
Statics with
MATLAB®

Dan B. Marghitu · Mihai Dupac
Nels H. Madsen

Statics with MATLAB�

Dan B. Marghitu • Mihai Dupac
Nels H. Madsen

Statics with MATLAB�

123

Dan B. Marghitu
Mechanical Engineering
Auburn University
Auburn, AL
USA

Nels H. Madsen
Samuel Ginn College of Engineering
Auburn University
Auburn, AL
USA

Mihai Dupac
Talbot Campus, School of Design,

Engineering and Computing
Bournemouth University
Poole
UK

ISBN 978-1-4471-5109-8 ISBN 978-1-4471-5110-4 (eBook)
DOI 10.1007/978-1-4471-5110-4
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013936003

� Springer-Verlag London 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Engineering mechanics involves the development of mathematical models of the
physical world. Statics, a branch of mechanics, addresses the forces acting on and
in mechanical objects and systems in equilibrium, and the impact those forces have
on the motion, or lack thereof, of those systems. The project deals with the
understanding of the mechanical behavior of complex engineering structures and
components. The tools of formulating the mathematical equations and the solution
methods are discussed. An understanding of forces in and equilibrium of structures
and components is most important for their design.

MATLAB is a modern tool that has transformed mathematical methods,
because MATLAB not only provides numerical calculations but also facilitates
analytical or symbolic calculations using the computer. The present project uses
MATLAB as a tool to solve problems. The intent is to show the convenience of
MATLAB for theory and applications in statics. This approach will significantly
enhance the student’s ability to use MATLAB both within statics and beyond.
Using examples of problems the MATLAB syntax will be demonstrated.
MATLAB is very useful in the process of deriving solutions for any problem in
statics. The project will include a large number of problems that are solved using
MATLAB. Specific functions dealing with statics topics are introduced and cre-
ated. The programs will be available on a website accompanying the project.

The main distinction of the study from other projects and books is the use of
symbolic MATLAB for both theory and applications. Special attention is given to
the solutions of the problems that are solved analytically and numerically using
MATLAB. The figures generated with MATLAB will reinforce visual learning for
students as they study the programs.

This project is intended primarily for use in a one semester course in statics and
could be used in a two semester sequence of courses in statics and dynamics. The
project can be used for classroom instruction, for self-study, and in a distance
learning environment. It would be appropriate for use as a text at the undergrad-
uate level.

Chapter 1 is intended to give an introduction to vector mechanics. The reason
for this chapter is that many scientific concepts used to describe the physical
world, have attributes not only of size or magnitude, but also have associated with
them the idea of a direction. Examples of such quantities include force, moment,

v

http://dx.doi.org/10.1007/978-1-4471-5110-4_1

and couple. This chapter provides a starting point for students wishing to develop
the basic principle of mechanics. MATLAB is used to calculate the magnitudes of
vectors, direction cosines, dot products, cross products, scalar triple products,
vector triple products, and derivatives of vector functions. The examples presented
begin with a symbolic development, followed by numerical evaluation and the
generation of vector figures, all done within MATLAB.

Chapter 2 demonstrates the use of MATLAB in finding the moment of a vector
about a point, the moment of a system of vectors, the moment of a couple about a
point, the equivalence of systems of vectors, and the force vector and the moment
of a force. The figures are depicted using graphical functions built in MATLAB.
This chapter also provides an introduction to the basic principles of mechanics.

Chapter 3, centroids and center of mass, presents the principles and details of
centroids (also known as the geometric center and connected to the first moment of
area) and surface properties, their meaning and importance. All the presentation
will be detailed (centroid of a set of points, centroid of a curve, surface or solid,
Guldinus-Pappus theorems, parallel-axis theorem) and in some cases followed by
examples using MATLAB. External functions can be introduced to calculate the
centroids of complex figures. The concepts of the first moment are also useful in
analyzing distributed forces.

Chapter 4 analyzes many of the equilibrium problems that are encountered in
engineering applications. The equilibrium equations are stated and various types of
supports are depicted. The unknown forces and moments acting on bodies are
communicated using free-body diagrams and the equilibrium equations are
determined. If an object is in equilibrium, the net moment about any point due to
the forces and couples acting on the object is zero and the sum of the forces must
also be zero. The calculation of moments is explained and the concept of equiv-
alent systems of forces and moments is introduced. In engineering, the term
structure can refer to any object that has the capacity to support and exert loads.
This chapter studies structures composed of interconnected parts or links. The
forces and couples acting on the structure as a total as well as on its individual
members are determined. Trusses, which are composed of two-force members, are
studied and then frames and machines are considered. MATLAB functions are
applied to find and solve the algebraic static equations.

The objective of Chap. 5 is to provide an introduction to friction. Friction forces
in engineering applications, have important effects both desirable and undesirable.
The Coulomb law of friction is used to find the maximum friction forces that can
be exerted by contacting surfaces and the friction forces exerted by sliding sur-
faces. Threaded connections are also analyzed. MATLAB is used to find friction
forces in relation to the associated coefficients of static and kinetic friction.

In the last chapter work and potential energy are described. The work per-
formed when a spring is stretched is stored in the spring as potential energy.
Raising an object increases its gravitational potential energy. The principle of
virtual work is presented in this chapter. Symbolical and numerical MATLAB are
used to solve the examples in this chapter.

vi Preface

http://dx.doi.org/10.1007/978-1-4471-5110-4_2
http://dx.doi.org/10.1007/978-1-4471-5110-4_3
http://dx.doi.org/10.1007/978-1-4471-5110-4_4
http://dx.doi.org/10.1007/978-1-4471-5110-4_5

Contents

1 Operation with Vectors . 1
1.1 Introduction. 1
1.2 Vector Addition . 3
1.3 Linear Independence . 4
1.4 Resolution of Vectors . 4
1.5 Angle Between Two Vectors . 7
1.6 Position Vector . 8
1.7 Scalar Product of Vectors . 9
1.8 Vector Product of Vectors. 11
1.9 Scalar Triple Product of Three Vectors. 13
1.10 Vector Triple Product of Three Vector 14
1.11 Derivative of a Vector Function. 15
1.12 Examples . 17
1.13 Problems. 29
1.14 Programs. 32

1.14.1 Program 1.1 . 32
1.14.2 Program 1.2 . 35
1.14.3 Program 1.3 . 38

References . 41

2 Moments, Couples, Equipollent Systems . 45
2.1 Moment of a Vector About a Point . 45
2.2 Couples . 54
2.3 Force Vectors . 55
2.4 Equipollent Force Systems . 57
2.5 Examples . 61
2.6 Problems. 77
2.7 Programs. 80

2.7.1 Program 2.1 . 80
2.7.2 Program 2.2 . 82
2.7.3 Program 2.3 . 84

vii

http://dx.doi.org/10.1007/978-1-4471-5110-4_1
http://dx.doi.org/10.1007/978-1-4471-5110-4_1
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec13
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec13
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec14
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec14
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec15
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec15
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec15
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec16
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec16
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec16
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec17
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec17
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Sec17
http://dx.doi.org/10.1007/978-1-4471-5110-4_1#Bib1
http://dx.doi.org/10.1007/978-1-4471-5110-4_2
http://dx.doi.org/10.1007/978-1-4471-5110-4_2
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec10

2.7.4 Program 2.4 . 87
2.7.5 Program 2.5 . 87

References . 90

3 Centers of Mass . 93
3.1 First Moment. 93
3.2 Center of Mass of a Set of Particles . 94
3.3 Center of Mass of a Body. 94
3.4 First Moment of an Area . 96
3.5 Center of Gravity . 97
3.6 Theorems of Guldinus-Pappus . 98
3.7 Examples . 100
3.8 Problems. 124
3.9 Programs. 130

3.9.1 Program 3.1 . 130
3.9.2 Program 3.2 . 131
3.9.3 Program 3.3 . 133
3.9.4 Program 3.4 . 134
3.9.5 Program 3.5 . 136
3.9.6 Program 3.6 . 137
3.9.7 Program 3.7 . 139
3.9.8 Program 3.8 . 141
3.9.9 Program 3.9 . 142
3.9.10 Program 3.10. 146
3.9.11 Program 3.11. 147

References . 148

4 Equilibrium . 151
4.1 Equilibrium Equations . 151
4.2 Supports . 153

4.2.1 Planar Supports . 153
4.2.2 Three-Dimensional Supports 155

4.3 Free-Body Diagrams . 155
4.4 Two-Force and Three-Force Members 159
4.5 Plane Trusses . 160
4.6 Particle on a Smooth Surface and on a Smooth Curve 164
4.7 Examples . 166
4.8 Problems. 185
4.9 Programs. 188

4.9.1 Program 4.2 . 188
4.9.2 Program 4.3 . 191
4.9.3 Program 4.4 . 194
4.9.4 Program 4.5 . 196

viii Contents

http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_2#Bib1
http://dx.doi.org/10.1007/978-1-4471-5110-4_3
http://dx.doi.org/10.1007/978-1-4471-5110-4_3
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec13
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec13
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec14
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec14
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec15
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec15
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec16
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec16
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec17
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec17
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec18
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec18
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec19
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec19
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec20
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Sec20
http://dx.doi.org/10.1007/978-1-4471-5110-4_3#Bib1
http://dx.doi.org/10.1007/978-1-4471-5110-4_4
http://dx.doi.org/10.1007/978-1-4471-5110-4_4
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec13
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec13
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec14
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec14
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec15
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec15

4.9.5 Program 4.6 . 199
4.9.6 Program 4.7 . 201
4.9.7 Program 4.8 . 205

References . 208

5 Friction . 211
5.1 Introduction. 211
5.2 Static Coefficient of Friction . 212
5.3 Kinetic Coefficient of Friction. 213
5.4 Angle of Friction . 213
5.5 Technical Applications of Friction: Screws 222

5.5.1 Power Screws . 224
5.5.2 Force Analysis for a Square-Threaded Screw 227

5.6 Problems. 230
5.7 Programs. 232

5.7.1 Program 5.1 . 232
5.7.2 Program 5.2 . 236
5.7.3 Program 5.3 . 239

References . 241

6 Virtual Work and Stability. 243
6.1 Virtual Displacement and Virtual Work 243
6.2 Elastic Potential Energy . 245
6.3 Gravitational Potential Energy . 247
6.4 Stability of Equilibrium . 248
6.5 Examples . 250
6.6 Problems. 263
6.7 Programs. 266

6.7.1 Program 6.1 . 266
6.7.2 Program 6.2 . 270
6.7.3 Program 6.3 . 275
6.7.4 Program 6.4 . 277
6.7.5 Program 6.5 . 279

References . 280

Index . 283

Contents ix

http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec16
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec16
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec17
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec17
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec18
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Sec18
http://dx.doi.org/10.1007/978-1-4471-5110-4_4#Bib1
http://dx.doi.org/10.1007/978-1-4471-5110-4_5
http://dx.doi.org/10.1007/978-1-4471-5110-4_5
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_5#Bib1
http://dx.doi.org/10.1007/978-1-4471-5110-4_6
http://dx.doi.org/10.1007/978-1-4471-5110-4_6
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec1
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec2
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec3
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec4
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec5
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec6
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec7
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec8
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec9
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec10
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec11
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Sec12
http://dx.doi.org/10.1007/978-1-4471-5110-4_6#Bib1

Chapter 1
Operation with Vectors

1.1 Introduction

Vectors are quantities that require the specification of magnitude, orientation, and
sense. The characteristics of a vector are the magnitude, the orientation, and the
sense. The magnitude of a vector is specified by a positive number and a unit having
appropriate dimensions. No unit is stated if the dimensions are those of a pure number.
The orientation of a vector is specified by the relationship between the vector and
given reference lines and/or planes. The sense of a vector is specified by the order of
two points on a line parallel to the vector. Orientation and sense together determine the
direction of a vector. The line of action of a vector is a hypothetical infinite straight
line collinear with the vector. Displacement, velocity, and force are examples of
vectors quantities.

Scalars are mathematical quantities that can be fully defined by specifying their
magnitude in suitable units of measure. Mass is a scalar quantity and can be expressed
in kilograms, time is a scalar and can be expressed in seconds, and temperature is a
scalar quantity that can be expressed in degrees.

To distinguish vectors from scalars it is customary to denote vectors by boldface
letters Thus, the displacement vector from point A to point B could be denoted
as r or rAB. The symbol |r| = r represents themagnitude (or module, norm, or
absolute value) of the vector r. In handwritten work a distinguishing mark is used

for vectors, such as an arrow over the symbol, −→r or
−→
AB, a line over the symbol, r̄,

or an underline, r.
Vectors are most frequently depicted by straight arrows. A vector represented by

a straight arrow has the direction indicated by the arrow. The displacement vector
from point A to point B is depicted in Fig. 1.1 as a straight arrow. In some cases it is
necessary to depict a vector whose direction is perpendicular to the surface in which
the representation will be drawn. Under this circumstance the use of a portion of a
circle with a direction arrow is useful. The orientation of the vector is perpendicular
to the plane containing the circle and the sense of the vector is the same as the
direction in which a right-handed screw moves when the axis of the screw is normal

D. B. Marghitu et al., Statics with MATLAB®, 1
DOI: 10.1007/978-1-4471-5110-4_1, © Springer-Verlag London 2013

2 1 Operation with Vectors

Fig. 1.1 Vector

to the plane in which the arrow is drawn and the screw is rotated as indicated by the
arrow. A bound vector is a vector associated with a particular point A in space. The
point A is the point of application of the vector, and the line passing through P and
parallel to the vector is the line of action of the vector. The point of application may
be represented as the tail, Fig. 1.1, or the head of the vector arrow. A free vector is
not associated with any particular point in space. A transmissible (or sliding) vector
is a vector that can be moved along its line of action without change of meaning. The
operations of vector analysis deal only with the characteristics of vectors and apply,
therefore, to bound, free, and transmissible vectors.

Two vectors v1 and v2 are said to be equal to each other when they have the
same characteristics and v1 = v2. Equality does not imply physical equivalence. For
instance, two forces represented by equal vectors do not necessarily cause identical
motions of a body on which they act.

The product of a vector v and a scalar s, sv or vs, is a vector having the following
characteristics:

1. Magnitude. |sv| ≡ |vs| = |s||v|, where |s| = s denotes the absolute value (or
magnitude, or module) of the scalar s.

2. Orientation. sv is parallel to v. If s = 0, no definite orientation is attributed to sv.
3. Sense. If s > 0, the sense of sv is the same as that of v. If s < 0, the sense of sv

is opposite to that of v. If s = 0, no definite sense is attributed to sv.

A zero vector is a vector that does not have a definite direction and whose mag-
nitude is equal to zero. The symbol used to denote a zero vector is 0.

A unit vector is a vector with magnitude equal to 1. Given a vector v, a unit vector u
having the same direction as v is obtained by forming the product of v with the
reciprocal of the magnitude of v

u = v
1

|v| = v
|v| .

1.2 Vector Addition 3

Fig. 1.2 Vector addition:
parallelogram law

v1
v2

+v2v1

v1

v2

+v2v1

1.2 Vector Addition

The sum of a vector v1 and a vector v2: v1 + v2 or v2 + v1 is a vector whose
characteristics can be found by either graphical or analytical processes. The vectors
v1 and v2 add according to the parallelogram law: the vector v1 + v2 is repre-
sented by the diagonal of a parallelogram formed by the graphical representation
of the vectors, see Fig. 1.2. The vector v1 + v2 is called the resultant of v1 and v2.
The vectors can be added by moving them successively to parallel positions so that
the head of one vector connects to the tail of the next vector. The resultant is the
vector whose tail connects to the tail of the first vector, and whose head connects to
the head of the last vector. The sum v1 + (−v2) is called the difference of v1 and v2
and is denoted by v1 − v2. The sum of n vectors vi, i = 1, . . . , n,

n∑

i=1

vi or v1 + v2 + · · · + vn

is called the resultant of the vectors vi, i = 1, . . . n. Vector addition is:

1. commutative, that is, the characteristics of the resultant are independent of the
order in which the vectors are added (commutativity law for addition)

v1 + v2 = v2 + v1.

2. associative, that is, the characteristics of the resultant are not affected by the
manner in which the vectors are grouped (associativity law for addition)

v1 + (v2 + v3) = (v1 + v2) + v3.

3. distributive, that is, the vector addition obeys the following laws of distributivity

(s1 + s2)v = s1v + s2v and s(v1 + v2) = sv1 + sv2,

or equivalent (for the general case)

v
n∑

i=1

si =
n∑

i=1

(vsi) and s
n∑

i=1

vi =
n∑

i=1

(svi).

4 1 Operation with Vectors

Moreover, the characteristics of the resultant is not affected by the manner in which
the vector is multiplied with scalars (associativity law for multiplication)

s1 (s2v) = (s1s2) v.

Every vector can be regarded as the sum of n vectors (n = 2, 3, . . .) of which all but
one can be selected arbitrarily.

1.3 Linear Independence

If vi, i = 1, . . . n are vectors and si, i = 1, . . . n are scalars, then a linear combination

of the vectors with the scalars as coefficients is defined as
n∑

i=1
si vi = s1 v1+· · ·+sn vn.

A collection of non-zero vectors is said to be linearly independent if no vector in the
set can be written as a linear combination of the remaining vectors in the set. The
dimension of the space is equal to the maximum number of non-zero vectors that can
be included in a linearly independent set of vectors. Thus, for a three-dimensional
space the maximum number of non-zero vectors in a linearly independent collection
is three. Given a set of three linearly independent vectors, any other vector can be
constructed as a resultant of scalar multiplication of the three vectors. Such a set of
vectors is called a basis set. A set of vectors which is not linearly independent is
called linearly dependent.

1.4 Resolution of Vectors

Let ı1, ı2, ı3 be three linearly independent unit vectors as a basis set |ı1| = |ı2| =
|ı3| = 1. For a given vector v, Fig. 1.3, there exist three unique scalars v1, v1, v3,
such that v can be expressed as

v = v1ı1 + v2ı2 + v3ı3. (1.1)

The opposite action of addition of vectors is the resolution of vectors. Thus, for the
given vector v the vectors v1ı1, v2ı2, and v3ı3 sum to the original vector. The vector
vpıp is called the ıp component of v relative to the given basis set where p = 1, 2, 3.
A vector is often replaced by its components since the components are equivalent to
the original vector.

Frequently a vector will be given and its components relative to a particular basis
set need to be calculated. A trivial example of this situation occurs when the vector
to be resolved is the zero vector. Then each of its components are zero. Thus, under
these circumstances every vector equation v = 0, where v = v1ı1 + v2 ı2 + v3ı3, is

1.4 Resolution of Vectors 5

Fig. 1.3 Resolution of a
vector v

ı1

ı2

ı3

v

ν1 ı1 ν2 ı2

ν3 ı3

Fig. 1.4 Cartesian reference
frame, orthogonal scalar
components vx, vy, vz , and
direction cosines, α, β, γ

v

O

x
ı

j

k

y

z

v

x

y

z

α β

γ

α = θx

β = θy

γ = θz

νx ı

νy j

νz k

O

equivalent to three scalar equations v1 = 0, v2 = 0, v3 = 0. Note that the zero vector
0 is not the number zero.

If the unit vectors ı1, ı2, ı3 are mutually perpendicular they form a cartesian basis
or a cartesian reference frame. For a cartesian reference frame the following notation
is used: (Fig. 1.4)

6 1 Operation with Vectors

ı1 ≡ ı, ı2 ≡ j, ı3 ≡ k and ı ⊥ j, ı ⊥ k, j ⊥ k.

The symbol ⊥ denotes perpendicular. When a vector v is expressed in the form
v = vxı + vyj + vzk where ı, j, k are mutually perpendicular unit vectors (cartesian
reference frame or orthogonal reference frame), the magnitude of v is given by

|v| =
√

v2
x + v2

y + v2
z . (1.2)

The vectors vx = vxı, vy = vyj, and vz = vzk are the orthogonal or rectangular
component vectors of the vector v. The measures vx, vy, vz are the orthogonal or
rectangular scalar components of the vector v.

The resolution of a vector into components frequently facilitate the valuation of
a vector equation. If v1 = v1xı + v1yj + v1zk and v2 = v2xı + v2yj + v2zk, then the
sum of the vectors is

v1 + v2 = (v1x + v2x) ı + (
v1y + v2y

)
j + (v1z + v2z) k.

Similarly,
v1 − v2 = (v1x − v2x) ı + (

v1y − v2y
)

j + (v1z − v2z) k.

In the MATLAB� environment, a three-dimensional row vector v_ is written as
a list of variables v_ = [vx vy vz] or v_ = [vx, vy, vz] where vx,
vy, and vz are the spatial coordinates of the vector v. The elements of a row are
separated with blanks or commas. The list of elements are surrounded with square
brackets. The first component of the vector v is vx = v(1), the second component
is vy = v(2), and the third component is vz = v(3). The semicolon ; is used to
separate the end of each row for a column vector. When a variable name is assigned
to data, the data is immediately displayed, along with its name. The display of the
data can be suppressed by using the semicolon, ;, at the end of a statement.

Symbolic MATLAB Toolbox can perform symbolical calculation and a vector
v can be expressed in MATLAB in a symbolical fashion. In MATLAB the sym
command constructs symbolic variables and expressions. The commands:

vx = sym(’vx’,’real’);
vy = sym(’vy’,’real’);
vz = sym(’vz’,’real’);

create a symbolic variables vx, vy, and vz and also assume that the variables are
real numbers. The symbolic variables can then be treated as mathematical variables.
One can use the statement syms for generating a shortcut for constructing symbolic
objects:

syms vx vy vz real
v_ = [vx vy vz];

where v_ is a symbolic vector. The same symbolic vector can be created with:

1.4 Resolution of Vectors 7

v_ = sym(’[vx vy vz]’);

In MATLAB a vector is defined as a matrix with either one row or one column.
To make distinction between row vectors and column vectors is essential, espe-
cially when operations with vectors are required. Many errors are caused by using a
row vector instead a column vector, or vice versa. The command zeros(m,n) or
zeros([m n]) returns anm-by-nmatrix of zeros. A zero row vector[0 0 0]
is generated with zeros(1,3) and a zero column vector is generated with
zeros(3,1). The command ones(m,n) or ones([m n]) returns an m-by-
n matrix of ones. In MATLAB two vectors u_ and v_ of the same size (defined
either as column vectors or row vectors) can be added together using the next com-
mand u_ + v_. Vectors addition in MATLAB must follow strict rules. The vectors
should be either column vectors or row vectors in order to be added and should have
the same dimension. It is not possible to add a row vector to a column vector. To
subtract one vector from another of the same size, use a minus (−) sign. The sub-
traction applied to the vectors u and v can be written in MATLAB as u_− v_. The
magnitude of a numerical vectorv_ can be found using the next MATLAB command
norm(v_). The MATLAB command norm(v_) does not work if the components
of the vector v_ are given symbolically. The symbolic magnitude of a vector v_ is
calculated with:

mv = sqrt(v_(1)*v_(1)+v_(2)*v_(2)+v_(3)*v_(3));

where the MATLAB statement sqrt(x) is the square root of the elements of x. To
create a unit vector in the direction of the vector v_ the following relation is used:

uv_=v_/sqrt(v_(1)*v_(1)+v_(2)*v_(2)+v_(3)*v_(3))

Vector transposition is as easy as adding an apostrophe, ’, (prime) to the name of
the vector. Thus if v_ = [vx vy vz] then v_’ is:

vx
vy
vz

1.5 Angle Between Two Vectors

The angle between two vectors can be determined by moving either or both vectors
parallel to themselves (leaving the sense unaltered) until their initial points (tails)
coincide, as shown in Fig. 1.5. This angle will always be in the range between 0◦
and 180◦ inclusive. The angle between v1 and v2 is the angle θ and is denoted by the
symbols (v1, v2) or (v2, v1).

The direction of a vector v = vxı + vyj + vzk and relative to a cartesian reference,
ı, j, k, is given by the cosines of the angles formed by the vector and the respective
unit vectors. These are called direction cosines and are denoted as (Fig. 1.4)

8 1 Operation with Vectors

Fig. 1.5 The angle θ between
the vectors v1 and v2

θ

v1

v2

v2

v1

cos(v, ı) = cos α = cos θx = l, cos(v, j) = cos β = cos θy = m, and

cos(v, k) = cos γ = cos θz = n. (1.3)

The following relations exist: vx = |v| cos α; vy = |v| cos β; vz = |v| cos γ.
From these definitions, it follows that

cos2 α + cos2 β + cos2 γ = 1 or l2 + m2 + n2 = 1. (1.4)

Equation (1.4) is proved using the MATLAB commands:

syms vx vy vz
v_ = [vx vy vz];
mv=sqrt(v_(1)*v_(1)+v_(2)*v_(2)+v_(3)*v_(3));
l = vx/mv;
m = vy/mv;
n = vz/mv;
sdc=simplify(lˆ2+mˆ2+nˆ2);
fprintf...
(’lˆ2+mˆ2+nˆ2 = %g \n’,eval(sdc))

The MATLAB statement simplify(x) simplifies each element of the symbolic
matrix x. Recall, the formula for the unit vector of the vector v is

uv = v
|v| = v

v
= vx

v
ı + vy

v
j + vx

v
k,

or written another way

uv = cos αı + cos βj + cos γk. (1.5)

1.6 Position Vector

The position vector of a point P relative to a point O is a vector rOP = −→
OP having

the following characteristics:

1.6 Position Vector 9

Fig. 1.6 Position vector

O

x

ı
j

k
y

z

P(xP , yP , zP)

M

rOP = rP

rPM

rM

1. magnitude the length of line OP;
2. orientation parallel to line OP;
3. sense OP (from point O to point P).

