are specific for the proposed
approach. Steps 0, 2-5, 7 and 8 are common principal steps of canonical GP

KLMS = 5 − smaller_of(5,CS)

Lower values of KLMS in stagnated population (i.e., for CS > 0) favor the repro-
duction via canonical random genetic operations over the reproduction using biased
mutation via LMS. As we empirically investigated, the low values of KLMS fa-
cilitate avoiding premature convergence by increasing the diversity of population
and consequently, accelerating the escape from the (most likely) local optimal solu-
tions, discovered by the steering bias of the current LMS. Conversely, replacing the
usually random genetic operations of canonical GP with the proposed biased mu-
tation when KLMS is close to its maximum value (i.e., for CS = 0) can be viewed
as a mechanism for growing and preserving the proven beneficial building blocks
in evolved solutions rather than destroying them by the usual random crossover and
mutation

Updating (Fig. 6.3, Step 6) and applying LMS during the biased muta-
tion (Fig. 6.3, Step 9) implies maintaining a table, which represents the set
of learned IF-THEN rules. Each entry in the table stores the context, the left-
hand side non-terminal, the list of right-hand side symbols, the aggregated re-
ward values and the calculated probability of applying the given production rule
for the given context. A new entry is added or the aggregated reward value of
existing entry is updated by extracting the syntactic features of the best per-
forming genetic programs (the mating pool) of the current generation. The out-
dated entries, added 4 or more generations before are deleted, keeping the total
number of entries in the table between 300 and 500. The string of characters,
comprising the right-hand side RHS of given production rule that should be ap-
plied to the current leftmost non-terminal (i.e. the corresponding left-hand sym-
bol in production rule, LHS) for the given context C is obtained by the function
GetProduction([in] C, [in] LHS, [out] RHS) which operates on
LMS table as shown in Fig. 6.4.

146 I. Tanev

Fig. 6.4 Obtaining the most preferable right-hand side (RHS) of production rule of LPCSG that
should be applied to the left-most non-terminal (i.e. left-hand symbol, LHS), and the context (C)
according to a sample IF-THEN rule of the current LMS: (1) Selecting the set of entries as-
sociated with the entries featuring the given LHS and C, (2) Choosing an entry from the obtained
result set with a probability, proportional to the learned PD, and (3) returning the RHS of the cho-
sen production rule. The sample IF-THEN rule of the LMS, shown here is the same as depicted
in Fig. 6.2

6.4 Results

This section discusses empirically obtained results verifying the effects of incorpo-
rating LMS on the efficiency of GP applied for the following two tasks: (i) evolution
of the fastest possible locomotion gaits of Snakebot for various fitness conditions
and (ii) adaptation of these locomotion gaits to challenging environment and de-
graded mechanical abilities of Snakebot. These tasks, considered as relevant for
successful accomplishment of anticipated exploration, reconnaissance, medicine or
inspection missions, feature different fitness landscapes. Therefore, the experiments
discussed in this section are intended to verify the versatility and the scope of ap-
plicability of the proposed approach. In all of the cases considered, the fitness of
Snakebot reflects the low-level objective (i.e. what is required to be achieved) of
Snakebot in these missions, namely, to be able to move fast regardless of environ-
mental challenges or degraded abilities. The experiments discussed illustrate the
ability of the evolving Snakebot to learn how (e.g. by discovering beneficial loco-
motion traits) to accomplish the required objective without being explicitly taught
about the means to do so. Such know-how acquired by Snakebot automatically and
autonomously can be viewed as a demonstration of emergent intelligence (Angeline
1994), in that the task-specific knowledge of how to accomplish the task emerges
in the Snakebot from the interaction of the problem solver and the fitness func-
tion.

6 Learning Mutation Strategies for Evolution and Adaptation 147

Fig. 6.5 Evolution of locomotion gaits for cases where fitness is measured as velocity in any di-
rection: fitness convergence characteristics of 10 independent runs of GP with LMS (a), canonical
GP (b), probability of success (c), and snapshots of sample evolved via GP with LMS best-of-run
sidewinding Snakebots (d), (e), (f) and (g). The dark trailing circles in (d), (e), (f) and (g) depict
the trajectory of the center of the mass of Snakebot

6.4.1 Evolution of Fastest Locomotion Gaits

Figure 6.5 shows the results of evolution of locomotion gaits for cases where fitness
is measured as velocity in any direction. Despite the fact that fitness is unconstrained
and measured as velocity in any direction, sidewinding locomotion (defined as lo-
comotion predominantly perpendicular to the long axis of Snakebot) emerged in all
10 independent runs of GP, suggesting that it provides superior speed characteris-
tics for considered morphology of Snakebot. As Fig. 6.5c illustrates, incorporating
LMS in GP is associated with computational effort (required to achieve probability
of success 0.9) of about 20 generations, which is about 1.6 times faster than canoni-
cal GP with CFG. Sample snapshots of evolved best-of-run sidewinding locomotion
gaits are shown in Fig. 6.5d–g.

In order to verify the superiority of velocity characteristics of sidewinding we
compared the fitness convergence characteristics of evolution in unconstrained en-
vironment for the following two cases: (i) unconstrained fitness measured as veloc-
ity in any direction (as discussed above and illustrated in Fig. 6.5), and (ii) fitness,
measured as velocity in forward direction only. The results of evolution of forward
(rectilinear) locomotion, shown in Fig. 6.6 indicate that non-sidewinding motion,
compared to sidewinding, features much inferior velocity characteristics. The re-
sults also demonstrate that GP with LMS in average converges almost 4 times faster
and to higher values than canonical GP. Snapshots taken during the motion of a
sample evolved best-of-run sidewinding Snakebot are shown in Fig. 6.6c and 6.6d.

The results of evolution of rectilinear locomotion of simulated Snakebot confined
in narrow “tunnel” are shown in Fig. 6.7. As the fitness convergence characteristics
of 10 independent runs (Fig. 6.7a and Fig. 6.7b) illustrate, GP with LMS is almost

148 I. Tanev

Fig. 6.6 Evolution of locomotion gaits for cases where fitness is measured as velocity in forward
direction only. Fitness convergence characteristics of 10 independent runs of GP with LMS (a),
canonical GP (b), and snapshots of sample evolved via GP with LMS best-of-run forward locomo-
tion (c and d)

Fig. 6.7 Evolution of locomotion gaits of Snakebot confined in narrow “tunnel”: fitness conver-
gence characteristics of 10 independent runs of GP with LMS (a), canonical GP (b), and snapshots
of sample evolved best-of-run gaits at the intermediate (c) and final stages of the trial (d)

twice faster than canonical GP. Compared to forward locomotion in unconstrained
environment (Fig. 6.6), the velocity in this experiment is superior, and even com-
parable to the velocity of sidewinding (Fig. 6.5). This, seemingly anomalous phe-
nomenon demonstrates a case of emergent intelligence—i.e. an ability of evolution
to discover a way to utilize the walls of “tunnel” as (i) a source of extra grip and as
(ii) an additional mechanical support for fast yet unbalanced locomotion gaits (e.g.,
vertical undulation) in an eventual unconstrained environment.

6.4.2 Adaptation to Unanticipated Challenging Terrain. Generality
of Adapted Gaits

Adaptation in Nature is viewed as an ability of species to discover the best pheno-
typic (i.e. pertaining to biochemistry, morphology, physiology, and behavior) traits
for survival in continuously changing fitness landscape. The adaptive phenotypic
traits are result of beneficial genetic changes occurred during the course of evolu-
tion (phylogenesis) and/or phenotypic plasticity (ontogenesis—learning, polymor-
phism, polyphenism, immune response, adaptive metabolism, etc.) occurring during

6 Learning Mutation Strategies for Evolution and Adaptation 149

Fig. 6.8 Adaptation of sidewinding locomotion to challenging environment: fitness convergence
characteristics of 10 independent runs of GP with LMS (a), canonical GP (b), and probability of
success (c)

the lifetime of the individuals. In our approach we employ GP with LMS for adapta-
tion of Snakebot to changes in the fitness landscape caused by (i) challenging envi-
ronment and (ii) partial damage to 1, 2, 4 and 8 (out of 15) morphological segments.
In all of the cases of adaptation, GP is initialized with a population comprising 20
best-of-run genetic programs, obtained from 10 independent runs of evolution of
Snakebot in unconstrained environment, plus additional 180 randomly created indi-
viduals.

The challenging environment is modeled by the introduction of immobile obsta-
cles comprising 40 small, randomly scattered boxes, a wall with height equal to the
0.5 diameters of the cross-section of Snakebot, and a flight of 3 stairs, each with
height equal to the 0.33 diameters of the cross-section of Snakebot. The results of
adaptation of Snakebot, shown in Fig. 6.8 demonstrate that the computational ef-
fort (required to reach fitness values of 100 with probability of success 0.9) of GP
with LMS is about 20 generations. Conversely, only half of all runs of canonical
GP achieve the targeted fitness value, implying that the corresponding probability
of success converges to the value of 0.5. Snapshots illustrating the performance of
Snakebot initially evolved in unconstrained environment, before and after the adap-
tation (via GP with LMS) to challenging environment are shown in Fig. 6.9.

The additional elevation of the body, required to faster negotiate the obstacles
represents the emergent know-how in the adapting Snakebot. As Fig. 6.10 illustrates,
the trajectory of the central segment around the center of the mass of sample adapted
Snakebot (Fig. 6.10b) is twice higher than before the adaptation (Fig. 6.10a).

The generality of the evolved via GP with LMS robust sidewinding gaits is
demonstrated by the ease with which Snakebot, evolved in known challenging ter-
rain overcomes various types of unanticipated obstacles such as a pile of boxes, a
burial under boxes, and small walls, as illustrated in Figs. 6.11, 6.12, and 6.13.

6.4.3 Adaptation to Partial Damage

The adaptation of sidewinding Snakebot to partial damage to 1, 2, 4 and 8 (out of 15)
segments by gradually improving its velocity is shown in Fig. 6.14. Demonstrated
results are averaged over 10 independent runs for each case of partial damage to 1,

150 I. Tanev

Fig. 6.9 Snapshots illustrating the sidewinding Snakebot, initially evolved in unconstrained envi-
ronment, before the adaptation—initial (a), intermediate (b and c) and final stages of the trial (d),
and after the adaptation to challenging environment via GP with LMS—initial (e), intermediate (f)
and final stages of the trial (g)

Fig. 6.10 Trajectory of the central segment (cs) around the center of mass (cm) of Snakebot for
sample best-of-run sidewinding locomotion before (a) and after the adaptation (b) to challenging
environment

2, 4 and 8 segments. The damaged segments are evenly distributed along the body
of Snakebot. Damage inflicted to a particular segment implies a complete loss of
functionality of both horizontal and vertical actuators of the corresponding joint.

As Fig. 6.14 depicts, Snakebot recovers completely from the damage to single
segment attaining its previous velocity in 25 generations with canonical GP, and
only in 7 generations with GP with LPCSG, resulting in a mean real-time of adap-
tation of a few hours of runtime on PC featuring an Intel® 3 GHz Pentium® 4
microprocessor and 2 GB RAM under Microsoft Windows XP OS. Snakebots re-
covers to average of 94 % (canonical GP) and 100 % (GP with LMS) of its previous
velocity in the case where 2 segments are damaged. With 4 and 8 damaged segments
the degree of recovery is 77 % (Canonical GP) and 92 % (GP with LMS), and 68 %
(Canonical GP) and 72 % (GP with LMS) respectively. In all of the cases consid-
ered incorporating LMS contributes to faster adaptation of Snakebot, and in all cases
the Snakebot recovers to higher values of velocity of locomotion. The snapshots of
sidewinding Snakebot immediately after damage, and after having recovered from
the damage of 1, 2 , 4 and 8 segments are shown in Fig. 6.15. The views of the

6 Learning Mutation Strategies for Evolution and Adaptation 151

Fig. 6.11 Snapshots illustrating the generality of sidewinding Snakebot adapted to the known
challenging environment as depicted in Fig. 6.9. Before the adaptation to the known challenging
environment the Snakebot overcomes an unanticipated pile of boxes slower (a, b and c) than after
the adaptation (d, e, and f) via GP with LMS

recovered Snakebot (Fig. 6.15b, 6.15d, 6.15f and 6.15h) reveal the emergent ten-
dency of increasing the winding angle of locomotion. Moreover, the frontal view of
the Snakebot before (Fig. 6.16a) and after the adaptation (Fig. 6.16b) to the damage
of single segment demonstrates the additional elevation of the adapted Snakebot in
a way analogous to the adaptation to the challenging environment as illustrated in
Fig. 6.10.

6.5 Discussion

The efficiency of discussed approach of incorporating LS in GP depends on several
factors such as the adequacy of the genetic representation of solution, the size of
search space and the characteristics of the fitness landscape. Considering the latter
issue, it is believed that the gradients towards the global optimums are a relevant
prerequisite for an efficient evolution. These non-deceptive fitness gradients seemed
to appear in the tasks of evolving and adapting the Snakebot as elaborated in the pre-
ceding sections. However, in some cases (as illustrated in Figs. 6.9, 6.11 and 6.12)
the artifact might be temporarily trapped by obstacles in challenging environment.
Consequently, the eventual evolutionary modifications to the locomotion patterns of
the artifact might temporarily yield a negligible velocity of locomotion, and con-

152 I. Tanev

Fig. 6.12 Snapshots illustrating the generality of sidewinding Snakebot adapted to the known
challenging environment as depicted in Fig. 6.9. Before the adaptation to the known challenging
environment the Snakebot emerges from an unanticipated burial under pile of boxes slower (a, b
and c) than after the adaptation (d, e, and f) via GP with LMS

Fig. 6.13 Snapshots illustrating the generality of sidewinding Snakebot adapted to the known
challenging environment as depicted in Fig. 6.9. Before the adaptation to the known challenging
environment the Snakebot clears an unanticipated walls forming pen slower (a, b, c and d) than
after the adaptation (e, f, and g). The walls are twice higher than in the known challenging terrain,
and their height is equal to the diameter of the cross-section of Snakebot

sequently, negligible small fitness values, providing virtually no insight to the evo-
lution about the promising areas in the explored search space. The corresponding

6 Learning Mutation Strategies for Evolution and Adaptation 153

Fig. 6.14 Adaptation of Snakebot to damage of 1 (a), 2 (b), 4 (c) and 8 (d) segments. Fd is the best
fitness in evolving population of damaged Snakebots, and Fh is the best fitness of 20 best-of-run
healthy sidewinding Snakebots

Fig. 6.15 Snapshots of the sidewinding Snakebot, immediately after damage to 1 (a), 2 (c), 4 (e),
and 8 (g) segments, and after having recovered from the damage (b, d, f, and h) by adaptation via
GP with LPCSG. The damaged segments of Snakebot are shown in a dark color

Fig. 6.16 The frontal view of the Snakebot before (a) and after the adaptation (b) to the damage
of single segment. The corresponding views from above of the sidewinding Snakebot are shown in
Fig. 6.15a and 6.15b respectively

fitness landscape would feature wide areas covered by low plateaus, which might
render the simulated evolution to a poorly-guided or even a random search with rel-
atively low computational efficiency. The information-driven evolutionary design,
which introduces spatiotemporal measures of coordination of the modules that in-
directly approximate the fitness function, is promising to be an interesting way to
address such a problem (Prokopenko et al. 2006).

154 I. Tanev

An alternative approach to address the issue of evolving an initially trapped
Snakebot is to employ a derivation of the above discussed GP with LMS, in which
the probabilities of applying the production rules are learned interactively from the
parsed syntax of the Snakebots that, according to the human observer, are believed
to exhibit behavioral features that are relevant for overcoming the obstacles (e.g.,
symmetrical shape, well-synchronized motion of segments, elevation of the body,
etc.). Because these features might not be necessarily exhibited by the current best-
performing Snakebots, they would provide the evolution with an additional insight
about the promising areas in the fitness landscape. The preliminary results indicate
that employing such an interactive feature-oriented GP via LMS can be associated
with improved efficiency in that the locomotion gaits of Snakebot evolve faster and
to higher velocities than those of the canonical GP (Tanev 2006).

6.6 Conclusion

In this work we propose an approach of incorporating LMS implemented via
LPCSG in GP and verified it on the efficiency of evolution and adaptation of lo-
comotion gaits of simulated Snakebot. We introduced a biased mutation in which
the probabilities of applying each of particular production rules with multiple right-
hand side alternatives in the LPCSG depend on the context, and these probabilities
are “learned” from the aggregated reward values obtained from the evolved best-
of-generation Snakebots. Empirically obtained results verify that employing LMS
contributes to the improvement of computational effort of both (i) the evolution of
the fastest possible locomotion gaits for various fitness conditions and (ii) adapta-
tion of these locomotion gaits to challenging environment and degraded mechanical
abilities of Snakebot.

Recent discoveries in molecular biology and genetics suggest that mutations do
not happen randomly in Nature (Caporale 2003; Kirschner and Gerhart 2005) In-
stead, some fragments of DNA tend to repel the mutations away, while other frag-
ments seem to attract them. It is assumed that the former fragments are related to
the very basics of life, and therefore, any mutation within them can be potentially
fatal to the species. We consider the ability of the Snakebot to move as an anal-
ogy of these very basics of life. Preserving the corresponding genotypic areas from
mutations and focusing on genetic changes that facilitate the discovery of the ben-
eficial phenotypic properties (e.g., additional elevation of the body and increased
winding angle) of the already evolved fast locomotion gaits improves the efficiency
of evolution and adaptation of the Snakebot to challenging environments and partial
damages. The proposed approach contains no domain specifics and therefore can be
incorporated into genetic programming for solving a wide range of problems from
various problem domains.

Considering the situational awareness as a necessary condition for any intelligent
autonomous artifact, in our future work would like to investigate the feasibility of
incorporating sensors that allow the Snakebot to explicitly perceive the surrounding

6 Learning Mutation Strategies for Evolution and Adaptation 155

environment. We are especially interested in sensors that do not compromise the
robustness characteristics of the Snakebot—such as, for example, Golgi’s tendon
receptors, incorporated inside the potentially completely sealed Snakebot.

Acknowledgements The author thanks Katsunori Shimohara, Thomas Ray and Andrzej Buller
for their support of this work.

References

Andrusenko, Y. (2001). Russian culture navigator: Miturich-Khlebnikovs: art trade runs in the
family. Available at http://www.vor.ru/culture/cultarch191_eng.html.

Angeline, P. J. (1994). Genetic programming and emergent intelligence. In K. E. Kinnear Jr. (Ed.),
Advances in genetic programming (pp. 75–98). Cambridge: MIT Press.

Antonisse, J. (1991). A grammar-based genetic algorithm. In G. J. E. Rawlins (Ed.), Foundations
of the genetic algorithm workshop (FOGA) (pp. 193–204). San Francisco: Morgan Kaufmann.

Bongard, J. C., & Lipson, H. (2004). Automated damage diagnosis and recovery for remote
robotics. In IEEE proceedings of the 2004 international conference on robotics and automa-
tion (ICRA 2004) (pp. 3545–3550). New York: IEEE.

Bosman, P., & de Jong, E. (2004). Learning probabilistic tree grammars for genetic programming.
In Proceedings of the 8th international conference on parallel problem solving from nature
PPSN-04 (pp. 192–201). London: Springer.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., & Maler, E. (2000). Extensible Markup Lan-
guage (XML) 1.0, Second Edition, W3C Recommendation. Available at http://www.w3.org/TR/
REC-xml/.

Caporale, L. H. (2003). Darwin in the genome: molecular strategies in biological evolution. New
York: McGraw-Hill/Contemporary Books.

Dowling, K. (1997). Limbless locomotion: learning to crawl with a snake robot (Doctoral disser-
tation, Technical Report CMU-RI-TR-97-48). Robotics Institute, Carnegie Mellon University.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Read-
ing: Addison-Wesley.

Hirose, S. (1993). Biologically inspired robots: snake-like locomotors and manipulators. Oxford:
Oxford University Press.

Ito, K., Kamegawa, K., & Matsuno, F. (2003). Extended QDSEGA for controlling real robots—
acquisition of locomotion patterns for snake-like robot. In IEEE proceedings of IEEE interna-
tional conference on robotics and automation (ICRA 2003) (pp. 791–796). New York: IEEE.

Kamio, S., Mitsuhashi, H., & Iba, H. (2003). Integration of genetic programming and reinforce-
ment learning for real robots. In E. Cantú-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U.-M.
O’Reilly, H.-G. Beyer, R. K. Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener,
D. Dasgupta, M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, & J. F. Miller (Eds.),
Proceedings of the genetic and evolutionary computations conference (GECCO 2003) (pp. 470–
482). Berlin: Springer.

Kimura, H., Yamashita, T., & Kobayashi, S. (2001). Reinforcement learning of walking behav-
ior for a four-legged robot. In Proceedings of 40th IEEE conference on decision and control,
Orlando, USA (pp. 411–416).

Kirschner, M. W., & Gerhart, J. C. (2005). The plausibility of life: resolving Darwin’s dilemma.
New Haven: Yale University Press.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural
selection. Cambridge: MIT Press.

Levitan, I. B., & Kaczmarek, L. K. (2002). The neuron: cell and molecular biology. New York:
Oxford University Press.

http://www.vor.ru/culture/cultarch191_eng.html
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

156 I. Tanev

Mahdavi, S., & Bentley, P. J. (2003). Evolving motion of robots with muscles. In Proceedings of
EvoROB2003, the 2nd European workshop on evolutionary robotic (EuroGP 2003), Essex, UK
(pp. 655–664).

O’Neill, M., & Ryan, C. (2003). Grammatical evolution: evolutionary automatic programming in
an arbitrary language. Norwell: Kluwer.

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (1999). BOA: the Bayesian optimization algorithm.
In Proceedings of the genetic and evolutionary computation conference (GECCO-99), Orlando,
USA (pp. 525–532).

Prokopenko, M., Gerasimov, V., & Tanev, I. (2006). Evolving spatiotemporal coordination in a
modular robotic system. In S. Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco,
J.-A. Meyer, O. Miglino, & D. Parisi (Eds.), Lecture notes in computer science: Vol. 4095. From
animals to animats 9: 9th international conference on the simulation of adaptive behavior (SAB
2006), Rome, Italy, 25–29 September 2006 (pp. 558–569). Berlin: Springer.

Shan, Y., McKay, R. I., & Baxter, R. (2004). Grammar model-based program evolution. In Pro-
ceedings of the 2004 IEEE Congress on evolutionary computation, 20–23 June, Portland, Ore-
gon (pp. 478–485).

Smith, R. (2006). Open dynamics engine. Available at http://q12.org/od.
Takamura, S., Hornby, G. S., Yamamoto, T., Yokono, J., & Fujita, M. (2000). Evolution of dynamic

gaits for a robot. In Proceedings of the IEEE international conference on consumer electronics,
Los Angeles (pp. 192–193).

Tanev, I. (2006). Interactive learning of mutation strategies in genetic programming. In Proceed-
ings of the 5th joint symposium between Chonnam National University and Doshisha Univer-
sity, Kwangju, Korea (pp. 83–87). Chonnam: Chonnam University Press.

Tanev, I., & Ray, T. (2005). Evolution of sidewinding locomotion of simulated limbless, wheelless
robots. Artificial Life and Robotics, 9, 117–122.

Tanev, I., Ray, T., & Buller, A. (2005). Automated evolutionary design, robustness and adaptation
of sidewinding locomotion of simulated snake-like robot. IEEE Transactions on Robotics, 21,
632–645.

Wong, M. L. (2005). Evolving recursive programs by using adaptive grammar based genetic pro-
gramming. Genetic Programming and Evolvable Machines 6, 421–455.

http://q12.org/od

Chapter 7
Self-Organization as Phase Transition
in Decentralized Groups of Robots:
A Study Based on Boltzmann Entropy

Gianluca Baldassarre

7.1 Introduction

An important goal of collective robotics (Dudek et al. 1996; Cao et al. 1997; Dorigo
and Sahin 2004; Dorigo et al. 2004) is the development of multi-robot systems ca-
pable of accomplishing collective tasks without centralized coordination (Kube and
Zhang 1993; Holland and Melhuish 1999; Ijspeert et al. 2001; Quinn et al. 2003).
From an engineering point of view, decentralized multi-robot systems have several
advantages vs. centralized ones in some tasks. For example, they are more robust
with respect to the failure of some of their composing robots, do not require a con-
trol system or robot with sophisticated computational capabilities to manage the
centralized control (Kube and Bonabeau 2000), have a high scalability with respect
to the whole system’s size (Baldassarre et al. 2006, 2007a), and tend to require sim-
pler robots due to the low requirements of communication as they often can rely
upon implicit coordination (Beckers et al. 1994; Trianni et al. 2006).

Decentralized coordination is usually based on self-organizing principles. Very
often research on decentralized multi-robot systems makes a general claim on the
presence of these principles underlying the success of the studied systems, but it
does not conduct a detailed analysis of which specific principles are at work, nor
it attempts to measure their effects in terms of the evolution of the system’s orga-
nization in time or to analyze the robustness of its operation versus noise (e.g. see
Holland and Melhuish 1999; Krieger et al. 2000; Kube and Bonabeau 2000; Quinn
et al. 2003). This paper studies some of these issues in a multi-robot system pre-
sented in detail elsewhere (Baldassarre et al. 2003, 2006, 2007a, 2007b). This sys-
tem is formed by robots that are physically connected and have to coordinate their
direction of motion to explore an open arena without relying on a centralized co-
ordination. The robots are controlled by an identical neural network whose weights

G. Baldassarre (B)
Laboratory of Autonomous Robotics and Artificial Life, Istituto di Scienze e Tecnologie della
Cognizione, Consiglio Nazionale delle Ricerche (LARAL-ISTC-CNR), Rome, Italy
e-mail: gianluca.baldassarre@istc.cnr.it

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_7,
© Springer-Verlag London 2013

157

mailto:gianluca.baldassarre@istc.cnr.it
http://dx.doi.org/10.1007/978-1-4471-5113-5_7

158 G. Baldassarre

are evolved through a genetic algorithm. Through this algorithm the system devel-
ops the capacity to solve the task on the basis of self-organizing principles. The goal
of this paper is to present some preliminary results that show how such principles
lead the organization of the system, measured through a suitable index based on
Boltzmann entropy, to arise in a quite abrupt way if the noise/signal ratio related to
the signal that allows the robots to coordinate is slowly decreased. With this respect,
the paper argues, on the basis of theoretical arguments and experimental evidence,
that such sudden emergence of organization shares some properties with the phase
transitions exhibited by some physical system studied in physics (Anderson 1997).

The rest of the paper is organized as follows. Section 7.2 presents a qualitative de-
scription of the mechanisms that are usually behind self-organization and introduces
an index, based on Boltzmann entropy, that can be used to measure the synchronic
level of order of a system composed of many dynamical parts. Section 7.3 illus-
trates the robots forming the multi-robot system considered here, the collective task
tackled with it, the neural controller of the robots, and the genetic algorithm used
to evolve it. Section 7.4 analyzes the behavior of the single robots developed by the
genetic algorithm, and the effects it has at the collective level. Section 7.5 uses the
entropy index to show that, when the noise/signal ratio related to the signal used by
the robots to coordinate is slowly decreased, the level of order of the robotic sys-
tem behaves as some global organization parameters observed in phase transitions
of some physical systems. Finally, Sect. 7.6 draws the conclusions.

7.2 Mechanisms of Self-Organization, Phase Transitions,
and Indexes to Measure the Organization Level of Collective
Systems

Prokopenko et al. (2009) (see also Chap. 1 Prokopenko 2008) suggest that self-
organization is characterized by three features: (a) it causes the parts forming a
collective system to acquire global coordination; (b) this coordination is caused by
the local interactions and information exchange between the parts composing the
system and not by a centralized ordering mechanism; (c) the system passes from
less organized states to more organized states. This section first tackles points (a)
and (b) from a qualitative perspective, by presenting three basic mechanisms that
usually underlie self-organization. Then it presents an index based on Boltzmann
entropy that can be used to measure the level of order of a collective system at
a given instant of time. This index can be used, as illustrated in the succeeding
sections, to measure the level of organization of a multi-robot system under the
action of self-organizing processes and hence to study point (c). Finally the section
presents some theoretical arguments in favor of the hypothesis for which in some
cases the dynamics of order exhibited by self-organizing multi-robot systems, as the
one considered here, might have the features of phase transitions studied in physics.
These arguments are supported by the experimental results presented in Sect. 7.5.

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 159

7.2.1 Qualitative Mechanisms of Self-Organization

Self-organizing processes regard systems composed of several and usually simi-
lar components. Self-organizing processes usually (always?) rely upon three basic
principles (Camazine et al. 2001): (a) random fluctuations; (b) positive feedback;
(c) negative feedback. These principles are now illustrated in detail.

The elements composing self-organizing systems are usually dynamic in the
sense that they can assume one state among a certain number of possible states
at each time step, and pass from state to state in time. Fully disorganized systems
are those where each component passes from state to state in a random fashion.
A typical feature of such systems is that the distribution of the components over the
possible states tends to be uniform, that is symmetric (e.g., a school of fish randomly
swimming in an aquarium tend to have a uniform distribution in the aquarium’s wa-
ter).

The symmetry of a collective system formed by components driven by random
dynamics tends to be imperfect in the sense that it tends to have random fluctua-
tions in time due to noise (e.g., there are some areas of the aquarium with a slightly
higher density of fish). Now consider the possibility that each component of the sys-
tem does not move (only) randomly, but tends to assume the states assumed by some
other components of the system, that is it individually follows a conformist rule of
the kind “I do what you do” (e.g., fish move to portions of space where other fish
are located, so as to minimize the chance of being found alone by predators). In this
condition, it might happen that some random fluctuations are amplified: indeed, the
larger the number of components that assume a certain state vs. other states, the
more intensely the remaining components will tend to imitate their state, so caus-
ing an exponential avalanche effect with a consequent symmetry break of the initial
uniform distribution (e.g., the fish tend to cluster and form a whole school). The pro-
cess that leads to this amplification is called positive feedback. In all real systems,
the action of positive feedback tends to be counterbalanced by negative feedback.
The latter might assume the form of an active process (e.g., the fish tend to clus-
ter to avoid predators, but they also tend to keep at a certain minimal distance to
avoid collisions) or a passive process (e.g., all fish have converged to the same zone
in space) so the process of convergence stops. Starting from an initial uniform dis-
tribution, and after a first exponential convergence of the elements of the system to
similar states due to positive feedback, negative feedback will start to slow down the
process of convergence. With this respect, negative feedback tends to operate with
a strength positively related to the number of elements that have already converged
to the same states (e.g., to avoid collisions the fish “repulsion” behavior might be
implemented with more vigor in space areas with higher densities of conspecifics as
such densities correspond to smaller distances and higher chances of collision). For
this reason negative feedback usually increases to levels that fully counterbalance
the effect of positive feedback. At this point usually the system’s overall state tends
to reach equilibrium (e.g., the density of the fish school remains within a certain
range; for examples of simulations of flocks, herds and schools of animals, see the
seminal paper of Reynolds (1987), and the literature that followed it linked in the
web page http://www.red3d.com/cwr/boids/).

http://www.red3d.com/cwr/boids/

160 G. Baldassarre

7.2.2 An Index to Measure the Synchronous Level of Organization
of Collective Systems Based on Boltzmann Entropy

The index used to measure the level of order of the group of robots studied here is
based on Boltzmann entropy. Note that the index can be used to measure the level of
organization of a collective system independently of the fact that such organization
is the result of the action of self-organizing or of centralized coordination mecha-
nisms. Boltzmann entropy has been proposed in mechanical statistics to measure the
level of disorder that characterizes a system formed by a set of N gas molecules that
occupy a given portion of space. This portion of space is divided into an arbitrary
number C of cells each having a constant volume (in general the number of cells
will influence the outcome of the application of the index, but, as we will see, the
index can be suitably normalized to avoid this problem). The index is based on the
assumption that the elements composing the system move randomly. This implies
that at any time step an element can occupy any cell with a constant probability
1/C (the cell occupied by the element will constitute the element state). To give an
example of this, consider the case of the robotic system studied here. This system
is composed of N = 40 robots. Each robot can assume a given direction of motion
ranging over a 1D closed space that ranges over [0◦,360◦] degrees. If this space is
divided into C = 8 cells of constant size, at each time step the probability that an
element occupies a given cell is equal to 1/8.

The computation of the index is based on the so called microstates and
macrostates of the system. A microstate of the system corresponds to all individual
states of the elements in a given time step. For example, in a system with N = 2
and C = 2, the microstate is the vector (c1, c2) where cn is the cell occupied by the
element n. Note that the microstate is a vector and not a simple set, that is the order
of the cn states of the elements is relevant: this is a consequence of the fact that
the identity of the elements is assumed to be distinguishable. So, for example, given
a system with N = 2 and C = 2, the microstate where the first element occupies
the first cell and the second element occupies the second cell is different from the
microstate where the first element occupies the second cell and the second element
occupies the first cell, even if in both cases the system has one element in the first
cell and one element in the second cell. As each element can be in one of C possible
different states, the number of different possible microstates is CN .

Indicating with Ni the number of elements in cell i, a macrostate of the system is
defined as the distribution (N1,N2, . . . ,Ni, . . . ,NC) of the elements over the cells,
without considering the identity of the elements. An example of distribution for the
system with N = 2 and C = 2 is (0,2), this meaning that there are zero elements
in the first cell and two elements in the second cell. Each macrostate is (usually)
composed of several possible microstates as the distribution of elements over the
cells that correspond to it can be obtained in different ways. For example, in the N =
2,C = 2 system, the macrostate (1,1) with one element in each cell is composed of
two microstates, that is (1,2) and (2,1). The other two macrostates (2,0) and (0,2),
respectively with both elements in the first and the second cell, are each composed
of only one microstate each, respectively (1,1) and (2,2).

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 161

Boltzmann entropy Em refers to the macrostate m of the system at a given time
step and is defined as follows:

Em = k ln[wm] (7.1)

where wm is the number of microstates of m, ln[·] is the natural logarithm and k is
a scaling constant.

As at any time-step the probability of having any microstate is constant and equal
to 1/CN . The probability that the system is in a given macrostate is proportional to
the number of microstates that compose it: this probability is equal to wm/CN .
Now consider the possibility that an ordering mechanism (e.g., a flow of energy that
goes trough the system) starts to operate on the elements of the system previously
subject only to noise. This mechanism is “ordering” in the sense that it drives the
system towards macrostates composed of fewer microstates, so it operates against
the noise, that is against the evolution that the system would undergo if only driven
by randomness. The important point for Boltzmann entropy is that as the elements
of the system wander across the different states due to noise, and hence the sys-
tem wanders across the different corresponding microstates, at a given time step the
system has a high probability of being in macrostates that are formed by many mi-
crostates vs. macrostates that are formed by few microstates. As Boltzmann entropy
is positively related to the number of microstates that compose the macrostate of the
system, it can be considered a measure of the disorder of the system caused by the
random forces acting on its composing elements and operating against the ordering
mechanisms eventually existing within it. This also implies that Boltzmann entropy
can be used as an index to detect the presence and level of effectiveness of ordering
mechanisms operating in the system: the lower the value of the index, the stronger
the effectiveness of such mechanisms.

Notice that highly disordered macrostates correspond to situations where the el-
ements of the system tend to be more equally distributed over the cells (these are
macrostates composed by many microstates), hence to situations where the system
is highly symmetric, whereas ordered macrostates correspond to situations where
the system is asymmetric, for example macrostates where the system’s elements
gather in few cells (these are macrostates composed by relatively few microstates).
With this respect, ordering mechanisms operating on the system tend to lead it from
symmetric to asymmetric global states.

The reader should note an important feature of the index of disorder used here: it
allows computing the level of disorder of a dynamical system at a given time step,
whereas many other indexes applied to dynamical systems, such as the entropy rate
and the excess entropy, are used to capture the regularities of the states visited by
the systems in time (Feldman 1998; Prokopenko et al. 2006). This property allows
the use of the index to study how the level of order of systems evolves in time, as
done here and in Baldassarre et al. (2007a). Intuitively, the reason why the index
can compute the level of disorder of a system at an instant of time, i.e., on the
basis of a “synchronic picture” of it, is that unlike other indexes it does not need to
compare the states that system assumes in time in order to estimate the probabilities

162 G. Baldassarre

of such states. But it rather computes such probabilities on the basis of the potential
microstates that the system might have assumed if driven by sheer random forces.

Calculating the specific value of the index for a particular macrostate m assumed
by a system requires computing the number wm of microstates that compose it. This
number can be obtained as follows:

wm = N !
N1!N2! · · ·NC !

C∑

i=1

Ni = N (7.2)

where Ni is the number of elements in the cell c, and “!” is the factorial operator.
The formula relies upon the fact that there are ((N)(N − 1) · · · (N − N1 + 1))/N1!
different possible sets of elements that can occupy the first cell, there are ((N −
N1)(N − N1−1) · · · (N − N1 − N2 + 1))/N2! different sets of elements that can
occupy the second cell for each set of elements occupying the first cell, and so on.
The expression for wm is given by the multiplication of these elements referring to
all the C cells. Substituting Eq. (7.2) into Eq. (7.1) of the index one has:

Em = k ln[wm] = k ln

[
N !

N1!N2! · · ·NC !
]

= k

(

ln[N !] −
C∑

i=1

ln[Ni !]
)

(7.3)

Once N and C are given, the maximum entropy is equal to the entropy of the
macrostate where the N elements are equally distributed over the cells. This allows
setting k to one divided by the maximum entropy, obtaining, from Eq. (7.3), a nor-
malized entropy index ranging in [0,1]:

Em = k ln[wm] = 1

ln[N !
((N/C)!)C] ln[wm]

= 1

ln[N !] − C ln[(N/C)!]

(

ln[N !] −
C∑

i=1

ln[Ni !]
)

(7.4)

Last, the calculation of the index can avoid the computation of the factorials, which
becomes unfeasible for increasing integers, by using the Stirling’s approximation:

ln[n!] ≈
(

n + 1

2

)

ln[n] − n + ln
[√

2π
]

(7.5)

Stirling’s approximation gives increasingly good approximations for integers n of
increasing size (e.g., the error of approximation goes below 0.5 % for n > 20).

7.2.3 An Hypothesis: Self-Organization of Multi-Robot Systems
as a Phase Transition

One of the main contributions of this paper is to present some results that suggest
that the self-organization of robotic systems as those considered here might have

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 163

Fig. 7.1 Example of phase
transition studied in physics.
Y -axis: a measure of
magnetization (fourth-order
cumulant) in a spin-1 Ising
model. X-axis: temperature.
Reported from Tsai and
Salinas (1998: copyright of
the Brazilian Journal of
Physics)

the features of phase transitions as those studied in physics. According to Wikipedia
(2008) (http://en.wikipedia.org/wiki/Phase_transition), a phase transition can be de-
fined as follows: “In physics, a phase transition, or phase change, is the transfor-
mation of a thermodynamic system from one phase to another. The distinguishing
characteristic of a phase transition is an abrupt sudden change in one or more phys-
ical properties, in particular the heat capacity, with a small change in a thermody-
namic variable such as the temperature” (Italics added). The distinguishing feature
of a phase transition is hence the fast change of a variable related to the collective
level of a system (e.g., the heat capacity of a gas, that is the capacity of a whole
gaseous system to absorb energy when temperature changes of a certain amount)
when a variable related to the behavior of the composing elements (e.g., the average
noisy movement of the molecules of a gas, captured by the temperature) is slowly
changed and passes a critical value that characterizes the phase transition.

The diagram of Fig. 7.1 shows an example of phase transition in a physical sys-
tem, illustrated through a result obtained in physics with a spin-1 Ising model re-
lated to finite spin systems (Tsai and Salinas 1998). This example shows how the
magnetization properties of the spin system undergoes an abrupt change when the
temperature of the system is slowly decreased below a critical value.

Here we suggest that the dynamics of organization generated by self-organizing
principles in multi-robot systems might share some features with that of the global
organization exhibited by some physical systems undergoing a phase transition.
The suggestion stems from the following considerations. The behavior of individ-
ual robots is affected by noise that influences their sensors’ reading and actuators’
performance. This noise causes the robots to act in a random disorganized fash-
ion. On the other side, the controller of the robots might implement an “ordering
mechanism” of the kind “I do what you do” that tends to generate self-organization
within the system. However, in order to lead the whole system to successfully self-
organize (i.e., all robots converge on the same behavior), the ordering mechanism
has to overcome the effects of noise. This requires three conditions: (a) the signal

http://en.wikipedia.org/wiki/Phase_transition

164 G. Baldassarre

that is perceived by the robots through the sensors, that informs them on the be-
havior of the other robots (i.e., that allows the robots to know “what you do”), is
sufficiently high with respect to noise; (b) the commands issued to the motors (i.e.,
the “I do” part) are sufficiently effective and succeed to overcome the noise affect-
ing actuator’s response; (c) the controller is capable of implementing a “conformist
principle” that self-organization needs to function (i.e., to implement the causation
“what you do → I do”).

These considerations suggest the following prediction: in the case the actuators
are sufficiently reliable, the controllers are sufficiently effective, and the controller
produces a conformist behaviour, if the noise/signal ratio related to the robots sen-
sors is slowly decreased starting from high values, then the organization of the sys-
tem generated by self-organizing principles should abruptly emerge, as in phase
transitions studied in physics. The fact that such order should emerge “abruptly” is
due to the fact that once self-organization succeeds to amplify some random fluc-
tuations vs. noise, that is to overcome the “noise barrier” that initially prevents the
emergence of the system’s organization by continuously disrupting the asymmetries
generated by the random fluctuations, then the positive feedback mechanism gen-
erates a self-reinforcing process that further strengthens the signal that enforces the
robots to adopt the same behavior. Consequently, such signal definitely overcomes
noise and the system “remains locked” in the organized phase and resists external
perturbations due to noise. Section 7.5 will present some preliminary results that
support this prediction and the related explanation.

7.3 Robots and Task

The scenario used for the experiments consists of a group of simulated robots (from
4 to 36, see Figs. 7.2 and 7.6, the latter explained later) set in an open arena. The
robots are physically linked (they are manually assembled before the experiment)
and their controller is evolved with a genetic algorithm. The task of the robots is
to harmonize their direction of motion in order to move together as far as possible
from the initial position in a given amount of time.

The simulation of the robots was carried out with a C++ program based on Vor-
tex™ SDK, a set of commercial libraries that allow programming realistic simula-
tions of dynamics and collisions of rigid bodies in three dimensions. The simulation
of each robot was based on the prototype of a hardware robot that was built within
the project SWARM-BOTS funded by the European Union (Mondada et al. 2004;
see Fig. 7.2). Each robot was composed of a cylindrical turret with a diameter of
5.8 cm and a chassis with two motorized wheels at the two sides and two caster
wheels at the front and at the rear for stability. The simulated robot was half the size
of the hardware robot: this decreased the weights of the simulated bodies and so
allowed decreasing the simulation time step of Vortex and decreasing the computa-
tional burden of the simulations (see below).

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 165

Fig. 7.2 Top: The hardware robots. Bottom: The simulated robots. Each simulated robot is made
up by a chassis having two motorized cylindrical wheels and two smaller caster wheels (the visible
dark-gray caster wheel marks the front of the chassis). The chassis supports a cylindrical turret (the
arrow on the turret indicates its orientation)

The chassis was capable of freely rotating with respect to the turret through a
further motor. This motor was activated on the basis of the difference of the acti-
vation of the motors of the two side wheels to ease the robots’ turning while being
physically linked to other robots (see Baldassarre et al. 2006, for details). The turret
was provided with a gripper through which the robot could grasp other robots: this
gripper was simulated through a rigid joint connecting the robots since our work
focused on the behavior of groups of robots that were physically linked between
them during the whole duration of the experiments. The gravitational acceleration
coefficient was set at 9.8 cm/s2 and the maximum torque of the wheels’ motors was
set at 70 dynes/cm. These low parameter settings, together with the small size of
the robots, allowed the use of a relatively fast integration time step in Vortex lasting
100 ms. This was desirable since simulations based on Vortex are computationally
very heavy. The speed of the wheels was updated by the robots’ controllers every
100 ms and could vary within ±5 rad/s.

166 G. Baldassarre

Each robot had only a sensor, a special sensor called traction sensor (introduced
for the first time in Baldassarre et al. 2003). This sensor was placed between the
turret and the chassis. The sensor indicated to the robot the angle (with respect to
the chassis orientation) and the intensity of the force that the turret exerted on the
chassis. During the tests this force was caused by the physical interactions between
the robots, in particular by the mismatch of the direction of movement of the chas-
sis of the robot with respect to the movement of its turret and hence of the robots
attached to it. Notice that if one assumes a perfect rigidity of the physical links, the
turrets and the links of the robots of the group formed a whole solid body, so the
traction measured the mismatch of movement between the robot’s chassis and the
rest of the group. Traction, seen as a vector, was affected by a 2D noise of ±5 % of
its maximum length (computed based on a simulation where one robot tries to move
at maximum speed and the group is still).

The controller of each robot was a two-layer feed-forward neural network. The
input layer was composed of four sensory units that encoded the traction force from
four different preferential orientations with respect to the chassis orientation (rear,
left, front and right). When the angle was within ±90◦, each of these units had
an activation proportional to the cosine of the angle between the unit’s preferential
orientation and the traction direction. With angles different from ±90◦, the units
had a zero activation. The units’ activation was also multiplied by the intensity of
traction normalized in [0,1] based on its maximum value. The last unit of the input
layer was a bias unit that was constantly activated with 1. The output of the neural
network was formed by two sigmoid output units. These units were used to activate
the wheels’ motors by mapping their activation onto the range of the desired speed
motor commands that varied in ±5 rad/s.

The connection weights of the neural controllers were evolved through an evolu-
tionary algorithm (Nolfi and Floreano 2001). Initially the algorithm created a popu-
lation of 100 random genotypes. Each genotype contained a binary encoding of the
ten connection weights of the neural controller (the weights ranged over ±10). The
neural controller encoded by a genotype was duplicated for a number of times equal
to the number of robots forming a group, and these identical controllers were used
to control the robots themselves (so the robots were “clones”).

Groups of four robots connected to form a line were used to evolve the con-
trollers. Each group was tested in five epochs each lasting 150 cycles (15 s). At the
beginning of each epoch the robots were assigned random chassis’ orientations. The
20 genotypes corresponding to the groups with the best performance of each gener-
ation were used to generate five copies each. Each bit of these copies was mutated
(flipped) with a probability of 0.015. The whole cycle composed of these testing,
selecting, and reproducing phases was repeated 100 times (generations). The whole
evolutionary process was replicated 30 times by starting with different populations
of randomly generated genotypes. Notice that in this evolutionary algorithm one
genotype corresponds to one robots’ group (so the group is the unit of selection of
the genetic algorithm), and the robots’ groups compete and are selected as wholes.
This allows obtaining groups composed of highly cooperating individuals so avoid-
ing the risk of the emergence of “free rider” individuals within them.

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 167

Fig. 7.3 The fitness (y-axis)
of the best robots’ group (thin
curve), and average of the
whole population (bold
curve), across the 100
generations of one of the best
evolutionary processes
(x-axis)

The genetic algorithm selected the best 20 genotypes (groups) of the population
of each generation on the basis of a fitness criterion capturing the ability of the
groups to move as straight and as fast as possible. In particular, the Euclidean dis-
tance covered by each group from the starting point to the point reached at the end of
the epoch was measured and averaged over the five epochs. To normalize the value
of the fitness within [0,1] the distance averaged over the five epochs was divided
by the maximum distance covered by a single robot moving straight at maximum
speed in 15 s (one epoch).

7.4 Analysis of the Emerged Self-Organizing Behavior
at the Individual and Collective Level

The graph of Fig. 7.3 shows how the fitness of the best group and the average fitness
of the whole population of 100 groups increase throughout the generations in one
evolutionary run. Testing the best groups of the last generation of each of the 30
evolution replications for 100 epochs showed that the best and worst group have a
performance of respectively 0.91 and 0.81. This means that all the evolutionary runs
produce groups that are very good in coordinating and moving together.

Now the functioning of the evolved behavior will be described at the individual
level and then at the collective level, focussing on the controller emerged in the 30th
run of evolution (one with top fitness). Overall, the behavior of single robots can
be described as a “conformist behavior”: the robots tend to follow the movement of
the group as signaled by their traction sensors. Figure 7.4 shows more in detail the
commands that the controller issues to the motors of the wheels in correspondence
to different combinations of intensities and angles of traction. If a robot is moving
towards the same direction of motion of the group, the robot perceives a zero or low
traction from the front (around 180◦): in this case the robot keeps moving straight. If
the robot is moving in one direction and the group moves towards its left hand side,
it tends to perceive a traction from the left (around 90◦) and as a consequence turns
left. Similarly, if the robot is moving in one direction and the group moves towards
its right hand side, it tends to perceive a traction from the right (around 270◦) and as
a consequence turns right. Finally, if the robot moves in the opposite direction with

168 G. Baldassarre

Fig. 7.4 The graph shows how a robot’s left motor (bold curves) and right motor (thin curves)
react to a traction force with eleven different levels of intensity (different bold and thin lines) and
angles measured clockwise from the rear of the chassis of the robot (x-axis). The speed of the
wheels (y-axis) is scaled between −1 (that corresponds to a wheel’s maximum backward speed)
and +1 (wheel’s maximum forward speed)

respect to the group’s movement, it perceives a traction from the rear (around 0◦):
in this case the robot tends to move straight, but since this is an unstable equilibrium
state situated between the behaviors of turning left and right, the robot soon escapes
it due to noise.

When the evolved robots are tested together, one can observe that they start to
pull and push in different directions selected at random. In fact initially there is
symmetry in the distribution of the motion directions over 360◦. Noise causes some
robots to move toward similar directions. If one of these random fluctuations eventu-
ally gains enough intensity, so that the other robots feels a traction in that direction,
it breaks the initial symmetry: other robots start to follow such bearing, and in so
doing they further increase the traction felt by the non-aligned robots toward the
same direction. The whole group will hence rapidly converge toward the same di-
rection of motion: the positive feedback mechanism succeeds in amplifying one of
the initial random fluctuations so causing an avalanche effect that rapidly leads the
whole group to coordinate.

It is important to note that the common direction of motion that emerges in one
coordinated motion test is the result of a collective decision based on the amplifica-
tion of some fluctuations that depend on the robots’ initial random orientations. As
a consequence, as shown in Fig. 7.5, if the test is repeated more times the group’s
direction of motion that emerges is always different.

Similarly important, in some tests where the robots’ chassis have particular initial
orientations, the group starts to rotate around its geometrical center. This collective
behavior is a stable equilibrium for the group since the robots perceive a slight
traction towards the center of the group itself, which makes them to keep moving in
circle around it. The experiments show that the stronger the symmetry of the group
with respect to its center, the more likely that it falls into this stable state.

The illustrated robots’ behavior indicates that the distributed coordination per-
formed by the evolved robots’ controller relies upon the self-organizing mechanism

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 169

Fig. 7.5 The absolute angles
(with respect to the
environment) of the chassis’
orientations of the four robots
forming a group (y-axis)
measured in two tests
(respectively bold and thin
curves) where the initial
orientations are randomly
selected

of positive feedback. Indeed, the behavior that the robots exhibit at the individual
level is of the type “conform to the behavior of the group”, as requested by the
positive feedback mechanism (see Sect. 7.2.1). Moreover at the collective level, as
illustrated in Fig. 7.5, this behavior leads the robots to amplify some random fluctu-
ations that eventually move the system away from the initial symmetric state. As a
consequence the system achieves a complete asymmetric ordered state correspond-
ing to a very good alignment and coordination of the robots.

7.5 The Emergence of Organization vs. Noise: A Phase
Transition?

This section presents some results that suggest that the organization generated by
the self-organizing mechanisms presented in the previous sections might have some
features in common with the organization observed in phase transitions of physi-
cal systems. Notice that to gain stability of the data, the tests reported in this sec-
tion were carried out with a group of robots formed by far more individuals than
those that composed the group with which the controller was evolved, precisely 36
(Fig. 7.6). This was possible because, as shown in detail elsewhere (Baldassarre
et al. 2006, 2007b), the evolved controller has very good scaling properties due to
the self-organizing mechanisms it relies upon.

First of all, let us see how the entropy index was applied to the robotic system.
The possible orientation angle of each robot, within the range [0◦,360◦] (this was
considered as the state space of the elements of the system), was divided into eight
“cells” of 45◦ each. The 0◦ angle was set to correspond to 22.5◦ clockwise with
respect to the absolute angle of one particular robot chosen as “pivot” (the angles
of the other robots were then computed anticlockwise with respect to this origin an-
gle). Notice that while the origin angle on the basis of which the cells are computed
is arbitrary, the selection done here assured that when the group achieved high co-
ordination, the chassis’ orientations of the robots were located close to the center
of the first cell and inside it (minimum entropy). Moreover, as the pivot robot was

170 G. Baldassarre

Fig. 7.6 A group of 36 robots engaged in the coordinated motion task. The black segments be-
tween the turrets of robots’ couples represent the physical connection between them

Fig. 7.7 Entropy of a group
formed by 36 robots engaged
in a coordinated motion task.
The thin lines refers to the
entropy measured in 20 tests
that lasted 200 cycles each
and were run with different
initial random orientations of
the robots’ chassis; the bold
line is the average of the 20
tests

always in the first cell, the number of microstates used to compute the entropy was
computed with respect to N − 1 = 35 and not N robots.

In order to normalize Em within [0,1], the scaling constant k of the index was
set to one divided by the maximum value that ln[wm] (see Eq. (7.1)) could assume
for the studied system, corresponding to a uniform distribution of the chassis’ orien-
tations over the eight cells. In particular, given the low number of robots, for greater
accuracy instead of considering (7.4) the maximum value was directly computed
on the basis of Eq. (7.2) by considering the most uniform distribution that could be
obtained with the 35 robots composing the system:

k = 1/ ln
[
35!/(5! 5! 5! 4! 4! 4! 4! 4!)]≈ 1/ ln

[
7.509∗1026]≈ 1/61.8843 ≈ 0.01615

(7.6)
The graph in Fig. 7.7 illustrates the functioning of the index by reporting the

level of entropy measured during 20 coordinated motion tests run with the system
formed by 36 robots shown in Fig. 7.6. The figure shows how the disorganization of
the group initially decreases exponentially and then stabilizes at a null value when
all the robots have converged to the same direction of motion (see Baldassarre et al.
2007a for a statistical analysis and further considerations on these results).

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 171

Fig. 7.8 Scheme of how the signal perceived by each robot was corrupted by noise at each time
step of the tests depending on the noise/signal ratio: (a) an example of traction signal (continuous
arrow) and noise (dashed arrow) represented as vectors; (b) if the ratio is equal to zero, the signal
is not corrupted by noise (the signal perceived by the robot is represented by the bold arrow); (c) if
the ratio has an intermediate value, for example 0.5 as in this case, the signal is partially corrupted
by noise; (d) if the ratio is equal to one, the signal is completely substituted by noise

Fig. 7.9 Relationship
between the noise/signal ratio
and the level of organization
of the group (equal to the
complement to one of the
normalized entropy)
measured while slowly
lowering the noise/signal
ratio from one to zero.
Average (bold line) ±
standard deviation (thin lines)
of the results obtained in 20
replications of the experiment

The tests directed to evaluate if the self-organization of the robotic system has the
properties of a phase transition relied upon a slow progressive decrease of the ratio
between noise and the signal returned by the traction sensor (recall from Sect. 7.3
that such signal is used by the robots to “know” the direction of movement of the
other robots so as to conform to it). In particular, the noise/signal ratio was built
through the following procedure (see Fig. 7.8): (a) At each time step, a 2D vector
similar to the signal’s vector was randomly generated (this vector had a random di-
rection and a length ranging in [0,1]). (b) The controller of the robot received as
input a vector equal to a weighted average of the random vector and the signal vec-
tor (this average vector was obtained by multiplying the length of the two vectors
by the respective “weights” of the average, and then by computing the sum of the
resulting vectors with the parallelogram rule). (c) The weights of this weighted av-
erage were respectively equal to ε ∈ [0,1] and to (1−ε) for the noise and the signal:
the “noise/signal ratio” manipulated in the experiments presented below was ε.

This computation of the ratio allowed running 20 tests with the 36-robots system
where the noise/signal ratio ε was linearly lowered from one to zero during 20,000
time steps. During these tests the entropy of the group was measured. Figure 7.9
reports the results of these measurements in terms of the relationship between the

172 G. Baldassarre

Fig. 7.10 Level of entropy
(100-step moving average) of
the 36-robot system in 20
tests lasting 10,000 steps
each, when the noise/signal
ratio is set at two different
fixed levels, namely 0.80 and
0.75 for the top and bottom
graph respectively (the level
of the noise/signal ratio is
indicated on the y-axis of
each graph by the bold
arrow). The two bold lines of
the bottom graph refer to two
tests where the system first
reached an ordered state and
then lost it

noise/signal ratio and the level of order of the group (i.e. the complement to one of
the normalized entropy index).

A first relevant fact highlighted by the figure is that the system starts to organize
at a very high level of noise/signal ratio, about 0.8, indicating a surprising robustness
vs. noise of the self-organizing mechanisms employed by the system. Previous work
(Baldassarre et al. 2006) already gave some indications in such direction but this
result overcomes prior expectations and furnishes a quantitative measure of the level
of such robustness.

The second relevant fact is that when the noise/signal ratio is progressively low-
ered, organization does not increase linearly but rather reaches its maximum level
quite abruptly in correspondence to levels of noise/signal ratio ranging approxi-
mately between 0.6 and 0.8. This suggests that there is a critical noise/signal level
in correspondence to which the system exhibits a transition from a disorganized to
an organized state.

To further investigate the possible existence of such critical value, groups of 20
tests where carried out by setting the noise/signal level to fixed values chosen in
the range between 0.9 and 0.6, at intervals of 0.05, and by measuring the level of
entropy of the system in 10,000 cycles of simulation. The goal of these tests was
to verify if there was a critical level of noise/signal ratio above and below which
the system exhibited a discontinuous behavior in terms of overall organization. The
outcome of these tests suggested that this might be the case. In particular Fig. 7.10,
that shows the outcome of these tests for three levels of noise/signal ratio, indicates
that this critical level might be within (0.75,0.80). In fact, if the noise/signal value
is set at 0.80 the entropy of the system fluctuates in the range of (0.80,1.00), that is
around its maximum values (in evaluating the level of order corresponding to such

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 173

noise/signal values, consider that a level of entropy of 0.9 corresponds to quite uni-
form distributions of the robots on the cells, for example: 5,6,6,6,6,5,1,0). On
the contrary, for noise/signal values set at 0.75 in 18 out of 20 experiments the en-
tropy level of the system initially decreases from about 0.95 to about 0.55, indicating
that the system self-organizes, and then stabilizes at values ranging in (0.45,0.65)

(in evaluating the level of order corresponding to such noise/signal values, consider
that a level of entropy of 0.55 corresponds to quite concentrated distributions of
the robots on the cells, for example: 0,1,6,20,7,1,0,0). Once the system “gets
locked” in the ordered state, it tends to resist noise perturbations, as predicted by the
considerations presented in Sect. 7.2.1. Indeed, entropy raised again to high values
only in 2 out of 20 cases after the system reached the ordered state (see bold lines
in the bottom graph of Fig. 7.10).

7.6 Conclusions

This paper presented a multi-robot system guided by a decentralized control system
evolved with a genetic algorithm. The control system is capable of coordinating the
robots so as to accomplish a collective task relying upon a minimal implicit com-
munication between them and self-organizing mechanisms. These self-organizing
mechanisms were first described at the level of individual and collective behavior,
and then the effects they produced on the level of organization of the whole system
were quantitatively analyzed on the basis of an index based on Boltzmann entropy.
This analysis showed that, when one slowly decreases the noise/signal ratio related
to the signal that the robots use to coordinate, the dynamics of the self-organization
exhibited by the system resembles the self-organization characterizing physical sys-
tems undergoing phase-transitions. In particular, the order of the system tends to
emerge quite abruptly when the ratio is lowered below a critical value.

The hypothesis that the dynamics of the level of order of self-organized multi-
robot systems might have the features of a phase transition would have important
implications if confirmed. In fact it would imply that self-organization of collective
systems tends to manifest in an all-or-nothing fashion depending on the quality of
the signals exchanged by the elements forming the system. Moreover, when such
quality overcomes a critical value, even of a small amount, the organization pro-
duced by the self-organizing mechanisms becomes fully effective and robust vs.
noise (as the system “locks in” in its state of order). These implications are rel-
evant for engineering purposes. For example identifying the critical noise-signal
level that characterizes a distributed multi-robot system might allow adjusting the
physical set-up of the latter so as to achieve a reliable level of robustness of its self-
organization. The implications are also important for scientific purposes, for exam-
ple for investigating self-organization in collective biological systems (Bonabeau
et al. 1999; Camazine et al. 2001; Anderson et al. 2002). In fact in some of such
systems self-organization emerges quite abruptly if some parameters of the system
change beyond certain thresholds. For example, trail formation in ants requires that

174 G. Baldassarre

the number of ants that compose the group, and hence the amount of pheromone
released on the ground, reaches a certain level for the organization of the group to
emerge. Indeed, given that the laid pheromone trace slowly vanishes in time, if the
number of ants, and hence the level of the released pheromone, is not enough, the
signal that it furnishes to the ants is too weak to allow them to self-organize.

The added value of the paper resides also in the techniques it presented. In par-
ticular such techniques might not only be used to measure the level of organization
of decentralized (and also centralized) systems, as done here, but it might also be
directly used as fitness function to evolve systems that exhibit useful behaviors (for
some examples of this, that use entropy indexes different from those used here, see
Prokopenko et al. 2006), or to explore the self-organization potential of systems.
Moreover, the identification of the critical noise/signal ratio that characterizes a de-
centralized robotic system might be a way to furnish a quantitative measure of the
robustness of the self-organizing principles that govern it.

Notwithstanding the relevance of all these implications, we recognize that the
results presented in the paper, in particular those related to the hypothesis according
to which in some conditions self-organization of some multi-robot systems might
behave as a phase transition, are preliminary under many respects. For example,
further research is needed to corroborate or falsify the hypothesis itself, to better
understand the behavior of the system in correspondence to the critical level of the
noise/signal ratio, and to better understand the relationship existing between the
level of order of the system and the role that it plays in its functioning (e.g., in its
capacity to displace in space). Moreover, it might be useful to build a mathematical
abstract model of the system to carry out an analytical study directed to ascertain
at a more formal level if it posses the properties that characterize phase transitions.
For example, this analysis might identify some quantities associated with the self-
organization of the robotic system that behave similarly to “free energy” or “latent
heat” in phase transitions of physical systems (for an introduction on these topics,
see http://en.wikipedia.org/wiki/Phase_transition).

A last observation is that experiments similar to those conducted here by slowly
lowering the noise/signal ratio might be also conducted on the actuator’s noise and
on the controller’s effectiveness. With this respect it might be possible to envisage
a way to regulate the “noise/effectiveness level” of actuators, or the “level of ef-
fectiveness” of the controller in ways similar to the one used here to regulate the
noise/signal ratio of sensors. These experiments might show that also these two ma-
nipulations lead to phase-transitions at the level of the system’s overall organization.

7.7 Epilogue

The multi-robot system presented in the first edition (Baldassarre 2008) has been
further developed in two follow-up works. The first work (Baldassarre and Nolfi
2009) further investigated the robotic system used here to show how the controller
evolved with the genetic algorithm can be captured with a simple mathematical

http://en.wikipedia.org/wiki/Phase_transition

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 175

function linking the direction and strength of the traction sensor to the motor com-
mands. The parameters of the mathematical function can be found based on a non-
linear regression of the input-output points of the original controller and the whole
technique has a general applicability to simple controllers. The paper shows that, in
general, this transformation allows “bridging” the controllers develop with evolu-
tionary techniques with more standard robotic controllers, such as behaviour based
(e.g., schema-based) controllers, so allowing the exploitation of the strengths of
both. Once this transformation is done, thanks to the robustness of the original con-
troller capable of exploiting self-organisation, the resulting function offers a number
of advantages. These go from a higher transparency with respect to the original neu-
ral network, to the possibility of changing its parameters by hand, and to the pos-
sibility of using the function to build more-complex compound controllers capable
of solving a number of different tasks. With respect to the issues discussed here, the
function-based description of the controller might also facilitate the application of
formal and principled tools to investigate the self-organising principles underlying
evolved controllers.

The second work (Ferrauto et al. 2013) studies again a multi-robot decentralised
system of robots engaged in navigation tasks (here groups are formed only by two
robots). However, in this case the work focusses on different possible genetic al-
gorithms that might be used to evolve the robots so to lead them to solve two dif-
ferent tasks requiring either specialisation or dynamic role-taking. Based on these
tasks, the work analyses the most important genetic algorithms proposed so far to
evolve collective systems showing their strengths and weaknesses for the two types
of tasks. The different genetic algorithms vary with respect to the unit of selection,
the number of populations used, and the test of each robot within a fixed or variable
group. The relevance of this work for the issues faced here resides in the fact that
the controllers evolved with the different genetic algorithms tend to exploit differ-
ent self-organisation principles such as symmetry breaking in role allocation and
self-organised behaviour generated by robots with different controllers.

Although promising, no further work has been carried out on the specific issue
tackled here and related to self-organisation principles of multi-robot systems anal-
ysed in quantitative and formal ways (the author research has diverged to the study
of behaviour and brain of single organisms). However, the author is still convinced
that the research presented in this chapter contributed to open a very important new
research thread within the study of self-organising multi-robot systems. The rea-
son is that the “methodological message” of this paper is still very important. Such
message can be summarised in three points as follows:

• Multi-robot systems exploiting self-organisation principles are very robust, effec-
tive, and simple. This makes them very interesting from a scientific point of view,
and potentially very useful from an engineering point of view.

• To fully understand and exploit self-organising principles in multi-robot systems,
and to be cumulative in doing so, we need to study such self-organising principles
in a quantitative/formal fashion where theory and empirical tests go hand in hand.

• The theoretical and formal apparatus needed for doing this can be borrowed from
physics and information theory: these can furnish the needed ideas, principles,

176 G. Baldassarre

formalisms, and metrics to investigate self-organising principles in a quantitative
and principled fashion.

Acknowledgements This research has been supported by the SWARM-BOTS project funded by
the Future and Emerging Technologies program (IST-FET) of the European Commission under
grant IST-2000-31010. I thank Stefano Nolfi and Domenico Parisi with which I designed, devel-
oped and studied extensively the robotic setup studied in the paper.

References

Anderson, P. (1997). Basic notions of condensed matter physics. Cambridge: Perseus.
Anderson, C., Theraulaz, G., & Deneubourg, J.-L. (2002). Self-assemblages in insect societies.

Insectes Sociaux, 49, 1–12.
Baldassarre, G. (2008). Self-organization as phase transition in decentralized groups of robots:

a study based on Boltzmann entropy. In M. Prokopenko (Ed.), Advances in applied self-
organizing systems (1st ed.). London: Springer.

Baldassarre, G., & Nolfi, S. (2009). Strengths and synergies of evolved and designed controllers:
a study within collective robotics. Artificial Intelligence, 173, 857–875.

Baldassarre, G., Nolfi, S., & Parisi, D. (2003). Evolution of collective behaviour in a group of
physically linked robots. In G. Raidl, A. Guillot, & J.-A. Meyer (Eds.), Applications of evo-
lutionary computing—proceedings of the second European workshop on evolutionary robotics
(pp. 581–592). Berlin: Springer.

Baldassarre, G., Parisi, D., & Nolfi, S. (2006). Distributed coordination of simulated robots based
on self-organization. Artificial Life, 12(3), 289–311.

Baldassarre, G., Parisi, D., & Nolfi, S. (2007a). Measuring coordination as entropy decrease in
groups of linked simulated robots. In A. Minai & Y. Bar-Yam (Eds.), Proceedings of the fifth
international conference on complex systems (ICCS2004), Boston, MA, USA, 16–21 May 2004
(pp. e1–e14). http://www.necsi.edu/events/iccs/2004proceedings.html.

Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., & Nolfi, S. (2007b). Self-
organised coordinated motion in groups of physically connected robots. IEEE Transactions on
Systems, Man and Cybernetics, 37(1), 224–239.

Beckers, R., Holland, O. E., & Deneubourg, J.-L. (1994). From local actions to global tasks:
stigmergy and collective robotics. In R. A. Brooks & P. Maes (Eds.), Proceedings of the 4th
international workshop on the synthesis and simulation of living systems (Artificial Life IV)
(pp. 181–189). Cambridge: MIT Press.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial
systems. New York: Oxford University Press.

Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001).
Self-organization in biological systems. Princeton: Princeton University Press.

Cao, Y. U., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: antecedents and
directions. Autonomous Robots, 4, 1–23.

Dorigo, M., & Sahin, E. (2004). Swarm robotics—special issue editorial. Autonomous Robots,
17(2–3), 111–113.

Dorigo, M., Trianni, V., Sahin, E., Gross, R., Labella, T. H., Baldassarre, G., Nolfi, S., Denebourg,
J.-L., Floreano, D., & Gambardella, L. M. (2004). Evolving self-organizing behavior for a
swarm-bot. Autonomous Robots, 17(2–3), 223–245.

Dudek, G., Jenkin, M., Milios, E., & Wilkes, D. (1996). A taxonomy for multi-agent robotics.
Autonomous Robots, 3, 375–397.

Feldman, P. D. (1998). A brief introduction to: Information theory, excess entropy and computa-
tional mechanics (Technical report). Department of Physics, University of California.

http://www.necsi.edu/events/iccs/2004proceedings.html

7 Self-Organization as Phase Transition in Decentralized Groups of Robots 177

Ferrauto, T., Parisi, D., Di Stefano, G., & Baldassarre, G. (2013, in press). Different genetic al-
gorithms and the evolution of specialisation: a study with groups of simulated neural robots.
Artificial Life.

Holland, O., & Melhuish, C. (1999). Stimergy, self-organization, and sorting in collective robotics.
Artificial Life, 5, 173–202.

Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001). Collaboration through the
exploitation of local interactions in autonomous collective robotics: the stick pulling experi-
ment. Autonomous Robots, 11, 149–171.

Krieger, M. J. B., Billeter, J. B., & Keller, L. (2000). Ant-like task allocation and recruitment in
cooperative robots. Nature, 406, 992–995.

Kube, R. C., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Au-
tonomous Systems, 30, 85–101.

Kube, C. R., & Zhang, H. (1993). Collective robotics: from social insects to robots. Adaptive
Behavior, 2(2), 189–219.

Mondada, F., Pettinaro, G., Guignard, A., Kwee, I., Floreano, D., Denebourg, J.-L., Nolfi, S.,
Gambardella, L. M., & Dorigo, M. (2004). Swarm-bot: a new distributed robotic concept. Au-
tonomous Robots, 17(2–3), 193–221.

Nolfi, S., & Floreano, D. (2001). Evolutionary robotics. the biology, intelligence, and technology
of self-organizing machines. Cambridge: MIT Press.

Prokopenko, M. (2008). Design versus self-organization. In M. Prokopenko (Ed.), Advances in
applied self-organizing systems (pp. 3–18). London: Springer.

Prokopenko, M., Gerasimov, V., & Tanev, I. (2006). Evolving spatiotemporal coordination in a
modular robotic system. In S. Nolfi, G. Baldassarre, R. Calabretta, J. Hallam, D. Marocco,
J.-A. Meyer, O. Miglino, & D. Parisi (Eds.), Lecture notes in computer science: Vol. 4095.
From animals to animats 9: proceedings of the ninth international conference on the simulation
of adaptive behavior (SAB-2006) (pp. 558–569). Berlin: Springer.

Prokopenko, M., Boschetti, F., & Ryan, A. J. (2009). An information-theoretic primer on complex-
ity, self-organization, and emergence. Complexity, 15(1), 11–28.

Quinn, M., Smith, L., Mayley, G., & Husbands, P. (2003). Evolving controllers for a homogeneous
system of physical robots: structured cooperation with minimal sensors. Philosophical Trans-
actions - Royal Society. Mathematical, Physical and Engineering Sciences, 361, 2321–2344.

Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed behavioral model. Computer
Graphics, 21(4), 25–34.

Trianni, V., Nolfi, S., & Dorigo, M. (2006). Cooperative hole-avoidance in a swarm-bot. Robotics
and Autonomous Systems, 54(2), 97–103.

Tsai, S., & Salinas, S. R. (1998). Fourth-order cumulants to characterize the phase transitions of a
spin-1 Ising model. Brazilian Journal of Physics, 28(1), 58–65.

Chapter 8
Distributed Control of Microscopic Robots
in Biomedical Applications

Tad Hogg

8.1 Microscopic Robots

The development of molecular electronics, motors and chemical sensors could en-
able constructing large numbers of devices able to sense, compute and act in micron-
scale environments. Such microscopic robots, of sizes comparable to bacteria, could
simultaneously monitor entire populations of cells individually in vivo. Their small
size allows the robots to move through the tiniest blood vessels, so could pass within
a few cell diameters of most cells in large organisms via their circulatory systems
to perform a wide variety of biological research and medical tasks. For instance,
robots and nanoscale-structured materials inside the body could significantly im-
prove disease diagnosis and treatment (Freitas 1999; Morris 2001; NIH 2003; Kes-
zler et al. 2001). Initial tasks for microscopic robots include in vitro research via
simultaneous monitoring of chemical signals exchanged among many bacteria in
a biofilm. The devices could also operate in multicellular organisms as passively
circulating sensors. Such devices, with no need for locomotion, would detect pro-
grammed patterns of chemicals as they pass near cells. More advanced technology
could create devices able to communicate to external detectors, allowing real-time
in vivo monitoring of many cells. The devices could also have capabilities to act on
their environment, e.g., releasing drugs at locations with specific chemical patterns
or mechanically manipulating objects for microsurgery. Extensive development and
testing is necessary before clinical use, first for high-resolution diagnostics and later
for programmed actions at cellular scales.

Realizing these benefits requires fabricating the robots cheaply, in large num-
bers and with sufficient capabilities. Such fabrication is beyond current technol-
ogy. Nevertheless, ongoing progress in engineering nanoscale devices could even-
tually enable production of such robots. One approach to creating microscopic pro-

T. Hogg (B)
Hewlett-Packard Laboratories, Palo Alto, CA, USA
e-mail: tad.hogg@hp.com

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_8,
© Springer-Verlag London 2013

179

mailto:tad.hogg@hp.com
http://dx.doi.org/10.1007/978-1-4471-5113-5_8

180 T. Hogg

grammable machines is engineering biological systems, e.g., bacteria executing sim-
ple programs (Andrianantoandro et al. 2006), and DNA computers responding to
logical combinations of chemicals (Benenson et al. 2004). However, biological or-
ganisms have limited material properties and computational speed. Instead we fo-
cus on machines based on plausible extensions of current molecular-scale electron-
ics, sensors and motors (Berna et al. 2005; Collier et al. 1999; Craighead 2000;
Howard 1997; Fritz et al. 2000; Montemagno and Bachand 1999; Soong et al. 2000;
Wang and Williams 2005). These devices could provide components for stronger
and faster microscopic robots than is possible with biological organisms. Thus the
focus here is on nonbiological robots containing nanoscale sensors and electronics,
along with a power source, within a protective shell. As technology improves, such
robots could be supplemented with other capabilities such as communication and
locomotion.

Because we cannot yet fabricate microscopic robots with molecular electronics
components, estimates of their performance rely on plausible extrapolations from
current technology. The focus in this paper is on biomedical applications requiring
only modest hardware capabilities, which will be easier to fabricate than more ca-
pable robots. Designing controls for microscopic robots is a key challenge: not only
enabling useful performance but also compensating for their limited computation,
locomotion or communication abilities. Distributed control is well-suited to these
capabilities by emphasizing locally available information and achieving overall ob-
jectives through self-organization of the collection of robots. Theoretical studies al-
low developing such controls and estimating their performance prior to fabrication,
thereby indicating design tradeoffs among hardware capabilities, control methods
and task performance. Such studies of microscopic robots complement analyses of
individual nanoscale devices (McCurdy et al. 2002; Wang and Williams 2005), and
indicate even modest capabilities enable a range of novel applications.

The operation of microscopic robots differs significantly from that of larger
robots (Mataric 1992), especially for biomedical applications. First, the physical en-
vironment is dominated by viscous fluid flow. Second, thermal noise is a significant
source of sensor error and Brownian motion limits the ability to follow precisely
specified paths. Third, relevant objects are often recognizable via chemical signa-
tures rather than, say, visual markings or specific shapes. Fourth, the tasks involve
large numbers of robots, each with limited abilities. Moreover, a task will generally
only require a modest fraction of the robots to respond appropriately, not for all,
or even most, robots to do so. Thus controls using random variations are likely to
be effective simply due to the large number of robots. This observation contrasts
with teams of larger robots with relatively few members: incorrect behavior by even
a single robot can significantly decrease team performance. These features suggest
reactive distributed control is particularly well-suited for microscopic robots.

Organisms contain many microenvironments, with distinct physical, chemical
and biological properties. Often, precise quantitative values of properties relevant
for robot control will not be known a priori. This observation suggests a multi-stage
protocol for using the robots. First, an information-gathering stage with passive
robots placed into the organism, e.g., through the circulatory system, to measure

8 Distributed Control of Microscopic Robots in Biomedical Applications 181

relevant properties (Hogg and Kuekes 2006). The information from these robots,
in conjunction with conventional diagnostics at larger scales, could then determine
appropriate controls for further actions in subsequent stages of operation.

For information gathering, each robot notes in its memory whenever chemicals
matching a prespecified pattern are found. Eventually, the devices are retrieved and
information in their memories extracted for further analysis in a conventional com-
puter with far more computational resources than available to any individual micro-
scopic robot. This computer would have access to information from many robots,
allowing evaluation of aggregate properties of the population of cells that individ-
ual robots would not have access to, e.g., the number of cells presenting a specific
combination of chemicals. This information allows estimating spatial structure and
strength of the chemical sources. The robots could detect localized high concentra-
tions that are too low to distinguish from background concentrations when diluted in
the whole blood volume as obtained with a sample. Moreover, if the detection con-
sists of the joint expression of several chemicals, each of which also occurs from
separate sources, the robot’s pattern recognition capability could identify the spatial
locality, which would not be apparent when the chemicals are mixed throughout the
blood volume.

Estimating the structure of the chemical sources from the microscopic sensor
data is analogous to computerized tomography (Natterer 2001). In tomography, the
data consists of integrals of the quantity of interest (e.g., density) over a large set of
lines with known geometry selected by the experimenter. The microscopic sensors,
on the other hand, record data points throughout the tissue, providing more infor-
mation than just one aggregate value such as the total number of events. However,
the precise path of each sensor through the tissue, i.e., which vessel branches it took
and the locations of those vessels, will not be known. This mode of operation also
contrasts with uses of larger distributed sensor networks able to process information
and communicate results while in use.

Actions based on the information from the robots would form a second stage of
activity, perhaps with specialized microscopic robots (e.g., containing drugs to de-
liver near cells), with controls set based on the calibration information retrieved ear-
lier. For example, the robots could release drugs at chemically distinctive sites (Fre-
itas 1999, 2006) with specific detection thresholds determined with the information
retrieved from the first stage of operation. Or robots could aggregate at the chemical
sources (Casal et al. 2003; Hogg 2007) or manipulate biological structures based
on surface chemical patterns on cells, e.g., as an aid for microsurgery in repairing
injured nerves (Hogg and Sretavan 2005). These active scenarios require more ad-
vanced robot capabilities, such as locomotion and communication, than needed for
passive sensing. The robots could monitor environmental changes due to their ac-
tions, thereby documenting the progress of the treatment. Thus the researcher or
physician could monitor the robots’ progress and decide whether and when they
should continue to the next step of the procedure. Using a series of steps, with
robots continuing with the next step only when instructed by the supervising per-
son, maintains overall control of the robots, and simplifies the control computations
each robot must perform itself.

182 T. Hogg

To illustrate controls for large collections of microscopic robots, this paper con-
siders a prototypical diagnostic task of finding a small chemical source in a mul-
ticellular organism via the circulatory system. To do so, we first review plausible
capabilities for microscopic robots and the physical constraints due to operation in
fluids at low Reynolds number, diffusion-limited sensing and thermal noise from
Brownian motion. We then discuss techniques for evaluating the behavior of large
collections of robots, and examine a specific task scenario. The emphasis here is on
feasible performance with plausible biophysical parameters and robot capabilities.
Evaluation metrics include minimizing hardware capabilities to simplify fabrication
and ensuring safety, speed and accuracy for biological research or treatment in a
clinical setting.

8.2 Capabilities of Microscopic Robots

This section describes plausible robot capabilities based on currently demonstrated
nanoscale technology. Minimal capabilities needed for biomedical tasks include
chemical sensing, computation and power. Additional capabilities, enabling more
sophisticated applications, include communication and locomotion.

8.2.1 Chemical Sensing

Large-scale robots often use sonar or cameras to sense their environment. These
sensors locate objects from a distance, and involve sophisticated algorithms with
extensive computational requirements. In contrast, microscopic robots for biolog-
ical applications will mainly use chemical sensors, e.g., the selective binding of
molecules to receptors altering the electrical characteristics of nanoscale wires. The
robots could also examine chemicals inside nearby cells (Xie et al. 2006).

Microscopic robots and bacteria face similar physical constraints in detecting
chemicals (Berg and Purcell 1977). The diffusive capture rate γ for a sphere of
radius a in a region with concentration C is (Berg 1993)

γ = 4πDaC (8.1)

where D is the diffusion coefficient of the chemical. Even when sensors cover
only a relatively small fraction of the device surface, the capture rate is almost this
large (Berg 1993). Nonspherical devices have similar capture rates so Eq. (8.1) is a
reasonable approximation for a variety of designs.

Current molecular electronics (Wang and Williams 2005) and nanoscale sen-
sors (Li et al. 2005; Patolsky and Lieber 2005; Sheehan and Whitman 2005) in-
dicate plausible sensor capabilities. At low concentrations, sensor performance is
primarily limited by the time for molecules to diffuse to the sensor and statistical
fluctuations in the number of molecules encountered is a major source of noise.

8 Distributed Control of Microscopic Robots in Biomedical Applications 183

Moreover, other chemicals with similar binding properties to the chemical of inter-
est would give additional noise. Thus the selectivity of the sensor is important in
setting the noise level, and may trade-off with the time used to determine whether a
detection occurred (Alon 2007).

8.2.2 Timing and Computation

With the relevant fluid speeds and chemical concentrations described in Sect. 8.4,
robots pass through high concentrations near individual cells on millisecond time
scales. Thus identifying significant clusters of detections due to high concentrations
requires a clock with millisecond resolution. This clock need not be globally syn-
chronized with other devices.

In a simple scenario, devices just store sensor detections in their memories for
later retrieval. In this case most of the computation to interpret sensor observations
takes place in larger computers after the devices are retrieved. Recognizing and stor-
ing a chemical detection involves at least a few arithmetic operations to compare
sensor counts to threshold values stored in memory. An estimate on the required
computational capability is about 100 elementary logic operations and memory ac-
cesses within a 10 ms measurement time. This gives about 104 logic operations
per second. While modest compared to current computers, this rate is significantly
faster than demonstrated for programmable bacteria (Andrianantoandro et al. 2006)
but well within the capabilities of molecular electronics.

8.2.3 Communication

A simple form of one-way communication is robots passively sensing electromag-
netic or acoustic signals from outside the body. An example is using radio frequency
to produce local heating in metal nanospheres attached to the devices (Hamad-
Schifferli et al. 2002). Such signals could activate robots only within certain areas
of the body at, say, centimeter length scales. Using external signals to localize the
robots more precisely is difficult due to variations in propagation through tissues, so
such localization requires more complex technology (Freitas 1999) than considered
in this discussion.

Additional forms of communication, between nearby robots and sending infor-
mation to detectors outside the organism, are more difficult to fabricate and require
significant additional power. For example, since the robots considered here have
chemical sensors, a natural approach to communication is using an onboard storage
of specific chemicals they could release for detection by other nearby robots. Such
diffusion-mediated signals are not effective for communicating over distances be-
yond a few microns but could mark the environment for detection by other robots

184 T. Hogg

that pass nearby later, i.e., stigmergy (Bonabeau et al. 1999). Acoustic signals pro-
vide more versatile communication. Compared to fluid flow, acoustic signals are es-
sentially instantaneous, but power constraints limit their range to about 100 µm (Fre-
itas 1999).

8.2.4 Locomotion

Biomedical applications will often involve robots operating in fluids. Viscosity dom-
inates the robot motion, with different physical behaviors than for larger organisms
and robots (Purcell 1977; Vogel 1994; Fung 1997; Karniadakis and Beskok 2002;
Squires and Quake 2005). The ratio of inertial to viscous forces for an object of
size s moving with velocity v through a fluid with viscosity η and density ρ is the
Reynolds number Re ≡ sρv/η. Using typical values for density and viscosity (e.g.,
of water or blood plasma) in Table 8.1 and noting that reasonable speeds for robots
with respect to the fluid (Freitas 1999) are comparable to the fluid flow speed in
small vessels, i.e., ∼1 mm/s, motion of a 1-micron robot has Re ≈ 10−3, so viscous
forces dominate. Consequently, robots applying a locomotive force quickly reach
terminal velocity in the fluid, i.e., applied force is proportional to velocity as op-
posed to the more familiar proportionality to acceleration of Newton’s law F = ma.
By contrast, a swimming person has Re about a billion times larger.

Flow in a pipe of uniform radius R has a parabolic velocity profile: velocity at
distance r from the axis is

v(r) = 2vavg
(
1 − (r/R)2) (8.2)

where vavg is the average speed of fluid in the pipe.
Robots moving through the fluid encounter significant drag. For instance, an iso-

lated sphere of radius a moving at speed v through a fluid with viscosity η has a
drag force

6πaηv (8.3)

Although not quantitatively accurate near boundaries or other objects, this expres-
sion estimates the drag in those cases as well. For instance, a numerical evaluation
of drag force on a 1 µm-radius sphere moving at velocity v with respect to the fluid
flow near the center of a 5 µm-radius pipe, has drag about three times larger than
given by Eq. (8.3). Other reasonable choices for robot shape have similar drag.

Fluid drag moves robots in the fluid. An approximation is robots without active
locomotion move with the same velocity as fluid would have at the center of the
robot if the robot were not there. Numerical evaluation of the fluid forces on the
robots for the parameters of Table 8.1 show the robots indeed move close to this
speed when the spacing between robots is many times their size. Closer packing
leads to more complex motion due to hydrodynamic interactions (Hernandez-Ortiz
et al. 2005; Riedel et al. 2005).

8 Distributed Control of Microscopic Robots in Biomedical Applications 185

Table 8.1 Parameters for the environment, robots and the chemical signal. The robots are spheres
with radius a. The chemical signal concentrations correspond to a typical 10 kilodalton chemokine
molecule, with mass concentrations near the source and background (i.e., far from the source) equal
to 3×10−5 kg/m3 and 10−7 kg/m3, respectively. Csource is equivalent to a three nanomolar solution.
The ρvesselV small vessels in the tissue volume occupy about a fraction ρvesselπR2L ≈ 4 % of the
volume

Parameter Value

Tissue, vessels and source

Vessel radius R = 5 µm

Vessel length L = 1000 µm

Number density of vessels in tissue ρvessel = 5 × 1011/m3

Tissue volume V = 10−6 m3

Source length Lsource = 30 µm

Fluid

Fluid density ρ = 103 kg/m3

Fluid viscosity η = 10−3 kg/m/s

Average fluid velocity vavg = 10−3 m/s

Fluid temperature T = 310 K

Robots

Robot radius a = 1 µm

Number density of robots ρrobot = 2 × 1011 robot/m3

Robot diffusion coefficient Drobot = 7.6 × 10−14 m2/s

Chemical signal

Production flux at target Fsource = 5.6 × 1013 molecule/s/m2

Diffusion coefficient D = 10−10 m2/s

Concentration near source Csource = 1.8 × 1018 molecule/m3

Background concentration Cbackground = 6 × 1015 molecule/m3

8.2.5 Additional Sensing Capabilities

In addition to chemical sensing, robots could sense other properties to provide high-
resolution spatial correlation of various aspects of their environment. For example,
nanoscale sensors for fluid motion can measure fluid flow rates at speeds relevant
for biomedical tasks (Ghosh et al. 2003), allowing robots to examine in vivo mi-
crofluidic behavior in small vessels. In particular, at low Reynolds number, bound-
ary effects extend far into the vessel (Squires and Quake 2005), giving an extended
gradient in fluid speed with higher fluid shear rates nearer the wall. Thus, several
such sensors, extending a small distance from the device surface in various direc-
tions, could estimate shear rates and hence the direction to the wall or changes in
the vessel geometry. Another example for additional sensing is optical scattering

186 T. Hogg

in cells, as has been demonstrated to distinguish some cancer from normal cells in
vitro (Gourley et al. 2005).

8.2.6 Power

To estimate the power for robot operation, each logic operation in current electronic
circuits uses 104–105 times the thermal noise level kBT = 4 × 10−21 J at the fluid
temperature of Table 8.1, where kB is the Boltzmann constant. Near term molecular
electronics could reduce this to ≈103kBT , in which case 104 operations per second
uses a bit less than 0.1 pW. Additional energy will be needed for signals within the
computer and with its memory.

This power is substantially below the power required for locomotion or commu-
nication. For instance, due to fluid drag and the inefficiencies of locomotion in vis-
cous fluids, robots moving through the fluid at ≈1mm/s dissipate a picowatt (Berg
1993). However, these actions may operate only occasionally, and for short times,
when the sensor detects a signal, whereas computation could be used continuously
while monitoring for such signals.

For tasks of limited duration, an on-board fuel source created during manufacture
could suffice. Otherwise, the robots could use energy available in their environment,
such as converting vibrations to electrical energy (Wang and Song 2006) or chem-
ical generators. Typical concentrations of glucose and oxygen in the bloodstream
could generate ≈1000 pW continuously, limited primarily by the diffusion rate of
these molecules to the device (Freitas 1999). For comparison, a typical person at
rest uses about 100 watts. Beyond simply generating the required power, the robots
require effective machines to distribute and use the energy, with several possible
approaches (Freitas 1999).

8.3 Evaluating Collective Robot Performance

Because the microscopic robots can not yet be fabricated and quantitative biophys-
ical properties of many microenvironments are not precisely known, performance
studies must rely on plausible models of both the machines and their task environ-
ments (Drexler 1992; Freitas 1999; Requicha 2003). Microorganisms, which face
physical microenvironments similar to those of future microscopic robots, give some
guidelines for feasible behaviors.

Cellular automata are one technique to evaluate collective robot behavior. For ex-
ample, a two-dimensional scenario shows how robots could assemble structures (Ar-
buckle and Requicha 2004) using local rules. Such models can help understand
structures formed at various scales through simple local rules and some random
motions (Whitesides and Grzybowski 2002; Griffith et al. 2005). However, cellular
automata models either ignore or greatly simplify physical behaviors such as fluid

8 Distributed Control of Microscopic Robots in Biomedical Applications 187

flow. Another analysis technique considers swarms (Bonabeau et al. 1999), which
are well-suited to microscopic robots with their limited physical and computational
capabilities and large numbers. Most swarm studies focus on macroscopic robots
or behaviors in abstract spaces (Gazi and Passino 2004) which do not specifically
include physical properties unique to microscopic robots. In spite of the simplified
physics, these studies show how local interactions among robots lead to various
collective behaviors and provide broad design guidelines.

Simulations including physical properties of microscopic robots and their envi-
ronments can evaluate performance of robots with various capabilities. Simple mod-
els, such as a two-dimensional simulation of chemotaxis (Dhariwal et al. 2004), pro-
vide insight into how robots find microscopic chemical sources. A more elaborate
simulator (Cavalcanti and Freitas 2002) includes three-dimensional motions in vis-
cous fluids, Brownian motion and environments with numerous cell-sized objects,
though without accounting for how they change the fluid flow. Studies of hydro-
dynamic interactions (Hernandez-Ortiz et al. 2005) among moving devices include
more accurate fluid effects.

Another approach to robot behaviors employs a stochastic mathematical frame-
work for distributed computational systems (Hogg and Huberman 2004; Lerman
et al. 2001). This method directly evaluates average behaviors of many robots
through differential equations determined from the state transitions used in the robot
control programs. Direct evaluation of average behavior avoids the numerous re-
peated runs of a simulation needed to obtain the same result. This approach is best
suited for simple control strategies, with minimal dependencies on events in indi-
vidual robot histories. Microscopic robots, with limited computational capabilities,
will likely use relatively simple reactive controls for which this analytic approach is
ideally suited. Moreover, these robots will often act in environments with spatially
varying fields, such as chemical concentrations and fluid velocities. Even at micron
scales, the molecular nature of these quantities can be approximated as continuous
fields with behavior governed by partial differential equations. For application to
microscopic robots, this approximation extends to the robots themselves, treating
their locations as a continuous concentration field, and their various control states
as corresponding to different fields, much as multiple reacting chemicals are de-
scribed by separate concentration fields. This continuum approximation for average
behavior of the robots will not be as accurate as when applied to chemicals or fluids,
but nevertheless gives a simple approach to average behaviors for large numbers of
robots responding to spatial fields. One example of this approach is following chem-
ical gradients in one dimension without fluid flow (Galstyan et al. 2005).

Cellular automata, swarms, physically-based simulations and stochastic analysis
are all useful tools for evaluating the behaviors of microscopic robots. One exam-
ple is evaluating the feasibility of rapid, fine-scale response to chemical events too
small for detection with conventional methods, including sensor noise inherent in
the discrete molecular nature of low concentrations. This paper examines this issue
in a prototypical task using the stochastic analysis approach. This method allows
incorporating more realistic physics than used with cellular automata studies, and
is computationally simpler than repeated simulations to obtain average behaviors.

188 T. Hogg

This technique is limited in requiring approximations for dependencies introduced
by the robot history, but readily incorporates physically realistic models of sensor
noise and consequent mistakes in the robot control decisions. The stochastic anal-
ysis indicates plausible performance, on average, and thereby suggests scenarios
suited for further, more detailed, simulation studies.

8.4 A Task Scenario

As a prototypical task for microscopic robots, we consider their ability to respond
to a cell-sized source releasing chemicals into a small blood vessel. This scenario
illustrates a basic capability for the robots: identifying small chemically-distinctive
regions, with high sensitivity due to the robots’ ability to get close (within a few cell-
diameters) to a source. This capability would be useful as part of more complex tasks
where the robots are to take some action at such identified regions. Even without
additional actions, the identification itself provides extremely accurate and rapid
diagnostic capability compared to current technology.

Microscopic robots acting independently to detect specific patterns of chemicals
are analogous to swarms (Bonabeau et al. 1999) used in foraging, surveillance or
search tasks. Even without locomotion capabilities, large numbers of such devices
could move through tissues by flowing passively in moving fluids, e.g., through
blood vessels or with lymph fluid. As the robots move, they can monitor for prepro-
grammed patterns of chemical concentrations.

Chemicals with high concentrations are readily detected with the simple proce-
dure of analyzing a blood sample. Thus the chemicals of interest for microscopic
robot applications will generally have low concentrations. With sufficiently low
concentrations and small sources, the devices are likely to only encounter a few
molecules while passing near the source, leading to significant statistical fluctua-
tions in number of detections.

We can consider this task from the perspective of stages of operation discussed
in the introduction. For a diagnostic first stage, the robots need only store events
in their memory for later retrieval, when a much more capable conventional com-
puter can process the information. For an active second stage where robots react to
their detections, e.g., to aggregate at a source location or release a drug, the robots
would need to determine themselves when they are near a suitable location. In this
later case, the robots would need simple control decision procedure, within the lim-
its of local information available to them and their computational capacity. Such a
control program could involve comparing counts to various thresholds, which were
determined by analysis of a previous diagnostic stage of operation.

8.4.1 Example Task Environment

Tissue microenvironments vary considerably in their physical and chemical proper-
ties. As a specific example illustrating the capabilities of passive motion by micro-

8 Distributed Control of Microscopic Robots in Biomedical Applications 189

Fig. 8.1 Schematic illustration of the task geometry as a vessel, of length L and radius R. Fluid
flows in the positive x-direction with average velocity vavg. The gray area is the source region
wrapped around the surface of the pipe

scopic sensors, we consider a task environment consisting of a macroscopic tissue
volume V containing a single microscopic source producing a particular chemi-
cal (or combination of chemicals) while the rest of the tissue has this chemical at
much lower concentrations. This tissue volume contains a large number of blood
vessels, and we focus on chemical detection in the small vessels, since they allow
exchange of chemicals with surrounding tissue, and account for most of the sur-
face area. A rough model of the small vessels is each has length L and they occur
throughout the tissue volume with number density ρvessel. Localization to volume V

could be due to a distinctive chemical environment (e.g., high oxygen concentrations
in the lungs), an externally supplied signal (e.g., ultrasound) detectable by sensors
passing through vessels within the volume, or a combination of both methods. The
devices are active only when they detect they are in the specified region.

Robots moving with fluid in the vessels will, for the most part, be in vessels
containing only the background concentration, providing numerous opportunities
for incorrectly interpreting background concentration as source signals. These false
positives are spurious detections due to statistical fluctuations from the background
concentration of the chemical. Although such detections can be rare for individual
devices, when applied to tasks involving small sources in a large tissue volume,
the number of opportunities for false positive responses can be orders of magnitude
larger than the opportunities for true positive detections. Thus even a low false posi-
tive rate can lead to many more false positive detections than true positives. The task
scenario examined in this paper thus includes estimating both true and false posi-
tive rates, addressing the question of whether simple controls can achieve a good
trade-off of both a high true positive rate and low false positive rate.

For simplicity, we consider a vessel containing only flowing fluid, robots and
a diffusing chemical arising from a source area on the vessel wall. This scenario
produces a static concentration of the chemical throughout the vessel, thereby sim-
plifying the analysis. We examine the rate at which robots find the source and the
false positive rate as functions of the detection threshold used in a simple control
rule computed locally by each robot.

Figure 8.1 shows the task geometry: a segment of the vessel with a source region
on the wall emitting a chemical into the fluid. Robots continually enter one end of
the vessel with the fluid flow. We suppose the robots have neutral buoyancy and
move passively in the fluid, with speed given by Eq. (8.2) at their centers. This
approximation neglects the change in fluid flow due to the robots, and is reasonable

190 T. Hogg

for estimating detection performance when the robots are at low enough density to
be spaced apart many times their size, as is the case for the example presented here.
The robot density in Table 8.1 corresponds to 109 robots in the entire 5-liter blood
volume of a typical adult, an example of medical applications using a huge number
of microscopic robots (Freitas 1999). These robots use only about 10−6 of the vessel
volume, far less than the 20 %–40 % occupied by blood cells. The total mass of all
the robots is about 4 mg.

The scenario for microscopic robots examined here is detecting small areas of
infection or injury. The chemicals arise from the initial immunological response
at the injured area and enter nearby small blood vessels to recruit white blood
cells (Janeway et al. 2001). We consider a typical protein produced in response
to injury, with concentration near the injured tissue of about 30 ng/ml and back-
ground concentration in the bloodstream about 300 times smaller. These chemicals,
called chemokines, are proteins with molecular weight around 104 daltons (equal
to about 2 × 10−23 kg). These values lead to the parameters for the chemical given
in Table 8.1, with chemical concentrations well above the demonstrated sensitiv-
ity of nanoscale chemical sensors (Patolsky and Lieber 2005; Sheehan and Whit-
man 2005). This example incorporates features relevant for medical applications:
a chemical indicating an area of interest, diffusion into flowing fluid, and a prior
background level of the chemical limiting sensor discrimination.

8.4.2 Diffusion of Robots and Chemicals

Diffusion arising from Brownian motion is somewhat noticeable for microscopic
robots, and significant for molecules. The diffusion coefficient D, depending on
an object’s size, characterizes the resulting random motion, with root-mean-square
displacement of

√
6Dt in a time t . For the parameters of Table 8.1, this displacement

for the robots is about 0.7
√

t microns with t measured in seconds. Brownian motion
also randomly alters robot orientation.

The chemical concentration C is governed by the diffusion equation (Berg 1993)

∂C

∂t
= −∇ · F (8.4)

where F = −D∇C + vC is the chemical flux, i.e., the rate at which molecules pass
through a unit area, and v is the fluid velocity vector. The first term in the flux
is diffusion, which acts to reduce concentration gradients, and the second term is
motion of the chemical with the fluid.

We suppose the source produces the chemical uniformly with flux Fsource. To
evaluate high-resolution sensing capabilities, we suppose the chemical source is
small, with characteristic size Lsource as small as individual cells. Total target surface
area is 2πRLsource ≈ 9.4 × 10−10 m2, about the same as the surface area of a single
endothelial cell lining a blood vessel. The value for Fsource in Table 8.1 corresponds
to 5×104 molecule/s from the source area as a whole. This flux was chosen to make

8 Distributed Control of Microscopic Robots in Biomedical Applications 191

Fig. 8.2 Concentration contours on a cross section through the vessel, including the axis (r = 0)
in the middle and the walls (r = ±R) at the top and bottom. The gray area shows the region where
the concentration from the target is below that of the background concentration. The thick black
lines along the vessel wall mark the extent of the target region. The vertical and horizontal scales
are different: the cross section is 10 µm vertically and 100 µm horizontally. Numbers along the
axes denote distances in microns

the concentration at the source area equal to that given in Table 8.1. The background
concentration is the level of the chemical when there is no injury.

Objects, such as robots, moving in the fluid alter the fluid’s velocity to some ex-
tent. For simplicity, and due to the relatively small volume of the vessel occupied by
the robots, we ignore these changes and treat the fluid flow as constant in time and
given by Eq. (8.2). Similarly, we also treat detection as due to absorbing spheres
with concentration C at the location of the center of the sphere for Eq. (8.1), as-
suming the robot does not significantly alter the average concentration around it.
Figure 8.2 shows the resulting steady-state concentration from solving Eq. (8.4)
with ∂C/∂t = 0. The concentration decreases with distance from the source and the
high concentration contours occur downstream of the source due to the fluid flow.

8.4.3 Control

The limited capabilities of the robots and the need to react on millisecond time
scales leads to emphasizing simple controls based on local information. For chem-
ical detection at low concentrations, the main sensor limitation is the time required
for molecules to diffuse to the sensor. Thus the detections are a stochastic process.
A simple decision criterion for a robot to determine whether it is near a source is
if a sufficient number of detections occur in a short time interval. Specifically, a
robot considers a signal detected if the robot observes at least Cthreshold counts in a
measurement time interval Tmeasure. The choice of measurement time must balance
having enough time to receive adequate counts, thereby reduce errors due to statis-
tical fluctuations, while still responding before the robot has moved far downstream
of the source where response would give poor localization of the source or, if robots
are to take some action near the source, require moving upstream against the fluid

192 T. Hogg

Table 8.2 Robot control
parameters for chemical
signal detection

Parameter Value

Measurement time Tmeasure = 10 ms

Detection threshold Cthreshold

flow. Moreover, far downstream of the source the concentration from the target is
small so additional measurement time is less useful. A device passing through a
vessel with a source will have about Lsource/vavg = 30 ms with high concentration,
so a measurement time of roughly this magnitude is a reasonable choice, as selected
in Table 8.2. A low value for Cthreshold will produce many false positives, while a
high value means many robots will pass the source without detecting it (i.e., false
negatives). False negatives increase the time required for detection while false posi-
tives could lead to inappropriate subsequent activities (e.g., releasing a drug to treat
the injury or infection at a location where it will not be effective).

8.4.4 Analysis of Behavior

Task performance depends on the rate robots detect the source as they move past it,
and the rate robots incorrectly conclude they detect the source due to background
concentration of the chemical.

From the values of Table 8.1, robots enter any given vessel at an average rate

ωrobot = ρrobotπR2vavg ≈ 0.016/s (8.5)

and the rate robots enter (and leave) any of the small vessels within the tissue volume
is

Ωrobot = ρvesselV ωrobot ≈ 8 × 103/s (8.6)

A robot encounters changing chemical concentration as it moves past the source.
The expected number of counts a robot at position r has received from the source
chemical during a prior measurement interval time Tmeasure is

K(r) = 4πDa

∫ Tmeasure

0
C
(
r′(r, τ)

)
dτ (8.7)

where r′(r, τ) denotes the location the robot had at time τ in the past. During
the time the robot passes the target, Brownian motion displacement is ∼0.1 µm,
which is small compared to the 10 µm vessel diameter. Thus the possible past loca-
tions leading to r are closely clustered and for estimating the number of molecules
detected while passing the target, a reasonable approximation is the robot moves
deterministically with the fluid. In our axially symmetric geometry with fluid
speed given by Eq. (8.2), positions are specified by two coordinates r = (r, x) so
r′((r, x), τ) = (r, x − v(r)τ) when the robot moves passively with the fluid and

8 Distributed Control of Microscopic Robots in Biomedical Applications 193

Brownian motion is ignored. During this motion, the robot will, on average, also
encounter

k = 4πDacTmeasure (8.8)

molecules from the background concentration, not associated with the source.
With diffusive motion of the molecules, the actual number of counts is a Poisson

distributed random process. The detection probability, i.e., having at least E events
when the expected number is μ, is

Pr(μ,E) = 1 −
E−1∑

n=0

Po(μ,n)

where Po(μ,n) = e−μμn/n! is the Poisson distribution.
Taking the devices to be ideal absorbing spheres for the chemical described in

Table 8.1, Eq. (8.1) gives the capture rates γ ≈ 8/s at the background concentration
and ≈ 2300/s near the source. Detection over a time interval �t is a Poisson process
with mean number of detections μ = γ�t . Consider a robot at r. During a small
time interval �t the probability to detect a molecule is 4πDa(C(r)+c)�t � 1. For
a robot to first conclude it has detected a signal during this short time it must have
Cthreshold − 1 counts in the prior Tmeasure − �t time interval and then one additional
count during �t . Thus the rate at which robots first conclude they detect a signal is

4πDa(C + c)
Po(K + k,Cthreshold − 1)
∑

n<Cthreshold
Po(K + k,n)

(8.9)

In Eq. (8.9) C and K depend on robot position and the last factor is the probability
the robot has Cthreshold − 1 counts in its measurement time interval, given it has not
already detected the signal, i.e., the number of counts is less than Cthreshold. This
expression is an approximation: ignoring correlations in the likelihood of detection
over short time intervals. Equation (8.9) also gives the detection rate when there is
no source, i.e., false positives, by setting C and K to zero.

To evaluate the rate robots detect the source as they pass it, we view the robots
as having two internal control states: MONITOR and DETECT. Robots are initially
in the MONITOR state, and switch to the DETECT state if they detect the chem-
ical, i.e., have at least Cthreshold counts during time Tmeasure. Using the stochastic
analysis approach to evaluating robot behavior, the steady-state concentrations of
robots monitoring for the chemical, Rm, is governed by Eq. (8.4) for Rm instead of
chemical concentration, with the addition of a decay due to robots changing to the
DETECT state, i.e.,

∇ · (Drobot∇Rm − vRm) − αm→dRm = 0 (8.10)

The signal detection transition, αm→d, is given by Eq. (8.9) and depends on the
choice of threshold Cthreshold and robot position.

The rate sensors detect the source using a threshold Cthreshold is

ωsource = ωrobot

∫

αm→dRmdV (8.11)

194 T. Hogg

Fig. 8.3 Rates robots detect
a signal for those passing
through the single small
vessel with the source (black)
and all the others in the tissue
volume, i.e., the false
positives (gray) as a function
of threshold Cthreshold used
for detection during the
Tmeasure time interval

where ωrobot is given by Eq. (8.5) and the integral is over the interior volume of the
vessel containing the source.

The background concentration can give false positives, i.e., occasionally produc-
ing enough counts to reach the count threshold in time Tmeasure. The background
concentration extends throughout the tissue volume giving many opportunities for
false positives. With the parameters of Table 8.1, the expected count from back-
ground in Tmeasure is μbackground = 0.08. Since a sensor spends ≈ L/vavg = 1 s in a
small vessel in the tissue volume, the sensor has about 100 independent 10 ms op-
portunities to accumulate counts toward the detection threshold Cthreshold. The rate
of false positive detections is then

ωbackground ≈ 100 Ωrobot Pr(μbackground,Cthreshold) (8.12)

For a diagnostic task, we can pick a detection threshold Cthreshold and a time T

for sensors to accumulate counts. The expected number of sensors reporting detec-
tions from the source and from the background are then ωsourceT and ωbackgroundT ,
respectively. The actual number is also a Poisson process, so another decision crite-
rion for declaring a source detected is the minimum number of sensors n reporting
a detection. Since expected count rate near the source is significantly larger than the
background rate, the contributions to the counts from the source and background are
nearly independent, so the probability for detecting a source is

Pr
(
(ωsource + ωbackground)T ,n

)

and similarly for the false positives with counts based only on ωbackground.

8.4.5 Detection Performance

Figure 8.3 shows the values of ωsource and ωbackground for the parameters of Table 8.1
for various choices of the control parameter Cthreshold. Despite the much larger num-
ber of opportunities for false positives compared to the single vessel with the source,
the ability of robots to pass close to the source allows selecting Cthreshold ≈ 10 for

8 Distributed Control of Microscopic Robots in Biomedical Applications 195

Fig. 8.4 Probabilities of
detecting a single source (true
positive) and mistaking
background concentration for
a source (false positive) after
sampling for T = 20 and
1000 seconds (gray and solid
curves, respectively). Each
curve corresponds to
changing the minimum
threshold Cthreshold of counts
during the time interval
Tmeasure required to indicate a
detection event

which false positive detections are small while still having a significant rate of true
positives.

For diagnostics, an indication of performance is comparing the likelihood of true
and false positives. In particular, identifying choices of control parameters giving
both a high chance of detecting a source and a low chance of false positives. Fig-
ure 8.4 illustrates the tradeoff for the task considered here. The curves range from the
lower-left corner (low detection rates) with a high threshold to the upper-right corner
(high detection and high false positive rate) with a low threshold. Robots collecting
data for only about 20 minutes allow high performance, in this case with Cthreshold

around 10. This corresponds to the behavior seen in Fig. 8.3: Cthreshold ≈ 10 is high
enough to be rarely reached with background concentration alone (in spite of the
much larger number of vessels without the source than the single vessel with the
source), but still low enough that most devices passing through the single vessel
with the source will detect it.

If the robots are to act at the source, ensuring at least one detection may not be
enough. For instance, if the robots release a chemical near the source, or aggregate
near the source (e.g., to stick to vessel wall near the source to provide enhanced
imaging or to mechanically alter the tissue), then it may be necessary to ensure a
relatively large number of robots detect the source. At the same time, we wish to
avoid inappropriate actions due to false positives. A criterion emphasizing safety is
having a high chance the required number detect the source before a single robot
has a false positive detection, so not even a single inappropriate action takes place.
Figure 8.5 shows we can achieve high performance by this criterion: the robots
circulate for about a day to have enough time for 1000 to detect the source while
still having a low chance for any false positives.

Another motivation for requiring more than one detection at the source is to ac-
count for sensor failures, e.g., requiring detection by several sensors as independent
confirmation of the source. Occasional spurious extra counts by the sensors amount
to an increase in the effective background concentration. As long as these extra
counts are infrequent, and not significantly clustered in time, such errors will not
significantly affect the overall accuracy of the results. Conversely, sensor failures

196 T. Hogg

Fig. 8.5 Probability of at least 1000 robots detecting the source vs. the probability at least
one robot mistakes background concentration for a source (false positive) after sampling for
T = 6 × 104 and 105 seconds (gray and solid curves, respectively). Each curve corresponds to
changing the minimum threshold Cthreshold of counts during the time interval Tmeasure required to
indicate a detection event

leading to missed counts will decrease the average detection rate, thereby requiring
correspondingly longer operation times.

In summary, simple control allows fast and accurate detection of even a single
cell-sized source within a macroscopic tissue volume. The key feature enabling this
performance is the robots’ ability to pass close to individual cells, where concentra-
tion from released chemicals is much higher than in fluid far from the cell.

For comparison, instead of using microscopic sensors, one could use a blood
sample extracted from the body, which is a routine medical procedure. Conven-
tional laboratory analysis outside the body could then attempt to detect the chemi-
cal in the sample. However, such a sample will represent the average concentration
of the chemical in the full blood volume. For a small chemical source, e.g., the
size of a single cell, this average amounts to a significant dilution of the chemical,
resulting in considerably smaller concentrations than are available to microscopic
sensors passing close to the source. As an example, suppose a single source de-
scribed above produces the chemical for one day and all this production is delivered
to the blood without any degrading before a sample is taken. The source producing
∼5 × 104 molecule/s builds up to a concentration in the 5 liter blood volume of
about 7 × 1011 molecule/m3 after a day. This concentration is about 10−4 of the
background concentration, so the additional chemical released by the source would
be difficult to detect against small variations in background concentration.

These performance estimates also indicate behavior in other scenarios. For in-
stance, with fewer sensors, detection times would be correspondingly longer, or
would only be sensitive to a larger number of sources. For instance, with 106 sen-
sors, a factor of 1000 fewer than in Table 8.1, achieving the discrimination shown
in Fig. 8.4 would take a thousand times longer. Alternatively, for 106 sensors with
1000 sources distributed randomly in the tissue volume instead of just one source,
performance would be similar to that shown in the figure. The stochastic analysis

8 Distributed Control of Microscopic Robots in Biomedical Applications 197

Fig. 8.6 Chemical detection probabilities vs. threshold Cthreshold for detection during the Tmeasure
time interval. Two cases are shown: a robot passing the source (black) and a robot in a small vessel
without the source, i.e., false positive detection (gray). Curves are the theoretical estimates, and
points are from simulations. Each point includes a line showing the 95 % confidence interval of the
probability estimate, which in most cases is smaller than the size of the plotted point. The points
are averages from 105 and 107 discrete simulations of single robots passing through vessels with
and without a source, respectively

approach used here could also estimate other aspects of robot performance, such as
the average distance to the source if and when a passing robot detects it.

The stochastic analysis approach to evaluating robot behaviors in spatially
varying fields makes various simplifying approximations to obtain ωsource and
ωbackground. These include independence of the number of detection counts in dif-
ferent time intervals, characterizing the robots by a continuous concentration field
rather than discrete objects, and ignoring how the robots (and other objects, such as
blood cells) change the fluid flow and the concentration distribution of the chemical
in the fluid. In principle, the analysis approach can readily include objects in the
fluid, but the numerical solution becomes significantly more complicated. Instead
of the parabolic velocity profile Eq. (8.2), fluid flow changes with time as the ob-
jects move through the vessel. Simultaneously, the object motion is determined by
the drag force from the fluid. Evaluating the flow requires solving the Navier-Stokes
equation, which can also include more complicated geometries for the vessels and
source than treated here. Despite this additional numerical complexity, analyzing
robot behaviors is formally the same.

On the other hand, history-dependent behavior of the robots, such as checking for
a certain number of counts within a specified time interval, is difficult to include in
the formalism, leading to the simplifying independence assumptions used here. As a
check on the accuracy of these assumptions, a discrete-event simulation for the same
task evaluates robot behavior without making those assumptions, but requires sig-
nificantly more compute time to evaluate average behaviors. Figure 8.6 shows this
comparison for the key quantities used here: the detection probabilities for true and
false positives. We see a fairly close correspondence between the two methods, but
with a systematic error. The correspondence preserves the key qualitative difference

198 T. Hogg

between the curves: many orders of magnitude difference in detection probabilities
over a range of thresholds (in this case around 10 to 15) where the detection prob-
ability for true positives is fairly high. This large difference allows finding a choice
of threshold and measurement time giving high detection probability with low false
positives, as illustrated in Fig. 8.4.

8.5 Applications for Additional Robot Capabilities

High-resolution in vivo chemical sensing with passive motion in fluids is well-suited
to robots with minimal capabilities. Additional hardware capabilities allow collect-
ing more information communicating with external observers during operation, or
taking actions such as aggregating at the chemical source, releasing chemicals or
mechanically manipulating the cells. This section presents a number of such possi-
bilities.

8.5.1 Improved Inference from Sensor Data

The example in Fig. 8.4 uses a simple detection criterion based on a single choice
of threshold Cthreshold. More sophisticated criteria could improve accuracy. One ex-
ample is matching the temporal distribution of detections to either that expected
from a uniform background or a spatially localized high concentration source. This
procedure would also be useful when the source and background concentrations are
not sufficiently well known a priori to determine a suitable threshold. Instead, the
distribution of counts could distinguish the low background rate encountered most
of the time from occasional clusters of counts at substantially higher rates.

Robots could use correlations in space or time for improved sensitivity. For in-
stance, if a source emits several chemicals together, each of which has significant
background concentration from a variety of separate sources, then detecting all of
them within a short period of time improves statistical power of the inference. Sim-
ilarly if the chemical is released in bursts, sensors nearby during a burst would
encounter much higher local concentrations than the time averaged concentration.
Stochastic temporal variation in protein production is related to the regulatory en-
vironment of the genes producing the protein, in particular the number of proteins
made from each transcript (McAdams and Arkin 1997). Thus temporal information
could identify aspects of the gene regulation within individual cells.

Correlations in the measurements could distinguish between a strong source and
many weak sources throughout the tissue volume producing the chemical at the
same total rate. The strong source would give high count rates for a few devices
(those passing near the source) while multiple weak sources would have some de-
tection in a larger fraction of the sensors.

As another example, using fluid flow sensors would allow correlating chemical
detections with properties of the flow and the vessel geometry (e.g., branching and
changes in vessel size or permeability to fluids).

8 Distributed Control of Microscopic Robots in Biomedical Applications 199

8.5.2 Correlating Measurements from Multiple Devices

Determining properties of the chemical sources would improve if data from de-
vices passing different sources is distinguished from multiple devices passing the
same source. One possibility for correlating information from different devices is
if sources, or their local environments, are sufficiently distinct chemically so mea-
suring similar ratios of various chemicals in different devices likely indicates they
encountered the same source. Common temporal variation could also suggest data
from the same source.

With less distinctive sources or insufficient time to collect enough counts to make
the distinction, devices capable of communicating with others nearby could pro-
vide this correlation information directly. With the parameters of Table 8.1, typical
spacing between devices is several hundred microns, which is beyond a plausible
communication distance between devices. Thus direct inter-device communication
requires reducing the spacing with either a larger total number of devices or tempo-
rary local aggregation in small volumes.

Devices could achieve this aggregation if they can alter their surface properties
to stick to the vessel wall (Lahann and Langer 2005). With such a programmable
change, a device detecting an interesting event could stick when it next encounters
the wall. The parameters of Table 8.1 give, on average, about one device passing
through a given small vessel each minute. Thus a device on the wall could remain
there for a few minutes, broadcasting its unique identifier to other devices as they
pass. Devices would record the identifiers they receive, with a time stamp, thereby
correlating their detections.

Further inferences could be made from devices temporarily on the vessel wall
where small vessels merge into larger ones. In this case, the identifier received from
a device on the wall enables correlating events in nearby vessels, i.e., those that
merge into the same larger vessel. Similarly, if robots aggregate in upstream vessels,
before they branch into smaller ones, the robots could record each others’ unique
identifiers. Subsequent measurements over the next few hundred milliseconds would
be known to arise from the same region, i.e., either the same vessel or nearby ones.

The ability to selectively stick to vessel walls would allow another mode of opera-
tion: the devices could be injected in larger blood vessels leading into a macroscopic
tissue volume of interest and then stick to the vessel walls after various intervals
of time or when specific chemicals are detected. After collecting data, the devices
would release from the wall for later retrieval.

8.5.3 Reporting During Operation

The devices could carry nanoscale structures with high response to external sig-
nals. Such structures could respond to light of particular wavelengths when near the
skin (Wang et al. 2005), or give enhanced imaging via MRI or ultrasound (Liu et al.
2006). Such visualization mechanisms combined with a selective ability to stick to

200 T. Hogg

vessel walls allows detecting aggregations of devices at specified locations near the
surface of the body (Service 2005).

This visualization technique could be useful even if the tissue volume of interest
is too deep to image effectively at high resolution. In particular, robots could use
various areas near the skin (e.g., marked with various light or ultrasound frequen-
cies) at centimeter scales as readout regions during operation. Devices that have de-
tected the chemicals could aggregate at the corresponding readout location, which
would then be visible externally. Devices could choose how long to remain at the
aggregation points based on how high a concentration of the chemical pattern they
detected. This indication of whether, and (at a coarse level) what, the devices have
found could help decide how long to continue circulating to improve statistics for
weak chemical signatures. These aggregation points could also be used to signal to
the devices, e.g., instructing them to select among a few modes of operation.

8.5.4 Detection of Chemicals Inside Cells

The task described above relies on detecting chemicals released into the blood-
stream. However, some chemicals of interest may remain inside cells, or if released,
be unable to get into the bloodstream. In that case, sensors in the bloodstream would
not detect the chemical even when they pass through vessels near the cells.

However, an extension of the protocol could allow indirect detection of intracel-
lular chemicals. For example, current technology can create molecules capable of
entering cells, and, if they encounter specific chemicals, changing properties to emit
signals or greatly enhance response to external imaging methods. Such molecules
can indicate a variety of chemical behaviors within cells (Xie et al. 2006). Thus if
the microscopic devices include sensors for these indicator signals, they could in-
directly record the activity of the corresponding intracellular chemicals in nearby
cells. Such sensing from within nearby blood vessels would complement current
uses of these marker molecules with much larger scale whole body imaging. In this
extended protocol, the microscopic devices would provide the same benefits of de-
tecting chemicals directly by instead detecting a proxy signal that is able to reach
the nearby blood vessels.

8.5.5 Modifying Microenvironments

Beyond the diagnostic task discussed above, robots able to locate chemically dis-
tinctive microenvironments in the body could have capabilities to modify those en-
vironments. For instance, the devices could carry specific drugs to deliver only to
cells matching a prespecified chemical profile (Freitas 1999, 2006) as an extension
of a recent in vitro demonstration of this capability using DNA computers (Benen-
son et al. 2004).

8 Distributed Control of Microscopic Robots in Biomedical Applications 201

With active locomotion, after detecting the chemicals the devices could follow
the chemical gradient to the source, though this would require considerable energy
to move upstream against the fluid flow. Alternatively, with sufficient number of
robots so they are close enough to communicate, a robot detecting the chemical
could acoustically signal upstream devices to move toward the vessel wall. In this
cooperative approach, the detecting device does not itself attempt to move to the
source, but rather acts to signal others upstream from the source to search for it.
These upstream devices would require little or no upstream motion. Furthermore,
with a large number of devices, even if only a small fraction move in the correct
direction to the source after receiving a signal, many would still reach the source.
This approach of using large numbers and randomness in simple local control is
analogous to that proposed for collections of larger reconfigurable robots (Bojinov
et al. 2002; Rus and Vona 1999; Salemi et al. 2001). The behavior of microscopic
active swimmers (Dreyfus et al. 2005) raises additional control issues to exploit
the hydrodynamic interactions among swimming objects as they aggregate so the
distance between devices becomes only a few times their size (Hernandez-Ortiz
et al. 2005).

Robots aggregated at chemically identified targets could perform precise micro-
surgery at the scale of individual cells. Since biological processes often involve
activities at molecular, cell, tissue and organ levels, such microsurgery could com-
plement conventional surgery at larger scales. For instance, a few millimeter-scale
manipulators, built from micromachine (MEMS) technology, and a population of
microscopic devices could act simultaneously at tissue and cellular size scales. An
example involving microsurgery for nerve repair with plausible biophysical param-
eters indicates the potential for significant improvement in both speed and accuracy
compared to the larger-scale machines acting alone (Sretavan et al. 2005; Hogg and
Sretavan 2005).

8.6 Discussion

Plausible capabilities for microscopic robots suggest a range of novel applications
in biomedical research and medicine. Sensing and acting with micron spatial res-
olution and millisecond timing allows access to activities of individual cells. The
large numbers of robots enable such activities simultaneously on a large population
of cells in multicellular organisms. In particular, the small size of these robots al-
lows access to tissue through blood vessels. Thus a device passes within a few tens
of microns of essentially every cell in the tissue in a time ranging from tens of sec-
onds to minutes, depending on the number of devices used. As described above, this
access to cells allows rapid, chemical sensing with much higher resolution than pos-
sible with in vitro sample analysis. Furthermore, the precision of localization and
the robots’ programmability gives them a degree of flexibility to alter microenvi-
ronments, e.g., by releasing drugs, well beyond that possible with either large scale

202 T. Hogg

surgery or nonprogrammable chemically-targeted drug delivery. The full range of
biomedical situations that could benefit from this flexibility, e.g., nerve repair (Hogg
and Sretavan 2005), remains to be seen.

With many devices in the tissue but only a few in the proper context to perform
task, false positives are a significant issue. In some situations, these false positives
may just amount to a waste of resources (e.g., power). But in other cases, too many
false positives could be more serious, e.g., leading to aggregation blocking blood
vessels or incorrect diagnosis.

The sensing task described in this paper highlights key control principles for mi-
croscopic robots. Specifically, by considering the overall task in a series of stages,
the person deploying the robots remains in the decision loop, especially for the key
decision of whether to proceed with manipulation (e.g., release a drug) based on di-
agnostic information reported by the devices. Information retrieved during treatment
can also indicate how well the procedure is proceeding and provide high-resolution
documentation of what was done to help improve future treatments. More gener-
ally, this hybrid control illustrates an important approach to using self-organized
systems: use local, distributed control to achieve robust self-organized behaviors on
small scales in space and time, combined with feedback from a slower, larger cen-
tral control (e.g., a person) to verify performance and consider global constraints
not easily incorporated within local controllers.

The performance estimates for the sensing task show devices with limited
capabilities—specifically, without locomotion or communication with other devices
—can nevertheless rapidly detect chemical sources as small as a single cell. The de-
vices use their small size and large numbers to allow at least a few to get close to
the source, where concentration is much higher than background. This paper also
illustrates use of an analysis technique for average behavior of microscopic robots
that readily incorporates spatially variable fields in the environment. Such fields are
of major significance for microscopic robots, in contrast to their usual limited im-
portance for larger robots.

As a caveat on the results, the model examined here treats the location of the
chemical source as independent of the properties and flow rates in the vessel con-
taining the source. Systematic variation in the density and organization of the ves-
sels will increase the variation in detected values. For instance, the tissue could have
correlations between vessel density and the chemical sources (e.g., if those chemi-
cals enhance or inhibit growth of new vessels). Accurate inference requires models
of how the chemicals move through the tissue to nearby blood vessels. Chemicals
could react after release from the source to change the concentrations with distance
from the source. Furthermore, other chemicals, unrelated to the desired detection
task, may have similar sensor binding characteristics as the desired chemical. These
other chemicals will increase the effective background rate, depending on the se-
lectivity of the sensor. Nevertheless, the simple model discussed here indicates the
devices could have high discrimination for sources as small as single cells. Thus
even with some unmodeled sources of variability, good performance could still be

8 Distributed Control of Microscopic Robots in Biomedical Applications 203

achieved by extending the sensing time or using more sophisticated inference meth-
ods. Moreover, with some localization during operation, the devices themselves
could estimate some of this variation (e.g., changes in density of vessels in different
tissue regions), and these estimates could improve the inference instead of relying
on average or estimated values for the tissue structure.

Further open questions include the effect of higher diffusion from mixing due
to motion of cells in fluid, for both chemicals and robots. For instance, the hydro-
dynamic effect of blood cells moving in the fluid greatly increases the diffusion
coefficient of smaller objects in the fluid, to about 10−9 m2/s (Keller 1971).

Instead of flowing with fluid, the sensors could be implanted at specific loca-
tions of interest to collect data in their local environments, and later retrieved. This
approach does not take full advantage of the sensor size: it could be difficult to iden-
tify interesting locations at cell-size resolutions and implant the devices accurately.
Nevertheless, such implants could be useful by providing local signals to indicate
regions of interest to other sensors passing nearby in a moving fluid.

Safety is important for medical applications of microscopic robots. Thus, eval-
uating a control protocol should consider its accuracy allowing for errors, failures
of individual devices or variations in environmental parameters. For the simple dis-
tributed sensing discussed in this paper, statistical aggregation of many devices’
measurements provides robustness against these variations, a technique recently
illustrated using DNA computing to respond to patterns of chemicals (Benenson
et al. 2004). Furthermore, the devices must be compatible with their biological en-
vironment (Nel et al. 2006) for enough time to complete their task. Appropriately
engineered surface coatings and structures should allow sufficient biocompatibility
during robot operation (Freitas 2003; Schrand et al. 2007). However, even if individ-
ual devices are inert, too many in the circulation would be harmful. From Table 8.1,
sensors occupy a fraction (4/3)πa3ρrobot ≈ 10−6 of the volume inside the vessels.
This value is well below the fraction, about 10−3, of micron-size particles exper-
imentally demonstrated to be safely tolerated in the circulatory system of at least
some mammals (Freitas 2003). Thus the number of robots used in the protocol of
this paper is unlikely to be a safety issue.

Despite the simplifications used to model sensor behavior, the estimates obtained
in this paper with plausible biophysical parameters show high-resolution sensing is
possible with passive device motion in the circulatory system, even without com-
munication capabilities. Thus relatively modest hardware capabilities could provide
useful in vivo sensing capabilities far more flexible and specific than larger scale de-
vices. Research studies of tissue microenvironments with such robots will improve
knowledge of their biophysical parameters, and hence enable better inferences from
the data collected by these devices. The improved understanding will, in turn, in-
dicate distributed controls suitable for more capable devices and appropriate trade-
offs between scale and capability for hybrid systems combining coarse centralized
control with the flexibility of self-organization within the biological microenviron-
ments.

204 T. Hogg

8.7 Epilogue

Microscopic robots present challenges for both hardware and software development.
Recent years, since the first edition of this chapter (Hogg 2008), have seen progress
in both areas.

As one example of hardware development, clinical magnetic resonance imaging
(MRI) can be used to move microrobots containing ferromagnetic particles through
blood vessels (Martel et al. 2007; Olamaei et al. 2010). Other demonstrated micro-
machines use flagellar motors to move through fluids, and may be useful for mini-
mally invasive surgery in parts of the body beyond the reach of catheters (Behkam
and Sitti 2007; Fernandes and Gracias 2009).

Modifying biological organisms or using their components is an important
method for creating cell-sized robots. One approach to creating such robots is engi-
neering biological systems, e.g., RNA-based logic inside cells (Win and Smolke
2008), bacteria attached to nanoparticles (Martel et al. 2008), executing simple
programs via the genetic machinery within bacteria (Ferber 2004; Andrianantoan-
dro et al. 2006), DNA computers responding to Boolean combinations of chem-
icals (Benenson et al. 2004) and artificial DNA-based structures capable of self-
locomotion (Smith 2010; Sanchez and Pumera 2009; Douglas et al. 2012). In ad-
dition to specific examples of microscopic devices, this work improves our engi-
neering understanding of mechanical and chemical mechanisms used in biology.
This is important for guiding designs of new devices since molecular machines op-
erate in environments quite different from conventional machines, particularly in-
cluding significant thermal fluctuations and the dominance of viscous over inertial
forces (Nelson 2008).

This progress is impressive and is expanding our capabilities to engineer mi-
croscopic machines that include sensing, computing and acting on their environ-
ments. These are three key aspects of autonomous robots. Nevertheless, these re-
cently demonstrated devices remain a long way from a fabrication technology able
to make robots with significant capabilities beyond biological cells. These exten-
sions including using stronger materials, having significant on-board programmable
computation and communicating with other robots and human supervisors of the
robots’ operations.

Computational studies are investigating performance and design choices for
robots that cannot yet be built. Such studies include how much power microscopic
robots could generate with oxyglucose fuel cells (Mano et al. 2002; Rapoport et al.
2012) using available glucose and oxygen in tissue (Hogg and Freitas 2010). A va-
riety of method for powering MEMS devices (Cook-Chennault et al. 2008) may
suggest additional approaches to powering smaller robots. Power is likely to be a
significant constraint on such machines, so quantifying possible power sources is
important for constraining designs and applications of the robots. The development
of methods to deploy networks of small sensors (Mahfuz and Ahmed 2005) could
also eventually apply to more sophisticated machines. Communication is another
important capability by which robots can perform a wide range of coordinated ac-
tivities, and respond to commands from human controllers. Numerical and analytic

8 Distributed Control of Microscopic Robots in Biomedical Applications 205

models can determine the tradeoffs among range, bit rate and power consumption,
e.g., for acoustic communication among the devices (Hogg and Freitas 2012).

In the near term, we can expect continued progress on fabricating novel nanopar-
ticles with some ability to determine actions through a small number of logical
operations, and more capable biology-based devices. These developments provide
practical constraints for computational studies of distributed control using such de-
vices. Such studies can help design swarm behaviors in settings corresponding to
environments of microscopic robots, particularly thermal fluctuations, rapid diffu-
sion as the main transport mode over short distances and viscous fluids. These im-
proving hardware and distributed control designs could pave the way to fabrication
and use of larger collections of more capable microscopic robots.

Acknowledgements I have benefited from discussions with Philip J. Kuekes and David Sreta-
van.

References

Alon, U. (2007). An introduction to systems biology: design principles of biological circuits. Lon-
don: Chapman and Hall.

Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new
engineering rules for an emerging discipline. Molecular Systems Biology, 2, 2006.0028.
doi:10.1038/msb4100073.

Arbuckle, D., & Requicha, A. A. G. (2004). Active self-assembly. In Proceedings of the IEEE
international conference on robotics and automation, New York (pp. 896–901).

Behkam, B., & Sitti, M. (2007). Bacterial flagella-based propulsion and on/off motion control of
microscale objects. Applied Physics Letters, 90, 023902.

Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., & Shapiro, E. (2004). An autonomous molecular
computer for logical control of gene expression. Nature, 429, 423–429.

Berg, H. C. (1993). Random walks in biology (2nd ed.). Princeton: Princeton Univ. Press.
Berg, H. C., & Purcell, E. M. (1977). Physics of chemoreception. Biophysical Journal, 20, 193–

219.
Berna, J., et al. (2005). Macroscopic transport by synthetic molecular machines. Nature Materials,

4, 704–710.
Bojinov, H., Casal, A., & Hogg, T. (2002). Multiagent control of modular self-reconfigurable

robots. Artificial Intelligence, 142, 99–120. arXiv:cs.RO/0006030.
Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial

systems. Oxford: Oxford University Press.
Casal, A., Hogg, T., & Cavalcanti, A. (2003). Nanorobots as cellular assistants in inflammatory

responses. In J. Shapiro (Ed.), Proceedings of the 2003 Stanford biomedical computation sym-
posium (BCATS2003), Stanford, CA (p. 62). Available at http://bcats.stanford.edu.

Cavalcanti, A., & Freitas, R. A. Jr. (2002). Autonomous multi-robot sensor-based cooperation for
nanomedicine. International Journal of Nonlinear Sciences and Numerical Simulation, 3, 743–
746.

Collier, C. P., et al. (1999). Electronically configurable molecular-based logic gates. Science, 285,
391–394.

Cook-Chennault, K. A., Thambi, N., & Sastry, A. M. (2008). Powering MEMS portable devices—
a review of non-regenerative and regenerative power supply systems with special emphasis on
piezoelectric energy harvesting systems. Smart Materials and Structures, 17, 043001.

Craighead, H. G. (2000). Nanoelectromechanical systems. Science, 290, 1532–1535.

http://dx.doi.org/10.1038/msb4100073
http://arxiv.org/abs/arXiv:cs.RO/0006030
http://bcats.stanford.edu

206 T. Hogg

Dhariwal, A., Sukhatme, G. S., & Requicha, A. A. G. (2004). Bacterium-inspired robots for en-
vironmental monitoring. In Proceedings of the IEEE international conference on robotics and
automation, New York (pp. 1436–1443).

Douglas, S. M., Bachelet, I., & Church, G. M. (2012). A logic-gated nanorobot for targeted trans-
port of molecular payloads. Science, 335, 831–834.

Drexler, K. E. (1992). Nanosystems: molecular machinery, manufacturing, and computation. New
York: Wiley.

Dreyfus, R., et al. (2005). Microscopic artificial swimmers. Nature, 437, 862–865.
Ferber, D. (2004). Microbes made to order. Science, 303, 158–161.
Fernandes, R., & Gracias, D. H. (2009). Toward a miniaturized mechanical surgeon. Materials

Today, 12(10), 14–20.
Freitas, R. A. Jr. (1999). Nanomedicine, volume I: basic capabilities. Georgetown: Landes Bio-

science. Available at www.nanomedicine.com/NMI.htm.
Freitas, R. A. Jr. (2003). Nanomedicine, volume IIA: biocompatibility. Georgetown: Landes Bio-

science. Available at www.nanomedicine.com/NMIIA.htm.
Freitas, R. A. Jr. (2006). Pharmacytes: an ideal vehicle for targeted drug delivery. Journal of

Nanoscience and Nanotechnology, 6, 2769–2775.
Fritz, J., et al. (2000). Translating biomolecular recognition into nanomechanics. Science, 288,

316–318.
Fung, Y. C. (1997). Biomechanics: circulation (2nd ed.). New York: Springer.
Galstyan, A., Hogg, T., & Lerman, K. (2005). Modeling and mathematical analysis of swarms of

microscopic robots. In P. Arabshahi & A. Martinoli (Eds.), Proceedings of the IEEE swarm
intelligence symposium (SIS2005), New York (pp. 201–208).

Gazi, V., & Passino, K. M. (2004). Stability analysis of social foraging swarms. IEEE Transactions
on Systems, Man and Cybernetics. Part B. Cybernetics, 34, 539–557.

Ghosh, S., et al. (2003). Carbon nanotube flow sensors. Science, 299, 1042–1044.
Gourley, P. L., et al. (2005). Ultrafast nanolaser flow device for detecting cancer in single cells.

Biomedical Microdevices, 7, 331–339.
Griffith, S., Goldwater, D., & Jacobson, J. M. (2005). Robotics: self-replication from random parts.

Nature, 437, 636.
Hamad-Schifferli, K., et al. (2002). Remote electronic control of DNA hybridization through in-

ductive coupling to an attached metal nanocrystal antenna. Nature, 415, 152–155.
Hernandez-Ortiz, J. P., Stoltz, C. G., & Graham, M. D. (2005). Transport and collective dynamics

in suspensions of confined swimming particles. Physical Review Letters, 95, 204501.
Hogg, T. (2007). Coordinating microscopic robots in viscous fluids. Autonomous Agents and Multi-

Agent Systems, 14(3), 271–305.
Hogg, T. (2008). Distributed control of microscopic robots in biomedical applications. In M.

Prokopenko (Ed.), Advances in applied self-organizing systems (1st ed.). London: Springer.
Hogg, T., & Freitas, R. A. Jr. (2010). Chemical power for microscopic robots in capillaries.

Nanomedicine, 6, 298–317. arXiv:0906.5022.
Hogg, T., & Freitas, R. A. Jr (2012). Acoustic communication for medical nanorobots. Nano Com-

munication Networks, 3, 83–102.
Hogg, T., & Huberman, B. A. (2004). Dynamics of large autonomous computational systems. In

K. Tumer & D. Wolpert (Eds.), Collectives and the design of complex systems (pp. 295–315).
New York: Springer.

Hogg, T., & Kuekes, P. J. (2006). Mobile microscopic sensors for high-resolution in vivo diagnos-
tics. Nanomedicine, 2, 239–247.

Hogg, T., & Sretavan, D. W. (2005). Controlling tiny multi-scale robots for nerve repair. In Pro-
ceedings of the 20th national conference on artificial intelligence (AAAI2005) (pp. 1286–1291).
Menlo Park: AAAI Press.

Howard, J. (1997). Molecular motors: structural adaptations to cellular functions. Nature, 389,
561–567.

Janeway, C. A., et al. (2001). Immunobiology: the immune system in health and disease (5th ed.).
New York: Garland.

http://www.nanomedicine.com/NMI.htm
http://www.nanomedicine.com/NMIIA.htm
http://arxiv.org/abs/arXiv:0906.5022

8 Distributed Control of Microscopic Robots in Biomedical Applications 207

Karniadakis, G. E. M., & Beskok, A. (2002). Micro flows: fundamentals and simulation. Berlin:
Springer.

Keller, K. H. (1971). Effect of fluid shear on mass transport in flowing blood. In Proceedings of
Federation of American Societies for Experimental Biology (pp. 1591–1599).

Keszler, B. L., Majoros, I. J., & Baker, J. R. Jr. (2001). Molecular engineering in nanotechnology:
structure and composition of multifunctional devices for medical application. In Proceedings of
the ninth foresight conference on molecular nanotechnology, Palo Alto, CA.

Lahann, J., & Langer, R. (2005). Smart materials with dynamically controllable surfaces. MRS
Bulletin, 30, 185–188.

Lerman, K., et al. (2001). A macroscopic analytical model of collaboration in distributed robotic
systems. Artificial Life, 7, 375–393.

Li, Z., et al. (2005). Silicon nanowires for sequence-specific DNA sensing: device fabrication and
simulation. Applied Physics. A, Materials Science & Processing, 80, 1257–1263.

Liu, J., et al. (2006). Nanoparticles as image enhancing agents for ultrasonography. Physics in
Medicine and Biology, 51, 2179–2189.

Mahfuz, M. U., & Ahmed, K. M. (2005). A review of micro-nano-scale wireless sensor networks
for environmental protection: prospects and challenges. Science and Technology of Advanced
Materials, 6, 302–306.

Mano, N., Mao, F., & Heller, A. (2002). A miniature biofuel cell operating in a physiological
buffer. Journal of the American Chemical Society, 124, 12962–12963.

Martel, S., Mathieu, J.-B., Felfoul, O., Chanu, A., Aboussouan, E., Tamaz, S., & Pouponneau, P.
(2007). Automatic navigation of an untethered device in the artery of a living animal using a
conventional clinical magnetic resonance imaging system. Applied Physics Letters, 90, 114105.

Martel, S., et al. (2008). Flagellated bacterial nanorobots for medical interventions in the human
body. In D. Meldrum & O. Khatib (Eds.), Proceedings of 2nd IEEE conference on biomedical
robotics and biomechatronics (pp. 264–269).

Mataric, M. (1992). Minimizing complexity in controlling a mobile robot population. In Proceed-
ings of the 1992 IEEE intl. conf. on robotics and automation, New York (pp. 830–835).

McAdams, H. H., & Arkin, A. (1997). Stochastic mechanisms in gene expression. Proceedings of
the National Academy of Sciences of the United States of America, 94, 814–819.

McCurdy, C. W., et al. (2002). Theory and modeling in nanoscience (Workshop report). US Dept.
of Energy. www.science.doe.gov/bes/reports/files/tmn_rpt.pdf.

Montemagno, C., & Bachand, G. (1999). Constructing nanomechanical devices powered by
biomolecular motors. Nanotechnology, 10, 225–231.

Morris, K. (2001). Macrodoctor, come meet the nanodoctors. The Lancet, 357, 778.
Natterer, F. (2001). The mathematics of computerized tomography. Philadelphia: SIAM.
Nel, A., et al. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.
Nelson, P. (2008). Biological physics: energy, information, life. New York: W.H. Freeman.
NIH (2003). National Institutes of Health roadmap: nanomedicine. Available at http://nihroadmap.

nih.gov/nanomedicine/index.asp.
Olamaei, N., Cheriet, F., Beaudoin, G., & Martel, S. (2010). MRI visualization of a single 15 µm

navigable imaging agent and future microrobot. In Proceedings of the 2010 conf. on engineering
in medicine and biology society (pp. 4355–4358). New York: IEEE.

Patolsky, F., & Lieber, C. M. (2005). Nanowire nanosensors. Materials Today, 8, 20–28.
Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45, 3–11.
Rapoport, B. I., Kedzierski, J. T., & Sarpeshkar, R. (2012). A glucose fuel cell for implantable

brain-machine interfaces. PLoS ONE, 7(6), e38436.
Requicha, A. A. G. (2003). Nanorobots, NEMS and nanoassembly. Proceedings of the IEEE, 91,

1922–1933.
Riedel, I. H., et al. (2005). A self-organized vortex array of hydrodynamically entrained sperm

cells. Science, 309, 300–303.
Rus, D., & Vona, M. (1999). Self-reconfiguration planning with compressible unit modules. In

Proceedings of the conference on robotics and automation (ICRA99) (pp. 2513–2520). New
York: IEEE.

http://www.science.doe.gov/bes/reports/files/tmn_rpt.pdf
http://nihroadmap.nih.gov/nanomedicine/index.asp
http://nihroadmap.nih.gov/nanomedicine/index.asp

208 T. Hogg

Salemi, B., Shen, W.-M., & Will, P. (2001). Hormone controlled metamorphic robots. In Proceed-
ings of the international. conference on robotics and automation (ICRA2001), New York (pp.
4194–4199).

Sanchez, S., & Pumera, M. (2009). Nanorobots: the ultimate wireless self-propelled sensing and
actuating devices. Asian Journal of Chemistry, 4, 1402–1410.

Schrand, A. M., et al. (2007). Are diamond nanoparticles cytotoxic? Journal of Physical Chemistry.
B, 111, 2–7.

Service, R. F. (2005). Nanotechnology takes aim at cancer. Science, 310, 1132–1134.
Sheehan, P. E., & Whitman, L. J. (2005). Detection limits for nanoscale biosensors. Nano Letters,

5(4), 803–807.
Smith, L. M. (2010). Molecular robots on the move. Nature, 465, 167–168.
Soong, R. K., et al. (2000). Powering an inorganic nanodevice with a biomolecular motor. Science,

290, 1555–1558.
Squires, T. M., & Quake, S. R. (2005). Microfluidics: fluid physics at the nanoliter scale. Reviews

of Modern Physics, 77, 977–1026.
Sretavan, D., Chang, W., Keller, C., & Kliot, M. (2005). Microscale surgery on axons for nerve

injury treatment. Neurosurgery, 57(4), 635–646.
Vogel, S. (1994). Life in moving fluids (2nd ed.). Princeton: Princeton Univ. Press.
Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays.

Science, 312, 242–246.
Wang, S.-Y. & Williams, R. S. (Eds.) (2005). Nanoelectronics (Vol. 80). New York: Springer.

Special issue of Applied Physics A.
Wang, H., et al. (2005). In vitro and in vivo two-photon luminescence imaging of single gold

nanorods. Proceedings of the National Academy of Sciences of the United States of America,
102, 15752–15756.

Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295, 2418–
2421.

Win, M. N., & Smolke, C. D. (2008). Higher-order cellular information processing with synthetic
RNA devices. Science, 322, 456–460.

Xie, X. S., Yu, J., & Yang, W. Y. (2006). Living cells as test tubes. Science, 312, 228–230.

Part III
Self-Organizing Computation

Chapter 9
Self-Organizing Computing Systems: Songline
Processors

Nicholas J. Macias and Lisa J.K. Durbeck

9.1 Introduction

Theory is at the threshold of understanding how to translate self-organizing princi-
ples and processes to human-formed systems. However, practice lags behind theory.
This chapter endeavors to provide inroads into the application of self-organization
principles to one aspect of electronics systems, namely, digital logic.

Digital circuitry proliferated from the early transistor-Transistor Logic (TTL) cir-
cuits of the 1960s to the now mass markets of computers, mobile phones, T.V.s, and
numerous other consumer products. The fundamental component of digital circuitry
is the logic gate from which complex functions can be derived and explained with
the use of digital logic. Due to its widespread use and complex application, digital
logic is arguably a good target for applying concepts from self-organizing systems.

The ultimate goal of applying self-organization concepts to digital logic is to
devise theory and practice as to how digital logic could be constructed and oper-
ated as a self-organizing system. Our approach has been to devise reconfigurable
logic hardware and an architecture that permits self-organizing processes, and then
to begin methodically developing self-organization concepts and their translation to
practice within this framework. This work requires changing the way digital logic
is both designed and built, providing so-called primitives, or fundamental behav-
iors, for self-organizing systems, along with a way to build upon these primitives to
conceive of, compose, and orchestrate self-organized digital logic.

To achieve an inherently self-organizing infrastructure, a number of departures
from conventional digital logic design are required. These include:

• reworking how the system is controlled by placing the control within the compo-
nentry of the system itself, that is, if the system is composed entirely of digital

N.J. Macias (B) · L.J.K. Durbeck
Cell Matrix Corporation, 1901 Gardenspring Drive, Blacksburg, VA 24060-6015, USA
e-mail: nmacias@cellmatrix.com

L.J.K. Durbeck
e-mail: ld@cellmatrix.com

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_9,
© Springer-Verlag London 2013

211

mailto:nmacias@cellmatrix.com
mailto:ld@cellmatrix.com
http://dx.doi.org/10.1007/978-1-4471-5113-5_9

212 N.J. Macias and L.J.K. Durbeck

logic, then its digital logic must have the ability to control digital logic, creating
a new class of digital logic that is able to dynamically change, and able to modify
both itself and its neighbors;

• the need to incorporate this self-inspecting, self-modifying power into systems
without again introducing the hierarchy of controller and controlled, so that they
are both loosely onto each other, or interchangeable; and

• the need to conceive of and develop strategies that build upon these core capabili-
ties to re-conceive system monitoring and control as a distributed process largely
enacted within the confines of the system itself, and composed of many simple,
localized activities with significant autonomy in their ability to decide and act on
local information.

The work described below will further ground this discussion of objectives and
insights with concrete examples as to how these properties are included in the hard-
ware architecture we are developing, and gives some insight by example as to how
these simple, foundational or underlying processes can be used to compose digital
logic that is self-organizing and dynamically self-modifying.

As this is a new approach digital logic design, it is unlikely that we have devel-
oped all the primitives necessary for every class of problem. We therefore anticipate
that as we apply this work to more classes of problems, the need for other primitives
is likely. We have also not yet developed the full set of useful mid-level behaviors,
built from the primitives, that are likely to be necessary for self-organizing digital
logic designs. However, we report here on the current state of the art and outline
areas in which this work will be further applied.

Several separate aspects of digital logic production may benefit from the appli-
cation of principles of self-organization, both in the structure and function of digital
logic circuits. In the case of an FPGA, a self-organizing process could be used to
fabricate the physical hardware; the primitive functions of the hardware could use
and enable self-organization; and any logical level could do the same for the logi-
cal layer above it by supplying primitives that the upper layers can employ. In this
chapter we present research done on the design of the FPGA and its low level logic
behavior to develop self-organizing primitives that can be used to structure the log-
ical levels above it, or can be invoked by those upper logical levels. We view this as
foundational work toward the eventual integration of self-organizing behavior into
digital logic.

A key aspect of design at the hardware architecture and low-level system struc-
ture level is the data path and the control path of the computational architecture.
Much of the discussion below will refer to the system control. This should be un-
derstood to be all those processes that direct the operation of the overall system,
such as those scheduling activities or processes, synchronizing the actions of dis-
parate processes, and maintaining the overall system and all subprocesses of it in
proper working order.