The vector rOP is shown as an arrow connecting O to P, as depicted in Fig. 1.6. The
position of a point P relative to P is a zero vector. Let ı, j, k be mutually perpendicular
unit vectors (cartesian reference frame) with the origin at O, as shown in Fig. 1.6. The
axes of the cartesian reference frame are x, y, z. The unit vectors ı, j, k are parallel
to x, y, z, and they have the senses of the positive x, y, z axes. The coordinates of
the origin O are x = y = z = 0, i.e., O(0, 0, 0). The coordinates of a point P are
x = xP, y = yP, z = zP, i.e., P(xP, yP, zP). The position vector of P relative to the
origin O is

rOP = rP = −→
OP = xPı + yPj + zP k. (1.6)

The coordinates of a point M, M �= O, are (xM , yM , zM). The position vector of the
point M relative to a point P is

rPM = −→
PM = (xM − xP)ı + (yM − yP) j + (zM − zP) k. (1.7)

The distance d between P and M is given by

d = |rM − rP| = |rPM | = |−→PM| =
√

(xM − xP)2 + (yM − yP)2 + (zM − zP)2.

1.7 Scalar Product of Vectors

The scalar (dot) product of a vector v1 and a vector v2 is

v1 · v1 = |v1| |v2| cos(v1, v2). (1.8)

10 1 Operation with Vectors

For the scalar (dot) product the following rules apply:

1. for any vectors v1 and v2 one can write the commutative law for scalar product

v1 · v2 = v2 · v1.

2. for any two vectors v1 and v2 and any scalar s the following relation is written

(sv1)·v2 = s(v1 · v2) = v1·(sv2) = sv1·v2.

3. for any vectors v1, v2, and v3 the distributive law in the first argument is

(v1 + v2) · v3 = v1 · v3 + v2 · v3,

and the distributive law in the second argument is

v1 · (v2 + v3) = v1 · v2 + v1 · v3.

It can be shown that the dot product is distributive and the following relation can be
written

sa v1 · (sb v2 + sc v3) = sa sb v1 · v2 + sa sc v1 · v3.

If
a = axı + ayj + azk and b = bxı + byj + bzk,

where ı, j, k are mutually perpendicular unit vectors, then

a · b = axbx + ayby + azbz . (1.9)

The following relationships exist

ı · ı = j · j = k · k = 1,

ı · j = j · ı = j · k = k · j = k · ı = ı · k = 0.

Every vector v can be expressed in the form

v = ı · v ı + j · vj + k · vk. (1.10)

Proof The vector v can always be expressed as

v = vxı + vyj + vzk.

Dot multiply both sides by ı

ı · v = vxı · ı + vyı · j + vzı · k.

1.7 Scalar Product of Vectors 11

But,
ı · ı = 1 and ı · j = ı · k = 0.

Hence, ı · v = vx . Similarly, j · v = vy and k · v = vz. The MATLAB command
dot(v_, u_) calculates the scalar product (or vector dot product) of the vectors
v and u. The dot product of two vectors v_ and u_ can be expressed as:

sum(v_.*u_)

The commandsum(x_)withx_ defined as a vector, returns the sum of its elements.
The MATLAB command .*, named array multiplication is the element-by-element
product of the associated arrays, i.e.,v_.*u_, and the arrays must have the same size,
unless one of them is a scalar. To indicate an array (element-by-element) operation,
the standard operator is preceded with a period (dot). Thus v_.*u_ is:

[vx*ux, vy*uy, vz*uz]

1.8 Vector Product of Vectors

The vector (cross) product of a vector v1 and a vector v2 is the vector (Fig. 1.7)

v1 × v2 = |v1| |v2| sin(v1, v2)n (1.11)

Fig. 1.7 Vector (cross)
product of the vector a and the
vector b

×

n

θ

v2

v1

v1 v2

12 1 Operation with Vectors

where n is a unit vector whose direction is the same as the direction of advance of a
right-handed screw rotated from v1 toward v2, through the angle (v1, v2), when the
axis of the screw is perpendicular to both v1 and v2. The magnitude of v1 × v2 is
given by

|v1 × v2| = |v1| |v2| sin(v1, v2).

If v1 is parallel to v2, v1||v2, then v1 × v2 = 0. The symbol || denotes parallel. The
relation v1 × v2 = 0 implies only that the product |v1| |v2| sin(v1, v2) is equal to
zero, and this is the case whenever |v1| = 0, or |v2| = 0, or sin(v1, v2) = 0.

For any two vectors v1 and v1 and any real scalar s the following relation can be
written

(sv1) × v2 = s(v1 × v2) = v1 × (sv2) = sv1 × v2.

The sense of the unit vector n which appears in the definition of v1 × v2 depends on
the order of the factors v1 and v2 in such a way that (cross product is not commutative)

v1 × v2 = −v1 × v2. (1.12)

The cross product distributive law for the first argument can be written as

(v1 + v2) × v3 = v1 × v3 + v2 × v3,

while the distributive law for the second argument is

v1 × (v2 + v3) = v1 × v2 + v1 × v3.

Vector multiplication obeys the following law of distributivity (Varignon theorem)

a ×
n∑

i=1

vi =
n∑

i=1

(a × vi).

A set of mutually perpendicular unit vectors ı, j, k is called right-handed if ı× j = k.
A set of mutually perpendicular unit vectors ı, j, k is called left-handed if ı×j = −k.
If a = axı + ayj + azk, and b = bxı + byj + bzk, where ı, j, k are right-handed
mutually perpendicular unit vectors, then a × b can be expressed in the following
determinant form

a × b =
∣∣∣∣∣∣

ı j k
ax ay az

bx by bz

∣∣∣∣∣∣
. (1.13)

The determinant can be expanded by minors of the elements of the first row

1.8 Vector Product of Vectors 13

∣∣∣∣∣∣

ı j k
ax ay az

bx by bz

∣∣∣∣∣∣
= ı

∣∣∣∣
ay az

by bz

∣∣∣∣ − j

∣∣∣∣
ax az

bx bz

∣∣∣∣ + k

∣∣∣∣
ax ay

bx by

∣∣∣∣

= ı(ay bz − az by) − j(ax bz − az bx) + k(ax by − ay bx)

= (ay bz − az by)ı + (az bx − ax bz)j + (ax by − ay bx)k. (1.14)

As a general rule a third order determinant can be expanded by diagonal multipli-
cation, i.e., repeating the first two columns on the right side of the determinant, and
adding the signed diagonal products of the diagonal elements as

The determinant in Eq. (1.13) can be expanded using the general rule as

∣∣∣∣∣∣

ı j k
ax ay az

bx by bz

∣∣∣∣∣∣
= −k ay bx − ı az by − j ax bz + ı ay bz + j az bx + k axby

= (ay bz − az by)ı + (az bx − ax bz)j + (ax by − ay bx)k.

The MATLAB command cross(a, b) calculates the cross product of the vectors
a and b.

1.9 Scalar Triple Product of Three Vectors

The scalar triple product of three vectors a, b, and c is defines as

[a, b, c] ≡ a·(b × c) = a · b × c. (1.15)

The MATLAB commands for the scalar triple product of three vectors a_, b_, and
c_ is:

syms ax ay az bx by bz cx cy cz real
a_=[ax ay az]; b_=[bx by bz]; c_=[cx cy cz];
% [a_,b_,c_] = a_.(b_ x c_)
abc = dot(a_, cross(b_, c_));

It does not matter whether the dot is placed between a and b, and the cross between
b and c, or vice versa, that is,

[a, b, c] = a · b × c = a × b · c. (1.16)

14 1 Operation with Vectors

The relation given by Eq. (1.16) is demonstrated using the MATLAB commands:

% [a_,b_,c_] = a_.(b_ x c_)
abxc = simplify(dot(a_, cross(b_, c_)));
% [a_,b_,c_] = (a_ x b_).c_
axbc = simplify(dot(cross(a_, b_), c_));
% a_.(b_ x c_)==(a_ x b_).c_
abxc == axbc

The MATLAB relational operator == or eq is used to compare each element of
array for equality. The statementLHS == RHS oreq(LHS, RHS) compares each
element of the array LHS for equality with the corresponding element of the array
RHS, and returns an array with elements set to logical 1 (true) if LHS and RHS are
equal, or logical 0 (false) where they are not equal.

A change in the order of the factors appearing in a scalar triple product at most
changes the sign of the product, that is,

[b, a, c] = −[a, b, c] and [b, c, a] = [a, b, c].

If a, b, c are parallel to the same plane, or if any two of the vectors a, b, c are parallel
to each other, then [a, b, c] = 0.

The scalar triple product [a, b, c] can be expressed in the following determinant
form

[a, b, c] =
∣∣∣∣∣∣

ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣
. (1.17)

In MATLAB the scalar triple product of three vectors a_, b_, and c_ is expressed
as:

det([a_; b_; c_])

where det(x) is the determinant of the square matrix x. To verify Eq. (1.17) the
following MATLAB command is used:

det([a_; b_; c_]) == simplify(dot(a_, cross(b_, c_)))

1.10 Vector Triple Product of Three Vector

The vector triple product of three vectors a, b, c is the vector a × (b × c).
The parentheses are essential because a×(b×c) is not, in general, equal to (a×b)×c.
For any three vectors a, b, and c

a × (b × c) = (a · c)b − (a · b)c . (1.18)

1.10 Vector Triple Product of Three Vector 15

The previous relation given by Eq. (1.18) can be explained using the MATLAB
statements:

% a_ x (b_ x c_)
axbxc = cross(a_, cross(b_, c_));
% (a_.c_)b_ - (a_.b_)c_
RHS = dot(a_, c_)*b_ - dot(a_, b_)*c_;
% a_ x (b_ x c_) - (a_.c_)b_ + (a_.b_)c_ = [0, 0, 0]
simplify(axbxc-RHS)

1.11 Derivative of a Vector Function

The derivative of a vector function is defined in exactly the same way as is the
derivative of a scalar function. Thus

d

dt
a = lim

�t→0

a(t + �t) − a(t)

�t
.

The derivative of a vector has some of the properties of the derivative of a scalar
function. The derivative of the sum of two vector functions a and b is

d

dt
(a + b) = da

dt
+ db

dt
. (1.19)

The components of the vectors a and b are functions of time, t, and are introduced
in MATLAB with:

syms t real
ax = sym(’ax(t)’);
ay = sym(’ay(t)’);
az = sym(’az(t)’);
bx = sym(’bx(t)’);
by = sym(’by(t)’);
bz = sym(’bz(t)’);
a_ = [ax ay az];
b_ = [bx by bz];

To calculate symbolically the derivative of a vector using the MATLAB the command
diff(p,t) is used, which gives the derivative of p with respect to t. The relation
given by Eq. (1.19) can be demonstrated using the MATLAB command:

diff(a_+b_, t) == diff(a_, t) + diff(b_, t)

The time derivative of the product of a scalar function f and a vector function a is

d(f a)

dt
= df

dt
a + f

da
dt

. (1.20)

16 1 Operation with Vectors

Equation (1.20) is verified using the MATLAB command:

syms f real
diff(f*a_, t) == diff(f, t)*a_ + f*diff(a_, t)

Combining the previous results one can conclude

d

dt
(a · b) = da

dt
· b + a · db

dt
and

d

dt
(a × b) = da

dt
× b + a × db

dt
. (1.21)

Equation (1.21) is demonstrated with the MATLAB commands:

diff(a_*b_.’, t) == diff(a_, t)*b_.’ + a_*diff(b_,t).’
diff(cross(a_, b_), t) == cross(diff(a_, t), b_) ...

+ cross(a_, diff(b_, t))

where p_.’ is the array transpose of p_.
The general derivative a vector is

dv
dt

= d

dt

(
vx ı + vy j + vz k,

) = dvx

dt
ı + vx

dı
dt

+ dvy

dt
j + vy

dj
dt

+ dvz

dt
k + vz

dk
dt

,

and if the reference basis or reference frame [ı, j, k] is unchanging then

dv
dt

= dvx

dt
ı + dvy

dt
j + dvz

dt
k.

If V is a function of position and is expressed in terms of a cartesian reference frame
as V = V(x, y, z), then the differential of dV is

dV = ∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz. (1.22)

Given the function V = V(x, y, z) expressed in cartesian coordinates, the gradient
of V is

∇ V = ∂V

∂x
ı + ∂V

∂y
j + ∂V

∂z
k. (1.23)

The gradient expressed in cartesian coordinates is

∇ = ∂

∂x
ı + ∂

∂y
j + ∂

∂z
k. (1.24)

The curl of a vector F = Fx ı + Fy j + Fz k in cartesian coordinates is

∇ × F =

∣∣∣∣∣∣∣∣

ı j k
∂

∂x

∂

∂y

∂

∂z
Fx Fy Fz

∣∣∣∣∣∣∣∣
. (1.25)

1.12 Examples 17

Fig. 1.8 Example 1.1

x

y

O

v1

v2

v3

v2y b

c

A

B

C

θ

1.12 Examples

Example 1.1
Find the magnitude and direction of the resultant v = v1 + v2 + v3 of the vectors

v1, v2, and v3 shown in the Fig. 1.8. The vector v1 = −→
OA is contained in the xy-

plane, has the slope m = b

c
and the magnitude v1. The vector v2 = −→

OB has the

magnitude v2 and the magnitude of its y-component is v2y. The vector v3 = −→
OC has

the magnitude v3 and makes the angle θ with the x-axis as shown in the Fig. 1.8.
For the numerical application use: v1 = 1 units, v2 = 1 units, v2y = 0.5 units,
v3 = 1.5 units, b =4 units, c =3 units, and θ = 30◦.

Solution
The MATLAB program will start with:

clear all
% clears all the objects in the MATLAB workspace and
% resets the default MuPAD symbolic engine
clc % clears the command window and homes the cursor
close all % closes all the open figure windows

The numerical data is introduced with the following notation:

b=4; % units
c=3; % units
v(1) =1; % units magnitude of vector v1_
v(2) =1; % units magnitude of vector v2_
vy(2)=0.5; % units magnitude of vector v2y_
v(3) =1.5; % units magnitude of vector v3_
theta=pi/6; % rad angle of v3_ with x-axis

The angle of the vector v1, in MATLAB v1_, with the x-axis is calculated with:

m=b/c;
alpha(1)=atan(m);

18 1 Operation with Vectors

where atan(m) is the arctangent of m in radians. The results is displayed with:

fprintf(’alpha1=%6.3f(rad)=%6.3f(deg)\n’,...
alpha(1),alpha(1)*180/pi)

and the results is:

alpha1= 0.927(rad)=53.130(deg)

The statement fprintf(f,format,s) writes data of array s to the file f. The
format is a string in single quotation marks that describes the format of the output
fields.

The angle of the vector v2, in MATLAB v2_, with the x-axis is calculated with:

phi=asin(vy(2)/v(2));
alpha(2)=pi-phi;

where asin(x) is the arcsine of x. The angle of the vector v3, in MATLAB v3_,
with the x-axis is:

alpha(3)=pi+theta;

The numerical values for the angles alpha(2) and alpha(3) are:

alpha2= 2.618(rad)=150.000(deg)
alpha3= 3.665(rad)=210.000(deg)

The x and y components of the three vectors are calculated with:

for i = 1:3
vx(i)=v(i)*cos(alpha(i));
vy(i)=v(i)*sin(alpha(i));

end

The MATLAB commands:

for variable = expr, statement, ..., statement end

repeat statements a specific number of times. Now the vectors are introduced as:

v1_=[vx(1),vy(1),0];
v2_=[vx(2),vy(2),0];
v3_=[vx(3),vy(3),0];

and the numerical values are:

v1_=[0.600, 0.800,0](units)
v2_=[-0.866, 0.500,0](units)
v3_=[-1.299,-0.750,0](units)

The resultant of the vectors is:

v_ = v1_+v2_+v3_;

1.12 Examples 19

and numerically v_=[-1.565, 0.550,0](units). The magnitude of v_ is
calculated with:

v = \index{norm}norm(v_);

where norm is vector norm. The magnitude of v_ can be obtained also with:

v = sqrt(v_*v_.’);

where v_.’ is the transpose of the v_ vector. The angle of v_ with the x-axis is:

beta=atan(v_(2)/v_(1));

The results are:

v_=[-1.565, 0.550,0](units)
v=|v_|= 1.659(units)
beta=-0.338(rad)=-19.363(deg)

Next the vectors are plotted using MATLAB. The x-axis and y-axis are labeled using
the commands:

xlabel(’x’), ylabel(’y’)

The statement axis(([xMIN xMAX yMIN yMAX]) sets scaling for the x and
y axes on the current plot:

a = 2;
axis([-a a -a a])

To improve the graph a background grid lines were added with the command
grid on. The command hold on locks up the plot and the axis properties and
the next graphical commands add to the existing plot. The vectors are introduces
with quiver(x,y,u,v) that represents the vectors as arrows with components
u,v at the points x,y:

for i = 1:3
quiver(0,0,vx(i),vy(i),...
’Color’,’k’,’LineWidth’,1.5)
end
quiver(0,0,v_(1),v_(2),...
’Color’,’r’,’LineWidth’,2)

The labels for the vectors are introduced with:

text(vx(1),vy(1),’v_1’,...
’fontsize’,12,’fontweight’,’b’)
text(vx(2),vy(2),’ v_2’,...
’fontsize’,12,’fontweight’,’b’)
text(vx(3),vy(3),’v_3’,...
’fontsize’,12,’fontweight’,’b’)
text(v_(1),v_(2),’v’,...

20 1 Operation with Vectors

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

v
1

 v
2

v
3

v

x

y

Fig. 1.9 Example 1.1: MATLAB graphical representation

’fontsize’,12,’fontweight’,’b’)

The cartesian axes are plotted with:

quiver(0,0,a,0,...
’Color’,’b’,’LineWidth’,1.0)
text(a,0,’x’,...
’fontsize’,12,’fontweight’,’b’)
quiver(0,0,0,a,...
’Color’,’b’,’LineWidth’,1.0)
text(0,a,’y’,...
’fontsize’,12,’fontweight’,’b’)

The MATLAB graphical representations for this example are shown in Fig. 1.9.

Example 1.2
For the Fig. 1.10 find the F = 500 kN force in vector format and then determine
its direction cosines. The point M is in the xy-plane with OM = 50 m. The angle
between OM and the x-axis is α = 45◦. The coordinates of the point A are xA = 20 m,
yA = 10 m, and zA = 30 m.

1.12 Examples 21

Fig. 1.10 Example 1.2

j

k

y

z

ı
x

O

M

A

α

F

Solution
The input numerical data are introduced in MATLAB with:

F = 500; % kN
OM = 50; % m
xA = 20; % m
yA = 10; % m
zA = 30; % m
alpha = 45; % deg

The position vector of the point A is

rOA = rA = xA ı + yA j + zA k,

and in MATLAB:

rA_ = [xA, yA, zA];

The components of the position vector of the point M are

xM = OM cos α, yM = OM sin α, zM = 0,

and in MATLAB:

xM = OM*cosd(alpha);
yM = OM*sind(alpha);
zM = 0;
rM_ = [xM, yM, zM];

The position vector rAM can be expressed as

rAM = rM − rA

= (xM ı + yM j + zMk) − (xA ı + yA j + zAk)

= (xM − xA) ı + (yM − yA) j + (zM − zA) k,

and in MATLAB:

22 1 Operation with Vectors

rAM_ = rM_-rA_;

The magnitude of the vector rAM is

rAM =
√

(xM − xA)2 + (yM − yA)2 + (zM − zA)2.

The magnitude is computed in MATLAB as:

rAM = norm(rAM_);

The unit vector uF of the force F is calculated with

uF = uAM = rAM

rAM

= (xM − xA) ı + (yM − yA) j + (zM − zA) k√
(xM − xA)2 + (yM − yA)2 + (zM − zA)2

= xM − xA√
(xM − xA)2 + (yM − yA)2 + (zM − zA)2

ı

+ yM − yA√
(xM − xA)2 + (yM − yA)2 + (zM − zA)2

j

+ zM − zA√
(xM − xA)2 + (yM − yA)2 + (zM − zA)2

k.

In MATLAB the unit vector is calculated as:

uAM_ = rAM_/rAM;

One can express the force F, as a magnitude F multiplied by the unit vector uF as

F = F uF = F
xM − xA

rAM
ı + F

yM − yA

rAM
j + F

zM − zA

rAM
k.

The force F was calculated and printed in MATLAB using the statement:

F_=F*uAM_;

The direction cosines are calculated in MATLAB with:

thetax = acos(F_(1)/F); % alpha
thetay = acos(F_(2)/F); % beta
thetaz = acos(F_(3)/F); % gamma

The numerical results are obtained in MATLAB as:

rA_=[20.000 10.000 30.000] (m)
rM_=[35.355 35.355 0.000] (m)

1.12 Examples 23

rAM_=[15.355 25.355 -30.000] (m)
uAM_=[0.364 0.601 -0.711] (m)

F_=[182.046 300.601 -355.666] (kN)

thetax= 1.198(rad)=68.648(deg)
thetay= 0.926(rad)=53.044(deg)
thetaz= 2.362(rad)=135.343(deg)

Next the force F will be plotted using MATLAB. The x-axis, y-axis, and z-axis are
labeled using the commands:

xlabel(’x(m)’), ylabel(’y(m)’), zlabel(’z(m)’)

The origin of the reference frame is identified with the statement:

text(0,0,0,’ O’,’HorizontalAlignment’,’right’)

The statement axis(([xMIN xMAX yMIN yMAX zMIN zMAX]) sets scaling
for the x, y, and z axes on the current plot:

sf=30;
axis([-sf sf -sf sf -sf sf])

The vectors are introduces with quiver3(x,y,z,u,v,w) that represents the
vectors as arrows with components u,v,w at the points x,y,z. The vectors rA_
and rM_ are plotted with:

quiver3(0,0,0, xA,yA,zA,1,...
’Color’,’b’,’LineWidth’,1.5)

quiver3(0,0,0, xM,yM,zM,1,...
’Color’,’k’,’LineWidth’,1.5)

The labels for the points A and M are introduced with:

text(xA,yA,zA,’ A’,...
’fontsize’,12,’fontweight’,’b’)
text(xM,yM,zM,’ M’,...
’fontsize’,12,’fontweight’,’b’)

The vector F_ is plotted at M with:

ff=0.1; % force scale factor
quiver3(xM,yM,zM,...

ff*F_(1),ff*F_(2),ff*F_(3),1,...
’Color’,’r’,’LineWidth’,2)

The force scale factor ff is introduced because the magnitude of the force vector
is greater then the magnitude of the position vectors. The line between A and M are
plotted with:

line([xA xM],[yA yM],[zA zM],’LineStyle’,’--’)

24 1 Operation with Vectors

The cartesian axes with the corresponding labels are represented with:

quiver3(0,0,0,sf,0,0,1,’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,sf,0,1,’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,0,sf,1,’Color’,’k’,’LineWidth’,1)

text(sf,0,0,’ x’,’fontsize’,12,’fontweight’,’b’)
text(0,sf,0,’ y’,’fontsize’,12,’fontweight’,’b’)
text(0,0,sf,’ z’,’fontsize’,12,’fontweight’,’b’)

The graphical representation for the vectors is given by: The MATLAB plots are
shown in Fig. 1.11.

Example 1.3

The vector
−→
OA = rA has the magnitude a and makes the angle θx, θy, and θz with

the cartesian axes as shown in the Fig. 1.12. The vector
−→
OB = rB has the magnitude

b and its projection on the xy-plane is the vector
−→
OC. The angle between the vectors−→

OB and
−→
OC is λ and the angle between

−→
OC and the x-axis is ν. Find: (a) the resultant−→

R = −→
OA + −→

OB, its magnitude, and the direction angles of
−→
R ; (b) the cross product

rA × rB and the angle between rA and rB; (c) the projection of the vector rA on the
vector rB; (d) the scalar triple product rC · (rB × rA).

−20

0

20

40

60

−10 0 10 20 30 40 50 60 70

−40

−30

−20

−10

0

10

20

30

x(m)

 F

y(m)

 y

 M

 A

 O

 z

 x

z(
m

)

Fig. 1.11 Example 1.2: MATLAB graphical representation

1.12 Examples 25

0

50

100

150

200

250

300

0
50

100
150

0

50

100

150

200

250

λ

ν

ı

j

k

θx

θy

θz

O

x

y

z

A

B

C

rArB

Fig. 1.12 Example 1.3

For the numerical application use: a =150 m, b =200 m, θx = 30◦, θy = 60◦,
θz = 60◦, λ = 45◦, and ν = 15◦.

Solution
The unit vectors of the cartesian reference frame are [ı, j, k]. The vector rA is

rA = rAx ı + rAy j + rAz k = rA
(
cos θx ı + cos θy j + cos θz k

)

= a
(
cos θx ı + cos θy j + cos θz k

)
.

The vector rB is
rB = rBx ı + rBy j + rBz k.

The z-component of the vector rB is

rBz = rB sin λ = b sin λ.

The x and y components of the vector rB are

rBx = rB cos λ cos ν = b cos λ cos ν,

rBy = −rB cos λ sin ν = −b cos λ sin ν.

26 1 Operation with Vectors

First the MATLAB command sym constructs the symbolic variables:

a = sym(’a’,’real’);
b = sym(’b’,’real’);
thetax = sym(’thetax’,’real’);
thetay = sym(’thetay’,’real’);
thetaz = sym(’thetaz’,’real’);
lambda = sym(’lambda’,’real’);
nu = sym(’nu’,’real’);

The command sym(’a’,’real’) also assume that a is a real number. The short-
cut for constructing symbolic objects is

syms a b thetax thetay thetaz lambda nu

The position vectors rA_ and rB_ are can be written as:

rAx=a*cos(thetax); % x-component
rAy=a*cos(thetay); % y-component
rAz=a*cos(thetaz); % z-component
rA_=[rAx, rAy, rAz]; % rA_ vector

rBz=b*sin(lambda);
rBx=b*cos(lambda)*cos(nu);
rBy=-b*cos(lambda)*sin(nu);
rB_=[rBx, rBy, rBz]; % rB_ vector

The projection of the vector rB_ on the xy-plane is the vector:

rC_=[rBx, rBy, 0]; % rC_ vector

(a) The resultant vector R is

R = rA + rB = (rAx + rBx) ı + (
rAy + rBy

)
j + (rAz + rBz) k,

and with MATLAB the resultant is:

R_=rA_+rB_;

The symbolical components of the resultant R_ are printed with:

fprintf(’Rx = %s \n’,char(R_(1)))
fprintf(’Ry = %s \n’,char(R_(2)))
fprintf(’Rz = %s \n’,char(R_(3)))

The statement fprintf(f,format,s) writes data of array s to the file f. The
format is a string in single quotation marks that describes the format of the output
fields. Percent sign followed by the s, conversion character, is used for strings. The
MATLAB results are displayed as:

Rx = a*cos(thetax) + b*cos(lambda)*cos(nu)

1.12 Examples 27

Ry = a*cos(thetay) - b*cos(lambda)*sin(nu)
Rz = a*cos(thetaz) + b*sin(lambda)

To calculate the numerical values a list is created with the symbolical variable:

lists={a,b,thetax,thetay,thetaz,lambda,nu};

A new list with the numerical values for lists is introduced:

listn={150,200,pi/6,pi/3,pi/3,pi/4,15*pi/180};
% a -> 150
% b -> 200
% thetax -> pi/6
% thetay -> pi/3
% thetaz -> pi/3
% lambda -> pi/4
% nu -> 15*pi/180

To calculate numerically the vectors rA_, rB_, rC_, and R_, the symbolic variables
need to be substituted with the input numerical data.

The statement subs(expr,lists,listn) replaces lists with listn in
the symbolic expression expr. The numerical values for rA_, rB_, rC_, and R_
are:

rAn_=subs(rA_,lists,listn);
rBn_=subs(rB_,lists,listn);
rCn_=subs(rC_,lists,listn);
Rn_=subs(R_,lists,listn);

The numerical values for the vectors are printed with:

fprintf(’rA_ = [%6.3f %6.3f %6.3f] (m)\n’, rAn_)
fprintf(’rB_ = [%6.3f %6.3f %6.3f] (m)\n’, rBn_)
fprintf(’rC_ = [%6.3f %6.3f %6.3f] (m)\n’, rCn_)
fprintf(’R_ = [%6.3f %6.3f %6.3f] (m)\n’, Rn_)

and the results are:

rA_ = [129.904 75.000 75.000] (m)
rB_ = [136.603 -36.603 141.421] (m)
rC_ = [136.603 -36.603 0.000] (m)
R_ = [266.506 38.397 216.421] (m)

The direction angles of R are calculated with

αR = arccos
Rx

R
, βR = arccos

Ry

R
, γR = arccos

Rz

R
,

and in MATLAB:

uR_ = Rn_/sqrt(dot(Rn_,Rn_));

28 1 Operation with Vectors

alpha = acosd(uR_(1));
beta = acosd(uR_(2));
gamma = acosd(uR_(3));

The function acosd calculates the inverse cosine and the result is in degrees. The
general function is acos(x), the arccosine of the element x. The numerical results
are:

uR_ = R_/|R| = [0.771 0.111 0.626]
alpha = 39.514 (deg)
beta = 83.618 (deg)
gamma = 51.209 (deg)

(b) The vector (cross) product of the vector rA and the vector rB is the vector

rA × rB =
∣∣∣∣∣∣

ı j k
rAx rAy rAz

rBx rBy rBz

∣∣∣∣∣∣
,

or in MATLAB:

AxB_ = cross(rAn_, rBn_);

The numerical result is:

rA_ x rB_ = [1.34e+04 -8.13e+03 -1.5e+04] (m)

The angle, θ, between rA and rB is calculated from the relation

rA · rB = rA rB cos θ,

and in MATLAB:

mrA=sqrt(dot(rAn_,rAn_));
mrB=sqrt(dot(rBn_,rBn_));

costheta = dot(rAn_, rBn_)/(mrA*mrB);

The numerical result is theta = 40.231 (deg).
(c) The projection of the vector rA on the vector rB is calculated from the relation

prrA
|rB = rA · rB

rB
.

The MATLAB commands are:

uRB_ = rBn_/mrB;
prrArB = dot(rAn_, uRB_);

and the MATLAB result is:

1.12 Examples 29

projection of rA_ on rB_ = rA_.rB_/|rB|
pr of rA_ on rB_ = 128.033 (m)

(d) The scalar triple product, rC · (rB × rA), is calculated in MATLAB with:

dot(rCn_,cross(rBn_,rAn_))

or

CAB=[rCn(1),rCn(2),rCn(3);
rBn(1),rBn(2),rBn(3);
rAn(1),rAn(2),rAn(3)];

and the numerical result is rC.(rB x rA) = -2.12e+06.
Next the vectors are plotted using MATLAB. The numerical vectors are intro-

duces with quiver3(x,y,z,u,v,w) that represents the vectors as arrows with
components u,v,w at the points x,y,z:

quiver3(0,0,0, rAn_(1),rAn_(2),rAn_(3),1,...
’Color’,’r’,’LineWidth’,1.5)

quiver3(0,0,0, rBn_(1),rBn_(2),rBn_(3),1,...
’Color’,’k’,’LineWidth’,1.5)

quiver3(0,0,0, rCn_(1),rCn_(2),rCn_(3),1,...
’Color’,’k’,’LineWidth’,1)

quiver3(0,0,0, Rn_(1),Rn_(2),Rn_(3),1,...
’Color’,’b’,’LineWidth’,2)

The cartesian axes are plotted with:

quiver3(0,0,0,sf,0,0,1,’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,sf,0,1,’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,0,sf,1,’Color’,’k’,’LineWidth’,1)

The MATLAB plots are shown in Fig. 1.13.

1.13 Problems

1.1 The force F shown in the Fig. 1.14 has the vector components Fx , Fy, and Fz

withe the magnitudes Fx , Fy, and Fz respectively. Find the direction angles
θx, θy and θz made by the vectorial force F with the positive x, y, and z axes. For the
numerical application use Fx = 140 units, Fy = 170 units, and Fz = 190 units.

1.2 The forces F1 and F2 are applied as shown in the Fig. 1.15. The force F2 has the
magnitude F2 and makes the angle β with the horizontal axis and the force F1
has the magnitude F1. The angle between the segment AB and the force F1 is
ϕ and the angle between BA and the horizontal axis is denoted by θ. Determine

30 1 Operation with Vectors

−100

0

100

200

300

−50

0

50

100

150

200
0

50

100

150

200

250

 R

 x

 B

C

x(m)

 A

 O

 z

y(m)

 y

z(
m

)

Fig. 1.13 Example 1.3: MATLAB graphical representation

Fig. 1.14 Problem 1.1

x

y

z

O

F

x y

z

Fx

Fy

Fz

θθ

θ

the resultant F = F1 + F2. For the numerical application use F1 = 30 units,
F2 = 45 units, θ = 105◦, ϕ = 110◦, and β = 30◦.

1.3 The following vectors are given: v1 = 2ı − 3j − 7k, v2 = 5ı + 4k, and v3 =
2ı + 9j + 10k. Find (v1 × v2) × v3 and (v1 × v2) · v3.

1.4 Find the angle between the vectors v1 = 7ı − 8j + 3k and v2 = 2ı + 5j + 8k.
Find the expressions v1 × v2 and v1 · v2.

1.5 The following vectors are given v1 = 3ı + 5j + 7k, v2 = 2ı + 4j + 5k, and
v3 = −4ı − 4k. Find the vector triple product of v1, v2, and v3.

1.13 Problems 31

F1

F2

A

B

C

θ

β

ϕ

Fig. 1.15 Problem 1.2

1

2

3

4

0

1

2

3

4

5

0

0.5

1

1.5

2

2.5

3

2.5

V1

V2

x
y

z

Fig. 1.16 Problem 1.6

1.6 Figure 1.16 represents the vectors V1 and V2 acting on a prism. The magnitudes
of the vectors are V1 = V2 = 4 units. (a) Find the resultant and the direction
cosines of the resultant. (b) Determine the angle between the vectors V1 and V3.
(c) Find the projection of the vector V1 on the resultant vector.

32 1 Operation with Vectors

−1
0

1
2

3
4

−2
−1

0
1

2
3

4
0

0.5

1

1.5

2

x

 v4

 v1

O

v2

 v3

y

z

Fig. 1.17 Problem 1.7

1.7 Figure 1.17 represents the vectors v1 = −V ı, v2 = 2 V ı, v3 = 2 V j, and v4 =
−2 V j, where V = 2 units. Determine: (a) the resultant v = v1 + v2 + v3 + v4;
(b) the angle between the vectors v1 and v3; (c) the projection of the vector v4
on the resultant vector; (d) v2 · v; v1 × v2; and v2 × v4.

1.8 The magnitude of the vectors, shown in Fig. 1.18, are F1 = 2 units, F2 =
2.5 units, F3 = 3 units, and F4 = 3.5 units. (a) Find the resultant F = F1 +F2 +
F3 + F4. (b) Determine the angle between the vectors F1 and F3. (c) Find the
projection of the vector F2 on the vector F4. (d) Calculate F2 ·F4; F1 · (F3 ×F1);
(F2 × F3) · F1; and [F1, F2, F3].

1.14 Programs

1.14.1 Program 1.1

% example 1.1
clear all
% clears all the objects in the MATLAB workspace and
% resets the default MuPAD symbolic engine

1.14 Programs 33

0
0.5

1
1.5

2
2.5

3

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

3.5

4

 F
1

 F4

x

 F
3

 F2

y

O

z

Fig. 1.18 Problem 1.8

clc % clears the command window and homes the cursor
close all % closes all the open figure windows

b=4; % units
c=3; % units
v(1) =1; % units magnitude of vector v1_
v(2) =1; % units magnitude of vector v2_
vy(2)=0.5; % units magnitude of vector v2y_
v(3) =1.5; % units magnitude of vector v3_
theta=pi/6; % rad angle of v3_ with x-axis

% angle of v1_ with x-axis
m=b/c;
alpha(1)=atan(m);
% atan(m) is arctangent of m in rad
fprintf(’alpha1=%6.3f(rad)=%6.3f(deg)\n’,...
alpha(1),alpha(1)*180/pi)

% angle of v2_ with x-axis
phi=asin(vy(2)/v(2));
% asin(x) is arcsine of x
alpha(2)=pi-phi;
fprintf(’alpha2=%6.3f(rad)=%6.3f(deg)\n’,...

alpha(2),alpha(2)*180/pi)

34 1 Operation with Vectors

% angle of v3_ with x-axis
alpha(3)=pi+theta;
fprintf(’alpha3=%6.3f(rad)=%6.3f(deg)\n’,...

alpha(3),alpha(3)*180/pi)

% for repeat statements a specific number of times
% for variable = expr, statement, ..., statement END
for i = 1:3

vx(i)=v(i)*cos(alpha(i));
vy(i)=v(i)*sin(alpha(i));

end
v1_=[vx(1),vy(1),0];
v2_=[vx(2),vy(2),0];
v3_=[vx(3),vy(3),0];

fprintf...
(’v1_=[%6.3f,%6.3f,%d](units)\n’,v1_)
fprintf...
(’v2_=[%6.3f,%6.3f,%d](units)\n’,v2_)
fprintf...
(’v3_=[%6.3f,%6.3f,%d](units)\n’,v3_)
fprintf(’\n’)

v_ = v1_+v2_+v3_;

v = sqrt(v_*v_.’);
% v_.’ transpose of v_
v = norm(v_);
% norm is vector norm
fprintf...
(’resultant v_ = v1_+v2_+v3 \n’)
fprintf...
(’v_=[%6.3f,%6.3f,%d](units)\n’,v_)
fprintf...
(’v=|v_|=%6.3f(units)\n’,v)
beta=atan(v_(2)/v_(1));
fprintf...
(’angle of v_ with x-axis\n’)
fprintf...
(’beta=%6.3f(rad)=%6.3f(deg)\n’,...
beta,beta*180/pi)

% graphic
xlabel(’x’), ylabel(’y’)

1.14 Programs 35

a = 2;
axis([-a a -a a])
grid on
hold on

% quiver(x,y,u,v) plots vectors as arrows with
% components (u,v) at the points (x,y)

for i = 1:3
quiver(0,0,vx(i),vy(i),...
’Color’,’k’,’LineWidth’,1.5)
end
quiver(0,0,v_(1),v_(2),...
’Color’,’r’,’LineWidth’,2)

text(vx(1),vy(1),’v_1’,...
’fontsize’,12,’fontweight’,’b’)
text(vx(2),vy(2),’ v_2’,...
’fontsize’,12,’fontweight’,’b’)
text(vx(3),vy(3),’v_3’,...
’fontsize’,12,’fontweight’,’b’)
text(v_(1),v_(2),’v’,...
’fontsize’,12,’fontweight’,’b’)

quiver(0,0,a,0,...
’Color’,’b’,’LineWidth’,1.0)
text(a,0,’x’,...
’fontsize’,12,’fontweight’,’b’)
quiver(0,0,0,a,...
’Color’,’b’,’LineWidth’,1.0)
text(0,a,’y’,...
’fontsize’,12,’fontweight’,’b’)

% end of program

1.14.2 Program 1.2

% example 1.2
clear all; clc; close all

F = 500; % kN
OM = 50; % m
xA = 20; % m

36 1 Operation with Vectors

yA = 10; % m
zA = 30; % m
alpha = 45; % deg

rA_ = [xA, yA, zA];

xM = OM*cosd(alpha);
yM = OM*sind(alpha);
zM = 0;
rM_ = [xM, yM, zM];

rAM_ = rM_-rA_;
rAM = norm(rAM_);

uAM_ = rAM_/rAM;

F_ = F*uAM_;
thetax = acos(F_(1)/F); % alpha
thetay = acos(F_(2)/F); % beta
thetaz = acos(F_(3)/F); % gamma

fprintf(’rA_=[%6.3f %6.3f %6.3f] (m)\n’,rA_)
fprintf(’rM_=[%6.3f %6.3f %6.3f] (m)\n’,rM_)
fprintf(’rAM_=[%6.3f %6.3f %6.3f] (m)\n’,rAM_)
fprintf(’uAM_=[%6.3f %6.3f %6.3f] (m)\n’,uAM_)
fprintf(’\n’)
fprintf(’F_=[%6.3f %6.3f %6.3f] (kN)\n’,F_)
fprintf(’\n’)
fprintf...
(’thetax=%6.3f(rad)=%6.3f(deg)\n’,...
thetax,thetax*180/pi)

fprintf...
(’thetay=%6.3f(rad)=%6.3f(deg)\n’,...
thetay,thetay*180/pi)

fprintf...
(’thetaz=%6.3f(rad)=%6.3f(deg)\n’,...
thetaz,thetaz*180/pi)

% graphic

xlabel(’x(m)’), ylabel(’y(m)’), zlabel(’z(m)’)

text(0,0,0,’ O’,’HorizontalAlignment’,’right’)

sf=30;

1.14 Programs 37

axis([-sf sf -sf sf -sf sf])
% axis(([xMIN xMAX yMIN yMAX zMIN zMAX])
% set scaling for the x,y,z axes

grid on
% grid on adds major grid lines

hold on
% hold on locks up the current plot
% and all axis properties so that
% following graphing commands add
% to the existing graph

axis auto
% axis auto returns the axis scaling to
% its default automatic mode

% quiver3(x,y,z,u,v,w) represents vectors as arrows
% with components(u,v,w) at the points (x,y,z)

quiver3(0,0,0, xA,yA,zA,1,...
’Color’,’b’,’LineWidth’,1.5)

quiver3(0,0,0, xM,yM,zM,1,...
’Color’,’k’,’LineWidth’,1.5)

text(xA,yA,zA,’ A’,...
’fontsize’,12,’fontweight’,’b’)
text(xM,yM,zM,’ M’,...
’fontsize’,12,’fontweight’,’b’)

ff=0.1; % force scale factor
quiver3(xM,yM,zM,...

ff*F_(1),ff*F_(2),ff*F_(3),1,...
’Color’,’r’,’LineWidth’,2)

text(...
xM+ff*F_(1),...
yM+ff*F_(2),...
zM+ff*F_(3),’ F’,...

’fontsize’,12,’fontweight’,’b’)

line([xA xM],[yA yM],[zA zM],’LineStyle’,’--’)

% cartesian axes
quiver3(0,0,0,sf,0,0,1,’Color’,’k’,’LineWidth’,1)

38 1 Operation with Vectors

quiver3(0,0,0,0,sf,0,1,’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,0,sf,1,’Color’,’k’,’LineWidth’,1)

text(sf,0,0,’ x’,’fontsize’,12,’fontweight’,’b’)
text(0,sf,0,’ y’,’fontsize’,12,’fontweight’,’b’)
text(0,0,sf,’ z’,’fontsize’,12,’fontweight’,’b’)

% end of program

1.14.3 Program 1.3

% example 1.3
clear all; clc; close all

% symbolic input data
a = sym(’a’,’real’);
b = sym(’b’,’real’);
thetax = sym(’thetax’,’real’);
thetay = sym(’thetay’,’real’);
thetaz = sym(’thetaz’,’real’);
lambda = sym(’lambda’,’real’);
nu = sym(’nu’,’real’);

rAx=a*cos(thetax); % x-component
rAy=a*cos(thetay); % y-component
rAz=a*cos(thetaz); % z-component
rA_=[rAx, rAy, rAz]; % rA_ vector

rBz=b*sin(lambda);
rBx=b*cos(lambda)*cos(nu);
rBy=-b*cos(lambda)*sin(nu);
rB_=[rBx, rBy, rBz]; % rB_ vector

rC_=[rBx, rBy, 0]; % rC_ vector

% a)
R_=rA_+rB_;

% symbolical components of R_
fprintf(’Rx = %s \n’,char(R_(1)))
fprintf(’Ry = %s \n’,char(R_(2)))
fprintf(’Rz = %s \n’,char(R_(3)))
fprintf(’\n’)

1.14 Programs 39

lists={a,b,thetax,thetay,thetaz,lambda,nu};
% numbers for lists
listn={150,200,pi/6,pi/3,pi/3,pi/4,15*pi/180};
% a -> 150
% b -> 200
% thetax -> pi/6
% thetay -> pi/3
% thetaz -> pi/3
% lambda -> pi/4
% nu -> 15*pi/180

rAn_=subs(rA_,lists,listn);
rBn_=subs(rB_,lists,listn);
rCn_=subs(rC_,lists,listn);
Rn_=subs(R_,lists,listn);

fprintf(’rA_ = [%6.3f %6.3f %6.3f] (m)\n’, rAn_)
fprintf(’rB_ = [%6.3f %6.3f %6.3f] (m)\n’, rBn_)
fprintf(’rC_ = [%6.3f %6.3f %6.3f] (m)\n’, rCn_)
fprintf(’R_ = [%6.3f %6.3f %6.3f] (m)\n’, Rn_)
fprintf(’\n’)

uR_ = Rn_/sqrt(dot(Rn_,Rn_));
alpha = acosd(uR_(1));
beta = acosd(uR_(2));
gamma = acosd(uR_(3));

fprintf...
(’uR_ = R_/|R| = [%6.3f %6.3f %6.3f]\n’, uR_)
fprintf(’alpha = %6.3f (deg)\n’, alpha)
fprintf(’beta = %6.3f (deg)\n’, beta)
fprintf(’gamma = %6.3f (deg)\n’, gamma)
fprintf(’\n’)

% b)
AxB_ = cross(rAn_, rBn_);
fprintf ...
(’rA_ x rB_ = [%6.3g %6.3g %6.3g] (m)\n’, AxB_)

mrA=sqrt(dot(rAn_,rAn_));
mrB=sqrt(dot(rBn_,rBn_));

costheta = dot(rAn_, rBn_)/(mrA*mrB);
fprintf(’rA_.rB_ = |rA||rB| cos(theta) \n’)
fprintf(’theta = %6.3f (deg)\n’, acosd(costheta))

40 1 Operation with Vectors

% acos(phi) is the arccosine of the elements of phi
% acosd(phi) is the inverse cosine, expressed in degrees,
% of the elements of phi

% c)
fprintf(’\n’)
fprintf ...
(’projection of rA_ on rB_ = rA_.rB_/|rB|\n’)
uRB_ = rBn_/mrB;
prrArB = dot(rAn_, uRB_);
fprintf(’pr of rA_ on rB_ = %6.3f (m)\n’,prrArB)

% d)
fprintf(’\n’)
fprintf(’rC_.(rB_ x rA_) = %6.3g \n’,...

dot(rCn_,cross(rBn_,rAn_)))

CAB=[rCn_(1),rCn_(2),rCn_(3);
rBn_(1),rBn_(2),rBn_(3);
rAn_(1),rAn_(2),rAn_(3)];

fprintf(’[rC_;rB_;rA_] = %6.3g \n’,det(CAB))

% graphic

xlabel(’x(m)’), ylabel(’y(m)’), zlabel(’z(m)’)

text(0,0,0,’ O’,’HorizontalAlignment’,’right’)

sf=200;
axis([-sf sf -sf sf -sf sf])
% axis(([xMIN xMAX yMIN yMAX zMIN zMAX])
% set scaling for the x,y,z axes

grid on
% grid on adds major grid lines

hold on
% hold on locks up the current plot
% and all axis properties so that
% following graphing commands add
% to the existing graph

1.14 Programs 41

axis auto
% axis auto returns the axis scaling to
% its default automatic mode

% quiver3(x,y,z,u,v,w) represents vectors as arrows
% with components(u,v,w) at the points (x,y,z)

quiver3(0,0,0, rAn_(1),rAn_(2),rAn_(3),1,...
’Color’,’r’,’LineWidth’,1.5)

text(rAn_(1),rAn_(2),rAn_(3),’ A’,...
’fontsize’,12,’fontweight’,’b’)

quiver3(0,0,0, rBn_(1),rBn_(2),rBn_(3),1,...
’Color’,’k’,’LineWidth’,1.5)

text(rBn_(1),rBn_(2),rBn_(3),’ B’,...
’fontsize’,12,’fontweight’,’b’)

% cartesian axes
quiver3(0,0,0,sf,0,0,1,’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,sf,0,1,’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,0,sf,1,’Color’,’k’,’LineWidth’,1)

text(sf,0,0,’ x’,’fontsize’,12,’fontweight’,’b’)
text(0,sf,0,’ y’,’fontsize’,12,’fontweight’,’b’)
text(0,0,sf,’ z’,’fontsize’,12,’fontweight’,’b’)

% end of program

References

1. P. Appell, Traité de mécanique rationnelle (Gauthier-Villars, Paris, 1955)
2. M. Atanasiu, Mechanics (EDP, Bucharest, 1973)
3. H. Baruh, Analytical Dynamics (WCB/McGraw-Hill, Boston, 1999)
4. F.P. Beer, E.R. Johnston, Vector Mechanics for Engineers: Statics and Dynamics 5/e (McGraw-

Hill Publishing Company, New York, 1988)
5. F.P. Beer, E.R. Johnston, D.F. Mazurek, Vector Mechanics for Engineers: Statics, 10/e

(McGraw-Hill Publishing Company, New York, 2012)
6. A.M. Bedford, W. Fowler, K.M. Liechti, Statics and Mechanics of Materials (Prentice Hall,

Inc., Upper Saddle River, 2002)
7. A.M. Bedford, W. Fowler, Engineering Mechanics: Statics, 5/e (Prentice Hall, Inc., Upper

Saddle River, 2007)
8. A.P. Boresi, R.J. Schmidt, Engineering Mechanics: Statics (PWS Publishing Company, Boston,

2000)
9. M.I. Buculei, Mechanics (University of Craiova Press, Craiova, 1974)

10. M.I. Buculei, D. Bagnaru, G. Nanu, D.B. Marghitu, Analysis of Mechanisms with Bars (Scrisul
romanesc, Craiova, 1986)

42 1 Operation with Vectors

11. I. Stroe et al., Analytical Mechanics Problems (University Politehnica of Bucharest, Bucharest,
1997)

12. V. Ceausu, N. Enescu, F. Ceausu, Mechanics Problems (Printech, Bucharest, 1999)
13. S.J. Chapman, MATLAB Programming for Engineers (Thomson Learning, Pacific Grove, CA,

2002)
14. S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving

(Butterworth-Heinemann, Elsevier, Amsterdam, 2012)
15. D.M. Etter, D.C. Kuncicky, Introduction to MATLAB for Engineers and Scientists (Prentice

Hall, Inc., Upper Saddle River, 1996)
16. C. Iacob, Theoretical Mechanics (EDP, Bucharest, 1980)
17. J.H. Ginsberg, Advanced Engineering Dynamics (Cambridge University Press, Cambridge,

1995)
18. D.T. Greenwood, Principles of Dynamics (Prentice-Hall, Inc., Englewood Cliffs, 1998)
19. L.E. Goodman, W.H. Warner, Statics (Dover Publications Inc., New York, 2001)
20. R.C. Hibbeler, Engineering Mechanics: Statics and Dynamics 13/e (Prentice-Hall, Inc., Upper