System maintenance is currently done largely by people rather than processes
on the machine because of the need for physical action in many cases such as the
replacement of failing memory cards and disk drives. However, in concept, the act

9 Self-Organizing Computing Systems: Songline Processors 213

of inspecting the equipment for failure can be integrated into the design of the pro-
cesses that run on the equipment. When systems scale upward to the point that
they contain 1017 or more logical devices, there will likely be sufficient incentive
to reorganize hardware inspection as a distributed, localized process as well, on
account of the unavoidably high frequency of hardware upsets. Similarly, the pro-
cess of inspecting the initial constructed hardware for defects may also become
tedious enough that it has similar incentive to reorganize hardware inspection as a
distributed, localized process running on the hardware itself.

To invest the low level architecture of digital logic systems with properties of
self-organizing systems, it appears to be critical to change the typical computer
control path into one that is based instead upon strictly local interactions, and to
then conceive of the overall control path as being a complex distributed process
that emerges out of many local control actions. Our work provides this new kind of
control path, and we detail a number of examples of how it is used to recast control
as a highly localized process, and then describe examples in which we have built up
increasingly complex systems that are composed out of these small, highly localized
processes. Management of the actions of processes is thus transformed from the
typical centralized control of a manager that is making decisions and controlling the
system outside the system itself to distributed management and control.

Self-organization may be an antidote to the fact that the complexity of control-
ling and managing systems has been at least proportional to the size of the system,
the number of components under management. Managing 1018 components using
traditional methodology does not appear to be a tenable proposition. A hypothesis
that underlies the work presented here is that approaches to deal with the complexity
of a very large system likely require at least an equally large system as the manager,
and that it may be preferable that the manager be not separate but integral with the
system under management, since, for example, the details requiring management
decisions come down to a very large number of small details that may be extremely
difficult to output every nanosecond. Achieving this co-functioning of manager and
process under management appears possible with a particular type of infrastructure
to the underlying system, one that combines sufficient flexibility with an inherently
self-referential structure that makes introspection and autonomous self-modification
feasible. The architecture presented here has the necessary properties to test this hy-
pothesis. Section 9.2 will describe a particular system called the Cell Matrix (Macias
1999; Durbeck and Macias 2001d) that possesses these necessary characteristics.

9.1.1 Background on the Concept of Self-Organization

The concept of self-organization has application to a number of domains. In the do-
main of living systems, self-organization is a central theme in many areas (Darwin
1859; Kauffman 1993). Philosophical considerations date back even further (Hal-
dane 1931; Lennox 2001). In the domain of artificial systems, many facets of self-
organization have been explored, including autonomous behavior and self-repair
(Aspray and Burks 1987).

214 N.J. Macias and L.J.K. Durbeck

Approaches to self-organization can be grouped into at least two main categories:
one we will call a statistical approach, and the other an engineered approach. Sta-
tistical approaches seek to manage complexity by discovering algorithms or tech-
niques. Such approaches are not necessarily concerned with how the given task is
accomplished, only with how well it is presently being accomplished. Examples
of statistical approaches include neural networks (e.g., Abdi 1994) and genetic al-
gorithms (e.g., Koza 1992). Genetic algorithms have been extensively applied to
the development of electronic circuits, in a field called Evolvable Hardware (e.g.,
Thompson 1996). It should be noted that much of this work draws inspiration from
biology (Darwin 1859).

In contrast to statistical approaches, engineered approaches seek to more-delibe-
rately achieve some set of goals by following more of a pre-defined algorithm. Inter-
estingly, many engineered approaches also draw inspiration from biology, including
the Electronic Embryology (Embryonics) work of LSL (Prodan et al. 2003; Ortega-
Sanchez et al. 2000), and the Supercell work of Cell Matrix Corporation (Macias
and Durbeck 2004). The discussion in this chapter falls into the domain of the engi-
neered approach.

9.1.2 Chapter Organization

The remainder of this chapter is organized as follows: Sect. 9.2 will describe in detail
a particular target processing architecture called the Cell Matrix, which possesses
an inherently self-organizing infrastructure; Sect. 9.3 will describe simple examples
of self-modifying circuitry on the Cell Matrix, which will form the building blocks
for larger-scale self-organizing systems; Sect. 9.4 will discuss such larger systems;
and Sect. 9.6 will conclude with discussions of implementation details, including
manufacturing and CAD issues related to the Cell Matrix.

9.2 Target Platform: The Cell Matrix

This chapter discuses the distributed management and control of electronic circuitry
implemented on a specific reconfigurable platform called the Cell Matrix (Macias
1999; Durbeck and Macias 2001d). While there are a number of commercially-
available reconfigurable devices (Field Programmable Gate Arrays, or FPGAs),
including many from Xilinx, Inc., most available devices are essentially externally-
controlled, i.e., they require intervention from an outside system (e.g., a PC) in order
to be configured or re-configured (Xilinx 2006). Moreover, even among devices that
can hold several simultaneous configurations (Trimberger 1998), those configura-
tions are generally pre-created, externally, again using a PC or other extra-FPGA
system. In contrast, the Cell Matrix is fundamentally an internally-configured de-
vice: the configuration of each cell is written—and read—by those cells connected

9 Self-Organizing Computing Systems: Songline Processors 215

Fig. 9.1 5 × 5 collection of
two-dimensional, four-sided
Cell Matrix cells

to it, its immediate adjacent neighbors. Only cells situated on the perimeter of the
matrix (which are thus missing one or more neighbors) are accessible from outside
the system. This is fundamentally different from most other devices, where typi-
cally every cell can be accessed from outside the system by simply sending a long
configuration string throughout the device.

While it may seem unusual, and perhaps disadvantageous, to have such limited
access to cells from outside the system, this is in fact a critical characteristic of
the Cell Matrix, and is directly linked to its ability to implement autonomous, self-
organizing circuitry. Having local-only cell control also allows the system to scale,
without specific regard for scaling the control structures.

9.2.1 Basic Cell Structure

A Cell Matrix is a regularly-tiled collection of simple reconfigurable elements called
cells. These cells are arranged in a fixed, identical topology throughout the matrix,
and that topology defines a notion of a cell’s neighbors: the neighbors of a cell
“X” are all those cells that are immediately connected to X. Each cell receives a
single input bit (called its “D Input”) from each of its neighbors, and generates a
single output bit (its “D Output”) to each of those neighbors. Figure 9.1 shows a
two-dimensional collection of four-sided cells. In this topology, each cell has four
immediate neighbors. We will mainly be discussing two-dimensional, four-sided
cells in this chapter. However, (useful) two-dimensional cells can have as few as
three sides, or may have more than four, though four is the most typical number.

216 N.J. Macias and L.J.K. Durbeck

Cells can also be three-dimensional, having as few as four sides, but more typically
six. Higher-dimensional cells are also possible, though anything higher than three
dimensions ceases to be (architecturally) infinitely-scalable because there is no way
to organize the cells topologically that puts all neighbors a finite, very small distance
from each other.

9.2.2 Cell Structure

Each cell contains a small memory which stores a truth table. The truth table maps
input combinations to outputs: given the set of incoming bits from all of a cell’s
neighbors, the cell’s outputs are precisely determined by the information in the cell’s
truth table. This mechanism allows a single cell to implement simple combinatorial
functions, such as basic logic gates, single-bit adders or multiplexers. Cells can also
act as simple wire: a block for passing data from one side of itself to another—or,
viewed differently, a block for allowing two non-adjacent cells to share data with
each other. Implementing wires is a major use of cells.

9.2.3 Cell Configuration

The act of loading truth table information into a cell is called cell configuration
or “configuring a cell.” Similarly, the act of loading truth table information into a
number of cells is called “Configuring the Cell Matrix.” While single-cell circuits
are necessarily extremely simplistic, configuring a group of cells appropriately leads
to multi-cell circuits, which can be arbitrarily complex. Because single cells can
implement any fixed input-to-output mapping, and cells can be interconnected via
intervening cells, any circuitry that can be implemented using traditional digital
circuit design can also be implemented on a Cell Matrix.

Figure 9.2 shows a more-detailed view of a single cell. As can be seen, each side
has two input lines and two output lines, which connect it to each of its immediately-
adjacent neighbors. One line is labeled “D” and the other “C.” The D inputs are used
to select information from the cell’s truth table, and the D outputs are set based on
the truth table’s values, as described above. But this is the case only if all the C
inputs are 0.

When all C inputs are 0, the cell is said to be in “D” mode. If, however, any C
inputs are set to 1, then the cell is in “C” mode. C mode is the configuration mode
of a cell: it is the mode in which a cell’s truth table can be modified. In C mode,
a cell’s truth table can also be examined. A cell that is asserting one of its own C
outputs, and is thus asserting a neighboring cell’s C input, is able to read and write
that neighboring cell’s truth table. Note that if more than one C input is set to 1,
then the cell’s truth table is sent to multiple neighbors, and its new truth table is
determined by a combination (logical ORing) of its neighbors outputs.

9 Self-Organizing Computing Systems: Songline Processors 217

Fig. 9.2 Four-sided Cell
Matrix cells. Each
neighboring cell reads and
writes two bits (D and C). C
inputs determine the mode of
the cell. D inputs either select
C and D output values from
the Truth Table (in D mode)
or supply new values for the
Truth Table (in C mode)

This C-mode operation is like the unit measure of self-organization for the en-
tire architecture; using it, cells are configured by a neighboring cell. The extreme
locality of this operation makes the entire architecture fine-grained in its reconfig-
urability, and makes configuration a distributed, local process.

Cell configuration is the only inherently clocked operation in the Cell Matrix: a
single system-wide clock is used to serially shift out the current contents of a cell’s
truth table, and to serially shift in new truth table bits. These bits are read-from and
written-to the D output and input lines, respectively, on the same side on which the
cell’s C input is asserted (called the active side). Figure 9.3 shows an example of
adjacent-cell interactions in D and C modes. In Fig. 9.3a, Cell Y is in D mode, since
all of its C inputs are 0. It thus uses its four D inputs to select a single row in the
16 × 8 truth table memory, and sends the selected eight output values to its eight
outputs (four C and four D).

In Fig. 9.3b, one of Cell Y’s C input is asserted (the one supplied by Cell X). This
places Cell Y into C mode, the mode in which its truth table is read and written. Each
time the system-wide clock ticks, the D input supplied by Cell X is loaded into Cell
Y’s truth table, at a position that changes with each tick (in Fig. 9.3b, the bit in the
third row, second column is being written). Additionally, the previous value stored
in that location is made available on the D output to Cell X. All other D outputs
from Cell Y are forced to 0, as are all of Cell Y’s C outputs (so that a cell being
configured cannot itself simultaneously configure another cell). By convention, if
two or more of a cell’s C inputs are asserted, the bit value loaded into the cell’s truth
table is the logical OR of the D inputs on all active sides.

Using this simple interaction scheme, it is possible for any cell to read and write
any neighboring cell’s truth table. Since cells along the edge of the matrix have
some of their inputs and outputs unconnected, as shown in Fig. 9.4, those edge cells
can be configured from outside the matrix, if their C and D inputs (and, perhaps,
outputs) are made available. In Fig. 9.4, all edge cells have their inputs and outputs
accessible from the edge of the matrix on at least one cell side (corner cells are
accessible from two sides).

Figures 9.5, 9.6, and 9.7 show the full details of a cell configuration operation:
Fig. 9.5 shows a single cell configured as a NOR gate; Fig. 9.6 shows the cell’s
corresponding truth table; and Fig. 9.7 shows a timing diagram for configuring the
cell. The cell is first placed into C mode by raising one of its C inputs. As soon as
the cell enters C mode, the current value of the cell’s first truth table bit is sent to

218 N.J. Macias and L.J.K. Durbeck

Fig. 9.3 The two mode of
cell operation. In (a), cell Y is
in D Mode (all C inputs
are 0). Its four incoming D
values are used to select 8
output values from its truth
table. Those output values are
sent to the cell’s 8 output
lines (4 C lines and 4 D
lines). In (b), cell X is
asserting a 1 to one of cell Y’s
C inputs, and thus cell Y is in
C-mode. In this mode, the D
input from Cell X supplies
new values for Cell Y’s truth
table. Each time the system
clock ticks, a new incoming
bit value is sampled, and
loaded into Cell Y’s truth
table. Cell Y’s current truth
table bits are simultaneously
sent out the D output to cell
X. In the figure above, the
second bit in the third row of
the truth table is being read
and written by Cell X. All of
Cell Y’s other outputs (C and
D) are forced to 0

the corresponding D output (not shown in the figure). On the next rising edge of
the system clock, the D input is sampled and latched. On the next falling edge, the
latched value is loaded into the truth table, and the current truth table’s next bit is
sent to the D output. Note that this timing makes the truth table’s current bit values
available on the D output half a cycle before the new bit value must be presented to
the D input. This makes it simple to read a truth table bit and then re-write the same
bit, thus performing a non-destructive read.

Before the 4th clock tick, the D input is raised. This “1” value is latched/loaded
into the cell’s truth table on the next rising/falling edge of the system clock. Simi-
larly, a “1” is loaded during the 12th cycle following the cell’s entry into C mode.
All other incoming bit values are 0.

A few cycles later, the cell’s C input is set to 0, and the cell returns to D mode.
Assuming its truth table initially contained all 0s, its truth table is now as shown
in Fig. 9.6.

9.2.4 Self-Configuration

Because cells are able to read and write other cells’ truth tables, the Cell Matrix
can be configured from inside the Cell Matrix itself. This makes the Cell Matrix

9 Self-Organizing Computing Systems: Songline Processors 219

Fig. 9.4 7 × 7 Cell Matrix.
Edge cells have their D and C
inputs and outputs accessible
from outside the matrix.
Corner cells have I/O
accessible on two of their
sides

Fig. 9.5 Single cell
implementing a three-input
NOR gate

a self-configurable system, i.e., circuits can be constructed that read and write cell
configurations, and thus can analyze and change circuitry within the matrix. Cir-
cuitry constructed on the Cell Matrix can process data that represents logical values,
characters, integers, floating point numbers, or any sort of data structure. But addi-
tionally, circuitry constructed on the Cell Matrix can also process a unique type of
data: circuit configuration information. And because the mapping between circuit
configuration and circuit behavior is very straightforward, one can construct circuits
that effectively process other circuits.

Moreover, there is no hardware-level or architectural difference between a cell
that is being configured and the one that is configuring it. Figure 9.8 shows some of
the possibilities resulting from this fact. In Fig. 9.8a, Cell X, Cell Y and Cell Z are
all in D mode, since their C inputs are all 0 (all inputs are assumed to be 0 unless

220 N.J. Macias and L.J.K. Durbeck

Fig. 9.6 Truth Table
corresponding to Fig. 9.5

Fig. 9.7 Truth Table programming sequence. After cell is placed into C mode, a “1” bit is loaded
on the 4th and 12th ticks of the system clock. The cell is returned to D mode two ticks later. This
loads 14 bits into the cell’s Truth Table: 0001 0000 0001 00

shown otherwise). Each cell is simply receiving D inputs, using them to address
their internal truth table, and producing D and C outputs accordingly.

In Fig. 9.8b, Cell X is asserting a 1 on its C output to Cell Y. This places Cell
Y into C mode. In this mode, Cell Y’s truth table is being configured by Cell X, by
sampling the D outputs sent from Cell X to Cell Y.

In Fig. 9.8c, cell X has returned its C output to 0, and thus Cell Y returns to D
mode. Cell Y is thus asserting its outputs based on the (new) contents of its truth
table. In this example, the truth table indicates that Cell Y’s C output to Cell Z is to
be set to 1. This places Cell Z into C-mode, and Cell Y is now configuring Cell Z.

9 Self-Organizing Computing Systems: Songline Processors 221

Fig. 9.8 Interaction of Cells’ Modes. In (a), all three cells are in D Mode: each cell is reading
inputs and producing outputs based on its current truth table contents and its D inputs. In (b), an
input change (not shown) in cell X’s D inputs has caused cell X to assert its C output to cell Y. Cell
X has thus placed cell Y into C mode, and cell Y’s truth table is now being configured. In (c), cell
X is again outputting a 0 on its C output to cell Y. Cell Y has thus been returned to D mode. Based
on cell Y’s new truth table, cell Y is now asserting its C output to cell Z, and has thus placed cell
Z into C mode. Cell Z is now being configured by cell Y

222 N.J. Macias and L.J.K. Durbeck

This example illustrates a very typical case: Cell Y was previously configured by
a neighbor, but it is now itself configuring another neighbor. Within the Cell Matrix,
there is a perfect interchangeability between subjects and objects of configuration
operations. This is the essence of self-configuration and self-modification within the
Cell Matrix.

9.2.5 Implications

There are a number of immediate implications arising from the architecture de-
scribed above. The Cell Matrix architecture is infinitely scalable. Because only
power and a single clock line are distributed throughout the matrix, there is no ar-
chitectural impediment to scaling a matrix to whatever size is desired. Put another
way (and, again, assuming a fixed dimensionality and interconnection topology), all
sub-matrices of a given size are identical to each other, no matter what matrix they
are embedded in: the structure of the cells and their interconnections is independent
of the larger matrix to which they belong.

This means that two matrices can be combined into a large matrix simply by con-
necting the matrices to each other along an edge, i.e., connecting one matrix’s edge
cells’ input to the other’s edge cells’ outputs, and vice versa. The architecture scales
up without change (though of course the maximum possible latency increases). This
also has interesting manufacturing implications (see Sect. 9.6).

Because configuration of cells is essentially a local operation, there is no such
thing as runtime vs. configuration time for the matrix at large, no need to discuss run-
time reconfiguration: the matrix is always running, and part of its running operation
may include reconfiguration operations. Moreover, partial configuration (Schmit
1997) is the only type of configuration ever performed, since any single configura-
tion operation affects only the neighbors of the cell being configured.

The Cell Matrix is completely homogeneous in structure. Cells are differenti-
ated by their configuration information (truth table contents), but, at the underlying
hardware level, all cells are identical to each other, just as are their interconnections
to other cells. This has tremendously beneficial manufacturing implications. It also
has positive implications for circuit reliability, since no piece of the matrix (or the
circuits implemented on top of the matrix) is unique or irreplaceable.

Because of the capacity for self-modification in the Cell Matrix, high-level con-
figuration mechanisms can be designed, tailored to the specifics of the target circuit,
and then constructed out of cells. Moreover, the construction of the configuration
mechanism can itself be constructed by using a previously-created configuration
mechanism. In this way, configuring the Cell Matrix may closely resemble a tra-
ditional bootstrap process, wherein a simple circuit is first built using the limited
control available from the edge of the matrix. This simple circuit is then used to
configure a more complex circuit, which is then used to configure a more complex
circuit, and so on, building more and more complex circuits until the desired con-
figuration has been achieved. Also, note that while a single set of commands may

9 Self-Organizing Computing Systems: Songline Processors 223

be used repeatedly to configure multiple Cell Matrix regions, it is still possible to
introduce differentiation, including randomness, into the configured circuits.

Finally, because cells are configured by neighboring cells, it is possible for multi-
ple cells to be configured simultaneously, either with the same configuration as each
other, or with completely different configurations.

9.2.6 Status

The Cell Matrix architecture has been fully documented (Cell Matrix Corporation
2006a, 2006b; Macias et al. 1999; Durbeck and Macias 2001c; Macias and Raju
2001). A variety of simulators and debuggers have been developed, as have various
tools for developing circuitry on the matrix. Prototype tools for converting from ab-
stract netlists to Cell Matrix configuration information have been developed (Macias
2006).

A number of fairly traditional circuits have been implemented on top of the Cell
Matrix, including state machines, arithmetic units, memories, floating point pro-
cessors, and cellular automata simulators. Section 9.4 will describe some of the
less-traditional circuits that have been implemented, including circuits that utilize
self-configuration.

Also, while the high-level behavior of the Cell Matrix is well-defined, there are
multiple possible implementations of the Cell Matrix. For example, the original
implementation (Macias et al. 1999) utilized a shift register for each cell’s truth
table. While this simplifies the design of each cell, it means that the entire truth
table changes during a configuration operation. Later work produced a slightly more
complicated cell implementation that utilizes a non-shifting memory that takes up
a much smaller fabrication area (Durbeck and Macias 2001c). A further-modified
cell incorporates bypass logic, to detect when a cell is acting as a wire and directly
connect an input to an output, greatly improving signal transmission rates when cells
are used as wires (Macias and Raju 2001).

9.3 Building Blocks of Self-Configuring Circuitry

This section will describe some of the primitives of self-configuration for the Cell
Matrix, or the basic building blocks and techniques related to the implementation of
self-configuring circuitry on the Cell Matrix. Section 9.4 will describe higher-level
circuitry constructed from these blocks.

9.3.1 Cell-Replication

Figure 9.9 shows a simple cell-replication circuit that copies the truth table of the
source cell into the target cell. The cell in the middle is the controller of the config-

224 N.J. Macias and L.J.K. Durbeck

Fig. 9.9 Single-Cell Replicator. When a 1 is sent into the Controller’s Northern D input, it places
and Source and Target Cells into C mode, reads truth table bits from the Source, copies them back
to the Source, and also copies them to the Target. After 128 ticks of the system clock, the Target
will be an exact copy of the source. Because the Source Cell’s truth table bits are loaded back into
the Source Cell’s D input, the Source Cell’s truth table is left unchanged by this circuit. This is thus
a non-destructive read

uration operation. The cell to be replicated (called the source cell) is on the right.
The target cell, which will become a copy of the source cell, is on the left. When a
1 is sent into the Northern D input of the controller, it asserts its C outputs on the
left and right, thus placing the source and target cells into C mode. Each cell then
begins outputting current truth table bits on one of its D outputs (on the side where
Cin is asserted), as well as receiving new truth table bits on the same side’s D input.
The controller reads bits from the source cell, and sends them back into the source
cell, thus rewriting the source cell’s truth table while it is being read. Additionally,
the controller sends the source cell’s truth table bits into the target cell’s D input,
thus configuring the target cell’s truth table as an exact copy of the source cell. After
a sufficient number of clock ticks of the system clock (128 for four-sided cells, i.e.,
enough ticks to sample and write each of the truth table bits for a 16 × 8 truth ta-
ble), the target cell’s truth table will match the source cell’s, and thus the target cell
will behave exactly the same as the source cell: the source cell has effectively been
replicated by the controller.

9.3.2 Remote Cell Replication

Figure 9.10 shows a circuit that is similar to Fig. 9.9, except that the source and
target cells are not adjacent to the controller. Instead, the source and target are now
some distance away from the controller, and cells located in between them are used
to transmit C and D information between the controller and the source and target
cells. The controller works the same as in Fig. 9.9, except that it cannot directly

9 Self-Organizing Computing Systems: Songline Processors 225

Fig. 9.10 Remote Cell Replicator. The Source and Target cells are in C-mode. The Source cell’s
truth table bits are read by the Controller, sent back to the Source cell, and also copied to the Target
cell. Note that the Controller no longer directly controls the mode of the Source and Target cells

Fig. 9.11 Simple Multi-Channel Wire. The Controller sends new truth table bits into the Target via
its own Eastern data output. Additionally, the Controller can now control the mode of the Target via
its own Southern data output. This is a significant improvement over the circuit shown in Fig. 9.10

control the mode (C or D) of the source and target cells. This makes the circuit in
Fig. 9.10 somewhat limited in its usefulness. A more useful approach involves the
use of multi-channel wires.

9.3.3 Multi-Channel Wires

To control a cell, it is generally necessary and sufficient to control the C input, D
input and D output on one of the cell’s sides. The circuit shown in Fig. 9.11 is an
example of a structure for controlling non-adjacent cells, by utilizing two lines of
intervening cells. Such a structure is called a multi-channel wire. In this circuit, the
controller sends information along two lines of cells (each called a channel).

The bottom channel (called the “C Channel”) controls the C input on the source
and target cells, while the top channel (called the “D Channel”) access the D input
and output on the source and target cells. Note that these lines are logical wires,
or soft wires, rather than hard, physical wires: they are created by setting the truth
tables of the cells to pass their input directly to their output. This primitive gives the

226 N.J. Macias and L.J.K. Durbeck

Fig. 9.12 A target cell which
can be used to configure a cell
near a wire’s target cell

controller more or less complete control over the source and target cells: the ability
to place them in C mode, read and write their truth tables, and then return them to
D mode.

There are other types of multi-channel wires, but they all have the same basic
characteristic: they allow a set of cells to interact with one or more non-adjacent
cells. By using the right types of multi-channel wires, a set of controller cells can
thus configure cells that are not adjacent and not directly connected to itself.

While it is evident from this example that wires allow access to non-adjacent
cells, it would appear that they only allow access to the cell adjacent to the end of
the wire. This is not the case, however. If the target cell is treated as itself being
a controller, then it is possible to access cells that are near, but not adjacent to the
end of the wire. For example, if the target cell (call it X) is configured as shown
in Fig. 9.12, then data subsequently transmitted to cell X will, in fact, be used to
configure the cell below cell X: the cell shown in Fig. 9.12 effectively moves the
location of the wire’s target cell.

Therefore, even though a wire can directly control only the cell adjacent to its
end, it can indirectly control non-adjacent cells using intermediate cells such as that
shown in Fig. 9.12.

Repeated application of this technique could, in theory, be used to gain control
over a cell located anywhere within the matrix. However, this technique is limited
in its usefulness, since accessing cells “n” locations away requires on the order
of 2n steps. Thus, wires’ only practical use during configuration is to manipulate
cells near their end. This would be a severe limitation of the Cell Matrix’s nearest
neighbor topology, if not for the concept of wire building.

9.3.4 Wire Building

Special kinds of wire building permit a cell to access any cells within a Cell Matrix.
While wires can only be used to control cells adjacent to their ends, those wires
themselves are built out of cells. In fact, it is possible to design a wire that allows
cells at its end to be configured in order to make a new piece of the wire, i.e., to
extend the wire. Beginning with a short wire, cells at its end can be configured to
make the wire one cell longer. That longer wire can be used to configure the cells at
the new end, thus making the wire another cell longer, and so on. This process can
be repeated indefinitely (as long as there are cells available), thus allowing a set of
controller cells to access cells arbitrarily far away. Moreover, it is possible to create
wires that have turns, and again these turns can be created by the controller. This

9 Self-Organizing Computing Systems: Songline Processors 227

Fig. 9.13 Two Channel Extendible Wire. The D Channel transmits configuration information for
the Target Cell. The C Channel controls the mode of the Target Cell. The Feedback Signal is used
for autonomous determination of the location of the wire’s end. If Cells (*) and (**) are configured
as new channel pieces, then the wire will automatically be extended

means a set of cells can, in fact, access any cells within the matrix, through the use of
proper wire-building techniques. Note that this permits remote control of cells, even
though the underlying primitives used are all strictly neighbor to neighbor. Remote
control permits external control of the system, but it also permits the smallest unit
of a complex system to be multi-celled to an arbitrary size, which is convenient for
most applications, including most work in self-organizing systems. In Sect. 9.4 we
describe an application that uses a Supercell as its unit, which contains 270 × 270
cells.

Figures 9.13 shows a sample two-channel wire that is extendible. As in the wire
of Fig. 9.11, the upper channel transmits a D signal, and the lower channel transmits
a C signal. The cell labeled “*” is again called the target cell, and as in Fig. 9.12, both
Cell (*) and Cell (**) can be easily configured. However, unlike the two-channel
wire shown in Fig. 9.11, all of the D channel cells are identical, and all of the C
channel cells are identical. This is accomplished through the use of a feedback sig-
nal: each cell within the D channel asserts a 1 to its south, which the corresponding
C channel cell transmits to the previous cell of the C channel. Therefore, the end of
the wire is identified not by a differently-configured cell, but rather by the lack of
this feedback signal. Thus, by simply creating a new pair of D Channel and C Chan-
nel cells at the end of the wire, the wire is effectively extended, i.e., the location of
the target cell is shifted one cell to the right.

This is the essence of wire building. While different sequences are needed for dif-
ferent types of extensions (such as turns) and for different types of wires (such as 3

228 N.J. Macias and L.J.K. Durbeck

channel wires), the basic mechanism is the same as in Fig. 9.13. These mechanisms
are described in more detail elsewhere (Macias 2001).

Multi-channel wires and associated wire-building techniques can be used to ac-
cess cells anywhere within the matrix. This raises the question, “What does one do
with such access?” There are many answers to this, and in the remainder of this
section, a few general examples will be presented. Section 9.4 will discuss more-
specific examples.

9.3.5 Cell Testing

Given access to the C input and D inputs and outputs of a target cell, it is possible to
perform a variety of tests on the target cell, to ascertain its health, i.e., to determine if
it is operating as expected. For example, the cell’s truth table can be loaded with 0’s,
and then the D output examined while the D input is toggled between 0 and 1.
This would detect shorts between input and output, as well as detecting stuck-at-
one faults inside the truth table memory, or along the D input or D output paths.
A second example is that a set of certain bit patterns can be loaded into the cell,
and then read back out and compared to the loaded pattern: different alternating
bit patterns can be used to detect shorts within the truth table memory, based on the
physical layout of the memory within the cell. This fault testing work was developed
and successfully conducted on defective hardware for the Cell Matrix architecture
using the above-described multi-channel wire building to reach each cell (Durbeck
and Macias 2002).

9.3.6 Circuit Building

The question of how to bootstrap a Cell Matrix remains, that is, with no direct access
to the vast majority of cells within the Cell Matrix, how can a Matrix be populated
with the desired set of truth tables, particularly given that the Matrix is always run-
ning, and thus, truth tables are in use from the moment they are in place. However,
all the necessary building blocks have already been presented. Figures 9.14a–9.14f
show a sample bootstrap sequence. Note that this is not the only possible way to
bootstrap a region of the Cell Matrix. It is a pedagogically interesting example be-
cause it is one of the simplest and most straightforward, but it is not used in typical
practice, because it is one of the slowest ways to configure a region of cells.

In Fig. 9.14a, a two-channel wire is built from West to East, extending just one
column of cells shy of the Easternmost corner of the region of interest. The target
cell in the corner of the region is then configured.

In Fig. 9.14b, the wire has made a corner, and is extended one step to the South.
This extended wire is then used to configure the next target cell (*).

The wire is then extended South another step, and a third target cell is configured
to the East, as shown in Fig. 9.14c. This process continues, until, as in Fig. 9.14d,

9 Self-Organizing Computing Systems: Songline Processors 229

Fig. 9.14 Configuration of a Region. In (a), a two-channel wire is built into the region of interest,
and is used to configure cell (*). In (b), the wire has been extended with a corner, and the next
target cell is configured. In (c), the wire is extended further to the South, and a third target cell is
configured. In (d), the Easternmost column has been completed. (e), shows the beginning of the
second column’s configuration: the wire has been broken and re-built, but ends one cell shy of
the previous extension. In (f), the second column has been completely configured. This process is
repeated until the entire region has been configured

an entire column of target cells has been configured, along the Easternmost edge of
the region of interest.

In Fig. 9.14e, the wire has been broken, i.e., the end of the wire is returned to the
original entry location into the region of interest. The wire is again extended to the
East, but stops one cell earlier.

The wire then turns a corner, and the above steps (configure/extend) are repeated,
configuring a second column of cells, as shown in Fig. 9.14f.

The above steps are repeated, until the entire region of interest has been config-
ured. Note that this technique cannot be used exactly as described for configuring
the Westernmost columns, since the wires themselves have a width to them. The
easiest way to address this is to avoid this edge case by imagining that the region of
interest as being one wire width wider than it really is, and leaving the Westernmost
columns (which are not actually of interest) unconfigured.

There are numerous enhancements to this basic scheme, including techniques to
avoid completely rebuilding the West-to-East wire after each column pass. Parallel
configuration is also feasible, and will be discussed briefly in Sect. 9.4. Also, note
that the configuration of cells that assert their C outputs requires special considera-
tion, since such outputs could interfere with the configuration of the wires that are
being used to configure the region’s cells.

9.3.7 Circuit Reading

Using circuits and sequences similar to the bootstrap method described above, it
is possible to non-destructively read a set of cell configurations from a region of

230 N.J. Macias and L.J.K. Durbeck

Fig. 9.15 Non-destructive read of a region of cells. In (a), a three-channel wire has been built to
the edge of a region to be read. A first cell is read, and its configuration is stored in the FIFO.
In (b), that first cell is used to read a second cell, which is also stored in the FIFO. In (c), a third
cell is read and stored, after which the wire will be extended one step. In (d), the entire region has
been read, stored and overwritten with the wire itself. In (e), the wire is reversed (backed up one
step), and in (g) the Easternmost cells have been restored form the FIFO

the matrix. The technique is similar to bootstrapping, but utilizes a reversible wire,
i.e., one that can not only be extended a single step, but can also be shortened a
single step. The basic technique is shown in Figs. 9.15a–9.15f. For simplicity, this
illustrates the reading of a single (one-dimensional) line of cells only. Note that
implementation of a reversible wire requires three channels.

In Fig. 9.15a, the wire has been built to the East, to the beginning of a set of cells
whose contents are to be read. The cell directly ahead of the wire (i.e., to the East
of the D channel) is read, and its truth table configuration is stored in a temporary
repository (a FIFO). That cell is then configured to allow reading of the cells to
the North and South of it, with those cells’ configurations also being stored in the
temporary repository. This is shown in Figs. 9.15b and 9.15c, respectively.

The three-channel wire is then extended, and the process repeated. In Figs. 9.15d,
the wire has extended all the way to the East. Again, edge cases need to be consid-
ered, but can be neglected by imagining the region of interest to be larger than it
actually is. At this point, all of the cells occupied by the wire have been reconfigured
from their initial configuration (in order to implement the extended wire), but their
initial configurations have been read (and presumably processed by some circuitry
outside that shown in these figures). Also, those configurations have been stored in
a temporary storage location (which can be as simple as a set of cells arranged in a
two-way shift register, i.e., a FIFO).

9 Self-Organizing Computing Systems: Songline Processors 231

In Fig. 9.15e, the wire is reversed a single step (using the third channel), and in
Fig. 9.15f, the previously-stored configurations are restored to the cells near the end
of the wire. These two steps are repeated, until the entire row has been restored.

For a two-dimensional region, another pass would be made to the south of the
original West-East wire, thus reading the next three rows of cells. At the conclusion
of this, the cells within some region of interest will all have their initial config-
urations, but a copy of those configurations will have been sent by this circuit to
some other circuitry that will perform analysis, make a new copy, vote on truth table
contents among multiple copies, or conduct some other function.

Note, however, that while the above technique will read the configuration of cells
without (permanently) changing them, it does not read the state of cells, i.e., the
values of their inputs and outputs, and similarly does not preserve their state. State
reading and preservation would require additional circuitry built into the circuit it-
self, since changing the configuration of a single cell can, in general, alter the state
of the entire circuit.

These are a few detailed examples of techniques related to self-configuring cir-
cuitry. They form a base of primitives or building blocks that are composed to cre-
ate more complex functions and circuits. The next section will describe larger-scale
applications of these techniques to the implementation of circuits that exhibit dis-
tributed management and control.

9.4 Distributed Management and Control in the Cell Matrix

There are a number of examples of how the Cell Matrix can be used to manage
various tasks related to its own operation and maintenance. While non-Cell Matrix
systems could be designed specifically to implement any of these examples, the
advantage of the Cell Matrix architecture is that it supports all of them: the Cell
Matrix architecture does not have to be modified in any way in order to implement
these systems.

9.4.1 Hardware Error Checking

The wire building and cell testing techniques described above can be used to test
individual cells within the matrix, to ascertain their proper functioning. Moreover,
since all that is required to perform these tests are basic logic circuits and simple
state machines, these tests can be performed by circuitry within the matrix itself.
This offers a number of interesting opportunities.

For example, once a small initial set of cells is known (say, via conventional
validation techniques) to be functioning properly, and a state machine is built to
perform subsequent cell tests, cells can be tested, verified, and then used to build
longer wires, allowing testing of more-remote cells. Other than the initialization

232 N.J. Macias and L.J.K. Durbeck

issue, this eliminates the question of “what if the test circuit itself is defective?”
since only known-good cells will be used in extending the test circuitry (Macias and
Durbeck 2002, 2004; Durbeck and Macias 2002).

By running multiple test circuits, cross-checking can be performed among multi-
ple testers. Basic N-way redundancy could be used to verify the initial circuitry, after
which a single copy would suffice (as far as manufacturing defects are concerned:
transient errors are a different consideration).

This approach also allows parallel testing to be performed. Again, starting from
a single test circuit, multiple testers can be configured from known-good cells, and
these testers can operate in parallel to test multiple regions simultaneously, and then
construct more parallel testers. This can reduce test time to O(n1/2) for n cells in
a two-dimensional matrix, and O(n1/3) in a three-dimensional one (Durbeck and
Macias 2001d; Macias and Durbeck 2002, 2004).

Test results can be stored in something similar to a “bad block” list (Duncan
1989), and this list used in subsequent configuration operations. If a place-and-route
algorithm were implemented directly on the Cell Matrix hardware, it would simply
note these defective cells as being unavailable for placement or routing, and would
thereby avoid them in creating compiled circuits.

For handling run-time defects such as single event burnout (Waskiewicz et al.
1986) or single event gate rupture (Fischer 1987), these tests could be performed
periodically. Multiple copies of circuitry can be maintained, with copies taken of-
fline individually, their underlying cells re-tested, and their configuration adjusted
as needed to avoid newly-defective cells.

9.4.2 Autonomous Fault Handling Through Autonomous Circuit
Building

We have devised a methodology for implementing a desired target circuit on top
of the Cell Matrix in a way that allows that system to configure itself in order to
avoid defective regions of the matrix (Macias and Durbeck 2002, 2004; Durbeck
and Macias 2001a, 2001b). If new defective regions are later found or suspected
to be present (for example, because some sort of built-in self test has failed), the
system can be given a single “REBUILD” command, and it will locate, isolate and
avoid all defective regions, while re-implementing itself using only good cells. The
goal was to have these operations performed by the system itself, with a minimal
amount of external intervention required. This work combines the above techniques
of hardware error checking with some bio-inspired concepts in self-organization
(Mange et al. 2000).

This approach utilizes the concept of a Supercell. This is a general term for a col-
lection of contiguous Cell Matrix cells configured to perform a variety of functions
while still retaining the underlying self-configurability of individual cells. In our
self-repairing circuit building work (Macias and Durbeck 2002, 2004) the Supercell
first performs a number of initialization functions, including:

9 Self-Organizing Computing Systems: Songline Processors 233

• testing a region of the matrix for defective Cell Matrix cells;
• configuration of new Supercells on known-good regions;
• activation of isolation circuitry within good Supercells, in order to prevent any

interference from bad Supercells; and
• sharing of configuration information among a network of Supercells in order to

configure new Supercells in multiple regions in parallel.

The purpose of the initialization stage is to tile a region of the Cell Matrix with
known-good Supercells, while isolating defective cells. Note that this part of the
system’s operation requires a set of configuration strings to be sent into the empty
matrix. These configuration strings depend on the high-level circuit to be imple-
mented, but are completely independent of the location of any defects in the Matrix
(since the location of such defects is assumed to be unknown). All subsequent steps
are performed by the collection of Supercells themselves, without any further exter-
nal intervention.

Following initialization, the system enters a differentiation phase. In this phase,
Supercells assign themselves unique integer IDs, so that they can be differentiated
from each other. Without such an assignment, all Supercells are identical to each
other. This assignment is accomplished through the collective operation of the entire
set of Supercells. Differentiation changes the contents of two ID registers contained
within each Supercell:

• one ID contains a position-dependent integer, which is simple to assign (by incre-
menting an incoming neighbor’s ID and passing that to other neighbors), but the
set of assigned integers is not necessarily contiguous; and

• a second ID that is position-independent, and whose collection is guaranteed to
form a set of contiguous integers.

When the initial configuration strings are developed, an abstract representation
(called the “genome”) of the final target circuit is coded inside the strings. The
genome is simply a netlist, specifying the components of the final circuit, along
with their input-to-output interconnections. What is not specified is the particular
locations of those components in the matrix, nor the paths that will be used for
their interconnections (since doing so would require knowledge of the locations of
defective Cell Matrix cells).

After unique IDs have been assigned, each Supercell compares its ID with the
ID of components stored in the final circuit’s genome (this is why contiguous IDs
are required). Using the information inside the genome, each Supercell thus knows
which component it is to implement in the final circuit. Each Supercell then config-
ures inside itself its piece of the final circuit.

Following differentiation, the collection of Supercells must be wired together in
order to implement the final target circuit. This requires first determining pathways
from component to component, and then creating communication channels along
those pathways. Both of these steps are performed by the Supercells themselves,
without any external intervention. Path-finding is done using a greedy algorithm,
which picks the shortest path from component to component. Channel creation is
performed by utilizing pre-existing pieces of channels inside each Supercell, and by

234 N.J. Macias and L.J.K. Durbeck

configuring cells near the junction of these channel pieces, in order to form contin-
uous pathways. Note that some of these channel pieces cross within the Supercell,
to allow the creation of crossed communication pathways.

The final Supercell design consisted of 270 × 270 Cell Matrix cells. This was
intended only as a proof-of-concept, and represents neither the smallest nor most-
efficient Supercell for the given problem. There are ways to perform more traditional
fault tolerance for the Cell Matrix architecture that have been developed and ana-
lyzed (Saha et al. 2004; Macias and Durbeck 2005a), but the point of the Supercell
work was to demonstrate autonomous, self-organizing circuitry, and faulty hard-
ware was simply the impetus to which the system responded in order to modify its
behavior.

9.4.3 Self-Replication

Figures 9.16a–9.16e show the operation of an entirely self-replicating circuit on the
Cell Matrix. The circuit is comprised of two main parts. The upper-left region of the
circuit is called the “Main Grid,” and is a state machine that generates bit sequences
and sends them into three wires. The right half of the circuit is a copy of the left half,
but with additional space (two rows of empty cells) between each row of non-empty
cells. The right-hand circuit is called the “Exploded Grid,” since it is a copy of the
Main Grid on the left, but with the rows spaced out vertically.

The reason for using an Exploded Grid is that we do not want the circuit to
actually be operating: it is intended to supply a data version of the circuit being
replicated. Since the circuit itself is intended to modify other cells, we want to care-
fully control the behavior of this copy. So the cells in the Exploded Grid that can
assert their C outputs are kept permanently in C mode, so that their C outputs are
constantly forced to 0. This is achieved by pairing such cells with other cells, called
“Guard Cells.”

The bitstreams generated by the Main Grid extend the three wires as follows:

• one wire is extended into the Exploded Grid, in order to read the cells within the
first row of that grid;

• another wire is extended into an empty region below the Main Grid, and will
create a copy of the Exploded Grid there, but without any inter-row spaces; and

• the third wire is extended into an empty region below the Exploded Grid, and will
create an exact copy of the Exploded Grid.

Figure 9.16a shows the initial circuit. Figure 9.16b shows the circuit with the
three wires immediately prior to reading the first cell from the Exploded Grid. In
Fig. 9.16c, the first row of the Exploded Grid has been completely read, and two
copies of it have been made in the region below the original circuit. A single row has
now been configured in the new Main Grid, and three rows have been configured in
the new Exploded Grid (one row of Main Grid circuitry, and two rows of Guard Cell
circuitry). This process is somewhat analogous to the translation and transcription
steps found in the replication of DNA (Arms and Camp 1987).

9 Self-Organizing Computing Systems: Songline Processors 235

Fig. 9.16 Self-Replicating Circuit. (a) shows the initial configuration. The Main Grid is a circuit
that will read the Exploded Grid, and produce a copy of it and itself. In (b), three wires have been
built, extending into the Exploded Grid and the initially-empty regions to the South. In (c), the first
row of the Exploded Grid has been read and used to reproduce the first row of the Main Grid and
the Exploded Grid in the region to the South. In (d), the three wires are moved in preparation for
reading the next row of the circuit. In (e), all rows have been read and copied, creating an exact
copy of the original circuit in the region to the South

Figure 9.16d shows the circuit once the wires have been adjusted for reading the
second row of the Exploded Grid. Of course, the wires extending into the original
and new Exploded Grids require more extension steps than the wire in the new Main
Grid.

The above steps are repeated for each row of the Exploded Grid. Figure 9.16e
shows the final state of the system, where an exact copy of the original circuit has
been made to the South. Typically, the lower-rightmost cell would be configured to
output a “GO” signal into the circuit, which would trigger the execution of the above
circuitry. Thus, as soon as a new copy of the circuit is created, it immediately begins
making a new copy of itself.

This is, in itself, not necessarily useful, but is a useful building block to which a
number of various enhancements can be added. For example, after being placed on
a Cell Matrix, the circuit could make a copy of itself to the South. That copy could
make a copy of itself to the South, and that copy could make a copy of itself, and so
on, thus creating a single column of copies of this circuit.

The height of the column could be hardwired into the circuit, for example, by
incrementing a counter within each circuit, and only replicating a fixed number of
times. Alternatively, the height could be determined dynamically by the presence
of a marker in the matrix indicating the desired extent, or the circuit can itself de-
termine when it has reached the Southern edge of the matrix (by noting that cell

236 N.J. Macias and L.J.K. Durbeck

configuration operations no longer work). Once a leftmost column has been created,
the bottom circuit can signal to the other circuits in that column to begin replicating
to the East, resulting in the parallel building of a new column. Note that each cir-
cuit in the column replicates in parallel with every other circuit in that column. Thus,
whereas creating the initial column (containing, say, n copies of the circuit) required
n replication cycles, creating the second column requires only one replication cycle.

Generation of each subsequent column will also require the same time as a sin-
gle replication cycle. To create an n × m array of these circuits would thus require
n replication cycles to configure the first column, plus m − 1 replication cycles to
create each of the remaining m− 1 columns, for a total of n+m− 1 replication cy-
cles. This is extremely better-than-linear performance. In fact, configuring n copies
of this circuit requires on order of only n1/2 steps. For a three-dimensional Cell
Matrix, configuration time for n copies is a mere n1/3 steps. This is an extremely
efficient way to configure large regions of a Matrix.

Of course, we are usually interested in something more than simply filling the
matrix with copies of a single circuit. The self-replicating circuit is intended to be a
carrier of additional circuitry.

9.4.4 Fully Autonomous Self-Configuration

The above self-replicating circuit can be used to make copies of the Supercells de-
scribed previously, which will then autonomously implement a desired target circuit.
Collectively, this represents a fully autonomous, fault-handling, self-configuring
system. This circuit can be thought of as a seed, or perhaps a biological cell. Upon
placing a single copy of it inside an empty matrix, it begins to replicate, filling a
region of the matrix with copies of itself. Once a sufficient number of copies have
been created, they begin to differentiate and specialize, and then work together to
implement some higher-order function. Moreover, this is done in a dynamic man-
ner, with the exact configuration of the final circuit dependent on the environment
(specifically, the location of defective cells within the matrix).

9.4.5 Hardware Compilation

Using the techniques described above, it is possible to perform compilation of al-
gorithms not into software, but directly into hardware. This is already an active
research area of reconfigurable logic (Page 1996). However, with the Cell Matrix
as the underlying hardware substrate, it is possible to design systems that are self-
compiling, i.e., the circuitry that produces the final compiled circuit can itself be
running on the Cell Matrix.

One area in which such a setup would be useful is in implementing a Just-In-Time
(JIT) (Deutsch and Schiffman 1984) compilation system. There is a huge parameter

9 Self-Organizing Computing Systems: Songline Processors 237

space within which algorithms could be developed. For example, the wordsize of an
arithmetic unit can be adjusted based on the characteristics of data being processed.
This might change over time, and circuit characteristics adjusted accordingly. Simi-
larly, the number of registers available in a general-purpose processor (implemented
on the Cell Matrix), or the character size of a hardware string processor could be ad-
justed over time. Sequences of operations that occur repeatedly could be analyzed,
and new hardware synthesized to implement their collective function directly in
hardware. Such hardware could be dismantled, and the underlying cells re-used, if
the circuitry is not utilized for some period of time.

9.4.6 Hardware Operating Systems

Having self-configurable hardware, it is possible to consider hardware analogs of
various software concepts, especially concepts related to operating systems. This
leads to the concept of a hardware operating system.

For example, combining wire building techniques and bootstrap mechanisms,
one can easily imagine the notion of a hardware library, wherein circuits consisting
of Cell Matrix cells are stored, available for retrieval and replication elsewhere in
the matrix, just as software libraries store code that is re-used in other programs.

As another example, the notion of virtual memory could be extended to virtual
hardware, where a matrix appears to have more hardware than actually exists. By
storing cell configuration information (and utilizing appropriate compression mech-
anisms), and using it to configure cells as needed, it is possible to design a system
on the Cell Matrix that emulates a matrix that is larger than the physical matrix
on which it resides. Such a system would, effectively, intercept accesses to non-
existent cells, create them on-the-fly, and redirect requests to those newly-created
cells. These cells would be located virtually in a fixed location, but physically might
be located somewhere different.

Closely related to this notion of virtual hardware is hardware swapping and hard-
ware timesharing, where a single Cell Matrix is shared by multiple applications,
which are loaded and unloaded from the matrix’s cells, so that a single set of cells
are used for more than one application. Such a system would probably employ a
double-buffering mechanism, so that while one circuit is executing on one region
of the matrix, another region would be configured with the second circuit to be
executed. Once that circuit is ready, and the desired time slice has expired, that
second circuit would begin executing, while the cells of the first circuit would be re-
configured to implement the third circuit, which would eventually be allowed to run
while the fourth circuit was implemented, and so on. Once the last circuit was given
a time slice, the first circuit would again be configured and allowed to run. Other
than the need to double-buffer (since configuring a circuit takes a non-negligible
amount of time), this is highly analogous to swapping and timesharing of software.
Again, as described above, consideration must be given to reading, preserving and
restoring not only the configuration of each cell within a running circuit, but also
the state of each cell, meaning its outputs and inputs.

238 N.J. Macias and L.J.K. Durbeck

9.5 Extension to the Analog Domain: The Songline Processor

“. . . the labyrinth of invisible pathways which meander all over Australia and are
known to Europeans as ‘Dreaming-tracks’ or ‘Songlines’; to the Aboriginals as the
‘Footprints of the Ancestors’ or the ‘Way of the Law.’ Aboriginal Creation myths tell
of the legendary totemic being who wandered over the continent in the Dreamtime,
singing out the name of everything that crossed their path—birds, animals, plants,
rocks, waterholes—and so singing the world into existence” (Chatwin 1986).

The previous descriptions of a self-configurable processor are all rooted in the
digital domain: one where inputs and outputs are binary in nature, i.e., where each
input has one of only two possible values. This can be extended by allowing inputs
and outputs to have values within a continuous range. For example, instead of stan-
dard TTL-level signals, inputs and outputs can be allowed to have values anywhere
between 0 and 1 volts. Such an extension not only changes the domain and range
of the function, but also the basic characteristics of the mapping function. In par-
ticular, a truth table with discrete rows will no longer suffice for describing a cell’s
input-to-output mapping.

As will be seen in what follows, extension of the Cell Matrix architecture in
this way leads to a very different type of processor whose inputs, outputs and pro-
grams are, in some sense, akin to music: time-varying signals that are copied from
one element to another in C-mode by playing and recording them. In D-mode, the
information stored within a song is extracted by sampling the song at a particu-
lar point in time. This is not entirely dissimilar to aspects of Songlines, which are
passed from person to person through singing, hearing and memorizing, and whose
information is extracted by singing/listening to the song at a particular point in time
(corresponding to where one is geographically in their traversal of the Songline).
For this reason (and with great respect), this extended version of the Cell Matrix is
called a Songline Processor. It’s internal mapping function can be called a “song,”
and a particular value derived from the mapping may be called a “note.” For clarity
in what follows though, we’ll stick to the mathematical terminology of “function”
and “value.”

Consider a cell with a single input and a single output. For the binary version
of a cell, a truth table consisting of a single entry—say an input x—will suffice.
The output values corresponding to x = 0 and x = 1 must be specified, and this
completely defines the characteristics of the cell. Such a truth table can be stored
by simply recording two bits: basically f (0) and f (1), where f (x) is the cell’s
mapping function that turns a single input bit into a single output bit.

But when the inputs and outputs are real-valued, the mapping function f (x) is
now a real-valued function of one real variable. To store a complete specification of
this function in a truth table would require an infinite number of entries (one for each
possible real-valued input value), with each entry specifying a single real-valued
output. Table 9.1 shows an approximation of such a table for a sample function
(f = √

(x), x ∈ [0,1]).
Of course, this is only an approximation of an exact truth table, which would

require an infinite number of rows (with an infinitesimal change in x from row to
row).

9 Self-Organizing Computing Systems: Songline Processors 239

Table 9.1 Approximation of
function f (x) = √

(x) x f (x)

0.000 0.000

0.001 0.032

0.002 0.045

0.003 0.055

.

0.998 0.999

0.999 0.999

1.000 1.000

This is complicated further in the case of a two-input cell, whose mapping func-
tion f (x, y) is a function of two real-valued inputs. Table 9.2, for example, shows
an approximation to the function f (x, y) = x × y.

Clearly one can estimate a mapping of any number of input variables using such
discretization of the input space. While this is not an ideal for physical implementa-
tion, it can be a useful model to keep in mind.

For working purposes, we consider our basic programmable cells to be four-
sided, with (again) a C and D input and output on each side. These cells are arranged
in a 2-D layout with each cell having four neighbors. We continue to designate
the sides as N, S, W and E, but we now define a cell’s “truth table” with a series
of mathematical expressions describing each D and C output as a function of its
four D inputs. Details related to storing such functions will be discussed below in
the Implementation section. As will be seen, implementation difficulty increases
significantly (for a variety of reasons) as the number of sides increases.

The tradeoff for this difficulty of implementation is a richly-powerful comput-
ing paradigm, where, for example, we can compute square roots with a single pre-
programmed cell; or the product of two numbers with a differently-programmed
cell. Moreover, the fact that these cells are operating on inherently-analog signals
(as opposed to digitizing analog inputs and processing them discretely) has interest-
ing implications application-wise. For example, Fig. 9.17 shows a simple amplifier
circuit, comprised of a single cell.

Here, the input DN controls the degree of amplification; DW is the input sig-
nal; and DEout is the amplified output. By adjusting the variable resistor to set DN
anywhere from 0 to 10 volts, the input is amplified accordingly (up to a maximum
output of 1 V).

Figure 9.18 shows an implementation of a continuous-valued flip-flop. The in-
coming data signal is sent to the D input, and the GATE control is sent to the G
input. The latched value can be read from output Q. The pair of cells operate to-
gether to create a feedback loop that traps a particular value between them. When
G is high (G > 0.5 V in this case), the incoming signal is sent to the feedback cell,
which re-sends it to the initial cell. As the input signal changes, its value is con-
tinuously updated in the feedback loop. But when the gate closes (G < 0.5 V), the

240 N.J. Macias and L.J.K. Durbeck

Table 9.2 Approximation of
function f (x, y) = x × y x y f (x, y)

0.000 0.000 0.000

0.000 0.001 0.000

0.000 0.002 0.000

.

0.000 0.999 0.000

0.000 1.000 0.000

0.001 0.000 0.000

0.001 0.001 0.000

0.001 0.002 0.000

.

0.001 0.999 0.001

0.001 1.000 0.001

.

0.999 0.000 0.000

0.999 0.001 0.001

0.999 0.002 0.002

.

0.999 0.999 0.998

0.999 1.000 0.999

1.000 0.000 0.000

1.000 0.001 0.001

1.000 0.002 0.002

.

1.000 0.999 0.999

1.000 1.000 1.000

incoming signal D is ignored, and the value received from the feedback cell is re-
circulated back to that cell, creating a closed loop that traps a single value. This is
effectively a sample-and-hold circuit.

Figure 9.19 shows a basic differentiation circuit. The incoming signal is sent into
DW; this signal is passed to the cell on the right, which returns it to the cell on the
left. The cell on the left computes DW − DE, and sends the difference to DSout.
Thus, for an incoming signal f (t), DSout = f (t + δt)−f (t) where δt is the time it
takes the incoming signal to enter and leave the cell on the right. Of course, a scalar
multiplier can also be supplied to the cell on the left to adjust the output range based
on how quickly the input signal is changing. Similar designs can be created for
integrating (summing) an incoming signal; such designs also require only two cells.

9 Self-Organizing Computing Systems: Songline Processors 241

Fig. 9.17 Single-Cell
Amplifier. The variable
resistor sets the desired gain,
which multiplies the input
signal to produce an
amplified output

Fig. 9.18 Continuous-Valued
Flip-Flop. Raising the Gate
input above 0.5 V allows
input D to be loaded into the
device. Dropping the gate
below 0.5 V traps the loaded
value between the two cells.
Q presents the output value

Fig. 9.19 Differentiation
Circuit. f (t) can be any
time-varying input signal; its
derivative with respect to time
is produced from the bottom
of the leftmost cell. The
derivative is scaled by an
amount related to the
propagation delay of the cells

Figure 9.20 shows a ramp generator. The rightmost cell is again just a feedback
path. The cell on the left receives the fed-back signal, adds an increment to it (which
is supplied by the DW input), and sends the sum to the right. The value of the In-
crement input (in conjunction with the input-to-output time of the cells) determines
how quickly the output rises. For example, to achieve an output frequency of 1 Hz,
supposing the total propagation delay through the two cells is τ , we would need an
increment value of 0.9τ .

The equations in the leftmost cell cause it to rollover back to 0 anytime its outputs
exceeds 0.9 V. In this setup, the output Q is thus a repeating sawtooth, rising from
0.0 to 0.9 V and then returning to 0.0 V. Of course, the cell on the right could also
amplify the output signal to increase the maximum output to 1.0 V. The frequency of
this waveform depends on the value of the Increment input: the larger the increment,

242 N.J. Macias and L.J.K. Durbeck

Fig. 9.20 Ramp Generator Circuit. The output rises to 90 % of a cell’s maximum output value
and is then reset to 0. The rate of increase depends on the Increment input, which thus adjusts the
frequency of the output

the more quickly the output rises, and thus the higher the frequency. Of course, if the
input-to-output time is large compared to the period of the generated waveform, the
output may be badly discretized. But assuming a small propagation delay, the output
will rise relatively smoothly. Figure 9.20 is thus a voltage-controlled oscillator.

9.5.1 C-Mode

The above descriptions all assume previously-programmed cells, connected to build
a static (non-changing) circuit. This is analogous to using digital/binary Cell Matrix
cells to implement digital circuits that do not change. While certainly useful, this
is only part of the Cell Matrix story. So is the case for a Songline Processor, which
incorporates its own notion of a C/D-mode state.

Recall that for a binary Cell Matrix, the mode of a cell is also a binary variable
associated with a cell’s C input: If C = 1 then the cell is in C-mode; and if C = 0 the
cell is in D-mode. These modes are fundamentally different from each other, and
the cell completely changes from one mode to the other based on transitions of its
C inputs.

In a Songline system, the mode of a cell is a real-valued variable (say between 0
and 1), and the corresponding behavior of the cell is a mixture of its pure D and pure
C mode behaviors. The pure behaviors are as follows (the use of the terms “bit” and
“truth table” will be clarified below):

• In pure C-mode, incoming D bits are used to populate the cell’s internal truth
table, while overwritten truth table bits are output through the cell’s D outputs;
and

• In pure D-mode, the internal truth table of a cell is unchanged, and is used to map
incoming D values to outgoing D and C values.

When C is allowed to take on values between 0 and 1, these behaviors are more
complex:

• incoming D bits will be combined with the cell’s pre-existing truth table bits, with
the mixing ratio determined by the value of the C input;

9 Self-Organizing Computing Systems: Songline Processors 243

• the combined value will replace the cell’s truth table (according to some sort of
pre-defined timing pattern, to be discussed below);

• the D outputs become a mix of (a) the D values specified by using the truth table
as a lookup table (addressed by the incoming bits) and (b) the truth table entries
themselves; and

• the C outputs become a mix of (a) the C values specified by using the truth table
as a lookup table (addressed by the incoming bits) and (b) a 0.

Thus, if C = 1 or C = 0 the behavior is the same as with binary cells; but for
0 < C < 1 the behavior is a mix of the two pure extremes.

The notion of a “truth table bit” requires clarification. Recall:

• A cell’s truth table is in fact a continuous-valued function with a continuous do-
main; and

• there is no natural assignment of “bit numbers” to the function stored within a
cell’s memory.

In a binary cell, C-mode operation occurs bit-by-bit, with successive bits being
read and written as time progresses. The goal however is simply to transfer the
essence of a truth table via a narrow conduit (the D channel). In a Songline system,
we serialize a cell’s internal mapping function, and then transfer function values
using time as a parameter for the serialized function. For a function of one variable
(y = f (x)) with domain [0,1], we can do so by parameterizing the function using
time as an index. For example, beginning at time t = 0 we can transmit the value
of the function at 0, i.e., f (0). Over the next second, we transmit the value of f (t)

as t increases from 0 to 1. After one second, the entire function will have been
transmitted.

For a function of more than one variable, a single parameter (time) will not suf-
fice for sweeping the entire domain. Instead we can define a scan pattern for sweep-
ing the entire multi-dimensional domain with a single path, as shown in Fig. 9.21.
Unfortunately, this requires discretizing at least one dimension, at least for the sim-
ple solution presented here. It’s is still being investigated whether something like a
space-filling curve (Sagan 1994) might be used to map the higher-dimensional space
to a one-dimensional parameterized space without such discretization.

9.5.2 C-Mode Applications and Benefits

Typically, the most common use of C-mode in a binary Cell Matrix is to read or
write a cell’s truth table, most often to copy one or more cells from one region
to another. While this is also a use of C-mode in a Songline processor, there are
other applications of C-mode as well. One is waveform generation: by loading a
waveform into a cell’s internal function memory and then placing the cell into C-
mode, the pre-loaded waveform can be read out and fed to other parts of the system.
This is an easy way, for example, to reproduce a fixed carrier wave for processing
by an amplitude-modulation generator.

244 N.J. Macias and L.J.K. Durbeck

Fig. 9.21 Sample scan pattern for 2-D domain. This figure shows the domain of a function f (x, y)

of two variables. The values of the function can be sampled from t = 0 to t = 1 in the order shown.
Horizontal rows faithfully reproduce f (x, y) for all values of x, but from row to row there is a
discrete jump in the value of y

Fig. 9.22 Data-based
function composition. Cells f
and g are used successively to
evaluate first f (x) and then
g(f (x))

Another interesting aspect of C-mode relates to function composition, and is il-
lustrated in Figs. 9.22 and 9.23. Each figure shows three cells: cells f and g are ar-
bitrary “interesting” functions, while cell C is a cell whose job is to compose f with
g. In Fig. 9.22, cell C receives an input value x, sends it to cell f, receives f (x),
sends that to cell g, and receives g(f (x)). This provides an evaluation of g(f ()) at
the particular point x.

In Fig. 9.23, cell C receives a “go” signal which places cell f into C-mode. Cell
C reads cell f’s function, sends it into cell g, reads back g(f) (which is basically
g(f (t)) at whatever time t has passed since cell f entered C-mode), and writes that
new value back into cell f’s function. After the entire function has been read and
modified in this way, “go” is de-asserted, and cell f returns to D-mode. But now, the
function stored in cell f is actually g(f), i.e., the composite of functions f and g.
g(f (x)) can subsequently be evaluated directly by sending x into cell f and reading
back the value on the cell’s D output.

Thus, on a Songline processor, there is a connection between C-mode and the
notion of operating on a function (vs. operating on a function’s value at a particu-
lar point). Thus we have a hardware implementation of a concept from functional
analysis (Bachman and Narici 1966).

9 Self-Organizing Computing Systems: Songline Processors 245

Fig. 9.23 C-Mode based
function composition. Cell f
is reconfigured—with help
from Cell g—to implement
the composite function
g(f (x)). This is done by
using Cell g to evaluate g on
the function f itself, i.e., to
evaluate g(f) vs. g(f (x))

9.5.3 Advantages of a Songline Processor

While the notion of constructing circuits from elemental building blocks contain-
ing continuous-valued functions may seem archaic, there are a number of potential
advantages to this paradigm. One advantage is speed: an arbitrary function may be
evaluated, in effect, by a single memory lookup. Evaluating a transcendental func-
tion takes no longer than simple multiplication by a constant. Moreover, such func-
tion lookups may be more precise then what can be achieved in a digital domain,
where functions are approximated by (for example) part of their Taylor Series poly-
nomial, which is then evaluated at a point near to (but generally not exactly equal
to) the desired point of evaluation. This of course depends on the effectiveness of
the implementation and specifically the storage mechanism for a cell’s mapping
function.

On the other hand, being analog in nature, there is perhaps an inherent fuzzi-
ness in the behavior of these cells, whose mapping might potentially be affected by
temperature, pressure, or other environmental conditions. There is speculation that
a certain degree of non-deterministic behavior may be beneficial in systems that at-
tempt to mimic intelligent behavior (Pearn 2000). Thus a Songline processor may
be an interesting platform for work in machine learning and artificial intelligence.

Finally, having a basic cell that can perform an arbitrary input-to-output mapping
leads to a potentially simpler way to design circuits, as suggested by Figs. 9.17, 9.18,
and 9.20. Such a system is also potentially simpler to interface with in a universe
whose processes appear (at least on a macro scale) to be inherently analog and
continuous-valued.

9.5.4 Significance

A Songline processor maintains the essential benefits of a binary Cell Matrix, in-
cluding self-configurability, inherent defect tolerance, a lack of specialized compo-

246 N.J. Macias and L.J.K. Durbeck

nents, versatile routine, and so on. Additionally, potential significance of the Song-
line architecture itself includes the following:

• it represents a reconfigurable approach to implementing analog circuits, similar
in spirit to Field Programmable Analog Arrays (Kluwer 1998) but in some sense
more direct;

• it provides a natural mechanism for mimicking analog behaviors, by storing such
analog patterns directly into the function memory of a cell for later readback; and

• by using C inputs between 0 and 1, sampled analog data can be tweaked to a
desired degree, providing opportunities for adaption based upon a model signal
and a desired degree of variation.

This last point has potential applications to evolvable hardware systems (Green-
wood and Tyrrell 2006). In its simplest form, a desired function can be developed
by applying training data and comparing its actual output a against the desired out-
put d . The difference |a − d| can be used to generate a C input to the evolving cell.
For a large difference, the evolving cell’s C input will be large, and its truth table
will tend to mimic the training data. As the difference decreases towards 0, the C
input also diminishes, causing the cell’s mapping function to change less and less.
Mild or short-lived errors will causes relatively small changes in the mapping func-
tion, whereas more persistent errors will more-dramatically and more-continually
shift the cell’s function.

More generally, the Songline architecture is a very different approach to building
circuits for processing information, and as such, the potential benefits (and pitfalls)
won’t be fully realized until it is explored further.

9.5.5 Implementation

Implementing a binary cell is extremely simple, requiring only a small digital mem-
ory, a counter, and a bit of logic to manage the cell’s two modes. For a Songline
processor whose cells store a continuous function, storage of that function is a much
more difficult undertaking. Initial attempts have been based primarily on digitizing
the domain and range of the function (as well as the inputs and outputs), and then
using a standard digital memory. This is straightforward, but has two immediate
drawbacks:

(i) potential benefits unique to having a truly continuous-valued function are obvi-
ously lost, since the system is now basically again a digital circuit; and

(ii) the memory requirements for storing a function can be significant. For example,
assuming 6-bit A-D/D-A converters and three-sided cells, each cell’s function
is stored in a truth table containing 23×6 rows (since each side contributes 6 bits
to the table lookup); each row contains 2 × 3 outputs (a D and C output on each
of the 3 sides); and each output is itself 6 bits wide (since each analog value
is stored as a 6-bit binary value). This means a single cell’s truth table requires
almost 10 million bits of storage. For an 8-bit A-D/D-A, this numbers grows to

9 Self-Organizing Computing Systems: Songline Processors 247

Fig. 9.24 Mechanical spring-based delay unit. An analog signal can be sent into one end of this
unit, where it is transformed into mechanical motion that causes the springs to oscillate. The signal
travels through the spring to the other end, where a transducer converts the mechanical motion
back into an electrical signal, which can be amplified and re-sent to the starting point. This is one
way to store an analog signal

8000 million bits; for 12 bit conversions it is close to 5 trillion bits. Thus even
a modestly-accurate conversion requires a sizable memory.

It is therefore worth considering alternatives to simply digitizing the mapping
function and the analog values processed in a Songline processor. One possible
improvement is to continue to digitize the domain of the function, but to actually
store analog values of the function at each (discrete) point in its domain. It may be
feasible to implement such a system by exploiting the high density storage available
on flash memory devices but to utilize the ability of each storage element’s floating-
gate to store an analog value (Wellekens and Van Houdt 2008).

It’s worth noting that if we impose certain continuity requirements on stored
functions, then the penalty for digitizing its domain may be reduced by incorporat-
ing circuitry for interpolating results. Also, note that the main difficulty in increasing
the number of sides is only in the domain: for a cell with n sides, we simply imple-
ment 2n copies of our function storage mechanism within each cell (to drive a D
and C output on each of the n sides).

The question of directly storing analog signals is not without precedent: early
digital computers used analog memory modules such as mercury delay lines to store
information in a series of acoustic waves that would travel the length of the tube,
reach one end, be sampled, amplified, and re-transmitted to the other end (Eck-
ert et al. 1971). A spring-based delay line (Fig. 9.24) is another example based on
the same principle. There are, however, complications that arise in trying to extract
information from such a storage system. Suppose a time-varying signal is stored
in a spring (for example). Figure 9.25 shows a trapped sine wave y = sin(6πx)

(x ∈ [0,1]). To evaluate this function f at any given point x, we only need to mea-
sure the displacement of the spring from its rest position at a point corresponding
to x. Sometimes, this will be the point a distance x from the left of the spring (assum-
ing the length of the spring is normalized to 1), as shown in Fig. 9.26; but because
the wave travels, the position of x changes, as shown, for example, in Fig. 9.27.

So how do we measure this displacement? In a typical spring reverb system (such
as is used for creating a reverberation effect with a guitar (Amplified Parts 2012),

248 N.J. Macias and L.J.K. Durbeck

Fig. 9.25 Example of a
trapped waveform. Here, the
function y = sin(6πx) has
setup a displacement in the
spring

Fig. 9.26 Reading a saved
value. To read the value of
f (x) at time t = 0, one needs
to measure the displacement
of the spring from its rest
position at a distance x from
the left side (where the signal
is assumed to originate)

Fig. 9.27 Reading a saved
value 1/6 second later. Since
the trapped waveform travels
down the spring, the position
of “x” (and hence f (x)) will
vary over time

the end of the spring is connected to a transducer that transforms the spring’s dis-
placement into an electrical signal. It’s thus possible to directly read the value of
f (x) for whatever value of x currently corresponds to the rightmost position on the
spring. Ergo, assuming it takes 1 second for the wave to travel the entire length of
the spring, we could read the value of f (x) by simple waiting for time t = 1 − x

and then reading the displacement at the rightmost edge of the spring. This would
give us an exact value, but with a time penalty of up to 1 second.

If a 1 second delay is unacceptable, we can instead decide to wait a maximum
of 1

2 second, and read the closest point available to the sensor anywhere during that
1
2 second. Now we have reduced the time delay, but introduced a potential error in
the value we read. More precisely, we will read the exact value of f (x +�x) where
|�x| <= 0.5.

An alternative is to add a second sensor in the middle of the spring (Fig. 9.28).
Now we can be assured that the point x will pass some sensor in no more than 1

2
second. In this setup though we have another option: we can immediately read the
value at whichever sensor is closest to the point x, and thus obtain without delay

9 Self-Organizing Computing Systems: Songline Processors 249

Fig. 9.28 Spring-based
storage system with a second
sensor. Adding this second
sensor (in the middle of the
unit) allows f (x) to be
sampled with a delay of less
than 0.5 s

an approximation to f (x). Or we can accept a delay somewhere between 0 and 1
2

an a possibly smaller error in where we evaluate the function. More-generally, for
n evenly-spaced sensors, we can read with a delay of 0 but an error of 1

n
, or we

can wait up to 1
n

seconds and read an exact value. The more sensors, the better
our situation. But for any finite number of sensors, we do not have the option of
eliminating both the delay in reading a given function value and the potential error in
that reading. Sampling at a precisely desired point in time and space is not possible:
we can decrease the error in one, but only at the expense of increasing the error
in the other. This is perhaps reminiscent of other natural phenomena (Heisenberg
1927), though it’s unclear what the actual connection might be.

All of the above is only for a function of one variable f (x). The question of two
variables is more complex. Visually, an image of a deformed rubber sheet may be
useful: at any point (x, y) the displacement of the sheet corresponds to the func-
tion’s value f (x, y). If this deformation is setup as a traveling wave, then a situation
similar to the one-dimensional case arises, and we could populate the domain with
an array of sensors capable of reading the sheet’s displacement at certain predefined
points. Alternatively, if the sheet is rigidly deformed, a series of movable sensors
might be used to take a height reading at a desired point. Here again, we can read
without delay by approximating the point (x, y); or we can introduce a delay as a
sensor is repositioned and then used to read the value exactly.

A different model for storing a function f (x, y, z) might be to use the tempera-
ture at a point (x, y, z) within a three-dimensional region of space as a coding for
the function value f (x, y, z). Of course, creating a system to do this (and to main-
tain the temperature values) is likely impossible, but it suggests the general idea of
mapping the domain to 3-space and reading some physical property of each point
(x, y, z) in space to discern the value of f (x, y, z) at that point. Another idea that
comes to mind is, perhaps, to code information in the phase of light at each point
in a 3-D region: perhaps something along the lines of creating and reading a holo-
gram. It’s not currently clear how a function f (x, y, z,w) of four variables might
be stored physically. To date, most work on Songline processors has been done with
three-sided cells.

Yet another alternative for storing functions of more than one variable is (again)
to consider a space-filling curve (or an approximation to it) to parameterize a 2-,
3- or 4-dimensional region, mapping it to a one-dimensional region (in a way sim-
ilar to Fig. 9.21) and using that mapping to locate desired points. Of course, this

250 N.J. Macias and L.J.K. Durbeck

Fig. 9.29 Songline processor
prototype. Analog inputs are
specified with the knobs,
while analog outputs can be
read from the meter (the
selector below the meter
chooses which output channel
is displayed). Software
running on a USB-connected
host machine emulates an
8 × 8 array of 3-sided cells.
6-bit digitizing is used,
resulting in a total function
memory of 128 MB

requires certain continuity assumptions on the function being stored, and we are in
effect digitizing the domain. But as an approximation, it does provide a way to store
functions of higher-dimensional domains using a one-dimensional storage system.

Finally, it should be noted that the C-mode component of a cell’s operation—in
which the function itself is interrogated and read/written—such parameterization is
necessary (as described previously), in which case using this approach to store the
function may have its own benefits in terms of consistency of the cell’s function.

9.5.6 Songline Processor Prototype

Figure 9.29 shows a prototype of a Songline processor. The dials are used to gener-
ate analog inputs, while the meter reads the analog output of one of several channels.
Software on a host machine acts as the actual processor (an 8 × 8 array of 3-sided
cells). A compiler converts desired cell behavior (expressed in a C-like syntax) into
the internal structures necessary, based on 6-bit digitizing of analog values. A con-
figuration file designates certain edge cells’ inputs and outputs as corresponding to
particular channels, which the I/O box (shown in the figure) can write and read. Ad-
ditional connection points are available on the back of the unit, for connection of
channels to function generators, oscilloscopes, and so on.