Saddle River, 2013)
21. T.R. Kane, Analytical Elements of Mechanics, vol. 1 (Academic Press, New York, 1959)
22. T.R. Kane, Analytical Elements of Mechanics, vol. 2 (Academic Press, New York, 1961)
23. T.R. Kane, D.A. Levinson, Dynamics (McGraw-Hill, New York, 1985)
24. R. Maeder, Programming in Mathematica (Addison-Wesley Publishing Company, Redwood

City, 1990)
25. N.H. Madsen, Statics and Dynamics, class notes, http://www.eng.auburn.edu/users/nmadsen/
26. D.B. Marghitu, Mechanical Engineer’s Handbook (Academic Press, San Diego, 2001)
27. D.B. Marghitu, M.J. Crocker, Analytical Elements of Mechanisms (Cambridge University Press,

Cambridge, 2001)
28. D.B. Marghitu, Kinematic Chains and Machine Component Design (Elsevier, Amsterdam,

2005)
29. D.B. Marghitu, Mechanisms and Robots Analysis with MATLAB (Springer, London, 2009)
30. D.B. Marghitu, M. Dupac, Advanced Dynamics: Analytical and Numerical Calculations with

MATLAB (Springer, New York, 2012)
31. D.B. Marghitu, Statics and Dynamics, class notes, http://www.eng.auburn.edu/users/marghitu/
32. D.J. McGill, W.W. King, Engineering Mechanics: Statics and an Introduction to Dynamics

(PWS Publishing Company, Boston, 1995)
33. J.L. Meriam, L.G. Kraige, Engineering Mechanics: Statics, 7/e (Wiley, New York, 2011)
34. R.L. Mott, Machine Elements in Mechanical Design (Prentice Hall, Upper Saddle River, 1999)
35. R.L. Norton, Machine Design (Prentice-Hall, Upper Saddle River, 1996)
36. M. Plesha, G. Gray, F. Costanzo, Engineering Mechanics: Statics, 2/e (McGraw-Hill Publishing

Company, New York, 2012)
37. M. Radoi, E. Deciu, Mechanics (EDP, Bucharest, 1981)
38. W.F. Riley, L.D. Sturges, Engineering Mechanics: Statics, 2/e (Wiley, New York, 1995)
39. A. Ruina, R. Pratap, Introduction to Statics and Dynamics (Oxford University Press, Oxford,

2002)
40. A. Ripianu, P. Popescu, B. Balan, Technical Mechanics (EDP, Bucharest, 1979)
41. I.H. Shames, Engineering Mechanics Statics, 4/e (Prentice Hall, Inc., New Delhi, 1996)
42. S.D. Sheppard, B.H. Tongue, Statics: Analysis and Design of Systems in Equilibrium (Wiley,

New York, 2005)
43. D. Smith, Engineering Computation with MATLAB (Pearson Education, Upper Saddle River,

2008)
44. R.W. Soutas-Little, D.J. Inman, Engineering Mechanics: Statics and Dynamics (Prentice-Hall,

Upper Saddle River, 1999)
45. R.W. Soutas-Little, D.J. Inman, D. Balint, Engineering Mechanics: Statics (Cengage Learning,

New Delhi, 2007)
46. S. Staicu, Theoretical Mechanics (EDP, Bucharest, 1998)
47. A. Stan, M. Grumazescu, Mechanics Problems (EDP, Bucharest, 1973)

http://www.eng.auburn.edu/users/nmadsen/
http://www.eng.auburn.edu/users/marghitu/

References 43

48. J. Sticklen, M.T. Eskil, An Introduction to Technical Problem Solving with MATLAB (Great
Lakes Press, Wildwood, 2006)

49. A. Stoenescu, G. Silas, Theoretical Mechanics (ET, Bucharest, 1957)
50. J.H. Jackson, H.G. Wirtz, Schaum’s Outline of Theory and Problems of Statics and Strength of

Materials (McGraw-Hill Publishing Company, New York, 1983)
51. The MathWorks: https://www.mathworks.com/
52. Statics eBook : https://ecourses.ou.edu/
53. R. Voinea, D. Voiculescu, V. Ceausu, Mechanics (EDP, Bucharest, 1983)
54. V. Valcovici, S. Balan, R. Voinea, Theoretical Mechanics (ET, Bucharest, 1959)
55. K.J. Waldron, G.L. Kinzel, Kinematics, Dynamics, and Design of Machinery (Wiley, New

York, 1999)
56. H.B. Wilson, L.H. Turcotte, D. Halpern, Advanced Mathematics and Mechanics Applications

Using MATLAB (Chapman & Hall/CRC, Boca Raton, 2003)
57. J.H. Williams Jr., Fundamentals of Applied Dynamics (Wiley, New York, 1996)
58. S. Wolfram, Mathematica (Wolfram Media/Cambridge University Press, Cambridge, 1999)

https://www.mathworks.com/
https://ecourses.ou.edu/

Chapter 2
Moments, Couples, Equipollent Systems

2.1 Moment of a Vector About a Point

The moment of a vector v, whose line of action passes through a point B, about
a point A is the vector

Mv
A = rAB × v, (2.1)

where rAB is the position vector of B relative to A, and B is any point of line of action,
Δ, of the vector v (Fig. 2.1). The moment vector Mv

A = 0 if and only if the line of
action of v passes through A or v = 0. The magnitude of Mv

A is

|Mv
A| = Mv

A = |rAB| |v| sin θ = rAB v sin θ,

where θ is the angle between rAB and v. The perpendicular distance from A to the
line of action of v is

d = |rAB| sin θ = rAB sin θ.

The moment vector is zero if the vectors v and rAB are parallel. The magnitude of
the Mv

A is

|Mv
A| = Mv

A = |v| d = v d.

The moment vector Mv
A is perpendicular to both rAB and v: Mv

A ⊥ rAB and Mv
A ⊥ v.

If the moment vector is non-zero then it is perpendicular to the plane defined by the
distinct directions of rAB and v. The moment given by Eq. (2.1) does not depend
upon the choice of point on the line of action of v. Instead of using the point B, the
point B′, B′ ∈ Δ (Fig. 2.1), can be used. The position vector of B relative to A is
rAB = rAB′ + rB′B where the vector rB′B is parallel to v, rB′B||v. Therefore,

D. B. Marghitu et al., Statics with MATLAB®, 45
DOI: 10.1007/978-1-4471-5110-4_2, © Springer-Verlag London 2013

46 2 Moments, Couples, Equipollent Systems

A

B

v

Mv
A = rAB × v

rAB

d

θ

θ

B′

Δ

Fig. 2.1 Moment of a vector v about a point A

Mv
A = rAB × v = (rAB′ + rB′B) × v = rAB′ × v + rB′B × v = rAB′ × v, (2.2)

because rB′B × v = 0. The moment about a point is a vector in a particular direction.
This moment vector is a sliding vector along that direction.

Next, using MATLAB®, the validity of Eq. (2.2) is shown. Three points A, B, and
C are defined by three symbolic position vectors rA_, rB_, and rC_:

syms xA yA zA xB yB zB xC yC zC real
rA_ = [xA yA zA];
rB_ = [xB yB zB];
rC_ = [xC yC zC];
rBC_ = rC_ - rB_;

The vector v is selected as v = rC − rB, or in MATLAB:

v_ = rC_ - rB_;

The line of action of the vector v is defined as should be by the line segment BC.
A generic point B′ (in MATLAB Bp) divides the line segment joining two given
points B and C in a given ratio. The position vector of the point Bp is rBp_:

syms k real % k is a given real number
rBp_ = rB_ + k*(rC_-rB_);

The moment of the vector v with respect to A is calculated as rAB × v, rAB′ × v, and
rAC × v, or with MATLAB:

MB_ = cross(rB_-rA_, v_); % rAB_ x v_
MBp_ = cross(rBp_-rA_, v_); % rABp_ x v_
MC_ = cross(rC_-rA_, v_); % rAC_ x v_

2.1 Moment of a Vector About a Point 47

To prove that Mv
A = rAB × v = rAB′ × v = rAC × v the following MATLAB

commands are used:

% rAB_ x v_ = rABp_ x v_ = rAC_ x v_
fprintf(’1=TRUE 0=FALSE\n’)
T1=expand(MB_) == expand(MBp_);
fprintf(’rAB_ x v_ == rABp_ x v_ => [%d %d %d]\n’,T1)
T2=expand(MB_) == expand(MC_);
fprintf(’rAB_ x v_ == rAC_ x v_ => [%d %d %d]\n’,T2)

If T1 = [1 1 1] then rAB_ x v_ == rABp_ x v_ is true and if T2 =
[1 1 1] then rAB_ x v_ == rAC_ x v_ is true.

As an example consider the vectors rAB, rAB′ , rAC, v and Mv
A where the following

numerical data are used:xA = yA = zA = 0, xB = 1, yB = 2, zB = 0, xC = 3, yC =
3, zC = 0, and k = 0.75. The numerical values for the vectors rA_, rB_, rC_,
rBp_, v_, MB_, MBp_, and MC_ are calculated in MATLAB with:

% A = O origin
slist={xA,yA,zA,...

xB,yB,zB,...
xC,yC,zC,k};

nlist={0,0,0,1,2,0,3,3,0,.75};

rB_ = subs(rB_,slist,nlist);
rC_ = subs(rC_,slist,nlist);
rBp_ = subs(rBp_,slist,nlist);
V_ = subs(v_,slist,nlist);

MB_ = subs(MB_,slist,nlist);
MBp_ = subs(MBp_,slist,nlist);
MC_ = subs(MC_,slist,nlist);

The numerical values are:

rB_ = [1.0 2.0 0]
rC_ = [3.0 3.0 0]
rBp_ = [2.5 2.8 0]
V_ = [2.0 1.0 0]

MB_ = [0 0 -3]
MBp_ = [0 0 -3]
MC_ = [0 0 -3]

The MATLAB commands for the current axes and for the Cartesian reference with
the origin at A are:

a=3;
axis([0 a 0 a -a a])

48 2 Moments, Couples, Equipollent Systems

grid on, hold on
% Cartesian axes A=O origin
quiver3(0,0,0,a-.5,0,0,1, ...

’Color’,’k’,’LineWidth’,1)
text(’Interpreter’,’latex’,’String’,’ x’,...

’Position’,[a-.5,0,0],’FontSize’,12)
quiver3(0,0,0,0,a-.5,0,1, ...

’Color’,’k’,’LineWidth’,1)
text(’Interpreter’,’latex’,’String’,’ y’,...

’Position’,[0,a-.5,0],’FontSize’,12)
quiver3(0,0,0,0,0,a-.5,1, ...

’Color’,’k’,’LineWidth’,1)
text(’Interpreter’,’latex’,’String’,’ z’,...

’Position’,[0,0,a-.5],’FontSize’,12)

The fonts for the labels x, y, and z are LaTex fonts. The vectors rB_, rC_, rBp_,
V_, and the line BC are plotted with:

quiver3(0,0,0, rB_(1),rB_(2),rB_(3),1,...
’Color’,’k’,’LineWidth’,1)

quiver3(0,0,0, rC_(1),rC_(2),rC_(3),1,...
’Color’,’k’,’LineWidth’,1)

quiver3(0,0,0, rBp_(1),rBp_(2),rBp_(3),1,...
’Color’,’k’,’LineWidth’,1)

quiver3(rB_(1),rB_(2),rB_(3), V_(1),V_(2),V_(3),1,...
’Color’,’g’,’LineWidth’,1)

line...
([rB_(1) rC_(1)],[rB_(2) rC_(2)],[rB_(3) rC_(3)],...

’LineStyle’,’--’,’LineWidth’,2)

The vectors MB_, MBp_, and MC_ are plotted with:

quiver3(0,0,0, MB_(1),MB_(2),MB_(3),1,...
’Color’,’r’,’LineWidth’,2)

quiver3(0,0,0, MBp_(1),MBp_(2),MBp_(3),1,...
’Color’,’g’,’LineWidth’,2)

quiver3(0,0,0, MC_(1),MC_(2),MC_(3),1,...
’Color’,’r’,’LineWidth’,2)

The labels for the vectors are printed with

text(’Interpreter’,’latex’,’String’,’ $A=O$’,...
text(’Interpreter’,’latex’,’String’,’ $A=O$’,...

’Position’,[0,0,0],’FontSize’,12)
text(’Interpreter’,’latex’,’String’,’ B’,...

’Position’,[rB_(1),rB_(2),rB_(3)],’FontSize’,12)
text(’Interpreter’,’latex’,’String’,...

2.1 Moment of a Vector About a Point 49

’$Bˆ\prime$’,’Position’,[rBp_(1),rBp_(2),rBp_(3)],...
’FontSize’,12)
text(’Interpreter’,’latex’,’String’,’ C’,...

’Position’,[rC_(1),rC_(2),rC_(3)],’FontSize’,12)
text(’Interpreter’,’latex’,’String’,...
’ ${\bf M}_Aˆ{\bf v}$’,’Position’,...
[MB_(1),MB_(2),MB_(3)+.5],’FontSize’,12)

The MATLAB representation of the vectors is shown in Fig. 2.2.

Moment of a Vector About a Line
The moment Mv

Ω of a vector v about a line Ω is the Ω resolute (Ω component) of
the moment v about any point on Ω as shown in Fig. 2.3a. The moment of the vector
v about the line Ω is

Mv
Ω = n·Mv

A n = n·(r × v) n = [n, r, v] n,

0

1
2

3

0

1

2

3
−3

−2

−1

0

1

2

3

x

x

C
B

z

A O

Mv
A

B

y

y

z

Fig. 2.2 Moment of v = rBC about A: Mv
A = rAB × v = rAB′ × v = rAC × v

A

r

v

n

Ω

Δ

d
n

Δ
v

Ω

r

(b)

90o

90o

(a)

Fig. 2.3 Moment of a vector v about a line Ω; the line of action of v does not intersect the line Ω

50 2 Moments, Couples, Equipollent Systems

where n is a unit vector parallel to Ω , and r is the position vector of a point on the
line of action of v relative to a point on Ω . The magnitude of Mv

Ω is given by

∣∣Mv
Ω

∣∣ = Mv
Ω = |[n, r, v]|.

The moment of a vector about a line is a free vector. If a line Ω is parallel to the line
of action Δ of a vector v, then [n, r, v]n = 0 and Mv

Ω = 0. If a line Ω intersects the
line of action Δ of v, then r can be chosen in such a way that r = 0 and Mv

Ω = 0. If
a line Ω is perpendicular to the line of action Δ of a vector v, and d is the shortest
distance between these two lines, Fig. 2.3b, then

∣∣Mv
Ω

∣∣ = |[n, r, v]| = |n·(r × v)| = |n·(|r||v| sin(r, v)n)| = |r||v| = d|v|.

Moment of a System of Vectors
The moment of a system {S} of vectors vi, {S} = {v1, v2, . . . , vn} = {vi}i=1,2,...,n

about a point A is

M{S}
A =

n∑

i=1

Mvi
A .

The moment of a system {S} of vectors vi, {S} = {v1, v2, . . . , vn} = {vi}i=1,2,...,n

about a line Ω is

M{S}
Ω =

n∑

i=1

Mvi
Ω.

The moments M{S}
A and M{S}

P of a system {S}, {S} = {vi}i=1,2,...,n, of vectors, vi,
about two points A and P, are related to each other as follows,

M{S}
A = M{S}

P + rAP × R, (2.3)

where rAP is the position vector of P relative to A, and R is the resultant of {S}.
Proof Let Bi a point on the line of action of the vector vi, rABi and rPBi the position
vectors of Bi relative to A and P, Fig. 2.4. Thus,

M{S}
A =

n∑

i=1

Mvi
A =

n∑

i=1

rABi × vi

=
n∑

i=1

(rAP + rPBi) × vi =
n∑

i=1

(rAP × vi + rPBi × vi)

2.1 Moment of a Vector About a Point 51

Bi
A

vi

{S}

rAP

rABi

P

rPBi

Fig. 2.4 Moments of a system of vectors, vi about two points A and P

=
n∑

i=1

rAP × vi +
n∑

i=1

rPBi × vi

= rAP ×
n∑

i=1

vi +
n∑

i=1

rPBi × vi = rAP × R +
n∑

i=1

Mvi
P = rAP × R + M{S}

P .

The proof of Eq. (2.3) for a system of three vectors v1_, v2_, and v3_ is given by
the following MATLAB commands:

% vectors vi_ i=1,2,3
v1_ = sym(’[v1x v1y v1z]’);
v2_ = sym(’[v2x v2y v2z]’);
v3_ = sym(’[v3x v3y v3z]’);

% application points Bi of vi
rB1_ = sym(’[xB1 yB1 zB1]’);
rB2_ = sym(’[xB2 yB2 zB2]’);
rB3_ = sym(’[xB3 yB3 zB3]’);

% any two points A and P
% any two points A and P
rA_ = sym(’[xA yA zA]’);
rP_ = sym(’[xP yP zP]’);

rAP_ = rP_-rA_;

rPB1_ = rB1_-rP_;
rPB2_ = rB2_-rP_;
rPB3_ = rB3_-rP_;

52 2 Moments, Couples, Equipollent Systems

rAB1_ = rAP_+rPB1_;
rAB2_ = rAP_+rPB2_;
rAB3_ = rAP_+rPB3_;

R_ = v1_+v2_+v3_;

% MA_ = sum(ABi_ x vi_) i=1,2,3
MA_ = cross(rAB1_,v1_)+...

cross(rAB2_,v2_)+...
cross(rAB3_,v3_);

% MP_ = sum(PBi_ x vi_) i=1,2,3
MP_ = cross(rB1_-rP_,v1_)+...

cross(rB2_-rP_,v2_)+...
cross(rB3_-rP_,v3_);

% MA_ = AP_ x R_ + MP_
T1=expand(MA_) ==
expand(cross(rP_-rA_,R_)+MP_);
fprintf(’MA_ == AP_ x R_ + MP_ => [%d %d %d]\n’,T1)
fprintf(’1=TRUE 0=FALSE\n’)

The scalar product of the moments M{S}
A and M{S}

P , about any points A and P, with
the resultant R of {S} are constant

M{S}
A · R = M{S}

P · R. (2.4)

The scalar product M{S}
A ·R is an invariant of the system {S}. Taking into account the

previous MATLAB program the proof for Eq. (2.1) is given below:

T2 = expand(MA_*R_.’) == expand(MP_*R_.’);
fprintf(’MA_*R_ == MP_*R_ => %d \n’,T2)

This invariant is the scalar invariant or the second invariant of the system of vectors.
The resultant vector of the system is the vector invariant of that system or the first
invariant. The resultant moment M{S}

O with respect to a point O is is not an invariant
of the system. The resolution of the moment vector into two components is

M{S}
O = MR + MN ,

where MR is the component along the resultant R direction and MN is perpendic-
ular to the resultant direction. The magnitude of the component along the resultant
direction is

MR = M{S}
O · uR = M{S}

O · R
R

= M{S}
O · R

R
.

2.1 Moment of a Vector About a Point 53

The projection of the resultant moment on the resultant of the system, MR, is an
invariant of the system. For the minimum value of the component MR a corresponding
minimum moment, Mmin, can be defined. The minimum moment is obtained when
the normal component is zero, MN = 0. The minimum moment Mmin is given by

Mmin = R · M{S}
O

R · R
R.

If the resultant R of a system {S} of vectors is not equal to zero, R �= 0, the points
about which {S} has a minimum moment Mmin are on a line called central axis, (CA),
of {S}, which is parallel to R and passes through a point P. The position vector r of
point P relative to an arbitrarily selected reference point O is given by

r = R × M{S}
O

R · R
.

The equation of the central axis is obtained from the following program:

% resultant force
R_ = sym(’[Rx Ry Rz]’);
% resultant moment
MO_ = sym(’[MOx MOy MOz]’);

rA_ = sym(’[xA yA zA]’);
% O(0,0,0) is the origin
% MA_ = MO_ + AO_ x R_
MA_ = MO_ + cross(-rA_,R_);

% colinearity condition between R_ and MO_
% MA_ = lambda*R_
syms lambda real
eq_ = MA_ - lambda*R_;

% solve for lambda
eqx=solve(eq_(1),’lambda’);
eqy=solve(eq_(2),’lambda’);
eqz=solve(eq_(3),’lambda’);

and it results:

equation for central axis
(MOx - Rz*yA + Ry*zA)/Rx=
(MOy + Rz*xA - Rx*zA)/Ry=
(MOz - Ry*xA + Rx*yA)/Rz.

54 2 Moments, Couples, Equipollent Systems

2.2 Couples

A couple is a system of vectors whose resultant is equal to zero and whose moment
about some point is not equal to zero. A couple consisting of only two vectors is called
a simple couple. The vectors of a simple couple have equal magnitudes, parallel lines
of action, and opposite senses. The term “couple" can be used to denote the simple
couple. In many textbooks the use of the term couple is restricted to the situation in
which the contributing vectors are forces and the moment of a couple about a point
is called the torque of the couple, and is usually denoted by M or T. The moment
of a couple about one point is equal to the moment of the couple about any other
point. The moment of a couple is independent of the specific point. The moment of
a couple is a free vector.

The torques are vectors and the magnitude of a torque of a simple couple is given by

|M| = d |v| = d v,

where d is the distance between the lines of action of the two vectors comprising the
couple, and v is one of these vectors.

Proof In Fig. 2.5, the moment M is the sum of the moments of v and −v about any
point. The moments about point A are

M = Mv
A + M−v

A = r × v + 0.

Hence,

|M| = |r × v| = |r||v| sin(r, v) = d|v|.

The direction of the moment of a simple couple can be determined by inspection:
M is perpendicular to the plane determined by the lines of action of the two vectors
comprising the couple, and the sense of M is the same as that of r × v. The moment
of a couple about a line Ω is equal to the Ω resolute of the torque of the couple.

Fig. 2.5 Couple of the vectors
v and −v, simple couple

90◦

A

B r

v

−v

90◦

d

2.3 Force Vectors 55

2.3 Force Vectors

Force is a vector quantity, having both magnitude and direction. Force is commonly
explained in terms of Newton’s three laws of motion in Principia Mathematica, 1687.
Newton’s first principle: a body that is at rest or moving at a uniform rate in a straight
line will remain in that state until some force is applied to it. Newton’s second law of
motion: a particle acted on by forces whose resultant is not zero will move in such a
way that the time rate of change of its momentum will at any instant be proportional
to the resultant force. Newton’s third law: when one body exerts a force on another
body, the second body exerts an equal force in magnitude, opposite in direction, and
collinear, on the first body. This is the principle of action and reaction. The vector
representation of forces implies that they are concentrated either at a single point or
along a single line.

Force is measured in newtons (N); a force of 1 N will accelerate a mass of one
kilogram at a rate of one meter per second. The newton is a unit of the International
System (SI) used for measuring force. Using the English system, the force is measured
in pounds (lb).

The force vector F can be expressed in terms of a cartesian reference frame, with
the unit vectors ı, j, and k, Fig. 2.6a

F = Fxı + Fyj + Fzk. (2.5)

The components of the force in the x, y, and z directions are Fx , Fy, and Fz. The
resultant of two forces: F1 = F1xı + F1yj + F1zk and F2 = F2xı + F2yj + F2zk is
the vector sum of those forces

R = F1 + F2 = (F1x + F2x)ı + (F1y + F2y)j + (F1z + F2z)k. (2.6)

x

y

θ

z

r

F

ı
j

k
O

A

M F
O

x

y

θ

z r

ı
j

k
O

θ

h

F1

F2

r1

r2

(a) (b)

P

Fig. 2.6 a Moment of a force about (with respect to) a point and b couple of two forces

56 2 Moments, Couples, Equipollent Systems

A moment is defined as the moment of a force about (with respect to) a point. The
moment of the force F about the point O is the cross product vector

MF
O = r × F

=
∣∣∣∣∣∣

ı j k
rx ry rz

Fx Fy Fz

∣∣∣∣∣∣
= (ry Fz − rz Fy)ı + (rz Fx − rx Fz)j + (rx Fy − ry Fx)k, (2.7)

where r = rxı + ryj + rzk is a position vector directed from the point about which
the moment is taken (O in this case) to any point A on the line of action of the force,
see Fig. 2.6a. If the coordinates of O are xO, yO, zO and the coordinates of A are
xA, yA, zA, then r = rOA = (xA − xO)ı + (yA − yO)j + (zA − zO)k and the the
moment of the force F about the point O is

MF
O = rOA × F =

∣∣∣∣∣∣

ı j k
xA − xO yA − yO zA − zO

Fx Fy Fz

∣∣∣∣∣∣
.

The magnitude of MF
O is

|MF
O| = MF

O = r F | sin θ |,

where θ = ∠(r, F) is the angle between vectors r and F, and r = |r| and F = |F| are
the magnitudes of the vectors. The line of action of MF

O is perpendicular to the plane
containing r and F (MF

O ⊥ r & MF
O ⊥ F) and the sense is given by the right-hand

rule. The moment of the force F about another point P is

MF
P = rPA × F =

∣∣∣∣∣∣

ı j k
xA − xP yA − yP zA − zP

Fx Fy Fz

∣∣∣∣∣∣
,

where xP, yP, zP are the coordinates of the point P.
The system of two forces, F1 and F2, which have equal magnitudes |F1| = |F2|,

opposite senses F1 = −F2, and parallel directions (F1||F2) is a couple. The resultant
force of a couple is zero R = F1 + F2 = 0. The resultant moment M �= 0 about an
arbitrary point is

M = r1 × F1 + r2 × F2,

or

M = r1 × (−F2) + r2 × F2 = (r2 − r1) × F2 = r × F2, (2.8)

2.3 Force Vectors 57

where r = r2 − r1 is a vector from any point on the line of action of F1 to any point
of the line of action of F2. The direction of the torque of the couple is perpendicular
to the plane of the couple and the magnitude is given by, Fig. 2.6b

|M| = M = r F2 | sin θ | = h F2, (2.9)

where h = r | sin θ | is the perpendicular distance between the lines of action. The
resultant moment of a couple is independent of the point with respect to which
moments are taken.

2.4 Equipollent Force Systems

Two systems {S} and {S′} of vectors are equipollent if and only if

1. the resultant of {S}, R, is equal to the resultant of {S′}, R′

R = R′.

2. there exists at least one point about which {S} and {S′} have equal moments

exists P : M{S}
P = M{S′}

P .

Figures 2.7a and b show two forces acting on a rod. The two systems of forces are
equipollent. The effects on the rod by the two systems are different tension and
compression. Here the equipollence is not a physical equivalence.

Transitivity relation If {S} is equipollent to {S′}, and {S′} is equipollent to {S′′},
then {S} is equipollent to {S′′}.

Every system {S} of bound vectors with the resultant R is equipollent with a
system consisting of a couple C and a single vector v whose line of action passes
through a point O. The torque M of C depends on the choice of the point M =
M{S}

O . The vector v is independent of the choice of base point, v = R. A couple C
can be equipollent with any system of couples, the sum of whose torque is equal
to the torque of C. When a system of vectors consists of a couple of torque M
and a single resultant vector parallel to M, it is called a wrench. Any system is
equipollent to either a null force and null couple, or a single force, or a single couple,
or a wrench.

F

(b)

FF F

(a)

Fig. 2.7 Rod subjected to the action of a pair of forces

58 2 Moments, Couples, Equipollent Systems

{system I} {system II}

P P

F

M

r1F1

M1

M2

ri

Fi

Mi

Fig. 2.8 Equipollent systems

To simplify the analysis of forces and moments acting on a given system, the
system can be equipollent by a less complicated system. The forces and moments
acting on the system can be equipollent with a total force and a total moment system.

Figure 2.8 shows an arbitrary system of forces and moments, {system I}, and
a point P. This system is equipollent with a system, {system II}, consisting of a
single force F acting at P and a single couple of torque M. The conditions for
equipollence are

∑
F{system II} =

∑
F{system I} =⇒ F =

∑
F{system I},

and

∑
M{system II}

P =
∑

M{system I}
P =⇒ M =

∑
M{system I}

P .

These conditions are satisfied if F equals the sum of the forces in {system I}, and M
equals the sum of the moments about P in {system I}. Thus, no matter how compli-
cated a system of forces and moments may be, it can be represented by a single force
acting at a given point and a single couple. Three particular cases occur frequently
in practice.

Force Equipollent with a Force and a Couple
A force FI acting at a point I {system I} in Fig. 2.9 is equipollent with a force F
acting at a different point P and a couple of torque M, {system II}.The moment
of {system I} about point P is rPI × FI , where rPI is the vector from P to I . The
conditions for equipollence are

∑
F{system II} =

∑
F{system I} =⇒ F = FI ,

and

∑
M{system II}

P =
∑

M{system I}
P =⇒ M = MFI

P = rPI × FI .

2.4 Equipollent Force Systems 59

{system I} {system II}

P P

M

I

FI

rPI

F = FI

MF
P = rPI× FIM= I

F

Fig. 2.9 Force FI acting on {system I} and equipollent system {system II}

Fig. 2.10 System of concur-
rent forces and equipollent
system

{system I} {system II}

P

F1

F2

FN

P

F

The systems are equipollent if the force F equals the force FI and the couple of torque
MFI

P equals the moment of FI about P.

Concurrent Forces Equipollent with a Single Force
A system of concurrent forces whose lines of action intersect at a point P {system I}
in Fig. 2.10 is equipollent with a single force whose line of action intersects P,
{system II}.
The sums of the forces in the two systems are equal if

F = F1 + F2 + · · · + Fn.

The sum of the moments about P equals zero for each system, so the systems are
equipollent if the force F equals the sum of the forces in {system I}.

Parallel Forces Equipollent with a Force
A system of parallel forces whose sum is not zero is equipollent with a single force
F shown in Fig. 2.11.

System Equipollent with a Wrench
In general any system of forces and moments is equipollent with a single force acting
at a given point and a single couple. Figure 2.12 shows an arbitrary force F acting at
a point I and an arbitrary couple of torque M, {system I}. This system is equipollent
with a simpler one where the force F is acting at a different point P and the component
of M is parallel to F. A coordinate system is chosen so that F is along the y axis

F = Fj,

and M is contained in the xy plane

60 2 Moments, Couples, Equipollent Systems

F1
F2 F

F
n

{system I} {system II}

Fig. 2.11 System of parallel forces and equipollent system

{system I} {system II}

F = F j

M = Mxı + Myj

x
I

z

y

Myj

Mxı

F = F j

x
I

z

y

PIP

M= Myj

|rIP| = IP = Mx/F

Fig. 2.12 System equipollent with a wrench

M = Mxı + Myj.

The equivalent system, {system II}, consists of the force F acting at a point P on the
z axis

F = Fj,

and the component of M parallel to F

Mp = Myj.

The distance IP is chosen so that |rIP| = IP = Mx/F. The {system I} is equipollent
to {system II}. The sum of the forces in each system is the same F. The sum of
the moments about I in {system I} is M, and the sum of the moments about I in
{system II} is

2.4 Equipollent Force Systems 61

I

F

M

I

F

M

Mp

Mn

rIP
I

P

F

Mp

rIP× F = Mn

(c)(a) (b)

Fig. 2.13 Steps required for a system of forces and moments to be equipollent with wrench

∑
M{system II}

I = rPI × F + Myj = [−(IP) k] × (Fj) + Myj = Mxı + Myj = M.

The system of the force F = Fj and the couple Mp = Myj that is parallel to F is a
wrench. A wrench is the simplest system equipollent to an arbitrary system of forces
and moments.
A given system of forces and moments is made equipollent with wrench following
the steps:

1. Choose a convenient point I the application point of force F and the moment M,
see Fig. 2.13a.

2. Determine the components of M parallel and normal to F, see Fig. 2.13b:

M = Mp + Mn, where Mp||F.

3. The wrench consists of the force F acting at a point P and the parallel component
Mp, see Fig. 2.13c. For equipollence, the following condition must be satisfied:

rIP × F = Mn,

where Mn is the normal component of M.
In general, the {system I} cannot be represented by a force F alone.

2.5 Examples

Example 2.1 Calculate the moment about the base point O of the the force F, as
shown in Fig. 2.14a. For the numerical application use: F = 500 N, θ = 45◦,
a = 1 m, and b = 5 m.

62 2 Moments, Couples, Equipollent Systems

F

θ

yF

xF

y

x O

b

A

a

(a)

(b)

0
1

2
3

4
5

0
2

4
6

8
10

−15

−10

−5

0

 x

F
x

x

 F

 O

 z

 M
O
F = r

A
 x F

 r
A

 A

y

F
y y

z

Fig. 2.14 a Example 2.1 and b MATLAB figure

Solution A cartesian reference frame with the origin at O, as shown in Fig. 2.14a,
is selected. The moment of the force F with respect to the point O is

2.5 Examples 63

MF
O = rOA × F =

∣∣∣∣∣∣

ı j k
xA − xO yA − yO 0

Fx Fy 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ı j k
a b 0

F cos θ F sin θ 0

∣∣∣∣∣∣
= (a F cos θ − b F sin θ) k = [(1) 5 cos 45◦ − (5) 500 sin 45◦] k

= −1414.2 k Nm.

The minus sign indicates that the moment vector is in the negative z-direction. The
MATLAB program for the the moment of the force F about the point O is:

syms F theta a b real
rA_ = [a b 0];
FA_ = [F*cos(theta) F*sin(theta) 0];
MO_ = cross(rA_, FA_);
MOz= MO_(3);
sl = {F, theta, a, b};
nl = {5, pi/4, 1, 5};
fprintf(’MOz = %s =’,char(MOz))
fprintf(’%6.3f (kN m)\n’,subs(MOz,sl,nl))

and the output of the program is

MOz = a*F*sin(theta)-b*F*cos(theta) = -14.142 (kN m)

The MATLAB program for plotting the vectors and the figure are:

% numerical values for vectors
rAn_ = double(subs(rA_,sl,nl));
Fn_ = double(subs(FA_,sl,nl));
Mn_ = subs(MO_,sl,nl);
% figure plotting
line([0 0],[0 rAn_(2)],[0,0],’LineStyle’,’--’,...

’Color’,’k’,’LineWidth’,4)
line...
([0 rAn_(1)],[rAn_(2) rAn_(2)],[0,0],...
’LineStyle’,’--’,’Color’,’k’,’LineWidth’,4)
% vector plotting
% rAn_
quiver3(0,0,0,rAn_(1),rAn_(2),0,1,...

’Color’,’b’,’LineWidth’,2)
% rFn_
quiver3(rAn_(1),rAn_(2),0,Fn_(1),Fn_(2),0,1,...

’Color’,’r’,’LineWidth’,2)
% rFn_(1)
quiver3(rAn_(1),rAn_(2),0,Fn_(1),0,0,1,...

’Color’,’k’,’LineWidth’,1)
% rFn_(2)

64 2 Moments, Couples, Equipollent Systems

quiver3(rAn_(1),rAn_(2),0,0,Fn_(2),0,1,...
’Color’,’k’,’LineWidth’,1)

% Mn_
quiver3(0,0,0,0,0,Mn_(3),1,...

’Color’,’r’,’LineWidth’,4)

The vector representation with MATLAB is shown in Fig. 2.14b.

Example 2.2 The beam in Fig. 2.15a is subjected to a T tension that is directed from
A to B. Find the the moment created by the force about the support at O. For the
numerical application use: T = 10 kN, a = 12 m, b = 9 m, and c = 15 m.

z

y

x
b

a

c

A

O

B

T

(a)

(b)

−60
−40

−20
0

0
20

40
60

80

0

5

10

15

 B

T

 O

 A

x

M
Oy
T

M
Ox
T

y

M
O
T

z

Fig. 2.15 a Example 2.2 and b MATLAB figure

2.5 Examples 65

Solution The vector expression for the tension T is

T = T uAB = T
rAB

|rAB| = T
(xB − xA) ı + (yB − yA) j + (zB − zA) k√

(xB − xA)2 + (yB − yA)2 + (zB − zA)2

= T
a ı + b j − c k√

a2 + b2 + c2
= (10)

12 ı + 9 j − 15 k√
122 + 92 + 152

= 5.657 ı + 4.243 j − 7.071 k kN,

where rB = xB ı + yB j + zB k = a ı + b j and rC = xC ı + yC j + zC k = c k. The
moment of the tension T with respect to the point O is

MT
O = rOA × T =

∣∣∣∣∣∣

ı j k
xA yA zA

Tx Ty Tz

∣∣∣∣∣∣
= T√

a2 + b2 + c2

∣∣∣∣∣∣

ı j k
0 0 c
a b −c

∣∣∣∣∣∣
= T (−b c ı + a c j)√

a2 + b2 + c2

= 10 [−9 (15) ı + 12 (9) j)√
122 + 92 + 152

= −63.640 ı + 84.853 j kN m,

and |MT
O| = 106.066 kN m.

The MATLAB program for the calculation of T and MT
O and is given by:

syms T a b c real
rB_ = [a b 0];
rA_ = [0 0 c];
rAB_= rB_-rA_;
uAB_= rAB_/sqrt(dot(rAB_, rAB_));
TAB_= T*uAB_;
MO_ = cross(rA_, TAB_);
% numerical calculations
sl = {T, a, b, c};
nl = {10, 12, 9, 15};
Tn_ = subs(TAB_,sl,nl);
Mn_ = subs(MO_,sl,nl);

and the output is:

T = [5.657 4.243 -7.071] (kN)
MOx = -c*T*b/(aˆ2+bˆ2+cˆ2)ˆ(1/2) = -63.640 (kN m)
MOy = c*T*a/(aˆ2+bˆ2+cˆ2)ˆ(1/2) = 84.853 (kN m)
MOz = 0 = 0.000 (kN m)
|MO| = 106.066 (kN m)

The MATLAB program for plotting the vectors is:

rAn_ = double(subs(rA_,sl,nl));
Fn_ = double(subs(FA_,sl,nl));
Mn_ = subs(MO_,sl,nl);

66 2 Moments, Couples, Equipollent Systems

axis([0 5 0 10 -18 0])
line([0 0],[0 rAn_(2)],[0,0],’LineStyle’,’--’,...

’Color’,’k’,’LineWidth’,4)
line...
([0 rAn_(1)],[rAn_(2) rAn_(2)],[0,0],...
’LineStyle’,’--’,’Color’,’k’,’LineWidth’,4)
quiver3(0,0,0,rAn_(1),rAn_(2),0,1,...

’Color’,’b’,’LineWidth’,2)
quiver3(rAn_(1),rAn_(2),0,Fn_(1),Fn_(2),0,1,...

’Color’,’r’,’LineWidth’,2)
quiver3(rAn_(1),rAn_(2),0,Fn_(1),0,0,1,...

’Color’,’k’,’LineWidth’,1)
quiver3(rAn_(1),rAn_(2),0,0,Fn_(2),0,1,...

’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,0,Mn_(3),1,...

’Color’,’r’,’LineWidth’,4)

The vector representation with MATLAB is shown in Fig. 2.15b.

Example 2.3 Determine the moment of the force F about A as shown in Fig. 2.16a.
For the numerical application use: F = 1 kN, a = 1 m, b = 3 m, and c = 2 m.

Solution The moment of a force about a point is given by the cross product of a
position vector with the force vector. The position vector must run from the point
about which the moment is being calculated to a point on the line of action of the
force. Figure 2.16a shows the location of the point A, the force F, and the line of
action of the force. Point B is on the line of action of the force. Thus the position

y
c

A

z

x

b

F

a
O

(a) (b)

E

Fig. 2.16 a Example 2.3 and b MATLAB figure

2.5 Examples 67

vector of interest is the vector from point A to point B. From the figure this position
vector can be seen to be a units in the -x followed by b units in the positive y.

rAB = −a ı + b j

The force vector is parallel to the z-axis with magnitude F. Thus it can be expressed
in vector form as: F = −F k. The desired moment is the cross product of these two
vectors

MF
A = (−a ı + b j) × (−Fk) .

Recalling that ı × k is −j and j × k is ı yields

MF
A = −b F ı − aF j.

The MATLAB program for the moment of the force F about point A is given by:

syms a b c F
rA_ = [a 0 0];
rB_ = [0 b 0];
rE_ = [0 b c];
rAE_ = rE_ - rA_;
rAB_ = rB_ - rA_;
f_ = [0 0 -F];

ME_ = cross(rAE_, f_); % M = rAE x F
MB_ = cross(rAB_, f_); % M = rAB x F
T = ME_ == MB_; % rAB x F = rAE x F
fprintf(’ME_ == MB_ => [%d %d %d]\n’,T)
fprintf(’1=TRUE 0=FALSE\n’)

% numerical calculation
sl = {a, b, c, F};
nl = {1, 3, 2, 1};
MEn_ = double(subs(ME_,sl,nl));
MBn_ = double(subs(MB_,sl,nl));

The output of the MATLAB program is:

ME_ == MB_ => [1 1 1]
1=TRUE 0=FALSE

M_ = rAB_ x F_ = rAE_ x F_
Mx = -F*b; My = -F*a; Mz = 0.
ME_ = [-3.000 -1.000 0] (kN m)
MB_ = [-3.000 -1.000 0] (kN m)

68 2 Moments, Couples, Equipollent Systems

The MATLAB program for plotting the vectors and the triangular prism is:

F=1; % kN
a=1; b=3; c=2; % m

axis([-2 2 -1 4 0 2])
hold on, grid on

% Cartesian axes
line ...
([0 4],[0 0],[0,0],’Color’,’b’,’LineWidth’,1.5)
text(3,0,0,’x’,’fontweight’,’b’)

line ...
([0 0],[0 4],[0,0],’Color’,’b’,’LineWidth’,1.5)
text(0,4.1,0,’y’,’fontweight’,’b’)

line ...
([0 0],[0 0],[0,2.5],’Color’,’b’,’LineWidth’,1.5)
text(0,0,2.6,’z’,’fontweight’,’b’)

text(-.45,0,0,’O(1)’,’fontweight’,’b’)
text(a+.1,0,0,’A(2)’,’fontweight’,’b’)
text(.1,b-.1,0,’B(3)’,’fontweight’,’b’)
text(-.45,0,c-.1,’C(4)’,’fontweight’,’b’)
text(a+.1,0,c,’D(5)’,’fontweight’,’b’)
text(0,b+.05,c-.1,’E(6)’,’fontweight’,’b’)

text((a+.1)/3,.3,0,’a’,’fontweight’,’b’)
text(.05,(b-.1)/2,.17,’b’,’fontweight’,’b’)
text(-.16,0,(c-.1)/2,’c’,’fontweight’,’b’)

view(42,34);
% view(AZ,EL) set the angle of the view from
% which an observer sees the current 3-D plot
% AZ is the azimuth or horizontal rotation
% EL is the vertical elevation
% (both in degrees)

% Generate data
vert=...
[0 0 0; a 0 0; 0 b 0; 0 0 c; a 0 c; 0 b c];
% define the matrix of the vertices

2.5 Examples 69

% O: 0,0,0 defined as vertex 1
% A: a,0,0 defined as vertex 2
% B: 0,b,0 defined as vertex 3
% C: 0,0,c defined as vertex 4
% D: a,0,c defined as vertex 5
% E: 0,b,c defined as vertex 6

face_up=[1 2 3; 4 5 6];
% define the lower and upper face of
% the triangular prism
% lower face is defined by vertices
% 1, 2, 3 (O, A, B)
% upper face is defined by vertices
% 4, 5, 6 (C, D, E)

face_l=[1 2 5 4; 2 3 6 5; 1 3 6 4];
% generate the lateral faces
% lateral face 1 is defined by 1, 2, 5, 4
% lateral face 2 is defined by 2, 3, 6, 5
% lateral face 3 is defined by 1, 3, 6, 4
% when defined a face the order of the vertices
% has to be given clockwise or counterclockwise

% draw the lower and upper triangular patches
patch...
(’Vertices’,vert,’Faces’,face_up,’facecolor’,’b’)
% patch(x,y,C) adds the "patch" or
% filled 2-D polygon defined by
% vectors x and y to the current axes.
% C specifies the color of the face(s)
% X represents the matrix vert
% Y represents the matrix face_up

% draw the lateral rectangular patches
patch...
(’Vertices’,vert,’Faces’,face_l,’facecolor’,’b’)

quiver3 ...
(0,b,F+c,0,0,-F,1,’Color’,’r’,’LineWidth’,1.75)
text ...
(-.3,b,c+.2,’ F’,’fontsize’,14,’fontweight’,’b’)

quiver3(a,0,0,MBn_(1),MBn_(2),MBn_(3),1,...
’Color’,’k’,’LineWidth’,2)

text((a+MBn_(1))/2,MBn_(2)/2,MBn_(3)/2,...

70 2 Moments, Couples, Equipollent Systems

’ M’,’fontsize’,14,’fontweight’,’b’)

quiver3 ...
(a,0,0,MBn_(1),0,0,1,’Color’,’r’,’LineWidth’,2)
text((a+MBn_(1))/1.3,0,0,...

’ M_x’,’fontsize’,14,’fontweight’,’b’)

quiver3 ...
(a,0,0,0,MBn_(2),0,1,’Color’,’r’,’LineWidth’,2)
text(a+.3,MBn_(2),0,...

’M_y’,’fontsize’,14,’fontweight’,’b’)

light(’Position’,[1 2 3]);
% light(’PropertyName’,propertyvalue,...)
% light creates a light object in current axes
% Lights affect only patch and surface objects

% light the peaks surface plot with a light source
% located at infinity and oriented along the
% direction defined by the vector [1 2 3]

material shiny

% material shiny makes the objects shiny

alpha(’color’);
% alpha get or set alpha properties for
% objects in the current axis
% alpha(’color’) set the alphadata to be
% the same as the color data

The vector representation with MATLAB is shown in Fig. 2.16b.

Example 2.4 A force F acts on a link at the point A as shown in Fig. 2.17a. Find an
equivalent system consisting of a force at O and a couple. Numerical application:
F = 100 lb, OA = l = 1 ft, θ = 45◦, and α = 100◦.

Solution The original F force is equivalent to the force at O as shown in Fig. 2.17b

R = F = −F cos(α − θ) ı + F sin(α − θ) j

= −100 cos(100◦ − 45◦) ı + 100 sin(100◦ − 45◦) j = −57.358 ı + 81.915 j lb.

The moment of the force F with respect to the point O, as shown in Fig. 2.17b, is

2.5 Examples 71

F

A

O
θ x

y

A

O

θ x

y

M

(b)(a)

R

α

Fig. 2.17 Example 2.4

M = MF
O = rOA × F =

∣∣∣∣∣∣

ı j k
xA yA 0
Fx Fy 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ı j k
l cos θ l sin θ 0

−F cos(α − θ) F sin(α − θ) 0

∣∣∣∣∣∣

= [l F (cos θ) sin(α − θ) + l F (sin θ) cos(α − θ)] k

= [1(100) (cos 45◦) sin(100◦ − 45◦) + 1(100) (sin 45◦) cos(100◦ − 45◦)] k

= 98.481 k lb ft.

The MATLAB program is:

syms F l theta alfa real
sl = {F, l, theta, alfa};
nl = {100, 1, pi/4, pi/1.8};
FA_ = [-F*cos(alfa-theta), F*sin(alfa-theta), 0];
rA_ = [l*cos(theta), l*sin(theta), 0];
FAn_= subs(FA_, sl, nl);
MO_ = cross(rA_, FA_);
MOz= simplify(MO_(3));
MOzn= subs(MOz, sl, nl);

and the results are:

R_ = [-57.358 81.915 0](lb)
MOz = F*l*sin(alfa) = 98.481 (lb.ft)

Example 2.5 Three forces FA, FB, and FC , as shown in Fig. 2.18, are acting on a
rectangular planar plate (FA||Oz, FB||Oy, FC ||Ox). The three forces acting on the
plate are replaced by a wrench. Find: (a) the resultant force for the wrench; (b) the
magnitude of couple moment, M, for the wrench and the point T(x, z) where its
line of action intersects the plate. For the numerical application use: FA = 900 lb,
FB = 500 lb, FC = 300 lb, a = BC = 4 ft, and b = OC = 6 ft.

72 2 Moments, Couples, Equipollent Systems

z

y

x

ba

A

O

B

T
C

zx

FA

FC

FB

a/2
a/2

−5

0

5

−6−4−20246

−10

−5

0

5

10

x

 M

 x

 B

 D

 T

 A

 F
A

 z

 O

 C

y

 R

 F
B

 y

z
(a)

(b)

Fig. 2.18 a Example 2.5 and b MATLAB figure

Solution (a) The direction cosines of the resultant force R, are the same as those
of the moment M of the couple of the wrench, assuming that the wrench is positive.
The resultant force is

R = FA + FB + FC = FC ı + FB j − FA k = 300 ı + 500 j − 900 k lb

R = |R| =
√

F2
A + F2

B + F2
C =

√
3002 + 5002 + 9002 = 1072.381 lb = 1.072 kip.

2.5 Examples 73

The direction cosines of the resultant force are

cos θx = FC

R
= 0.280, cos θy = FB

R
= 0.466, cos θz = −FA

R
= −0.839.

The MATLAB program for calculating the direction cosines or the components of
the unit vector of the resultant force are:

syms a b FA FB FC x z M
sl = {a, b, FA, FB, FC};
nl = {4, 6, 0.9, 0.5, 0.3};
FA_ = [0 0 -FA]; rA_ = [a/2 0 0];
FB_ = [0 FB 0]; rB_ = [a 0 b];
FC_ = [FC 0 0]; rC_ = [0 0 b];
R_ = FA_+FB_+FC_;
Rn_ = subs(R_, sl, nl);
uR_ = R_/magn(R_);
uRn_ = subs(uR_, sl, nl);

The function magn is:

function val = magn(v)
% The symbolic magnitude function of a vector
% v = [v(1) v(2) v(3)]
% The function accepts sym as the input argument
val=sqrt(v(1)*v(1)+v(2)*v(2)+v(3)*v(3));

(b) The moment of the wrench couple must equal the sum of the moments of the
given forces about point T through which the resultant passes. The moments about
T(x, 0, z) of the three forces are

MT = MFA
T + MFB

T + MFC
T ,

where

MFA
T = rTA × FA =

∣∣∣∣∣∣

ı j k
xA − x yA zA − z

0 0 −FA

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ı j k
a − x 0 −z

0 0 −FA

∣∣∣∣∣∣
= (a − x) FA j.

MFB
T = rTB × FB =

∣∣∣∣∣∣

ı j k
xB − x yB zB − z

0 FB 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ı j k
a − x 0 b − z

0 FB 0

∣∣∣∣∣∣
= (z − b) FB ı

+ (a − x) FB k.

MFC
T = rTC × FC =

∣∣∣∣∣∣

ı j k
xC − x yC zC − z

FC 0 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ı j k
−x 0 b − z
FC 0 0

∣∣∣∣∣∣
= (b − z) FC j.

74 2 Moments, Couples, Equipollent Systems

The total moment about the point T of the forces is

M = (z − b) FB ı + [(a − x) FA + (b − z) FC] j + (a − x) FB k.

The direction cosines of the moment M, of magnitude M, are the same as the direction
cosines of the resultant R and three scalar equations can be written

cos θx = Mx

M
, cos θy = My

M
, cos θz = Mz

M
, or

FC

R
= (z − b) FB

M
,

FB

R
= (a − x) FA + (b − z) FC

M
,

−FA

R
= (a − x) FB

M
or

−3000 + 500 z = 0.280 M,

3600 − 900 x − 300 z = 0.465 M,

2000 − 500 x = −0.839 M.