Using this system, initial designs have been developed and tested, including basic
amplifiers, differentiators, flip flops, and so on. Cell replication from a source to a
target using C-mode has also been successfully demonstrated. The system works
well, though the differences from a typical digital system are often surprising (such
as the wide range of effects race conditions can exhibit).

Next steps include:

• continuing to develop circuits on this test bed;
• experimenting with single-variable function storage using a spring-based delay

system;

9 Self-Organizing Computing Systems: Songline Processors 251

• looking into the feasibility of exploiting floating-gate technology as a means of
storing and retrieving real-valued quantities;

• trying to better understand the time vs. error tradeoffs of incorporating multiple
sensors in the function readback system; and

• looking further into holographic techniques to see if there’s some way to use
holography to store functions of 2 or 3 variables.

9.6 Status and Future Work

9.6.1 Current Status

Several specifications for the Cell Matrix architecture have been designed (Macias
et al. 1999; Durbeck and Macias 2001c; Macias and Raju 2001), and these different
implementations have been used in a number of software simulators (Cell Matrix
Corporation 2006b). Most work to date has been done using software simulators.

Hardware implementations have also been developed, including a small cus-
tom ASIC implementation. More recent implementations have used traditional FP-
GAs to implement the Cell Matrix architecture (Macias and Durbeck 2004, 2005b;
Durbeck and Macias 2001a, 2002), including a self-contained 8 × 8 Cell Matrix
board called the Mod-88 (Macias and Durbeck 2005b), a 4 × 4 array of which has
been placed on the web for use (Cell Matrix Corporation 2006c).

A complete set of tools has been constructed and placed on the web to permit
anyone to construct Cell Matrix circuits and debug them using a graphical layout
editor and libraries of already-built components (Cell Matrix Corporation 2006b).
A place and route tool was recently developed to automatically generate layouts
from circuit descriptions (Macias 2006).

9.6.2 Some Applications of Self-Configurability

There are a number of areas where this shift from external- to internal-control ap-
pears especially beneficial to the design of computational and processing systems.
There has been and continues to be impetus to scale systems to greater numbers
of components and greater levels of complexity in the tasks they undertake. As the
system’s size and complexity are scaled up, the difficulties associated with man-
aging and maintaining the system also increase. When rapid increases in scaling
eventually occur (Vinge 1993), it may no longer be practical to continue scaling up
current strategies. Instead, new approaches to managing extreme complexity may
be required.

Utilizing internal control mechanisms is a better strategy than today’s external
system control as computers become more complex. A key difficulty in managing
extremely complex systems is the dependence on a single, centralized unit for all

252 N.J. Macias and L.J.K. Durbeck

management tasks. In contrast, one can distribute the management and control of
the system among a large number of separate management units, thereby reducing
the load on each management unit, while also improving the proximity between
each management unit and the circuits that it is managing. Care must be taken to
avoid introducing new complexities as the number of management units is itself
scaled up.

A possible solution is to use the massive resources of such large-scale systems
to solve the very problem being caused by their size, i.e., tackle the problems of
large-scale system design by using a large-scale system. Some example areas where
this may be applied are:

• Manufacturing Defects: In order to utilize many orders of magnitude more de-
vices, computational systems such as CPUs and FPGAs will need to be able to
use imperfect hardware, because it will be too difficult and expensive to build
perfect hardware. It thus seems there will need to be a design shift, from systems
that are completely free of defects to systems that can handle such defects. One
way to approach this challenge is to have the system itself perform initial checks
on its own hardware, testing its subsystems in an efficient (parallel) manner, and
noting defective regions in a way that subsequent processing can use to avoid
those defects.

• Run-time Defects: Even in systems that are manufactured perfectly, or whose
defects have been worked-around, there are still run-time defects, i.e., temporary
or permanent errors that occur while the system is operating. Given the large
number of components expected in future systems, the job of monitoring them for
proper functioning cannot reasonably be handled from a single, centralized (i.e.,
external) location. Instead, the job of defect detection and mitigation may better
be handled from within the system, using the large number of system components
as a resource for handling the complexity of this task.

• System Design: With a jump to Avogadro-scale systems, one could expect system
design times to become prohibitively long. One example of applying our thesis to
this problem would be to use a massive FPGA to implement and run massively-
parallel CAD tools, which are then used for subsequent design work. Another
is to decouple system design from system construction, so that system construc-
tion happily continues to march down Moore’s Law curve, while the increasingly
complex task of systems design has time and opportunity to develop as resources
are made available.

• Initial System Configuration/Bootstrap: As systems scale to use many orders of
magnitude more devices, the problem of configuring or bootstrapping them (the
process of specifying their initial setup in the case of such soft hardware as FP-
GAs, and the bootstrapping process of invoking and initializing all processes that
constitute the running system in the case of all computation systems including
FPGAs and computers) rapidly becomes worse, until configuration and initial-
ization times may be so long that systems cannot even complete initialization.
Again, a possible solution is to use the massively-parallel system itself as the
control system used to implement a very powerful, parallel bootstrap system.

9 Self-Organizing Computing Systems: Songline Processors 253

9.6.3 Possible Manufacturing Options

Because even simple circuitry implemented on the Cell Matrix tends to consume a
large number of cells, practical hardware Cell Matrices are difficult to create using
conventional manufacturing techniques. There are, however, a number of conceiv-
able approaches to manufacturing large Cell Matrices (“large” means a Cell Matrix
containing a large number of cells).

9.6.3.1 Aggressive Silicon Techniques

One approach is to use aggressive techniques in silicon, such as deep sub-micron
technology, while taking advantage of the fault-handling capabilities of the Cell
Matrix to manage the inevitably-high defect count. This, of course, requires a miti-
gation technique that costs less (in terms of area/cell count) than what is gained by
using a very aggressive fabrication technology.

An added benefit to using cutting-edge technologies to manufacture a Cell Matrix
is the possibility of using the Cell Matrix itself as a process driver, i.e., as a means
of debugging the fabrication process itself (Durbeck and Macias 2002). Because
a Cell Matrix has an inherent introspection capability, it can be used to analyze
the characteristics of the manufactured cells within itself, including things such as
their logical behavior, the speed of their operation, the pattern of defective cells’
locations, and so on. Because pathways from cell to cell are built out of cells, there
are generally multiple pathways from any cell to any other cell. This means that
even regions containing a large number of defects might be thoroughly analyzed
(Durbeck and Macias 2002).

9.6.3.2 Wafer-Scale Integration

Another potential approach to manufacturing large Cell Matrices is to employ
wafer-scale integration (WSI) (Saucier and Trilhe 1986; Wyatt and Raffel 1989;
Fuchs and Swartzlander 1992; IEEE 1989–1995; Zeng et al. 2005), where, instead
of dicing a wafer into a number of individual chips, the entire wafer is used to im-
plement a single circuit. WSI has been explored as a means to overcome die-level
defects, and in general has to address the problem of a wafer typically contain-
ing some defective die (e.g., Boubekeur et al. 1992; Saucier et al. 1988). Various
special-purpose architectures have been developed for WSI to allow operation on
top of imperfect wafers (e.g., Boubekeur et al. 1992; Saucier et al. 1988), as well as
a general-purpose methodology for using wafer-scale fabrication (Alam et al. 2002).

Of course, since a Cell Matrix is inherently a fault-isolating architecture, and
since faults can be detected and managed efficiently using some of the techniques
described above, it is an ideal architecture for implementing using WSI.

254 N.J. Macias and L.J.K. Durbeck

9.6.3.3 Three-Dimensional Fabrication

While most discussion of the Cell Matrix architecture in this chapter has focused
on two-dimensional matrices, it is perfectly feasible to create the three-dimensional
Cell Matrix. A three-dimensional Cell Matrix is actually much more powerful than
a two-dimensional one, for a number of reasons:

• each cell is more powerful, being a 6-input 6-output device (assuming a cube-
based structure/topology);

• circuit routing is easier, at least for two-dimensional circuits, since, being embed-
ded in a higher-dimensional space, non-adjacent components can be connected
via the third dimension;

• for a given number of components, the maximum path length, and hence maxi-
mum delay, can be greatly decreased—for example, a square circuit containing a
trillion cells would be 1,000,000 × 1,000,000 cells, giving a maximum corner-to-
corner path length of 2,000,000 cells; while a cubic circuit containing a trillion
cells would be 10,000 × 10,000 × 10,000, giving a maximum corner-to-corner
path length of only 30,000 cells;

• configuration of a three-dimensional circuit can be much faster than configura-
tion of a two-dimensional circuit with the same cell count; in the above example,
the two-dimensional case would require 2,000,000 operations (1,000,000 to con-
struct one row of Supercells, and another 1,000,000 for each Supercell to create
a column of Supercells), while the three-dimensional case would require only
30,000 operations (10,000 to make a row of Supercells; another 10,000 to create
a column of 10,000 Supercells below each of those, thus giving a two-dimension
plane of Supercells; and a final 10,000 operations for each of those 100,000,000
Supercells to create a line of Supercells in the Z-axis);

• a three-dimensional matrix can be treated as a series of two-dimensional matrices
with inter-matrix access in the Z dimension, thus enabling techniques such as
rapid context switching, parallel reading of cells, parallel writing of cells, plane-
to-plane voting, and so on; and

• a three-dimensional matrix has a number of two-dimensional surfaces available to
the outside world, thus affording a high-bandwidth mechanism for parallel input
and output of data to and from the matrix.

There have been various attempts by researchers to create three-dimensional cir-
cuitry (Seeman 1982; DePreitere and a 1994; Alexander et al. 1995; Borriello et al.
1995; Meleis et al. 1997; Leeser et al. 1997). One problem often encountered is
heat buildup, but this need not be an issue with a massively parallel architecture
such as the Cell Matrix, since the idea is to get algorithm speedup through the use
of massively-parallel algorithms, rather than through raw uni-processor speed. An-
other significant impediment for three-dimensional fabrication is, again, the manu-
facturing defect rate, but this can be (to some degree) mitigated using Cell Matrix
fault handling techniques.

9 Self-Organizing Computing Systems: Songline Processors 255

9.6.4 Nanotechnology

Any discussion of high-density, three-dimensional fabrication inevitably leads to
the topic of Nanotechnology (Montemerlo et al. 1996; Kamins and Williams 2001;
Stan et al. 2003). Roughly speaking, nanotechnology is the science of atomic-scale
manufacturing. In the context of using nanotechnology to manufacture Cell Matri-
ces, our primary interest is not so much in the size of the manufactured cells per se,
but rather in the extremely high cell count that can be achieved because of that size.
That is, our interest is not in making small Cell Matrices, but rather in creating Cell
Matrices containing a huge number of cells. This might involve manufacturing cells
out of logic gates that themselves are comprised of a small number (say 10–1,000)
of atoms, single electrons, etc., with each resulting cell containing fewer than a mil-
lion atoms. At such a scale, we can talk about quantities such as one mole of cells,
i.e., a number of cells equal to Avogadro’s numbers, or roughly 1023 cells. Note that
a three-dimensional Cell Matrix containing 1023 cells would have only 100,000,000
cells along each edge.

9.6.5 Cell Matrix Support for Nanotechnology

While the Cell Matrix architecture stands to benefit a great deal from a true
atomic-scale fabrication technologies, it is also possible that such technologies may
also benefit from the Cell Matrix. For example, in trying to manufacture three-
dimensional circuitry, one often manufactures a series of two-dimensional layers
using conventional techniques (e.g., lithographic techniques), and then stacks these
layers in the third dimension. While the former process is usually quite precise, the
latter is not: it involves the manipulation of macro-scale objects, such as individual
silicon die or silicon wafers (Fraunhofer Institute for Reliability and Microintegra-
tion 2006; Misc 2006; IEEE 1989–1995; Ababei et al. 2004).

However, if the layers being stacked are actually Cell Matrices, the cells them-
selves can be used to create circuits on each layer that investigate their own place-
ment relative to the layers above and below them. By staggering the placement of
the cells within each layer, that is, using non-uniform spacing between cells, it may
be possible to guarantee that some of the cells will align between layers (while also
guaranteeing that some cells will not). By voluntarily sacrificing some of the cells,
we can insure that some of the cells will create inter-layer connections. Circuits can
then be constructed to discover where these connections have been made, and that
information used in the configuration of subsequent circuits.

9.6.6 Other Approaches to Manufacturing

When thinking about manufacturing a Cell Matrix, it is worthwhile to consider ap-
proaches that may lack characteristics typically required for conventional circuit

256 N.J. Macias and L.J.K. Durbeck

manufacture. Some of the characteristics that differ for a Cell Matrix manufacturing
process vs. conventional circuits include:

• speed—a Cell Matrix is not required to have extremely fast cells, since one may
hope to obtain algorithm speedup via massive parallelism rather than raw compo-
nent speed;

• power dissipation—because, again, the individual cells can be run slowly, with
overall speedup achieved via parallelism;

• reliability—as we have seen, perfect manufacture is not strictly necessary for the
creation of a viable Cell Matrix: a certain degree of defects is acceptable; and

• physical size—the primary requirement for a useful Cell Matrix is not that it be
physically small, but rather that it contain a huge number of cells.

Taking these considerations into account, there are some unconventional possi-
bilities for manufacturing a Cell Matrix. One possibility is to use printable circuit
technology (Plastic Logic 2006; Burns et al. 2004; Sirringhaus et al. 2006; Mac-
Donald 2006; Wong et al. 2006) to create two-dimensional sheets of cells. These
sheets could be folded and stacked, to create narrow, but arbitrarily-long matrices.
Alternatively, single sheets could be stacked, and connectors pierced through the
sheets to create inter-sheet connections. Even if only some cells are connected from
sheet-to-sheet, this would still offer some of the benefits of a fully three-dimensional
matrix.

This also leads to the notion of trying to weave a matrix, utilizing some of the
ideas being used for the design of smart clothing (Cakmakci and Koyuncu 2000;
Cakmakci et al. 2001; Martin 2006; Edmison et al. 2002; Martin et al. 2003; Mar-
culescu et al. 2003). If cells can be constructed simply by controlling the pattern of
a weaving, then, again, arbitrarily-long two-dimensional sheets could be manufac-
tured. This approach is worth considering if only because the manufacture of textiles
is one of the oldest manufacturing processes in human history, and is estimated to
date back 12,000 years (Sabalan Group 2006).

Because of the regular structure of the Cell Matrix, it may be possible to exploit
natural processes in its manufacture: for example, the process of crystal growth.
Of course, this would require a means for associating logic circuits with certain
types of crystals, arranging things so that as the crystal grows, so does the matrix.
A more-controlled approach is being taken in the use of DNA as a scaffolding for the
placement of carbon nanotubes (Seeman 1982, 2003; Winfree 1998, 2003; Winfree
et al. 1998; Dwyer et al. 2004a, 2004b; Patwardhan et al. 2004, 2006; Park et al.
2006; Pistol et al. 2006; Kim et al. 2004; Winfree and Bekbolatov 2004; Rothemund
et al. 2004; Robinson and Seeman 1987), which could be applied to the construction
of Cell Matrix cells.

9.6.7 CAD Issues—Magic Polygons

It remains unanswered how best to represent self-modifying circuitry such as that
which can be implemented on the Cell Matrix. One idea is to use the notion of

9 Self-Organizing Computing Systems: Songline Processors 257

Fig. 9.30 Serialization of a source circuit. In (a), the truth tables comprising the source circuit are
transmitted along the wire to the de-serializer on the left. “*” is an anchor point for positioning the
new circuit. In (b), the de-serializer has synthesized a copy of the source circuit using the serial bit
stream it receives

serialization, wherein a collection of cells is used to generate a stream of binary data
corresponding to it. Once a circuit has been serialized, it can be processed using
standard digital circuits: it can be stored, retrieved, steered through circuitry via
mux/demux logic, compared with other streams, and so on. Along with serialization
is the process of de-serialization, wherein a stream corresponding to a circuit is used
to configure a set of cells to implement that circuit.

Figure 9.30a shows an example of this serialization/de-serialization process.
A sample source circuit is shown on the right, surrounded by a dashed box called
a “Magic Polygon,” which indicates a region of the circuit that is to be serialized.
The line coming from the box transfers this stream of ordinary binary data to the
de-serializer on the left, where a new copy of the circuit is created in Fig. 9.30b.
The “*” inside each polygon is used to position de-serialized circuitry relative to the
original serialized circuit. The GO signal indicates initiation of the de-serialization
operation. Figure 9.30 shows a simple circuit replication.

Figure 9.31 shows an example of a simple Hardware Library, where one of four
circuits can be selected for synthesis. The bitstreams for each circuit are sent into
the 4-1 selector, which chooses one of them for synthesis by the Magic Polygon to
the South.

Figure 9.32 shows a more-complex example. In this case, the Magic Polygon on
the right itself contains a Magic Polygon. This means the synthesized circuit will
also contain a Magic Polygon. When the circuit in Fig. 9.32a is serialized and then
de-serialized, the circuit of Fig. 9.32b results. This looks exactly like Fig. 9.32a, ex-
cept that the East-to-West wire has been extended. Each time the circuit’s bitstream
is de-serialized, the wire is extended another step. This can be used as a mechanism
for synthesizing wires, as described above in Sect. 9.3. Note that in this example,
the GO line has not been shown. The Magic Polygon on the left needs a GO signal
in order to initiate its de-serialization process, but since the location of this Magic
Polygon changes, the line driving the GO input also needs to be extended at each
step. For simplicity, this and other details have been excluded from Fig. 9.32.

258 N.J. Macias and L.J.K. Durbeck

Fig. 9.31 Example of a
Hardware Library. The 4-1
Selector can choose the
bitstream corresponding to
one of four circuits. The
selected circuit will be
synthesized to the South

Fig. 9.32 Magic Polygon
Representation of an
Extendible Wire. (a) shows
the initial setup. (b) shows the
result after deserialization and
reserialization: the wire has
been extended

While Magic Polygons are an easy way to visualize the serialization/de-serializa-
tion process, they are more applicable to circuit schematics than to, say, a Hardware
Definition Language (HDL) description of a circuit. Ongoing research efforts seek
to elaborate on the details of Magic Polygons, to extend them to the realm of HDLs,
and to develop tools for implementing their functional behavior.

References

Ababei, C., Maidee, P., & Bazargan, K. (2004). Exploring potential benefits of 3D FPGA integra-
tion. In Field-programmable logic and its applications (pp. 874–880). Heidelberg: Springer.

Abdi, H. (1994). A neural network primer. Journal of Biological Systems, 2(3), 247–283.
Alam, S., Troxel, D., & Thompson, C. (2002). A comprehensive layout methodology and layout-

specific circuit analyses for three-dimensional integrated circuits. In ISQED international sym-
posium on quality electronic design, 2000 (p. 246). Washington: IEEE Computer Society.

Alexander, M., Cohoon, J., Colflesh, J., Karro, J., & Robins, G. (1995). Three-dimensional field-
programmable gate arrays. In Proceedings of the eighth annual IEEE international ASIC con-
ference and exhibit, 1995 (pp. 253–256).

Amplified Parts (2012). Spring reverb tanks explained and compared. http://www.amplifiedparts.
com/tech_corner/spring_reverb_tanks_explained_and_compared. Retrieved November 2012.

Arms, K., & Camp, P. (1987). Biology (3rd ed.). Philadelphia: Saunders.
Aspray, W., & Burks, A. (1987). Charles Babbage Institute reprint series for the history of com-

puting: Vol. 12. Papers of John von Neumann on computing and computer theory.
Bachman, G., & Narici, L. (1966). Functional analysis. San Diego: Academic Press.

http://www.amplifiedparts.com/tech_corner/spring_reverb_tanks_explained_and_compared
http://www.amplifiedparts.com/tech_corner/spring_reverb_tanks_explained_and_compared

9 Self-Organizing Computing Systems: Songline Processors 259

Borriello, G., Ebeling, C., Hauck, S., & Burns, S. (1995). The Triptych FPGA architecture. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 3(4), 491–501.

Boubekeur, A., Patry, J., Saucier, G., & Trilhe, J. (1992). Configuring a wafer-scale two-
dimensional array of single-bit processors. Computer, 25(4), 29–39.

Burns, S., Kuhn, C., Jacobs, K., MacKenzie, J., Ramsdale, C., Arias, A., Watts, J., Etchells, M.,
Chalmers, K., Devine, P., et al. (2004). Printing of polymer thin-film transistors for active-
matrix-display applications. Journal of the Society for Information Display, 11, 599.

Cakmakci, O., & Koyuncu, M. (2000). Integrated electronic systems in flexible and washable
fibers. Filed with the United States Patent Office and the European Patent Office.

Cakmakci, O., Koyuncu, M., & Eber-Koyuncu, M. (2001). Fiber computing. In Proc. of the work-
shop on distributed and disappearing user interfaces in ubiquitous computing, CHI.

Cell Matrix Corporation (2006a). Bibliography for cell matrix-related research.
http://www.cellmatrix.
com/entryway/products/pub/bibliography.html.

Cell Matrix Corporation (2006b). Cell matrix software. http://www.cellmatrix.com/entryway/
products/software/software.html.

Cell Matrix Corporation (2006c). MOD 88 online viewer. http://cellmatrix.dyndns.org:12001/cgi-
bin/mod88/obs2.cgi?.

Chatwin, B. (1986). The songlines. Baltimore: Penguin Books.
Darwin, C. (1859). The origin of species by means of natural selection: or, the preservation of

favoured races in the struggle for life. London: Murray.
DePreitere, J. et al. (1994). An optoelectronic 3D field programmable gate array. In W. Hartenstein,

M. Servit, & (Eds.), Lecture notes in computer science: Vol. 849. Field-programmable logic:
architectures, synthesis, and applications. Berlin: Springer.

Deutsch, L., & Schiffman, A. (1984). Efficient implementation of the smalltalk-80 system. In Pro-
ceedings of the 11th ACM SIGACT-SIGPLAN symposium on principles of programming lan-
guages (pp. 297–302). Salt Lake City: ACM.

Duncan, R. (1989). Design goals and implementation of the new high performance file system.
Microsoft Systems Journal, 4(5), 1–14.

Durbeck, L., & Macias, N. (2001a). Autonomously self-repairing circuits (NASA SBIR Phase II
Proposal).

Durbeck, L., & Macias, N. (2001b). Autonomously self-repairing circuits (NASA SBIR Phase I
Final Report).

Durbeck, L., & Macias, N. (2001c). Self-configurable parallel processing system made from self-
dual code/data processing cells utilizing a non-shifting memory. US Patent 6,222,381.

Durbeck, L., & Macias, N. (2001d). The cell matrix—an architecture for nanocomputing. Nan-
otechnology, 12(3), 217–230.

Durbeck, L., & Macias, N. (2002). Defect-tolerant, fine-grained parallel testing of a cell matrix. In
Proceedings of SPIE ITCom (Vol. 4867). Boston: SPIE.

Dwyer, C., Johri, V., Patwardhan, J., Lebeck, A., & Sorin, D. (2004a). Design tools for self-
assembling nanoscale technology. Nanotechnology, 15(9), 1240–1245.

Dwyer, C., Poulton, J., Taylor, R., & Vicci, L. (2004b). DNA self-assembled parallel computer
architectures. Nanotechnology, 15(11), 1688–1694.

Eckert, J. P., et al. (1971). The UNIVAC system. New York: McGraw-Hill, reprinted in Computer
structures: readings and examples.

Edmison, J., Jones, M., Nakad, Z., & Martin, T. (2002). Using piezoelectric materials for wearable
electronic textiles. In Proceedings of sixth international symposium on wearable computers
(ISWC 2002) (pp. 41–48). Berlin: Springer.

Fischer, T. (1987). Heavy-ion-induced, gate-rupture in power MOSFETs. IEEE Transactions on
Nuclear Science, 34(6), 1786–1791.

Fraunhofer Institute for Reliability and Microintegration, Munich (2006). Department of Si
Technology and Vertical System Integration. http://www.izm-m.fraunhofer.de/files/fraunhofer2/
si-technology__vsi.pdf. Accessed 10/31/2006.

http://www.cellmatrix.com/entryway/products/pub/bibliography.html
http://www.cellmatrix.com/entryway/products/pub/bibliography.html
http://www.cellmatrix.com/entryway/products/software/software.html
http://www.cellmatrix.com/entryway/products/software/software.html
http://cellmatrix.dyndns.org:12001/cgi-bin/mod88/obs2.cgi?
http://cellmatrix.dyndns.org:12001/cgi-bin/mod88/obs2.cgi?
http://www.izm-m.fraunhofer.de/files/fraunhofer2/si-technology__vsi.pdf
http://www.izm-m.fraunhofer.de/files/fraunhofer2/si-technology__vsi.pdf

260 N.J. Macias and L.J.K. Durbeck

Fuchs, W., & Swartzlander, E. Jr (1992). Wafer-scale integration: architectures and algorithms.
Computer, 25(4), 6–8.

Greenwood, G., & Tyrrell, A. (2006). Introduction to evolvable hardware. New York: Wiley/IEEE
Press.

Haldane, J. (1931). The philosophical basis of life.
Heisenberg, W. (1927). Werner Heisenberg, in a letter to Wolfgang Pauli. February 1927.
IEEE (1989–1995). Proceedings of the international conference on wafer scale integration.
Kamins, T., & Williams, R. (2001). Trends in nanotechnology: self-assembly and defect tolerance.

In Proc. NSF partnership in nanotechnology conf.
Kauffman, S. (1993). The origins of order: self-organization and selection in evolution. London:

Oxford University Press.
Kim, J., Hopfield, J., & Winfree, E. (2004). Neural network computation by in vitro transcriptional

circuits. Advances in Neural Information Processing Systems, 17, 681–688.
Kluwer (1998). Analog Integrated Circuits and Signal Processing, 17(1–2). Special issue on Field-

Programmable Analog Arrays.
Koza, J. (1992). Genetic programming: on the programming of computers by means of natural

selection. Cambridge: Bradford Book.
Leeser, M., Meleis, W., Vai, M., & Zavracky, P. (1997). Rothko: a three dimensional FPGA ar-

chitecture, its fabrication, and design tools. In Seventh international workshop on field pro-
grammable logic and applications. London: Springer.

Lennox, J. (2001). Aristotle’s philosophy of biology: studies in the origins of life science. Cam-
bridge: Cambridge University Press.

MacDonald, W. A. (2006). Advanced flexible polymeric substrates. In H. Klauk (Ed.), Organic
electronics: materials, manufacturing & its applications. New York: Wiley.

Macias, N. (1999). The PIG paradigm: the design and use of a massively parallel fine grained self-
reconfigurable infinitely scalable architecture. In Proceedings of the first NASA/DOD workshop
on evolvable hardware (EH’99). Pasadena: IEEE.

Macias, N. (2001). Circuits and sequences for enabling remote access to and control of non-
adjacent cells in a locally self-reconfigurable processing system composed of self-dual pro-
cessing cells. US Patent 6,297,667.

Macias, N. (2006). Cell matrix place and route tool: changes and improvements. White Paper
delivered to Los Alamos National Laboratory under sub-contract #90843-001-04 4x.

Macias, N., & Durbeck, L. (2002). Self-assembling circuits with autonomous fault handling. In
Proceedings of NASA/DoD conference on evolvable hardware, 2000 (pp. 46–55). Washington:
IEEE.

Macias, N., & Durbeck, L. (2004). Adaptive methods for growing electronic circuits on an imper-
fect synthetic matrix. Biosystems, 73(3), 172–204.

Macias, N., & Durbeck, L. (2005a). Unpublished white papers and talks delivered to Los Alamos
National Laboratory under sub-contract #90843-001-04 4x.

Macias, N., & Durbeck, L. (2005b). A hardware implementation of the cell matrix self-
configurable architecture: the cell matrix MOD 88. In Proceedings of 2005 NASA/DoD con-
ference on evolvable hardware (pp. 103–106). Washington: IEEE.

Macias, N., & Raju, M. D. (2001). Method and apparatus for automatic high-speed bypass routing
in a cell matrix self-configurable hardware system. US Patent 6,577,159.

Macias, N., Henry, L. III, & Raju, M. (1999). Self-reconfigurable parallel processor made from
regularly-connected self-dual code/data processing cells. US Patent 5,886,537.

Mange, D., Sipper, M., Stauffer, A., & Tempesti, G. (2000). Toward self-repairing and self-
replicating hardware: the embryonics approach. In Proceedings of the second NASA/DoD work-
shop on evolvable hardware, 2000 (pp. 205–214). Palo Alto: IEEE.

Marculescu, D., Marculescu, R., Zamora, N., Stanley-Marbell, P., Khosla, P., Park, S., Jayaraman,
S., Jung, S., Lauterbach, C., & Weber, W. (2003). Electronic textiles: a platform for pervasive
computing. Proceedings of the IEEE, 91(12), 1995–2018.

9 Self-Organizing Computing Systems: Songline Processors 261

Martin, T. (2006). Tom Martin’s Wearable Electronic Textiles research group at Virginia
Tech. http://www.ccm.ece.vt.edu/etextiles/, http://www.ccm.ece.vt.edu/etextiles/publications/.
Accessed 10/31/2006.

Martin, T., Jones, M., Edmison, J., & Shenoy, R. (2003). Towards a design framework for wear-
able electronic textiles. In Proceedings of seventh IEEE international symposium on wearable
computers, 2003 (pp. 190–199).

Meleis, W., Leeser, M., Zavracky, P., & Vai, M. (1997). Architectural design of a three dimensional
FPGA. In Proceedings of seventeenth conference on advanced research in VLSI, 1997 (pp. 256–
268). Ann Arbor: IEEE.

Misc (2006). International Journal of Chip-Scale Electronics, Flip-Chip Technology, Optoelec-
tronic Interconnection and Wafer-Level Packaging. http://www.chipscalereview.com. Accessed
10/31/2006.

Montemerlo, M., Love, J., Opiteck, G., Goldhaber-Gordon, D., & Ellenbogen, J. (1996). Technolo-
gies and designs for electronic nanocomputers (MITRE Tech. Rep. MTR 96W0000044). The
MITRE Corporation, McLean, VA. July.

Ortega-Sanchez, C., Mange, D., Smith, S., & Tyrrell, A. (2000). Embryonics: a bio-inspired cellu-
lar architecture with fault-tolerant properties. Genetic Programming and Evolvable Machines,
1(3), 187–215.

Page, I. (1996). Constructing hardware-software systems from a single description. Journal of VLSI
Signal Processing, 12(1), 87–107.

Park, S., Pistol, C., Ahn, S., Reif, J., Lebeck, A., Dwyer, C., & LaBean, T. (2006). Finite-size,
fully-addressable DNA tile lattices formed by hierarchical assembly procedures. Angewandte
Chemie, 45, 735–739.

Patwardhan, J., Dwyer, C., Lebeck, A., & Sorin, D. (2004). Circuit and system architecture for
DNA-guided self-assembly of nanoelectronics. In Proceedings of 2004 conference on founda-
tions of nanoscience: self-assembled architectures and devices (pp. 344–358). Snowbird: Sci-
ence Technica.

Patwardhan, J., Dwyer, C., Lebeck, A., & Sorin, D. (2006). NANA: a nano-scale active network
architecture. ACM Journal on Emerging Technologies in Computing Systems, 2(1), 1–30.

Pearn, J. (2000). Email conversation with. N. Macias, May 2000. http://www.artificialbrains.com.
Pistol, C., Lebeck, A., & Dwyer, C. (2006). Design automation for DNA self-assembled nanos-

tructures. In Proceedings of the 43rd annual conference on design automation (pp. 919–924).
New York: ACM.

Plastic Logic (2006). Plastic Logic, developer of printed flexible thin film transistor (TFT) arrays.
http://www.plasticlogic.com/technology.php. Accessed 10/31/2006.

Prodan, L., Tempesti, G., Mange, D., & Stauffer, A. (2003). Embryonics: electronic stem cells.
In H. Abbass, R. Standish, & M. Bedau (Eds.), Artificial Life VIII: proceedings of the eighth
international conference on artificial life (pp. 101–105). Cambridge: MIT Press.

Robinson, B., & Seeman, N. (1987). The design of a biochip: a self-assembling molecular-scale
memory device. Protein Engineering Design and Selection, 1, 295–300.

Rothemund, P., Papadakis, N., & Winfree, E. (2004). Algorithmic self-assembly of DNA Sierpinski
triangles. PLoS Biology, 2(12), 2041–2053.

Sabalan Group (2006). Textile history. http://www.sabalangroup.com/aboutus-history-textilehist
-en.html.

Sagan, H. (1994). Space-filling curves. Berlin: Springer.
Saha, C., Bellis, S., Mathewson, A., & Popovici, E. (2004). Performance enhancement defect tol-

erance in the cell matrix architecture. In Proceedings of MIEL (Vol. 2, pp. 777–780).
Saucier, G., & Trilhe, J. (1986). Wafer scale integration. Amsterdam: North-Holland.
Saucier, G., Patry, J., & Kouka, E. (1988). Defect tolerance in a wafer scale array for image pro-

cessing. In Proc. int’l workshop on defect and fault tolerance in VLSI systems, Univ. of Mas-
sachusetts, Amherst, October (Vol. 8, pp. 8.2-1–8.2-13).

Schmit, H. (1997). Incremental reconfiguration for pipelined applications. In IEEE symposium on
FPGAs for custom computing machines (pp. 47–55). Napa: IEEE.

http://www.ccm.ece.vt.edu/etextiles/
http://www.ccm.ece.vt.edu/etextiles/publications/
http://www.chipscalereview.com
http://www.artificialbrains.com
http://www.plasticlogic.com/technology.php
http://www.sabalangroup.com/aboutus-history-textilehist-en.html
http://www.sabalangroup.com/aboutus-history-textilehist-en.html

262 N.J. Macias and L.J.K. Durbeck

Seeman, N. (1982). Nucleic acid junctions and lattices. Journal of Theoretical Biology, 99(2),
237–247.

Seeman, N. (2003). Biochemistry and structural DNA nanotechnology: an evolving symbiotic re-
lationship. Biochemistry, 42(24), 7259–7269.

Sirringhaus, H., Sele, C. W., von Werne, T., & Ramsdale, C. (2006). Manufacturing of organic
transistor circuits by solution-based printing. New York: Wiley.

Stan, M., Franzon, P., Goldstein, S., Lach, J., & Ziegler, M. (2003). Molecular electronics: from
devices and interconnect to circuits and architecture. Proceedings of the IEEE, 91(11), 1940–
1957.

Thompson, A. (1996). An evolved circuit, intrinsic in silicon, entwined with physics. In Pro-
ceedings of the first international conference on evolvable systems: from biology to hardware
(pp. 390–405). Berlin: Springer.

Trimberger, S. (1998). Scheduling designs into a time-multiplexed FPGA. In Proceedings of
the 1998 ACM/SIGDA sixth international symposium on field programmable gate arrays
(pp. 153–160). New York: ACM.

Vinge, V. (1993). Technological singularity In VISION-21 symposium sponsored by NASA Lewis
Research Center and the Ohio Aerospace Institute, March.

Waskiewicz, A., Groninger, J., Strahan, V., & Long, D. (1986). Burnout of power MOS transistors
with heavy ions of Californium-252. In IEEE, DNA, Sandia National Laboratories, and NASA,
1986, 23rd annual conference on nuclear and space radiation effects, Providence, RI, 21–23
July 1986. IEEE Transactions on Nuclear Science (ISSN 0018-9499), 33(pt 1):1710–1713.

Wellekens, D., & Van Houdt, J. (2008). The future of flash memory: is floating gate technology
doomed to lose the race? In 2008 international conference on integrated circuit design and
technology (pp. 189–194).

Winfree, E. (1998). Simulations of computing by self-assembly (Caltech CS Technical Report
1998.22).

Winfree, E. (2003). DNA computing by self-assembly. The Bridge, 33(4), 31–38.
Winfree, E., & Bekbolatov, R. (2004). Proofreading tile sets: error-correction for algorithmic self-

assembly. DNA Computing, 9, 126–144.
Winfree, E., Liu, F., Wenzler, L., & Seeman, N. (1998). Design and self-assembly of two-

dimensional DNA crystals. Nature, 394(6693), 539–544.
Wong, W. S., Daniel, J. H., Chabinyc, M. L., Arias, A. C., Ready, S. E., & Lujan, R. (2006).

Thin-film transistor fabrication by digital lithography.
Wyatt, P., & Raffel, J. (1989). Restructurable VLSI—a demonstrated wafer-scale technology. In

Proceedings of 1st international conference on wafer scale integration, 1989 (pp. 13–20).
Xilinx, I. (2006). Xilinx, Inc. http://www.xilinx.com. Accessed 10/31/2006.
Zeng, A., Lu, J., Rose, K., & Gutmann, R. (2005). First-order performance prediction of cache

memory with wafer—level 3D integration. IEEE Design & Test of Computers, 22(6), 548–555.

http://www.xilinx.com

Chapter 10
Self-Organizing Nomadic Services in Grids

Tino Schlegel and Ryszard Kowalczyk

10.1 Introduction

The Grid has emerged as a global platform to support on-demand computing and
on-demand virtual organizations for coordinated sharing of distributed data, appli-
cations and processes. The service orientation of the Grid also makes it a promis-
ing platform for seamless and dynamic provision of service oriented applications
across organizations and computing platforms. Service oriented computing enable
new kinds of flexible business applications in open systems, which has changed
the way of thinking about building, delivering and consuming software over recent
years. Services are made available via standard interfaces independent from their
underlying platform implementations. The loose coupling, implementation neutral-
ity and flexible configuration of services allow the creation of large networks of
collaborating applications. This computing paradigm allows companies to focus on
their core competencies by providing complex business applications that are com-
posed of their own services plus services provided by external partners. These new
kinds of distributed systems are not only connected clusters of computers in a local-
area network. They are loosely coupled components collaborating in a world-wide
Service Grid within and across organizational boundaries. The traditional intra-
organizational view is shifting to a global perspective.

The OASIS SOA Reference Model group defines Service Oriented Architecture
(SOA) as “a paradigm for organizing and utilizing distributed capabilities that may
be under the control of different ownership domains. It provides a uniform means to
offer, discover, interact with and use capabilities to produce desired effects consis-
tent with measurable preconditions and expectations.” (OASIS 2006)

T. Schlegel (B) · R. Kowalczyk
Swinburne Centre for Information Technology Research, Faculty of Information and
Communication Technologies, Swinburne University of Technology, Melbourne, Australia
e-mail: tschlegel@ict.swin.edu.au

R. Kowalczyk
e-mail: rkowalczyk@ict.swin.edu.au

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_10,
© Springer-Verlag London 2013

263

mailto:tschlegel@ict.swin.edu.au
mailto:rkowalczyk@ict.swin.edu.au
http://dx.doi.org/10.1007/978-1-4471-5113-5_10

264 T. Schlegel and R. Kowalczyk

The underlying fundamental principle of service oriented computing is the ex-
change of standardized documents (e.g. XML documents) via standard interfaces
and protocols (SOAP, HTTP, etc.) between services located on different hosts. This
simple mechanism provides a great flexibility with clear advantages for service
grids. However, the advantages of flexibility and service distribution are often in
conflict with the increased network traffic produced by highly communicative ser-
vices in a distributed application. If services are located on distant servers, exchang-
ing documents between them generates network traffic between the corresponding
network nodes. Every increase in network traffic causes higher execution time be-
cause of a longer time for network transmission and latency compared with a cen-
tralized solution.

Besides the communication overhead in a service oriented environment, the or-
ganic nature of such a system demands self-managing capabilities for a seamless-
link operation. Each service can be part in a vast number of applications. Over the
lifetime of a service, interaction partners and quality of service parameters may
change over lifetime, which creates an unpredictable environment. Therefore, each
individual service must be responsible for managing its own behavior in accor-
dance with agreements established with other services. Self-management and self-
organization of services includes self-configuration, self-protection, self-healing,
and self-optimization which arise from more than just individual self-organizing ca-
pabilities. It is an emergent property of the whole system that can only be achieved
by the mutual interactions between services.

The communication overhead in a service oriented computing environment re-
quires a trade-off between the advantages of service distribution and the drawbacks
regarding their execution and communication time and costs. Not only will applica-
tion data becomes larger because of its human readable and interoperable XML
representation and increasing multimedia content (Fontana 2004). New user re-
quirements also introduce additional network load for meta-communication, such
as semantic information about services, negotiations plus monitoring of quality-of-
service parameters between services and other management and configuration in-
formation. This communication overhead has to be considered as one of the main
practical downsides of the service grids despite the significant increase in network
bandwidth observed over recent years (Fontana 2004).

Different communication paradigms for distributed computing have been devel-
oped over the past years to reduce the increasing network load (Braun and Rossak
2005; Bruneo et al. 2003). However, none of them can eliminate the problem as all
paradigms have advantages and disadvantages depending on a concrete application
scenario. The two main communication paradigms are called remote communication
and mobile code whereas the first one is the currently dominant paradigm because
of its simplicity, universality regarding execution platforms and its high security.
The interacting services located at different locations communicate by exchanging
all information via remote messages. This can cause a huge amount of unnecessary
network traffic if only small pieces of the transferred information are required. The
mobile code paradigm describes the reallocation of code or parts of code to an-
other platform for remote execution. The relocated service can communicate with

10 Self-Organizing Nomadic Services in Grids 265

Fig. 10.1 Communication paradigms

its communication partner that is located on the same server locally and returns
only the results. Figure 10.1 illustrates the two paradigms and shows the differences
between them.

It is obvious that mobile code can reduce network traffic only if the code of the
service that has to be transmitted over the network is smaller than the amount of
data that can be saved using this paradigm. The problem of deciding between the
two communication paradigms is known as the migration decision problem (Braun
and Rossak 2005).

The software agent community developed mobile agents as an implementation
of the mobile code paradigm for the optimization of network and data management
in multi-agent systems (Wooldridge 2002). A mobile agent has the capability to mi-
grate with its code and execution state from host to host to fulfill its task. Mobile
agents could decide to meet at an agent server and then communicate only locally
without generating any network traffic except that of the migration itself (Braun and
Rossak 2005). Mobile agents can not only reduce network load and increase applica-
tion response time but can also improve reliability by making the application more
robust against network failures and reduce power consumption in case of mobile
devices. Many research groups have investigated and compared network communi-
cation costs of different paradigms in terms of network load and processing time
in various application scenarios (Outtagarts et al. 1999; Puliafito et al. 2001; Sama-
ras et al. 1999). The main expectation of mobile agents to reduce the network load
was not satisfied and interest in the research area of mobile agents has dwindled.
Vigna (2004) said that mobile agents are very expensive, cause security problems
and in general produce worse performance than other communication paradigms. In
fact, no single communication paradigm produces optimal network traffic under all
conditions. Optimal performance can only be achieved with a combination of dif-
ferent paradigms depending on the current environment and application parameters
(Strasser and Schwehm 1997).

Developments in grid computing supply excellent distributed infrastructures for
the realization of service oriented computing, which are able to execute services
at distributed heterogeneous resources connected by a network (Buyya et al. 2000;

266 T. Schlegel and R. Kowalczyk

Foster and Kesselman 1997; Frey et al. 2002). One of the major problems in grid
computing is the efficient resource allocation of tasks to available resources. Re-
source allocation in grids is usually done in accordance with Service Level Agree-
ments (SLA).

Most existing grid toolkits allow the reallocation of a service during execution for
runtime optimization. Services that can change their execution platform are called
nomadic services. Nomadic services can migrate at runtime to a server with more
available resources for faster processing or one closer to other services to speed up
the network communication. A practical example for service reallocation is the ne-
gotiation of quality of service parameters before the actual service execution, by ex-
changing offers with a number of candidates until an agreement with one of them is
reached. The group of interacting services could decide to meet at the same server or
a cluster of servers with enough free resources for faster negotiation and only local
communication. After the negotiation has finished, the services who reach an agree-
ment can send back a message with the result only. Many distributed service grid
applications could benefit from using this paradigm. However, current grid comput-
ing toolkits focus on the processing of computational expensive jobs. They usually
do not take communication costs into account and the jobs requesting resources
cannot influence the resource allocation decision.

In this chapter, we propose a distributed, innovative self-organizing approach to
provide intelligent communication and resource management for service grids that
increases the services’ self-managing capabilities. We eliminate the need for a cen-
tral facilitator or resource broker. In our distributed resource allocation, solely the
nomadic services in the system are responsible for all resource allocation decisions.
They consider the amount of available resources as well as the network transmission
costs during service execution in their resource allocation decisions.

This approach is based on self-organization of nomadic services. Each nomadic
service can decide between remote communication and allocation at the server of
the communication partner followed by local communication, provided that enough
resources for execution are available. The services learn from past allocation deci-
sions and adapt to new environments in order to minimize network traffic, mitigate
network latency and balance resource load between the grid nodes.

Our solution uses short term histories of the last communication acts with other
services and resource load information of potential servers for an allocation of re-
sources. Based on this purely local information, a nomadic service forecasts all
environment parameters that have an impact on the communication costs of the
following communication act and decides on the most beneficial communication
paradigm. In addition, the resource loads of potential remote servers that provide
resources are predicted. Even if a service would opt for migration when considering
only communication costs, a server that is not overloaded also has to be selected. In
some cases, a remote communication could be the better alternative if none of the
available servers have free resources. Thus an open system needs self-healing and
self-organization mechanisms for continuous optimization of the resource allocation
and communication management. It takes into account service oriented computing

10 Self-Organizing Nomadic Services in Grids 267

tendencies toward autonomy, heterogeneity and unreliability of resources and ser-
vices. The solution we present is inspired by the concept of inductive reasoning and
bounded rationality introduced by Arthur (1994).

Our self-organizing approach does not require a central authority for controlling,
decision support or information sharing between services. The resource allocation in
the system is created by the effective competition of services for available resources
and is a purely emergent effect. We will demonstrate in various simulation exper-
iments that the services can self-organize in a dynamic service grid environment
without the need of active monitoring or a central controlling authority.

10.2 Related Work

The Grid community has developed grid toolkits like Globus (Foster and Kesselman
1997) or Condor-G (Frey et al. 2002) which provide middleware infrastructures for
service oriented computing. These toolkits mainly focus on effective resource allo-
cation of computationally very expensive jobs without addressing communication
costs. In contrast, service grids are transaction intensive with a large number of ser-
vices that are not computational expensive.

Existing distributed approaches for resource management in Multi-Agent Sys-
tems can avoid server overloading by refusing or queuing incoming mobile agents
(Fluess 2005). From the system perspective, the problem of load balancing between
different agent servers is important and existing solutions to this problem provide a
good supplement to our self-organizing resource allocation.

Most of today’s techniques for resource scheduling that can be found in grid
computing toolkits like Globus (Foster and Kesselman 1997) or Condor-G (Frey
et al. 2002) use a coordinator instance such as an auctioneer, arbitrator, dispatcher,
scheduler or manager that needs to have global knowledge about the state of all
resources. These resource allocation mechanisms are appropriate for building self
contained software systems, but they are not designed to face the challenges of open
and dynamic environments, where resources can be added or removed at any time.
The Cactus project (Allen et al. 2001) focuses on dynamic resource allocation in
grids using a central resource directory to discover and assign available resources,
which causes performance problems in large-scale grids.

Recent research in Grid computing has recognized the value of decentralized
resource allocation mechanisms and has investigated a number of approaches based
on economic market models for trading resources and services for the regulation
of supply and demand inspired by principles of real stock markets (Buyya et al.
2002; Clearwater 1996). These approaches use different pricing strategies such as a
commodity market model, posted price models or different auction methods. Users
try to purchase resources that are required to run the job cheaply, while providers
try to make as much profit as possible and operate at full capacity. Buyya et al.
(2002) presented a market based economy framework for resource allocation based
on the regulation of supply and demand (Buyya 2002) for the Grid Toolkit Nimrod-
G (Buyya et al. 2000), having a main focus on job deadlines and budget constraints.

268 T. Schlegel and R. Kowalczyk

Even if the decision making process in those approaches is distributed, these kind
of approaches use a central facilitator during the resource allocation process (Buyya
et al. 2000). Another mainly unsolved problem of these approaches is the fine-tuning
of price-, time- and budget constraints to enable an efficient resource allocation in
large systems (Wolski et al. 2001).

Some approaches for resource allocation in grids, like the Agent based Resource
Allocation Model (ARAM) are designed to schedule jobs using agent technology.
Agents located on each resource cooperate in order to allocate jobs for an efficient
execution. Main drawback of this model is the extensive use of messages for pe-
riodic monitoring and information exchange within the hierarchical structure. Sub-
tasks of a job migrate through the network until they find an available resource that
meets the price constraints. This migration itinerary is determined by the resource
connection topology (Manvi et al. 2005).

There has been considerable work on decentralized resource allocation tech-
niques using game theorya published over recent years. Most of them are formu-
lated as repetitive games in an idealistic and simplified environment (Arthur 1994;
Challet and Zhang 1997; Galstyan et al. 2003; Grosu et al. 2002). A self-organizing
resource allocation approach for sensor networks based on reinforcement learning
techniques is presented in Mainland et al. (2005) with the focus on optimizing en-
ergy consumption for the network nodes.

The problem of network communication cost optimization has been addressed
in isolation by other research groups. Empirical evaluations showed which commu-
nication paradigm performed better regarding network load and processing time in
various application scenarios (Outtagarts et al. 1999; Puliafito et al. 2001; Samaras
et al. 1999). Depending on the sizes of the exchanged documents, the code sizes,
and the network environment it can be decided whether the mobile code paradigm
or the remote communication paradigm performs better. Most current solutions of
the migration decision problem are based on mathematical models of the applica-
tion’s network load using parameter estimations (number of communication steps,
average document sizes, etc.) and suggest a decision at design time. We believe that
this type of solution is not sufficient in an open and distributed application scenario.
It will be beneficial to address the migration decision problem at run-time, because
only then will all influencing parameters (network throughput, latency, document
and code sizes) actually be known or can best be approximated.

To illustrate this problem, we use the simple model presented in Braun and
Rossak (2005) (compare Fig. 10.1). In the case of remote communication, a re-
quest message of size Breq is sent to a remote service, which answers with a result
message of size Bres . The total network load is BRC = Breq + Bres . In the case
of migration, nomadic service S1, which contains code of size BC and state infor-
mation of size BS + Breq migrates to the remote server followed by local commu-
nication with service S2. Service S1 can process the result and extract only nec-
essary information or compress the reply message by a factor of σ (0 ≤ σ < 1),
so that only (1 − σ) · Bres must be carried back to the home platform. The ser-
vice does not carry its code or the request message back, because the code is al-
ready available at the home server and the request message is obsolete. However,

10 Self-Organizing Nomadic Services in Grids 269

Fig. 10.2 Evaluation of the
model for both
communication paradigms

new state information must be carried back which accumulates this network load to
BMC = BC + 2 · BS + Breq + (1 − σ) · Bres . An evaluation of the model using an
artificial parameter setting shows that there is a break-even point B∗, at which the
migration overhead produced by the code and state relocation is exactly compen-
sated for by the amount of data reduction (compare Fig. 10.2).

Picco (1998) advocated estimating all influencing application parameters at de-
sign time then deciding between the two paradigms. This approach is suitable for
simple scenarios in which all the parameters are known to have constant size. Also in
case that the size of parameters (e.g. the result size) is randomly Poisson distributed
with parameter λ, and B∗ � λ or B∗ � λ which indicates that the probability for a
wrong decision is very low, a static decision is sufficient. In more complicated and
dynamic situations a static decision on communication paradigms is error-prone.

Strasser and Schwehm (1997) have improved this static analysis by providing an
algorithm to determine the optimal itinerary for a mobile agent for n servers by al-
lowing a combination of both paradigms. In their approach, the agent only migrates
to a subset of all servers, whereas others are contacted using remote communica-
tion under the assumption of full knowledge. This approach was further improved
by collecting all necessary information about network quality using distance maps
before planning the optimal migration itinerary (Theilmann and Rothermel 2000),
which increased the network load of the system significantly due to active monitor-
ing data.

10.3 Communication Cost Optimization and Resource
Allocation

The basic mechanism of our solution is inspired by techniques from adaptive and
complex systems using inductive reasoning and bounded rationality principles.
A complex adaptive system is “a dynamic network of many agents acting in parallel,
constantly acting and reacting to what the other agents are doing. The control of a

270 T. Schlegel and R. Kowalczyk

system tends to be highly dispersed and decentralized. If there is to be any coherent
behavior in the system, it has to arise from competition and cooperation among the
agents themselves. The overall behavior of the system is the result of a huge number
of decisions made every moment by many individual agents” (Waldrop 1992).

10.3.1 The El Farol Bar Problem

Arthur (1994) introduced an ill-defined decision problem, called El Farol bar prob-
lem, which assumes and models inductive reasoning. It is probably one of the most
studied examples of complex adaptive systems. In the bar problem, 100 people de-
cide independently each week whether to go to a bar on a certain night. Space is
limited and people can enjoy the evening only if the bar is not too crowded, defined
as less than 60 people in attendance. There is no way to be sure of the number of
people in advance. All people have the same preferences and a person goes if he
or she thinks they will enjoy themselves. There is no communication allowed be-
tween patrons and choices are unaffected by their individual experiences. The only
information available to all people is the attendance figure for the past weeks. This
problem has no perfect, logical and rational solution. If all believe that few people
will go, all will go and if all believe that most people will go, nobody attends the bar
invalidating the beliefs in both situations. The only way it can work is if people’s
expectations differ.

The solution is derived from the human way of deciding ill-defined problems.
Humans tend to keep in mind many hypotheses and act on the most plausible one.
Therefore, each agent keeps track of the performance of a private collection of its
belief models (predictors) and selects the one that is currently most promising for
decision making. At the beginning of the simulation, each person is assigned a num-
ber of predictors randomly from some predefined set. One of these predictors, called
the active predictor is used to predict the next week’s attendance, which is the basis
for the decision to go or stay at home. After all agents made the allocation decision,
the accuracy of every predictor is calculated. The predictor with the best accuracy
for the last n weeks becomes the new active predictor for each person. For initializa-
tion, reasonable accuracies and past attendance information are chosen. The result
of Arthur’s simulation is that the attendance figures show a fast stabilizing number
of people attending at around the optimal number of 60. Challet et al. (2004) have
analyzed this problem and presented a rigorous mathematical model.

Distributed resource allocation in an open and dynamic environment is a similar
problem that cannot assume or guarantee a perfect rationality. Services cannot rely
on other services they are dealing with and they are forced to guess their behavior.
Methods that are needed in such a scenario are not deductive, but inductive.

10 Self-Organizing Nomadic Services in Grids 271

10.3.2 Adaptation to a Service-Oriented Computing Scenario

Assumptions and constraints of the service grid scenario cannot be directly mapped
to the model presented by Arthur (1994). Our assumptions differ as follows:

(i) We do not allow free information dissemination about past server utilization.
Nomadic services learn from their own past experience, which means that each
service only has information about server utilization for the times when it was
at located at the server. The service has no information about resource utiliza-
tion at other times; in particular the service cannot validate allocation decisions
not to go because it has no information for assessment.

(ii) We neither know the number of available system resources and its capacities
nor the number of services competing for resources. This means the system
must adapt to situations with different numbers of available resources and no-
madic services.

(iii) We do not assume that all services make synchronized decisions at the same
time.

(iv) We do not have any information on which to base the initialization of the his-
tory at the beginning of the life-cycles.

10.3.3 Detection of Service Providers in a Service-Oriented
Environment

Services have to know the locations of other services that are needed to accom-
plish their goals. We assume that each nomadic service has a list with locations of
services that can be used. The problem of service discovery is a separate one and
out of the scope of our research. However, there are different ways in which ser-
vices can be retrieved, such as a central service directory (yellow page service) or
more sophisticated distributed solutions dependent on the environment and require-
ments. Services can exchange such location information about other services with
their communication partners or browse the service directory when they migrate to
another server.

10.3.4 Model

We model a distributed service grid environment as a set of servers L = {l1, . . . , ln}
and nomadic services S = {s1, . . . , sn}, each located on its home server hs(si) at the
beginning of its life-cycle. The map L : (S, t) → L defines the location of each ser-
vice at time t in general. Services bound to large databases or otherwise immobile
legacy systems are called stationary and denoted Ss . Each service has to process a
list of communication steps CS = 〈ci | i : 1. . .p〉 as part of its task. A communi-
cation step ci := 〈sa, sb,mk,mj 〉i defines that a request message mk is sent from

272 T. Schlegel and R. Kowalczyk

service sa (source) to service sb (destination), which responds with a reply mes-
sage mj . Each message m can be seen as an arbitrary sequence of bytes of length
Bm(mk). The network cost for remote communication comprised of a request mes-
sage and a reply message is calculated using Eq. (10.1). The cost for the mobile
code paradigm with the migration of two nomadic services sa and sb to a remote
server is calculated by Eq. (10.2). Both services have to carry the codes of size BC .
The requesting service additionally has to carry the request message mi , and the
results of size (1 − σ) · Bm(mj) on the way back. If a service migrates to the server
of its communication partner, the code size of the not migrating service has to be
disregarded.

BRC(ci) =
{

0 if L(sa) = L(sb)

Bm(mk) + Bm(mj) otherwise
(10.1)

BMC(ci) =
{

0 if L(sa) = L(sb)

BC(sa) + Bm(mk) + BC(sb) + (1 − σ)Bm(mj) otherwise
(10.2)

Each server li has a capacity C(li , t) which may vary over time. Each nomadic
service consumes U(si, t) server resource for its execution independent of the exe-
cuting server. The resource load U of server li at time t is calculated using Eq. (10.3).

U(li , t) =
n∑

m=1

U(sm, t) | L(sm, t) = li (10.3)

10.3.5 Algorithm Description

This section describes our self-organizing, distributed resource allocation algorithm
for nomadic services that also optimizes the network communication costs of the
system. The algorithm is implemented in each nomadic service and is based on
beliefs about their environment. The beliefs are modeled using forecasts of environ-
ment parameters based on individually observed data. A visualization of the deci-
sion making of the algorithm is illustrated in Fig. 10.3. The forecast of the neces-
sary environmental parameters requires short-term histories H of these parameters
(Eq. (10.4)). Each history item hi = (xi, yi) is a pair comprising the date x and the
value y. The most recent history value is h0.

Hm(l) = (h0, . . . , hi) | 0 ≤ i < m (10.4)

All nomadic services use a set of different predictors for forecasting each param-
eter. Each predictor in such a predictor set is a function p : H → N+ ∪ {0} from the
history space to a positive integer that is the predicted value. An example predictor
for the prediction of the resource utilization is, for instance, the average resource
utilization that the nomadic server observed over the last 5 executions at this server.

10 Self-Organizing Nomadic Services in Grids 273

Fig. 10.3 Graphical visualization of the distributed, self-organizing algorithm of a service

All predictors of a set P := {pi | p ∈ P ∧ i = 1. . .k} are randomly chosen from
some predefined set of predictors. Each set has one active predictor pA ∈ P that
makes the next step’s prediction. After each decision, all predictors in the set are
evaluated based on their predicted values and a new active predictor is chosen. The
decision nomadic service’s making process and the selection mechanism of the new
active predictors will be described in more detail in the following section.

10.3.6 Communication Costs

The optimization of network communication costs considers only predicted costs
for the next communication act. Before the next communication act ci+1, a nomadic
service decides which communication paradigm produces lower network load. This
decision requires predictions for two unknown parameters—the reply message size
and the message selectivity (Fig. 10.3: Communication cost optimization). The ac-
tive predictors in the set for these parameters will predict the sizes based on the

274 T. Schlegel and R. Kowalczyk

current historical information. Based on the predictions, the nomadic service cal-
culates expected network load for both paradigms with Eq. (10.1) and Eq. (10.2)
and selects the better communication paradigm. After the communication act, all
predictors of both sets are evaluated based on the accuracies of the predictions, new
active predictors for both sets are chosen and history information of both parameters
are updated.

The predictor with the smallest accumulated absolute error R over the last l pre-
dictions of each set becomes the new active predictor. The absolute error of a pre-
diction is calculated using Eq. (10.5).

R =
l−1∑

i=0

δi; δ
(
pC

)= |y − ỹ| (10.5)

where y is an actual value, and ỹ is the predicted value.
In our first experiments we were keen to learn about the quality of very simple

predictors. Actually, it is not as important to achieve a precise prediction of the en-
vironment parameters as to make the correct decision based on the predicted values.

All experiments for predictions of environment parameters for the communica-
tion cost optimization use the following types of predictors:

• Same value as nth last communication act: pC(n) = yn.
• Mean value of last n communication acts: pA(n) = 1

n
·∑n−1

i=0 yi .
• Linear regression over the last n communication acts: pL(n, t) = a · t + b, where

a, b are calculated using linear regression with least squares fitting of the last n

history values against their observation date.
• Gaussian distributed random value of last n communication acts:

pG(n) = N
(
μ,σ 2); μ = 1

n
·

n∑

i=0

yi;σ 2 = 1

n
·

n∑

i=0

(yi − μ)2

The technique of using a set of predictors provides good results as the best predictor
will be chosen automatically while the less accurate predictors are not considered
in the decision process. Specialized predictors can easily be implemented to recog-
nize application specific patterns to increase the accuracy and improve the decision
making process. To reduce the computational overhead required for evaluation of
all predictors, a user-defined threshold d can be nominated, which only evaluates
the active predictor’s performance until the relative prediction error ε exceeds d .

10.3.7 Self-Organizing Resource Allocation

Before a nomadic service considers a migration to a remote server, it evaluates if the
mobile code paradigm is beneficial in terms of network communication costs. Only
if the mobile code paradigm is beneficial or the network communication costs are

10 Self-Organizing Nomadic Services in Grids 275

not considered, migration and allocation of resource at other servers is an option.
In this section, we focus on the resource allocation algorithm and assume that a
nomadic service is willing to allocate resources at a remote server.

The basic prediction mechanism for the distributed resource allocation is sim-
ilar to the communication cost optimization mechanism. The main difference lies
in the selection of the active predictor, which is non-deterministic in the algorithm
for the resource allocation. This is to prevent the invalidation of the nomadic ser-
vices beliefs, which can occur because the allocation decisions of nomadic services
competing for a resource are not independent of each other. Competing nomadic
services must have different beliefs of the future resource utilization to prevent this
previously described invalidation of beliefs and allow a successful adaptation of
their strategies to changing environments. A probability distribution over all predic-
tors in a set is created based on the predictor efficiency values E(pR) over the last l

predictions. The selection of the new active predictor is implemented as a roulette-
wheel selection according to this distribution (Fig. 10.4). The predictor efficiency is
a measure for the correctness of the decisions that a nomadic service made based
on the predictions. The probability of selecting a predictor as new active predictor
is zero if the predictor cannot predict a value based on the current historical infor-
mation. This happens in the case that not enough historical information is available.
Equation (10.6) is used to calculate the predictor efficiency of a resource utilization
predictor, which is the sum of the predictor efficiency ratings of the last l predic-
tions. A positive efficiency rating is given if the prediction led to a correct decision,
a negative rating for each prediction that led to a wrong decision and a neutral rat-
ing in the case that the decision cannot be assessed due to a lack of information.
The prediction accuracy is not considered for the resource allocation as this will not
improve the resource allocation decisions. Imagine a server with a capacity of 100
resource units and 90 of them are occupied. Suppose a nomadic service with a re-
source requirement of 2 units for its execution predicts 103 occupied resource units.
Such a prediction indicates over-utilization and an allocation of resources at this
server would be dismissed. This is worse than a prediction of 15 occupied resource
units which is less accurate but leads to a correct allocation decision. Therefore, the
efficiency of predictors is used for the selection of the active predictor.

E
(
pR

)=
l−1∑

i=0

ei (10.6)

where

ei =
⎧
⎨

⎩

1 if ith decision was correct
0 if ith decision had unknown outcome
−1 if ith decision was wrong

Figure 10.4 shows an example of a probability distribution of a set of resource
utilization predictors, which was created using efficiency ratings. Although predic-
tor P 9 has the highest efficiency in the set, predictor P 5 was chosen as the active

276 T. Schlegel and R. Kowalczyk

Fig. 10.4 Example
probability distribution of a
predictor set

predictor. This non-deterministic selection mechanism enables the selection of dif-
ferent active predictors, which leads to different resource utilization predictions for
nomadic services even though the set of predictors is the same.

For faster adaptation of the system to a changing environment (different resource
capacities, number of servers or nomadic services) and to reduce unnecessary data
overhead, only the last l predictions are considered for the calculation of efficiency.

Each nomadic service uses 10 simple predictors per set. All predictors are chosen
randomly from a pool of 34 predictors in total. These predictors are chosen from a
predefined set which includes all predictor types that are used for the communication
cost prediction with different cycles or window sizes, as well as the following two
predictors:

• n-frequency distribution predictor: pF (n) uses a random value from the fre-
quency distribution of the n last history values

• n-mirror predictor: pF (n) = 2 · H − yi uses the mirror image around the mean
value of all history values of the nth last history value.

There is no resource utilization information about other servers available at the be-
ginning of the simulation. Therefore, the algorithm has an initialization phase in
which the resource utilization information about other servers is collected. A no-
madic service migrates randomly to one server and allocates resources. If a nomadic
service never migrates to the server, the resource utilization prediction mechanism
and especially the self-organization would never start working due to a lack of his-
torical information. If resource utilization predictions are available, a nomadic ser-
vice will select a server with expected free resources or chooses remote communi-
cation with the partner from its current location. The resource utilization prediction
can only be evaluated if the nomadic service migrates to the servers and has the ac-
tual resource utilization information. In the case of remote communication, a major-
ity voting of all predictors is used for the evaluation of the all predictors. In addition,
old historical information of all servers is deleted using a decay rate dependent from
the age of the data. The decay rate increases linearly with the age of the historical
data. Recent history information has zero probability below the lower bound and

10 Self-Organizing Nomadic Services in Grids 277

Fig. 10.5 Evaporation of old
historical information

probability equal to one for the information older than the upper bound (Fig. 10.5).
The decay of old historical information is necessary to allow an adaptation to a dy-
namic environment. A nomadic service that predicts a server to be overloaded may
predict overload in the future because it uses the same historical information, which
can only be prevented by updating historical information. Predictions are only as
good as the provided historic information. Very old historical information may not
allow a reflection of the current system state and is removed.

In most cases, a nomadic service can choose from a set of servers that it could
migrate to. In a service oriented environment one service is usually provided by
a number of different service providers. A nomadic service can choose between
those providers based on their available resources. The service predicts the resource
utilization of all potential servers and selects one server from the set of servers
that are predicted to have free resources. The selection depends on the predictor
set efficiency that calculated using Eq. (10.7). It considers the amount of historical
information about the server, the average age of the historical information and the
efficiency of the active predictor. These values are transformed into a probability
distribution and one server is selected using a roulette wheel selection algorithm.

C(P) = w1 · size(H)

m
+ w2 · Age(H)

max(Age(H))
+ w3 · C(p)

max(C(p))
(10.7)

where:

wi weights; wi ≥ 0 ∧ ∑
wi = 1;

size(H) the number of data in history;
m maximal number of history values;
Age(H) average age of historical data.

10.4 Performance Evaluation

The performance of the proposed algorithm was evaluated in various simulation
experiments. A number of results presented in the next section show the behavior
of the distributed self-organizing resource allocation in different simulated environ-
mental conditions with and without the optimization of communication costs of the
system. All experiments were conducted in a special test-bed developed in the Java
programming language, independent from concrete grid toolkits. The simulation
environment enabled different configurations for all model parameters that influ-
ence communication costs and resource allocation such as the number of servers,

278 T. Schlegel and R. Kowalczyk

resource capacities of the servers, the number of static and nomadic services, the
number of communications steps, etc. A discrete event simulation model was used
to trigger all events that change the state of the system. The conducted experiments
were divided into sections that focus on different aspects of our model and its be-
havior in different environmental situations.

The first set of experiments show the performance of the communication cost
optimization algorithm. It focused on the prediction accuracy of the unknown pa-
rameters that were necessary to select the communication paradigm that produces
less network traffic. Network protocol overhead for TCP or IP was not considered.

The other experiments show the behavior of the resource allocation algorithm
in isolation as well as in combination of the communication cost optimization. We
demonstrate the effective self-organization of nomadic services when they compete
for a single server with constant and limited resources. Experiments in a multi-server
environment with different constant resource capacities follow. Experiments in a
dynamic environment report on the adaptability of the model to changing resources
capacities and varying numbers of nomadic services.

The presented results show the behavior for one representative experiment and
also mean values and standard derivation from 100 repeated experiments for the
average case. The resource utilization of each server was calculated with Eq. (10.3).
Even if resources were limited, we did not limit the number of services that could
migrate to a server in our simulation experiments. Therefore, in some cases the
resource utilization was higher than the actual server capacity. This can be easily
avoided by queuing incoming services or specify the server capacity slightly below
the actual capacity to avoid this situation.

The following attributes were used to assess the performance of our approach:

• Server resource load—The development of the resource utilization of all servers
was measured in resource units over the simulation time.

• Communication paradigm selection (system view)—the absolute number of ser-
vices using remote communication or migration to a remote server over the sim-
ulation time.

• Communication paradigm selection (service view)—the accumulated number of
migrations and remote communications per agent over the whole experiment.

The following parameters influenced the simulation experiments model and were
used for the performance assessment:

• Number of nomadic services—Experiments have been conducted with different
number of static and nomadic services between 100 and 2000.

• Resource consumption—Nomadic services consumed resources during execution
at a server. To measure server resource utilization, we assigned a value for the
resource consumption during execution to every nomadic service. This value cor-
responds to real world metrics like memory or processor cycles. All experiments
used variable values for the resource consumption that were assigned from a spec-
ified interval before each execution.

• Server—Servers were resource providers and accommodated services. Nomadic
services could migrate there and allocate resources for a limited amount of time.

10 Self-Organizing Nomadic Services in Grids 279

Fig. 10.6 Prediction of a variable reply message size

All servers host a static service which was the communication partner of all no-
madic services. The resource consumptions of these static services were not con-
sidered as they did not influence the resource allocation itself. The home servers
of nomadic services were also not incorporated into the resource allocation pro-
cess.

• Execution time—The execution time that was needed for the execution of the
nomadic service, independent from the execution platform.

• Time between executions—The amount of time that lied between two executions
of a nomadic service. The default value was zero, which means that a nomadic
service restarts itself immediately after it has finished execution. The default value
was used in most experiments and had a major influence on the age and amount
of the historical data about servers.

10.5 Simulation Results

10.5.1 Communication Cost

This section reports on results of the communication costs optimization algorithm.
The prediction technique for the two unknown environment parameters performed
well especially in a dynamic environment as we used a set of predictors instead
of only one. In fact, it could keep pace with every static analytical approach. Fig-
ure 10.6 shows the development of the reply message size that varies over time and
the corresponding predicted values. The reply message was generated by a Gaus-
sian distribution with increasing mean μ over the first 150 time units, beginning

280 T. Schlegel and R. Kowalczyk

Fig. 10.7 Average absolute and relative error of the reply message size prediction

with 15 kbyte and later dropping. The variance σ 2 of the Gaussian distribution was
kept constant at 2450 byte over the whole experiment. We were keen to learn about
the quality of simple predictors. All services had a set of 15 randomly assigned pre-
dictors. We observed the most predictions were made by mean and (1,2)-cycle pre-
dictors as they provided the most accurate results for this distribution. Figure 10.7
shows average relative and absolute errors of the predictions. It was expected that
the error was close to the standard derivation of the distribution, which can be seen
in Fig. 10.7. Application scenarios with communication costs that are not close to
the break-even point of both paradigms lead to correct decisions using such sim-
ple predictors. However, the quality of the predictors influences the prediction and
some application scenarios require specialized predictors which are easy to integrate
in the corresponding nomadic services. The prediction mechanism leads to an effec-
tive optimization of the network communication costs due to the automatic selection
of the beneficial communication paradigm.

10.5.2 Resource Allocation for a Single Server

The following experiments focus on the decentralized, self-organizing resource al-
location algorithm. All nomadic services opt for a migration to the remote server
and allocate its resources if they expected free resources to be available. Communi-
cation costs were not considered in these experiments. The first experiment shows
results in a single server environment with a limited constant resource capacity of
C(l1) = 1000 resource units. The number of nomadic services was 100 with one
static service ss

1 located on server l1. The home servers of the nomadic services

10 Self-Organizing Nomadic Services in Grids 281

Fig. 10.8 Communication
model with multiple nomadic
agents and a single remote
server with limited capacity

Fig. 10.9 Resource load development of a single server over 500 time units from one representa-
tive experiment

were not considered. Figure 10.8 illustrates the experimental setup of the simula-
tion environment. The resource consumptions U(si, t) of all nomadic services were
randomly assigned from the interval [5,50] resource units. Execution time of all
nomadic services was 1 time unit. Figures 10.9 and 10.10 illustrate the develop-
ment of the server utilization for one representative experiment and the average
resource load development in all experiments, respectively. The provided capacity
of the server was utilized to a satisfying level. Not many resources were wasted and
only a few situations of overestimation occurred. The available resources in this ex-
periment were very limited. As indicated in Fig. 10.11, only approximately 30 out of
100 nomadic services could be executed simultaneously on the server. The services
could self-organize well even if resources were very limited. Figure 10.13 shows
the selection of the server from the nomadic services’ view. The self-organization

282 T. Schlegel and R. Kowalczyk

Fig. 10.10 Average resource load development (mean and standard derivation) over 500 time units

Fig. 10.11 Development of migration vs. communication of the nomadic services over time in
one experiment

was fair as there was no group of services that always migrate to the server while
others had no chance as to use remote communication due to no free resources. The
utilization chart in Fig. 10.10 over 100 repetitions of this experiment shows that the
average server utilization was close to the optimal value of 100 per cent with only
small variance. The average numbers of migrations versus remote communications
is shown in Fig. 10.12 and the accumulated numbers of migration and remote com-
munication are shown in Fig. 10.13. Figure 10.14 shows the active predictor usage

10 Self-Organizing Nomadic Services in Grids 283

Fig. 10.12 Average development of migration vs. communicating nomadic services over time and
100 experiments

Fig. 10.13 Accumulated number of migration and remote communication per agent over 500 time
units

statistics, which show how often a predictor was selected as the active predictor. It is
obvious to see the predictors based on mean values were favored while others types
of predictors were not considered (mirror predictors) for decision making.

We also conducted experiments with different server capacities ranging from 500
resource units to 5000 resource units. All experiments showed that this simple case
with one server can be handled very well if the provided resource capacity allowed

284 T. Schlegel and R. Kowalczyk

Fig. 10.14 Active predictor usage statistics accumulated over all nomadic services for 500 time
units

the simultaneous execution of 20 per cent of nomadic services or more at the server
in such a stable environment. Below this threshold, not enough up-to-date histor-
ical information was available which led to frequent random migrations and over
utilization of the server resources. Decreasing the decay rate of historical data im-
proved this situation in the stable environment but led to problems in more dynamic
scenarios.

10.5.3 Distributed Resource Allocation for Multiple Servers

For the experiments in a multiple server environment we used a similar setup as
before with the difference that the static service ss

1 was provided by six different
service providers. All nomadic services knew those service providers. The only dif-
ference between all providers was a different resource capacity. Figure 10.15 illus-
trates the experimental setup used for the following experiments. Communication
costs were not considered in these experiments.

The first set of experiments reports on results in a stable multiple server scenario
with constant resource capacities C(li) of 3500, 1350, 2500, 2500, 1500 and 10000
resource units respectively and a number of 800 nomadic services. The resource
consumptions U(si, t) for all nomadic services were randomly assigned from the
interval of [5,45] resource units. The execution time was assigned from the inter-
val [1,10] time units. After completing the execution, all nomadic services were
restarted immediately. The total capacity of all servers was slightly higher than
the average amount of simultaneously requested resources by all nomadic services.
The development of the average resource utilization of all six servers is shown in

10 Self-Organizing Nomadic Services in Grids 285

Fig. 10.15 Communication model in a multiple server environment

Fig. 10.16. After around 100 time units all nomadic services self-organized their
resource allocation requests in this environment and the resource utilization of each
server was stable with only slight variations. It can be observed that servers with low
capacity operated at full capacity while other servers had free resources available.
This happened because the objective for nomadic services was a resource allocation
at a not overloaded server, which was achieved and not to balance the load of all
servers equally. Figure 10.17 shows the number of services using the mobile code
paradigm versus remote communication. Almost all nomadic services migrated to
one of the servers as enough resources were provided by all service providers. In av-
erage, nomadic services made 160 resource allocation decisions over the duration of
600 time units during the experiment. Interesting result of the self-organization was
the migration frequency to each server. It can be observed that nomadic services
migrated to each server according to their capacity as shown in Fig. 10.18. Some
might expect that services had “favorite” servers that were used most as they were
best predictable based on the most up-to-date historical information. However, no-
madic services migrated to all servers according to the resource capacity distribution
of the servers, which is represented in the layered structure shown in Fig. 10.18.

10.5.4 Distributed Resource Allocation in a Dynamic Server
Environment

This experiment demonstrates the adaptability of our resource allocation algorithm
to varying server capacities in a multiple server environment. The servers had dif-
ferent initial resource capacities of 2500, 1500, 2500, 2500, 3000 and 10000 re-
source units respectively. After an initialization period of 150 time units, the ca-
pacities of 4 servers began to change over time. Server 2 (Fig. 10.19(b)) and server

286 T. Schlegel and R. Kowalczyk

Fig. 10.16 Average resource load development of six servers over 600 time units (mean values
and standard derivation)

6 (Fig. 10.19(f)) changed their capacities periodically over time. The capacities of
server 3 and server 5 remained constant. Server 1 decreased its available amount of
resource to 2000 resource units (Fig. 10.19(a)), server 4 (Fig. 10.19(d)) increased
the initial resource capacity to 4000 resource units. A number of 2000 nomadic
services competed for the available resources in this experiment. Values for the no-
madic services’ resource consumptions were unchanged in the interval [5,45] units.
The execution time of each service was in the interval of [1,10] time units. Nomadic
services had a break between two executions randomly assigned from the interval
of [1,15] time units.

It can be seen that this dynamic environment was more challenging for our dis-
tributed resource allocation algorithm. The resource allocation mechanism required
a constant adaptation to new environmental conditions. Figure 10.19 also shows that
the initial adaptation period for all servers increased compared to the previous exper-

10 Self-Organizing Nomadic Services in Grids 287

Fig. 10.17 Communication paradigm selection (system view)

Fig. 10.18 Communication paradigm selection (service view)

iment as this amount of time was required for collecting historical information about
other resources. After around 200 time units, almost all nomadic services adapted to
the multiple-server environment and utilize the available server resources optimal.
Figure 10.20 depicts the number of active services, showing that on average only
around 900 of 2000 nomadic services were simultaneously active. It also shows that
nomadic services migrated to other servers when their amount of available resources
increased. However, some nomadic services used remote communication even free
resources were available. The resource load development in Fig. 10.19 shows that

288 T. Schlegel and R. Kowalczyk

Fig. 10.19 Resource load development in a dynamic environment

the adaptation to different capacities was good and very fast. The adaptation was
excellent especially in cases of a periodic and smooth alteration. We ran experi-
ments with sudden changes in the server capacity, which showed worse adaptation
as this sudden change can be compared to the initialization period in a new environ-
ment. The most difficult case for nomadic services is the exploration of additional
resources of already visited servers. This is because they only learn about additional
resources when they visit the server the next time. Therefore, each nomadic server
should decide between exploration of new resources by random migration to such
servers and an exploitation of reliable servers with free resources.

10 Self-Organizing Nomadic Services in Grids 289

Fig. 10.20 Communication paradigm selection (system view)

10.5.5 Resource Allocation with Communication Cost
Optimization

The last experiment reports on results of our decentralized self-organizing resource
allocation algorithm in combination with the optimization of the communication
costs. The experiment was conducted with two servers of constant capacity of 1000
units and 300 nomadic services. The initialization period was different to resource
allocation experiments before as all services used remote communication as the de-
fault communication strategy until the communication cost were predictable. The
execution time and time between two executions was randomly assigned from the
interval [1,15] units, the resource consumption was between [5,45] units. The com-
munication cost parameters were randomly initialized as Gaussian distributed ran-
dom values with different values for μ and σ 2.

Both servers were not fully occupied as the number of services that prefer mobile
code was below the provided capacities. Figure 10.21 shows the average number
of remote communications versus migrations per services. It can be observed that
some nomadic services used remote communication in most cases as this paradigm
was the best trade-off between the network load and available server resources. The
number of migrations was equally distributed between both servers.

Figure 10.22 shows the comparison between selecting the communication
paradigm for all nomadic services and our adaptive strategy. Choosing either re-
mote communication or mobile code was not the best solution as expected. Even
if the difference was small, applying our adaptive strategy could reduce the net-
work load. A scenario with a bigger difference between both paradigms would be
more beneficial regarding the network traffic reduction with our proposed adaptive
strategy.

290 T. Schlegel and R. Kowalczyk

Fig. 10.21 Communication paradigm selection (service perspective)

Fig. 10.22 Comparison
between communication
paradigms

10.6 Conclusions

This chapter described a distributed, self-organizing resource allocation mechanism
for a service grid environment in combination with network communication costs
optimization. Nomadic services act purely on local information that is learnt from
previous communication acts and resource allocations at remote servers. In order to
optimize the communication costs, the communication paradigm that is expected to
produce less network traffic is used for the next communication act. If the mobile
code paradigm is beneficial in term of the network load, the nomadic services bal-
ance the available resource capacities by choosing the server that has the most likely
free resources available. The prediction mechanism stores short-term histories of en-
vironment parameters and forecast values for the decision making in the next step.
This mechanism was inspired by inductive reasoning and bounded rationality princi-
ples. All control is distributed among nomadic services in the system. No additional

10 Self-Organizing Nomadic Services in Grids 291

control mechanism or management layer is required. The resource allocation is a
purely emergent effect created by the effective competition of nomadic services for
the system resources. We demonstrated in various simulation experiments that the
proposed system can adapt to changes in the environment by adjusting the services’
behavior at run-time.

In our solution, nomadic services adapt the usage of different preassigned strate-
gies but they never change or update them. In biological self-organized systems,
interactions between individuals or the behavior of individuals may change slowly
over generations. In our system the services’ behaviors stay always the same. An
update of the nomadic services’ behaviors over their lifetime might be beneficial
and needs further investigation.

The proposed solution has no central or hierarchical structure and therefore no
classical scalability problems if more services and servers join the system. We dis-
covered problems of a different nature. The initialization period increases linear
with the number of potential servers for the allocation of resources in the case
that the total amount of provided resources is lower than the average amount of
requested resources. Imagine an environment with a large number of potential re-
source providers and all nomadic services can choose between all of them. In the
initialization period, services will randomly migrate to any of the available servers.
Because of a lack of resource capacity, nomadic services cannot find any server that
is not crowded and explore all other servers to gather more information. However,
they cannot find any if all nomadic services continue to migrate randomly. Before
all services find out that there are no free available resources, historical information
is already outdated. In fact, there is no way to gather resource utilization informa-
tion of many servers. Additionally, the decay rate for historical information must
be decreased manually in our current implementation to prevent the too frequently
random migration to the potential servers. Another straight forward solution is the
limitation of the number of potential servers for resource allocation.

The decay rate for old historical information is in our current implementation a
static predefined function. A dynamic environment requires up-to-date information
while a stable environment can be predicted with old historical data. Depending
on the environmental conditions and execution frequency of a nomadic service the
decay rate should be altered to improve for a better resource allocation performance.

We tried different types and different numbers of predictors per nomadic service
and learnt that there are no optimal set of predictors for the resource allocation. It
is important that services have a selection of different types of predictors that can
predict a variety of values above and below the resource capacity to prevent the
invalidation of their beliefs.

This kind of distributed resource allocation based on self-organization requires
many nomadic services with a numerous and repeated interactions. Interactions in
our algorithm are indirect when nomadic services compete for a resource at the same
time. Science Grids that usually run few computational very expensive tasks are not
suitable for this kind of self-organizing resource allocation algorithm.

292 T. Schlegel and R. Kowalczyk

References

Allen, G., Angulo, D., Foster, I., Lanfermann, G., Lui, C., Radke, T., Seidel, E., & Shalf, J. (2001).
The Cactus Worm: experiments with dynamic resource selection and allocation in a grid envi-
ronment. The International Journal of High Performance Computing Applications, 15(4), 345–
358.

Arthur, W. B. (1994). Inductive reasoning and bounded rationality. The American Economic Re-
view, 84(2), 406–411.

Braun, P., & Rossak, W. R. (2005). Mobile agents—basic concept, mobility models, and the Tracy
toolkit. San Francisco: Morgan Kaufmann.

Bruneo, D., Scarpa, M., Zaia, A., & Puliafito, A. (2003). Communication paradigms for mobile
grid users. In Proceedings of the 3rd IEEE/ACM international symposium on cluster computing
and the grid (CCGrid 2003), Tokyo, Japan (p. 669).

Buyya, R. (2002). Economic-based distributed resource management and scheduling for grid com-
puting. Melbourne: Monash University.

Buyya, R., Chapin, S., & DiNucci, D. (2000). Architectural models for resource management in
the grid. In Proceedings of the first international workshop on grid computing (pp. 18–35).
Bangalore, India. Berlin: Springer.

Buyya, R., Abramson, D., Giddy, J., & Stockinger, H. (2002). Economic models for resource man-
agement and scheduling in grid computing. Concurrency and Computation, 13–15(14), 1507–
1542 (Special Issue on Grid Computing Environments).

Challet, D., Marsili, M., & Ottino, G. (2004). Shedding light on El Farol. Physica. A, 332, 469–
482.

Challet, D., & Zhang, Y. C. (1997). Emergence of cooperation and organization in an evolutionary
game. Physica A, 407(246).

Clearwater, S. H. (1996). Market-based control. a paradigm for distributed resource allocation.
Singapore: World Scientific.

Fluess, C. (2005). Capacity planning of mobile agent systems designing efficient Intranet applica-
tions. PhD Thesis. Universiteat Duisburg-Essen (Germany).

Fontana, J. (2004). Service-oriented hype to meet hard realities. Network World.
Foster, I., & Kesselman, C. (1997). Globus: a metacomputing infrastructure toolkit. The Interna-

tional Journal of Supercomputer Applications, 11(2), 115–129.
Frey, J., Tannenbaum, T., Foster, I., Livny, M., & Tuecke, S. (2002). Condor-G: a computation

management agent for multi-institutional grids. Cluster Computing, 5(3), 237–246.
Galstyan, A., Kolar, S., & Lerman, K. (2003). Resource allocation games with changing resource

capacities. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, & M. Yokoo (Eds.), Proceedings
of the second international joint conference on autonomous agents and multi-agent systems,
2003, Melbourne, Australia, 14–18 July 2003 (pp. 145–152). New York: ACM Press.

Grosu, D., Chronopoulos, A. T., & Leung, M.-Y. (2002). Load balancing in distributed systems: an
approach using cooperative games. In Proceedings of the international parallel and distributed
processing symposium, Ft. Lauderdale, FL, USA (p. 196). Washington: IEEE.

Mainland, G., Parkes, D. C., & Welsh, M. (2005). Decentralized adaptive resource allocation for
sensor networks. In Proceedings of the 2nd USENIX symposium on network systems design and
implementation (NSDI ’05), Boston, MA.

Manvi, S. S., Birje, M. N., & Prasad, B. (2005). An agent-based resource allocation model for
computational grids. Multiagent and Grid Systems, 1(1), 17–27.

OASIS (2006). Software Oriented Architecture (SOA) reference model. Available at
http://www.oasis-open.org/committees/download.php/19361/soa-rm-cs.pdf. 15.09.2006.

Outtagarts, A., Kadoch, M., & Soulhi, S. (1999). Client-server and mobile agent: performances
comparative study in the management of MIBs. In Proceedings of the first international work-
shop on mobile agents for telecommunication applications (MATA 1999), Ottawa (Canada),
October 1999. Singapore: World Scientific.

Picco, G. P. (1998). Understanding, evaluating, formalizing, and exploiting code mobility. Politec-
nico di Torino (Italy).

http://www.oasis-open.org/committees/download.php/19361/soa-rm-cs.pdf

10 Self-Organizing Nomadic Services in Grids 293

Puliafito, A., Riccobene, S., & Scarpa, M. (2001). Which paradigm should I use? An analytical
comparison of the client-server, remote evaluation and mobile agent paradigms. Concurrency
and Computation, 13(1), 71–94.

Samaras, G., Dikaiakos, M. D., Spyrou, C., & Liverdos, A. (1999). Mobile agent platforms for
Web-databases: a qualitative and quantitative assessment. In Proceedings of the first interna-
tional symposium on agent systems and applications (ASA’99)/Third international symposium
on mobile agents (MA’99), Palm Springs (USA), October 1999. Washington: IEEE.

Strasser, M., & Schwehm, M. (1997). A performance model for mobile agent systems. In Proceed-
ings of the international conference on parallel and distributed processing techniques and ap-
plications (PDPTA’97), Las Vegas (USA), 30 June 1997 (pp. 1132–1140). Las Vegas: CSREA
Press.

Theilmann, W., & Rothermel, K. (2000). Dynamic distance maps of the Internet. In Proceedings of
the 2000 IEEE INFOCOM conference, Tel Aviv, Israel, March 2000 (pp. 275–284). Washington:
IEEE.

Vigna, G. (2004). Mobile agents: ten reasons for failure. In Proceedings of the 2004 IEEE in-
ternational conference on mobile data management (MDM’04) (pp. 298–299). Los Alamitos:
IEEE.

Waldrop, M. M. (1992). Complexity: the emerging science at the edge of order and chaos (1st ed.).
New York: Simon and Schuster.

Wolski, R., Plank, J. S., Brevik, J., & Bryan, T. (2001). Analyzing market-based resource allo-
cation strategies for the computational grid. The International Journal of High Performance
Computing Applications, 15, 258–281.

Wooldridge, M. (2002). An introduction to multi-agent systems. Chichester: Wiley.

Chapter 11
Immune System Support for Scheduling

Young Choon Lee and Albert Y. Zomaya

11.1 Introduction

Haven’t there been enough approaches to scheduling problems? In terms of variety
the answer might be ‘yes’. However, the answer is not as straightforward in terms
of effectiveness. In many scheduling problems, it is highly improbable, if not im-
possible, to obtain optimal schedules within a reasonable amount of time in spite
of adopting a wide range of approaches, including evolutionary computation (EC),
artificial neural networks (ANN), fuzzy systems (FS), simulated annealing (SA) and
Tabu search (TS).

In recent years attention has been drawn to another biologically-inspired comput-
ing paradigm called artificial immune systems (AIS). An AIS abstracts and models
the principles and processes of the biological immune system in order to effectively
tackle challenging problems in dynamic environments. Major AIS models include
negative selection, clonal selection, immune networks and more recently danger
theory (Garrett 2005). There are some similarities between these principles and pro-
cesses in the immune system and those found in other nature-inspired computing
approaches, EC and ANN in particular. However, there are also substantial differ-
ences. In particular, adaptive cloning and mutation processes make AIS distinctive
and useful.

Two fundamental immune activities are the recognition and the elimination of
foreign agents irrespective of their previous exposure to the host. One can easily no-
tice the inherent applicability of these robust and adaptive immune functionalities to
many hard problems, such as pattern recognition, anomaly and fault detection, and
machine learning. Although not as directly applicable, scheduling can also benefit

Y.C. Lee (B) · A.Y. Zomaya
School of Information Technologies, The University of Sydney, Sydney, NSW, Australia
e-mail: yclee@it.usyd.edu.au

A.Y. Zomaya
e-mail: zomaya@it.usyd.edu.au

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_11,
© Springer-Verlag London 2013

295

mailto:yclee@it.usyd.edu.au
mailto:zomaya@it.usyd.edu.au
http://dx.doi.org/10.1007/978-1-4471-5113-5_11

296 Y.C. Lee and A.Y. Zomaya

from AIS as illustrated in recent scheduling strategies (Swiecicka et al. 2006; King
et al. 2001; Costa et al. 2002; Coello Coello et al. 2003; Engin and Doyen 2004).

Due to the NP-hard nature of scheduling problems, in most cases heuristic ap-
proaches have been extensively studied. In general, these heuristics are susceptible
to dynamic environments. This motivates the search for more robust alternatives,
and some effective strategies have already been proposed in the literature. Since
environmental flux is ubiquitous in natural environments, many of the proposed ap-
proaches are inspired by nature; hence the name nature-inspired computing. AIS as
a new breed of this soft computing paradigm has been showing potential in schedul-
ing as well as many other application areas.

It is noted that the AIS community is actively striving to broaden the application
areas of AIS. In addition, an increasing amount of research attempting to better ex-
ploit the rich set of immune components, principles and processes have been made.
Some outcomes from theses attempts (Hajela and Yoo 1999; Dasgupta et al. 1999;
Krishna Kumar et al. 1995; Feng and Feng 2004) have been integrated with other
approaches, such as genetic algorithms (GA) and FS to further improve their per-
formance.

11.2 Scheduling Problem

Scheduling is the process of allocating a set of resources to tasks or jobs in or-
der to achieve certain performance objectives and satisfying certain constraints.
These scheduling objectives include minimizing schedule length (SL), also called
makespan, minimizing response time and maximizing resource utilization. Tempo-
ral and resource constraints are two primary conditions imposed on scheduling. For
example, there may be a specific execution order that the tasks must follow, and a
resource can be used for no greater than one task at a time.

Due to the importance of the scheduling problem it has been extensively stud-
ied in many disciplines, such as operations research, manufacturing, computer sci-
ence and economics. There are a number of different scheduling problems includ-
ing multiprocessor scheduling, job shop scheduling and flow shop scheduling. Al-
though these various scheduling problems are taken into consideration throughout
the chapter the main focus is on the multiprocessor scheduling problem. Hereafter,
scheduling denotes multiprocessor scheduling unless stated otherwise.

Broadly, scheduling problems are classified as static or dynamic (Grama et al.
2003). They are distinguished by the time at which the scheduling decisions are
made. With static scheduling, the necessary information, such as the processing
requirements of tasks and the processing capacities of resources are identified and
schedules are determined a priori. Conversely, scheduling information in a dynamic
scheduling scheme is obtained on-the-fly. Dynamic scheduling attempts to reduce
scheduling overheads as well as job completion time. Both of these scheduling mod-
els have been studied widely and intensively. The two most common scheduling
strategies are heuristics and sub-optimal approximation techniques, such as random-
ized search methods.

11 Immune System Support for Scheduling 297

11.2.1 Multiprocessor Scheduling

Ideally, it would be expected that the execution time of a job, consisting of a set of
tasks, in a computer system with m processors would be m times faster than a single
processor computer system. However, this is not quite true in practice, because gen-
erating an optimal schedule of the partitioned tasks is NP-hard; and the partitioned
tasks of a job may not be completely independent (Grama et al. 2003). There may be
additional challenges, such as resource and task heterogeneity; and the uncertainty
of resource availability and capability, which further complicate scheduling.

Scheduling approaches include list scheduling, approximation and random
guided search. Because the scheduling problem is NP-complete, algorithms that
generate near optimal schedules have a high time complexity. Conversely, for any
upper limit on time complexity, the quality of the schedule in general will also be
limited. Together, this suggests a trade-off between performance and time complex-
ity over the class of all scheduling problems.

11.2.2 Scheduling Heuristics

Heuristics are popular because in most cases they deliver good solutions in less
than polynomial time. A primary intention of heuristics is to find a solution as fast
as possible potentially at the cost of quality. Heuristics are characterized by their
essentially deterministic operation: the choice of solutions to a scheduling problem
is not stochastic.

List scheduling heuristics are the single dominant heuristic model. This is be-
cause empirically, list scheduling algorithms tend to produce competitive solutions
with lower time complexity compared to algorithms in the other categories (Kwok
and Ahmad 1998). The two phases commonly found in list scheduling are task pri-
oritization and processor selection. The tasks in the task graph are first assigned
priorities using some prioritization method and are kept in a list in decreasing order
of priorities. In the processor selection phase, each task is assigned to an appropriate
processor based on the processor selection policy of the scheduling algorithm. List
scheduling heuristics can be further improved by incorporating other techniques,
such as task insertion and task duplication. With the task insertion method a task is
allocated to the earliest start time slot of the processor as long as it does not violate
the precedence constraints. Here, the allocated slot might be between two already
assigned tasks. The rationale behind duplication based scheduling algorithms is to
increase the processor utilization and to decrease the communication overhead by
duplicating tasks on different processors.

An alternative scheduling heuristic is clustering, where each task is initially re-
garded as a cluster. If the merging of two clusters produces a shorter finish time
they are merged. This process repeats until no further merging can happen. After
the clustering is done the tasks in each cluster are assigned to the same processor in
order to reduce the communication overhead.

298 Y.C. Lee and A.Y. Zomaya

11.2.3 Randomized Search Techniques

Many available randomized search algorithms do not generate completely random
schedules—they utilize information from previous search paths—but they do make
decisions stochastically which shape the search paths. Randomized search tech-
niques can usually be interpreted as a biased random walk over the state space of all
possible schedules. Typical examples are GA, SA and TS. Despite their high time
complexity they are robust and adaptive, because they do not make assumptions
about the structure of the problem.

GAs are inspired by the process of biological evolution, where natural selection
operates on a population of phenotypes, resulting in differential reproduction that
transfers the essential structures of the most successful genotypes to the subsequent
generation. The main steps involved in a GA are: (1) An initial population is ran-
domly generated. (2) The entire population is evaluated by a fitness function and the
best solutions are selected based on their fitness values. (3) The selected solutions
are then mutated and/or recombined, which gives a new generation of individuals.
(4) Steps 2 and 3 are repeated until a termination condition (e.g., a fixed number
of generations has elapsed with no improvements on the best solution) has been
reached. The mutation operator is the source of the randomized search decisions.
The performance of a GA is sensitive to the value of its control parameters, such as
population size, crossover frequency and mutation frequency.

Like GAs, SA repeats a series of processes until the termination criteria is sat-
isfied. At each iteration step, the algorithm randomly chooses a neighbor of the
current state and always moves to the neighbor if it is an improvement on the value
of the current state. If it is worse than the current state, the algorithm may still move
to the new state with some probability. Initially this probability is high, allowing
free movement across the state space, but over time the probability diminishes ac-
cording to a “cooling” schedule. The performance of SA is affected significantly by
the neighbor selection method and the cooling schedule. Unlike GAs, SA has been
shown to converge to the optimal solution given infinite time.

TS searches neighbors of the current solution like SA at each step. Because it
prevents cycles in search paths, it may produce an approximation to the optimal
solution more efficiently. TS works by forbidding moves to states that have been
visited within a fixed number of previous steps.

11.3 The Immune System

The immune system is a biological defence mechanism designed to protect an
organism primarily from microbes, such as bacteria, archaea, fungi, protists and
viruses. An allied force of cells, tissues and organs battles these foreign invaders.
Although at first glance the immune system easily performs its core functions of
detecting and killing infections, it is made possible only by the careful coordina-
tion of various immune entities incorporated with immune principles and processes.

11 Immune System Support for Scheduling 299

Some examples of these immune functionalities are pattern recognition, memory,
learning, negative selection and clonal selection.

At the highest level, two defence lines (the innate and the adaptive immune sys-
tems) are embodied. The core forces of both systems are different types of white
blood cells.

11.3.1 Innate Immune System

The innate or non-specific immune system is the first line of defence that uniformly
combats invaders directly and immediately with chemical substances and specific
types of white blood cells. As its name implies this innate immunity already exists at
the time of birth and is triggered to respond against known invading entities. Typical
examples of the former chemical substances are skin, saliva, tears, sweat and gas-
tric acid. The four cell types in the latter are neutrophil granulocytes, macrophages,
eosinophil granulocytes and basophil granulocytes. In addition to physical barriers
and phagocytic cells mentioned above anti-microbial proteins, such as complement
proteins, acute phase proteins and interferons, play an important role to further pro-
tect the host.

While the adaptive immune system can respond to a diverse set of attackers (anti-
gens) the innate immune system is limited to recognize several common structures
present in many different microorganisms. These innately recognizable structures
are called pathogen-associated molecular patterns. Note that, since there are rela-
tively a small number of these patterns and they can be easily recognized by pattern-
recognition receptors of most body defence cells, a response against foreign invaders
is immediate.

11.3.2 Adaptive Immune System

During the lifetime of an organism it encounters numerous different antigens that
the innate immune system is not able handle effectively. The adaptive or specific
immune system comes into play in such a circumstance. Note that some of those
antigens might have been previously exposed to the organism. In case of a subse-
quent invasion of the same antigen the adaptive immunity initiates a swifter and
more effective response compared to the response to the first exposure of the in-
vader. This is enabled by the memory function of the adaptive immune system. In
addition to this memory property it functions with a series of sophisticated features,
such as differentiation and self-organization. The adaptive immune system is often
referred to simply as the immune system.

The two key components in the adaptive immune system are B lymphocytes
(B-cells) and T lymphocytes (T-cells) of white blood cells that are produced by stem
cells in the bone marrow. They are named after the lymphoid organs in which they

300 Y.C. Lee and A.Y. Zomaya

Fig. 11.1 The primary steps
involved in the adaptive
immune system

are produced and developed, namely in the Bone marrow and the Thymus. Each of
these two cell types plays a primary role in one of the two defence mechanisms (the
humoral immunity and the cellular immunity).

The humoral immunity is overseen by B-cells. More specifically, immunoglob-
ulins or antibodies produced by plasma cells matured from B-cells are ones that
actually take actions. The humoral immune response takes place against invading
microbes by antibody-antigen binding within a matter of minutes. As its name im-
plies, the humoral immunity responses are activated in the body liquids, e.g., blood
against bacteria and viruses.

T-cells, matured in the thymus as the primary mediator, take charge of the cellular
immunity that responds to other cells that are infected by viruses.

Now the question is how the adaptive immune system can respond against a
virtually unlimited and diverse set of antigens. A sequence of phases for battling
against these immunological enemies shown in Fig. 11.1 can answer this question.

11.3.3 Applicable Potentials of the Immune System:
A Computational Science Perspective

The immune system consists of a complex, sophisticated and effective set of prop-
erties, principles and processes. There are a number of important immune features
that should be noted, such as pattern recognition, adaptability, learning and memory,
to name a few. The list of key immune characteristics can be categorized into three
as follows:

Self-organization and Self-maintenance: the immune agents, primarily cells are
autonomous in nature. Their activities, such as reaction to microbial attack, pro-
liferation, differentiation and memory take place without any central guidance or

11 Immune System Support for Scheduling 301

control. In essence, the immune system attempts to maintain superior cells while
eliminating inferior and foreign cells. The key immune principle that enables and
facilitates this feature is clonal selection with affinity maturation.

Cooperativeness: there are two major sets of allies in the immune system. They
are the innate and the adaptive immune systems, and T and B cells (or humoral
and cellular immunity) in the adaptive immune system. While the latter allies are
well known the former are rarely recognized with fairly recent discoveries, such as
dendritic cells and toll-like receptors as a critical adjuvant in the activation of adap-
tive immunity. The cooperation and coordination of the two parties in each coalition
exist for effective immune responses that no agent could achieve in isolation.

Robustness: the immune system maintains a diverse set of lymphocytes dis-
tributed all over the body. These lymphocytes are constantly updated and/or up-
graded. In this way immune responses can very quickly and effectively take place
regardless of where the attack occurs and what the attacking agent’s pattern is. In
addition, the immune system intensifies some lymphocytes, upon the recognition of
the attacker, in order to win the battle as soon and easily as possible.

Note that the immune system does not rely on just one or two of these features.
Rather, it works as an integrated system of all these powerful features. In other
words, these characteristics should be carefully orchestrated when applied to com-
putational problems.

11.4 Artificial Immune Systems

As the biological immune system is an effective defence against constant threats in
dynamically changing environments it has inspired models in an increasing number
of areas, such as computer and network security, data mining and pattern recogni-
tion. An artificial immune system can be defined as a real-world problem solving
methodology designed as a result of abstraction and modeling of immune features.
For alternative definitions see de Castro and Timmis (2002).

To date the majority of AIS are based primarily upon the adaptive immune sys-
tem mainly because it can deal with unforeseen circumstances. The two commonly
modeled immune entities are antibodies and antigens, since they are the key play-
ers in the adaptive immune system. In conjunction with these immune entities a
few immunological theories, such as negative/positive selection, clonal selection
and immune networks have been actively modeled. Note that these are merely some
popularly modeled instances among a rich set of immune characteristics.

A recent analytical study (Garrett 2005) discusses how AIS differ from other
biologically-inspired computing approaches, such as EC, ANN and FS. With its
comparison study it evaluates the usefulness of AIS based on distinctiveness and
effectiveness, and concludes AIS have promising potential and have successfully
demonstrated their applicability.

302 Y.C. Lee and A.Y. Zomaya

11.4.1 Negative Selection

The immune system’s competence for recognizing foreign intruders is one very ap-
pealing function due to its direct applicability in many areas, such as anomaly de-
tection and pattern recognition. Although there is not complete consensus on how
this recognition—so-called self-nonself discrimination—is accomplished, a single
dominant mechanism of this immune activity is the negative selection principle.

It is crucial that the immune system does not become aggressive against its host.
A general view of how the immune system distinguishes between self and nonself
antigens is that there are only nonself recognizable T and B cells, as a result of
the elimination of self-specific lymphocytes, circulating the body of a host. This
selection takes place in the primary lymphoid organs of these lymphocytes before
they are released.

Based upon this biological negative selection a well-known artificial negative se-
lection scheme was proposed in Forrest et al. (1994). It modeled the negative selec-
tion of T cells in order to be applied for detecting changes in computer systems. The
three principles of the algorithm presented in Forrest et al. (1994) take advantage
of having a diverse set of change detectors that lead to the improvement of system
robustness. Both self and nonself entities are represented as bit strings; namely self
strings and nonself strings.

The negative selection algorithm consists of two major phases, detector genera-
tion and anomaly monitoring. In the detector generation phase, a set of detectors are
randomly generated and matched against a predefined set of self strings. The detec-
tors are filtered out based on how closely they match the self strings. Specifically, a
pre-selected integer, r , is used as a censoring parameter that represents the number
of contiguous matching bits. For example, if two strings have r or more contigu-
ously identical bits they are called a closely matched pair. The detector of this pair
then gets discarded due to its self-detecting ability. The anomaly monitoring phase
continually performs matching between the detectors and the self strings in order to
detect any changes in the self ones.

This flagship negative selection algorithm has spawned a series of subsequent
studies mainly in order to streamline the detector generation strategy and to widen
its applicability.

There have been a number of improvements suggested to the random detector
generation process. They include linear and greedy algorithms (D’haeseleer et al.
1996), a deterministic analysis of negative selection (Wierzchon 2000), the permu-
tation mask approach (Hofmeyr and Forrest 2000) and a detector generation scheme
by random means with clonal selection support (Ayara et al. 2002).

Most applications of negative selection consider two opposing parties—good and
evil. Here, the sole objective is to protect good from evil as in nearly every story and
movie. Typical application areas include anomaly detection (Gonzalez et al. 2002;
Gonzales and Cannady 2004), fault detection and diagnosis (Dasgupta et al. 2004;
Gao et al. 2004), intrusion detection (Kim and Bentley 2001; Stibor et al. 2005), and
more recently negative database (Esponda et al. 2005).

11 Immune System Support for Scheduling 303

11.4.2 Danger Theory

For many years self-nonself discrimination has been widely regarded to be the most
compelling mechanism for immune responses. Traditionally, it is believed that an
immune response is initiated upon the recognition of nonself antigens as in negative
selection. However, this viewpoint was questioned especially by Matzinger propos-
ing a new immunological model, the danger theory (Matzinger 2002). This model
is grounded on the discrimination between dangerous and non-dangerous instead
of the conventional self-nonself classification. Burgess (1998) identified problems
with the traditional model by posing the following questions:

Why does self changing in the course of numerous lifetime events, such as pu-
berty, pregnancy and aging not trigger an immune response?

How are vaccines composed of inert foreign proteins harmoniously incorporated
with the immune system?

What prevents the immune system from responding against those believed to
be mutated proteins (e.g., tumors) or against autoreactive lymphocytes that might
cause autoimmune diseases, such as Hashimoto’s thyroiditis, Graves’ disease and
Rheumatoid arthritis?

These questions were answered by the danger model that the immune system
responds not against any nonself, but against some that are recognized as a danger
to the host. Then, how do we define danger? In the biological immune system a cell
can die in one of two ways: apoptosis or necrosis. The former is a programmed death
as a result of homeostatic regulation, whereas the latter is a non-programmed death
due to a number of different causes, such as injury, infection and inflammation. This
cellular necrosis is believed to signal danger.

As well as the negative selection principle, danger theory has been applied to sev-
eral similar areas (Burgess 1998; Aickelin and Cayzer 2002; Aickelin et al. 2003).
The danger model is, however, still in its early stage of development. Aickelin and
Cayzer (2002) and Aickelin et al. (2003) have introduced and described rather ab-
stract models of its applications in anomaly detection and data mining; and intrusion
detection respectively.

An appealing strength of the danger theory for intrusion detection systems is its
scalability. The most fundamental requirement for intrusion detection systems is to
define and model normal activities. Although negative selection is capable of this
process based solely on the information of normal behaviors it may suffer from a
serious problem when the system is large and dynamic. In the meantime, the danger
model is highly scalable since it only deals with activities known to be dangerous.
Note that, in this regard dangerous behaviors have to be defined. This gives rise to
an adaptability issue.

11.4.3 Clonal Selection

As mentioned earlier, one of the most powerful features of the immune system is its
adaptability. The clonal selection principle (Burnet 1959) in the adaptive immune

304 Y.C. Lee and A.Y. Zomaya

Fig. 11.2 The CLONALG
algorithm

system plays an important role to this property. Although clonal selection occurs on
both T and B cells, the focus in the field of AIS is often aimed at B cells. This is
primarily due to the fact that B cell clonal selection involves mutation that further
enhances the adaptability of B cells. Hereafter, clonal selection simply refers to that
of B cells.

The rationale behind the clonal selection theory is that superior B cells are pre-
served with a minor degree of mutation and become prevalent, and inferior ones are
mutated at a high rate hoping to be improved, and become rare. More specifically,
when a foreign intruder (antigen) attacks the host, B cells matching the antigen
will be cloned (i.e., clonal expansion) and mutated (i.e., affinity maturation) at rates
directly proportional to and inversely proportional to the degree of the match (or
affinity), respectively.

The clonal selection principle is the most popular model applied to AIS. In the
past couple of decades a growing number of AIS (de Castro and Von Zuben 2002;

11 Immune System Support for Scheduling 305

Fig. 11.3 The immune
network theory

Cutello and Nicosia 2002) based on the clonal selection theory have been developed.
Some example applications can be found in areas of pattern recognition, scheduling
and graph coloring.

Among many existing AIS using this principle, CLONALG presented in de Cas-
tro and Von Zuben (2002) is most well known largely due to its algorithmic simplic-
ity. The algorithm CLONALG is described in Fig. 11.2.

11.4.4 Artificial Immune Networks

Another distinct immunological hypothesis attracting serious attention is Jerne’s
immune network theory (Jerne 1974). As its name implies the immune system is
a network of self entities or antibodies that interact (i.e., stimulate and suppress)
with each other as well as with foreign entities or antigens. As shown in Fig. 11.3
paratopes of an antibody bind to not only epitopes of an antigen, but also to id-
iotopes of other antibodies. Idiotopes—parts of antibodies—are the distinct feature
introduced in the immune network theory. The existence of idiotopes contributes
to establishing a network of antibodies; hence the name immune network theory or
idiotypic network hypothesis. This leads to the assumption that the immune system
operates dynamically even in the absence of antigen.

Like the clonal selection principle, superior antibodies proliferate and inferior
antibodies are suppressed. That is, antibody clones with strong antigen and/or anti-
body recognition capability remain at high population levels whereas less effective
antibody clones are kept at lower population levels. This way, the immune system
maintains the good quality antibodies resulting in effective immune responses. Once

306 Y.C. Lee and A.Y. Zomaya

again the superiority measure used in the immune network theory is affinity, i.e.,
how strong an antibody-antigen or antibody-antibody match is.

Jerne’s immune network theory has initially populated several serious theoreti-
cal models (Farmer et al. 1986; Varela and Coutinho 1991) developed by immunol-
ogists. These models served as inspiration for computational network models for
practical use. Two recent and well-known computational immune network models
are RAIN (Timmis and Neal 2000) and AINET (de Castro and Von Zuben 2001).
They both work similarly to the clonal selection principle, with one significant dif-
ference: the reactivity between antibodies. This is the most fundamental feature of
the immune network theory. More specifically, stimulatory and suppressive inter-
actions between antibodies are incorporated in the process of regulating antibody
clones based on affinities between them.

11.5 Abstraction and Modeling of the Immune System
for Scheduling

A rich set of entities, principles and processes in the immune system has shown great
potential in many problem domains. It should be noted that successful exploitation
of these immune features is heavily based on careful abstraction and modeling as in
most, if not all, other nature inspired approaches. Some examples of this abstraction
and modeling in other approaches include artificial neurons in artificial neural net-
works, pheromones in ant colony optimization algorithms, crossover and mutation
processes in genetic algorithms.

Although different scheduling problem instances exhibit their own problem spe-
cific properties they have a series of characteristics in common. For example, each
task has processing amount and each resource is associated with processing capac-
ity. The main objective of the scheduling problem, regardless of different problem
instances, is to find optimal task/resource allocation combinations taking into ac-
count certain performance metrics.

It should be noticed that most AIS consist of a common set of steps: (1) initial
population generation, (2) antibody-antigen binding, (3) population refinement, and
(4) learning and adaptation. The last three steps iterate until a satisfactory solution
is found.

11.5.1 Immune Entities

Both the scheduling problem and the immune system have two main entities being
tasks or jobs and resources in the former, and antibodies and antigens in the latter.
Unlike the obvious mapping between the two immune entities and components in
many problem domains, such as anomaly detection and pattern recognition, such
mapping in scheduling is not obvious. Typically, most scheduling schemes based

11 Immune System Support for Scheduling 307

on the immune system use antibodies alone to represent schedules. However, other
immune entities, such as antigens and lymphoid organs may also come into play in
many scheduling problem instances.

11.5.1.1 Antibodies

As stated above, the most obvious immune component that can be modeled is the
antibody. A typical representation of an antibody is a string of resource identifiers
or simply resources with each of which a task is associated. Here, the arrangement
of the resources determines the quality of schedule.

11.5.1.2 Lymphoid Organs

As in the biological immune system the production of antibodies, or more precisely
lymphocytes, in an AIS can be modeled using abstract lymphoid organs. The two
primary lymphoid organs are the bone marrow and the thymus. They can be ab-
stracted and modeled for initial population generation and refinement, respectively.

In most AIS, the initial population is generated randomly. However, the use of
a good quality initial population might result in faster convergence with a better
solution compared to that delivered using a randomly generated initial population.

The immunological crossover process (Bersini 2002) with a simple, yet efficient
heuristic can be an option to generate decent quality initial populations. More specif-
ically, a heuristic is used to generate several solutions that are expected to be at least
better than those generated randomly. The immunological crossover process further
populates more initial solutions based on those generated using the heuristic.

In some particular scheduling problems in which similar or even the same se-
quences of tasks are regularly fed to a static set of resources, a schedule repository
can be set up in order to store previous schedules. The repository maintains not only
complete schedules, but also partial schedules commonly found in many complete
schedules. Initial antibodies can be then composed via a process of schedule assort-
ment using the schedule repository. This approach resembles the actual antibody
generation process of the immune system.

The initial population generated in an AIS may undergo a refinement process
similar to the negative selection of lymphocytes (T and B cells). The process is
used as an attempt to ensure that the antibodies or solutions in the initial population
cover a wide range of search space. A simple way to refine the initial population is
to remove an antibody that overlaps its certain portion with another one.

11.5.1.3 Antigens

Due to the fact that antigens tend not to present direct applicability to scheduling
their usefulness has been somewhat neglected. However, two possible applications
of antigens are different task ordering and resource selection.

308 Y.C. Lee and A.Y. Zomaya

Typically, the order of tasks to be scheduled may be determined based on arrival
time or priority, and it tends not to change in the course of scheduling. What’s more,
a single arrangement of the tasks is usually used. For example, tasks with precedence
constraints in multiprocessor scheduling (e.g., list scheduling) are prioritized based
on task dependency. There are a series of different prioritization methods, such as
b-level, t-level and s-level. Their priorities are used to determine the scheduling
order. The tasks are then scheduled by using a task allocation scheme. Note that the
scheduling order has an effect on the quality of the final schedule. Here, a number
of different orders can play as antigens. An antibody that has a strong match (i.e.,
good schedule) with one or more of these antigens can then be selected.

Another possible use of antigens is the effective selection of resources. It is nor-
mally the case that the numbers of tasks and resources do not match perfectly. This
implies resources for the given tasks should be appropriately selected in order to
generate a good, if not the optimal, schedule. In this regard an antigen can rep-
resent resource requirements, whereas an antibody represents available resources
(e.g., memory, processing speed, etc.). An example of this usage (i.e., as a binary
matching scheme) is introduced in King et al. (2001).

11.5.2 Immune Principles and Processes

An immune response is a result of a series of complex and sophisticated dynam-
ics of immune entities. Over the lifetime of an organism these immune cells and
molecules increasingly become more effective at responding to foreign intruders.
This effectiveness is achieved by reinforcing the immune entities with various im-
mune principles and processes. With an immune system based scheduling approach,
one or more of these principles and processes typically are incorporated into it and
repeatedly carried out as in the biological immune system.

11.5.2.1 Negative Selection

The negative selection of lymphocytes (antibodies) can be modeled and adopted
in a few processes of scheduling. The first two are, as described earlier, at the re-
source selection and initial population generation stages. Another scheduling step
in which the use of regulating self-reactive antibodies (similar to the negative se-
lection process) can be found is at a late stage of scheduling schemes based on the
immune network model. More specifically, in an immune network based schedul-
ing approach the antibodies selected via a process of clonal selection are filtered
out if they are bound by other antibodies, i.e., some schedules are nearly or exactly
identical to others.

11 Immune System Support for Scheduling 309

11.5.2.2 Danger Theory

The most fundamental issue in the danger theory is how to define and model a dan-
ger signal. The definition of a danger signal probably varies from one application to
another. In dynamic scheduling the fluctuation of resource availability and capability
can be modeled using danger theory. A danger signal in this case might be defined
to be a certain degree of deviation from the expected performance of a resource. It
is most appropriate when the resource plays a critical role in the schedule.

Assuming that in a given system (e.g., a grid) schedules are first generated based
on the static information of the resources and adapted during the actual schedul-
ing process as the environment changes, then the failure or sudden overload of a
resource can be considered as dangerous to the quality of the statically generated
schedule resulting in the modification of the schedule.

11.5.2.3 Clonal Selection

The clonal selection principle along with affinity maturation process is the most
popularly adopted and modeled immune feature for two reasons. The first reason
is the selection and mutation schemes are distinct and effective: they are not per-
formed uniformly as in many evolutionary techniques, but directly and inversely
proportional to the quality of a modeled immune entity, e.g., an antibody. The other
reason is that most major steps involved in an AIS based on the clonal selection prin-
ciple are analogous to those found in other well-developed evolutionary techniques;
hence easy to model and implement.

There have been a noticeable number of studies (King et al. 2001; Costa et al.
2002; Coello Coello et al. 2003; Ong et al. 2005) conducted on the clonal selection
principle for various scheduling problems. The approaches proposed in these stud-
ies differ from one another mostly in terms of functions that determine the clonal
selection rate and the hypermutation rate.

A clonal selection based scheduling approach typically models one immune en-
tity (antibody) to represent schedules and two immune processes (clonal selection
and affinity maturation) to enhance schedules ultimately aiming at finding the opti-
mal schedule. The same principle as in the immune system, applies: good schedules
proliferate, whereas poor ones become extinct. These immune processes are the two
primary sources of performance gain that AIS based on clonal selection principle
can exploit. The goodness of the former has a significant impact on narrowing down
search space leading towards the optimal schedule. One may model it in one of the
following two approaches, both based on antibody affinity (the quality of schedule):

Proportional clonal generation. The clone size of an antibody is directly propor-
tional to its affinity. The best clone among the clone set is compared with the
original antibody and the better one is finally selected for the next generation.

Proportional clonal selection. The number of clones for every antibody is fixed,
whereas the number of clones for each antibody to be selected is directly propor-
tional to the affinity of the antibody.

310 Y.C. Lee and A.Y. Zomaya

It is obvious that the higher the affinity of an antibody the more its clones are
generated or selected.

Note that the final clonal selection process in both approaches takes place after
the affinity maturation process to clone. More specifically, each clone of an antibody
undergoes hypermutations and/or receptor editing as a process of differentiation
hoping to improve its affinity. It is then evaluated based on its affinity.

An antibody with a high affinity value can be interpreted as a solution similar
to the optimal one; hence fewer modifications compared to that with a low affinity
value. There are a series of ways to mutate antibodies. A simple mutation method
might be a random one that arbitrary selects different points in an antibody and mu-
tate them with randomly selected values. One can also adopt a mutation method
that uses a set of systematic approaches to select those points to mutate and to gen-
erate new values. Here, the values of those mutating points might represent resource
identifiers. A possible function that guides the hypermutation rate is the inverse of
an exponential function (de Castro and Timmis 2002).

The receptor editing process in the immune system is very similar to the negative
selection process in the primary lymphoid organs except that entirely new antibodies
are generated in place of those eliminated.

11.5.2.4 Immune Networks

One may see the immune network model as a superset of the clonal selection prin-
ciple. In addition to those processes carried out with clones, artificial immune net-
work (AIN) models involve antibody stimulation and suppression as given by the
immune network theory. These dynamics apply to the selected antibodies after the
clonal selection process in order to further improve the superiority of the antibody
population.

A simple application that models them with a slight modification in scheduling
can be used to maintain the diversity as well as quality of schedules. For example,
some previously discarded schedules may be kept for a certain number of evolutions
and compared with the current schedules. If any schedule in the current schedule
repertoire has been previously considered and discarded, it would be modified or
replaced with a new one. A similar strategy to this can be found in TS.

11.5.3 Fitness Functions

As most immune system based scheduling approaches tend to be a single player
(antibody) game, commonly used distance metrics (e.g., the Euclidean distance and
the Manhattan distance) in many AIS are less frequently adopted. Rather, the Ham-
ming distance and schedule length (the most typical metric in scheduling) has wide
acceptance.

11 Immune System Support for Scheduling 311

The Hamming distance between two strings is the number of symbols that are
different. This metric can be used to measure the degree of matching in the resource
selection process and the degree of schedule identity in negative selection and anti-
body stimulation and suppression in immune networks. Let S1 and S2 be two sets
of schedules, each with a set of resources that are assigned to tasks. More formally,

S1 = {S1,1, S1,2, . . . , S1,n} and S2 = {S2,1, S2,2, . . . , S2,n}.
The Hamming distance HD(S1, S2) between two schedules, S1 and S2 is

HD(S1, S2) =
n∑

i=1

δi, where δi =
{

0 if S1,i = S2,i

1 otherwise.
(11.1)

The schedule length (the completion time) is defined to be the amount of time from
the time the first task starts to the time the last task finishes. The time complexity
of a scheduling algorithm heavily depends on the computational cost of its fitness
function. Thus, when modeling an immune system based scheduling algorithm one
should carefully choose its parameters, such as the population size, the number of
generations and so on. This has a significant impact particularly on traditional mul-
tiprocessor scheduling in that the amount of scheduling time one can afford is much
less than that in other scheduling problems.

One use of the Euclidean distance is for identifying the similarity between a pair
of antibodies in an immune network model (Zuo and Fan 2005). The Euclidean
distance is given by

ED(S1, S2) =
√
√
√
√

n∑

i=1

(S1,i − S2,i). (11.2)

11.6 Scheduling Algorithms with Immune System Support:
A Survey

The AIS approach has only recently drawn attention from researchers in the schedul-
ing area. Although there are a growing number of AIS implementations for schedul-
ing, many of them are not significantly different from each other. A selection of the
unique AIS implementations are presented in this section.

11.6.1 Multiprocessor Scheduling

King et al. (2001) investigated functionalities of the immune system to design in-
telligent agents for task allocation in a heterogeneous computing environment. The

312 Y.C. Lee and A.Y. Zomaya

main immune functionalities that inspired their AIS include the recognition process,
learning and memory mechanisms.

The AIS was designed with two intelligent agents, H-cells and S-cells. They
control hardware resources, and software properties and scheduling respectively.

The H-cells behave like typical resource managers in multiprocessor systems.
However, they also use adaptive resonance theory (ART) as an adaptive method as
well as the immunological functionalities mentioned above. Antigens are defined
as adverse performance conditions and maintained by the H-cells clustering them
based on their similarity. This clustering facilitates antibody adaptation in that an
antigen similar to those in a particular antigen cluster can be quickly identified.

The primary functionalities of the S-cells are identifying the characteristics and
resource requirements of a parallel program code, and making scheduling decisions.
In addition, they monitor the progress of program execution and perform reschedul-
ing if any abnormal behavior of the resources in the schedule is detected.

Costa et al. (2002) attempted to tackle an instance of the multiprocessor schedul-
ing problem with the support of clonal selection and affinity maturation. Their AIS
schedules a set of jobs to a set of identical parallel processors such that the com-
pletion time of the last processor to finish execution is the lowest possible. The
AIS uses a lower bound solution calculated by the sum of all job processing times
divided by the number of processors with the use of preemption. Antibodies repre-
senting schedules (strings of processor IDs) are compared against this lower bound
solution to compute their affinity values. As usual the numbers of clones and muta-
tions for each of the antibodies are determined by its affinity. Note that the number
of mutations per antibody is empirically set. One interesting approach they used
includes 5 types of mutation, and when a mutation is required, a mutation type is
randomly selected.

11.6.2 Job Shop Scheduling

Coello Coello et al. (2003) applied the CLONALG algorithm with some modifica-
tions to approach the Job Shop Scheduling Problem (JSSP). In the JSSP, there are a
set of jobs and a set of machines. Each job contains a series of a potentially different
number of operations associated with precedence constraints and processing times.
It is an NP-hard problem to assign the jobs onto the machines in such a way that the
overall completion time of the jobs is minimal.

In each generation the AIS maintains an antigen and antibody, where both are
possible schedules. The antigen is initially a randomly generated schedule and is
constantly updated with the best schedule in each of the following generations.
While most AIS generate antibodies using a uniform random distribution, the an-
tibody generation method in this AIS implementation is derived from the actual
mechanism (concatenating gene segments) in the immune system.

The major steps of the AIS involved in each generation are as follows: (1) an
antibody is generated and improved by a local search. (2) The antibody is compared

11 Immune System Support for Scheduling 313

with the antigen and it replaces the antigen if it is better than the antigen. (3) The
antibody then gets cloned and mutated. (4) The best segments (i.e., the best job
sequence for each machine) of the clone are stored in the gene libraries. Most pa-
rameters, such as the number of clones and the number of gene libraries used are
empirically determined.

Another AIS for the JSSP proposed is the adaptive scheduling system (Mori et al.
1998). It is mainly based on the immune network model. In addition to the mini-
mization of makespan, the AIS attempts to achieve the minimization of setup and
waiting times.

Antibodies are encoded in two different representations; hence two types. An an-
tibody of type I is composed of a sequence of batch sizes, whereas one of type II
represents a sequence of job priorities. The proliferation and suppression of antibod-
ies is determined by the variety and the concentration of antibodies, respectively.

11.6.3 Flow Shop Scheduling

Engin and Doyen (2004) proposed an AIS, based on the clonal selection principle of
the immune system with some effort to optimize parameters, to tackle hybrid flow
shop (HFS) problems. The HFS problem in their study consists of a set J of jobs
and a set P of machines. Each job in J is processed, undergoing a series of stages.
At each stage it has to be processed on any one machine in P .

The proposed AIS modeled antibodies to represent sequences of jobs and the
clonal selection principle with two different mutation methods, inverse and pairwise
interchange. The size of antibody population and the elimination ratio of antibodies
in their AIS are the two parameters attempted to be optimized. The rate of cloning
for an antibody abi is calculated by a selection probability function defined by

CR(abi) = maxabj∈AB{SL(abj)} + 1 − SL(abi)
∑|AB|

j=1 SL(abj)
(11.3)

where AB is the antibody population and SL(abi) is the makespan of the anti-
body abi . Apart from the adoption of a receptor editing process the AIS basically
works similar to the CLONALG algorithm introduced earlier.

11.7 DAG Scheduling on Heterogeneous Computing Systems
with Clonal Selection

This section presents an AIS for directed acyclic graph (DAG) scheduling in het-
erogeneous computing systems. The core immune component adopted for the AIS
is the clonal selection principle. It is compared with a genetic algorithm (GA) and a
well-known heuristic (HEFT) (Topcuoglu et al. 2002).

314 Y.C. Lee and A.Y. Zomaya

11.7.1 Problem Definition

Parallel programs, in general, can be represented by a directed acyclic graph.
A DAG, G = (V ,E), consists of a set V of v nodes and a set E of e edges. A DAG
is also called a task graph or macro-dataflow graph. In general, the nodes represent
tasks partitioned from an application and the edges represent precedence constraints.
An edge (i, j) ∈ E between task ni and task nj also represents the inter-task com-
munication. In other words, the output of task ni has to be transmitted to task nj in
order for task nj to start its execution. A task with no predecessors is called an entry
task, nentry , whereas an exit task, nexit , is one that does not have any successors.

The target system used in this work consists of a set P of p heterogeneous pro-
cessors/machines that are fully interconnected. The inter-processor communications
are assumed to perform with the same speed on all links without contentions. It is
also assumed that a message can be transmitted from one processor to another while
a task is being executed on the recipient processor which is possible in many sys-
tems.

The communication to computation ratio (CCR) is a measure that indicates
whether a task graph is communication intensive or computation intensive. For a
given task graph, it is computed by the average communication cost divided by the
average computation cost on a target system.

The task scheduling problem in this study is the process of allocating a set P of p

processors to a set V of v tasks aiming to minimize SL without violating precedence
constraints. The schedule length is defined to be the maximum completion time of
the exit task in a task graph.

11.7.2 The Proposed Artificial Immune System

The AIS presented in this section adopts antibodies and clonal selection for repre-
senting schedules and refining the quality of schedules, respectively. Its mutation
method is distinct from those found in many other AIS in that mutations take place
at idling slots of processors in a schedule. A set of randomly generated schedules
are fed into this affinity maturation process of the AIS. Here, the incorporation of
a randomly generated schedule into the original schedule (antibody) is regarded as
a mutation. This can be viewed as ‘schedule overlapping’ resulting in duplicating
tasks. The major benefit of this mutation scheme is the reduction of communication
overhead. The AIS algorithm is presented in Algorithm 11.1.

Note that the AIS removes the redundant tasks (step 9) after each mutation. This
is because some tasks, after the mutation, have no effect for the schedule.

The number of clones for the antibody abi and that of mutations for the clone c
j
i

are determined by the following equations:

NC = max
{
0,2|AB| − |AB|((SL(abi) − SSL

)
/SSL

)}
, (11.4)

11 Immune System Support for Scheduling 315

Algorithm 11.1: The proposed AIS

Generate initial antibody population at random1:

for each generation do2:

for each antibody abi in the antibody population AB do3:

Clone abi proportional to its affinity (schedule length)4:

for each clone c
j
i in the clone set Ci do5:

Generate a set M of random schedules inversely proportional to6:

abi ’s affinity
for each random schedule mk in M do7:

Mutate c
j
i with mk8:

Remove redundant tasks in c
j
i9:

Compute the affinity of c
j
i10:

end11:

end12:

Set abi to its best clone whose affinity is higher than abi ’s13:

end14:

Replace worst b % of antibodies in AB by randomly generated ones15:

end16:

NM = max
{
2,2|AB|((SL(abi) − SSL

)
/SSL

)}
, (11.5)

where AB is the antibody population, SL(abi) is the schedule length of the anti-
body abi , and SSL is the shortest schedule length among schedule lengths of all
antibodies in AB.

11.7.3 Experiments and Results

Typically, the schedule length of a task graph generated by a scheduling algorithm
is used as the main performance measure of the algorithm. The performance metric
used for the comparison is the normalized schedule length (NSL). The normalized
schedule length is defined to be schedule length obtained by a particular algorithm
over schedule length obtained by the HEFT algorithm.

The actual values of the parameters used for the AIS and GA are: (1) The number
of generations = 10, (2) The numbers of antibodies/chromosomes = 10 and 55,
(3) The number of mutations for GA = 10, and (4) The antibody elimination rate,
b = 20 %.

The parameters used in the experiments are summarized in Table 11.1. The total
number of experiments conducted with various randomly generated task graphs on
the five different numbers of processors is 7,200. More specifically, the random task

316 Y.C. Lee and A.Y. Zomaya

Table 11.1 Experimental
parameters Parameter Value

The number of tasks U(10, 600)

CCR {0.1, 1, 10}

The number of processors {4, 8, 16, 32}

Processor heterogeneity {100, 200, random}

graph set consists of 90 base task graphs generated with combinations of 10 graph
sizes, 3 CCRs and 3 processor heterogeneity settings. For each combination 20 task
graphs are randomly generated retaining the base one’s characteristics. These 1,800
graphs are then experimented on with 4 different numbers of processors.

The computation and communication costs of the tasks in each task graph were
randomly selected from a uniform distribution with the mean equal to the chosen
average computation and communication costs. The processor heterogeneity value
of 100 is defined to be the percentage of the speed difference between the fastest
processor and the slowest processor in a given system.

It is clearly shown in Fig. 11.4 that the AIS delivers quite competitive schedule
lengths irrespective of different application and system characteristics, e.g., graph
sizes and the number of processors. The schedule lengths obtained from communi-
cation intensive task graphs indicate that the AIS best suits task graphs consisting
of fine-grain tasks with large communication costs.

Fig. 11.4 Experimental results. Upper left: CCR = 0.1; upper right: CCR = 1; bottom: CCR = 10

11 Immune System Support for Scheduling 317

11.8 Conclusion

As being still in its infant stage, the field of AIS has confidently exhibited its poten-
tial in several areas including scheduling. The noticeable performance of AIS mostly
benefit from the distinct adaptability and effectiveness of the adaptive immune sys-
tem. A simple AIS for multiprocessor scheduling, presented in the previous section,
once again demonstrates that AIS can be good alternatives for tackling many prob-
lems that are computationally hard and/or in dynamic environments.

Although an increasing number of researchers have been putting a lot of efforts in
applying immune features to various areas, many proposed AIS are limited to certain
types of applications and to being developed based on a few popular principles and
processes of the adaptive immune system. Therefore, the applicability of various
other immune characteristics should be further investigated and exploited.

References

Aickelin, U., & Cayzer, S. (2002). The danger theory and its application to artificial immune sys-
tems. In J. Timmis & P. J. Bentley (Eds.), Proceedings of the first international conference on
artificial immune systems (ICARIS) (pp. 141–148). University of Kent at Canterbury, September
2002. University of Kent at Canterbury Printing Unit.

Aickelin, U., Bentley, P., Cayzer, S., Kim, J., & McLeod, J. (2003). Danger theory: the link between
AIS and IDS? In Lecture notes in computer science: Vol. 2787. Proceedings of the second in-
ternational conference on artificial immune systems (ICARIS) (pp. 147–155). Berlin: Springer.

Ayara, M., Timmis, J., de Lemos, R., de Castro, L., & Duncan, R. (2002). Negative selection:
how to generate detectors. In J. Timmis & P. J. Bentley (Eds.), Proceedings of the first inter-
national conference on artificial immune systems (ICARIS) (pp. 89–98). University of Kent at
Canterbury, September 2002. University of Kent at Canterbury Printing Unit.

Bersini, H. (2002). The immune and the chemical crossover. IEEE Transactions on Evolutionary
Computation, 6(3), 306–313.

Burgess, M. (1998). Computer immunology. In Proceedings of the 12th USENIX conference on
system administration (pp. 283–298). Boston: USENIX Association.

Burnet, F. M. (1959). The clonal selection theory of acquired immunity. Cambridge: Cambridge
University Press.

Coello Coello, C. A., Rivera, D. C., & Cortés, N. C. (2003). Use of an artificial immune system
for job shop scheduling. In Lecture notes in computer science: Vol. 2787/2003. Proceedings of
the second international conference on artificial immune systems (ICARIS) (pp. 1–10). Berlin:
Springer.

Costa, A. M., Vargas, P. A., Von Zuben, F. J., & Franca, P. M. (2002). Makespan minimization
on parallel processors: an immune-based approach. In Proceedings of the 2002 congress on
evolutionary computation (CEC’02) (Vol. 1, pp. 920–925). Washington: IEEE.

Cutello, V., & Nicosia, G. (2002). Multiple learning using immune algorithms. In Fourth interna-
tional conference on recent advances in soft computing (RASC-2002) (pp. 102–107). Notting-
ham, UK. Berlin: Springer.

D’haeseleer, P., Forrest, S., & Helman, P. (1996). An immunological approach to change detec-
tion: algorithms, analysis and implications. In Proceedings of IEEE symposium on security and
privacy (pp. 132–143). Oakland: IEEE.

Dasgupta, D., Cao, Y., & Yang, C. (1999). An immunogenetic approach to spectra recognition. In
W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. J. Jakiela, & R. E. Smith
(Eds.), Proceedings of the genetic and evolutionary computation conference (GECCO) (pp.
149–155). San Francisco: Morgan Kaufmann.

318 Y.C. Lee and A.Y. Zomaya

Dasgupta, D., Krishna Kumar, K., Wong, D., & Berry, M. (2004). Negative selection algorithm for
aircraft fault detection. In Lecture notes in computer science: Vol. 3239. Proceedings of the third
international conference on artificial immune systems (ICARIS) (pp. 1–13). Berlin: Springer.

de Castro, L. N., & Timmis, J. (2002). Artificial immune systems: a new computational intelligence
approach. London: Springer.

de Castro, L. N., & Von Zuben, F. J. (2001). AINET: an artificial immune network for data analysis.
In H. A. Abbass, R. A. Sarker, & C. S. Newton (Eds.), Data mining: a heuristic approach
(pp. 231–259). Hershey: Idea Group. Chap. XII.

de Castro, L. N., & Von Zuben, F. J. (2002). Learning and optimization using the clonal selection
principle. IEEE Transactions on Evolutionary Computation, 6(3), 239–251.

Engin, O., & Doyen, A. (2004). A new approach to solve hybrid flow shop scheduling problems
by artificial immune system. Future Generations Computer Systems, 20(6), 1083–1095.

Esponda, F., Ackley, E. S., Forrest, S., & Helman, P. (2005). On-line negative databases. Interna-
tional Journal of Unconventional Computing, 1(3), 201–220.

Farmer, J., Packard, N., & Perelson, A. (1986). The immune system, adaptation and machine learn-
ing. Physica. D, 22, 187–204.

Feng, Y.-J., & Feng, Z.-R. (2004). An immunity-based ant system for continuous space multi-
modal function optimization. In Proceedings of international conference on machine learning
and cybernetics (Vol. 2, pp. 1050–1054). Washington: IEEE.

Forrest, S., Perelson, A. S., Allen, L., & Cherukuri, R. (1994). Self-nonself discrimination in a
computer. In Proceedings of IEEE symposium research in security and privacy (pp. 202–212).
Washington: IEEE.

Gao, X. Z., Ovaska, S. J., Wang, X., & Chow, M.-Y. (2004). Neural networks-based negative selec-
tion algorithm with applications in fault diagnosis. In Proceedings of international conference
on systems, man and cybernetics (Vol. 4, pp. 3408–3414).

Garrett, S. (2005). How do we evaluate artificial immune systems? Evolutionary Computation,
13(2), 145–177.

Gonzales, L. J., & Cannady, J. (2004). A self-adaptive negative selection approach for anomaly
detection. In Proceedings of congress on evolutionary computation (CEC 04) (Vol. 2, pp. 1561–
1568).

Gonzalez, F., Dasgupta, D., & Kozma, R. (2002). Combining negative selection and classifica-
tion techniques for anomaly detection. In Proceedings of congress on evolutionary computation
(CEC’02) (Vol. 1, pp. 705–710).

Grama, A., Gupta, A., Karypis, G., & Kumar, V. (2003). Introduction to parallel computing (2nd
ed.). Boston: Addison Wesley.

Hajela, P., & Yoo, J. S. (1999). Immune network modelling in design optimization. In D. Corne,
M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 203–215). London: McGraw-
Hill.

Hofmeyr, S., & Forrest, S. (2000). Architecture for the artificial immune system. Evolutionary
Computation, 8(4), 443–473.

Jerne, N. (1974). Towards a network theory of the immune system. Annals of Immunology, 125,
373–389.

Kim, J., & Bentley, P. J. (2001). Towards an artificial immune system for network intrusion detec-
tion: an investigation of clonal selection with a negative selection operator. In Proceedings of
congress on evolutionary computation (CEC’01) (Vol. 2, pp. 1244–1252). Washington: IEEE.

King, R. L., Russ, S. H., Lambert, A. B., & Reese, D. S. (2001). An artificial immune system
model for intelligent agents. Future Generations Computer Systems, 17(4), 335–343.

Krishna Kumar, K., Satyadas, A., & Neidhoefer, J. (1995). An immune system framework for
integrating computational intelligence paradigms with applications to adaptive control. In
M. Palaniswami, Y. Attikiouzel, R. J. Marks II, D. Fogel, & T. Fukuda (Eds.), Computational
intelligence a dynamic system perspective (pp. 32–45). New York: IEEE Press.

Kwok, Y. K., & Ahmad, I. (1998). Benchmarking the task graph scheduling algorithms. In Pro-
ceedings of first merged international parallel symposium/Symposium on parallel and dis-
tributed processing (IPPS/SPDP ’98) (pp. 531–537). Washington: IEEE.

11 Immune System Support for Scheduling 319

Matzinger, P. (2002). The danger model: a renewed sense of self. Science, 296, 301–305.
Mori, K., Tsukiyama, M., & Fukuda, T. (1998). Adaptive scheduling system inspired by immune

system. In Proceedings of international conference on systems, man, and cybernetics (Vol. 4,
pp. 3833–3837). Washington: IEEE.

Ong, Z. X., Tay, J. C., & Kwoh, C. K. (2005). Applying the clonal selection principle to find
flexible job-shop schedules. In Proceedings of international conference on artificial immune
systems (ICARIS) (pp. 442–455). Berlin: Springer.

Stibor, T., Timmis, J., & Eckert, C. (2005). On the appropriateness of negative selection defined
over Hamming shape-space as a network intrusion detection system. In Proceedings of congress
on evolutionary computation (Vol. 2, pp. 995–1002). Washington: IEEE.

Swiecicka, A., Seredynski, F., & Zomaya, A. Y. (2006). Multiprocessor scheduling and reschedul-
ing with use of cellular automata and artificial immune system support. IEEE Transactions on
Parallel and Distributed Systems, 17(3), 253–262.

Timmis, J., & Neal, M. J. (2000). A resource limited artificial immune system for data analysis. In
Proceedings of ES 2000 (pp. 19–32). Berlin: Springer.

Topcuoglu, H., Hariri, S., & Wu, M. (2002). Performance-effective and low-complexity
TaskScheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed
Systems, 13(3), 260–274.

Varela, F. J., & Coutinho, A. (1991). Second generation immune networks. Immunology Today,
12(55), 159–166.

Wierzchon, S. T. (2000). Discriminative power of the receptors activated by k-contiguous bits rule.
Journal of Computer Science and Technology, 1(3), 1–13. Special Issue on Research Computer
Science.

Zuo, X.-Q., & Fan, Y.-S. (2005). Solving the job shop scheduling problem by an immune algo-
rithm. In Proceedings of international conference on machine learning and cybernetics (Vol. 6,
pp. 3282–3287). Washington: IEEE.

Chapter 12
Formal Immune Networks: Self-Organization
and Real-World Applications

Alexander O. Tarakanov and Alla V. Borisova

12.1 Introduction

Two types of self-organizing biological systems, the neural system and the immune
system of the vertebrates possess the capabilities of “intelligent” information pro-
cessing, which include memory, the ability to learn, to recognize, and to make deci-
sions with respect to unknown situations. The potential of the natural neural system
as a biological prototype of a computing scheme has already been well-established
as a field of artificial neural networks, or neural computing (Cloete and Zurada
2000). However, the computing capabilities of the natural immune system (Jerne
1973, 1974; de Boer et al. 1992) have only recently been appreciated as a field
of artificial immune systems (AIS) (Dasgupta 1999; de Castro and Timmis 2002;
NASA 2004). The mathematical formalization of these capabilities (Tarakanov and
Dasgupta 2000) forms the basis of immunocomputing (IC) as a new computing
approach that replicates the principles of information processing by proteins and
immune networks (Tarakanov et al. 2003).

This IC approach looks rather constructive as a basis for a new kind of comput-
ing. It has been reported a row of successful applications of IC to real-world tasks,
including detection of dangerous ballistic situations in near Earth space (Tarakanov
and Dasgupta 2002), computing of ecological map and optical response of laser
diode (Tarakanov and Tarakanov 2004, 2005), and reconstruction of hydro-acoustic
fields (Tarakanov et al. 2007). It is also worth noting that a connection between
IC and cellular automata has led to encouraging results in three-dimensional (3D)
computer graphics (Tarakanov and Adamatzky 2002).

As for biological applications of IC, a concept of “biomolecular immunocom-
puter” as a computer controlled fragment of the natural immune system has recently
been reported (Goncharova et al. 2005). A connection of IC with brain research has

A.O. Tarakanov (B) · A.V. Borisova
St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences,
14-line 39, St. Petersburg 199178, Russia
e-mail: tar@iias.spb.su

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_12,
© Springer-Verlag London 2013

321

mailto:tar@iias.spb.su
http://dx.doi.org/10.1007/978-1-4471-5113-5_12

322 A.O. Tarakanov and A.V. Borisova

also led to promising results in understanding of basic principles of organization of
receptor mosaics and molecular networks (Agnati et al. 2005a, 2005b).

In such background, this chapter proposes a generalized model of formal im-
mune network (FIN) based on self-organizing features of apoptosis (programmed
cell death) and autoimmunization both induced by cytokines (messenger proteins).
The chapter also describes real-world applications of such FIN to intrusion detec-
tion in computer networks and forecast of hydro-physical fields in the ocean. The
obtained results demonstrate that FIN outperforms (by training time and accuracy)
other approaches of computational intelligence as well as more conventional meth-
ods of interpolation.

12.2 Biomolecular Background

Cytokines (messenger proteins) are a group of biologically active mediator mole-
cules that provide the intercellular interactions within the immune system. They are
the central regulators of leukocyte growth and differentiation, being produced by a
wide variety of cell types, targeting various cell subsets and exhibiting numerous
biological activities.

Up to now more than 100 different human cytokines are identified. An increasing
volume of experimental data suggests that cytokines play one of the central roles in
the immune regulation as well as in the neuro-immune-endocrine modulation (Ader
et al. 2001). Such concept of cytokines as a network modulating and switching sev-
eral cascades of immune reactions (Balkwill 2000) adjoins with the concept consid-
ering such molecules as a field or a milieu, which local properties mediate immune
response (Kourilsky and Truffa-Bachi 2001).

There exists a relationship between cytokine levels in human body fluids and
disease pathogenesis, including the inflammation and even depression (Bunk 2003).
Many types of cancers have taken advantage of the regulatory role of cytokines to
down-regulate appropriate immune responses targeted at destroying cancer cells.
They do this by secreting immunosuppressive cytokines that induce generalized
and specific inhibition of immune responses (Kurzrock 2001; Igney and Krammer
2002). So, the use of immunostimulatory cytokines as tumor vaccines has become
a promising strategy in cancer immunotherapy (Vilcek and Feldman 2004).

Recent developments show that cytokines induce apoptosis (programmed cell
death) in cancer cells (Wall et al. 2003). The induction of apoptosis is associated
with a dose-dependent inhibition of cancer cell division, and this activity has been
demonstrated for a wide range of cancer types including bladder, breast, leukemia,
melanoma, ovarian and prostate.

Apoptosis is a natural mechanism by which cells “commit suicide” when they
have outlived their purpose, become defective, or have aged. Apoptosis prevents
cells from accumulating and forming tumors. Understanding of the control of apop-
tosis in normal and malignant cells will help to improve the diagnosis and treatment
of malignancies. The goal of many treatments, including chemotherapies is to in-
duce malignant cells to undergo apoptosis. Current data also suggests that a cytokine

12 Formal Immune Networks: Self-Organization and Real-World Applications 323

may function as a dual-acting cytokine in which its normal physiological functions
may be related to specific aspects of the immune system and over-expression cul-
minates in cancer-specific apoptosis (Fisher et al. 2003).

Based on such biomolecular background, a notion of cytokine FIN (cFIN) has
been proposed in our previous work (Tarakanov et al. 2005a). Below, this mathemat-
ical notion is generalized and applied to two tasks where self-organizing features of
FIN seem to play a key role.

12.3 General Mathematical Model

Vector-matrix transposing will be designated by upper stroke []′. For example, if X

is a column vector then X′ is a row vector. End of proof will be designated by the
symbol ♦ (“rhomb”).

Definition 1 Cell is a pair V = (f,P), where f is real value f ∈ R, whereas P =
(p1, . . . , pq) is a point of q-dimensional space: P ∈ Rq , and P lies within unit cube:
max{|p1|, . . . , |pq |} ≤ 1.

Let distance (“affinity”) dij = d(Vi,Vj) between cells Vi and Vj be defined by a
norm:

dij = ‖Pi − Pj‖.
For example, it can be Euclidean ‖P ‖E , Manhattan ‖P ‖M , Tchebyshev ‖P ‖T , or
any appropriate norm:

‖P ‖E =
√

p2
1 + · · · + p2

q,

‖P ‖M = |p1| + · · · + |pq |,

‖P ‖T = max
{|p1|, . . . , |pq |

}
.

Fix some finite non-empty set of cells (“innate immunity”) W0 = (V1, . . . , Vm) with
non-zero distance between cells: dij �= 0, ∀i, j : i �= j .

Definition 2 FIN is a set of cells: W ⊆ W0.

Definition 3 Cell Vi recognizes cell Vk if the following conditions are satisfied:

|fi − fk| < ρ, dik < h, dik < dij , ∀Vj ∈ W, j �= i, k �= j,

where ρ ≥ 0 and h ≥ 0 are non-negative real values (“recognition threshold” and
“affinity threshold”).

Let us define the behavior (“self-organization”) of FIN by the following two
rules.

324 A.O. Tarakanov and A.V. Borisova

Rule 1 (Apoptosis) If cell Vi ∈ W recognizes cell Vk ∈ W then remove Vi from
FIN.

Rule 2 (Autoimmunization) If cell Vk ∈ W is nearest to cell Vi ∈ W0\W among
all the cells of FIN: dik < dij , ∀Vj ∈ W , whereas |fi − fk| ≥ ρ, then add Vi to FIN.