There are three scalar equations with three unknowns M, x, and z. The solution of
the equations is obtained using the MATLAB function solve:

rT_ = [x 0 z];
MTA_ = cross(rA_-rT_, FA_);
MTB_ = cross(rB_-rT_, FB_);
MTC_ = cross(rC_-rT_, FC_);
MT_ = MTA_ + MTB_ + MTC_;
eq1 = MT_(1)/M - uR_(1);
eq2 = MT_(2)/M - uR_(2);
eq3 = MT_(3)/M - uR_(3);
eq1n = subs(eq1, sl, nl);
eq2n = subs(eq2, sl, nl);
eq3n = subs(eq3, sl, nl);
digits(3)
fprintf(’first equation:\n’)
pretty(eq1)
fprintf(’%s = 0 \n\n’,char(vpa(eq1n)))
fprintf(’second equation:\n’)
pretty(eq2)
fprintf(’%s = 0 \n\n’,char(vpa(eq2n)))
fprintf(’third equation:\n’)
pretty(eq3)
fprintf(’%s = 0 \n\n’,char(vpa(eq3n)))
sol = solve(eq1, eq2, eq3,’x, z, M’);
Ms = sol.M; Mn = subs(Ms, sl, nl);
xs = sol.x; xn = subs(xs, sl, nl);
zs = sol.z; zn = subs(zs, sl, nl);

2.5 Examples 75

fprintf(’M = ’)
pretty(Ms)
fprintf(’M = %6.3f (kip ft)\n’, Mn)
fprintf(’x = ’)
pretty(xs)
fprintf(’x = %6.3f (ft)\n’, xn)
fprintf(’z = ’)
pretty(zs)
fprintf(’z = %6.3f (ft)\n’, zn)

The function pretty(x) prints the symbolic expression x in a format that looks
like type-set mathematics. The results obtained with MATLAB are:

first equation:
FC FB (b - z)

- -------------------- - ----------
2 2 2 1/2 M

(FA + FB + FC)
(0.5*(z - 6.0))/M - 0.28 = 0

second equation:
/ a \

FC (b - z) + FA | - - x |
\ 2 / FB

------------------------- - --------------------
M 2 2 2 1/2

(FA + FB + FC)
- (1.0*(0.9*x + 0.3*z - 3.6))/M - 0.466 = 0

third equation:
FA FB (a - x)

-------------------- + ----------
2 2 2 1/2 M

(FA + FB + FC)
0.839 - (0.5*(x - 4.0))/M = 0

M =
2 2 2 1/2

FA FB a (FA + FB + FC)
- ----------------------------

2 2 2
2 FA + 2 FB + 2 FC

M = -0.839 (kip ft)
x =

2 2 2

76 2 Moments, Couples, Equipollent Systems

a FA + 2 a FB + 2 a FC

2 2 2
2 FA + 2 FB + 2 FC

x = 2.591 (ft)
z =

2 2 2
2 b FA - a FA FC + 2 b FB + 2 b FC

2 2 2
2 FA + 2 FB + 2 FC

z = 5.530 (ft)

The moment M = −839.254 lb ft = -0.839 kip ft is negative, and that is why the
couple vector is pointing in the direction opposite to R, which makes the wrench
negative. The MATLAB program for plotting the vectors and the figure are:

a=4; b=6;
axis([-2*a 2*a -b b -2*b 2*b])

xA=a/2; yA=0; zA=0;
xB=a; yB=0; zB=b;
xC=0; yC=0; zC=b;
xD=a; yD=0; zD=0;
xT=xn; yT=0; zT=zn;

line([0 xC],[0 yC],[0,zC],...
’Color’,’b’,’LineWidth’,2)

line([0 xD],[0 yD],[0,zD],...
’Color’,’b’,’LineWidth’,2)

line([xD xB],[yD yB],[zD,zB],...
’Color’,’b’,’LineWidth’,2)

line([xC xB],[yC yB],[zC,zB],...
’Color’,’b’,’LineWidth’,2)

fs=10; % force scale
FAn_ = fs*subs(FA_, sl, nl);
FBn_ = fs*subs(FB_, sl, nl);
FCn_ = fs*subs(FC_, sl, nl);
Rtn_ = fs*Rn_;
Mtn_ = fs*Mn*uRn_;

quiver3...
(xA,yA,zA,FAn_(1),FAn_(2),FAn_(3),1,...
’Color’,’k’,’LineWidth’,2)

2.5 Examples 77

quiver3...
(xB,yB,zB,FBn_(1),FBn_(2),FBn_(3),1,...
’Color’,’k’,’LineWidth’,2)
quiver3...
(xC,yC,zC,FCn_(1),FCn_(2),FCn_(3),1,...
’Color’,’k’,’LineWidth’,2)
quiver3...
(xT,yT,zT,Rtn_(1),Rtn_(2),Rtn_(3),1,...
’Color’,’r’,’LineWidth’,2)
quiver3...
(xT,yT,zT,Mtn_(1),Mtn_(2),Mtn_(3),1,...
’Color’,’G’,’LineWidth’,2)

The vector representation with MATLAB is shown in Fig. 2.18b.

2.6 Problems

2.1 (a) Determine the resultant of the forces F1 = F1x ı + F1y j + F1z k, F2 =
F2x ı + F2y j + F2z k, and F3 = F3x ı + F3y j + F3z k, which are concurrent at
the point P(xP, yP, zP), where F1x = 2, F1y = 3.5, F1z = −3, F2x = −1.5,
F2y = 4.5, F2z = −3, F3x = 7, F3y = −6, F3z = 5, xP = 1, yP = 2,
and zP = 3. (b) Find the total moment of the given forces about the origin
O(0, 0, 0). The units for the forces are in Newtons and for the coordinates are
given in meters.

2.2 (a) Determine the resultant of the three forces shown in Fig. 2.19. The force
F1 acts along the x-axis, the force F2 acts along the z-axis, and the direction
of the force F3 is given by the line O3P3, where O3 = O(xO3 , yO3 , zO3) and
P3 = P(xP3 , yP3 , zP3). The application point of the forces F1 and F2 is the
origin O(0, 0, 0) of the reference frame as shown in Fig. 2.19. (b) Find the total
moment of the given forces about the point P3. Numerical application: |F1| =
F1 = 250 N, |F2| = F2 = 300 N, |F3| = F3 = 300 N, O3 = O3(1, 2, 3) and
P3 = P3(5, 7, 9). The coordinates are given in meters.

3

F2

O

z

y

xF1

F3
P

O

3

Fig. 2.19 Problem 2.2

78 2 Moments, Couples, Equipollent Systems

F2

d

z

y

x

F1

F3

O

1

A

Bd2

Fig. 2.20 Problem 2.3

2.3 Replace the three forces F1, F2, and F3, shown in Fig. 2.20, by a resultant force,
R, through O and a couple. The force F2 acts along the x-axis, the force F1 is
parallel to the y-axis, and the force F3 is parallel to the z-axis. The application
point of the forces F2 is O, the application point of the forces F1 is B, and
the application points of the force F3 is A. The distance between O and A is
d1 and the distance between A and B is d2 as shown in Fig. 2.20. Numerical
application: |F1| = F1 = 250 N, |F2| = F2 = 300 N, |F3| = F3 = 400 N,
d1 = 1.5 m and d2 = 2 m.

2.4 Two forces F1 and F2 and a couple of moment M in the xy plane are given. The
force F1 = F1x ı + F1y j + F1z k acts at the point P1 = P1(x1, y1, z1) and the
force F2 = F2x ı+F2y j+F2z k acts at the point P2 = P2(x2, y2, z2). Find the
resultant force-couple system at the origin O(0, 0, 0). Numerical application:
F1x = 10, F1y = 5, F1z = 40, F2x = 30, F2y = 10, F2z = −30, F3x = 7,
F3y = −6, F3z = 5 , P1 = P1(0, 1, −1), P2 = P2(1, 1, 1) and M = −30
N·m. The units for the forces are in Newtons and for the coordinates are given
in meters.

2.5 Replace the three forces F1, F2, and F3, shown in Fig. 2.21, by a resultant
force at the origin O of the reference frame and a couple. The force F1 acts
along the x-axis, the force F2 is parallel with the z-axis, and the force F3
is parallel with the y-axis. The application point of the force F1 is at O, the
application point of the forces F2 is at A, and the application points of the force
F3 is at B. The distance between the origin O and the point A is d1 and the
distance between the point A and the point B is d2. The line AB is parallel with
the z-axis. Numerical application: |F1| = F1 = 50 N, |F2| = F2 = 30 N,
|F3| = F3 = 60 N, d1 = 1 m, and d2 = 0.7 m

F2

z

y

F1

F3

O

d

x

1
A

B

d2

Fig. 2.21 Problem 2.5

2.6 Problems 79

F2F1
F3

d

x

1 d2 d3 d4

2P1P 3PA B

Fig. 2.22 Problem 2.6

2.6 Three forces F1, F2 and F3 act on a beam as shown in Fig. 2.22. The directions
of the forces are parallel with y-axis. The application points of the forces are P1,
P2, and P3, and the distances AP1 = d1, P1P2 = d2, P2P3 = d3 and P3B = d4
are given. (a) Find the resultant of the system. (b) Resolve this resultant into two
components at the points A and B. Numerical application: |F1| = F1 = 30 N,
|F2| = F2 = 60 N, |F3| = F3 = 50 N, d1 = 0.1 m, d2 = 0.3 m, d3 = 0.4 m
and d4 = 0.4 m.

2.7 A force F acts vertically downward, parallel to the y-axis, and intersects the xz
plane at the point P1(x1, y1, z1). Resolve this force into three components
acting through the points P2 = P2(x2, y2, z2), P3 = P3(x3, y3, z3) and
P4 = P4(x4, y4, z4). Numerical application: |F| = F = 50 N, P1 =
P1(2, 0, 4), P2 = P2(1, 1, 1), P3 = P3(6, 0, 0), and P4 = P4(0, 0, 3).

The coordinates are given in meters.
2.8 Determine the resultant of the given system of forces F1, F2, and F3, shown in

the Fig. 2.23. The angle between the direction of the force F1 and the Ox axis
is θ1 and the angle between the direction of the force F2 with the x-axis is θ2.
The x and y components of the force F3 = |F3x| ı + ∣∣F3y

∣∣ j = F3x ı + F3y j
are given. Numerical application: |F1| = F1 = 250 N, |F2| = F2 = 220 N,
|F3x| = F3x = 50 N,

∣∣F3y
∣∣ = F3y = 120 N, θ1 = 30◦, and θ2 = 45◦.

2.9 The rectangular plate in Fig. 2.24 is subjected to four parallel forces. Determine
the magnitude and direction of a resultant force equivalent to the given force
system and locate its point of application on the plate. Numerical application:
FO = 700 lb, FA = 600 lb, FB = 500 lb, FC = 100 lb, a = 8 ft, and b = 10 ft.
Hint: the moments about the x-axis and y-axis of the resultant force, are equal

Fig. 2.23 Problem 2.8

1

F2
y

x

F1

F3

O

θ 2θ

80 2 Moments, Couples, Equipollent Systems

Fig. 2.24 Problem 2.9 z

y

x

A

O

B

C

FC

FB

a/2
a/2

b/2

b/2

FA

FO

Fig. 2.25 Problem 2.10 z

y

x

A

O

BC

FC

FB

a/2

a/2

b/2

b/2

FO

to the sum of the moments about the x-axis and y-axis of all the forces in the
system.

2.10 Three forces FO, FB, and FC , as shown in Fig. 2.25 , are acting on a rectan-
gular planar plate (FO||Oz, FB||Oy, FC ||Ox). The three forces acting on the
plate are replaced by a wrench. Find: (a) the resultant force for the wrench;
(b) the magnitude of couple moment, M, for the wrench and the point Q(y, z)
where its line of action intersects the plate. Numerical application: FO = 800 lb,
FB = FC = 500 lb, a = OA = 6 ft, and b = AB = 5 ft.

2.7 Programs

2.7.1 Program 2.1

% example 2.1
clear all; clc; close all
syms F theta a b real
rA_ = [a b 0];

2.7 Programs 81

FA_ = [F*cos(theta) F*sin(theta) 0];
MO_ = cross(rA_, FA_);
MOz= MO_(3);
sl = {F, theta, a, b};
nl = {5, pi/4, 1, 5};
fprintf(’MOz = %s =’,char(MOz))
fprintf(’%6.3f (kN m)\n’,subs(MOz,sl,nl))

% numerical values
rAn_ = double(subs(rA_,sl,nl));
Fn_ = double(subs(FA_,sl,nl));
Mn_ = subs(MO_,sl,nl);

% vector plotting
axis([0 5 0 10 -18 0])
xlabel(’x’), ylabel(’y’), zlabel(’z’)
hold on, grid on

% Cartesian axes
text(0,0,0,’ O’,’fontsize’,14,’fontweight’,’b’)
quiver3(0,0,0,4,0,0,1,’Color’,’b’)
text(4.1,0,0,’x’)
quiver3(0,0,0,0,9,0,1,’Color’,’b’)
text(0,9.4,0,’y’)
quiver3(0,0,0,0,0,5,1,’Color’,’b’)
text(0,0,5.5,’ z’)

line([0 0],[0 rAn_(2)],[0,0],’LineStyle’,’--’,...
’Color’,’k’,’LineWidth’,4)

line...
([0 rAn_(1)],[rAn_(2) rAn_(2)],[0,0],...
’LineStyle’,’--’,’Color’,’k’,’LineWidth’,4)
text(rAn_(1),rAn_(2),0,’ A’,...

’fontsize’,14,’fontweight’,’b’)

quiver3(0,0,0,rAn_(1),rAn_(2),0,1,...
’Color’,’b’,’LineWidth’,2)

text(rAn_(1)/2,rAn_(2)/2,0,...
’ r_A’,’fontsize’,14,’fontweight’,’b’)

quiver3(rAn_(1),rAn_(2),0,Fn_(1),Fn_(2),0,1,...
’Color’,’r’,’LineWidth’,2)

quiver3(rAn_(1),rAn_(2),0,Fn_(1),0,0,1,...
’Color’,’k’,’LineWidth’,1)

quiver3(rAn_(1),rAn_(2),0,0,Fn_(2),0,1,...

82 2 Moments, Couples, Equipollent Systems

’Color’,’k’,’LineWidth’,1)
text(rAn_(1)+Fn_(1),rAn_(2),0,...

’F_x’,’fontsize’,14,’fontweight’,’b’)
text(rAn_(1),rAn_(2)+Fn_(2),0,...

’F_y’,’fontsize’,14,’fontweight’,’b’)
text(rAn_(1)+Fn_(1),rAn_(2)+Fn_(2),0,...
’ F’,’fontsize’,14,’fontweight’,’b’)

quiver3(0,0,0,0,0,Mn_(3),1,...
’Color’,’r’,’LineWidth’,4)

text(Mn_(1)/2,Mn_(2)/2,Mn_(3)/2,...
’ M_OˆF = r_A x F’,...
’fontsize’,14,’fontweight’,’b’)

% end of program

2.7.2 Program 2.2

% example 2.1
clear all; clc; close all
syms F theta a b real
rA_ = [a b 0];
FA_ = [F*cos(theta) F*sin(theta) 0];
MO_ = cross(rA_, FA_);
MOz= MO_(3);
sl = {F, theta, a, b};
nl = {5, pi/4, 1, 5};
fprintf(’MOz = %s =’,char(MOz))
fprintf(’%6.3f (kN m)\n’,subs(MOz,sl,nl))

% numerical values
rAn_ = double(subs(rA_,sl,nl));
Fn_ = double(subs(FA_,sl,nl));
Mn_ = subs(MO_,sl,nl);

% vector plotting
axis([0 5 0 10 -18 0])
xlabel(’x’), ylabel(’y’), zlabel(’z’)
hold on, grid on

% Cartesian axes
text(0,0,0,’ O’,’fontsize’,14,’fontweight’,’b’)
quiver3(0,0,0,4,0,0,1,’Color’,’b’)

2.7 Programs 83

text(4.1,0,0,’x’)
quiver3(0,0,0,0,9,0,1,’Color’,’b’)
text(0,9.4,0,’y’)
quiver3(0,0,0,0,0,5,1,’Color’,’b’)
text(0,0,5.5,’ z’)

line([0 0],[0 rAn_(2)],[0,0],’LineStyle’,’--’,...
’Color’,’k’,’LineWidth’,4)

line...
([0 rAn_(1)],[rAn_(2) rAn_(2)],[0,0],...
’LineStyle’,’--’,’Color’,’k’,’LineWidth’,4)
text(rAn_(1),rAn_(2),0,’ A’,...

’fontsize’,14,’fontweight’,’b’)

quiver3(0,0,0,rAn_(1),rAn_(2),0,1,...
’Color’,’b’,’LineWidth’,2)

text(rAn_(1)/2,rAn_(2)/2,0,...
’ r_A’,’fontsize’,14,’fontweight’,’b’)

quiver3(rAn_(1),rAn_(2),0,Fn_(1),Fn_(2),0,1,...
’Color’,’r’,’LineWidth’,2)

quiver3(rAn_(1),rAn_(2),0,Fn_(1),0,0,1,...
’Color’,’k’,’LineWidth’,1)

quiver3(rAn_(1),rAn_(2),0,0,Fn_(2),0,1,...
’Color’,’k’,’LineWidth’,1)

text(rAn_(1)+Fn_(1),rAn_(2),0,...
’F_x’,’fontsize’,14,’fontweight’,’b’)

text(rAn_(1),rAn_(2)+Fn_(2),0,...
’F_y’,’fontsize’,14,’fontweight’,’b’)

text(rAn_(1)+Fn_(1),rAn_(2)+Fn_(2),0,...
’ F’,’fontsize’,14,’fontweight’,’b’)

quiver3(0,0,0,0,0,Mn_(3),1,...
’Color’,’r’,’LineWidth’,4)

text(Mn_(1)/2,Mn_(2)/2,Mn_(3)/2,...
’ M_OˆF = r_A x F’,...
’fontsize’,14,’fontweight’,’b’)

% end of program

84 2 Moments, Couples, Equipollent Systems

2.7.3 Program 2.3

% example 2.3
clear all; clc; close all
syms a b c F
rA_ = [a 0 0];
rB_ = [0 b 0];
rE_ = [0 b c];
rAE_ = rE_ - rA_;
rAB_ = rB_ - rA_;
f_ = [0 0 -F];

ME_ = cross(rAE_, f_); % M = rAE x F
MB_ = cross(rAB_, f_); % M = rAB x F
T = ME_ == MB_; % rAB x F = rAE x F
fprintf(’ME_ == MB_ => [%d %d %d]\n’,T)
fprintf(’1=TRUE 0=FALSE\n’)
fprintf(’\n’)
fprintf(’M_ = rAB_ x F_ = rAE_ x F_ \n’)
fprintf(’Mx = %s; ’,char(ME_(1)))
fprintf(’My = %s; ’,char(ME_(2)))
fprintf(’Mz = %s.\n’,char(ME_(3)))

% numerical calculation
sl = {a, b, c, F};
nl = {1, 3, 2, 1};
MEn_ = double(subs(ME_,sl,nl));
MBn_ = double(subs(MB_,sl,nl));

fprintf(’ME_ = [%6.3f %6.3f %d] (kN m)\n’,MEn_)
fprintf(’MB_ = [%6.3f %6.3f %d] (kN m)\n’,MBn_)

% graphical representation
F=1; % kN
a=1; b=3; c=2; % m

axis([-2 2 -1 4 0 2])
hold on, grid on

% Cartesian axes
line ...
([0 4],[0 0],[0,0],’Color’,’b’,’LineWidth’,1.5)
text(3,0,0,’x’,’fontweight’,’b’)

line ...

2.7 Programs 85

([0 0],[0 4],[0,0],’Color’,’b’,’LineWidth’,1.5)
text(0,4.1,0,’y’,’fontweight’,’b’)

line ...
([0 0],[0 0],[0,2.5],’Color’,’b’,’LineWidth’,1.5)
text(0,0,2.6,’z’,’fontweight’,’b’)

text(-.45,0,0,’O(1)’,’fontweight’,’b’)
text(a+.1,0,0,’A(2)’,’fontweight’,’b’)
text(.1,b-.1,0,’B(3)’,’fontweight’,’b’)
text(-.45,0,c-.1,’C(4)’,’fontweight’,’b’)
text(a+.1,0,c,’D(5)’,’fontweight’,’b’)
text(0,b+.05,c-.1,’E(6)’,’fontweight’,’b’)

text((a+.1)/3,.3,0,’a’,’fontweight’,’b’)
text(.05,(b-.1)/2,.17,’b’,’fontweight’,’b’)
text(-.16,0,(c-.1)/2,’c’,’fontweight’,’b’)

view(42,34);
% view(AZ,EL) set the angle of the view from
% which an observer sees the current 3-D plot
% AZ is the azimuth or horizontal rotation
% EL is the vertical elevation
% (both in degrees)

% Generate data
vert=...
[0 0 0; a 0 0; 0 b 0; 0 0 c; a 0 c; 0 b c];
% define the matrix of the vertices
% O: 0,0,0 defined as vertex 1
% A: a,0,0 defined as vertex 2
% B: 0,b,0 defined as vertex 3
% C: 0,0,c defined as vertex 4
% D: a,0,c defined as vertex 5
% E: 0,b,c defined as vertex 6

face_up=[1 2 3; 4 5 6];
% define the lower and upper face of
% the triangular prism
% lower face is defined by vertices
% 1, 2, 3 (O, A, B)
% upper face is defined by vertices
% 4, 5, 6 (C, D, E)

face_l=[1 2 5 4; 2 3 6 5; 1 3 6 4];

86 2 Moments, Couples, Equipollent Systems

% generate the lateral faces
% lateral face 1 is defined by 1, 2, 5, 4
% lateral face 2 is defined by 2, 3, 6, 5
% lateral face 3 is defined by 1, 3, 6, 4
% when defined a face the order of the vertices
% has to be given clockwise or counterclockwise

% draw the lower and upper triangular patches
patch...
(’Vertices’,vert,’Faces’,face_up,’facecolor’,’b’)
% patch(x,y,C) adds the "patch" or
% filled 2-D polygon defined by
% vectors x and y to the current axes.
% C specifies the color of the face(s)
% X represents the matrix vert
% Y represents the matrix face_up

% draw the lateral rectangular patches
patch...
(’Vertices’,vert,’Faces’,face_l,’facecolor’,’b’)

quiver3 ...
(0,b,F+c,0,0,-F,1,’Color’,’r’,’LineWidth’,1.75)
text ...
(-.3,b,c+.2,’ F’,’fontsize’,14,’fontweight’,’b’)

quiver3(a,0,0,MBn_(1),MBn_(2),MBn_(3),1,...
’Color’,’k’,’LineWidth’,2)

text((a+MBn_(1))/2,MBn_(2)/2,MBn_(3)/2,...
’ M’,’fontsize’,14,’fontweight’,’b’)

quiver3 ...
(a,0,0,MBn_(1),0,0,1,’Color’,’r’,’LineWidth’,2)
text((a+MBn_(1))/1.3,0,0,...

’ M_x’,’fontsize’,14,’fontweight’,’b’)

quiver3 ...
(a,0,0,0,MBn_(2),0,1,’Color’,’r’,’LineWidth’,2)
text(a+.3,MBn_(2),0,...

’M_y’,’fontsize’,14,’fontweight’,’b’)

light(’Position’,[1 2 3]);
% light(’PropertyName’,propertyvalue,...)
% light creates a light object in current axes
% Lights affect only patch and surface objects

2.7 Programs 87

% light the peaks surface plot with a light source
% located at infinity and oriented along the
% direction defined by the vector [1 2 3]

material shiny

% material shiny makes the objects shiny

alpha(’color’);
% alpha get or set alpha properties for
% objects in the current axis
% alpha(’color’) set the alphadata to be
% the same as the color data.