Let WA be FIN as a consequent of application of apoptosis to all cells of W0. Let
WI be FIN as a consequence of autoimmunization of all cells of WA by all cells of
W0. Note that the resulting sets WA and WI depend on the ordering of cells in W0.
Further it will be assumed that the ordering is given.

Let us consider general mathematical properties of FIN. It is obvious that neither
the result of apoptosis WA nor the result of autoimmunization WI can overcome W0
for any innate immunity or threshold:

WA ⊆ W0, WI ⊆ W0, ∀W0, h,ρ.

The following Propositions give more important and less evident properties of FIN.

Proposition 1 For any innate immunity W0 and recognition threshold ρ there exists
affinity threshold h0 such that apoptosis does not change W0 for any h less than h0:
WA = W0, ∀h < h0.

Proof Let h0 be the minimal distance for any pair of FIN cells that satisfy the recog-
nition threshold:

h0 = min
i,j

{dij } : |fi − fj | < ρ, i �= j.

Then, according to Definition 3, none of the cells of FIN can recognize other cells,
because dij > h0 for any pair of cells Vi and Vj . According to Rule 1, none of the
cells can be removed from FIN for any h less than h0, because dij > h, ∀h < h0,
∀Vi,Vj ∈ W0. Thus, WA = W0, ∀h < h0. �

Proposition 2 For any innate immunity W0 and recognition threshold ρ there exists
affinity threshold h1 such that the consequence of apoptosis and autoimmunization
W1 = WI(h1) provides the minimal number of cells |W1| for given W0 and ρ, and
any h: |W1| ≤ |WI(h)|, ∀h, ∀WI ⊆ W0.

Proof Let h1 be maximal distance for any pair of cells of FIN, which satisfy to
recognition threshold:

h1 = max
i,j

{dij } : |fi − fj | < ρ, i �= j.

Then, according to Definition 3, any cell Vi can recognize the nearest cell Vj if the
last one satisfies the recognition threshold: |fi − fj | < ρ. Let W− be the set of all
such cells Vi . Then, according to Rule 1, |WA(h1)| = |W0| − |W−|, and the number
of such cells after apoptosis is minimal among any h: |WA(h1)| ≤ |WA(h)|, ∀h.

12 Formal Immune Networks: Self-Organization and Real-World Applications 325

Let W+ be set of cells, which is added to WA(h1) as a consequence of autoim-
munization: W1 = WA(h1) ∪ W+. It is also evident that W+ is a subset of W−:
W+ ⊆ W−, and |W+| represents a number of “mistakes” of apoptosis when FIN
“kills” some cells, which lead to further recognition errors. Such cells are then “re-
stored” by autoimmunization (Rule 2).

Let W∗ = W−\W+ be cells which yield apoptosis without further recognition
errors. Then |W+| = |W−| − |W∗|. On the other hand: |W1| = |WA(h1)| + |W+|.
Substitutions of |WA(h1)| and |W+| lead to the following result: |W1| = |W0| −
|W∗|. Thus, |W1| ≤ |WI(h)|, which proves Proposition 2. �

Actually, Proposition 2 states that the minimal number of cells after apoptosis
and autoimmunization is a kind of “inner invariant” of any FIN, which depends
on the innate immunity and the recognition threshold but does not depend on the
affinity threshold. Practically, it means that such invariant can be found for any FIN
by apoptosis and autoimmunization without considering any affinity threshold (in
Definition 3) at all.

Now we can define a general model of molecular recognition in terms of
FIN. Let “epitope” (“antigenic determinant”) be any point P = (p1, . . . , pq) of
q-dimensional space: P ∈ Rq . Note that any cell of FIN also contains an epitope,
according to Definition 1.

Definition 4 Cell Vi recognizes epitope P by assigning him value fi if the dis-
tance d(Vi,P) between the cell and the epitope is minimal among all cells of FIN:
d(Vi,P) = min{d(Vj ,P)}, ∀Vj ∈ W .

Let pattern (“molecule”) be any n-dimensional column-vector Z = [z1, . . . , zn]′,
where z1, . . . , zn are real values. Let pattern recognition be mapping of the pattern
to an epitope: Z → P , and recognition of the epitope by the value f of the nearest
cell of FIN.

Let X1, . . . ,Xm be a set of n-dimensional patterns (“cells”) with known values
f1, . . . , fm. Let A = [X1 . . .Xm]′ be matrix of dimension m × n. Consider singular
value decomposition (SVD) of this matrix (Horn and Johnson 1986):

A = s1L1R
′
1 + · · · + sqLqR′

q + · · · + srLrR
′
r , (12.1)

where r is the rank of matrix A, sk are singular values and Lk,Rk are left and right
singular vectors with the following properties:

L′
kLk = 1, R′

kRk = 1, L′
kLi = 0, R′

kRi = 0, i �= k, k = 1, . . . , r,

sk−1 ≥ sk, k > 1.

Consider the following mapping of any n-dimensional pattern Z to epitope P :

pk = 1

sk
Z′Rk, k = 1, . . . , q, q ≤ r. (12.2)

326 A.O. Tarakanov and A.V. Borisova

Fig. 12.1 Example of pattern
recognition in 2D space of
FIN

Note that any epitope obtained by application of formulas (12.2) to any training
pattern lies within unit cube (see Definition 1), according to the above properties of
singular vectors.

If value f (in Definition 1) is a natural number f = c, where c ∈ N (i.e. “cy-
tokine” or “class”), whereas recognition threshold (in Definition 3) ρ < 1 and dis-
tance between cells is determined by Tchebyshev norm, then we obtain a special
case of cFIN (see Sect. 12.2) proposed in Tarakanov et al. (2005a) and applied for
discrete pattern recognition.

12.4 General Pattern Recognition Algorithm

The IC approach to pattern recognition is inspired by a principle of molecular recog-
nition between proteins, including antibody (also called immunoglobulin) of natural
immune system and any other antigen (including another antibody). Consider the
following informal example to shed light upon this inspiration.

Let Ig1 and Ig2 be two antibodies, while Ag be antigen. The strength of bio-
physical interaction between any pair of proteins can be measured by their binding
energy. Let e1, e2 be values of binding energy between Ag and Ig1, Ig2, correspond-
ingly. Then any protein (including antibody) can be presented and recognized by
corresponding couple of numbers e1 and e2 in such two-dimensional immune net-
work of interactions formed by two antibodies Ig1 and Ig2. Consider more formal
description of this idea.

In terms of general model (see previous section), any n-dimensional input vec-
tor Z (“antigen”) is projected to q-dimensional space of FIN and recognized by
class (value f , in general) of the nearest point (“cell”) of FIN (e.g. see Fig. 12.1,
where q = 2). Coordinate axes of such space of FIN are determined by right sin-
gular vectors (“antibodies”) of SVD of the training matrix A = [X1 . . .Xm]′, where
X1, . . . ,Xm are n-dimensional training vectors.

Such using of SVD to construct “antibodies” of FIN has some theoretical and
practical advantages over other methods of extracting features from training data.
For example, SVD guarantees mathematically optimal reconstruction of the training

12 Formal Immune Networks: Self-Organization and Real-World Applications 327

matrix by reduced set of components so that least square error is minimal among
all other methods. As a method of linear algebra, SVD can be implemented by
relatively simple and robust algorithm.

According to the general model of FIN, consider the following description (in
pseudo-code) of generalized IC algorithm of pattern recognition, which provides
real-valued (continuous) output f for any input vector Z. Main idea of this gen-
eralization is to find more than one nearest cell (point) in the space of FIN and
interpolate the output of FIN using the known values of the function in these nearest
training points.

Algorithm 12.1: Generalized IC algorithm of pattern recognition

while Training do1:

begin 1st stage training // map training data to FIN2:

Get training patterns3:

Form training matrix4:

Compute SVD of the training matrix5:

Store q singular values // "binding energies"6:

Store q right singular vectors // "antibodies"7:

Store left singular vectors // cells (points) of FIN8:

end9:

begin 2nd stage training10:

// compress data by "self-organization" of FIN11:

// compute consecutively for all cells of FIN:12:

begin Apoptosis13:

if cell[i1] is the nearest to cell[i2] and14:

abs(f.cell[i1] − f.cell[i2]) < recognition_threshold then
kill cell[i1]15:

end16:

end17:

begin Autoimmunization // correct mistakes of Apoptosis18:

if cell[i1] is the nearest to cell[i2] and19:

abs(f.cell[i1] − f.cell[i2]) >= recognition_threshold then
restore cell[i1]20:

end21:

end22:

end23:

end24:

while Recognition do25:

Get pattern // "antigen"26:

Map the pattern to FIN27:

Find p nearest cells of FIN28:

Interpolate value f by the values of p nearest cells29:

Assign the interpolated value to the pattern30:

end31:

Steps 1–7 below describe the algorithm in more rigorous mathematical terms.
Note that Steps 1–5 are usual also for the IC algorithm of (discrete) pattern recog-

328 A.O. Tarakanov and A.V. Borisova

nition, whereas Steps 6 and 7 provide a real-valued (continuous) output of the gen-
eralized FIN.

1. Form training matrix A = [X1 . . .Xm]′ of dimension m × n.
2. Compute first q singular values s1, . . . , sq and corresponding left and right singu-

lar vectors L1, . . . ,Lq and R1, . . . ,Rq by SVD of training matrix (12.1), where
q ≤ r and r is rank of the matrix.

According to Tarakanov et al. (2003), such SVD can be computed by the
following iterative scheme (Steps 2.1–2.3).
2.1. Compute maximal singular value s1 and corresponding singular vectors L1

and R1 of the training matrix:

L(0) = [1 . . .1]′,

R′ = L′
(k−1)A, R(k) = R

|R| ,

L = AR(k), L(k) = L

|L| ,

s(k) = L′
(k)AR(k),

where |X| = ‖X‖E and k = 1,2, . . . until the following condition is satisfied
for given constant ε:

|s(k) − s(k−1)| < ε.

Then

s1 = s(k), L1 = L(k), R1 = R(k).

2.2. Form matrices

A2 = A − s1L1R
′
1, A3 = A2 − s2L2R

′
2, . . . ,

Aq = Aq−1 − sq−1Lq−1R
′
q−1,

and compute their maximal singular values and corresponding singular vec-
tors by Step 2.1.

2.3. Store q singular values s1, . . . , sq and right and left singular vectors
R1, . . . ,Rq and L1, . . . ,Lq .

3. For any training vector Xi , compute its mapping Y(Xi) = [yi1 . . . yiq]′ to q-
dimensional space of FIN:

yi1 = 1

s1
X′

iR1, . . . , yiq = 1

sq
X′

iRq.

4. Using apoptosis and autoimmunization, reduce m training points of FIN to k ≤ m

points, where the points number k is “self-defined” by the inner invariant of FIN
(see Proposition 2).

12 Formal Immune Networks: Self-Organization and Real-World Applications 329

5. For any n-dimensional vector Z, compute its mapping Y(Z) = [y1 . . . yq]′ to
q-dimensional space of FIN:

y1 = 1

s1
Z′R1, . . . , yq = 1

sq
Z′Rq.

6. Among the reduced training points of FIN Y1, . . . , Yk , determine p nearest to
Y(Z) points Y1, . . . , Yp and their distances:

d1 = ‖Y1 − Y‖, . . . , dp = ‖Yp − Y‖.
7. Interpolate f (Z) by the following sum:

f =
p∑

i=1

aifi,

where fi = f (Yi) are training values, which correspond to the nearest points of
FIN, whereas coefficients ai are determined by the distances:

ai = 1

1 + di

∑p
j �=i

1
dj

.

Note the following useful features of FIN. It can be shown that

p∑

i=1

ai = 1.

It can be also shown that f = fi if di = 0 for any i (then dj �= 0 for any j �= i).
To prove this, consider a special case when input antigen represents a row of the
training matrix and, thus, it is equal to a training vector: Z = Xi, i = 1, . . . ,m.
According to SVD properties utilized by Steps 1–3, the projection of such antigen
to the space of FIN coincides with corresponding training point of FIN: Y(Z) =
Y(Xi). In such case, Step 4 calculates the following distances of the nearest points of
FIN: d1 = 0, d2 �= 0, . . . , dp �= 0. Then, according to Step 7: a1 = 1, a2 = 0, . . . ap =
0, and the output of FIN is equal to the value of the function f (Xi) for corresponding
training vector Xi : f = fi .

Thus, IC does not make mistakes on any training set.
Note that Step 2 can be also considered as an example of self-organization of FIN

(together with apoptosis and autoimmunization of Step 4). It can be said that itera-
tions of Step 2 for any training set “self-converge” to “antibodies”. More rigorously,
such convergence can be derived from Rayleigh-Ritz theorem (Horn and Johnson
1986) due to the fact that maximal singular value of any matrix A is actually the
maximum of the bilinear form L′AR over unit vectors L′L = 1,R′R = 1.

It is also worth noting that this algorithm can be supplied by online learning
capabilities. In case of a change in any training vector Xi , just compute its mapping
to the space of FIN (by Step 3) and add this point to the reduced training points of

330 A.O. Tarakanov and A.V. Borisova

Fig. 12.2 Intrusion detection by cFIN: “Antigen” (String 745 of File 1.1) is mapped to 3D cFIN
(bold skew cross in the centers of both screens) and recognized by the “cytokine” of the nearest cell
of cFIN (“Class: buffer_overflow !!!” in the bottom status bar). Cells of cFIN related to the attacks
are designated by bold “+”; normal class cells are designated by “o”. Note that three clumps of
“normal” cells of cFIN (“Innate immunity” in right-hand screen) look like “tumors” eliminated by
apoptosis and autoimmunization (“Inner invariant” in left-hand screen)

FIN (to use in Step 6). Therefore, in case of a change in the training patterns, the
training phase does not necessarily have to be repeated with the new training set.

12.5 Intrusion Detection in Computer Networks

A special case of cFIN (see Sects. 12.2, 12.3) has been implemented as a version of
the “immunochip emulator” (Tarakanov et al. 2005b) using Visual C++ with build
in assembler code of the affinity function (Tchebyshev norm) in 3D space (q = 3)
and OpenGL tools for user-friendly 3D visualization. A screen-shot of the emulator
is shown in Fig. 12.2.

The known UCI KDD archive (Bay 1999) has been used for testing the emulator.
Lincoln Labs set up an environment to acquire nine weeks of raw TCP (transmission
control protocol) dump data simulating a typical US Air Force local area network
(LAN). They operated the LAN as if it were a true Air Force environment, but
peppered it with multiple attacks.

The raw training data was about four gigabytes of compressed binary TCP dump
data from seven weeks of network traffic. This was processed into about five million
connection records. Similarly, the two weeks of test data yielded around two million
connection records.

12 Formal Immune Networks: Self-Organization and Real-World Applications 331

A connection is a sequence of TCP packets starting and ending at some well
defined times, between which data flows to and from a source IP (Internet protocol)
address to a target IP address under some well defined protocol. Each connection is
labeled as either normal, or as an attack, with exactly one specific attack type. Each
connection record consists of about 100 bytes.

Two data files from KDD archive has been used to test the emulator:

– File 1: kddcup_data_10_percent_gz.htm (7.7 MB);
– File 2: kddcup_newtestdata_10_percent_ unlabeled_gz.htm (44 MB).

File 1 is the training data file. It contains 51608 network connection records.
Any record (file string) has the following format, where parameters 2, 3, 4, 42 are
symbolic, while other 38 parameters are numerical (real values):

1) duration, 2) protocol_type, 3) service, 4) flag,
5) src_bytes, 6) dst_bytes, 7) land, 8) wrong_fragment,
9) urgent, 10) hot, 11) num_failed_logins, 12) logged_in,
13) num_compromised, 14) root_shell, 15) su_attempted,
16) num_root, 17) num_file_creations, 18) num_shells,
19) num_access_files, 20) num_outbound_cmds, 21) is_host_login,
22) is_guest_login, 23) count, 24) srv_count, 25) serror_rate,
26) srv_serror_rate, 27) rerror_rate, 28) srv_rerror_rate,
29) same_srv_rate, 30) diff_srv_rate, 31) srv_diff_host_rate,
32) dst_host_count, 33) dst_host_srv_count,
34) dst_host_same_srv_rate, 35) dst_host_diff_srv_rate,
36) dst_host_same_src_port_rate,
37) dst_host_srv_diff_host_rate, 38) dst_host_serror_rate,
39) dst_host_srv_serror_rate, 40) dst_host_rerror_rate,
41) dst_host_srv_rerror_rate, 42) attack_type.

For example, two records (# 1 and # 745) of File 1 are as follows:

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,
0.00,0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,
0.00,0.00, normal.

184,tcp,telnet,SF,1511,2957,0,0,0,3,0,1,2,1,0,0,1,0,0,0,0,0,1,1,
0.00,0.00,0.00,0.00,1.00,0.00,0.00,1,3,1.00,0.00,1.00,0.67,0.00,
0.00,0.00,0.00, buffer_overflow.

File 1.1 has also been prepared with the same 51608 records of the same format
just without the last parameter 42) attack_type.

File 2 contains 311079 records of the same format as in File 1.1.
File 1.1 and File 2 are the test data files.
Note that KDD archive does not indicate the correct types of attack for none of

the records of File 2. The only available information on possible attacks is gathered
in Table 12.1 (column ‘Code’ is the emulator’s code of attack). Nevertheless, File
2 has been used to test whether the emulator is able to detect unknown intrusions,
which had not been presented in the training data of File 1.

The results of training the emulator by File 1 are shown in Fig. 12.2, where right-
hand screen represents the initial population of cFIN after SVD (“Innate immunity

332 A.O. Tarakanov and A.V. Borisova

Table 12.1 Attack types

Code Attack type File 1 File 2 Code Attack type File 1 File 2

0 normal + +

1 apache2 + 16 pod + +

2 back + 17 portsweep + +

3 buffer_overflow + + 18 rootkit +

4 ftp_write 19 saint +

5 guess_passwd + 20 satan +

6 imap 21 sendmail +

7 ipsweep + + 22 smurf +

8 land + 23 snmpgetattack +

9 loadmodule 24 spy

10 multihop + 25 teardrop +

11 named + 26 udpstorm +

12 Neptune + 27 warezclient

13 nmap 28 warezmaster

14 perl 29 xlock +

15 phf + + 30 xsnoop +

of cFIN”: |W0| = 51608), while left-hand screen shows cFIN after apoptosis and
autoimmunization (“Inner invariant of cFIN”: |W1| = 783). Total training time (for
AMD 1.5 GHz) is 62 seconds, including 8 s for the 1st stage (SVD) and 54 s for the
2nd stage (apoptosis and autoimmunization).

During the recognition of the records of File 1.1 and File 2, the emulator writes
test results into the output file in the format: Record # – attack_type. For example,
four records (## 744–747) with test results for File 1.1 are as follows (see also
Table 12.2):

744 - normal.
745 - buffer_overflow. !!!
746 - buffer_overflow. !!!
747 - normal.

The emulator also shows on-line projection of any pattern to 3D space of cFIN
(see bold skew cross in both screens) and write the recognition result on the bottom
panel (see “Class: back !!!”).

Test results in Table 12.2 correspond completely to the correct attack types (pa-
rameter 42) of File 1.

Another test has been performed over File 2 to check whether the emulator is able
to detect unknown intrusions, which had not been presented in the training data of
File 1. The intrusion is treated as unknown if the projection of corresponding pattern
to cFIN lies outside of the unit cube (according to Definition 1). The emulator has
recognized 13 unknown intrusions as the following records ## of File 2:

12 Formal Immune Networks: Self-Organization and Real-World Applications 333

Table 12.2 Test results for File 1.1

Records ## attack_type Records ## attack_type

745–746 Buffer_overflow 38036–38051 ipsweep

3095–7373 Smurf 38052–38151 back

9520–9523 Buffer_overflow 38302–38311 ipsweep

9590–9591 rootkit 42498–42519 ipsweep

9928–10007 neptune 42548–42567 ipsweep

10072 satan 42593–42594 ipsweep

10320 phf 42706–42708 ipsweep

13340–13519 portsweep 42730–42761 ipsweep

13569 land 42762–42770 buffer_overflow

13845–13864 pod 42771–42772 land

16326–16327 pod 42773–43385 neptune

17446–37902 neptune 44451–44470 neptune

37929–37939 ipsweep 44800–48452 smurf

37959–37963 ipsweep 48453–48552 teadrop

38005–38012 ipsweep All other normal

417, 12674, 97891, 139795, 170498, 176201, 177958, 232570,
236975, 296561, 296657, 96796, 297658.

According to Table 12.1, any unknown intrusion can correspond to one of the
following types of attack that had not been presented in the training data:

apache2, guess_passwd, multihop, named, saint, sendmail,
snmpgetattack, udpstorm, xlock, xsnoop.

The recognition time per record is 15.7 ms for both tests of File 1.1 and File 2.
This time includes not only computations but mainly reading the record from test
file, visualization of the recognition result (projection of the pattern to cFIN) in both
screens of the emulator and writing the result into output file.

12.6 Forecast of Hydro-Physical Fields in the Ocean

Actually, this section proposes a new method of identification of cellular automata
(CA), using the IC approach to pattern recognition (described in Sect. 12.4). The
essence of the method is the representation of states and transitions of CA by us-
ing FIN and the faultless reducing of number of the transitions by apoptosis and
autoimmunization. The task is formulated using an analogy to the computation of
the ecological atlas (Tarakanov and Tarakanov 2004) as well as the reconstruction
of the hydro-physical field (Tarakanov et al. 2007). This approach is compared with

334 A.O. Tarakanov and A.V. Borisova

the existing methods of neurocomputing in computational intelligence and the more
conventional interpolation by the least square method (LSM). Numerical example
utilizes real-world atlas of the sea surface temperature (SST) from NOAA (1998).

According to Adamatzky (1994), identification of CA solves the problem how to
learn the local behavior of cells from temporal slices of global evolution.

Let ci,j,k ∈ C be set of cells of CA with coordinates determined by indices i, j, k.
Let u(c) ⊂ C be set of the nearest neighbors defined for any cell. Let ct be state of
cell at discrete time step t ∈ N . Let us form set of parameters (state vector) for
any cell X = [x1 . . . xn]′ which can include current and/or previous states of the cell
ct , ct−1, . . . , ct−p and/or states of its nearest neighbors: ut , ut−1, . . . , ut−p . Note
that values of some parameters can be unknown for some cells and/or time steps.

Let values of transition function ct+1 = f (ct , ut) be given for some subset of
cells C0 ⊂ C and time steps N0 ⊂ N . The task is to determine the state of any cell
at any time. Note that in real-world applications, the parameters x1, . . . , xn and the
function f can be real-valued, whereas functional dependencef (x1, . . . , xn) can be
too complicated or even unknown.

According to Sect. 12.4, consider a special case of the general IC algorithm,
which solves the task of identification of CA by given training vectors X1, . . . ,Xm

and corresponding values of the transition functionf1, . . . , fm.

1. Form training matrix A = [X1 . . .Xm]′ of dimension m × n.
2. Compute first q singular values and corresponding left and right singular vectors

by SVD of the training matrix.
3. For any training vector Xi , compute its mapping Y(Xi) = [yi1 . . . yiq]′ to q-

dimensional space of FIN.
4. Using apoptosis and autoimmunization, reduce m training points of FIN to k ≤ m

points.
5. Consider k points of FIN Y1, . . . , Yk together with their classes f (Y1), . . . , f (Yk)

as the identified CA.
6. For any n-dimensional vector Z, compute its mapping Y(Z) = [y1 . . . yq]′ to q-

dimensional space of FIN.
7. Among the reduced training points Y1, . . . , Yk , determine the nearest one to

Y(Z):

Yi∗ = k

min
i=1

∥
∥Yi − Y(Z)

∥
∥.

8. Assign class of the nearest point Yi∗ to the vector Z:

f (Z) = f (Yi∗).

Therefore, Steps 1–5 identify CA, whereas Steps 6–8 compute the value of the tran-
sition function ct+1 = f (ct , ut) for any cell of CA at any time step. Note also that
the existence, invariance and faultlessness of such identification are guaranteed by
the propositions and their proofs in Sect. 12.3.

Real-world data for the following numerical example have been obtained from
the computer atlas of the Barents Sea (NOAA 1998).

12 Formal Immune Networks: Self-Organization and Real-World Applications 335

Fig. 12.3 A fragment of CA
for the forecast of SST of the
Barents Sea

Consider 2D lattice cij , i = 1, . . .6, j = 1, . . . ,16, which is determined by the
northern latitude Bi = 75◦ − (i − 1) and the eastern longitude Lj = 30◦ + (j − 1),
where ct is the monthly average SST in centigrade degree (T °C) which is given for
all months: t = 1, . . . ,12. Let us identify such CA (CA-SST) that forecasts the field
of SST ct

ij for any t = n mod 12, n ∈ N . For example, a screen-shot of the SST
field for August (n = 8,20,32, . . .) is shown in Fig. 12.3.

Let us define state vector X = [x1 . . . xn]′ and transition function f for any cell so
that f = ct+1 − ct , x1 = ct − ct−1, . . . , xn = ct−(n−1) − ct−n. Thus, the behavior of
CA-SST can be completely described by 6×16×12 training vectors X1, . . . ,X1152
and corresponding values of the transition function f1, . . . , f1152. However, such
CA may be non-deterministic since different values of the transition function fi1 �=
fi2 may correspond to identical vectors Xi1 = Xi2. The IC algorithm can identify
such conflicting transitions of CA by using only the 1st stage training Steps 1–3
(without apoptosis and autoimmunization) and the testing of the identified CA by
Steps 6–8. Then any mistake reveals the conflicting rules of CA. The numbers of
such conflicts against the memory size of the CA-SST are shown in Table 12.3.

Thus, the deterministic CA-SST is possible only for n ≥ 11 and the IC algorithm
with apoptosis and autoimmunization (Steps 1–5) identifies such CA-SST by re-
ducing 1152 transition rules in 11-dimensional space X to 646 points of 3D FIN
(q = 3).

Table 12.3 Number of conflicts in CA-SST identified by FIN

Memory size of CA (n) 2 3 4 5 6 7 8 9 10 11

Number of conflicts 761 569 405 323 238 160 91 61 33 0

336 A.O. Tarakanov and A.V. Borisova

After the identification (of the minimal memory size) of the deterministic CA-
SST, artificial neural network (ANN) and LSM can be utilized for the comparison
with FIN.

ANN has been taken from Tarakanov and Tarakanov (2004). Its output f is com-
puted by the following formulas (so called feedforward run):

Y = σ(WXb), f = cf σ
(
V ′Yb

)
,

where σ is the function of activation of neurons (so called sigmoid):

σ(x) = 2

1 + exp(−x)
− 1;

Xb and Yb are vectors of input and hidden neurons with the bias b = −1:

Xb = 1

cX

[x1 . . . xn −cX]′, Yb = [Y −1]′;

cf = |fmax| and cX = |xmax| are scaling coefficients which provide compatibility
with the diapason of the sigmoid; W is weight matrix of input neurons and V is
weight vector of hidden neurons. Both weight matrix and weight vector are trained
by error back propagation (EBP) method. Training cycle of ANN consists of m runs
to consider all training vectors X1, . . . ,Xm, whereas any run for training vector Xi

consists of a) the feedforward run and b) the EBP correction of weights. Error of the
output neuron after the feedforward run is calculated by the following formula:

d0 = (
f ∗

i − fi

)(
1 − f 2

i

)
,

where i is number of the training vector, fi is value of training function computed
by ANN and f ∗

i is given value of training function. Error of k-th neuron of hidden
layer is calculated by the following formula:

dk = d0
(
1 − y2

k

)
vk,

where yk is output of the neuron, vk is value of k-th component of weight vector
V , k = 1, . . . , nk , and nk is number of hidden neurons. Weight vector and weight
matrix are corrected by the following (gradient) formulas:

�V = ηd0Yb, �wji = ηdkxij ,

where η is so called learning constant and xij is value of j -th component of input
vector Xi . Training cycles are repeated until total (training) error becomes lower
than some given value:

1

m

m∑

i=1

(
f ∗

i − fi

)2
< e0.

12 Formal Immune Networks: Self-Organization and Real-World Applications 337

Table 12.4 MSE of
identification of CA Type of CA FIN ANN LSM

Chemical waves 0.00 0.69 0.82

Solitons 0.00 0.26 0.38

SST of the Barents Sea 0.00 0.05 0.90

LSM calculates output f = CX by the following vector of coefficients:

C = A+F,

where F = [f1 . . . fm]′ is vector of training values of function f , whereas A+ is the
so called pseudoinverse of training matrix:

A+ = (
A′A

)−1
A′.

Comparative accuracy of three different methods (FIN, ANN, LSM) is presented in
Table 12.4 based on the mean square error (MSE):

e =
√
√
√
√1

k

k∑

i=1

(
fi − f ∗

i

)2
,

where k = 1152 for CA-SST.
For more representatives, a couple of other CA (so called “chemical waves” and

“solitons”) has been identified by FIN using the data from Adamatzky (2001). The
comparison of accuracy of FIN with ANN and LSM is provided in Table 12.4.

Note that neither ANN nor LSM is able to identify the conflicting states of CA.

12.7 Discussion

According to the obtained results for intrusion detection (Sect. 12.5), FIN reduces
the storing patterns by 65.9 times using apoptosis and autoimmunization without
any loss of accuracy of recognition. Although this increases the training time (from
8 seconds to 1 minute for AMD 1.5 GHz), nevertheless, more important is the de-
crease of the recognition time at least by 60 times per pattern by decreasing number
of the stored cells of FIN to be compared with recognizing pattern.

It is worth noting that such a good performance of FIN (error-free recognition
with rather low training time) on the data of real-life dimension looks unobtainable
for main competitors in the field of computational intelligence like ANN and ge-
netic algorithms (GA). According to our previous comparisons in Tarakanov and
Tarakanov (2004, 2005), FIN trains at least 40 times faster and recognizes correctly
more than twice as often as ANN and GA in the tasks of environmental monitoring

338 A.O. Tarakanov and A.V. Borisova

and laser physics. These applications demonstrates not only the error-free recog-
nition of the training set (like in Sects. 12.5, 12.6) but mainly the advanced accu-
racy of FIN on the test set, which may differ strongly from the training one. These
tasks have rather low dimensions: 17×23×6 for ecological atlas and 19×5 for laser
diode. The drawbacks of ANN and GA become especially inadmissible for the task
of intrusion detection with rather high dimension 51608×41 and more.

It is also worth noting that FIN differs essentially from the negative selection al-
gorithm (NSA) widely used in the field of AIS (Dasgupta 1999; de Castro and Tim-
mis 2002). Actually, NSA aims to provide a set of detectors for self-nonself discrim-
ination, whereas FIN guarantees a minimal set of “cells” for the correct recognition
of any number of classes based on “cytokines”. Apparently, this makes FIN advan-
tageous not only for the intrusion detection on-line (Tarakanov et al. 2005b) but also
for medical oriented applications to simulate cancer specific apoptosis (Goncharova
et al. 2005). Moreover, cytokines modulate proliferation and apoptosis of thymic
cells as well as intrathymic T cell differentiation that includes not only negative but
also positive selection (Savino and Dardenne 2000). Therefore, FIN also seems to
be better suited for such kind of simulations.

Obtained results (in Sect. 12.6) also show a clear advantage of the use of FIN for
identification of CA over both neurocomputing and the more conventional method
of interpolation. These results confirm the advantages of an IC approach over other
methods revealed by its application to the reconstruction of hydro-physical fields
(Tarakanov et al. 2007). These advantages are expected to rise drastically with the
rise of the dimension of training data.

We also point out that any run of IC with fixed dimension of FIN q and fixed
number of nearest points of FIN for interpolation p gives the same MSE. Thus, FIN
needs only q × p runs to determine the optimal parameters q∗,p∗, which provide
the minimal error for any specific application, where q ≤ r , p ≤ r , while r is rank of
the training matrix. Contrary to this fact, different training runs of ANN with fixed
number of hidden neurons nk , learning constant η and training error e0 usually give
different MSE. This makes ANN somewhat unpredictable and dictates its statistical
characterization.

Moreover, ANN is too slow in comparison with FIN and conventional interpola-
tion. For example (Tarakanov et al. 2007), IC needs just 21 runs (about 20 seconds)
to obtain optimal parameters of FIN (q∗ = 3,p∗ = 5), whereas ANN needs 1750
runs (about 24 hours!) for the same purpose (n∗

k = 3, η∗ = 0.01) still without any
guarantee that, say, 20 or 100 hidden neurons may not minimize total error.

Table 12.4 shows better accuracy of FIN over ANN and LSM. Similar results
in Tarakanov et al. (2007) also demonstrate the theoretically rigorous feature of
training FIN with zero error rate. Just the opposite, training errors of ANN and
LSM are usually too high. In addition, attempts to reduce training errors of ANN
may lead to the so called overtraining effect when total error increases drastically.

The memory constraints of FIN and ANN look more comparable. For FIN, they
are determined mainly by the dimensions of training matrix (m × n) and FIN (m ×
q), i.e. by the number and the dimension of training vectors and the dimension of
space of FIN. The memory constrains of ANN are not much lower and determined

12 Formal Immune Networks: Self-Organization and Real-World Applications 339

mainly by the dimension of weight matrix (nk × n), i.e. by the number of hidden
neurons and also by the dimension of training vectors. However, it is no need to
store the training matrix after FIN has been trained. So, the memory constraints
of IC and ANN can be compared by the dimensions of FIN and weight matrix,
correspondingly.

As a conclusion, the obtained results confirm similar advantages of FIN over
other methods of computational intelligence and more conventional methods of in-
terpolation revealed by their applications to real world data of information assur-
ance, ecology, laser physics, and hydro-acoustics. Possible ways to reinforce these
advantages may be norms other than Euclidean together with more delicate methods
of interpolation by nearest points of FIN. The advantages of the proposed approach
coupled with its advantages for 3D modeling (Tarakanov and Adamatzky 2002)
make FIN rather promising for on-line simulation of real-world 3D fields.

12.8 Epilogue

After the 1st edition of this Chapter (Tarakanov 2008), the described approach has
been generalized as a new way to intelligent signal processing. The results of numer-
ical experiments reported in Tarakanov (2008) suggest that the speed and accuracy
of the approach is probably unobtainable for other robust methods of computational
intelligence (in particular, neurocomputing and evolutionary algorithms). These ad-
vances of the approach together with its biological nature probably indicate a further
step toward placing more of the intelligent functions on the chip.

It is also worth highlighting that the approach appears to be useful in brain re-
search, especially for discovering deep biomolecular similarities between marine
sponges, human brain, and immune system. Namely, a set of triplet homologies of
amino acid residues has been deduced that may be responsible for receptor-receptor
interactions (Tarakanov and Fuxe 2010). Based on the same mathematical approach,
main triplets in cell-adhesion receptors of marine sponges have been discovered,
which appear also as homologies in several receptor heteromers of human brain
(Tarakanov et al. 2012). It has been also demonstrated their relevance to protein-
protein interactions and mentioned possible implications for novel pharmacological
targets and strategies for treatment of diseases, e.g. neuroinflammatory diseases.

Last but not least, the approach to forecast of hydrophysical fields (Tarakanov
2009) “might not seem to harbor an artistic statement, but a novel application of data
simulation has led to a unique merger of science and art” (NASA 2011). Namely,
a mathematical model of global dynamics of sea surface temperature (SST) has
been developed utilizing data of NASA. The model provides fast computing and
visualization of daily SST of any area in the World Ocean (sea, lake). The special
models of the Caspian, Black, Barents, Mediterranean, and Baltic Seas as well as
the Gulf of Mexico and Ladoga Lake have been created. The animated results can
be viewed in corresponding YouTube videos (e.g., the YouTube video address of the
Baltic Sea SST is http://www.youtube.com/watch?v=JIng8MAXTsQ).

http://www.youtube.com/watch?v=JIng8MAXTsQ

340 A.O. Tarakanov and A.V. Borisova

References

Adamatzky, A. (1994). Identification of cellular automata. London: Taylor & Francis.
Adamatzky, A. (2001). Computing in nonlinear media and automata collectives. Bristol: IOP
Ader, R., Felten, D. L., & Cohen, N. (Eds.) (2001). Psychoneuroimmunology. New York: Academic

Press.
Agnati, L. F., Tarakanov, A. O., Ferre, S., Fuxe, K., & Guidolin, D. (2005a). Receptor-receptor

interactions, receptor mosaics, and basic principles of molecular network organization: possible
implication for drug development. Journal of Molecular Neuroscience, 26(2–3), 193–208.

Agnati, L. F., Tarakanov, A. O., & Guidolin, D. (2005b). A simple mathematical model of cooper-
ativity in receptor mosaics based on the “symmetry rule”. Biosystems, 80(2), 165–173.

Balkwill, F. (Ed.) (2000). The cytokine network. New York: Oxford University Press.
Bay, S. D. (1999). The UCI KDD archive. Irvine: University of California, Dept. of Information

and Computer Science. Available at http://kdd.ics.uci.edu.
Bunk, S. (2003). Signal blues: stress and cytokine levels underpin a provocative theory of depres-

sion. The Scientist, 25, 24–28.
Cloete, I. & Zurada, J. M. (Eds.) (2000). Knowledge-based neurocomputing. Cambridge: MIT

Press.
Dasgupta, D. (Ed.) (1999). Artificial immune systems and their applications. Berlin: Springer.
de Boer, R. J., Segel, L. A., & Perelson, A. S. (1992). Pattern formation in one and two-dimensional

shape space models of the immune system. Journal of Theoretical Biology, 155, 295–333.
de Castro, L. N., & Timmis, J. (2002). Artificial immune systems: a new computational intelligence

approach. London: Springer.
Fisher, P. B., et al. (2003). mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene:

from the laboratory into the clinic. Cancer Biology & Therapy, 2, S023–S037.
Goncharova, L. B., Jacques, Y., Martin-Vide, C., Tarakanov, A. O., & Timmis, J. I. (2005).

Biomolecular immune-computer: theoretical basis and experimental simulator. In Lecture notes
in computer science (Vol. 3627, pp. 72–85). Berlin: Springer.

Horn, R., & Johnson, Ch. (1986). Matrix analysis. Cambridge: Cambridge University Press.
Igney, F. H., & Krammer, P. H. (2002). Immune escape of tumors: apoptosis resistance and tumor

counterattack. Journal of Leukocyte Biology, 71(6), 907–920.
Jerne, N. K. (1973). The immune system. Scientific American, 229(1), 52–60.
Jerne, N. K. (1974). Toward a network theory of the immune system. Annals of Immunology, 125C,

373–389.
Kourilsky, P., & Truffa-Bachi, P. (2001). Cytokine fields and the polarization of the immune re-

sponse. Trends in Immunology, 22, 502–509.
Kurzrock, R. (2001). Cytokine deregulation in cancer. Biomedicine & Pharmacotherapy, 55(9–

10), 543–547.
NASA (2004). Human immune system inspires NASA machine-software fault detector. NASA Bul-

letin, 26 October.
NASA (2011). Russian scientist creates simulation of daily sea surface temperatures in the Caspian

Sea. NASA Goddard Earth Sciences Data and Information Services Center News, 14 January
2011. Available at http://disc.sci.gsfc.nasa.gov/giovanni/gesNews/caspian_sea_sst_animation.

NOAA-NESDIS-National Oceanographic Data Center (1998). Climatic atlas of the Barents Sea.
Available at http://www.nodc.noaa.gov/OC5/barsea/barindex.html.

Savino, W., & Dardenne, M. (2000). Neuroendocrine control of thymus physiology. Endocrine
Reviews, 21(4), 412–443.

Tarakanov, A. O. (2008). Formal immune networks: self-organization and real-world applica-
tions. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (1st ed.). London:
Springer.

Tarakanov, A. O. (2008). Immunocomputing for intelligent intrusion detection. IEEE Computa-
tional Intelligence Magazine, 3(2), 22–30.

Tarakanov, A. O. (2009). Immunocomputing for geoinformation fusion and forecast. In Lecture
notes in geoinformation and cartography (Vol. XIII, pp. 125–134). Berlin: Springer.

http://kdd.ics.uci.edu
http://disc.sci.gsfc.nasa.gov/giovanni/gesNews/caspian_sea_sst_animation
http://www.nodc.noaa.gov/OC5/barsea/barindex.html

12 Formal Immune Networks: Self-Organization and Real-World Applications 341

Tarakanov, A., & Adamatzky, A. (2002). Virtual clothing in hybrid cellular automata. Kybernetes,
31(7–8), 394–405.

Tarakanov, A., & Dasgupta, D. (2000). A formal model of an artificial immune system. Biosystems,
55(1–3), 151–158.

Tarakanov, A., & Dasgupta, D. (2002). An immunochip architecture and its emulation. In
NASA/DoD conference on evolvable hardware (EH’02) (pp. 261–265). Los Alamitos: IEEE.

Tarakanov, A. O., & Fuxe, K. G. (2010). Triplet puzzle: homologies of receptor heteromers. Jour-
nal of Molecular Neuroscience, 41(2), 294–303.

Tarakanov, A. O., & Tarakanov, Y. A. (2004). A comparison of immune and neural computing for
two real-life tasks of pattern recognition. In Lecture notes in computer science (Vol. 3239, pp.
236–249). Berlin: Springer.

Tarakanov, A. O., & Tarakanov, Y. A. (2005). A comparison of immune and genetic algorithms for
two real-life tasks of pattern recognition. International Journal of Unconventional Computing,
1(4), 357–374.

Tarakanov, A. O., Skormin, V. A., & Sokolova, S. P. (2003). Immunocomputing: principles and
applications. New York: Springer.

Tarakanov, A. O., Goncharova, L. B., & Tarakanov, O. A. (2005a). A cytokine formal immune
network. In Lecture notes in artificial intelligence (Vol. 3630, pp. 510–519). Berlin: Springer.

Tarakanov, A. O., Kvachev, S. V., & Sukhorukov, A. V. (2005b). A formal immune network and its
implementation for on-line intrusion detection. In Lecture notes in computer science (Vol. 3685,
pp. 394–405). Berlin: Springer.

Tarakanov, A., Prokaev, A., & Varnavskikh, E. (2007). Immunocomputing of hydroacoustic fields.
International Journal of Unconventional Computing, 3(2), 123–133.

Tarakanov, A. O., Fuxe, K. G., & Borroto-Escuela, D. O. (2012). Integrin triplets of marine sponges
in human brain receptor heteromers. Journal of Molecular Neuroscience, 48(1), 154–160.

Vilcek, J., & Feldman, M. (2004). Historical review: cytokines as therapeutics and targets of ther-
apeutics. Trends in Pharmacological Sciences, 25, 201–209.

Wall, L., Burke, F., Caroline, B., Smyth, J., & Balkwill, F. (2003). IFN-gamma induces apoptosis
in ovarian cancer cells in vivo and in vitro. Clinical Cancer Research, 9, 2487–2496.

Chapter 13
A Model for Self-Organizing Data Visualization
Using Decentralized Multi-Agent Systems

Andrew Vande Moere

13.1 Introduction

In the information society of today, corporations, government agencies and various
scientific fields are continuously accumulating data. The complexity of this data is
staggering, and our ability to collect data is increasing faster than our ability to an-
alyze it. Although current database technology has made it possible to store and
manage huge amounts of data in a comprehensive manner, the exploration of this
data is still bound to relatively rigid interfacing methods. Visualization, the represen-
tation of data graphically rather than textually, aims to exploit the high-bandwidth
human perceptual and cognitive capabilities to draw interferences from visual form.
Its real purpose goes beyond that of generating beautiful pictures, as visualization
aims to induce useful insights where there was none before. Such insights can take
different forms, such as through the discovery of unforeseen data phenomena, the
ability to derive decisions or to visually communicate knowledge and insights based
on discoveries made within the dataset. More particularly, the field of data visualiza-
tion faces the need to represent the structure of and the relationships within large,
complex datasets that contain so-called ‘abstract’ concepts, which lack a natural
notion of position in space (Card et al. 1999; Chi 2000; Tory and Möller 2004).
Data visualization therefore differs from scientific visualization, which generally
represents datasets that have a physical form in nature and generally can be repre-
sented through a process of graphical reproduction, such as geographical layouts,
wind simulations or medical imaging. Because abstract data is non-spatial and lacks
any natural representation, the fundamental challenge for data visualization is thus
“. . . how to invent new visual metaphors for presenting information and develop-
ing ways to manipulate these metaphors to make sense of the information” (Eick
2001). Data visualization is different from data mining, which deals with the analy-
sis of datasets to establish relationships and identify patterns, so that data items are

A. Vande Moere (B)
Faculty of Architecture, Design and Planning, The University of Sydney, Sydney, NSW, Australia
e-mail: andrew@arch.usyd.edu.au

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_13,
© Springer-Verlag London 2013

343

mailto:andrew@arch.usyd.edu.au
http://dx.doi.org/10.1007/978-1-4471-5113-5_13

344 A. Vande Moere

clustered into groups according to apparent data similarity. Although data visualiza-
tion predominantly aims to convey meaning and insights, it often uses data mining
techniques to analyze or order the dataset first. As datasets continuously become
more complex in terms of size, time-variance and data dimensionality, data visual-
ization techniques need to evolve to accommodate for more sophisticated ways of
data analysis and visual representation.

Self-organization is a process in which the internal structure of a complex system
automatically increases without being guided by an outside source. Self-organizing
processes are often coupled to the occurrence of emergent phenomena. An emer-
gent property is generally characterized when perceived complex behavior arises
from a collective of entities that individually where not ‘explicitly’ programmed to
do so. Emergent behavior is generally generated by the continuous and recursive
interaction of individual entities with similar entities in their immediate environ-
ments. When well-considered interaction mechanisms are used, these interactions
can, on a holistic level, lead to seemingly rational behavior and the observable pro-
liferation of order. The probably best known examples of such emergent behaviors
are the flocking of birds and schooling of fish, or the amazing organizational ca-
pabilities (e.g. shortest way finding, waste disposal) of ant colonies. Principles of
emergence generation have been successfully applied to a wide set of disciplines,
including problem solving, learning and optimization problems in the fields of sys-
tem design, pattern recognition, biological system modeling, signal processing, de-
cision making, simulation and identification (Kennedy and Eberhart 2001). Such
systems are able to successfully solve complex problems that contain multiple un-
predictable or time-varying parameters. Self-organization intelligence is basically
divided and distributed to simple and comprehensible units, which holistically are
tolerant to local failures or changing environments. Self-organization seems thus to
be an ideal method to be applied to data visualization, as this field often involves
multifaceted and inherently unpredictable datasets that need to be ‘ordered’ into
apparently well-ordered diagrams. By applying self-organization to the problem of
data visualization, data mapping metaphors might emerge that suit particular dataset
characteristics, hereby potentially revealing data patterns that were unknown before.

Self-organizing data visualization is based on augmenting direct data mapping
techniques with simple forms of artificial intelligence, assuming that datasets inher-
ently contain sufficient characteristics to organize themselves. It aims to instigate
visual emergent phenomena from meaningful data relationships inherently present
in the dataset. It is based on the conception that each single data item within a dataset
can be mapped onto a unique data visualization agent. Each agent then determines
its own visual properties through a process of continuous and recursive interactions
with other agents. The iterative organization of the agents creates emergent visual
effects that are based on data properties that are autonomously detected by agents,
and can be perceived and interpreted by users. Ultimately, this approach might lead
to new data visualization techniques that are more ‘aware’ of the data characteris-
tics they represent, and can optimize the overall representation according to good
visualization guidelines and human visual cognitive knowledge.

13 A Model for Self-Organizing Data Visualization 345

This chapter aims to demonstrate the potential of self-organization for data visu-
alization purposes. At the same time, it also illustrates how self-organization prob-
ably is not the most efficient existing method to visually represent data, due to
the required computation power and the considerable amount of efforts needed in
managing the various parameters that control the emergent phenomena. As will be
discussed in Sect. 13.5, self-organizing visualization suffers from inadequate cal-
culation performance, comprehensibility difficulties, and the influence of multiple
parameters on the emergent effects. However, self-organizing data visualization still
forms a valuable alternative approach to the predetermined and fixed data mapping
techniques that currently exist, as it specifically allows unexpected visual organiza-
tions to occur.

In this chapter, the principles of the self-organizing data visualization model are
described and illustrated with three different case studies. The ‘information parti-
cle’, ‘information flocking’ and ‘cellular ant’ approaches each use a different visual
metaphor, respectively based on particle animation, swarming and cellular automata
principles. Each system demonstrates how meaningful properties contained within
datasets can be made apparent by the simulation of visually emergent effects, using
relatively simple self-organizing behavior rules. Based on these findings, Sect. 13.5
discusses the potential benefits and shortcomings of this concept.

13.2 Background

Self-organizing data visualization is fundamentally different from most other agent-
based approaches known in the fields of visualization or data mining, which tend to
focus on using agent intelligence for data analysis, visualization dataflow or soft-
ware development optimization.

13.2.1 Decentralized Multi-Agent Systems

An agent is a system situated within an environment. It senses that environment and
acts on it autonomously, over time, to realize a set of design objectives (Franklin and
Graesser 1996). An intelligent agent typically can be characterized as social, reac-
tive and proactive, as it operates in a changing, unpredictable environment where
there is a possibility that actions can fail (Woolridge 2001). Such agents can collab-
orate with other agents, can perceive and respond to changes, and can exhibit goal-
directed behavior. A multi-agent system is populated with multiple equal agents,
generally because they pursue different goals, or because the environment is too
complex for a single agent to observe completely. The agents within such system
interact and negotiate with each other, a process which is generally determined by
concepts of cooperation, coordination and negotiation. An agent’s behavior can be
determined by a rule-based system that interprets communications and interactions

346 A. Vande Moere

Fig. 13.1 Typical information visualization dataflow model (after Upson et al. 1989)

with other agents, the perceived environmental changes and the agent’s goals. A de-
centralized multi-agent system contains numerous equal agents that have communi-
cation links with those in their neighborhood, either directly or through the environ-
ment, but always in absence of a centralized coordinator. Such systems are designed
to facilitate self-organization, the spontaneous increase in complexity of internally
organized structures.

Accordingly, self-organizing data visualization is based on decentralized multi-
agent systems that are inherently capable of simulating collective behavior, such as
swarming, cellular automata and particle animations. By controlling these agents
with data values, the resulting behaviors are fully controlled by dataset properties.
The resulting visual ‘effects’ are presented in an organized and consistent manner,
so they aim to be perceived and interpreted efficiently.

13.2.2 Data Visualization

Data visualization is based on the principle that meaningful data properties, such
as tendencies, trends, outliers and similarities between data items, can be made ap-
parent by translating raw textual or numerical data values into a holistically inter-
pretable visual representation. As shown in Fig. 13.1, the typical data flow pro-
cess for translating data into visual form is considered to be an iterative analysis
cycle that passes through four distinct phases (Upson et al. 1989). First, a large
amount of ‘raw’ data is filtered into manageable and interpretable data subsets in
the Data Space domain. The filtering of these subsets is determined by dataset qual-
ity and user interests. First, corrupt or otherwise invalid data items are removed from
the dataset, which might have resulted from faulty parsing or querying procedures.
Then, the system caches only those data items that are relevant for a particular user,
for instance those particular data items that are visible, or are selected by settings in
the user interface. The derived data subsets in Feature Space are then translated into
visual distinguishable forms in Object Space, as specifically designed ‘data map-
ping rules’ generate visual artifacts that are consistent with the values and attributes
within the dataset. In general, specific data attributes relate to visual objects (e.g.
points, lines, shapes), whereas their values determine the transformations applied
to those forms (e.g. position, color, direction, size). As each visual object stands
for a unique data item, the resulting visual constellation of objects is representa-
tive for the whole dataset. Finally, the resulting collection of visual objects, labels

13 A Model for Self-Organizing Data Visualization 347

and legends needs to be rendered into a coherent perceivable form in Image Space,
as different forms of media require specific treatments and formats, depending on
aspects such as the display size, distributed computation resources, user context or
hardware capabilities. As will be described in the next section, agent-based systems
have been successfully used in each of these visualization dataflow stages.

13.2.3 Agent-Based Visualization Approaches

Applied artificial intelligence and the visualization domain have been successfully
combined for various purposes. However, most past work has been focused on ei-
ther the filtering (Feature Space) or rendering (Image Space) phases of the typical
visualization data flow. In contrast, the proposed model in this chapter uses agents
for the mapping of derived data to visualization objects.

Agent-based data mining addresses the retrieval, management and extraction of
information out of large, distributed databases. Data mining agents are capable of
accessing distributed datasets from which useful, higher-level information is ex-
tracted. Such agents keep track of and organize information spaces by understanding
meaningful relationships within datasets, and are able to present these proactively
to users. Some agent-based data mining algorithms are based upon a centralized
system component, such as middle agents or directory services, which know the lo-
cation and capabilities of each agent, enabling each agent to communicate with all
other agents. Complex problems, such as clustering, are optimized by reducing the
solution space that the algorithm has to search, or by partitioning them into a series
of smaller problems. In contrast, a decentralized multi-agent system contains nu-
merous equal agents that have some communication links to other agents. The goal
of such agents is to iteratively select and rearrange these links to form interactive
connections, so that data clustering can be achieved in a collective effort (Ogston
et al. 2003).

Most so-called agent-based visualizations consist of traditional representation
techniques that utilize the agents as their dataset to be visualized. These agents are
thus not designed to interfere with the visualization, and the resulting representa-
tions convey typical agent properties instead of characteristics of complex, abstract
datasets. For instance, so-called multi-agent visualizations have been used to dis-
play intrinsic relations (e.g. number of messages, shared interests) between agents
for monitoring and engineering purposes (Schroeder and Noy 2001). Visualization
in data mining tends to be used to present final results, rather than playing an im-
portant part throughout the entire data exploration process (Robinson and Shap-
cott 2002). Multi-agent systems have been developed to organize the visualization
dataflow, for instance for representing complex fuzzy systems (Pham and Brown
2003). Some visualization systems utilize agents to determine the most efficient
display parameters within the Image Space. For instance, an advanced graphic vi-
sualization rendering pipeline can consist of several remotely dispersed agents to
allow for the abstraction and reuse of rendering strategies, including distributed or

348 A. Vande Moere

progressive rendering (Roard and Jones 2006). Similarly, the e-Viz system is based
on agents, so-called active visualization components, that are designed to self-heal
software failures or network problems, and can self-optimize the rendering perfor-
mance (Brodlie et al. 2006). Multi-agent systems are then used to support flexibility
regarding the interaction possibilities or the rendering quality of the visualization
(Ebert et al. 2001). Agents and visualizations have been combined to organize, an-
alyze or mine abstract datasets, with agents embedded in both Data and Feature
Space. Data can be ordered and filtered by so-called “visualization agents”, which
then becomes represented using conventional techniques, such as for discovering
the most desired pages from a large web site (Hiraishi et al. 2001). Agents can help
users to decide the most suitable visualization technique depending on the dataset
characteristics (Marefat et al. 1997), guide users towards the most effective visual-
ization approach according to dataset characteristics and visual cognitive guidelines
(Senay and Ignatius 1994), or act as visualization assistants to help choose methods
for effectively visualizing e-commerce data (Healey et al. 2001). Similarly, some vi-
sualizations approaches support developers to choose the most optimal association
rules that allow for efficient data exploration (Sadok and Engelbert 2004).

Only few approaches exist that use multi-agent systems as a way to map data into
visual form, or, with other words, that contain agents in Object Space that act as vi-
sual elements themselves. In 1996, Ishizaki proposed the idea of deriving design
solutions by the emergent behavior of a collection of agents, so called performers,
which are individually responsible for presenting a particular segment of informa-
tion (Ishizaki 1996). Although this approach primarily focused on interactive and
information-rich interfaces consisting of agents that represent news headlines, sev-
eral conceptual similarities with our proposed data visualization model exist: the
agents represent data by themselves, are not bound to particular types of visual ex-
pression, are governed by a set of behavior rules that are based on the detection of
data characteristics, and even collaborate together to reach a common strategic goal.
More recently, a similar collaborative multi-agent system has been developed that
produces artistic Mondriaan-like paintings emergently (Mason et al. 2004). Other
research approaches that are more specifically relevant to each of the case study
approaches are mentioned in their respective sections.

13.3 Emergence in Data Visualization

The self-organizing data visualization model is based on the assumption that data
items themselves can be treated as agents that, depending on their inherent rela-
tionships, are capable of autonomously determining their own visual representation.
Accordingly, this section investigates the specific requirements to derive emergent
visual effects out of data characteristics.

13 A Model for Self-Organizing Data Visualization 349

13.3.1 Visual Emergence Versus Data Pattern Emergence

Each data visualization technique is uniquely determined by its data mapping rules,
a set of simple conditions that ‘translate’ data values into visual form from Feature
Space to Object Space. Typically, each single data item within a dataset is mapped
onto a separate visual object, such as a point, line, shape or three-dimensional object.
The data variables of a data item then determine the visual transformations of this
visual object, such as its position, color, shape, length, or orientation. Generally,
these data mapping rules are implemented by the developer, who, at the very least,
takes into consideration following aspects.

(i) Anticipated dataset characteristics, in order to specify the visual objects and
their properties, and design the according data mapping rules. Several empir-
ically derived guidelines exist that correlate effective visualization techniques
according to dataset typology (Mackinlay 1986) (e.g. numerical, categorical,
etc.). However, the data mapping choice is typically made by its developer.
Even when a specific technique has been chosen, a visualization developer
needs to fine-tune the data mapping rules according to the expected size, time-
dependency, data dimensionality, time-variance, data value range and data pat-
tern semantics of the dataset. For instance, anticipated maximum and minimum
data values have to correspond to the specific axis scales or color scale, while
the dataset update frequency determines to how fast the visualization should
adapt to any dynamic changes.

(ii) User Interests. Similarly to the dataset characteristics, the data mapping rules
should assign the most dominant and pre-attentive visual properties, such as
color and position, to the data patterns a user is most interested in.

(iii) Aspects of human visual perception and cognition, so that data patterns are
represented in an easily perceived and intuitively understandable way. For a
data visualization to be effective, it has to translate data patterns into artifacts
that visually stand out, while allowing the user to comprehend their mean-
ing. In other words, the data mapping needs to allow for an ‘inverse’ mapping
to occur rapidly and faultlessly by its users. Therefore, the data mapping de-
sign process needs to incorporate insights from different adjacent disciplines,
such as perception in visualization (Ware 2000), visualization guidelines (Card
et al. 1999), user interaction (Shneiderman 1998), data exploration (Jankun-
Kelly et al. 2002), task-related and human factors (Tory and Möller 2004) and
graphic design principles (Tufte 2001). As shown by insights from the Gestalt
School of Psychology, humans attempt to perceive and understand any graph-
ical representation as one, single, coherent form or Gestalt, instead of a col-
lection of individual components. The Gestalt research aimed to describe the
principles of perceptual visual processes that result in perceptual coherence,
which was synthesized in a set of so-called Gestalt laws. Figure 13.2 illus-
trates how groups of nearby objects, or objects similar in color or shape, are
perceived as belonging together. Conceptually, this principle implies a level of
emergence occurring on a perceptual level, as visually complex patterns can be

350 A. Vande Moere

Fig. 13.2 Visual emergence as gestalt rules. Separate objects are perceived as belonging together
due to specific common characteristics

recognized from a collective of entities that individually where not explicitly
informed to do so.

The traditional design of data mapping rules is specifically motivated by the wish
to highlight meaningful data phenomena by purposively simulating the occurrence
of “visually emergent” effects. Traditional visualization approaches rely on the di-
rect translation of similar data values to similar visual properties, so that, for in-
stance, data items that are ‘similar’ tend to be represented nearby each other or
are highlighted by an identical color. In contrast, a self-organizing system aims to
achieve a visually similar effect by a decentralized approach, so that similar data
items should first ‘find’ each other, and then ‘stay close’ together, or ‘determine’ a
‘common’ color. The detection of similar items, their grouping or their cooperative
color choice can be considered emergent, as self-organization requires simple pair-
wise comparisons between data items instead of a centralized data analysis. Con-
sequently, self-organizing data mapping is a process that aims to magnify ‘dataset
emergent’ phenomena into ‘visual emergent’ effects. This dual reliance on emer-
gence, first in the detection of data patterns and then in the deliberate generation of
visual forms, is the main driving force behind the proposed self-organizing visual-
ization model.

Technically, self-organizing data visualization is based on mapping meaningful
data values with the numerical parameters that influence emergent behaviors of ap-
plied artificial intelligence simulations. As those weighting values are directly de-
rived from the dataset, the resulting emergent behavior ‘represents’ that dataset.
In contrast, traditional data visualization approaches are determined by rigid data
mapping rules, predefined by the application developer. Any alterations to such data
mapping rules tend to be strictly limited to the configuration of the visual object
transformations, such as the application’s color palette or the axes scales. Although
most data visualization applications offer a set of interactive features facilitating
typical “human-computer interaction mantra” operations (i.e. overview, zoom and
select) (Shneiderman 1998), data mapping rules are generally considered to be a
fixed part inherent to the visualization technique. In contrast, by merging the con-
cept of emergence with data mapping, unforeseen behaviors might become apparent
that convey useful data patterns in unexpected ways.

13 A Model for Self-Organizing Data Visualization 351

Fig. 13.3 A data visualization agent and its behavior as determined by data-driven behavior rules

13.3.2 Data Visualization Agent

The self-organizing data visualization concept is based on mapping data items di-
rectly onto agents. Each single data item (e.g. data object, data tuple or database
row, retrieved from a database or dataset) is mapped onto a unique data visualiza-
tion agent. The aim of this particular approach is to let agents “behave” according
to their individual data values or according to any differences with the data values
of their neighbors. As illustrated in Fig. 13.3, each agent is visually represented by
a visual object, and its dynamic behavior (e.g. position, color, shape, speed) is de-
termined by a set of behavior rules that in turn is controlled by its data item’s data
values. As time progresses, its data values change and the agent’s dynamic behavior
with adapt accordingly.

Traditional data visualization techniques are generally based on pre-analyzed
datasets. For instance, some approaches are based on data similarity tables, which
contain quantitative measurements of how pair-wise data items relate to each other.
In contrast, self-organizing data visualization performs the dataset analysis during
the visualization itself, where it is executed by a collection of agents instead of a sin-
gle, central process. All agents exist in a shared visualization space, which is ruled
by a common application timeline. All agents are ‘situated’, viewing the world from
their own perspective rather than from a global one. Their actions are determined by
internal states, as determined by a set of common behavior rules. These rules rep-
resent the strategy of the agent, and how it should behave according to its own data
characteristics, those of neighboring agents, and to any external influences, such as
real-time changes in the dataset, or user interactions (e.g. selection, filters).

For static datasets, each agent continuously represents the same set of data val-
ues. For time-varying (also called dynamic, time-dependent, time-variant, time-
based or temporal) datasets, all agents are synced to the sequential progress of the
application timeline, which moves ‘forward’ or ‘backwards’ in an iterative way.
Each agent then is subject to a ‘data update’, which either corresponds to a ‘data
alteration’ or no change at all. The application timeline progresses according to a
specific rhythm, so that ‘newly updated’ data items are fetched from the database,
and then assigned to the according agent. An updated agent will reconsider its vi-
sual transformations, and might change its dynamic behavior or representation cues
accordingly. Because of the presence of multiple, equal agents that are not centrally
controlled, the data visualization is essentially a decentralized multi-agent system.

352 A. Vande Moere

In short, a typical data visualization agent needs to include at least following char-
acteristics:

• Data Interpretation. Each agent is aware of all the data attributes and values of
the data item it represents. It can also detect any changes that occur to it over
time, caused by the application timeline simulation or by user interaction.

• Local Perception. The agent is capable of perceiving the environment it is
present in, including any other agents in its vicinity and any external objects or
space boundaries.

• Local Communication. Each agent can communicate with other agents nearby,
and can compare all the attributes of those agents, including their data item or
their actual visual state.

• Negotiation. More ‘intelligent’ agents can perform complex negotiations with
neighboring agents, such as simple tit-for-that strategies (e.g. the shape of agent
A grows while taking away the space required from the shape of its neighboring
agent B) or positional swapping (e.g. agent A and B swap their position).

• Visual Presence Autonomy. Each agent is capable of autonomously determin-
ing its own visual presence, in form of altering the visual attributes it inherently
possesses, including its spatial position, size, color, orientation, speed, direction,
shape and so on. According to the ‘negotiation’ characteristic, agents can also
change the visual properties of its neighboring agents to some degree.

• Historical Memory. Each agent can store and historical events and access them,
such as the previous values that its data item has contained, the coordinates it has
passed through, the visual attributes it has adapted to, and the other agents it has
encountered over time.

More complex agent characteristics that would be useful for data visualization pur-
poses can be easily imagined, such as learning, reasoning, motivation, curiousness
and so on. This chapter instead will focus on the self-organizing and emergent ca-
pacities that can be achieved by using reasonably simple agent principles.

13.3.3 Behavior Rules

At initialization, all agents are positioned randomly on the visualization canvas. All
agents are governed by the same set of behavior rules. These rules indirectly ‘map’
the agent’s data values into visual properties. For instance, one ore more behavior
rules could define an agent’s color according to the relative difference in data val-
ues with one of its neighbors, or let it move towards the most similar agent. As
mentioned in Sect. 13.3.1, these behavior rules need to be specifically designed to
simulate visually emergent effects, so that similar data items can be effectively per-
ceived as ‘belonging together’. For instance, the Gestalt Rule of Proximity states
that objects that are located nearby each other are emergently perceived as one. In
traditional data visualization, this particular characteristic is exploited by specifi-
cally choosing the data attributes so that data items with similar values are posi-
tioned in the vicinity of each other. For the agent-based approach, a similar visual

13 A Model for Self-Organizing Data Visualization 353

effect is achieved by a well-considered sequence of individual agent actions. Be-
cause of the multitude of such pair-wise agent interactions, multiple similar agents
will group, and large spatial clusters will form. Although the end result of these dif-
ferent methods might seem similar at first sight, self-organizing data visualization
is intrinsically dynamic, completely decentralized and determined in real time.

13.4 Case Studies

The following section describes three different approaches of the self-organizing
data visualization model. From a simple set of cause-and-effect behavior rules to
more elaborate and complex inter-agent negotiation strategies, the proposed tech-
niques demonstrate how the mapping of data onto visual properties can be accom-
plished without the need for central control. The simulation of self-organizing be-
havior in each technique is based on insights borrowed from the fields of applied
artificial intelligence and artificial life. The resulting emergent behavior can be in-
terpreted as meaningful data trends and patterns, as the apparent effects are fully
determined by, and thus inherently reflect, inherent dataset characteristics.

13.4.1 Metaphor 1: Infoticle Method

The infoticle system is based on a simple set of sequential behavior rules that de-
termine the speed and direction of moving particles in a three-dimensional, virtual
space. This particular approach demonstrates how the traditional vocabulary used by
data visualization, consisting of position, color, shape, size, etc., can be effectively
broadened with a novel visual property, that of dynamic animation. The power of
animation to create interpretatively rich behaviors allows for the generation of dis-
tinctive motion typologies that convey time-varying data trends.

13.4.1.1 Self-Organizing Method: Particle Animation

A particle can be imagined as a point-like mathematical object in three-dimensional
space. It is generally determined by a fixed set of attributes, such as position, veloc-
ity (speed and direction), acceleration, mass, color, lifespan, age, shape, size and
transparency. A particle system consists of a collection of particles, each of which
is influenced independently through time by a set of predefined conditions (Martin
1999). Particle systems were first formally proposed by Reeves (1983) as a render-
ing technique that is able to realistically simulate dynamic, natural phenomena such
as rain, explosion, waterfalls, fire or smoke. Currently, particle systems are a widely
used computer graphics technique, as the essential programming logic required to
efficiently implement real-time particle systems have been described in detail (see

354 A. Vande Moere

Lander 1998; van der Burg 2000 for applicable software programming approaches).
Particle systems can be combined with so-called ‘forces’, which are abstract, point-
like elements in virtual space that influence the movement and speed of each single
particle by attracting or repulsing it according to the laws of Newtonian mechanics.
Given correct initial conditions, and combined with internal relationships or exter-
nal forces, particle systems can be animated over time to convey seemingly complex
and intriguing behaviors (Tonnesen 2001). For instance, the combination of parti-
cles and forces enable computer graphic designers to convey realistic visual effects,
from simulating gravity in space galaxies over the bouncing of balls on surfaces to
the fading of flames.

The ultimate goal of using dynamic animation as an independent visual property
in data visualization is the creation of interpretatively rich behaviors that seem to be
intentional, possibly even provoking causality, animacy and initiative. Behavioral
animation techniques typically employ rule-based systems to specify the dynamic
motions, so that a set of cause-and-effect rules is listed which the elements that are
being animated must follow. For instance, Lethbridge and Ware (1990) used sim-
ple behavior functions based on distance, velocity and direction to model complex
causal relationships. Empirical cognitive research suggests a huge potential of us-
ing motion for data visualization purposes (Ware et al. 1999). Bartram and Ware
(2002) proved that motion typology has a strong perceptual grouping effect that can
be effectively used for information display. For instance, similar motion typologies
are perceived as grouped over time, a phenomenon also called temporal grouping,
which relates to the appearance and locations of the elements, the proximity in time
and the similarity of motions (Kramer and Yantis 1997). The use of motion for rep-
resenting information might seem to contradict with traditional mapping techniques
that position data items on ‘fixed’ Euclidian coordinates. Instead, motion should be
considered as a property that is independent of position, and instead relies on the
perceived dynamic relationships between the various elements that move similarly
or differently. Instead of ‘morphing’ visual elements from one fixed Euclidian po-
sition to another, behaviorally moving particles have the inherent capability to be
updated on-the-fly.

13.4.1.2 Particle Animation as Data Mapping

In the infoticle system, each data visualization agent is represented as a unique parti-
cle within a three-dimensional virtual space. This particle is coined ‘infoticle’ (short
for ‘information-particle’), and will be further referred to as ‘agent’. The virtual
world also contains a set of ‘forces’, which are fixed points in space that represent
specific static data attribute values that an agent’s data item potentially can contain.
The dynamic behavior of each agent is determined by a set of behavior rules, which
in turn are triggered by the alterations of its data values over time. In the infoticle
system, these behavior rules only specify (1) to which particular force the agent is
‘attracted’ to, and (2) whether it should speed up or slow down. In practice, the ap-
plication simulates the linear progression of a timeline that corresponds to the time

13 A Model for Self-Organizing Data Visualization 355

Fig. 13.4 A force attracts agents that contain data items with equal data values (left). Agents with
dissimilar data items are not influenced by such force (right)

stored in the datasets. As the timeline progresses, data objects are updated with new
data values. As a result, some data items, and thus agents, are updated and some
are not. For those that are updated, their data items may either contain different data
values, or equal ones. The infoticle behavior rules specify that:

• Data Update and Alteration. Each agent of which its data item is updated over
time, speeds up, and is ‘attracted’ to a force that represents the new ‘updated’ data
value (see Fig. 13.4). Once it reaches a particular distance of the force, it starts
orbiting around it. This rule causes agents with similar data items to congregate in
a circular motion around the same data attribute (force), similar to space satellites
that orbit planets.

• Data Update Only. Agents that are updated but encounter no change in data
value only speed up while being attracted to the same force. This rule causes
these agents to follow a more elliptic path around the same data attribute (force),
similar to space comets around our sun.

• No Data Update. Agents that are not updated, are subjected to a virtual ‘friction’
and slow down, while being attracted to the same force. Such agents tend to ‘fall
back’ and eventually ‘crash’ to the center of the force.

As shown in Fig. 13.5, flat ribbon-like visual elements graphically traced the
spatial trajectories of the agents, so their dynamic behavior could be investigated in
more detail, even in a static state. The width of the ribbon corresponds to a specific
data attribute value, while time stamps clarify the historical trajectory of the agent.

13.4.1.3 Emergent Data Visualization Patterns

The infoticle method has been applied for a large dataset containing the Intranet
file usage of a global, medium-sized company with about 7,000 employees over
a timeframe of a year. Each agent represented a document that was stored on the
Intranet file servers. The global offices were divided in seven different geographi-
cal categories (e.g. Asia, Europe, USA, etc.), each of which was assigned a unique
‘force’. The application timeline simulated the daily file usage according to the data

356 A. Vande Moere

Fig. 13.5 Ribbon representation tracing the trajectory of the agent

stored inside the historical Intranet log files. During the visualization, Intranet files
(or agents) traveled to those global offices in which they were downloaded for a
specific timeframe. As a result, the visualization conveyed the global knowledge
distribution over time, so that particular data patterns could be detected and com-
pared to the traditional means of Intranet log file reports and file usage rankings that
the company was purchasing to assess the effectiveness of their Intranet. Several
additional technical features to deal with the nature of continuous, widely ranging,
unpredictable data streams of different time zones (Vande Moere et al. 2004).

Users could explore the data visualization at any moment, by pausing, rewinding
and forwarding the application. Accordingly, agents smoothly moved back and for-
ward along their historical trajectories. Because of the specifically designed interac-
tions between both speed and direction alterations, emergent visual effects appeared
that conveyed meaningful data alteration trends over time. As agents could freely
move in three-dimensional space depending only to their attraction to a specific
force, agents were initially randomly distributed so that the initial point of origin of
a data pattern plays no role. As illustrated in Fig. 13.6, the most meaningful emer-
gent patterns included:

• Star Pattern. Documents that were only downloaded ‘once’ during a relatively
long timeframe ‘circled’ around their representative geographical forces. The
smaller the agent-force distance, the longer ago they had been downloaded. These
documents were old and not effectively shared within the company, and possibly
should be reclassified in the Intranet system.

• Comet Pattern. Documents that were downloaded often, but by a same geogra-
phy, moved further away from that representative force in elliptical formed tracks.
These were documents that were only shared within the same geographical unit,
probably containing only locally valid knowledge.

• Quark Pattern. Documents that were downloaded (1) relatively often and (2) by
several different regions were characterized by erratic movements in-between the
respective forces. Obviously, these particles represented the most shared docu-
ments that contained information relevant to the whole company during that par-
ticular timeframe.

13 A Model for Self-Organizing Data Visualization 357

Fig. 13.6 Visually emergent
Infoticle patterns, resulting
from data-driven
self-organizing behavior. The
circles represent the different
geographical units, the ribbon
and time stamps trace the
three-dimensional trajectory
of a particle. Patterns visible:
erratic Quark Pattern (top)
versus elliptical Comet
Patterns (bottom)

Users could investigate the resulting visual patterns in a dynamic as well as static
state. Dynamically, users specifically looked for erratic, circular, elliptical or sud-
denly changing movements of agents, following the effect of specific document ad-
vertisements, or the passing-by of time-zone patterns. As illustrated in Fig. 13.7,
users could search within spatial zones for regional trends, or followed the per-

358 A. Vande Moere

Fig. 13.7 Static zoning of agents according to the data pattern

formance of individual documents over time. In a static state, the formality of the
ribbons tracing the agents’ paths intuitively conveyed the dynamic characteristics
of file usage. Globally, specific constellations of multiple agents appeared that con-
veyed so-called ‘axes of knowledge’ between two or more dominant global offices.

Several data patterns were discovered of which the company was not aware be-
fore. For instance, previously assumed highly ‘popularity ranked’ PDF documents
tended to show up as comet patterns within very short timeframes. Although those
documents were originally reported to be ‘widely and popularly shared’, their partic-
ular pattern proved that their relatively high download frequency was rather caused
by a single user rapidly browsing through pages, causing the PDF software reader
to cache separate pages and successively ‘hitting’ the Intranet server.

13.4.2 Metaphor 2: Information Flocking Method

The information flocking method augments the previously described infoticle tech-
nique and its capability to simulate interpretable motion typologies, with the concept

13 A Model for Self-Organizing Data Visualization 359

of swarming. Individual agents are enhanced with limited vision and communication
capabilities, so they can identify other agents in their neighborhood, read their data
items, and move towards or away from them without the need of external forces.

13.4.2.1 Self-Organization Method: Swarming

Swarming is based on the mathematical simulation of flocking birds or schooling
fish. Models of flocking reveal that overall group structures in animals are directly
affected by transformations at local levels (Couzin et al. 2002). More specifically,
swarming is believed to be reflective of the underlying internal relationships and
energy considerations within the social hierarchy of a typical flock (Davies 2004).
A possible functional explanation for emergent flocking behavior perceived in na-
ture describes how animals at the edge of the herd are more likely to be selected
by predators (Hamilton 1971). Accordingly, the flocking members would ‘selfishly’
attempt to move as close to the center of the herd as possible, and thus, in data visu-
alization terminology, ‘cluster’ together. Reynolds (1987) successfully modeled the
movements of so-called boids (or ‘bird-objects’) within a flock by designing a set
of simple behavior rules that each member of the flock has to follow. This algorithm
has been extensively used in the field of computer graphics, for instance to simulate
swarming in popular cartoon movies (Stanton and Unkrich 2003). The boid concept
has also been used in a technical context, offering a mathematical model of dynamic
formations with respect to parameters of wireless, ad-hoc network communications
systems (Kadrovach and Lamont 2002), or effective search strategies for perform-
ing exploratory geographical analyses (Macgill and Openshaw 1998). Swarming is
an example of the so-called Particle-Swarm Optimization (PSO) research field that,
like other evolutionary computation algorithms, can be applied to solve complex
optimization problems from cross-disciplinary fields (Kennedy and Eberhart 2001).

Reynolds used the observation of real flocks to derive the three primary behavior
rules that each member of a flock needs to follow. Each of these rules is applied
in parallel between all pairs of boids, when their distance is smaller than prede-
fined threshold values. Instead of simply averaging all behavior rules, a prioritized
acceleration allocation strategy has to be used. This approach allocates priority ac-
cording to the importance of the rule and normalizes the resulting values when a
rule receives less than what was requested. This weighted average is used to com-
pute the final velocity vector. The three behavior rules that govern each boid include
(see Fig. 13.8):

• Collision Avoidance. Each boid needs to move away from boids nearby, in order
to avoid crashing into one another.

• Velocity Matching. Each boid should move with about the same speed as the
agents in its neighborhood. As a result, multiple boids, as a group, seem to follow
a common goal.

• Flock Centering. Boids should attempt to stay close to other boids nearby. Boids
in the center will feel no pull outwards, whereas boids in the periphery will be
deflected inwards. As a result, each boid stays relatively near the center of the
flock.

360 A. Vande Moere

Fig. 13.8 Standard boid behavior rules (after Reynolds 1987)

13.4.2.2 Swarming Simulation as Data Mapping

Flocking behavior has been explored for the purpose of information display by Proc-
tor and Winter (1998). They showed how the clustering tendencies of swarming fish
can be exploited to represent a pair-wise similarity weight data matrix, contain-
ing the relationships of interest of employees. We have extended this method with
several features, such as the inclusion of time-varying data, a more stable flocking
algorithm and several technical features that are required to analyze the continuous
stream of dynamic, unpredictable data in real time (Vande Moere 2004). Similar to
the infoticle method, each agent is represented as a particle within three-dimensional
virtual space. However, the boid agents are able to sense the presence of other agents
in their vicinity. Each agent is visually represented by a colored, curved line con-
necting the three-dimensional points it has passed through, and show a gradually
decreasing transparency to convey directionality. The agent color depicts positive
(green) or negative (red) data value changes for a predefined data attribute. The
agents’ data items are sequentially updated according to the application timeline.
In addition to the three traditional swarming rules mentioned before, each agent is
governed by additional two behavior rules.

• Data Similarity. Each agent attempts to stay close to those agents with similar
data values. This attraction rule results in the spatial clustering of agents that
have similar data items. The similarity between agents is determined by testing
whether the difference in data values of a single data attribute is lower than a
predefined data similarity threshold.

• Data Dissimilarity. Each agent attempts to move away from those agents with
dissimilar data values. This repulsion rule significantly accelerates the cluster-
ing effect of the first rule. Agents clustering too slowly would eventually cause
the visualization to be confusing and non-representative. Accordingly, the con-
tinuous progression of the timeline requires all boids to cluster, ‘un-cluster’ and
‘re-cluster’ efficiently.

It should be noted that too rapid data updates causes a flock to never attain a
‘true equilibrium’ with boids finding their ideal position, and thus globally reach
a fully representative data representation. Therefore, it is necessary to stabilize the

13 A Model for Self-Organizing Data Visualization 361

Fig. 13.9 Short-term zoning patterns: individual boids being expulsed by the main flock (left), and
sub-flocks with similar data value changes appearing from the main flock (right)

boid behavior as much as possible by fine-tuning the swarming weighting factor
values and the pair-wise boid threshold distances. The exact numerical values of
these variables are determined through a trial-and-error process, as the application
designer is unable to foresee the exact outcomes of the simultaneously applied local
interactions.

13.4.2.3 Emergent Data Visualization Patterns

The information flocking method was tested with a dataset consisting of historical
stock market quotes of one year totaling about (±500 companies × ± 200 working
days) 12.631 data entries. The dataset was acquired from a public website (SWCP
2003) that accumulates the historical stock market prices of the 500 Standard &
Poor’s Index Directory, an index that represents a sample of 500 leading companies
in the most important industries of the U.S. economy. Each data visualization agent
represented a unique company. Agents calculated and compared the relative differ-
ence in price with their previous data update. As a result, the swarming behavior
reflected the similarities in how their stock market quotes changed over time, rather
than their exact stock market quote price. This method was capable of generating
several interpretable emergent phenomena, as illustrated by Figs. 13.9 and 13.10.

• Short-Term Clustering Patterns. Boids that were nearby each other and moving
in parallel directions represented similarities in stock quote change. Over time,
several sub-clusters containing ‘winning’ and ‘losing’ companies formed within
the main flock. Some individual boids and larger sub-flocks, consisting of ‘outly-
ing’ agents that were affected by significantly different short-term stock market
changes, split away from the main flock.

362 A. Vande Moere

Fig. 13.10 Long-term zoning patterns: the flock core (left), versus the flock periphery (right). The
according line graphs convey the relative volatility of the according stock quotes

• Long-Term Zoning Patterns. A visual distinction could be made between boids
in the perceived flock center, and those positioned in the flock periphery. Sub-
sequent analysis of the corresponding stock market price evolutions showed that
data items with long-term and volatile data value changes were loosely positioned
at the outside of the flock, whereas relatively long-term stable conglomerate enti-
ties remained closely together in the flock center.

• Collective Motion Behavior. The main flock often suddenly changed its global
direction, or even seemed to ‘implode’ or ‘explode’ at specific moments in time.
These erratic behaviors were traced back to significant global instabilities in the
stock market. The emergent behavior can be explained by the ‘guiding’ influence
of the more volatile boids in the flock periphery, which join their position with
boids in the flock center when their stock market quotes have stabilized, causing
an apparent implosion or explosion.

• Visual Swarming Formality. It was expected that the formality of the boid
swarm as a whole would correspond with specific data characteristics, so that,
for instance, irregular formations denoted chaotic data alterations, while sphere-
like swarms formed out of stably altered stock market quote prices. However, it
was concluded that such interpretations could only be made by a continuous ob-
servation of the changing shapes, and not from the perception of resulting static
formations.

The information flocking method is able to represent short-term (e.g. clustering)
as well as long-term (e.g. zoning) data tendencies in datasets with complex and
potentially randomly changing data values. It is capable of displaying hundreds of
time-varying data items simultaneously, even when the data changes in real-time, as
it performs the data value comparisons within the visualization canvas itself. Dis-
playing or even visually analyzing such amount of stock market companies simul-
taneously by line graphs would be impracticable. Whereas this approach certainly

13 A Model for Self-Organizing Data Visualization 363

is not ideal for real-world stock exchange applications, it is proposed as a prototype
towards more usable visualizations that are able to perform data analysis as well as
data representation simultaneously and in real-time. It also illustrates how motion
typology and spatial clustering can be used to convey complex data tendencies.

13.4.3 Metaphor 3: Cellular Ant Method

The cellular ant method augments the previously applied principles of self-
organization. Agents will also be able to determine their visual attributes, such as its
position, color and shape size. The resulting visual diagrams appear similar to those
generated by the multi-dimensional scaling (MDS) approach, which displays the
structure of distance-like datasets as simple geometrical pictures (Torgerson 1952)
arranged in two-dimensional space. In MDS diagrams, the distance between pairs
of data items denotes the degree of data similarity. Several MDS-like data visualiza-
tion techniques exist, for instance in combination with animation (Bentley and Ward
1996) or recursive pattern arrangements (Ankerst et al. 1998). One should note that
multi-dimensional scaling differs from clustering in that clustering partitions data
into classes, while MDS computes positions, without providing an explicit decom-
position into groups.

13.4.3.1 Self-Organization Method: Cellular Automata and Ant Foraging

The cellular ant method merges two established approaches: ant-based foraging
from applied artificial intelligence and cellular automata from artificial life. More
particularly, agent-based foraging is derived from the nest-cleaning characteristics
of ant colonies in nature, and has been successfully applied to data clustering in the
field of data mining.

Cellular automata (CA) is a well-known computational method originally pro-
posed by Von Neumann (1966). It consists of a number of cells in a grid that each
represents a discrete state (i.e. ‘alive’ or ‘dead’). All cells are governed by behav-
ior rules that are iteratively applied, and generally only consider the states of the
neighboring cells. When a specifically designed rule set is applied on well-chosen
initialization constellations, visually intriguing cell patterns can emergently occur,
such as demonstrated by the Game of Life application invented by Conway (Gard-
ner 1970). Cellular automata can also be used for a case-study to investigate the
controlling mechanisms of large multi-agent systems (Zambonelli et al. 2002).

Ant foraging is an example of ant-based data mining, which in turn combines
the nest-cleaning characteristics of ant colonies with the task of data clustering. The
typical ant clustering algorithm starts from a toroidal grid on which data objects
are randomly scattered. Data objects are thus considered ‘lifeless’ entities that are
moved around by foraging ants (Deneubourg et al. 1990; Kuntz et al. 1997; Lumer

364 A. Vande Moere

and Faieta 1994). Ants pick up data items and move around in randomly chosen di-
rections. Ants then probabilistically decide whether to drop the data item, preferably
in the vicinity of similar data items. A specific object distance measure variable α

determines the degree of similarity between pairs of data objects, so that dissimilar
items will not be placed together and similar items will be clustered. The optimal
value for α cannot be determined without prior knowledge of the dataset, unless
its value is adaptable (Handl and Meyer 2002). Different ant-based clustering ap-
proaches exist, which incorporate fuzzy-set theory (Pham and Brown 2003), topo-
graphic maps (Handl et al. 2005), or even biologically-inspired genetic algorithms
(Ramos and Abraham 2004). These ant-based data mining techniques typically re-
sult in graphical diagrams with spatially separate clusters that, internally as well as
relatively to each other, are unordered in term of data value. In effect, the usefulness
and effectiveness of these methods for visual information display is low.

While CA simulations are typically determined by environmental states, ants can
‘act’ upon the environment and even change it to some degree, for instance by re-
moving and dropping objects. The cellular ant approach applies typical CA rules,
traditionally used for grid cell states, to the perception and reasoning of ants: cellular
ant agents decide their actions depending on the discrete amount of ‘similar’ agents
in their neighborhood, rather than using probabilistic mathematical functions. The
essence of the cellular ant methodology is thus that agents will roam around, a tech-
nique similar to the ant-based foraging technique, and take actions depending on
neighborhood densities, similar to the cellular automata technique. In addition, in-
stead of simply picking up data objects, the ants move, as they ‘are’ the data items
themselves. The idea of mapping data objects directly onto ants is relatively new.
Labroche et al. (2002) associate data objects to ant genomes and simulates meet-
ings between them to dynamically build partitions: ants detect the label that best fits
their genome, which corresponds to the best cluster. A recent data mining clustering
method has shown that data objects can be mapped onto ants, of which the apparent
behaviors resemble that of cellular automata (Chen et al. 2004). It differs from the
proposed agent data visualization methodology as it does not spatially order clus-
ters, and is based on probability functions and predefined internal ant states.

13.4.3.2 Cellular Automata Ants as Data Mapping

Each data visualization agent is represented as a unique colored square cell, po-
sitioned within a toroidal rectangular grid. Each agent has a limited perception
of its surrounding neighborhood, which consists of eight neighboring cells (see
Fig. 13.11). Similarly to the swarming approach, an agent’s behavior is based on
a set of behavior rules that takes into account the presence of all other agents in
its local neighborhood, and their corresponding data values. However, agents are in
control of their dynamic behavior as well as their visual properties: each agent can
move around or stay put, swap its position with a neighbor, and adapt its own color
or negotiate its shape size.

13 A Model for Self-Organizing Data Visualization 365

Fig. 13.11 Data visualization
agent (or Cellular Ant) within
its grid cell neighborhood

At initialization, all agents are randomly positioned within a toroidal grid. Sim-
ilar to classical MDS (or CMDS) method, each agent calculates the Euclidian dis-
tance between its own normalized data item and that of each of its eight neighbors.
This data distance measure represents an approximation of the similarity between
pairs of data items, even when they contain multidimensional data values. Next,
an agent will only consider and summate those agents of which the pair-wise sim-
ilarity distance is below a specific, predefined data similarity tolerance threshold
value t. Value t is conceptually similar to the object distance measure α in common
ant-based clustering approaches. However, t originates from a cellular automata ap-
proach in that it is a fixed and discrete value, which generates a Boolean result (i.e.
either a pair of data objects is “similar” or not) instead of a continuous similarity
value (e.g. representing a numerical degree of similarity between pairs of data ob-
jects). Depending on the amount of agents in its neighborhood a particular agent
considers as ‘similar’, an agent will then decide either to stay put, or to move. For
each iteration, each agent is governed by five different behavior rules: edge repulsion
and surface tension (together causing clustering), positional swapping, color deter-
mination and shape size adaptation (Vande Moere and Clayden 2005; Vande Moere
et al. 2006).

• Surface Tension. Each agent has the freedom to roam around and meet other
agents. If an agent has less than four similar neighbors, it will attempt to move to
an empty cell next to the most similar ant in its neighborhood. Once an agent has
four or more similar neighbors, it will stay put. As a result, agents that represent
similar data items will stay close to each other, and small clusters form that act as
seeds for other agents to connect to. Over time, these initial clusters can grow or
merge with each other.

• Edge Repulsion. An agent that has one or more dissimilar agents in its neigh-
borhood moves away from its current position, towards an empty cell closest to
its most similar neighbor. This part of the algorithm is meant to create series
of ‘empty cells’ as ‘borders’ around the separate clusters, so geometric clusters
become better visually distinguishable. This means that two or more individual
clusters that eventually ‘share’ a border with each other contain similar data ele-
ments between each other, thus creating a more meaningful data representation.

• Positional Swapping. At each iteration, each agent picks a random direction (i.e.
horizontal, vertical, or one of both diagonals) in its neighborhood, with itself as
the middle agent. It then reads the normalized data values of the correspond-
ing neighbors, and calculates the (one-dimensional) distances between all these

366 A. Vande Moere

Fig. 13.12 Agents swapping
grid position depending on
data value. The largest data
value distance in parameter
space is dBC , so that agent A

should be positioned between
B and C

agents in the multi-dimensional parameter space. Based on these three numerical
pair-wise values, an agent is able to determine if it needs to ‘swap’ its position
with one of both of its outer neighbors, or whether the current constellation is
ideal. In practice, this means that if the Euclidian distance in parameter space
between the middle agent and one of the outer agents is larger than the distance
between the outer agents, the middle agent has to swap with the most similar
outer agent (see Fig. 13.12). By swapping agents, the data value gradient between
the three agents becomes continuous and monotonic. Subsequently, the swapping
rule linearly orders agents in any chosen grid direction by multi-dimensional data
similarity, so that ‘more similar’ agents are positioned closer to each other, and
dissimilar ones are put further apart in the grid. Although this rule is applied in
randomly chosen directions, a globally ordered structure emerges due to the mul-
titude of iterations.

• Color Determination. At initialization, all agents are assigned a neutral color
(i.e. white). Each ant that has not been swapped (and thus probably is well placed
within its neighborhood) and is fully surrounded by eight similar neighbors, con-
siders the degree of data similarity with all of its neighbors. If this degree is
below a predefined, discrete color seed similarity threshold c, it will request a
unique color from the application system. An agent with a neighborhood contain-
ing four or more data items of which the Euclidian distance is smaller than t but
larger than c is relatively ‘satisfied’ with its current position and adopts the color
of the most similar agent in its neighborhood. As a result, once the collection of
ants is sufficiently ordered, colors become introduced where there are stable clus-
ters of very similar ants. The individual agents that have received a unique color
act as initial ‘color seeds’, which spread throughout the whole agent population.
Because of the multitude of pair-wise interactions, any surplus of colors (in re-
spect to data clusters) will disappear, while any shortfall of colors will reemerge
once another potential ant is surrounded by eight very similar neighbors. One
should note that the color of an agent is thus identical to its assumed data class
or data label. Consequently, the resulting diagrams resemble that of (ant-based)
data clustering in the domain of unsupervised data mining.

• Shape Size Determination. For each iteration step, the visual shape size of an
ant is determined by following inducements. First, an agent chooses a random
neighboring agent and reads the numerical value of a predefined data attribute,
and its circular radius size, measured in screen pixels. It then considers whether

13 A Model for Self-Organizing Data Visualization 367

Fig. 13.13 Timeline snapshots of a random constellation of agents clustering, one snapshot per
100 iterations

its own radius versus data value ratio is similar to that of the neighboring agent,
and adapts its own as well as its neighbor’s shape size accordingly. For instance,
if its size is too large in relation to its data value, it ‘shrinks’ by decreasing its
amount of available pixels with a specific amount of pixels, and then offers these
pixels to the other agent. When an agent becomes too large, it will ‘punish’ and
decrease the size of its neighbor, so that this step will not longer be required
in the next iteration. These constraints will emergently ‘detect’ the upper and
lower shape size boundaries according to the data value scale, which emergently
spread throughout all ants. Accordingly, instead of mapping data values directly
to specific shape sizes, each agent is able to map one of its data attributes onto its
size by negotiating with its local neighbors. However, the size of an agent does
not necessarily correspond to the ‘exact’ value of that data attribute, but rather
to how a data value locally relates to its neighborhood, and therefore whether
clusters are locally homogeneous in respect of a specific data attribute. The shape
size scale is able to autonomously adapt to the data scale, without the need for a
separate data analysis or a predefined mapping rule between assumed data value
and visual transformation (see also Sect. 13.3.1).

13.4.3.3 Emergent Data Visualization Patterns

The cellular ant method was applied with various artificially created and standard
machine learning benchmarking datasets, ranging from two to up to nine data di-
mensions, and from 150 to 768 data items. Several emergent effects can be per-
ceived:

• Clustering. As shown in Fig. 13.13, the initially randomly scattered data items
self-organize in clearly perceivable clusters of similar data type over a process
of several hundred iterations. The amount of required iterations varies with the
random initialization distribution and with the grid size for an equal dataset. On
an emergent level, a relatively long period of iterations in apparent chaos suddenly
transforms in an orderly and stable constellation.

• Internal Cluster Order. As shown in Fig. 13.14, the resulting clusters them-
selves are ordered internally: data items that are similar in parameter space, are
also positioned nearby each other in visualization space. For instance, the high-
lighted ants share a border between different adjoining clusters, but also share this
border in the 2D parameter space. This particular emergent phenomenon is ideal

368 A. Vande Moere

Fig. 13.14 Internal cluster order according to data similarity (500 ants, toroidal 26 × 26 grid, 2D
synthetic dataset, 4 classes, t = 0.27). Agents positioned in grid space (left) versus those the data
items in 2D parameter space (right). The highlighted grid cells and parameter points demonstrate
that agents on ‘shared’ borders of two clusters are also shared in parameter space. Respective
diagonal clusters in parameter space do not share any borders in the visualization

for the purpose of information display, as the resulting clusters have meaning and
can be easily interpreted by users.

• Relative Cluster Order. The clusters themselves, seen as global phenomena,
are positioned in an ordered way within the visualization grid. Cluster that are
dissimilar in parameter space, have no ‘common’ borders in visualization space,
and vice versa. For instance, the diagonal clusters in parameter space do not share
any border in visualization space, as they are more dissimilar than the horizontally
and vertically adjoining clusters. Accordingly, the information display becomes
is more accurately representative and more easily comprehensible in comparison
to other unsupervised clustering methods.

• Data Class Determination. The color determination rule results in a few differ-
ent colors to emergently appear. Each color corresponds to a separate data class
or data category, consisting of multiple data items that are significantly similar. At
start, many colors appear, of which most disappear by merging with each other.
Figure 13.15 shows how a car specification dataset (containing 38 items and 7
data dimensions, as taken from Wojciech 2001) results in a single spatial clus-
ter, with three different colors. Whereas the spatial clustering was not able to
separate the different types of cars because of similarity links between them, the
color negotiation recognized three different types, roughly corresponding to the
amount of car cylinders. The color negotiation is another feature that increases
the legibility of the resulting information display.

• Relative Data Attribute Distribution. Figure 13.16 illustrates how shape size
negotiation can be used to clarify high-dimensional data dependencies, without
prior knowledge of the data scale and without using any predefined data map-
ping rules. Figure 13.16 uses the same dataset as Fig. 13.15, but maps a single

13 A Model for Self-Organizing Data Visualization 369

Fig. 13.15 Two different data visualizations of a car dataset. Top: Represented by traditional MDS
(diagram based on Wojciech 2001, any grayscaling added by hand); Bottom: represented by the
Cellular Ants representation with unsupervised color negotiation, here represented in grayscale

data attribute to circle size, showing the relative dominance of the cylinder count
and MPG within clearly distinguishable clusters. The shape negotiation allows
users to investigate how different singular data attributes are relatively distributed
within multidimensional clusters.

One should note that the effectiveness of the cellular ant method is influenced by
several variables that need to be configured beforehand, and mostly depend on the
dataset characteristics. Such influential parameters include specific threshold values
and overall grid size. Their specification requires a process of trial-by-error itera-

370 A. Vande Moere

Fig. 13.16 A Cellular Ant representation in a toroidal grid with color and shape negotiation. Sin-
gular data attribute represented by the shape size: cylinder count (left) and Miles per Gallon (MPG)
(right)

tions to assure that all variables are optimally chosen. Also, it cannot be assured that
this method always finishes with a stable emergent result: a small number of ants
might be swapping indefinitely, or individual ants (e.g. data outliers) might con-
tinuously roam around. Therefore, a simple performance graph was implemented
that summated the number of similar ants in each ant’s neighborhood. The visual-
ization’s efficiency corresponds to the slope of the according graph: once a plateau
value has been reached over a number of iterations, the visualization has reached a
stable state and can be halted. Quantitative benchmarking has shown similar perfor-
mance with comparable data mining techniques (Vande Moere and Clayden 2005;
Vande Moere et al. 2006). This simple prototype was developed to demonstrate that
even simple self-organizing principles can lead to useful and meaningful results.
Future work should focus on conceptual optimizations that should allow the method
to be less dependent from external variables, and increase the overall performance
in terms of required iterations, calculation performance and configurability.

13.5 Discussion

Data visualization supports users in creating a mental model by artificially con-
structing a visual representation from otherwise invisible data characteristics. An
effective visualization facilitates rapid understanding of this model, generating in-
tuitive connotations between visually emergent patterns and meaningful data pat-
terns. This section will discuss some of the most important shortcomings of the
self-organizing method, and some of potential solutions in the future.

13 A Model for Self-Organizing Data Visualization 371

13.5.1 Analysis

The unique characteristics of the self-organizing data visualization model is related
with a set of specific issues, including:

• Real-Time Data Analysis. The self-organizing approach calculates data similar-
ities in real-time. This means that a user does not necessarily need to conduct
a pre-analysis of the datasets to determine the upper and lower bounds of the
data mapping, and that datasets even can be updated by external sources in real-
time. However, the continuous streaming of time-varying data poses specific is-
sues as data items tend to be updated in irregular sequences so that some degree
of data time-averaging is required. In addition, the continuous dataset querying,
networking and analysis computations can negatively influence the calculation
performance.

• Calculation Performance. As with any parallel algorithm, the simultaneous ex-
ecution of behavior rules for each single agent is relatively calculation intensive.
This effort increases exponentially with the number of agents, and thus the dataset
size. Especially for the information flocking method, which requires one-to-one
comparisons, and the cellular ant method, which requires one-to-eight compar-
isons, the dataset size is an important delimiting factor. Possible solutions for
optimizing this issue include (1) predefined data similarity lookup tables, so that
data item comparisons do not need to be calculated on the fly, (2) skipping behav-
ior rules for specific iteration cycles, so that agents are progressively calculated,
or (3) giving priority to specific agents, for instance those that are recognized to
be guiding the emergent process. More technical solutions for performance opti-
mization consist of (4) real-time data optimization, including data approximation
and gradual data streaming (Hellerstein et al. 1999), agent adaptation, (5) the dis-
tribution or balancing of loads between agents (Decker and Sycara 1997), and
(6) agent cooperation, by creating coalition formations of ‘super agents’ that
adapt together as they have similar objectives, experience or goals (Ogston et al.
2003).

• Non-Deterministic Results. Using emergence as the core organizing principle
inevitably ports aspects of uncertainty in the final results. This means that most
generated representations are non-deterministic: different graphical diagrams can
result from equal datasets result due to different initialization conditions. How-
ever, reoccurring data trends are consistently represented. In the case of the
cellular ants, different initialization constellations inevitably result in different
amounts of clusters, colors and sizes, so that multiple program executions and
averaging is required to ensure results that can be confidently generalized.

• Equilibrium. Because of the continuous nature of the iterative cycles, it is often
not intuitively determinable when the representation is ‘finished’, that is when the
agents have found a suitable equilibrium for the current dataset situation. There-
fore, self-organizing methods require some externally measurable degree of agent
‘satisfaction’, determined holistically over the whole agent population. Once this
measurement reaches a ‘plateau’ over time, one can assume the most optimal
solution for a specific configuration has been reached.

372 A. Vande Moere

• Comprehensibility. The three different case studies have demonstrated how mo-
tion typology or visual properties of particles and colored grid cells are able to
convey useful data patterns. However, users are still required to correlate and in-
terpret these behavioral effects to particular meanings in relation to the dataset.
Users might initially be confused because of the reliance on fully dynamic fea-
tures, which are typically under-used in most software applications. There is also
a latent danger of allowing users to interpret some emergent effects as meaning-
ful, whereas no cause-and-effect in the context of the dataset could be detected.

• Parameter Influence. As with any algorithm that applies principles of self-
organization, the occurrence of emergence is highly reliant on fine-tuning the
variables involved. Altering these variables tend to result in different emergent
visual effects, hereby affecting the effectiveness of depicting specific data pat-
terns. Some variables control the visual effect of the emergent phenomena, so
that they become easier to perceive and understand. As shown in Table 13.1, in
the case of information flocking, at least 10 different variables are required to
drive the traditional flocking behavior alone: 3 traditional plus 2 data similarity
variables determine the Euclidian distances at which the behavior rules need to be
invoked, and another 3 traditional plus 2 data similarity variables specify the rela-
tive importance of each behavior rule to one another (Reynolds 1987). The exact,
ideal specification of such emergent-behavior influencing variables generally re-
quires a relatively large amount of trial-and-error iterations, as one is unable to
predict the emergent behavior of hundreds or thousands of internally interacting
elements. Additional variables fine-tune the data analysis process: for instance,
for each dataset separately, the exact threshold value that determines whether two
data items are ‘similar’ or not needs to be defined. This value can be found by
measuring the performance of agents towards a global equilibrium over several
iterations. Several solutions for this issue exist, such as the implementation of an
easily configurable software framework that allows the developer to fine-tune the
configurable variables on-the-fly, without the need to change any programming
code. Alternatively, the software itself could determine and then ‘optimize’ the
possible solution space by brute force experimentation, and present the results
to the user. Lastly, most of the variables could gradually change over time, to-
wards their assumed most optimal value, allowing the emergent processes to be
influenced by alternative values in a dynamic way.

• Dataset Characteristics. The different case studies have proven how self-
organization for data visualization purposes can be accomplished with relatively
small and low dimensional datasets, as the research focused on determining the
feasibility of the proposed methodology. In particular, this technique seems to
be ideally suited for relatively small, mid-dimensional and time-varying datasets.
Further research will need to be conducted to determine whether this approach
maintains its usefulness for more complex datasets, in terms of size, dimension-
ality, or time-variance.

Table 13.1 summarizes the qualitative differences between the three case stud-
ies. Because these different applications targeted fundamentally different datasets,
purposes and usages, no benchmarking comparisons have been made.

13 A Model for Self-Organizing Data Visualization 373

Table 13.1 Qualitative differences between the 3 case studies demonstrating the self-organizing
data visualization model

Infoticle Information flocking Cellular ants

Agent
concept

– particle – boid – ant-like grid cell state

Agent
description

– a point in 3D space that
is attracted by a set of
point forces following
the rules of Newtonian
mechanics

– a point in 3D space that
swarms or flocks with
similar flock members

– a grid cell that can move
to neighboring grid cells,
similar to the movement of
an ant

Dataset
features

– time-varying
– 2-dimensional

– time-varying
– 2-dimensional

– static
– multi-dimensional

Behavior
algorithm

– rule-based
– cause and effect

– rule-based
– decentralized inter-agent
communication

– rule-based
– decentralized inter-agent
communication

Behavior
influence

– data alterations over
time
– position of force in
space

– data alterations over time
– pair-wise data item
comparisons

– data item comparisons
between up to 8 neighbors

Visual data
mapping
cues

– 3D dynamic motion,
determined by speed and
direction

– 3D dynamic motion,
determined by speed and
direction
– motion typology

– 2D position by 1-cell
movement and pair-wise
swapping
– color
– size

Emergent
phenomena

– individual motion
typology
– grouping by collective
motion typology
– spatial grouping
– motion path formality

– spatial clustering
(position, speed &
direction)
– spatial zoning
– individual and collective
motion typology

– clustering
– size determination
– color determination

Emergence
variables

– speed alteration (2)
– force data attributes (1)

– flocking rules
neighborhood distances (5)
– prioritized acceleration
allocation parameters (5)
– data similarity
threshold t

– data similarity
threshold t

– color seed threshold c

– square grid size (1)

13.5.2 Future

Traditional data visualization applications rely on the discretion and expertise of
users to detect data patterns. Pattern detection is complex, and therefore, a future
potential exists for using the results of data analysis to ‘inform’ the data mapping
process. It is in this aspect that self-organizing data visualization might have the
most useful potential: to construct a more effective, and more informed, visual rep-
resentation based on the unsupervised analysis of dataset properties, visualization
guidelines and visual cognitive knowledge. Such approach would be the first step
towards more intelligent data visualization applications that become “aware” of the

374 A. Vande Moere

data they represent, the useful patterns they contain, and the most effective tech-
niques to translate these into visual form. By using principles of self-organization,
the intelligence required to detect data patterns is distributed: by spreading the re-
quired computations over multiple equal elements. As a result, the application can
analyze the data in real time, becomes tolerant to local failures, allows for unex-
pected data alterations and potentially creates emergent solutions that are optimized
to the specific patterns in and characteristics of the dataset. A possible future for
self-organizing data visualization could lead to data mappings that are themselves
emergent, creating unique, unforeseen, but ordered and interpretable representations
that inherently reflect the relationships and complexities hidden within the dataset.

Self-organizing data visualization aims to provoke visual emergence by behav-
ioral emergence. It is able to determine the position, color, shape and dynamic be-
havior of a data item according to its inherent relationships with other data items
in the dataset. Each data item itself is a member of a decentralized multi-agent sys-
tem, based on existing emergent simulations such as particle animation, flocking
and swarming, ant-foraging or cellular automata. Self-organizing data visualization
exploits already known emergent simulation algorithms to generate data-driven vi-
sual patterns. It is based on the assumption that a dataset is a collaborative agent
system, which inherently contains all the knowledge required to derive a useful vi-
sual representation. Such dataset is capable of determining its own visual presence,
and conveying the most meaningful data trends that it contains. Therefore, the self-
organizing data visualization model points to a future in which data visualization
becomes a data analysis tool that is aware of the data it represents, and how it should
adapt its representation accordingly. As discussed before, several technical and con-
ceptual hurdles still need to be overcome before principles of self-organizing data
visualization can be integrated in useful applications. However, such applications
will be able to proactively support users in their continuous urge to understand the
ever more complex data collections that are continuously generated and accumu-
lated in our society.

References

Ankerst, M., Berchtold, S., & Keim, D. A. (1998). Similarity clustering of dimensions for an
enhanced visualization of multidimensional data. In Proceedings of symposium on information
visualization (Infovis’98) (pp. 52–60). Washington: IEEE Computer Society.

Bartram, L., & Ware, C. (2002). Filtering and brushing with motion. Information Visualization,
1(1), 66–79.

Bentley, C. L., & Ward, M. O. (1996). Animating multidimensional scaling to visualize n-
dimensional data sets. In Proceedings of symposium on information visualization (Infovis’96)
(pp. 72–73). Washington: IEEE Computer Society.

Brodlie, K. W., Brooke, J., Chen, M., Chisnall, D., Hughes, C. J., & John, N. W. (2006). A frame-
work for adaptive visualization. In IEEE visualization 2006, Baltimore, Maryland, USA. Wash-
ington: IEEE Computer Society.

Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization:
using vision to think. San Francisco: Morgan Kaufmann.

13 A Model for Self-Organizing Data Visualization 375

Chen, L., Xu, X., Chen, Y., & He, P. (2004). A novel ant clustering algorithm based on cellular au-
tomata. In Proceedings of international conference of the intelligent agent technology (IAT’04)
(pp. 148–154). Washington: IEEE Computer Society.

Chi, E. H. (2000). A taxonomy of visualization techniques using the data state reference model. In
Proceedings of IEEE symposium on information visualization (Infovis) (pp. 69–75).

Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002). Collective memory
and spatial sorting in animal groups. Journal of Theoretical Biology, 218, 1–11.

Davies, J. (2004). Why birds fly in formation: a new interpretation. Interpretive Birding, 5(2).
Decker, K. S., & Sycara, K. (1997). Intelligent adaptive information agents. Journal of Intelligent

Information Systems, 9(3), 239–260.
Deneubourg, J., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. (1990). The

dynamics of collective sorting: robot-like ants and ant-like robots. In From animals to animats:
1st international conference on simulation of adaptative behaviour (pp. 356–363).

Ebert, A., Bender, M., Barthel, H., & Divivier, A. (2001). Tuning a component-based visualization
system architecture by agents. In Proceedings of international symposium on smart graphics,
IBM T.J. Watson Research Center.

Eick, S. G. (2001). Visualizing online activity. Communications of the ACM, 44(8), 45–50.
Franklin, S., & Graesser, A. (1996). Is it an agent, or just a program? A taxonomy for autonomous

agents. In Proceedings of third international workshop on agent theories, architectures, and
languages (ATAL’96) (pp. 21–35). Heidelberg: Springer.

Gardner, M. (1970). Mathematical games: the fantastic combinations of John Conway’s new soli-
taire game ‘Life’. Scientific American, 223, 120–123.

Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295–
311.

Handl, J., & Meyer, B. (2002). Improved ant-based clustering and sorting in a document retrieval
interface. In Lecture notes of computer science: Vol. 2439. Proceedings of international confer-
ence on parallel problem solving from nature (PPSN VII) (pp. 913–923). Heidelberg: Springer.

Handl, J., Knowles, J., & Dorigo, M. (2005). Ant-based clustering and topographic mapping. Arti-
ficial Life, 12(1), 35–61.

Healey, C. G., Amant, R. S., & Chang, J. (2001). Assisted visualization of e-commerce auction
agents. In Proceedings of graphics interface 2001, Ottawa, Canada (pp. 201–208). New Jersey:
Lawrence Erlbaum.

Hellerstein, J. M., Chou, A., Hidber, C., Olston, C., Raman, V., Roth, T., et al. (1999). Interactive
data analysis: the control project. IEEE Computer, 32(8), 51.

Hiraishi, H., Sawai, H., & Mizoguchi, F. (2001). Design of a visualization agent for WWW infor-
mation. In Lecture notes in computer science (Vol. 2112, pp. 249–258). Heidelberg: Springer.

Ishizaki, S. (1996). Multiagent model of dynamic design: visualization as an emergent behavior
of active design agents. In Proceedings of SIGCHI conference on human factors in computing
systems (CHI’96), Vancouver, British Columbia, Canada (pp. 347–354).

Jankun-Kelly, T. J., Ma, K.-L., & Gertz, M. (2002). A model for the visualization exploration
process. In Proceedings of IEEE visualization, Boston, MA, USA. Washington: IEEE Computer
Society.

Kadrovach, B. A., & Lamont, G. B. (2002). A particle swarm model for swarm-based networked
sensor systems. In Proceedings of ACM symposium on applied computing, Madrid, Spain (pp.
918–924). New York: ACM.

Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo: Morgan Kaufmann.
Kramer, P., & Yantis, S. (1997). Perceptual grouping in space and time: evidence from the Ternus

display. Perception & Psychophysics, 59(1), 87–99.
Kuntz, A., Layzell, P., & Snyers, D. (1997). A colony of ant-like agents for partitioning in VLSI

technology. In Proceedings of European conference on artificial life (pp. 417–424). Cambridge:
The MIT Press.

Labroche, N., Monmarché, N., & Venturini, G. (2002). A new clustering algorithm based on the
chemical recognition system of ants. In Proceedings of European conference on artificial intel-
ligence, Lyon, France (pp. 345–349). Amsterdam: IOS Press.

376 A. Vande Moere

Lander, J. (1998). Ocean spray in your face. Game Developer, 9–13.
Lethbridge, T. C., & Ware, C. (1990). Animation using behavior functions. In T. Ichikawa, E.

Jungert, & R. R. Korfhage (Eds.), Visual languages and applications (pp. 237–252). New York:
Plenum Press.

Lumer, E. D., & Faieta, B. (1994). Diversity and adaptation in populations of clustering ants. In
From animals to animats: conference on simulation of adaptative behaviour (pp. 501–508).
Cambridge: The MIT Press.

Macgill, J., & Openshaw, S. (1998). The use of flocks to drive a geographic analysis machine.
In Proceedings of international conference on GeoComputation, Bristol, United Kingdom.
Manchester: GeoComputation. CD-ROM.

Mackinlay, J. D. (1986). Automating the design of graphical presentations of relational informa-
tion. ACM Transactions on Graphics, 5(2), 110–141.

Marefat, M. M., Varecka, A. F., & Yost, J. (1997). An intelligent visualization agent for simulation-
based decision support. Computing in Science & Engineering, 4(3), 72–82.

Martin, A. (1999). Particle systems. http://www.cs.wpi.edu/~matt/courses/cs563/talks/psys.html.
Retrieved August 2006.

Mason, K., Denzinger, J., & Carpendale, S. (2004). Negotiating gestalt: artistic expression and
coalition formation in multiagent systems. In Proceedings of international symposium on smart
graphics (pp. 103–115). Berlin: Springer.

Ogston, E., Overeinder, B., van Steen, M., & Brazier, F. (2003). A method for decentralized clus-
tering in large multi-agent systems. In Proceedings of international conference on autonomous
agents and multi-agent systems, Melbourne, Australia (pp. 789–796). New York: ACM.

Pham, B., & Brown, R. (2003). Multi-agent approach for visualisation of fuzzy systems. In Lecture
notes in computer science (Vol. 2659, pp. 995–1004). Berlin: Springer.

Proctor, G., & Winter, C. (1998). Information flocking: data visualisation in virtual worlds using
emergent behaviours. In Proceedings of virtual worlds 98, Paris, France (pp. 168–176). Berlin:
Springer.

Ramos, V., & Abraham, A. (2004). Evolving a stigmergic self-organized data-mining. In Pro-
ceedings of international conference on intelligent systems, design and applications (ISDA-04),
Budapest, Hungary (pp. 725–730). Washington: IEEE Computer Society.

Reeves, W. T. (1983). Particle systems: a technique for modeling a class of fuzzy objects. Computer
Graphics, 17(3), 359–376.

Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed behavioral model. Computer
Graphics, 21(4), 25–34.

Roard, N., & Jones, M. W. (2006). Agent based visualization and strategies. In Proceedings of
conference in central Europe on computer graphics, visualization and computer vision (WSCG),
Pilzen, Czech Republic. Pilzen: University of West Bohemia.

Robinson, N., & Shapcott, M. (2002). Data mining information visualisation—beyond charts and
graphs. In Proceedings of international conference on information visualisation, London (pp.
577–583).

Sadok, B. Y., & Engelbert, M. N. (2004). Emulating a cooperative behavior in a generic association
rule visualization tool. In Proceedings of IEEE international conference on tools with artificial
intelligence (ICTAI’04), Washington, DC, USA (pp. 148–155). Washington: IEEE Computer
Society.

Schroeder, M., & Noy, P. (2001). Multi-agent visualisation based on multivariate data. In Proceed-
ings of international conference on autonomous agents, Montreal, Quebec, Canada (pp. 85–91).
New York: ACM.

Senay, H., & Ignatius, E. (1994). A knowledge-based system for visualization design. IEEE Com-
puter Graphics and Applications, 14(6), 36–47.

Shneiderman, B. (1998). Designing the user interface: strategies for effective human-computer
interaction. Reading: Addison-Wesley.

Stanton, A., Unkrich, L. (Writers) (2003). Finding Nemo. In W.D.P.P.A. Studios (Producer), USA.
Buena Vista Pictures/Walt Disney Pictures.

http://www.cs.wpi.edu/~matt/courses/cs563/talks/psys.html

13 A Model for Self-Organizing Data Visualization 377

SWCP (2003). Historical data for S&P 500 stocks. http://kumo.swcp.com/stocks. Retrieved Octo-
ber 2006.

Tonnesen, D. (2001). Particle systems for artistic expression. In Proceedings of subtle technologies
conference, Toronto, Canada (pp. 17–20) Toronto: University of Toronto.

Torgerson, W. S. (1952). Multidimensional scaling. Psychometrika, 17, 401–419.
Tory, M., & Möller, T. (2004). Rethinking visualization: a high-level taxonomy. In Proceedings of

IEEE symposium on information visualization (Infovis’04), Austin, Texas (pp. 151–158).
Tufte, E. R. (2001). The visual display of quantitative information. Cheshire: Graphics Press.
Upson, C., Faulhaber, T. A. Jr., Kamins, D., Laidlaw, D., Schlegel, D., & Vroom, J. (1989). The

application visualization system: a computational environment for scientific visualization. IEEE
Computer Graphics and Applications, 9, 30–42.

van der Burg, J. (2000). Building an advanced particle system. Game Developer, 44–50.
Vande Moere, A. (2004). Time-varying data visualization using information flocking boids. In Pro-

ceedings of symposium on information visualization (Infovis’04), Austin, USA (pp. 97–104).
Vande Moere, A., & Clayden, J. J. (2005). Cellular ants: combining ant-based clustering with

cellular automata. In Proceedings of IEEE international conference on tools with artificial in-
telligence (ICTAI’05) (pp. 177–184).

Vande Moere, A., Mieusset, K. H., & Gross, M. (2004). Visualizing abstract information using
motion properties of data-driven infoticles. In Proceedings of conference on visualization and
data analysis 2004 (IS&T/SPIE symposium on electronic imaging), San Jose, CA (pp. 33–44).

Vande Moere, A., Clayden, J. J., & Dong, A. (2006). Data clustering and visualization using cel-
lular automata ants. In Proceedings of ACS Australian joint conference on artificial intelligence
(AI’06), Hobart, Australia (pp. 826–836). Berlin: Springer.

Von Neumann, J. (1966). Theory of self-reproducing automata. Illinois: University of Illinois
Press.

Ware, C. (2000). Information visualization perception for design. San Francisco: Morgan Kauf-
mann.

Ware, C., Neufeld, E., & Bartram, L. (1999). Visualizing causal relations. In Proceedings of IEEE
symposium on information visualization (Infovis’99), San Francisco, CA (pp. 39–42). Washing-
ton: IEEE Computer Society.

Wojciech, B. (2001). Multivariate visualization techniques. http://www.pavis.org/essay/
multivariate_visualization_techniques.html. Retrieved June 2006.

Woolridge, M. (2001). Introduction to multiagent systems. New York: Wiley.
Zambonelli, F., Mamei, M., & Roli, A. (2002). What can cellular automata tell us about the behav-

ior of large multi-agent systems? In A. Omicini & J. Castro (Eds.), Lecture notes in computer
science (Vol. 2603, pp. 216–231). Berlin: Springer.

http://kumo.swcp.com/stocks
http://www.pavis.org/essay/multivariate_visualization_techniques.html
http://www.pavis.org/essay/multivariate_visualization_techniques.html

Chapter 14
Memristive Excitable Automata: Structural
Dynamics, Phenomenology, Localizations
and Conductive Pathways

Andrew Adamatzky and Leon Chua

14.1 Introduction

The memristor (a passive resistor with memory) is a device whose resistance
changes depending on the polarity and magnitude of a voltage applied to the de-
vice’s terminals and the duration of this voltage’s application. Its existence was
theoretically postulated by Leon Chua in 1971 based on symmetry in integral vari-
ations of Ohm’s laws (Chua 1971, 1980; Chua and Kang 1976). The memristor is
characterised by a non-linear relationship between the charge and the flux; this rela-
tionship can be generalised to any two-terminal device in which resistance depends
on the internal state of the system (Chua and Kang 1976). The memristor cannot
be implemented using the three other passive circuit elements—resistor, capacitor
and inductor—therefore the memristor is an atomic element of electronic circuitry
(Chua 1971, 1980; Chua and Kang 1976). Using memristors one can achieve cir-
cuit functionalities that it is not possible to establish with resistors, capacitors and
inductors, therefore the memristor is of great pragmatic usefulness. The first ex-
perimental prototypes of memristors are reported in Williams (2008), Erokhin and
Fontana (2008), and Yang et al. (2008). Potential unique applications of memristors
are in spintronic devices, ultra-dense information storage, neuromorphic circuits,
and programmable electronics (Strukov et al. 2008).

Despite explosive growth of results in memristor studies there is still a few (if
any) findings on phenomenology of spatially extended non-linear media with hun-
dreds of thousands of locally connected memristors. We attempt to fill the gap

A. Adamatzky (B)
University of the West of England, Bristol BS16 1QY, UK
e-mail: andrew.adamatzky@uwe.ac.uk

L. Chua
EECS Department, University of California, Berkeley, 253 Cory Hall 1770, Berkeley,
CA 94720-1770, USA
e-mail: chua@eecs.berkeley.edu

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_14,
© Springer-Verlag London 2013

379

mailto:andrew.adamatzky@uwe.ac.uk
mailto:chua@eecs.berkeley.edu
http://dx.doi.org/10.1007/978-1-4471-5113-5_14

380 A. Adamatzky and L. Chua

and develop a minimalistic model of a discrete memristive medium. Structurally-
dynamic (also called topological) cellular automata (Ilachinsky and Halpern 1987;
Halpern and Caltagirone 1990) seem to be an ideal substrate to imitate discrete
memristive medium. A cellular automaton is structurally-dynamic when links be-
tween cells can be removed and reinstated depending on states of cells these links
connect. Structurally-dynamic automata are now proven tools to simulate physical
and chemical discrete spaces (Rosé et al. 1994; Hasslacher and Meyer 1998; Hill-
man 1998; Requardt 2003; Alonso-Sanz 2006) and graph-rewriting media (Tomita
et al. 2009); see overview in Ilachinsky (2009).

We must highlight that simulation of cellular automata in networks of memristors
is discussed in full details in Itoh and Chua (2009). Itoh-Chua memristor cellular au-
tomata are automata made of memristors. Memristive cellular automata studied in
present chapter are cellular automata which exhibit, or rather roughly imitate, cer-
tain memristive properties but otherwise are classical excitable structurally-dynamic
cellular automata.

14.2 Memristive Automaton

A memristive automaton is a structurally-dynamic excitable cellular automaton
where a link connecting two cells is removed or added if one of the cells is in excited
state and another cell is in refractory state.

A cellular automaton A is an orthogonal array of uniform finite-state machines,
or cells. Each cell takes finite number of states and updates its states in discrete time
depending on states of its closest neighbours. All cells update their states simultane-
ously by the same rule. We consider eight-cell neighbourhood and three cell-states:
resting ◦, excited +, and refractory −.

Let u(x) = {y : |x − y|L∞ = 1} be a neighbourhood of cell x. A cell x has a
set of incoming links {lxy : y ∈ u(x)} which take states 0 and 1. A link lxy is a link
of excitation transfer from cell y to cell x. A link in state 0 is considered to be
high-resistant, or non-conductive, and link in state 1 low resistant, or conductive.
A link-state ltxy is updated depending on states of cells x and y at time step t : ltxy =
f (xt , yt). Resting state gives little indication of cell’s previous history, therefore we
will consider not resting cells contributing to a link state updates. When cells x and
y are in the same state (bother cells are in state + or both are in state −) no ‘current’
can flow between the cells, therefore scenarios xt = yt are not taken into account.

Thus we assume that the only situations when xt , yt ∈ {+,−} and xt �= yt may
lead to changes in links conductivity:

lt+1
xy =

⎧
⎪⎨

⎪⎩

a, xt = + and yt = −
b, xt = − and yt = +
ltxy, otherwise

(14.1)

where a �= b and a, b ∈ {0,1}. Thus we consider two types of automata Aab: A01

and A10.

14 Memristive Excitable Automata: Structural Dynamics, Phenomenology 381

A resting cell excites (xt = ◦ → xt = + transition) depending on number of
excited neighbours.

There are two ways to calculate a weighted sum of number of excited neigh-
bours:

(i) Σ+ =∑
y∈u(x) χ(yt ,+)

(ii) σ+ =∑
y∈u(x) lxyχ(yt ,+),

where χ(yt ,+) = 1 if yt = + and χ(yt ,+) = 0 otherwise.
Thus, we consider two types of memristive automata. In automaton A1 a resting

cell excites if σ+ > 0. In automaton A2 a resting cell excites if Σ+ > 1 or σ+ > 0.

Note 1 Automaton A1 is a pre-memristive cellular automaton because it imitates
only polarity (links update (14.1)) not voltage; automaton A2 is a memristive cel-
lular automaton because it imitates both polarity (links update (14.1)) and current
intensity (use of Σ+ and σ+).

A polarity of a current is imitated by excitable cellular automaton using excited
+ and − refractory states. If a cell x is in state − and a cell y is in state + then cell
y symbolises an anode, and cell x a cathode. And we can say that a current flows
from y to x. Indeed, such an abstraction is at the edge of physical reality, however
this is the only way to develop a minimal discrete model of a memristive network.
In automaton A2 the condition Σ+ > 1 symbolises propagation of a high intensity
current along all links, including links non-conductive for a low intensity current.
This high intensity current in A2 resets conductivity of the links and also states of
cells. The condition σ+ > 0 reflects propagation of a low intensity current along
conductive links. The current of low intensity does not affect states of links but only
states of cells.

14.2.1 Experiments

We experiment with 300 × 300 cell automaton arrays, with non-periodic absorbing
boundaries. We conduct experiments for two initial conditions on links’ ‘conductiv-
ity’

• L1-condition: all links are conductive (for every cell x and its neighbour y l0
xy =

1), and
• L0-condition: all links are non-conductive (for every cell x and its neighbour y

l0
xy = 0).

While testing automata’s response to external excitation we use point-wise and
spatially extended stimulations. By point-wise stimulation we mean excitation of a
single cell (A1) or a couple of cells (A2) of resting automata. These are minimal
excitations to start propagating activity.

382 A. Adamatzky and L. Chua

Let D-disc be a set of cells which lie at distance not more than r from the array
centre (n/2, n/2), n = 300, r = n/3). When undertaking D-stimulation we assign
excited state + to a cell of D with probability 0.05. In some cases we apply D-
stimulation twice as follows. An automaton starts in L1- or L2-condition, we apply
D-stimulation first time (we call it E1-excitation) and wait till excitation waves
propagate beyond boundaries of the array or a quasi-stationary structure is formed.
After this transient period we apply D-stimulation again (E2-excitation) without
resetting links states.

Space-time dynamics of automata is illustrated by configurations of excitations
and dynamics of link conductivity is shown either explicitly by arrows (in small con-
figuration) or via grey-scale representation of cells’ in-degrees: cell x is represented
by pixel with grey-value proportional to the cell x’s degree. Despite not represent-
ing exact configuration of local links, in-degrees give us a rough indicator of spatial
distribution of conductivity in the medium. The higher is the in-degree at a given
point, the higher is the conductivity at this point.

14.3 Phenomenology

A point-wise stimulation of automaton A2 leads to a persistent excitation, while
automaton A1 returns to a resting state.

A single-cell excitation of resting automaton A1 (Fig. 14.1) or two-cell excita-
tion of resting automaton A2 (Fig. 14.2) in L1 initial conditions lead to formation
of a ‘classical’ excitation wave-front. The wave-front propagates omni-directionally
away from the initial perturbation site and updates states of links it is passing
through.

Links leading from cells to the neighbours they excited are made non-conductive
in development of A01

i (Figs. 14.1 and 14.2); or we can say that links corresponding
to normal vectors of propagating wave-front are made non-conductive. Cell excited
at time step t = 1 becomes isolated. The situation is similar in development of au-
tomata A10

1 and A10
2 with the only difference that links connecting cells which are

excited at time step t to cells they have been excited by are removed.
In summary, in automata A01

i links associated with forward propagation of per-
turbation are made non-conductive, and in A10

i links associated with backward prop-
agation are made non-conductive. Excitation wave-front travelling from a single
stimulation site forms a domain of co-aligned links. Excitation waves initiated in
different cells collide and merge. Boundaries between domains formed by different
fronts are represented by distinctive configurations of links (Fig. 14.3).

Automaton A1 is non-excitable in L0-conditions because no excitation can prop-
agate along non-conductive links. An outcome of two-site excitation of resting au-
tomaton A2 in L0-condition depends on configuration of the initial excitation.

Let two diagonal neighbours (north-west and south-east) be excited (Fig. 14.4a)
at time step t . These two cells transfer excitation to their two neighbours (north-east
and south-west) as shown in Fig. 14.4b. Only links from north-west cell to north-east

14 Memristive Excitable Automata: Structural Dynamics, Phenomenology 383

Fig. 14.1 Snapshots of excitation and links dynamics in automaton A01
1 . In initial configuration

(t = 1) one cell is excited others are resting. Arrow from cell x to cell y means lxy = 1. Excited
cells are shown by red discs with sign ‘+’, refractory cells by blue discs with sign ‘−’, resting cells
are blank. Links at the edges of cellular array corresponds to an absorbing boundary cells, which
are always in resting state independently on states of their neighbours

384 A. Adamatzky and L. Chua

Fig. 14.2 Snapshots of excitation and links dynamics in automaton A01
2 . In initial configuration

two cells (minimum size of non-dying excitation for A2) are excited others are resting. Arrow from
cell x to cell y means lxy = 1. Excited cells are shown by red discs with sign ‘+’, refractory cells
by blue discs with sign ‘−’, resting cells are blank (Color figure online)

and south-west, and south-east to south-west and north-east are formed (Fig. 14.4c)
and excitation becomes extinguished (Fig. 14.4d).

Let excited cells be neighbours at the same row of cells (Fig. 14.5a). If they are
excited at time step t then their north and south neighbours are excited due to con-
dition Σ+ > 1 taking place (Fig. 14.5b). The localised (two-cell size) excitations
propagate north and south (Fig. 14.5c) and make links pointing backwards (towards
source of initial excitation) conductive. At the second iteration cell lying east and
west of initially perturbed cells becomes excited (Fig. 14.5c). By that initially per-
turbed cells return to resting state (Fig. 14.5d) and thus they become excited again.
A growing pattern of recurrent excitation fills the lattice (Fig. 14.5d,e).

Repeated stimulation of memristive automata in a spatially-extended domain
leads to formation of either disorganised activity domain emitting target waves of
excitation or a sparse configuration of stationary oscillating localizations.

14 Memristive Excitable Automata: Structural Dynamics, Phenomenology 385

Fig. 14.3 Snapshots of excitation and links dynamics in automaton A01
1 . In initial configuration

several cells (those in ‘+’-state at t = 1) are excited others are resting. Arrow from cell x to cell y

means lxy = 1

386 A. Adamatzky and L. Chua

Fig. 14.4 Snapshots of excitation and links dynamics in automaton A01
2 , L0-start. In initial con-

figuration two cells (minimum size of non-dying excitation in A) are excited others are resting.
Arrow from cell x to cell y means lxy = 1

Examples of excitation dynamics in response to E1- and E2-excitations are
shown in Fig. 14.6. Each singular perturbation in the first stimulation of automata
being in L1-condition leads to propagation of excitation. The waves merge into a
single wave and disappear beyond lattice boundary.

Automata’ behaviour become different after second D-stimulation (E2-exci-
tation). They all exhibit quasi-chaotic dynamic inside boundaries of disc D (shown
by circle in Fig. 14.6). However the excitation dynamics in automaton A01

1 is re-
duced (after long transient period) to stationary oscillating localizations while in
automata A10

1 , A01
2 , and A10

2 excitations outside boundaries of initial stimulation
merge into target waves (Fig. 14.6). Oscillating localizations developed in A01

1 stay
inside the boundaries of D.

Random excitation is extinguished immediately in automata A1 being in L0-
condition of total non-conductivity. When automaton A2 in L0-condition is excited,
the quasi-random excitation activity persists inside boundaries of D while omni-
directional waves are formed outside D. Patterns of activity are not changed signif-
icantly after second random perturbation, E1-excitation (Fig. 14.6).

If there are both excited and refractory states in the external stimulation domain
the developments are almost the same but A10

1 and A10
2 shows persistent excitation

activity already at the first stimulation.

14.4 Oscillating Localisations

E2-excitation of A01
1 leads to formation of excitation wave-fragments trapped in a

structurally defined domains.
E2-excitation of A01

1 leads to formation of sparsely distributed localised oscil-
lating excitations, or oscillators (Fig. 14.7). An oscillating localisation (oscillator)
usually consist of one or two mobile localizations which shuffle inside a small com-
pact domain of the automaton array. This micro-wave is updating states of links
and thus influencing its own behaviour. A01

1 , after E2-stimulation and formation of
oscillating localizations, is characterised by a smooth balanced distribution of cells
in-degrees.

Examples of two most commonly found oscillators—O1 and O2—are shown in
Figs. 14.8 and 14.9, and their characteristics in Fig. 14.10. Both oscillators have

14 Memristive Excitable Automata: Structural Dynamics, Phenomenology 387

Fig. 14.5 Snapshots of excitation and links dynamics in automaton A10
2 , L0-start. In initial con-

figuration two cells (minimum size of non-dying excitation) are excited others are resting. Arrow
from cell x to cell y means lxy = 1

388 A. Adamatzky and L. Chua

F
ig

.
14

.6
E

xa
m

pl
e

of
au

to
m

at
on

be
ha

vi
ou

r
in

re
sp

on
se

to
D

-s
tim

ul
at

io
n.

B
ou

nd
ar

ie
s

of
di

sc
D

ar
e

sh
ow

n
as

ci
rc

le
s.

To
po

lo
gy

of
lin

ks
is

re
pr

es
en

te
d

by
gr

ey
-l

ev
el

s
of

ce
lls

’
in

-d
eg

re
es

14 Memristive Excitable Automata: Structural Dynamics, Phenomenology 389

Fig. 14.7 Formation of localised excitations in A01
1 , L1-start. A localised excitation occupies a

fixed size domain, the excitation may change its size periodically but never expands more then
the certain fixed size. (a) configuration of automaton after E2-excitation, boundary of D is shown
by black circle; (b) the same automaton after transient period, only few oscillating localizations
sustain; (c) links’ conductivity presented via grey-values of cells’ in-degrees

exactly the same minimum and maximum masses (measured as a sum of cells in
excited and refractory states). Oscillator O2 has much longer period than O1 and
larger maximum density. Oscillator O1 spans large space during its transformation
cycle, it occupies a sub-array of 6 × 6 cells when in its largest form.

In its minimal form O1 consists of two cells: one cell is in state + another in
state − (Fig. 14.8, t = 0). At next two steps of O1’s transformations a small lo-
calised excitation is formed. It propagates north (Fig. 14.8, t = 1,2,3). At fourth

390 A. Adamatzky and L. Chua

Fig. 14.8 Example of oscillator O1 in A01
1

14 Memristive Excitable Automata: Structural Dynamics, Phenomenology 391

Fig. 14.9 Example of oscillator O2 in A01
1

step of oscillator O1’s transformation the travelling localised excitation splits into
two excitations: one travels north-west, another south (Fig. 14.8, t = 4,5). The lo-
calisation travelling south returns to exact position of the first step excitation, just

392 A. Adamatzky and L. Chua

Fig. 14.10 Characteristics of
commonly found oscillators
O1 and O2 in A01

1

Characteristic O1 O2

Period 12 26
Minimum mass 2 2
Maximum mass 7 7
Minimum size 2 2
Maximum size 36 9
Minimum density 1 1
Maximum density 1

6
1
2

with swapped excited and refractory states (Fig. 14.8, compare t = 6 with t = 0) and
then repeats a cycle of transformations t = 1,2 (compare t = 1 with t = 7 an t = 2
with t = 8). The excitation travelling north-west become extinguished (t = 8,9).

A couple (−+) is a minimal configuration of oscillator O2 (Fig. 14.9, t = 0).
When the localisation starts it is development in configuration (−+), and configu-
ration of links’ conductivity as shown in Fig. 14.9, it is transformed into excitation
wave-fragment propagating east and north-east (Fig. 14.9, t = 1,2,3). At fourth
step of oscillator’s transformation the wave-fragment shrinks and by step t = 6
the oscillator repeats its original state (−+) yet rotated by 90◦ clockwise. New
excitation wave-fragment emerges and propagates west and south-west (Fig. 14.9,
t = 7 . . .10). The fragment contracts to configuration (+−) by step t = 12. Then de-
velopment and transformation of excitation wave-fragments is repeated (Fig. 14.9,
t = 13, . . . ,23). The localisation returns to its original configuration (−+) at t = 26.

Most oscillating localizations observed in experiments with A01
1 have very long

periods. This is because the oscillators’ behaviour is determined not only by cell-
state transitions rules, as in classical cellular automata, but also by topology of links
modified by repeated random stimulation and dynamics of the links affected by
oscillators themselves.

14.5 Building Conductive Pathways

By exploring collisions between excitation wave-fragments travelling in A2 one
can built information transmission pathways in an initially non-conductive medium.
Routing primitives realised include signal splitting, signal echoing and signal turn-
ing.

Localizations travelling in A2, L0-condition, can form pathways conductive for
low-strength excitations. For example, a localisation of two excited and two refrac-
tory states propagates in A2 in the direction of its excited ‘head’. The localisation
forms a chain of conductive links oriented opposite to the localisation’s velocity
vector in case of A01

2 , and in the direction of the localisation’s propagation in case
of A10

2 (Fig. 14.11).
A layout of conductive pathways, or ‘wires’, is determined by outcomes of

collisions between path-laying particles. A detailed example of such collision-
determined pathway building is shown in Fig. 14.12. Two travelling localiza-

14 Memristive Excitable Automata: Structural Dynamics, Phenomenology 393

Fig. 14.11 Snapshots of excitation and links dynamics in automaton A10
2 , L0-start. In initial con-

figuration two cells are excited, two cells are in refractory state, others are resting. Arrow from cell
x to cell y means lxy = 1

tions, 2+-particles,1 are initiated in A10
2 facing each other with their excited heads

(Fig. 14.12a). One particle propagates south another north (Fig. 14.12a). When the
particles collide they undergo elastic-like collision, in the result of which two 2+-
particles are formed: one travels east another west (Fig. 14.12c–f). When a weak
excitation rule—a cell is excited if at least one neighbour is excited and no links are
updated—is imposed on the automaton the pathways formed by these two colliding
particles becomes selective. If an excitation is initiated in the southern or northern
channel the excitation propagates till cross-junction and then branches into eastern
and northern channels.

Pathways built by two 2+-particles undergoing head-on collision being in differ-
ent phases (odd and even distance between their start positions) and lateral offsets
are shown in Fig. 14.13. Most T-bone collisions between 2+-particles lead to for-
mation of omnidirectionally growing excitation patterns. Only in situations when
one particle hits a tail of another particle no uncontrollable growth occurs. The par-
ticle hitting a tail of another particle extinguishes and the other particle continues its
journey undisturbed.

There are primitives of information routing implementable in collisions between
2+-particles (Fig. 14.14). T-branching, or signal splitting, (Fig. 14.14a) is built by
particles colliding with zero lateral shift and even number of cells between their ini-
tial positions (e.g. Fig. 14.13, entry (even, 0)). When signal travelling north reaches

12+-particles are localizations consisting of two excited and two refractory states, which move
along rows or columns of an excitable cellular array (Adamatzky 2011).

394 A. Adamatzky and L. Chua

Fig. 14.12 Snapshots of
excitation and link dynamics
in automaton A10

2 , L0-start.
In initial configuration two
2+-particles are introduced in
the medium. Four cells are
excited, four cells are in
refractory state, others are
resting. Arrow from cell x to
cell y means lxy = 1

cross-junctions it splits into two signals—one travel west and another travels east;
no signal continues straight propagation across junction.

Echo primitive (Fig. 14.14b) is constructed in a head-on collision between 2+-
particles with lateral shift two or three cells (see e.g. Fig. 14.13, entries (odd, 2),

14 Memristive Excitable Automata: Structural Dynamics, Phenomenology 395

F
ig

.1
4.

13
In

te
rs

ec
tio

n
of

‘w
ir

es
’

bu
ild

by
pr

op
ag

at
in

g
an

d
co

lli
di

ng
2+

-p
ar

tic
le

s.
A

ut
om

at
on

A
10 2

396 A. Adamatzky and L. Chua

Fig. 14.14 Types of
information transfer pathways
laid out by interacting
travelling localizations:
(a) T-branching, (b) echo,
(c) turning

(odd, 3), (even, 2), (even, 3)). The echo primitive consists of two anti-aligned (e.g.
one propagates information northward and another southward) parallel information
pathways. There is a bridge between the pathways. When signal propagating along
one pathway reaches the bridge, it splits, daughter signal enters second pathway and
propagates in the direction of mother signal’s origination. In Fig. 14.14b mother-
signal propagates north and daughter-signal south.

Turn primitive (Fig. 14.14c) is implemented in T-bone collision between two 2+-
particles. A signal generated at either of the pathways propagates in the direction of
2+-particle which trajectory was undisturbed during collision.

14.6 Discussion

We designed a minimalistic model of a two-dimensional discrete memristive
medium. Every site of such medium takes triple states, and a binary conductivity
of links is updated depending on states of sites the links connect. The model is a hy-
brid between classical excitable cellular automata (Greenberg and Hastings 1978)
and classical structurally-dynamic cellular automata (Ilachinsky and Halpern 1987).
A memristive automaton with binary cell-states would give us even more elegant
model however by using binary cell-states we could not easily detect source and
sink of simulated ‘currents’. Excitable cellular automata provide us with all neces-
sary tools to imitate current polarity and to control local conductivity. From topol-
ogy of excitation wave-fronts and wave-fragments we can even reconstruct relative
location of a source of initiated current.

We defined two type of memristive cellular automata and characterised their
space-time dynamics in response to point-wise and spatially extended perturbations.
We classified several regimes of automata excitation activity, and provided detailed
accounts of most common types of oscillating localizations. We did not undertake
any systematic search for minimal oscillators though but just exemplified two most
commonly found after random spatially-extended stimulation. Exhaustive search for
all possible localised oscillations could be a topic of further studies.

With regards to formation of conductive pathways just few possible versions
amongst many implementable were discussed in the papers. Opportunities to grow
‘wires’ in memristive automata are virtually unlimited. For example, in A01

2 , L0-
start, after first D-stimulation (Fig. 14.15) generators of spiral and target waves are

14 Memristive Excitable Automata: Structural Dynamics, Phenomenology 397

Fig. 14.15 Configuration of
target waves (a) and
configuration of cell
in-degrees (b) in A01

2 ,
L0-start, D-stimulation,
E1-excitation. Boundary of D

is shown by circle in (a)

formed inside D. Boundaries between the generators (they provide a partial approx-
imation of a discrete Voronoi diagram over centres of the generators) are comprised
of cells with high in-degrees. Such chains of high in-degree cells can play a role of
conductive pathways even if we increase excitation threshold of the medium.

398 A. Adamatzky and L. Chua

References

Adamatzky, A. (2011). Computing in Nonlinear Media and Automata Collectives. Bristol: IoP.
Alonso-Sanz, R. (2006). A structurally dynamic cellular automaton with memory. Chaos, Solitons

and Fractals, 32, 1285–1295.
Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory,

18, 507–519.
Chua, L. O. (1980). Device modeling via non-linear circuit elements. IEEE Transactions on Cir-

cuits and Systems, 27, 1014–1044.
Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64,

209–223.
Erokhin, V., & Fontana, M. T. (2008). Electrochemically controlled polymeric device: a memristors

(and more) found two years ago. arXiv:0807.0333v1 [cond-mat.soft].
Halpern, P., & Caltagirone, G. (1990). Behavior of topological cellular automata. Complex Systems,

4, 623–651.
Hasslacher, B., & Meyer, D. A. (1998). Modelling dynamical geometry with lattice gas automata.

International Journal of Modern Physics C, 9, 1597–1605.
Hillman, D. (1998). Combinatorial spacetimes. Ph.D. dissertation. 234 pp. arXiv:hep-th/

9805066v1.
Ilachinsky, A. (2009). Structurally dynamic cellular automata. In Encyclopedia of complexity and

systems science (Vol. 19, pp. 8815–8850).
Ilachinsky, A., & Halpern, P. (1987). Structurally dynamic cellular automata. Complex Systems, 1,

503–527.
Itoh, M., & Chua, L. (2009). Memristor cellular automata and memristor discrete-time cellular

neural networks. International Journal of Bifurcation and Chaos in Applied Sciences and Engi-
neering, 19, 3605–3656.

Greenberg, J. M., & Hastings, S. P. (1978). Spatial patterns for discrete models of diffusion in
excitable media. SIAM Journal on Applied Mathematics, 34, 515–523.

Requardt, M. (2003). A geometric renormalization group in discrete quantum space-time. Journal
of Mathematical Physics, 44, 5588.

Rosé, H., Hempel, H., & Schimansky-Geier, L. (1994). Stochastic dynamics of catalytic CO oxi-
dation on Pt(100). Physica. A, 206, 421–440.

Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor
found. Nature, 453, 80–83.

Tomita, K., Kurokawa, H., & Murata, S. (2009). Graph-rewriting automata as a natural extension
of cellular automata. In Understanding Complex Systems (pp. 291–309). Berlin: Springer.

Williams, R. S. (2008). How we found the missing memristor. IEEE Spectrum, 2008-12-18.
Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., & Williams, R. S. (2008).

Memristive switching mechanism for metal-oxide-metal nanodevices. Nature Nano, 3(7).

http://arxiv.org/abs/arXiv:0807.0333v1
http://arxiv.org/abs/arXiv:hep-th/9805066v1
http://arxiv.org/abs/arXiv:hep-th/9805066v1

Part IV
Discussion

Chapter 15
A Turing Test for Emergence

Fabio Boschetti and Randall Gray

15.1 Introduction

Dealing with complex systems present a particular challenge to many traditional
engineering approaches. The pertinent assumption inherent in these approaches is
that component parts of a system can be neatly partitioned and that their interactions
have limited, predictable effects. This assumption is not always tenable, and has
an impact both on degree of overall control attainable and on the robustness of
the resulting systems. A traffic controller does not need to give exact instructions
to each vehicle on the road, and a Treasurer does not need to control each single
business in a country; rather they both provide general guidelines which aim at a
desire global outcome; they both rely on the local organization inherent in road
traffic and business interactions to account for local details. Similarly we would like
a designer to specify broad guidelines in order for a complex system to act according
to a general requirement. Since the inherent organization we wish to exploit is often
a dynamical and stable configuration, a system designed to capitalize on this may
also display a robustness and adaptivity which is currently beyond our engineering
abilities.

In the parlance of complex systems science, the global outcomes arising from
broad guidelines on a system’s components, including robustness and adaptivity,
are often defined as emergent features. Because design inevitably requires a trial
and error process, it is natural to expect that our community will need to develop
methods to:

F. Boschetti (B)
Marine and Atmospheric Research, Commonwealth Scientific and Industrial Research
Organisation (CSIRO), Private Bag 5, Wembley, WA 6913, Australia
e-mail: fabio.boschetti@csiro.au

R. Gray
Marine and Atmospheric Research, Commonwealth Scientific and Industrial Research
Organisation (CSIRO), GPO Box 1538, Hobart, TAS 7001, Australia
e-mail: randall.gray@csiro.au

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5_15,
© Springer-Verlag London 2013

401

mailto:fabio.boschetti@csiro.au
mailto:randall.gray@csiro.au
http://dx.doi.org/10.1007/978-1-4471-5113-5_15

402 F. Boschetti and R. Gray

• detect emergent features when they arise;
• categorize them in order to understand what classes of processes arise as a result

of different initial conditions;
• experiment with various configurations in order to optimize the emergent pro-

cesses.

Experimentation is something which is often carried out via computer simula-
tion; however, computers are a perfect example of a ‘traditional’ engineering ap-
paratus, and consequently display the very same features (lack of robustness and
adaptivity, and a requirement for detailed instructions) which we are trying to cir-
cumvent. In this chapter we explore this apparent paradox and ask what kind of
emergent features can be generated (and thus modelled) in a computational frame-
work. We will show that this question directly relates to the other two items listed
above, that is to the experimental detection of emergence and its classification.

15.2 Background

The concept of emergence evolved to capture our intuition that when a large number
of entities interact, the resulting system can display features and behaviours which
are not displayed by the individual constituents. The human body possesses be-
haviours and functions which are not expressed by our individual cells; metals show
properties not displayed by individual atoms; societies undergo dynamics which
transcend individuals. Basic examples can also be modelled very easily on a com-
puter; famously, Conway’s Game of Life (Gardner 1970) shows how very simple lo-
cal rules generate features whose dynamics is not explicitly coded in the algorithm.
Examples are so ubiquitous in Nature that some scientists suspect that all structures
we see ‘emerge’ from underlying simpler levels (Laughlin and Pines 2000).

Nevertheless, emergence raises considerable intellectual and scientific challenge.
Despite a vast literature, going back several decades (Corning 2005), no agreement
can be found on a definition, nor on a framework for its study, nor on whether
emergence is a ‘real’ natural phenomenon or merely a by-product of our perception,
or a convenient way to make sense of processes otherwise too hard to comprehend
(Crutchfield 1994b; Rabinowitz 2005).

Why should a process which appears so obvious and easy to model prove so hard
to define and conceptualize? The fundamental reason is that in an emergent process
it is very hard to discriminate ‘who does what’. When I decide to listen to music,
is it my ‘emergent’ self which takes the decision or my cells? My body depends on
cellular activity for its functioning, so cells must be the controlling entities. How-
ever, no cell decides to listen to music since listening to music is not something cells
‘do’. This leads straight into old and unsolved philosophical problems of causality,
determinism and freewill.