% end of program

2.7.4 Program 2.4

% example 2.4
clear all; clc; close all
syms F l theta alfa real
sl = {F, l, theta, alfa};
nl = {100, 1, pi/4, pi/1.8};
FA_ = [-F*cos(alfa-theta), F*sin(alfa-theta), 0];
rA_ = [l*cos(theta), l*sin(theta), 0];
FAn_= subs(FA_, sl, nl);
fprintf(’R_ = [%6.3f %6.3f %g](lb)\n’, FAn_)
MO_ = cross(rA_, FA_);
MOz= simplify(MO_(3));
MOzn= subs(MOz, sl, nl);
fprintf(’MOz = %s ’,char(MOz))
fprintf(’= %6.3f (lb ft)\n’,MOzn)

% end of program

2.7.5 Program 2.5

% example 2.5
clear all; clc; close all

88 2 Moments, Couples, Equipollent Systems

syms a b FA FB FC x z M
% a)
sl = {a, b, FA, FB, FC};
nl = {4, 6, 0.9, 0.5, 0.3};
FA_ = [0 0 -FA]; rA_ = [a/2 0 0];
FB_ = [0 FB 0]; rB_ = [a 0 b];
FC_ = [FC 0 0]; rC_ = [0 0 b];
R_ = FA_+FB_+FC_;
Rn_ = subs(R_, sl, nl);
uR_ = R_/magn(R_);
uRn_ = subs(uR_, sl, nl);
fprintf(’R_ = [%6.3f %6.3f %6.3f] (kip)\n’, Rn_)
fprintf(’|R_| = %6.3f (kip)\n’, magn(Rn_))
fprintf(’uR_ = [%6.3f %6.3f %6.3f]\n\n’, uRn_)

% b)
rT_ = [x 0 z];
MTA_ = cross(rA_-rT_, FA_);
MTB_ = cross(rB_-rT_, FB_);
MTC_ = cross(rC_-rT_, FC_);
MT_ = MTA_ + MTB_ + MTC_;
eq1 = MT_(1)/M - uR_(1);
eq2 = MT_(2)/M - uR_(2);
eq3 = MT_(3)/M - uR_(3);
eq1n = subs(eq1, sl, nl);
eq2n = subs(eq2, sl, nl);
eq3n = subs(eq3, sl, nl);
digits(3)
fprintf(’first equation:\n’)
pretty(eq1)
fprintf(’%s = 0 \n\n’,char(vpa(eq1n)))
fprintf(’second equation:\n’)
pretty(eq2)
fprintf(’%s = 0 \n\n’,char(vpa(eq2n)))
fprintf(’third equation:\n’)
pretty(eq3)
fprintf(’%s = 0 \n\n’,char(vpa(eq3n)))
sol = solve(eq1, eq2, eq3,’x, z, M’);
Ms = sol.M; Mn = subs(Ms, sl, nl);
xs = sol.x; xn = subs(xs, sl, nl);
zs = sol.z; zn = subs(zs, sl, nl);
fprintf(’M = ’)
pretty(Ms)
fprintf(’M = %6.3f (kip ft)\n’, Mn)
fprintf(’x = ’)

2.7 Programs 89

pretty(xs)
fprintf(’x = %6.3f (ft)\n’, xn)
fprintf(’z = ’)
pretty(zs)
fprintf(’z = %6.3f (ft)\n’, zn)

a=4; b=6;

axis([-2*a 2*a -b b -2*b 2*b])
xlabel(’x’), ylabel(’y’), zlabel(’z’)
hold on, grid on

% Cartesian axes
quiver3(0,0,0,2*a,0,0,1,’Color’,’b’)
text(2*a,0,0,’ x’)
quiver3(0,0,0,0,b,0,1,’Color’,’b’)
text(0,b,0,’ y’)
quiver3(0,0,0,0,0,2*b,1,’Color’,’b’)
text(0,0,2*b,’ z’)

xA=a/2; yA=0; zA=0;
xB=a; yB=0; zB=b;
xC=0; yC=0; zC=b;
xD=a; yD=0; zD=0;
xT=xn; yT=0; zT=zn;

line([0 xC],[0 yC],[0,zC],...
’Color’,’b’,’LineWidth’,2)

line([0 xD],[0 yD],[0,zD],...
’Color’,’b’,’LineWidth’,2)

line([xD xB],[yD yB],[zD,zB],...
’Color’,’b’,’LineWidth’,2)

line([xC xB],[yC yB],[zC,zB],...
’Color’,’b’,’LineWidth’,2)

text(0,0,0,’ O’)
text(xA,yA,zA,’ A’)
text(xB,yB,zB,’ B’)
text(xC,yC,zC,’ C’)
text(xD,yD,zD,’ D’)
text(xT,yT,zT-1,’ T’)

fs=10; % force scale
FAn_ = fs*subs(FA_, sl, nl);
FBn_ = fs*subs(FB_, sl, nl);

90 2 Moments, Couples, Equipollent Systems

FCn_ = fs*subs(FC_, sl, nl);
Rtn_ = fs*Rn_;
Mtn_ = fs*Mn*uRn_;

quiver3...
(xA,yA,zA,FAn_(1),FAn_(2),FAn_(3),1,...
’Color’,’k’,’LineWidth’,2)
quiver3...
(xB,yB,zB,FBn_(1),FBn_(2),FBn_(3),1,...
’Color’,’k’,’LineWidth’,2)
quiver3...
(xC,yC,zC,FCn_(1),FCn_(2),FCn_(3),1,...
’Color’,’k’,’LineWidth’,2)
quiver3...
(xT,yT,zT,Rtn_(1),Rtn_(2),Rtn_(3),1,...
’Color’,’r’,’LineWidth’,2)
quiver3...
(xT,yT,zT,Mtn_(1),Mtn_(2),Mtn_(3),1,...
’Color’,’G’,’LineWidth’,2)

text(xA+FAn_(1),yA+FAn_(2),zA+FAn_(3),...
’ F_A’,’fontsize’,12,’fontweight’,’b’)

text(xB+FBn_(1),yB+FBn_(2),zB+FBn_(3),...
’ F_B’,’fontsize’,12,’fontweight’,’b’)

text(xT+Rtn_(1),yT+Rtn_(2),zT+Rtn_(3),...
’ R’,’fontsize’,14,’fontweight’,’b’)

text(xT+Mtn_(1),yT+Mtn_(2),zT+Mtn_(3),...
’ M’,’fontsize’,14,’fontweight’,’b’)

view(-68,30);

% end of program

References

1. P. Appell, Traité de mécanique rationnelle (Gauthier-Villars, Paris, 1955)
2. M. Atanasiu, Mechanics (EDP, Bucharest, 1973)
3. H. Baruh, Analytical Dynamics (WCB/McGraw-Hill, Boston, 1999)
4. F.P. Beer, E.R. Johnston, Vector Mechanics for Engineers: Statics and Dynamics 5/e (McGraw-

Hill Publishing Company, New York, 1988)
5. F.P. Beer, E.R. Johnston, D.F. Mazurek, Vector Mechanics for Engineers: Statics, 10/e

(McGraw-Hill Publishing Company, New York, 2012)
6. A.M. Bedford, W. Fowler, K.M. Liechti, Statics and Mechanics of Materials (Prentice Hall,

Inc., Upper Saddle River, 2002)

References 91

7. A.M. Bedford, W. Fowler, Engineering Mechanics: Statics, 5/e (Prentice Hall, Inc., Upper
Saddle River, 2007)

8. A.P. Boresi, R.J. Schmidt, Engineering Mechanics: Statics (PWS Publishing Company, Boston,
2000)

9. M.I. Buculei, Mechanics (University of Craiova Press, Craiova, 1974)
10. M.I. Buculei, D. Bagnaru, G. Nanu, D.B. Marghitu, Analysis of Mechanisms with Bars (Scrisul

romanesc, Craiova, 1986)
11. I. Stroe et al., Analytical Mechanics Problems (University Politehnica of Bucharest, Bucharest,

1997)
12. V. Ceausu, N. Enescu, F. Ceausu, Mechanics Problems, (Printech, Bucharest, 1999)
13. S.J. Chapman, MATLAB Programming for Engineers (Thomson Learning, Pacific Grove, CA,

2002)
14. S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving,

Butterworth-Heinemann (Elsevier, Amsterdam, 2012)
15. D.M. Etter, D.C. Kuncicky, Introduction to MATLAB for Engineers and Scientists (Prentice

Hall, Inc., Upper Saddle River, 1996)
16. C. Iacob, Theoretical Mechanics (EDP, Bucharest, 1980)
17. J.H. Ginsberg, Advanced Engineering Dynamics (Cambridge University Press, Cambridge,

1995)
18. D.T. Greenwood, Principles of Dynamics (Prentice-Hall, Inc., Englewood Cliffs, 1998)
19. L.E. Goodman, W.H. Warner, Statics (Dover Publications, Inc, 2001)
20. R.C. Hibbeler, Engineering Mechanics: Statics and Dynamics 13/e (Prentice-Hall, Inc., Upper

Saddle River, 2013)
21. T.R. Kane, Analytical Elements of Mechanics, vol. 1 (Academic Press, New York, 1959)
22. T.R. Kane, Analytical Elements of Mechanics, vol. 2 (Academic Press, New York, 1961)
23. T.R. Kane, D.A. Levinson, Dynamics (McGraw-Hill, New York, 1985)
24. R. Maeder, Programming in Mathematica (Addison-Wesley Publishing Company, Redwood

City, 1990)
25. N.H. Madsen, Statics and Dynamics, class notes, available at http://www.eng.auburn.edu/users/

nmadsen/
26. D.B. Marghitu, Mechanical Engineer’s Handbook (Academic Press, San Diego, 2001)
27. D.B. Marghitu, M.J. Crocker, Analytical Elements of Mechanisms (Cambridge University Press,

Cambridge, 2001)
28. D.B. Marghitu, Kinematic Chains and Machine Component Design (Elsevier, Amsterdam,

2005)
29. D.B. Marghitu, Mechanisms and Robots Analysis with MATLAB (Springer, London, 2009)
30. D.B. Marghitu, M. Dupac, Advanced Dynamics: Analytical and Numerical Calculations with

MATLAB (Springer, New York, 2012)
31. D.B. Marghitu, Statics and Dynamics, class notes, available at http://www.eng.auburn.edu/

users/marghitu/
32. D.J. McGill, W.W. King, Engineering Mechanics: Statics and an Introduction to Dynamics

(PWS Publishing Company, Boston, 1995)
33. J.L. Meriam, L.G. Kraige, Engineering Mechanics: Statics, 7/e (Wiley, New York, 2011)
34. R.L. Mott, Machine Elements in Mechanical Design (Prentice Hall, Upper Saddle River, 1999)
35. R.L. Norton, Machine Design (Prentice-Hall, Upper Saddle River, 1996)
36. M. Plesha, G. Gray, F. Costanzo, Engineering Mechanics: Statics, 2/e, McGraw-Hill Publishing

Company (2012)
37. M. Radoi, E. Deciu, Mechanics (EDP, Bucharest, 1981)
38. W.F. Riley, L.D. Sturges, Engineering Mechanics: Statics, 2/e (Wiley, New York, 1995)
39. A. Ruina, R. Pratap, Introduction to Statics and Dynamics (Oxford University Press, Oxford,

2002)
40. A. Ripianu, P. Popescu, B. Balan, Technical Mechanics (EDP, Bucharest, 1979)
41. I.H. Shames, Engineering Mechanics Statics, 4/e, Prentice Hall, Inc. (1996)

http://www.eng.auburn.edu/users/nmadsen/
http://www.eng.auburn.edu/users/nmadsen/
http://www.eng.auburn.edu/users/marghitu/
http://www.eng.auburn.edu/users/marghitu/

92 2 Moments, Couples, Equipollent Systems

42. S.D. Sheppard, B.H. Tongue, Statics: Analysis and Design of Systems in Equilibrium (Wiley,
New York, 2005)

43. D. Smith, Engineering Computation with MATLAB (Pearson Education, Upper Saddle River,
2008)

44. R.W. Soutas-Little, D.J. Inman, Engineering Mechanics: Statics and Dynamics (Prentice-Hall,
Upper Saddle River, 1999)

45. R.W. Soutas-Little, D.J. Inman, D. Balint, Engineering Mechanics (Statics, Cengage, Learning,
2007)

46. S. Staicu, Theoretical Mechanics (EDP, Bucharest, 1998)
47. A. Stan, M. Grumazescu, Mechanics Problems (EDP, Bucharest, 1973)
48. J. Sticklen, M.T. Eskil, An Introduction to Technical Problem Solving with MATLAB (Great

Lakes Press, Wildwood, 2006)
49. A. Stoenescu, G. Silas, Theoretical Mechanics (ET, Bucharest, 1957)
50. J.H. Jackson, H.G. Wirtz, Schaum’s Outline of Theory and Problems of Statics and Strength

of Materials (McGraw-Hill Publishing Company, New York, 1983)
51. The MathWorks: https://www.mathworks.com/
52. Statics eBook : https://ecourses.ou.edu/
53. R. Voinea, D. Voiculescu, V. Ceausu, Mechanics (EDP, Bucharest, 1983)
54. V. Valcovici, S. Balan, R. Voinea, Theoretical Mechanics (ET, Bucharest, 1959)
55. K.J. Waldron, G.L. Kinzel, Kinematics, Dynamics, and Design of Machinery (Wiley, New

York, 1999)
56. H.B. Wilson, L.H. Turcotte, D Halpern, Advanced Mathematics and Mechanics Applications

Using MATLAB (Chapman & Hall/CRC, Boca Raton, FL, 2003)
57. J.H. Williams, Fundamentals of Applied Dynamics (Wiley, New York, 1996)
58. S. Wolfram, Mathematica (Wolfram Media/Cambridge University Press, Cambridge, 1999)

https://www.mathworks.com/
https://ecourses.ou.edu/

Chapter 3
Centers of Mass

3.1 First Moment

Figure 3.1 shows a set of n points Pi, {S} = {P1, P2, . . . , Pn} = {Pi}i=1,2,...,n. The
position vector of a point Pi relative to an arbitrarily selected reference point O is
rPi , where rPi = ri. A scalar si can be associated with Pi as for example the mass mi

of a particle situated at Pi. The first moment of a point Pi with respect to a point O is
the vector Mi = si rPi . The scalar si is called the strength of Pi. The strengths of the
points Pi are si, i = 1, 2, . . . , n and are n scalars, having the same dimension, and
associated with one of the points of {S}.

The centroid of the set {S} is the point C with respect to which the sum of the first
moments of the points of {S} is equal to zero. The position vector of C relative to a
point O is rC . The position vector of Pi relative to C is ri − rC . The sum of the first

moments of the points Pi with respect to C is
n∑

i=1

si(ri − rC). If C is the centroid of

{S} then
n∑

i=1

si(ri − rC) =
n∑

i=1

siri − rC

n∑

i=1

si = 0.

The position vector rC of the centroid C is given by

rC =

n∑

i=1

si ri

n∑

i=1

si

.

If
∑n

i=1 si = 0 the centroid is not defined. The centroid C of a set of points of given
strength does not depend on the choice of the reference point O.

D. B. Marghitu et al., Statics with MATLAB®, 93
DOI: 10.1007/978-1-4471-5110-4_3, © Springer-Verlag London 2013

94 3 Centers of Mass

Fig. 3.1 Set of points and
centroid of a set of points

3.2 Center of Mass of a Set of Particles

The center of mass of a set of particles {S} = {P1, P2, . . . , Pn} = {Pi}i=1,2,...,n is
the centroid of the set of points with si = mi, i = 1, 2, . . . , n, where mi is the mass
of the particle Pi. The position vector of the center of mass, C, of the system with n
particles is

rC =

n∑

i=1

mi ri

n∑
i=1

mi

=

n∑

i=1

mi ri

M
, (3.1)

where M is the total mass of the system.

3.3 Center of Mass of a Body

The position vector of the center of mass C, Fig. 3.2, of a body of mass m and
volume V relative to a point O is

Fig. 3.2 Center of mass of
a volume V

3.3 Center of Mass of a Body 95

rC =

∫∫∫

V

r dm

∫∫∫

V

dm
. (3.2)

The mass of a differential element of volume dV is dm = ρ dV where ρ is the density
of a body (mass per unit volume). The orthogonal cartesian coordinates of C are

xC =

∫∫∫

V

x ρdV

∫∫∫

V

ρdV
, yC =

∫∫∫

V

y ρdV

∫∫∫

V

ρdV
, zC =

∫∫∫

V

z ρdV

∫∫∫

V

ρdV
. (3.3)

The center of mass of a body is the point at which the total moment of the body’s
mass about that point is zero. If the mass density ρ of the body is the same at all
points of the body, the body is uniform and the coordinates of the center of the mass
C are

xC =

∫∫∫

V

x dV

∫∫∫

V

dV
, yC =

∫∫∫

V

y dV

∫∫∫

V

dV
, zC =

∫∫∫

V

z dV

∫∫∫

V

dV
. (3.4)

For a uniform curve ρ = ρI = m/L is the mass per unit of length and

xC =

∫

L

x dl

∫

L

dl
, yC =

∫

L

y dl

∫

L

dl
, zC =

∫

L

z dl

∫

L

dl
, (3.5)

where L is the length of the curve. For a uniform surface ρ = ρs = m/A is the mass
per unit of area and

xC =

∫∫

A

x dA

∫∫

A

dA
, yC =

∫∫

A

y dA

∫∫

A

dA
, zC =

∫∫

A

z dA

∫∫

A

dA
, (3.6)

where A is the area of the surface.

96 3 Centers of Mass

The method of decomposition is used to locate the center of mass of a composite
body:

1. divide the body into a number of simpler body shapes, which may be particles,
curves, surfaces, or solids; Holes are considered as pieces with negative size,
mass, or volume.

2. locate the coordinates xCi , yCi , zCi of the center of mass of each part of the body;
3. determine the center of mass using the equations

xC =

n∑

i=1

∫

τ
x dτ

n∑

i=1

∫

τ
dτ

, yC =

n∑

i=1

∫

τ
y dτ

n∑

i=1

∫

τ
dτ

, zC =

n∑

i=1

∫

τ
z dτ

n∑

i=1

∫

τ
dτ

, (3.7)

where τ is a curve, area, or volume. Equation (3.7) can be simplify as

xC =

n∑

i=1

xCi τi

n∑

i=1

τi

, yC =

n∑

i=1

yCi τi

n∑

i=1

τi

, zC =

n∑

i=1

zCi τi

n∑

i=1

τi

, (3.8)

where τi is the length, area, or volume of the ith object.

3.4 First Moment of an Area

A planar surface of area A is shown in Fig. 3.3. The first moment of the area A about
the x-axis is

Mx =
∫∫

A

y dA. (3.9)

The first moment about the y-axis is

My =
∫∫

A

x dA. (3.10)

The first moment of area gives information of the shape, size, and orientation of the
area. The coordinates xC and yC of the center of mass of the area A are calculated
with

3.4 First Moment of an Area 97

Fig. 3.3 Planar surface of
area A

xC =

∫∫

A

x dA

A
= My

A
, (3.11)

yC =

∫∫

A

y dA

A
= Mx

A
. (3.12)

The location of the center of mass of an area is independent of the reference axes
employed. If the axes xy have their origin at the centroid, O ≡ C, then these axes
are called centroidal axes. The first moments about the centroidal axes are zero.
The center of mass of an area with one axis of symmetry is located along the axis
of symmetry. The axis of symmetry is a centroidal axis and the first moment of
area must be zero about the axis of symmetry. If a body has two orthogonal axes
of symmetry the centroid is at the intersection of these axes. For surfaces as circles,
rectangles, triangles, the center of mass can be determined by inspection.

3.5 Center of Gravity

The center of gravity is a point which locates the resultant weight of a system of
particles or body. The sum of moments due to individual particle weight about any
point is the same as the moment due to the resultant weight located at the center of
gravity. The sum of moments due to the individual particles weights about center of
gravity is equal to zero. Similarly, the center of mass is a point which locates the
resultant mass of a system of particles or body. The center of gravity of a body is the
point at which the total moment of the force of gravity is zero. The coordinates of
the center of gravity are

98 3 Centers of Mass

xC =

∫∫∫

V

xρ g dV

∫∫∫

V

ρ g dV
, yC =

∫∫∫

V

yρ g dV

∫∫∫

V

ρ g dV
, zC =

∫∫∫

V

zρ g dV

∫∫∫

V

ρ g dV
. (3.13)

If the acceleration of gravity g is constant throughout the body, then the location of
the center of gravity is the same as that of the center of mass. The acceleration of
gravity is g = 9.81 m/s2 or g = 32.2 ft/s2.

3.6 Theorems of Guldinus-Pappus

Theorem 1 Consider a planar generating curve and an axis of revolution in the plane
of this curve Fig. 3.4. The axis of revolution does not intersect the curve. It can only
touch the generating curve. The surface of revolution A developed by rotating the
generating curve about the axis of revolution equals the product of the length of the
generating L curve times the circumference of the circle formed by the centroid of
the generating curve yC in the process of generating a surface of revolution

A = 2 πyCL. (3.14)

Proof A length element dl of the generating curve is considered as shown in Fig. 3.4.
For a revolution of the generating curve about axis of revolution, x-axis, the length
element dl describes the area

dA = 2 πydl.

y

x revolution

y

dl

C

yC

O

L

Fig. 3.4 Surface of revolution

3.6 Theorems of Guldinus-Pappus 99

For the total surface of revolution developed the area is

A = 2 π

∫
y dl = 2 πyCL,

where L is the length of the curve and yC is the centroidal coordinate of the curve.
The circumferential length of the circle formed by having the centroid of the curve
rotate about the x-axis is 2πyC . The surface of revolution A is equal to 2π times the
first moment of the generating curve about the axis of revolution. For a composite
generating curve the following formula is used

A = 2 π

(
∑

i

LiyCi

)
, (3.15)

where yCi is the centroidal coordinate for the ith line segment Li. The generating
curve is composed of simple curves, Li and the axis of revolution is the x-axis.

Theorem 2 A generating planar surface A and an axis of revolution located in the
same plane as the surface is considered in Fig. 3.5. The volume of revolution V
developed by rotating the generating planar surface about the axis of revolution
equals the product of the area of the surface times the circumference of the circle
formed by the centroid of the surface yC in the process of generating the body of
revolution

V = 2 πyCA. (3.16)

The axis of revolution does not intersect the generating surface. It can only touch the
generating plane surface as a tangent at the boundary.

Generating plane surface

y

xAxis of
revolution

y yC
O

dV

A
C

dA

Fig. 3.5 Volume of revolution

100 3 Centers of Mass

Proof The volume generated by rotating an element dA of the plane surface, A is
shown in Fig. 3.5, about the x-axis is

dV = 2 πy dA.

The volume of the body of revolution formed from A is

V = 2 π

∫

A

y dA = 2 πyC A.

Thus, the volume V equals the area of the generating surface A times the circum-
ferential length of the circle of radius yC . The volume V equals 2 π times the first
moment of the generating area A about the axis of revolution.

The areas and center of mass for some practical configurations are shown in
Fig. 3.6.

3.7 Examples

Example 3.1 Find the length and the position of the center of mass for the homoge-
neous curve given by the Cartesian equation y = b

√
xa m, where a = 3, b = 2 and

0 ≤ x ≤ 1 m.

Solution The differential element of the curve, dl = √
1 + (dy/dx)2, is given in

MATLAB by:

syms x real
a = 3;
b = 2;
y = b*sqrt(xˆa);
dy = diff(y,x);
dl =sqrt(1+dyˆ2);
% dl = (1+ (dy/dx)ˆ2)ˆ0.5
% 0< x < 1

The MATLAB statement int (f, x, a, b) is the definite integral of f with
respect to its symbolic variable x from a to b. The length of the homogeneous curve
is:

L = eval(int(dl,0,1));

and the coordinates of the center of mass C are:

My=eval(int(x*dl,0,1));
xC=My/L;

3.7 Examples 101

b/2 b/2

yC

yC

xC

h

h

b

C

C

O

C

r r

r

yC

xCO

C

r

r

yC

aO

C
yC

yC

xCO

C

a

b

yC

h

a
O

C

yC

xC

C
h

a

O

yC

xC

h

a

O

C

triangle
xC = b/3
yC = h/3
A = b h/2

semicircle
xC = 0
yC = 4 r/(3 π)
A = π r2/2

quartercircle
xC = 4 r/(3 π)
yC = 4 r/(3 π)
A = π r2/4

semielipse
xC = 0
yC = 4 b/(3 π)
A = π a b/2

quarterelipse
xC = 4 a/(3 π)
yC = 4 b/(3 π)
A = π a b/4

parabola
xC = 0
yC = 3 h/5
A = 4 a h

semiparabola
xC = 3 a/8
yC = 4 h/5
A = 2 a h/3

/3

parabolic spandrel
y = k x2

xC = 3 a/4
yC = 3 h/10
A = a h/3

b

y

Fig. 3.6 Coordinates of center of mass, xC and yC , and area A

Mx=eval(int(y*dl,0,1));
yC=Mx/L;

The numerical values for the length and the centroid are:

L = 2.268 (m)
xC = 0.575 (m)

102 3 Centers of Mass

yC = 0.952 (m)

The MATLAB statements for the graphical representation are:

% plot the curve and CM
xf=1;
xn = 0:xf/100:xf;
yn = b*sqrt(xn.ˆa);
axis ([0 1 0 1])
plot(xn,yn,’-b’,’LineWidth’,2)
hold on
plot(xC,yC,’o’,’MarkerSize’,12,...

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

text(xC,yC,’ C’,’FontSize’,18)
title(’y=f(x)=2 xˆ{3/2}’)

and the results are depicted in Fig. 3.7.

Example 3.2 A homogeneous circle is given by the Cartesian equation x2 +y2 = r2,
where r = 1 m. (a) Find the length of the homogeneous circle. (b) Find the length
and the position of the center of mass for the homogeneous semi-circle, −1 ≤ x ≤ 1
and 0 ≤ y ≤ 1. (c) Find the length and the position of the center of mass for the
homogeneous quarter-circle, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C

y=f(x)=2 x3/2

x (m)

y
(m

)

Fig. 3.7 Example 3.1

3.7 Examples 103

Solution (a) The parametric equations for the circle are:

syms r t real
x = r*cos(t);
y = r*sin(t);
% 0 < t < 2*pi
% r > 0

The differential arc length is calculated in MATLAB with:

dx = diff(x,t);
dy = diff(y,t);
% dl = ((dx/dt)ˆ2+(dy/dt)ˆ2)ˆ0.5 dt
dl = (dxˆ2+dyˆ2)ˆ0.5;
dl = simplify(dl);

and the result is:

dl = abs(r) dt

The length of the circle is given by:

L = int(dl,t,0,2*pi);

and the MATLAB result is:

L = 2*pi*abs(r)

(b) For the semi-circle the length and the center of mass are:

Ls = int(dl,t,0,pi);
Mys = int(x*dl,t,0,pi);
xCs = simplify(Mys/Ls);
Mxs = int(y*dl,t,0,pi);
yCs = simplify(Mxs/Ls);

The results are:

Ls = pi*abs(r)
xCs = 0
yCs = (2*r)/pi

(c) For the quarter-circle the length and the center of mass are:

Lq = int(dl,t,0,pi/2);
Myq = int(x*dl,t,0,pi/2);
xCq = simplify(Myq/Lq);
Mxq = int(y*dl,t,0,pi/2);
yCq = simplify(Mxq/Lq);

and the MATLAB results are:

104 3 Centers of Mass

Lq = (pi*abs(r))/2
xCq = (2*r)/pi
yCq = (2*r)/pi

The MATLAB statements for the semi-circle and the quarter-circle graphical repre-
sentation are:

rn=1;
% plot the semi-circle and CM
figure(1)
xCsn = subs(xCs,r,1);
yCsn = subs(yCs,r,1);
tn = 0:pi/18:pi;
xn = rn*cos(tn);
yn = rn*sin(tn);
axis manual
axis equal
hold on
grid on
sa = 1;
axis ([-sa sa -sa sa])
plot(xn,yn,’-b’,’LineWidth’,2)
text(0,0,’ O’,’fontsize’,14)
line([-sa,sa],[0,0],’Color’,’k’)
line([0,0],[0,sa],’Color’,’k’)
plot(xCsn,yCsn,’o’,’MarkerSize’,12,...