Crucially, this is also a technological problem. Today, probably for the first time
in history, technological developments in many applications depend on the under-
standing of emergent phenomena. Advances in Information Technology, Epidemi-

15 A Turing Test for Emergence 403

ology, Ecosystem Management, Health Science, just to name a few, depend on ap-
proaches which go beyond traditional reductionism and address the understanding
of how emergent properties arise, what they ‘do’ and how they can be controlled.

It thus seems natural that when we ask whether emergence is ‘real’ or merely lies
‘in the eyes of the observer’, or whether emergence is a distinct process of its own or
encompasses different processes among which we are not yet able to discriminate,
the answer needs to account for what these processes ‘do’. In other words, we need
to account for causal relationships and causal power. It may appear that we are trying
to address a slippery problem (emergence) via one which is even more slippery
(causality). This does not need to be so if we constrain what we mean by causality
and we adopt an ‘operative’ definition. Following Pattee (1997) and Pearl (2000) we
associate causal power with control: a process has causal power if, by acting upon
it, we can change the effects it produces. Pattee (1997) describes this very simply:
“Useful causation requires control. . . . Clearly it is valuable to know that malaria
is not a disease produced by “bad air” but results from Plasmodium parasites that
are transmitted by Anopheles mosquitoes. What more do we gain in these examples
by saying that malaria is caused by a parasite ..? I believe the common, everyday
meaning of the concept of causation is entirely pragmatic. In other words, we use
the word cause for events that might be controllable. In the philosophical literature
controllable is the equivalent of the idea of power. In other words, the value of the
concept of causation lies in its identification of where our power and control can be
effective. For example, while it is true that bacteria and mosquitos follow the laws
of physics, we do not usually say that malaria is caused by the laws of physics (the
universal cause). That is because we can hope to control bacteria and mosquitos,
but not the laws of physics.”

Building from this observation and from the work of Shalizi (2001), Crutchfield
(1994a, 1994b), Rabinowitz (2005), among others (Bickhard 2000; Bedau 1997;
Campbell 1974; Goldstein 2002; Andersen et al. 2000; Kauffman 2000; Wieder-
mann and van Leeuwen 2002; Stannett 2003; Atay and Josty 2003; Darley 1994;
Emmeche et al. 2000), we propose to discriminate between three types of emer-
gence, depending on increasing level of ‘causal’ power: pattern formation, intrinsic
emergence and causal emergence.

Despite the philosophical halo of the above discussion, our aim is utterly practi-
cal. In a scientific culture in which understanding is increasingly synonymous with
computer modelling, we ask what forms of emergence can be studied by simulation
and what we can gain from doing so. We will see that computational and ‘causal’
barriers are strongly related. This may lead to new insights into the limitations and
future of the computer modelling of complex processes.

15.3 Formal Logic and Computation

There exists an equivalence between the workings of formal grammars, logical sys-
tems and computation (Chaitin 1997; Turing 1936; Ord 2002; Penrose 1989). All

404 F. Boschetti and R. Gray

these start from some fundamental set of strings (starting symbols, axioms or input
data), a set of rewriting rules (production rules, rules of inference, computer in-
structions), and they generate outputs (strings, theorems and computational results)
which are obtained by transforming the a priori set via the rewriting rules.

In a formal system, true statements are almost always either theorems or tautolo-
gies (Kurt Gödel demonstrated that there are true statements which are not accessi-
ble from the axioms and rules of logic. These true statements are not theorems since
they are not derived from the axioms). This is so because, given a set of axioms and
inference rules, these statements are necessarily true (they are true for all possible
scenarios and cannot be otherwise). Given a set of axioms and inference rules, these
statements necessarily follow and are true for all possible scenarios and cannot be
otherwise. Consequently, these statements do not provide any information about the
real world (any information such a string may seem convey is a result of correspon-
dences we see (or think we see) between the real world and the fundamental system,
and is wholly dependent on our perception of these correspondences). An example
clarifies the concept: the statement ‘it’s raining’ may be true today and may or may
not be true tomorrow; it depends on its agreement with the vagaries of the real world.
Assessing whether the statement is true or not provides information about the real
world. Pythagoras’ theorem, in contrast, is true independently of Nature’s vagaries,
it must be true and always will. The fact that Pythagoras’ theorem is useful to us and
matches our perception of reality is due to the clever choices of the basic axioms of
geometry. It is because of the appropriateness of axioms collected in Euclid’s work
that the properties of triangles match our perception of reality.

Given Euclid’s axioms and our rules of mathematical reasoning, Pythagoras’
theorem is an inevitable consequence. It helps us to understand Nature better by
simplifying geometrical considerations, by putting place holders in our geometrical
thinking so we do not always need refer back to the axioms, and it helps us to com-
municate this understanding, but it does not provide any information which is not
already implicit in the our axioms and rewriting rules. Theorems are transformations
of information, not new information. In some sense, all the theorems of Euclidean
geometry could be compressed, with no loss of information, into the basic axioms
and inference rules (this is formally proved in Chaitin (1997) and is the base for
Kolmogorov/Chaitin’s complexity measure). It could reasonably be argued, though,
that any decompressor which could reproduce the theorems of Euclidean geometry
through its decompression would need to be at least as complex as a mathematician
and, like a mathematician, would stand a reasonable chance of passing the Turing
Test (which we discuss later).

The PCs on our desks are equivalent to a finite tape Turing Machine (TM), an
abstract and general computational device commonly employed in theoretical com-
puter science. Because the execution of a TM is equivalent to the application of pro-
duction rules in a formal grammar, and to proof in a formal system (Turing 1936), it
follows that the result of running a TM is equivalent to a theorem or a valid string:
the results are independent of reality.

It thus also follows that the outputs of any of our computer models are similarly
dictated by their initial state and the rewriting rules embodied by the program (tech-
nically, this is correct provided the PC does not allow for interaction with the outside

15 A Turing Test for Emergence 405

world, see Wiedermann and van Leeuwen (2002) and van Leeuwen and Wieder-
mann (2001a)); a computer model transforms the information contained in its input
via its coded algorithm, but does not generate information. Clearly, a model’s output
helps our finite mental capability to see consequences of what we coded (which at
times we cannot envisage), but its truth status and relevance to the real world is lim-
ited to the truth and relevance of the user code and the input fed to the computation.
No actual information about the real world is produced by a simulation. Information
is generated solely by the writing of the code and the choice of the input. In this way,
our choices about how we model a system are much like Euclid’s choices and the
comparison of the results of our simulations to what we observe in Nature tells us
about the appropriateness of the rules we implement and the input we choose.

15.4 Algorithms and Physical Laws

In our perception of reality, causality manifests itself as physical laws (conversely, a
physical law can represent both causal relations and mere correlations, from which
it arises the philosophical dilemma behind causality. For the purpose of our discus-
sion it is important to stress that causality can be represented only as a physical law,
such as “for every action there is a corresponding equal and opposite reaction”).
Our computational representation of physical laws involves algorithms which are
essentially transformation rules (sequences of instructions). Since we have seen that
transformation rules of this sort are constrained to produce results which are mem-
bers of a set which is totally determined by these rules and the initial conditions,
we need to conclude that the running of algorithms which represent physical laws
can only produce similarly deterministic results. Any physical law (rule) which an
algorithm can generate must already be implicit in the physical laws (rules) repre-
sented in the coded algorithm. No new physical law (or representation of it) can be
generated by modelling.

When faced with the question “can genuinely novel causal laws emerge from
lower level causal laws?” or “can causal laws which transcend the causal power of
their constituents exist in Nature?” we can envisage two possible answers:

(i) either emergent, genuinely novel, causal laws can not exist and are only appar-
ent and perceived as such because of the limitations in the representation we
use;

(ii) or emergent causal laws must arise via natural processes which are non-algorith-
mic, fundamentally different from the workings of a formal logic system and
consequently not computable in classical sense.

15.5 Three Levels of Emergence

In this section we examine three levels of emergence, often discussed in the liter-
ature. Our analysis focuses on the relative causal power of the emergence features
they can generate.

406 F. Boschetti and R. Gray

15.5.1 Pattern Formation and Detection

Pattern formation captures the most intuitive view of emergence. The interaction
of low level simple entities, leading to symmetry breaking, generates a coordinated
behaviour; this is expressed by patterns which are novel and identifiable as such by
an external observer. “The patterns do not appear to have specific meaning within
the system, but obtain a special meaning to the observer once (and if) he/she is
able to detect them. When this happens, the patterns become part of the tool-box
the observer can employ to describe and study the process” (Crutchfield 1994b).
Examples include the Game of Life discussed above, spiral waves in oscillating
chemical reactions, convective cells in fluid flow and fractal structures in fractured
media.

For the purpose of our discussion, pattern formation does not, in itself, imply
causal power. Let’s consider the Game of Life and the emergent gliders. Detecting
their presence is useful for an observer to comprehend the effect of the local rules,
to highlight the potentially universal computational capability of the system and
possibly to devise a language able to compress their description (Shalizi 2001; Ra-
binowitz 2005). The question relevant to our discussion is whether the gliders can
‘do’ something or are simply ‘passive’ expressions of internal dynamics; can we
exert any causal control on the gliders? What should we do to affect the behaviour
of the gliders?

The obvious answer is that we could manipulate the Cellular Automata (CA)
local rules. This however acts at the lower level (the CA cells) not at the level of
the gliders. By doing so, gliders are still merely a representation of our manipula-
tion of the local rules. Can we act on the gliders themselves? We believe that this
could happen only via re-writing the CA code, that is via an external intervention
and a complete redesign of the system. We will discuss this more extensively in
Sect. 15.6.3. For now we suggest that pattern formation, per se, does not imply
causal power.

15.5.2 Intrinsic Emergence

Intrinsic emergence refers to features which are important within the system be-
cause they confer additional functionality on the system itself. These emergent fea-
tures may support global coordination-computation-behaviour like the motion of a
flock of birds or stock market pricing (Crutchfield 1994b). Examples with immedi-
ate relevance to modelling are Minority Game models (Arthur 1994, 1998): agents
must take local decisions on actions which result in an economic outcome but they
are not able to communicate, so they have no information about other agents’ be-
haviour. If they identify an emergent feature, providing information about the global
dynamics of the population’s economy, then they can use this measure to decide
what actions to take (Boschetti 2005). This feature now acts as an avenue for global
information processing and provides to the system the possibility for coordinated

15 A Turing Test for Emergence 407

behaviour. Clearly, the agents’ behaviour influences the global measure, but now
the global measure affects the behaviour of the agents by determining their future
actions. Self-referentiality becomes a fundamental ingredient for complex dynamics
and intrinsic emergence.

Discriminating whether intrinsic emergence implies causal control is more chal-
lenging and is surely not as clear cut as for pattern formation. In a real world we
could externally affect the stock market (with some sort of governmental inter-
vention, for example) thereby changing indirectly the dynamics of the agents, who
would respond to the sudden external change by altering their future behaviour. This
intervention is not possible in the case of pattern formation described above, since
we cannot intervene on a convective cell (for example) without acting directly on the
molecules’ motion. In the case of a simulation, we could affect the future behaviour
of the model by changing the values of the emergent feature (market), without hav-
ing to re-program the code. However, this is not fully satisfactory since, in a classic
Turing Machine, no interaction with the computation is allowed and, consequently,
the distinction between algorithm and input data is blurred.

15.5.3 Causal Emergence

The relation between emergence and causality has been studied under the term
‘downward causation’ or ‘strong emergence’ (Goldstein 2002; Bickhard 2000; Hey-
lighen 1991). Roughly, ‘a feature is emergent if it has some sort of causal power
on lower level entities’. Like all topics involving causality, this is a subject open
to considerable controversy (see Rabinowitz 2005). Here we refer to it as ‘causal
emergence’ to highlight the fact that we employ the weaker definition of causality
involving control and consequently our conclusions do not necessarily generalize to
the global problem of downward causation. Another suitable name could be emer-
gence of control.

With causal emergence we define the arising of structures on which we can exert
direct control without manipulating, nor concerning ourselves with, the lower level
constituents. As an example, we assume again that the ultimate cause of human
behaviour lies in the biochemical process arising at a molecular and cellular level.
Suppose I want to ask my friend Jim to play some music for me. I can do so by
addressing him directly, for example by speaking or writing a message. Once a
message is received, my friend will employ his biological machinery to accept the
invitation, but I do not need to concern myself with it. I do not need to re-program
complicated instructions into Jim’s cellular sub-stratum. For all practical concerns,
my friend acts as an entity with emergent causal power.

15.6 Modelling Causal Emergence

In the previous section we proposed to subdivide emergence into three classes de-
pending on the causal power of the features they can generate, ranging from pattern

408 F. Boschetti and R. Gray

formation, which generates features with no causal power, to intrinsic emergence,
displaying limited, indirect causal power to causal emergence, empowered with full
causal power.

In Sect. 15.4 we claimed that the generation of causal power cannot be modelled,
since an algorithm cannot produce novel rules. If this statement is correct, then we
deduce that while we can model pattern formation, and we may or may not be able
to model intrinsic emergence (depending on whether we allow for interaction with
data rather than instructions), we should not be able to model causal emergence.
If true, this is quite a bad piece of news, since a large component of research on
Complex Systems is today carried out via computer modelling and emergence is
considered to be a crucial ingredient of complex systems.

This is a potentially important claim. For a claim to be meaningful, however,
it needs to be relevant and falsifiable. In this section we discuss why this claim is
relevant to current scientific investigation by addressing applications to biological
and ecological modelling, Artificial Intelligence, Artificial Life and the mining of
large scientific data sets. This will lead us along the difficult path of falsification via a
variant of the Turing test, applicable to emergence processes. A full discussion of the
falsification of this claim requires addressing much subtler issues of the philosophy
of science and meta-mathematics which are beyond the scope of this paper, but
which we touch upon briefly in the final Discussion.

15.6.1 Is This Relevant?

Pattern formation is usually considered the most trivial form of emergence. Never-
theless, its relevance to our scientific enquiry is beyond doubt. An inspiring expo-
sition on the relevance of intrinsic emergence to the understanding of Nature can
be found in Crutchfield (1994b), to which we refer the reader. Here we discuss the
possible relevance of the concept of causal emergence. As mentioned above we
distinguish causal emergence from Downward Causation in this work. Ample dis-
cussion of the related concept of Downward Causation can be found in Andersen
et al. (2000).

Following our discussion in Sect. 15.4, the relevance of causal emergence de-
pends essentially on whether we believe uncomputability can be found in Nature.
On this topic, the scientific community is broadly divided into two groups. The first
group, by far the largest, believes that uncomputability exists only in the abstract
world of formal logic and pure mathematics, not in the natural world. A common
justification of this view is that no example of uncomputability has so far been de-
tected in Nature nor is there a specific need to include it in our descriptive tools.
A smaller community believes that uncomputability can be found in Nature. Among
these we can cite Penrose’s famous claims about the super computability of the hu-
man brain (Penrose 1994, 1989; Stannett 2003; Kellett 2006). According to Penrose
we can easily envisage real implementations of the abstract concept of a Turing Ma-
chine, so there is no reason to believe that uncomputability cannot be generated in

15 A Turing Test for Emergence 409

Nature. For a further discussion on this topic see also (Cooper and Odifreddi 2003;
Calude et al. 1995). A natural observation for supporters of the latter view is that,
if all tools enabling us to study Nature are based on computation (i.e. algorithms),
then it follows that no uncomputable process can be detected. This observation leads
to a possible third view of the problem, according to which Nature may or may not
include uncomputable processes, but we will never be able to detect or access them
because of the inherent limitation in the language we use to interpret it. We will
come back to this possibility later.

15.6.2 Biological/Ecological Modelling

The idea underlying any computer modelling is to create a virtual laboratory where
a researcher can perform experiments and scenario testing which would be impos-
sible, impractical or too costly to carry out in the real world. The relevance of these
experiments depends on how well the virtual laboratory resembles the real world.
Nineteenth century physics has taught us that perfect accuracy is beyond our reach
(Heisenberg Uncertainty Principle, for example), and this teaching is today well
accepted. Nineteenth century mathematics has taught more fundamental concerns
(Gödel’s Theorem, for example), which, curiously, are more easily dismissed.

A considerable experience in engineering, physics and chemistry has shown im-
mense practical benefits and, when the general limitations are carefully accounted
for, has proved how useful computer modelling can be. When porting the approach
to biological and ecological modelling it becomes tempting to employ the same
method for studying processes like evolution, adaptation, and creation of novelty
and diversity. However, we believe that these processes involve the same causal
emergence we discussed above and it thus becomes necessary to ask whether the
virtual laboratory has a similar functional relation to the real world to that enjoyed
by physical systems. The same question can be framed as follows: to what extent can
a biological agent be modelled within the same framework used to model non-living
objects and processes?

To give a practical example of where the challenge may reside, it is useful to
remember that a crucial concept in biological and ecological studies is the existence
of multiple levels of organization (cells → organs → individuals → communities
→ species → ecologies, etc.).

According to our current understanding, these structures self-organize (they do
not follow explicit external direction templates (Kauffman 2000)) and are linked by
two-way (upward and downward) interactions. Many real world problems (ecolog-
ical and renewable resource management for example) depend on our understand-
ing (i.e., modelling) of this supposedly spontaneous generation of organization and
two-way interactions. Obviously, the more complex the questions we ask, the more
complicated the models we need to develop, and the more levels of organization we
may need to include in the model. For example, in a fishery management problem
we may want to study how individual fish organize themselves in schools or how

410 F. Boschetti and R. Gray

individual fishers organize a fishing fleet. This represents one level of organization.
If the specifics (or the scale) of the problem requires it, we may also need to model
how schools of different fish interact, or how a school of fish interacts with a fishing
fleet; this represents a second level of organization. In our model we can design a set
of rules (a module) which controls the behaviour of the individual fish and vessels
and a set of modules for the behaviour of fish schools and the fleet. However, if our
purpose is to understand how these multiple levels arise and interact, then we would
like the dynamics of the different levels to be shared or at least related. In principle
we may want to code a single module (of the lower level) and see how higher lev-
els of organization arise as a result; after all, this is what we conjecture happens in
Nature.

Here, in our opinion, a fundamental discontinuity is revealed. In order to model
this nesting of organization, the schools and fleets need to be more than mere pat-
terns arising form the lower level; they need to be able to ‘do’ something. In par-
ticular, they need to be able to causally interact with other entities. Following our
discussion in Sect. 15.6, this equates to asking whether we can exert control on the
system without needing to ‘refer back’ or manipulate the rules controlling the in-
dividual fish and vessels. In other words, as we are able to ask our friend to play
some music (without needing to concern ourselves about his ‘lower level’, local,
biochemical rules) by merely interacting with him at a higher level similarly, we
would like to be able to exert control on a school or fleet without having to concern
ourselves with the lower level rules governing them. If we cannot do that, then we
must conclude that the school/fleet system is merely a pattern, which we can iden-
tify and analyse, but which does not have any causal power. Thus the question is,
can we exert such control?

15.6.3 Artificial Life and Artificial Intelligence—A Turing Test for
Emergence

We believe the answer to the previous question is negative. We also believe this is
merely a conjecture and that it cannot be proved. We also believe this issue is highly
debatable since it mostly depends on potentially different interpretations of causal
control, as we discuss in this section.

In Sect. 15.5.1 we expressed our opinion that the gliders in the Game of Life are
mere patterns with no causal power and we asked ourselves whether we can interact
with the gliders without re-coding their local rules. Answering this is not trivial,
mostly because it depends on how much ‘purpose’ is placed in the original local
rules.

We explain what we mean by ‘purpose’ with an example. Let’s take a flocking
model (Reynolds 1987). Birds fly in flocks by ensuring they maintain certain con-
straints on the position between each other. Suppose we now place an obstacle on
the route of the flock. The flock will circumvent the obstacle. It thus appears that
we were able to exert control on the behaviour of the flock; the flock appears to

15 A Turing Test for Emergence 411

have causal power. However, we ask ourselves whether the flock has actually done
anything which was not explicitly coded in the lower level rules. After all, all the
flock did was to maintain flight by following a lead bird which avoided the obstacle.
Is there any emergent behaviour in this? Is there any causal power which was not
purposely coded.

Can we causally control the flock in any different way? Reasonable arguments
can be given in both the affirmative and negative in answering this question. Inter-
estingly, this is not particularly important. Let’s consider once again my friend Jim
playing some music. It is beyond ours current understanding to discriminate to what
extent our verbal instruction interacts with his underlying biochemistry. Similarly,
it is beyond our current knowledge to grasp how our higher level invitation (spoken
request) is processed at his lower (biochemical) level for the task to be carried out.
For our discussion, what matters is only our perception of causal control on Jim’s
behaviour. By analogy, we are led to conclude that in the Game of Life or flocking
example, what matters is the perception to which we believe we can exert causal
control over the higher level emergent features. Does it look as if those features
possess causal control? Does it look like they do more than the limited number of
behaviours purposely encoded in the local rules? Do system entities behave as if they
were autonomously interacting with external processes and respond accordingly?

These new questions have the flavour of a ‘Turing test for emergence’. Famously,
the Turing test (for related variations, see the series of papers contained in Minds
and Machines (Saygin et al. 2000; Sterrett 2000)) was designed to circumvent the
difficult question of defining what intelligence is and to detect when a computer can
be said to have achieved it (one of the original purposes of Artificial Intelligence
at its very conception). Turing suggested as testing whether a human (an intelligent
agent) was able to discriminate blindly between another human (another intelligent
agent) and a computer. Should he/she not be able to, then we should conclude than
the computer and the human act as intelligently as each other, and therefore they
are both similarly intelligent. Following an analogous reasoning, we conceive an
‘emergent’ version of the test and we ask whether a process empowered with au-
tonomous causal emergent properties (a human) can discriminate between another
causal emergent process and a computer program. Should he/she not be able to do
so, then we should conclude that the computer displays causal emergence.

We are not actually suggesting that the test be carried out in earnest. Rather, we
would like to refer to and build upon the vast body of work (both conceptual and
practical) carried out on the Turing test over several decades and extend some of the
conclusions which may be relevant to the study of emergent processes and computer
modelling. In this regard, notice that intelligence is itself often considered an emer-
gent feature of the processing occurring in a nervous system. If we accept this view,
then the ‘Turing test for emergence’ can be seen as a generalization of the traditional
Turing test. Consequently extending the discussion of the traditional Turing test to
emergence becomes more than merely exploiting an imaginary analogy.

The traditional Turing test has been subjected to considerable theoretical discus-
sion and criticism. Nevertheless, practical implementations of the Turing test are
carried out annually in the form of the Loebner prize (Wikipedia 2007). So far, it

412 F. Boschetti and R. Gray

is widely accepted that improvement in the test performance over the years has not
been particularly significant and ‘passing the test’ does not seem to be a likely short
term outcome. The entire artificial intelligence community has, therefore, revisited
its own role, scope and measure of success. Far from being a proof, this observa-
tion does somehow reinforce our conjecture that modelling causal emergence via
computer simulation should, at the very least, not be taken for granted.

On a more positive side, this suggests a reason for the Complex System Sciences
(CSS) community building more closely on the extensive experience accumulated
along the difficult path followed by artificial intelligence. After a few decades of pes-
simism, a new breeze of optimism can be felt in both the artificial life and artificial
intelligence community. This renewed confidence is not based on the infrastructure
of logical programming or the complications of expert systems (as in the past), nor
on hopes of super computability brought to us by quantum computing. Rather it de-
pends on more down-to-earth, often biologically inspired, approaches. As an exam-
ple, in a series of papers (Wiedermann and van Leeuwen 2002; Verbaan et al. 2004;
van Leeuwen and Wiedermann 2000, 2001a, 2001b, 2003; Wiedermann 2000), van
Leeuwen and Wiedermann show formally that agents interacting with their environ-
ment have computational capabilities which supersede classic computation. There
are a number of reasons why interacting agents can achieve these acrobatics: they
run indefinitely (as long as the agent is alive), they continuously receive input from
a (potentially infinite) environment and from other agents (unlike a classic machine
for which the input is determined and fixed at the beginning of the calculations),
they can use the local environment to store and retrieve data and they can adapt
to the environment. In particular, the agents’ adaptation to their environment means
that the ‘algorithm’ within the agents can be updated constantly and in van Leeuwen
and Wiedermann (2003) it is shown how super computability can arise from the very
evolution of the agents. Also, in an interactive machine, the traditional distinction
between data, memory and algorithm does not apply, which results in more dynam-
ical and less specifiable computational outcomes (Milner 1993). Other classes of
relatively down-to-earth machines which seem to guarantee to break classic compu-
tation barriers include fuzzy Turing machines (Wiedermann 2000).

Today human-computer interactions are standard in a large number of applica-
tions. Usually, these are seen as enhancing human capabilities by providing the fast
computation resources available to electronic machines. Should we see the interac-
tion in the opposite direction, as humans enhance the computational capabilities of
electronic machines? In van Leeuwen and Wiedermann (2000) it is speculated that
today personal computers, connected via the web to thousands of machines world
wide, receiving inputs via various sensors and on-line instructions from users, are
already beyond classic computers. Today sensors monitor several aspects of the en-
vironment routinely and some have even been installed on animals in the wilderness
(Simonite 2005). Can we envisage a network computing system, in which agents
(computers) interact with the environment via analog sensors, receive data from liv-
ing beings, and instructions from humans to deal with unexpected situations? Could
this be the way forward to understand emergence?

More intriguingly, could these systems potentially already sit on our desks?

15 A Turing Test for Emergence 413

15.6.4 Data Explosion and Scientific Data Mining

In a recent issue of Nature (Butler 2006; Muggleton 2006; Szalay and Gray 2006),
the picture was drawn of a near future when improved instrumentation and extensive
sensing will provide us with exponentially increasing quantities of data for scientific
enquiry. This implies more information but at a considerable cost. It promises more
and better information about a vast range of things, from space to ocean depths,
from ecologies to the human body, from genomes to social behaviour. However, the
data explosion may go beyond our ability to process and analyse it. Unravelling new
mysteries of Nature will then be jeopardized by something as mundane as lack of
time and resources. It is hypothesized that this will be circumvented by clever soft-
ware able to supervise the instrumentation, detection of new interesting patterns and
possibly use rule extraction algorithms that uncover new processes and biophysical
or social laws; a very difficult task, but (supposedly) merely a technological one.

This picture relies on 2 assumptions:

(i) that all natural processes we may wish to study or detect are algorithmic;
(ii) that the process which allows us to understand and study Nature is also algo-

rithmic.

Neither of these assumptions has been proved and both are open to debate. The
first statement has been discussed above. The second one requires some clarifica-
tion. First, a computational system which scans a data set in order to find patterns
of interest must be algorithmic, by definition. Similarly, a system which, upon de-
tecting a pattern, performs some rule extraction in order to attract our attention and
suggest an interpretation also needs to be algorithmic. It seems evident that any al-
gorithm capable of sifting through a stream of data and picking out just those novel
patterns which are of interest to a human being, is more than a few steps along the
way to passing the Turing test. Similarly, the second of the two systems bears a
remarkable resemblance to the Halting Problem. An algorithmic system cannot, by
definition, process a non-recursive language, from which it follows that if Nature
displays a non-algorithmic process, this will not be detected by a fully automated
computational system.

It is interesting to note that the rigors of formal logic apply not only to compu-
tational systems, but to the broader scientific method as well. The scientific method
requires experiments to be reproducible. This implies that an experiment needs to
follow a quite detailed and rigorous procedure in order to be replicated by different
observers under inevitably different experimental settings. Basically, an experiment
is reduced to an algorithm (Stannett 2003, page 122), and consequently scientific
experimentation suffers the very same limitation of formal logic and computer sys-
tems, and thus is, by itself, unable to detect truly emergent processes. Curiously,
the same desire for a rigorous, quasi-algorithmic approach affects scientific com-
munication, with scientific journals often requiring a quasi-algorithmic way of writ-
ing. However, it is often suspected that the large leaps in scientific understanding
are fired by a brilliance which may be non-algorithmic. While further considerable
work needs to be done to understand this creative process, it seems that over-relying

414 F. Boschetti and R. Gray

on formal logic not only to model, but also to detect and analyse Nature may come
with the risky consequence of preventing us from seeing the very processes we want
to discover.

15.7 Conclusions

Our aim is by no means to suggest that computer modelling is a purposeless activ-
ity. Rather, that clarity is needed to discriminate the means (computer modelling as a
tool) from the aim (acquiring knowledge about Nature). In this framework, confus-
ing the means with the aim equates to carrying out a scientific program (including
experimental and formal analysis) in the virtual world of a computer model as if
this was the ‘real world’ and then extend the ‘virtual’ results to the ‘real’ natural
world, under the assumption that the two are, to some degree, isomorphic. Here the
old Chinese saying “if all you have is a hammer, everything looks like a nail” nicely
highlights possible dangers and could be translated as ‘if all you have is a computer,
everything looks computational’.

We can thus summarize our proposed guidelines as follows:

(i) Care should be used to discriminate among: the processes which are ‘naturally’
amenable to computer modelling; the processes which are numerically or theo-
retically intractable (large combinatorial problems, NP-hard problems, chaotic
problems) but for which useful approximations can be found (either in terms
of non optimal solutions or large scale approximations); and processes which
may be fundamentally intractable.

(ii) The widely accepted conjecture that intractable problems do not exist in Nature
should (at least) be carefully studied, rather than accepted dogmatically.

(iii) The rigors of the algorithmic approach do not apply only to the world of formal
systems and computer languages. Scientific investigation (the iterative testing
of hypotheses) is also subject to these constraints due to its algorithmic nature.
Recently, a new scientific tendency is to call for a more free and creative way
of reporting and discussing science. Complex System Science, which naturally
mixes experts ranging from pure mathematics to social science, seems to be in
a particularly fortunate development for thorough exploration of the potential
for reintroduction of artistic and other creative contributions to science.

Acknowledgements This research was carried out as a part of the CSIRO Emergence Interaction
Task, http://www.per.marine.csiro.au/staff/Fabio.Boschetti/CSS_emergence.htm.

References

Andersen, P. B., Emmeche, C., Finnemann, N. O., & Christiansen, P. V. (2000). Downward causa-
tion. Aarhus: Aarhus University Press.

Arthur, W. (1994). Inductive behaviour and bounded rationality. The American Economic Review,
84, 406–411.

http://www.per.marine.csiro.au/staff/Fabio.Boschetti/CSS_emergence.htm

15 A Turing Test for Emergence 415

Arthur, W. (1998). Modeling market mechanism with evolutionary games. Europhysics News, 29,
51–54.

Atay, F., & Josty, J. (2003). On the emergence of complex systems on the basis of the coordination
of complex behaviors of their elements (Santa Fe Institute Working Paper, 04-02-005).

Bedau, M. A. (1997). Weak emergence. In J. Tomberlin (Ed.), Philosophical perspectives: mind,
causation, and world (Vol. 11, pp. 375–399). Oxford: Blackwell.

Bickhard, M. H. (2000). Emergence. In P. B. Andersen, C. Emmeche, N. O. Finnemann, & P. V.
Christiansen (Eds.), Downward causation (pp. 322–348). Aarhus: University of Aarhus Press.

Boschetti, F. (2005). Improved resource exploitation by collective intelligence. In A. Zerger & R.
M. Argent (Eds.), MODSIM05: international congress on modelling and simulation: advances
and applications for management and decision making (pp. 518–523). Canberra: Modelling and
Simulation Society of Australia and New Zealand.

Butler, D. (2006). 2020 computing: everything, everywhere. Nature, 440(7083), 402–405.
Calude, C., Campbell, D. I., Svozil, K., & Stefanescu, D. (1995). Strong determinism vs. com-

putability. In W. Depauli-Schimanovich, E. Koehler, & F. Stadler (Eds.), Downward causation
(pp. 115–131). Dordrecht: Kluwer Academic.

Campbell, D. T. (1974). Downward causation in hierarchically organized biological systems. In F.
Ayala & T. Dobzhansky (Eds.), Studies in the philosophy of biology (pp. 179–186). Berkeley:
University of California Press.

Chaitin, G. (1997). The limits of mathematics: a course on information theory & limits of formal
reasoning. New York: Springer.

Cooper, B., & Odifreddi, P. (2003). Incomputability in nature. In S. B. Cooper & S. S. Goncharov
(Eds.), Computability and models (pp. 137–160). Dordrecht: Kluwer Academic.

Corning, P. (2005). The re-emergence of emergence: a venerable concept in search of a theory. In
Holistic Darwinism: synergy, cybernetics, and the bioeconomics of evolution, Chicago: Univ.
of Chicago Press.

Crutchfield, J. (1994a). Is anything ever new? Considering emergence. In G. Cowan, D. Pines, &
D. Melzner (Eds.), SFI series in the sciences of complexity: Vol. XIX. Complexity: metaphors,
models, and reality (pp. 479–497). Redwood City: Addison-Wesley.

Crutchfield, J. P. (1994b). The calculi of emergence: computation, dynamics, and induction. Phys-
ica D, 75, 11–54.

Darley, V. (1994). Emergent phenomena and complexity. In R. Brooks & P. Maes (Eds.), Proceed-
ings of artificial life IV. Cambridge: MIT Press.

Emmeche, C., Koppe, S., & Stjernfelt, F. (2000). Levels, emergence, and three versions of down-
ward causation. In P. B. Andersen, C. Emmeche, N. O. Finnemann, & P. V. Christiansen (Eds.),
Downward causation (pp. 13–34). Aarhus: University of Aarhus Press.

Gardner, M. (1970). Mathematical games: the fantastic combinations of John Conway’s new soli-
taire game “Life”. Scientific American, 223, 120–123.

Goldstein, J. (2002). The singular nature of emergent levels: suggestions for a theory of emergence.
Nonlinear Dynamics, Psychology, and Life Sciences, 6(4).

Heylighen, F. (1991). Modelling emergence. World Futures, 31, 89–104. Special Issue on Emer-
gence, G. Kampis, editor.

Kauffman, S. (2000). Investigations. London: Oxford University Press.
Kellett, O. (2006). A multi-faceted attack on the busy beaver problem. Masters thesis, Rensselaer

Polytechnic Institute, Troy, New York.
Laughlin, R., & Pines, D. (2000). The theory of everything. Proceedings of the National Academy

of Sciences, 97(1), 28–31.
Milner, R. (1993). Elements of interaction. Communications of the ACM, 36(1), 78–89.
Muggleton, S. (2006). 2020 computing: exceeding human limits. Nature, 440(7083), 409–410.
Ord, T. (2002). Hypercomputation: computing more than the Turing machine (Technical report).

University of Melbourne.
Pattee, H. (1997). Causation, control, and the evolution of complexity. In P. B. Andersen, C. Em-

meche, N. O. Finnemann, & P. V. Christiansen (Eds.), Downward causation. Aarhus: University
of Aarhus Press.

416 F. Boschetti and R. Gray

Pearl, J. (2000). Causality: models, reasoning and inference. Cambridge: MIT Press.
Penrose, R. (1989). The emperor’s new mind: concerning computers, minds, and the laws of

physics. London: Vintage.
Penrose, R. (1994). Shadows of the mind: a search for the missing science of consciousness. Ox-

ford: Oxford University Press.
Rabinowitz, N. (2005). Emergence: an algorithmic formulation. Ph.D. thesis, The University of

Western Australia.
Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed behavioral model. Computer

Graphics, 21(4), 25–34.
Saygin, A., Cicekli, I., & Akman, V. (2000). Turing test: 50 years later. Minds and Machines,

10(4), 463–518.
Shalizi, C. (2001). Causal architecture, complexity and self-organization in time series and cellular

automata. Ph.D. thesis, University of Michigan.
Simonite, T. (2005). Seals net data from cold seas. Nature, 438, 402–403.
Stannett, M. (2003). Computation and hypercomputation. Minds and Machines, 13(1), 115–153.
Sterrett, S. (2000). Turing’s two tests for intelligence. Minds and Machines, 10(4), 541–559.
Szalay, A., & Gray, J. (2006). 2020 computing: science in an exponential world. Nature,

440(7083), 409–410.
Turing, M. A. (1936). On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, 42, 230–265.
van Leeuwen, J., & Wiedermann, J. (2000). The Turing machine paradigm in contemporary com-

puting (Technical Report UU-CS-2000-33). Institute of Information and Computing Sciences,
Utrecht University.

van Leeuwen, J., & Wiedermann, J. (2001a). Beyond the Turing limit—evolving interactive sys-
tems. In L. Pacholski & P. Ruzicka (Eds.), Theory and practice of informatics (pp. 90–109).
Berlin: Springer.

van Leeuwen, J., & Wiedermann, J. (2001b). A computational model of interaction in embedded
systems (Technical Report UU-CS-2001-02). Institute of Information and Computing Sciences,
Utrecht University.

van Leeuwen, J., & Wiedermann, J. (2003). The emergent computational potential of evolving
artificial living systems. AI Communications, 15, 205–215.

Verbaan, P., van Leeuwen, J., & Wiedermann, J. (2004). Lineages of automata—a model for evolv-
ing interactive systems. In J. Karhumaki, H. Maurer, G. Paun, & G. Rozenberg (Eds.), Theory
is forever (pp. 268–281). Berlin: Springer.

Wiedermann, J. (2000). Fuzzy computations are more powerful than crisp ones. (Technical Report
V-828). Prague University.

Wiedermann, J., & van Leeuwen, J. (2002). The emergent computational potential of evolving
artificial living systems. AI Communications, 15(4), 205–216.

Wikipedia (2007). Loebner prize—Wikipedia, the free encyclopedia, available at http://en.
wikipedia.org/wiki/loebner_prize. Online; accessed 25 January 2007.

http://en.wikipedia.org/wiki/loebner_prize
http://en.wikipedia.org/wiki/loebner_prize

Index

A
Acoustic waves, 247
Adaptability, 4, 47, 295, 298, 304
Adaptive Enterprize, 6
Adaptive resonance theory, 312
Agent, 345

active visualization component, 348
adaptation, 412
application timeline, 351
belief, 115
boid, 359
control, 70, 111
cooperation, 72
data visualization, 344, 351
information-particle, see infoticle
infoticle, 354
intelligent, 345
local, 72
local communication, 352
local perception, 352
Markov motion model, 114
memory, 352
mobile, 70
negotiation, 352
observation model, 115
perception-action loop, 9, 38
prioritized acceleration allocation, 359
robotic, 111
sensor/actuator model, 111
situated, 351
software, 143

AIN, see artificial immune network
AIS, see artificial immune system
Algorithm

algorithmic system, 413
ant clustering, 363
ant colony optimization, 306

pheromone, 306
approximation, 297
asynchronous, 92
clonal selection, 312
CLONALG, 305, 312, 313
clustering, 297
communication costs optimization, 279
decentralized negotiation, 127
decentralized resource allocation, 272
estimation of distribution, 137
evolutionary, 136, 166
flocking, 360
Gauss-Seidel, 93
genetic, see Genetic Algorithms
HEFT, 313, 315
heuristic, 296

deterministic operation, 297
immunocomputing, 327
input data, 407
Jacobi, 99
Jacobi type, 93
list scheduling, 297

processor selection, 297
task duplication, 297
task insertion, 297
task prioritization, 297, 308

modular, 112
negative selection, 302, see artificial

immune system
non-recursive language, 413
parallel, 254, 314, 371
pattern recognition, 326
permutation mask approach, 302
place-and-route, 232
Q-learning, 136
random guided search, 297
random walk, 298

M. Prokopenko (ed.), Advances in Applied Self-Organizing Systems,
Advanced Information and Knowledge Processing, DOI 10.1007/978-1-4471-5113-5,
© Springer-Verlag London 2013

417

http://dx.doi.org/10.1007/978-1-4471-5113-5

418 Index

Algorithm (cont.)
randomized search, 296, 298
roulette wheel selection, 277
rule extraction, 413
shortest path, 233
simulated annealing, 295

cooling schedule, 298
neighbor selection, 298

singular value decomposition, 327
SOTL, 47
sotl-platoon, 47
synchronous, 92
tabu search, 295
transformation rules, 405

Amplifier, 239
Amplitude modulation, 243
Analog, 239
ANN, see Artificial Neural Networks
Anomaly detection, 295, 302
Ant Colony Optimization, 65
Ant-based foraging, 363
Architecture

service-oriented, 263
ART, see adaptive resonance theory
Artificial immune network, 310
Artificial immune system, 295, 321

abstraction, 306
antibody, 307
clonal generation, 309
clonal selection, 295, 299

hypermutation rate, 309
receptor editing, 310
selection probability, 313

danger theory, 295
elimination, 295
foreign agents, 295
H-cells, 312
host, 295
immune network, 295
immunological crossover, 307
innate immune system, 299
learning, 299
lymphoid organ, 307
memory, 299
modeling, 306
negative selection, 295, 299, 338
pattern recognition, 299
positive selection, 338
recognition, 295
S-cells, 312
self-nonself discrimination, 338

Artificial Intelligence, 245, 408
applied, 347

cybernetics, 26
Artificial Life, 408
Artificial Neural Networks, 214, 295, 336

artificial neuron, 306
error back propagation, 336

Assortative noise, 12
Autonomic Computing, 6
Autonomic Informatics, 6
Autonomy, 25, 46, 146, 212, 236, 267, 300,

345, 352, 411
Axiom, 404

B
Bayes rule, 115
Bayesian approach, 115
Bayesian filtering, 115
Behavior, 402

abnormal, 312
asymptotic, 13
autonomous

see autonomy, 213
centering, 359
chaotic, 13
collective, 186, 346
collision avoidance, 111, 359
coordinated, 5, 407
discontinuous, 172
dynamic, 351
emergent, 344, see emergence
evolved, 167
flocking, 344
global, 4, 46, 406
local, 334
microfluidic, 185
non-deterministic, 4, 371
periodic, 13
reactive, 143
rule-based, 345
self-organized, 23
self-regulatory, 5
stabilization of, 361
stable, 8
statistical, 7
swarming, 187, 346, 359
symmetry-breaking, 10
velocity matching, 359

Belousov-Zhabotinsky medium, 30
Bio-inspired engineering, 24, 214
Biology, 214

antibody, 326
antigen, 326
apoptosis, 322
autoimmunization, 322
blood vessel, 179

Index 419

Biology (cont.)
central nervous system, 140
chemokine, 185
cytokine, 322
differential reproduction, 298
generation, 298
genotype, 298
immune system, 321
immunological response, 190
molecular recognition, 326
muscle, 138
mutation, 304
natural selection, 298
neuro-immune-endocrine modulation, 322
ontogenesis, 148
phenotype, 298
phenotypic trait, 148
phylogenesis, 148
population, 298
protein, 190
selection pressures, 5
vertebra, 138

Bounded rationality, 267

C
CA, see Cellular Automata
Causality, 403

circular, 8
Cell (agent)

orientation, 72
Cell Matrix, 213

bootstrap, 228
C lines, 216
cell, 215

reconfigurable, 215
clock, 217
configuration, 217
control, 251
D lines, 215
mode, 216
neighbors, 215
simulator, 223
target cell, 225
tools, 251
truth table, 216
wires, 225

Cell Matrix Corporation, 214
Cellular Automata, 12, 186, 333, 346, 363, 406

deterministic, 335
glider, 13, 406

collisions, 13
non-deterministic, 335
qualitative taxonomy, 13

Cellular automaton

Itoh-Chua, 380
memristive, 380
structurally-dynamic, 380

Central pattern generator, 140
CFG, see grammar, context-free
Chapman-Kolmogorov equation, 115
Chemical sensing, 182
Chemical wave, 337
Chemotaxis, 187
Collision

elastic, 393
Communication, 406

acoustic, 184
asynchronous, 95
bandwidth, 91
channel, 101
cost, 266

mobile code, 269
remote communication, 268

delay, 101
diffusion-mediated, 183
electromagnetic, 183
frequency, 101
inter-processor, 314
mobile code, 264, 265
network, 101
noise/signal ratio, 158, 164
overhead, 14, 297
physical medium, 102
policy, 102
rate, 102
remote, 264
scalable, 6, 92
stigmergy, 184
topology, 9

Complex systems, 27, 269, 401, 408
internal structure, 344

Complexity, 26, 91
ε-machine, 27, 32
computational, 9
Kolmogorov/Chaitin’s, 404
morphological, 30
statistical, see Statistical complexity

Composition operator
cumulative, 111

Computation, 5, 403, 405
algorithmic approach, 13, 414
biologically-inspired, 295
biomolecular immunocomputer, 321
combinatorial, 414
DNA-based, 203
nature-inspired, 296

environmental flux, 296
NP-hard, 414

420 Index

Computation (cont.)
rate, 102
reaction-diffusion model, see

Reaction-diffusion
self-organizing, 6, 12
soft computing, 296
super computability, 408
uncomputability, 408

Computational Intelligence, 322
Computational Mechanics, 11
Computer security, 301
Computing

Grid computing, 265
Grid computing model, 271
on-demand, 263
service-oriented, see service-oriented

paradigm
Conductive pathways, 392
Continuous, 238, 239
Convergence, 98
Coordination, 5
CPG, see central pattern generator
Current, 381

D
DAG, see scheduling, directed acyclic graph
Damage

severity, 73
Data acquisition, 62
Data fusion

decentralized, 115
Data Mining, 301

agent-based, 347
ant-based, 363

Data visualization, 343
self-organizing, 344

Dataset
temporal, 351

Dead reckoning, 66, 71
Decision

collective, 168
initial, 95
local, 93, 191, 406
optimal, 94
perturbation, 103
vector, 95

Decision making, 91
distributed, 92
self-organised, 92

Defects
manufacturing, 252
run-time, 252

Delay line, 247

Diagnostics, 194
Differentiation, 240
Diffusion, 190
Diffusive capture, 182
Digital logic, 211, 212
Discrete, 243
Dissipative Structures, 9
Distance metrics, 310

Euclidean distance, 310
Hamming distance, 310
Manhattan distance, 310

Distributed system, 263
engineering, 6

Downward causation, 26, 407
Drag force, 184
Dynamic programming problem, 116
Dynamic Systems Initiative, 6
Dynamical hierarchy, 26
Dynamical system, 25

attractor, 28
chaotic, 13
spatial structure, 29

bifurcation, 28
parameter, 27

chaotic regime, 7
control parameter, 7
degrees of freedom, 28
deterministic, 30
fast foliation, 28
fast short-lasting component, 7
initial conditions, 7
low-dimensional, 7
macrostate, 160
manifold

slow, 28
stable, 27
unstable, 27

microstate, 160
mode

stable, 7
unstable, 7

ordered regime, 7
phase space, 13, 25, 140

quasi-periodic orbits, 13
slow long-lasting component, 7
submanifold, 28
symmetry, 29
symmetry breaking, 168

E
EC, see evolutionary computation
Echo, 394
Ecological atlas, 333
EDA, see algorithm, estimation of distribution

Index 421

Eigenvectors, 109
El Farol Bar problem, 270
Embryonics, 214
Emergence, 5, 23, 33, 169, 213, 401

causal, 403, 407
intrinsic, 5, 403, 406
perceptual, 349
strong, 407
visual, 350

Emergent behavior, see behavior, emergent
Emergent intelligence, 146
Enslaving principle, 7, 28
Entropy, 9, 25, 52, 116, 170

as objective function, 121, 174
Boltzmann entropy, 9, 158, 160
conditional, 31
disorder, 161

index of, 161
entropy rate, 9, 161

generalized, 11
excess entropy, 11, 32, 161
joint, 31
minimization, 115
normalized index, 162, 172
posterior, 120
production, 9, 25
reduction, 25

Equilibrium, 25
Error-correcting encoding, 5
Evolution, 5, 10, 136, 146, 298, 334, 409
Evolutionary Algorithms, 136
Evolutionary computation, 295
Evolutionary design, 8

intrinsic selection criteria, 9
task-specific objective, 9

Evolvable Hardware, 214, 246
Extensible markup language, 142

F
Fabrication process driver, 253
Fault detection, 295, 302
Fibre network, 79
Field Programmable Analog Array, 246
FIN, see formal immune network
Fisher information, 120
Fisher information matrix, 120
Flash memory, 247
Floating-gate, 247
Fluid velocity, 184
Formal immune network, 322

affinity, 323
antibody, 326
antigen, 326
apoptosis, 324

autoimmunization, 324
cell, 323
cytokine FIN, 323
epitope, 325
innate immunity, 323
inner invariant, 325
pattern, 325
self-organization, 323
training, 327

Formal system, 13, 404
FPGA, 212
Fractal structure, 406
Friction

isotropic, 138
Fuel cell, 204
Function composition, 244
Fuzzy Systems, 295

G
GA, see Genetic Algorithms
Game of Life, 363, 402, 406
Game Theory, 268
Genetic Algorithms, 9, 136, 167, 214, 296, 337

control parameter, 298
crossover, 306
crossover frequency, 298
fitness function, 298
fitness gradient, 151
fitness landscape, 137
gene, 136
linear chromosome, 136
mutation, 298, 306
mutation frequency, 298
population size, 298
recombination, 298
termination condition, 298

Genetic Programming, 10, 136
algorithmic implementation, 144
grammar-based, 137
learning mutation strategy, 137

Genotype, 30
Ginzburg-Landau equations, 28
Ginzburg-Landau theory, 7
Gödel’s Theorem, 13, 409
GP, see Genetic Programming, 139
Gradient field, 65, 66

visualization, 72
Grammar

context-free, 141
context-sensitive, 137
formal, 403
grammatical evolution, 137
learning probabilistic, 137

Graph coloring, 305

422 Index

Grid, 263
Grid Toolkits, 267

H
Halting Problem, 413
Hardware compilation, 236
Hardware swapping, 237
Hardware timesharing, 237
Heisenberg Uncertainty Principle, 409
Hessian, 109
Heterogeneity, 267, 316
Hologram, 249
Homeostatic resilience, 4
Hybrid systems, 14
Hydro-acoustics, 339
Hydro-physical field, 333

I
Immune network, 305, 313

formal, see formal immune network
stimulatory, 306
suppressive, 306

Immune system, 295, 298
adaptive, 299
affinity, 301, 304
antibody, 300

idiotope, 305
paratope, 305

antibody-antigen binding, 300
antigen, 299, 304

epitope, 305
apoptosis, 303
autoimmune diseases, 303
B-cells, 299
cellular immunity, 300
clonal expansion, 304
clonal selection, 303
danger theory, 303
differentiation, 300
gene, 312
gene library, 313
homeostatic regulation, 303
homoral immunity, 300
immunoglobulins, see immune system,

antibody
lymphocyte, 301
memory, 300
necrosis, 303
negative selection, 302
pathogen-associated molecular pattern, 299
pattern-recognition receptors, 299
proliferation, 300
self-nonself discrimination, 302
T-cells, 299

Immunochip emulator, 330
Immunocomputing, 321
Impact function, 111
Impact space, 111

size, 111
Independent Component Analysis, 38
Inductive reasoning, 267, 270
Inference rule, 404
Information, 405

assurance, 339
bottleneck, 32
dynamics, 11
flocking, 362
flow, 26, 38
gathering, 92
processing, 5, 321
transfer, 9

Information matrix, 120
Information Theory, 31
Information-driven evolutionary design, 9, 153
Integration, 31
Interactive machine, 412
Intrinsic information, 31
Intrusion detection, 302, 322

attack, 331
recognition time, 333

J
Jacobian, 27, 120
Just-In-Time Compilation, 236

K
Kalman filter, 119
Kohonen map, see Self-Organizing Map

L
Landauer’s principles, 25
Law of Requisite Variety, 8
Least Square Method, 334
LMS, see Genetic Programming, learning

mutation strategy
Local interactions, 5, 158, 213, 344, 406

between robots, 166
hydrodynamic, 184
inter-agent, 345
intercellular, 322
minimization of conflicts, 12
pair-wise agent, 353
recursive, 344
strength of, 7
strong, 7
traffic, 46
weak, 7

Localisation, 384

Index 423

Logical system, 403
Logistic map, 34

M
Machine Learning, 245, 295
Magic Polygons, 256
Management

self-management, 264
Mapping, 238
Memristor, 379
MEMS technology, 201
Microenvironment, 180

biophysical properties, 186
chemical sources, 181
spatial structure, 181

Migration decision problem, 265, 268
Minimum entropy production principle, 9
Minority Game, 406
Modularity, 110
Morphogenesis, 23
Motor

flagellar, 204
Multi-agent system, 345

collaboration, 92, 123
control, 117
cooperation, 345
coordinated motion, 168
coordination, 47
coupling, 92

of oscillators, 140
decentralized, 346
decentralized control, 6
distributed control, 117
joint belief, 116
multi-robot system, 6, 92, 157

alignment, 169
path planning, 111
resource management, 266, 267
size, 111

Multi-information, 31
Music, 238
Mutual information, 31

N
Nanoparticle, 204
Nanoscale, 179
Nanotechnology, 88, 255
Negative database, 302
Negotiation, 266
Network communication, 62
Network security, 301
Network traffic, 264
Nomadic Service, 266
Non-assortativeness, 12

Non-determinism, 245
Note, 238

O
O-self-organization, 35
Object localization, 117
Objective function, 91, 296

based on order parameter, 8
coordination of distributed actuators, 9
curvature, 105
efficiency of communication topology, 9
efficiency of locomotion, 9
entropy, 121
fitness function, 311
generalized, 111
maximization of information transfer, 9
minimization of heterogeneity, 9
partially separable, 111
stability of multi-agent hierarchies, 9

Observer, 34
coarse-grained, 36
external, 5, 406
fine-grained, 35
observer-based measure, 35
perfect, 34

ODE, see Open Dynamics Engine
Open Dynamics Engine, 142
Operations Research, 296
Optical frequency domain reflectometry, 80
Optical scattering, 185
Optimal gradient, 5
Optimisation

asynchronous, 95
Optimization, 91, 402

communication costs, 268, 273
complexity of, 91
condition, 98
control parameter, 8
of traffic flow, 45
Particle-Swarm Optimization, 359
sub-optimal approximation, 296

Organization information, 35
Oscillating chemical reactions, 406
Oscillator, 384, 392

P
Particle animation, 346
Pattern formation, 3, 5, 23, 28, 403, 406

collective motion, 362
comet pattern, 356
exploitation, 5
exploration, 5
global pattern, 3
long-term zoning, 362

424 Index

Pattern formation (cont.)
macroscopic, 8
quark pattern, 356
short-term clustering, 361
side-winding, 10
spatial, 34
star pattern, 356
swarming, 362
variability, 13

Pattern recognition, 295, 301, 325, 327
Phase transition, 7, 26, 53, 158, 163
Polarity, 381
Predictive information, 11
Predictor

active, 273
efficiency, 275
function, 272
selection, 275
set, 276
type, 274, 276

Probabilistic learning model, 136
Probability density, 114

Gaussian, 118
Probability distribution

probability measure, 31
uniform distribution, 316

R
Ramp generator, 241
Rayleigh-Ritz theorem, 329
Reaction-diffusion, 23, 29
Real-valued, 238
Redundancy, 232
Reinforcement Learning, 268
Resource

availability, 297
capability, 297
heterogeneity, 297

Resource allocation
agents, 268
distributed, 266
electronic market models, 267

Resource facilitator, 266
Resource scheduling, 267
Robot

actuator
distributed, 10

biomedical applications, 180
chassis, 165
control, 135
gripper, 165
in SHM systems, 70
inch-worm, 70
locomotion, 70

side-winding, 10
microscopic, 179

action, 181
Brownian motion, 180
communication, 181
control of, 182
distributed control, 180
locomotion, 181, 184
power generation, 186
sensor, 181
thermal noise, 180

microsurgery, 201
motion, 164
navigation, 66
neural network control, 157, 166
optical rangefinder, 70
panoramic camera, 118
sensor, 117

failure, 195
traction, 166

snake-like, 135
Robotics

collective, 157
modular, 10
swarm, 6

Robustness, 4, 11, 47, 174, 295, 298, 301, 401

S
SC-self-organization, 33
Scalability, 4, 92, 215, 303
Scan pattern, 243
Schedule length, 311
Scheduling, 296, 297

constraints, 296
resource, 296
temporal, 296

decisions, 296
directed acyclic graph, 313

communication to computation ratio,
314

dynamic, 296
flow shop, 296, 313

hybrid, 313
job, 297

completion time, 296
partitioned, 297
precedence constraints, 297, 308
sequence, 313

job shop, 296, 312
lower bound solution, 312
macro-dataflow graph, 314
multiprocessor, 296
near optimal, 297
NP-complete, 297

Index 425

Scheduling (cont.)
NP-hard, 296, 312
objectives, 296

makespan, 296, 313
normalized schedule length, 315
resource utilization, 296
response time, 296

overheads, 296
performance metrics, 306
preemption, 312
quality, 297
schedule length, 296
static, 296
task allocation, 308
task graph, 297, 314
time complexity, 297, 298

Sea surface temperature, 334
Self replication

efficiency, 236
exploded grid, 234
main grid, 234
parallel, 236

Self testing, 228
Self-assembly, 5
Self-configurable, 238
Self-modifying, 212
Self-organisation

multi-agent system, 92
Self-organization, 300

applications, 3
auto-catalytic process, 5
avalanche effect, 168
conformist principle, 164
constraints, 8
convergence, 163, 329
coordination, 4, 158
design, 4
design space, 7
energy exchange, 4
equilibrium, 5, 168, 360

thermodynamic, 27
far from equilibrium, 7
fixed point, 28
information dynamics, 12
information exchange, 4, 158
information transfer, 4
information-theoretic approach, 26, 34
measure of, 25, 160
multi-agent, see multi-agent system
negative feedback, 9, 159
noise barrier, 164
O-self-organization, 35
order parameter, 7, 27

phenomenon of, 23
positive feedback, 9, 159
principles of, 159
random fluctuations, 159
resistance to noise, 173
SC-self-organization, 33
self-reinforcing process, 164
spatial, 30
stability, 169
symmetry, 27
symmetry breaking, 10, 159, 406
theory of, 3

Self-organized criticality, 5
Self-organized Map, 64
Self-Organizing Map, 23, 35
Self-organizing Traffic Lights, 47
Self-referentiality, 407
Self-repair, 213
Sensors

damage, 62
elastic wave, 62
optical fibre Bragg grating, 76
piezoelectric, 62

Separability
partial, 110

Service discovery, 271
Service Level Agreement, 266
Service-oriented paradigm, 263
Signal

splitting, 393
turning, 396

Simulation, 138, 402, 405
environment, 277
multi-robot system, 164
parameters, 278
physically-based, 187
rigid body dynamics, 142

Singular Value Decomposition, 325
Snakebot, 135

actuators, 135
correlation, 140

genetic representation, 139
locomotion gait, 135

adaptation, 149
evolution, 147
generality, 149
rectilinear, 147
sidewinding, 147

morphology, 138
SOA, see architecture, service-oriented
Soliton, 337
Song, 238
Songlines, 238
Space-filling curve, 243

426 Index

Statistical complexity, 11, 32
Stirling’s approximation, 162
Stochastic analysis, 187
Stochastic process, 32
Strange Loop, 8
Structural Health Monitoring, 57, 58
Sub-micron, 253
Supercell, 232

differentiation, 233
genome, 233
interconnection, 233
isolation, 233

Superconductivity, 28
Synchronization, 45

of oscillators, 8
Synergetics, 7, 28

T
Tangled hierarchy, 8
Taylor expansion, 103
Testing

circuitry, 232
parallel, 232
run-time, 232

Theorem, 404
Thermal protection system, 73
Three-dimensional fabrication, 254
TM, see Turing Machine
Tracking field, 66
Traffic

average trip waiting time, 49
density, 45, 49
flow, 45
green wave, 45
management system, 46

Green Light District, 48
traffic light, 47

modelling, 45
simulator, 46

moreVTS, 48
Transducer

piezoceramic ultrasonic, 71
Truth table, 216

de-serialization, 257
serialization, 257

Turing Machine, 13, 404
Turing Test, 404

for emergence, 411

V
Verification, 14
Virtual hardware, 237
Virtual organization

on-demand, 263
Visualization, 199, 343

agent-based, 347
behavioral animation, 354
Cellular Ant method, 363
dynamic animation, 353
feature space, 347
image space, 347
information flocking method, 358
Infoticle method, 353
multi-agent, 347
multi-dimensional scaling, 363
particle system, 353
scientific, 343
temporal grouping, 354

Visualizer, 72

W
Wafer-scale integration, 253
Wave

front, 382
Waveform generation, 243

X
XML, see extensible markup language

	Advances in Applied Self-Organizing Systems
	Preface
	Contents
	Contributors

	Part I: Introduction
	Chapter 1: Design Versus Self-Organization
	1.1 Introduction
	1.2 Background
	1.3 Evolutionary Design
	1.3.1 Example: Self-Organizing Locomotion

	1.4 Information Dynamics
	1.4.1 Example: Self-Organizing Trafﬁc
	1.4.2 Example: Self-Organizing Computation
	1.4.3 Adoption Roadblocks

	1.5 Epilogue
	References

	Chapter 2: Foundations and Formalizations of Self-Organization
	2.1 Introduction
	2.2 General Comments
	2.3 Related Work and Historical Remarks
	2.4 Examples for Self-Organization
	2.4.1 Bifurcation
	2.4.2 Synergetics
	2.4.3 Pattern Formation in Spatial Media

	2.5 Information-Theoretic Approaches to Self-Organization
	2.5.1 Notation
	2.5.2 Self-Organization as Increasing Statistical Complexity
	2.5.3 Observer-Induced Self-Organization

	2.6 Organization via Observers
	2.6.1 Observer Dependence

	2.7 Discussion
	2.7.1 SC- and O-Self-Organization
	2.7.2 Introducing Observers

	2.8 Conclusion
	Appendix: Proof of Relation Between Fine and Coarse-Grained Multi-Information
	References

	Part II: Distributed Management and Control
	Chapter 3: Self-Organizing Trafﬁc Lights: A Realistic Simulation
	3.1 Introduction: Catch the Green Wave? Better Make Your Own!
	3.2 Self-Organization
	3.3 Self-Organizing Trafﬁc Lights: The Control Method
	3.4 A Realistic Trafﬁc Simulator: moreVTS
	3.5 Results
	3.6 Discussion
	3.7 Future Work
	3.8 Conclusions
	3.9 Epilogue
	References

	Chapter 4: Self-Organizing Sensing of Structures: Monitoring a Space Vehicle Thermal Protection System
	4.1 Introduction
	4.1.1 The Requirements of Structural Health Monitoring
	4.1.2 The Approach to SHM System Development
	4.1.3 Overview of the Experimental System Operation
	4.1.4 Structure of the Chapter

	4.2 CD Embedded System Components: Hardware and Software
	4.2.1 CD Architecture and Hardware
	4.2.2 Piezoelectric Sensors
	4.2.3 Impacts and Simulated Damage
	4.2.4 Impact Signals and Sensor-Based Diagnosis: Use of Self-Organized Maps (SOMs)
	4.2.5 Self-Organized Robot Guidance: Tracking Field Algorithms
	4.2.6 Communications with the Robot: Distinguishing Impact and Communication Signals

	4.3 The Mobile Robotic Agent
	4.4 The System Visualizer
	4.5 A Practical Damage Scenario: Impact Damage in Thermal Protection Systems
	4.5.1 Introduction
	4.5.2 Design Fundamentals of the Agent-Based Thermal Sensing System
	4.5.3 Speciﬁc Design and Operating Issues
	4.5.4 Realisation of Switched Fibre Network
	4.5.5 AE Sensor Network
	4.5.6 Self-Organizing Agent-Based Algorithm and Simulation
	4.5.7 Fabrication and Testing
	4.5.8 Summary and Future Directions

	4.6 Conclusions
	References

	Chapter 5: Decentralised Decision Making for Ad-hoc Multi-Agent Systems
	5.1 Introduction
	5.2 Distributed Optimisation
	5.2.1 Problem Formulation
	5.2.2 Asynchronous Optimisation Model
	5.2.2.1 Local Decision Update
	5.2.2.2 Communication

	5.3 Convergence Results
	5.3.1 Weak Coupling Convergence
	5.3.2 General Convergence
	5.3.3 Efﬁcient Communication Policies
	5.3.3.1 Communication Rate

	5.3.4 Algorithm

	5.4 Ad-hoc Implementation and Coupling Estimation
	5.4.1 Internal Coupling
	5.4.2 Dynamic Communication Rates
	5.4.3 Scaling Normalisation Approximation
	5.4.4 Dynamic Step Size
	5.4.5 Approximate Algorithm

	5.5 Example: Quadratic Optimisation
	5.5.1 Numerical Convergence Results

	5.6 Heterogeneous System and Modularity
	5.6.1 Partial Separability
	5.6.1.1 Example: Collision Avoidance

	5.6.2 Modular Decision Reﬁnement
	5.6.3 Coupling Estimation
	5.6.4 Modular Algorithm

	5.7 Active Information Gathering
	5.7.1 Agent Models
	5.7.2 Bayes Filtering
	5.7.3 Control Parameterisation
	5.7.4 Objective Function

	5.8 Example: Object Localisation
	5.8.1 Modelling
	5.8.1.1 Objects
	5.8.1.2 Agent Motion
	5.8.1.3 Observations

	5.8.2 Filtering
	5.8.3 Objective Function
	5.8.3.1 Partial Separability

	5.8.4 Collaborative Control

	5.9 Results
	5.9.1 Two Agents-Single Object
	5.9.2 Nine Agents-Eighteen Objects

	5.10 Discussion and Future Work
	5.10.1 Toward Network Design

	Appendix
	References

	Chapter 6: Learning Mutation Strategies for Evolution and Adaptation of a Simulated Snakebot
	6.1 Introduction
	6.2 Genetic Programming for Design of Gaits of the Snakebot
	6.2.1 Morphology of Snakebot
	6.2.2 GP
	6.2.2.1 Algorithmic Paradigm
	6.2.2.2 Set of Functions and Terminals
	6.2.2.3 Context-Free Grammar for Canonical GP
	6.2.2.4 Fitness Evaluation
	6.2.2.5 Representation of Genotype
	6.2.2.6 Genetic Operations
	6.2.2.7 Open Dynamic Engine

	6.3 Incorporating LMS in GP
	6.3.1 Learning Probabilistic Context-sensitive Grammar
	6.3.2 GP Incorporating LMS

	6.4 Results
	6.4.1 Evolution of Fastest Locomotion Gaits
	6.4.2 Adaptation to Unanticipated Challenging Terrain. Generality of Adapted Gaits
	6.4.3 Adaptation to Partial Damage

	6.5 Discussion
	6.6 Conclusion
	References

	Chapter 7: Self-Organization as Phase Transition in Decentralized Groups of Robots: A Study Based on Boltzmann Entropy
	7.1 Introduction
	7.2 Mechanisms of Self-Organization, Phase Transitions, and Indexes to Measure the Organization Level of Collective Systems
	7.2.1 Qualitative Mechanisms of Self-Organization
	7.2.2 An Index to Measure the Synchronous Level of Organization of Collective Systems Based on Boltzmann Entropy
	7.2.3 An Hypothesis: Self-Organization of Multi-Robot Systems as a Phase Transition

	7.3 Robots and Task
	7.4 Analysis of the Emerged Self-Organizing Behavior at the Individual and Collective Level
	7.5 The Emergence of Organization vs. Noise: A Phase Transition?
	7.6 Conclusions
	7.7 Epilogue
	References

	Chapter 8: Distributed Control of Microscopic Robots in Biomedical Applications
	8.1 Microscopic Robots
	8.2 Capabilities of Microscopic Robots
	8.2.1 Chemical Sensing
	8.2.2 Timing and Computation
	8.2.3 Communication
	8.2.4 Locomotion
	8.2.5 Additional Sensing Capabilities
	8.2.6 Power

	8.3 Evaluating Collective Robot Performance
	8.4 A Task Scenario
	8.4.1 Example Task Environment
	8.4.2 Diffusion of Robots and Chemicals
	8.4.3 Control
	8.4.4 Analysis of Behavior
	8.4.5 Detection Performance

	8.5 Applications for Additional Robot Capabilities
	8.5.1 Improved Inference from Sensor Data
	8.5.2 Correlating Measurements from Multiple Devices
	8.5.3 Reporting During Operation
	8.5.4 Detection of Chemicals Inside Cells
	8.5.5 Modifying Microenvironments

	8.6 Discussion
	8.7 Epilogue
	References

	Part III: Self-Organizing Computation
	Chapter 9: Self-Organizing Computing Systems: Songline Processors
	9.1 Introduction
	9.1.1 Background on the Concept of Self-Organization
	9.1.2 Chapter Organization

	9.2 Target Platform: The Cell Matrix
	9.2.1 Basic Cell Structure
	9.2.2 Cell Structure
	9.2.3 Cell Conﬁguration
	9.2.4 Self-Conﬁguration
	9.2.5 Implications
	9.2.6 Status

	9.3 Building Blocks of Self-Conﬁguring Circuitry
	9.3.1 Cell-Replication
	9.3.2 Remote Cell Replication
	9.3.3 Multi-Channel Wires
	9.3.4 Wire Building
	9.3.5 Cell Testing
	9.3.6 Circuit Building
	9.3.7 Circuit Reading

	9.4 Distributed Management and Control in the Cell Matrix
	9.4.1 Hardware Error Checking
	9.4.2 Autonomous Fault Handling Through Autonomous Circuit Building
	9.4.3 Self-Replication
	9.4.4 Fully Autonomous Self-Conﬁguration
	9.4.5 Hardware Compilation
	9.4.6 Hardware Operating Systems

	9.5 Extension to the Analog Domain: The Songline Processor
	9.5.1 C-Mode
	9.5.2 C-Mode Applications and Beneﬁts
	9.5.3 Advantages of a Songline Processor
	9.5.4 Signiﬁcance
	9.5.5 Implementation
	9.5.6 Songline Processor Prototype

	9.6 Status and Future Work
	9.6.1 Current Status
	9.6.2 Some Applications of Self-Conﬁgurability
	9.6.3 Possible Manufacturing Options
	9.6.3.1 Aggressive Silicon Techniques
	9.6.3.2 Wafer-Scale Integration
	9.6.3.3 Three-Dimensional Fabrication

	9.6.4 Nanotechnology
	9.6.5 Cell Matrix Support for Nanotechnology
	9.6.6 Other Approaches to Manufacturing
	9.6.7 CAD Issues-Magic Polygons

	References

	Chapter 10: Self-Organizing Nomadic Services in Grids
	10.1 Introduction
	10.2 Related Work
	10.3 Communication Cost Optimization and Resource Allocation
	10.3.1 The El Farol Bar Problem
	10.3.2 Adaptation to a Service-Oriented Computing Scenario
	10.3.3 Detection of Service Providers in a Service-Oriented Environment
	10.3.4 Model
	10.3.5 Algorithm Description
	10.3.6 Communication Costs
	10.3.7 Self-Organizing Resource Allocation

	10.4 Performance Evaluation
	10.5 Simulation Results
	10.5.1 Communication Cost
	10.5.2 Resource Allocation for a Single Server
	10.5.3 Distributed Resource Allocation for Multiple Servers
	10.5.4 Distributed Resource Allocation in a Dynamic Server Environment
	10.5.5 Resource Allocation with Communication Cost Optimization

	10.6 Conclusions
	References

	Chapter 11: Immune System Support for Scheduling
	11.1 Introduction
	11.2 Scheduling Problem
	11.2.1 Multiprocessor Scheduling
	11.2.2 Scheduling Heuristics
	11.2.3 Randomized Search Techniques

	11.3 The Immune System
	11.3.1 Innate Immune System
	11.3.2 Adaptive Immune System
	11.3.3 Applicable Potentials of the Immune System: A Computational Science Perspective

	11.4 Artiﬁcial Immune Systems
	11.4.1 Negative Selection
	11.4.2 Danger Theory
	11.4.3 Clonal Selection
	11.4.4 Artiﬁcial Immune Networks

	11.5 Abstraction and Modeling of the Immune System for Scheduling
	11.5.1 Immune Entities
	11.5.1.1 Antibodies
	11.5.1.2 Lymphoid Organs
	11.5.1.3 Antigens

	11.5.2 Immune Principles and Processes
	11.5.2.1 Negative Selection
	11.5.2.2 Danger Theory
	11.5.2.3 Clonal Selection
	11.5.2.4 Immune Networks

	11.5.3 Fitness Functions

	11.6 Scheduling Algorithms with Immune System Support: A Survey
	11.6.1 Multiprocessor Scheduling
	11.6.2 Job Shop Scheduling
	11.6.3 Flow Shop Scheduling

	11.7 DAG Scheduling on Heterogeneous Computing Systems with Clonal Selection
	11.7.1 Problem Deﬁnition
	11.7.2 The Proposed Artiﬁcial Immune System
	11.7.3 Experiments and Results

	11.8 Conclusion
	References

	Chapter 12: Formal Immune Networks: Self-Organization and Real-World Applications
	12.1 Introduction
	12.2 Biomolecular Background
	12.3 General Mathematical Model
	12.4 General Pattern Recognition Algorithm
	12.5 Intrusion Detection in Computer Networks
	12.6 Forecast of Hydro-Physical Fields in the Ocean
	12.7 Discussion
	12.8 Epilogue
	References

	Chapter 13: A Model for Self-Organizing Data Visualization Using Decentralized Multi-Agent Systems
	13.1 Introduction
	13.2 Background
	13.2.1 Decentralized Multi-Agent Systems
	13.2.2 Data Visualization
	13.2.3 Agent-Based Visualization Approaches

	13.3 Emergence in Data Visualization
	13.3.1 Visual Emergence Versus Data Pattern Emergence
	13.3.2 Data Visualization Agent
	13.3.3 Behavior Rules

	13.4 Case Studies
	13.4.1 Metaphor 1: Infoticle Method
	13.4.1.1 Self-Organizing Method: Particle Animation
	13.4.1.2 Particle Animation as Data Mapping
	13.4.1.3 Emergent Data Visualization Patterns

	13.4.2 Metaphor 2: Information Flocking Method
	13.4.2.1 Self-Organization Method: Swarming
	13.4.2.2 Swarming Simulation as Data Mapping
	13.4.2.3 Emergent Data Visualization Patterns

	13.4.3 Metaphor 3: Cellular Ant Method
	13.4.3.1 Self-Organization Method: Cellular Automata and Ant Foraging
	13.4.3.2 Cellular Automata Ants as Data Mapping
	13.4.3.3 Emergent Data Visualization Patterns

	13.5 Discussion
	13.5.1 Analysis
	13.5.2 Future

	References

	Chapter 14: Memristive Excitable Automata: Structural Dynamics, Phenomenology, Localizations and Conductive Pathways
	14.1 Introduction
	14.2 Memristive Automaton
	14.2.1 Experiments

	14.3 Phenomenology
	14.4 Oscillating Localisations
	14.5 Building Conductive Pathways
	14.6 Discussion
	References

	Part IV: Discussion
	Chapter 15: A Turing Test for Emergence
	15.1 Introduction
	15.2 Background
	15.3 Formal Logic and Computation
	15.4 Algorithms and Physical Laws
	15.5 Three Levels of Emergence
	15.5.1 Pattern Formation and Detection
	15.5.2 Intrinsic Emergence
	15.5.3 Causal Emergence

	15.6 Modelling Causal Emergence
	15.6.1 Is This Relevant?
	15.6.2 Biological/Ecological Modelling
	15.6.3 Artiﬁcial Life and Artiﬁcial Intelligence-A Turing Test for Emergence
	15.6.4 Data Explosion and Scientiﬁc Data Mining

	15.7 Conclusions
	References

	Index