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

% plot the quarter-circle and CM
figure(2)
xCqn = subs(xCq,r,1);
yCqn = subs(yCq,r,1);
tn = 0:pi/18:pi/2;
xn = rn*cos(tn);
yn = rn*sin(tn);
axis manual
axis equal
hold on
grid on
sa = 1;
axis ([-sa sa -sa sa])
plot(xn,yn,’-b’,’LineWidth’,2)
text(0,0,’ O’,’fontsize’,14)
line([0,sa],[0,0],’Color’,’k’)
line([0,0],[0,sa],’Color’,’k’)
plot(xCqn,yCqn,’o’,’MarkerSize’,12,...

3.7 Examples 105

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

text(xCqn,yCqn,’ C’,’FontSize’,18)

The graphics are depicted in Fig. 3.8.

Example 3.3 A homogeneous quarter-astroid (one cusp) is given by the Cartesian
equation x2/3 + y2/3 = a2/3, where a = 1 m and 0 ≤ x ≤ 1 . Find the length and
the position of the center of mass for the homogeneous given curve.

Solution The parametric equations for the astroid are:

syms t real
a = 1; % (m)
x = a*cos(t)ˆ3;
y = a*sin(t)ˆ3;
% 0 < t < pi/2 - quarter-astroid

The differential arc length, dl = √
(dx/dt)2 + (dy/dt)2) dt, is calculated in MATLAB

with:

dx = diff(x,t);
dy = diff(y,t);
% dl=((dx/dt)ˆ2+(dy/dt)ˆ2)ˆ0.5 dt
dl = (dxˆ2+dyˆ2)ˆ0.5;
dl = simplify(dl);

and the result is:

dl = (3*(sin(2*t)ˆ2)ˆ(1/2))/2

The length of the quarter-astroid is given by:

L = int(dl,t,0,pi/2);
L = double(L);

and the MATLAB result is:

L = 6*a/4
L = 1.500 (m)

For the quarter-astroid the length and the center of mass are:

My = int(x*dl,t,0,pi/2);
xC = My/L;
xC = double(xC);
Mx = int(y*dl,t,0,pi/2);
yC = Mx/L;
yC = double(yC);

106 3 Centers of Mass

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

O

C

semi−circle

x (m)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x (m)

y
(m

)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y
(m

)

O

C

quarter−circle

Fig. 3.8 Example 3.2

3.7 Examples 107

and the MATLAB results are:

xC = 0.400 (m)
yC = 0.400 (m)

The MATLAB statements for the semi-circle and the quarter-circle graphical repre-
sentation are:

tn = 0:pi/18:pi/2;
xn = a*cos(tn).ˆ3;
yn = a*sin(tn).ˆ3;
sa = 1;
axis ([0 sa 0 sa])
plot(xn,yn,’-b’,’LineWidth’,2)
text(0,0,’ O’,’fontsize’,14)
line([0,sa],[0,0],’Color’,’k’)
line([0,0],[0,sa],’Color’,’k’)
plot(xC,yC,’o’,’MarkerSize’,12,...

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

The graphics are depicted in Fig. 3.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O

C

quarter−astroid

x (m)

y
(m

)

Fig. 3.9 Example 3.3

108 3 Centers of Mass

Example 3.4 A homogeneous circular helix is given by the Cartesian equation

x = a cos t; y = a sin t; and z = h t,

where a = 1 m is the radius of the helix and 2 π h is the pitch of the helix, h = 1 m.
Find the length and the position of the center of mass for the spatial homogeneous
helix.

Solution The differential arc length for the spatial curve is

dl =
√

(dx/dt)2 + (dy/dt)2 + (dz/dt)2 dt

and is calculated in MATLAB with:

syms a h t real
x = a*cos(t);
y = a*sin(t);
z = h*t;
dx = diff(x,t);
dy = diff(y,t);
dz = diff(z,t);
%dl=((dx/dt)ˆ2+(dy/dt)ˆ2+(dz/dt)ˆ2)ˆ0.5 dt
dl = (dxˆ2+dyˆ2+dzˆ2)ˆ0.5;

The MATLAB result for the differential arc length is:

dl = (aˆ2 + hˆ2)ˆ(1/2) dt

The length of the helix is calculated with:

tf = 6*pi;
L = int(dl,t,0,tf);

and the coordinates of the center of mass are:

xC = int(x*dl,t,0,tf)/L;
yC = int(y*dl,t,0,tf)/L;
zC = int(z*dl,t,0,tf)/L;

The numerical results are:

L = 26.657 (m)
xC = 0.000 (m)
yC = 0.000 (m)
zC = 9.425 (m)

The MATLAB statements for the helix graphical representation are:

tn = 0:pi/50:tf;
plot3(sin(tn),cos(tn),tn)

3.7 Examples 109

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

x (m)

C

y (m)

z
(m

)

Fig. 3.10 Example 3.4

plot3(xC,yC,zC,...
’o’,’MarkerSize’,12,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

and the graphics are depicted in Fig. 3.10.

Example 3.5 A homogeneous spatial curve is given by the Cartesian equation

x = aekt cos t (m); y = aekt sin t (m); and z = aekt (m),

where a = 2 and k = 1. Find the length and the position of the center of mass for
the spatial homogeneous curve for t ∈ [0, 3].
Solution The differential arc length for the spatial curve is

dl =
√

(dx/dt)2 + (dy/dt)2 + (dz/dt)2 dt

and is calculated in MATLAB with:

syms t real
a=2; k=1;
x = a*exp(k*t)*cos(t);
y = a*exp(k*t)*sin(t);

110 3 Centers of Mass

z = a*exp(k*t);
dx = diff(x,t);
dy = diff(y,t);
dz = diff(z,t);
dl = (dxˆ2+dyˆ2+dzˆ2)ˆ0.5;

The MATLAB result for the differential arc length is:

dl = 2*3ˆ(1/2)*exp(t) dt

The length of the helix is calculated with:

tf = 3;
L = int(dl,0,tf);

and the numerical value is L = 66.114 (m). The coordinates of the center of
mass are:

xC = int(x*dl,t,0,tf)/L;
yC = int(y*dl,t,0,tf)/L;
zC = int(z*dl,t,0,tf)/L;

The numerical values for C are:

xC = -15.590 (m)
yC = 10.778 (m)
zC = 21.086 (m)

The MATLAB statements for the curve graphical representation are:

tn = 0:pi/100:tf;
xn = a*exp(k*tn).*cos(tn);
yn = a*exp(k*tn).*sin(tn);
zn = a*exp(k*tn);
ht = plot3(xn,yn,zn);
hold on
plot3(xC,yC,zC,...
’o’,’MarkerSize’,12,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)
text(xC,yC,zC,’ C’,’FontSize’,18)
grid on
axis square

and the graphics are depicted in Fig. 3.11.

Example 3.6 Find the coordinates of the mass center for a homogeneous planar plate
located under the line of equation y = bx/a from x = 0 to x = a. For the numerical
application select a = b = 1 m.

3.7 Examples 111

−40
−30

−20
−10

0
10

0
5

10
15
0

5

10

15

20

25

30

35

40

x (m)

y (m)

C

z
(m

)

Fig. 3.11 Example 3.5

Solution The differential element of area is dA = dx dy and the area of the figure is

A =
∫

A

dx dy =
a∫

0

bx/a∫

0

dx dy =
a∫

0

dx

bx/a∫

0

dy

=
a∫

0

dx {y}bx/a
0 =

a∫

0

(bx/a)dx =
{

b x2/(2 a)
}a

0
= b a/2.

The MATLAB program for the area is given by:

syms x y a b real
f = b*x/a;
xf = a;
Ay = int(1,y,0,f);
Area = int(Ay,x,0,xf);

The first moment of the area A about the y axis is

My =
∫

A

x dA =
a∫

0

bx/a∫

0

x dx dy =
a∫

0

x dx

bx/a∫

0

dy

=
a∫

0

x dx {y}bx/a
0 =

a∫

0

x (bx/a)dx =
a∫

0

(bx2/a)dx = b a2/3.

112 3 Centers of Mass

The x coordinate of the mass center is xC = My/A = 2 a/3 = 0.667 m. The
MATLAB program for xC is :

% first moment of area about y-axis
% My = int(x dx dy) where
% 0<x<xf and 0<y<f
% Qyy = int(dy) ; 0<y<f
Qyy = int(1,y,0,f);
% My = int(x Qyy dx) where 0<x<xf
My = int(x*Qyy,x,0,xf);
% centroid xC = My/Area
xC = My/Area;

The y coordinate of the mass center is yC = Mx/A, where the first moment of the
area A about the x axis is

Mx =
∫

A

y dA =
a∫

0

bx/a∫

0

y dx dy =
a∫

0

dx

bx/a∫

0

y dy

=
a∫

0

dx

{
y2

2

}bx/a

0
=

a∫

0

b2 x2

2 a2 dx = b2

2 a2

a∫

0

x2 dx = b2 a

6
.

The coordinate yC is

yC = Mx

A
= b

3
= 0.333 m.

The MATLAB program for yC is :

Qxy = int(y,y,0,f);
% Mx = int(x Qxy dx) where 0<x<xf
Mx = int(Qxy,x,0,xf);
yC = Mx/Area;

The MATLAB statements for the graphical representation are:

ls = {a,b};
ln = {1,1};
xfn = subs(xf,ls,ln);
xCn = subs(xC,ls,ln);
yCn = subs(yC,ls,ln);
sa = 1.5;
axis([0 sa 0 sa])
hold on, grid on
xx = 0:.1:xfn;
fx = subs(f,{a,b,x},{1,1,xx});
plot(xx,fx,’--’,’LineWidth’,2)

3.7 Examples 113

0 0.5 1 1.5
0

0.5

1

1.5

x (m)

y
(m

)

C

Fig. 3.12 Example 3.6

hold on
area(xx,fx,’FaceColor’,’b’,...

’EdgeColor’,’k’,...
’LineWidth’,2)

hold on
plot(xCn,yCn,...
’o’,’MarkerSize’,12,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)
xlabel(’x’), ylabel(’y’)
text(xCn,yCn,’C’,’fontsize’,14,’fontweight’,’b’)

and the graphic is shown in Fig. 3.12.

Example 3.7 Find the coordinates of the mass center for a homogeneous planar plate
located under the curve of equation y = A sin(kx) from x = 0 to x = 3 π/(4 k). For
the numerical application use A = 1.5 m and k = 0.75 m−1.

Solution The differential element of area is dA = dx dy and the area of the figure is

Area =
∫

A

dx dy =
3 π/(4 k)∫

0

A sin(k x)∫

0

dx dy =
3 π/(4 k)∫

0

dx

A sin(k x)∫

0

dy

=
3 π/(4 k)∫

0

dx {y}sin x
0 =

3 π/(4 k)∫

0

A sin(k x)dx.

114 3 Centers of Mass

The MATLAB program for the area is given by:

syms x y A k real
% f(x) = y(x) = A*sin(k*x);
f = A*sin(k*x);
% 0 < x < xf
xf = (3*pi/4)/k;
% Area = int(dx dy) where
% 0<x<xf and 0<y<f
% Ay = int(dy) where 0<y<f
Ay = int(1,y,0,f);
% Ay = A*sin(k*x)
% Area = int(Ay dx) where 0<x<xf
Area = int(Ay,x,0,xf);

and the result is:

Area =
1/2

A (2 + 2)

2 k

The first moment of the area about the y−axis is

My =
∫

A

x dA =
3 π/(4 k)∫

0

A sin(k x)∫

0

x dx dy =
3 π/(4 k)∫

0

x dx

A sin(k x)∫

0

dy

=
3 π/(4 k)∫

0

x dx {y}A sin(k x)
0 =

3 π/(4 k)∫

0

A x sin(k x)dx,

With MATLAB the first moment of the area about the y−axis is:

Qyy = int(1,y,0,f);
My = int(x*Qyy,x,0,xf);

and the symbolic result is:

My =
1/2

2 A (3 pi + 4)

2
8 k

The x coordinate of the mass center is xC = My/Area:

3.7 Examples 115

xC =
1/2

2 (3 pi + 4)

1/2
4 k (2 + 2)

xC = 1.854 (m)

The first moment of the area A about the x−axis is

Mx =
∫

A

y dA =
3 π/(4 k)∫

0

A sin(k x)∫

0

y dx dy =
3 π/(4 k)∫

0

dx

A sin(k x)∫

0

y dy

=
3 π/(4 k)∫

0

dx

{
y2

2

}A sin(k x)

0
=

3 π/(4 k)∫

0

A2 sin2(k x)

2
dx.

The first moment of the area about the x−axis in MATLAB is calculated with:

Qxy = int(y,y,0,f);
Mx = int(Qxy,x,0,xf);

and the symbolic result is:

Mx =
2

A (3 pi + 2)

16 k

The y coordinate of the mass center is yC = Mx/Area:

yC =
A (3 pi + 2)

1/2
8 (2 + 2)

yC = 0.627 (m)

The MATLAB statements for the graphical representation are:

A = 1.5; % m
k = 0.75; % mˆ(-1)
sa = 4;
axis([0 sa 0 sa])
hold on, grid on

116 3 Centers of Mass

xx = 0:.1:xfn;
fx = A*sin(k*xx);
plot(xx,fx,’--’,’LineWidth’,2)
hold on
area(xx,fx,’FaceColor’,’b’,...

’EdgeColor’,’k’,...
’LineWidth’,2)

hold on
plot(xCn,yCn,...
’o’,’MarkerSize’,12,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)
xlabel(’x (m)’), ylabel(’y (m)’)
text(xCn,yCn,’ C’,...
’fontsize’,14,’fontweight’,’b’)

and the graphic is shown in Fig. 3.13.

Example 3.8 Find the coordinates of the centroid of the region bounded by the
curves y1(x) = x/4 and y2(x) = √

2 (x − 3), x1 ≤ x ≤ x2, as shown in Fig. 3.14. All
coordinates are in meters.

Solution The two curves will have two intersection points calculated in MATLAB
with:

syms x y real
y1 = x/4;
y2 = sqrt(2*(x-3));

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x (m)

y
(m

)

C

Fig. 3.13 Example 3.7

3.7 Examples 117

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

x(m)

region bounded by y1 and y2

y(
m

)

 C

 x1 x2

Fig. 3.14 Example 3.8

sol = eval(solve(y2-y1));
if sol(2) > sol(1)
x1 = sol(1); x2 = sol(2);
else
x1 = sol(2); x2 = sol(1);
end
y11 = subs(y1,x,x1);
y12 = subs(y1,x,x2);

The x values of the intersection points are:

x1 = 3.351 (m)
x2 = 28.649 (m)

The graphic shown in Fig. 3.14 is plotted with:

axis equal
g1=ezplot(y1,[0,x2+5])
set(g1, ’Color’, ’r’,’LineWidth’,3)
hold on
g2=ezplot(y2,[0,x2+5])
set(g2, ’Color’, ’b’,’LineWidth’,2)
hold on
line([x1 x1],[0 y11],...

’Color’,’k’,’LineWidth’,1,...

118 3 Centers of Mass

’Marker’,’.’,’LineStyle’,’-’)
hold on
line([x2 x2],[0 y12],...

’Color’,’k’,’LineWidth’,1,...
’Marker’,’.’,’LineStyle’,’-’)

hold on
grid on
title(’region bounded by y1 and y2’)
xlabel(’x(m)’), ylabel(’y(m)’)

The area of the region is calculated with:

A =
∫

A

dx dy =
x2∫

x1

y2∫

y1

dx dy =
x2∫

x1

dx

√
2 (x−3)∫

x/4

dy

=
x2∫

x1

(√
2 (x − 3) − x/4

)
dx.

The command in MATLAB for calculating the area is:

A = double(int(int(1,y1,y2),x1,x2));

and the numerical result is:

A = 21.082 (mˆ2)

The first moment of the area about the y−axis is

My =
∫

A

x dA =
x2∫

x1

y2∫

y1

x dx dy =
x2∫

x1

x dx

y2∫

y1

dy

=
x2∫

x1

x dx {y}y2
y1

=
x2∫

x1

x
(√

2 (x − 3) − x/4
)

dx.

With MATLAB the first moment of the area about the y−axis and the x coordinate
of the mass center xC = My/A are:

Qyy = int(1, y, y1, y2);
My = int(x*Qyy, x, x1, x2);
xC = eval(My/A);

and the result is:

xC = 14.000 (m)

The first moment of the area A about the x−axis is

3.7 Examples 119

Mx =
∫

A

y dA =
x2∫

x1

y2∫

y1

y dx dy =
x2∫

x1

dx

y2∫

y1

y dy

=
x2∫

x1

dx

{
y2

2

}y2

y1

=
x2∫

x1

1

2

[
2 (x − 3) − x2

16

]
dx.

The first moment Mx and yC are calculated in MATLAB with:

Qxy = int(y, y, y1, y2);
Mx = int(Qxy, x, x1, x2);
yC = eval(Mx/A);

and the result is:

yC = 4.000 (m)

Example 3.9 Find the position of the center of mass the region defined by
OABDEF as shown in Fig. 3.15, where EF = DB = a = 4 m and AB = DE = b =
2 m. The material is homogeneous.

Solution
The region is bounded by the lines of equations y1(x) = 2 b for 0 ≤ x ≤ a,

y2(x) = b for a < x ≤ 2 a and the x−axis. The area of the region is given by

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

C
 C1

 C2
x (m)

y
(m

)

A

BD

EF

O

b

b

a a

Fig. 3.15 Example 3.9

120 3 Centers of Mass

A = A1 + A2 =
a∫

0

y1 dx +
2a∫

a

y2 dx =
a∫

0

(2 b) dx +
2a∫

a

b dx

= 2 b a + a b = 3 a b = 24 m2.

The first moment of the area about the y−axis for the composite region is

My =
∫

A

x dA =
a∫

0

x y1 dx +
2 a∫

a

x y2 dx =
a∫

0

2 bx dx +
2 a∫

a

bx dx.

With MATLAB the first moment of the area about the y−axis and the x coordinate
of the mass center xC = My/A are:

syms x a b real
sl = {a,b};
sn = {4,2};
y1 = 2*b;
y2 = b;
A1 = int(y1,x,0,a);
A2 = int(y2,x,a,2*a);
A = A1+A2;
Mx1 = int(x*y1,x,0,a);
Mx2 = int(x*y2,x,a,2*a);
xC1 = Mx1/A1;
xC2 = Mx2/A2;
xC = (Mx1+Mx2)/A;

The results are:

My =
2

5 a b

2

xC =
5 a

6

xC = 3.333 (m)

The first moment of the area about the x−axis is calculated with the general formula

3.7 Examples 121

Mx = 0.5

x2∫

x1

y2(x) dx,

and for A = A1 + A2 it results

Mx = Mx1 + Mx2 = 0.5

a∫

0

y1
2 dx + 0.5

2 a∫

a

y2
2 dx

= 0.5

a∫

0

(2 b)2 dx + 0.5

2 a∫

a

b2 dx.

The first moment Mx and yC are calculated in MATLAB with:

My1 = 0.5*int(y1ˆ2,x,0,a);
My2 = 0.5*int(y2ˆ2,x,a,2*a);
My = My1 + My2;
yC1 = My1/A1;
yC2 = My2/A2;
yC = (My1+My2)/A;

and the result are:

Mx =
2

5 a b

2

yC =
5 b

6

yC = 1.667 (m)

Example 3.10 Find the volume of the frustum of a cone, shown in Fig. 3.16, where
h = 2 m is the height, R = 2 m is the radius of large base, and r = 1 m radius of
small base. The material is homogeneous.

Solution The formula for calculating the volume is:

V = π

b∫

a

f 2(x)dx

122 3 Centers of Mass

Fig. 3.16 Example 3.10

x

h

R

r

r

R

O

A

B
y

y

C

where y = f (x) is the generating equation of the planar curve. For the frustum of a
cone the generating equation is

y = f (x) = f = (R − r) x

h
+ r,

and the MATLAB program is;

syms R r h x real
f = (R-r)*x/h+r;
V = pi*int(fˆ2,x,0,h);
ls = {R,r,h};
ln = {2,1,2};
fn = subs(f,ls,ln);
Vn = subs(V,ls,ln);

The results are:

V =
2 2

pi h (R + R r + r)

3
V = 14.661 (mˆ3)

3.7 Examples 123

C

y

xO

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

b

r

yC

Fig. 3.17 Example 3.11

Example 3.11 Find the volume and surface area of the complete torus of circular
cross section of radius r = 1 m as shown in Fig. 3.17 where b = 2 m.

Solution The torus is generated by revolving the circular area of radius r through
360◦ about the x−axis. With the first theorem of Guldinus-Pappus, the surface of
revolution is S = 2 π yC L, where L = 2 π r is the length of generating circle and
yC = b is the centroid of generating circle

S = 2 π b 2 π r = 4 π2 b r = 78.957 m2.

The second theorem of Guldinus-Pappus gives the volume of revolution V = 2 π yCA,
where A = π r2 is the area of generating circular surface and yC = b is the centroid
of generating circular surface

V = 2 π b π r2 = 2 π2 b r2 = 39.478 m3.

The equation of the generating circle is

x2 + (y − b)2 − r2 = 0.

The volume of the torus can also be calculated with the formula

124 3 Centers of Mass

V = π

b∫

a

f 2(x)dx = π

r∫

−r

(f 2
2 − f 2

1)dx,

where
f1 = b −

√
r2 − x2 and f2 = b +

√
r2 − x2,

and the MATLAB program is:

syms b r x real
f1 = b-sqrt(rˆ2-xˆ2);
f2 = b+sqrt(rˆ2-xˆ2);
V = pi*int(f2ˆ2-f1ˆ2,x,-r,r);

3.8 Problems

3.1 Locate the centroid of the uniform wire bent in the shape shown in Fig. 3.18.
For the numerical application use r = 1 m, a = 2 m, and b = 1.75 m.

3.2 Find the location of the centroid C of the uniform area shown in Fig. 3.19 where
a = 0.4 m, b = 0.8 m, and c = 0.6 m.

3.3 Find the location of the centroid of the area shown in Fig. 3.20. For the numerical
application use r = 0.1 m and h = 0.2 m.

3.4 Determine the location of the centroid of the uniform area shown in Fig. 3.21.
For the numerical application use a = 0.2 m, b = 0.25 m, and c = 0.27 m.

3.5 Find the location of the centroid of the uniform area shown in Fig. 3.22. For
the numerical application use a = 0.6 m, b = 0.4 m, and c = 0.3 m.

3.6 Locate the centroid of the volume shown in Fig. 3.23, where r = 0.5 m, and
h = 1.2 m. The material is homogeneous.

3.7 Locate the centroid of the volume shown in Fig. 3.24, where r = 0.3 m, and
h = 0.9 m. The material is homogeneous.

3.8 Locate the centroid of the homogeneous volume shown in Fig. 3.25, where R =
0.6 m, r = 0.4 m, a = 0.5 m, and b = 0.6 m. The material is homogeneous.

3.9 Locate the centroid of the volume shown in Fig. 3.26, where R = 0.7 m,
r = 0.4 m, p = 0.5 m, a = 0.4 m, and b = 0.5 m. The material is homogeneous.

3.10 Find the centroid of the volume depicted in Fig. 3.27, where r = 25 mm,
a = 200 m, b = 100 mm, and t = 15 mm. The material is homogeneous.

3.11 Find the centroid of the volume shown in Fig. 3.28, where a = 200 mm,
b = 150 mm, and t = 30 mm. The material is homogeneous.

3.12 Find the centroid of the volume shown in Fig. 3.29, where a = 400 mm,
b = 200 mm, and c = 100 mm. The material is homogeneous.

3.13 Find the centroid of the volume shown in Fig. 3.30, where a = 100 mm,
b = 125 mm, c = 150 mm, and t = 25 mm. The material is homogeneous.

3.8 Problems 125

rra

b

r

r

Fig. 3.18 Problem 3.1

Fig. 3.19 Problem 3.2

b

a

b

c

Fig. 3.20 Problem 3.3

r

h

r

126 3 Centers of Mass

y

O

x

b

a

c

b

a

Fig. 3.21 Problem 3.4

b

a

a

c

c

Fig. 3.22 Problem 3.5

y

x

r

h

O

r

Fig. 3.23 Problem 3.6

3.8 Problems 127

y

x

r

h

z

O

r

Fig. 3.24 Problem 3.7

ba

R

Fig. 3.25 Problem 3.8

128 3 Centers of Mass

b

a

R

p

r

Fig. 3.26 Problem 3.9

Ør

b
a

t

z
a

a

b

t

y

x

t

Fig. 3.27 Problem 3.10

3.8 Problems 129

a

t

b

t

a

a

t

t

t b

a

Fig. 3.28 Problem 3.11

Fig. 3.29 Problem 3.12

a

c

z

b

y
x

a

b

b
c

Fig. 3.30 Problem 3.13

t

zb

yx
a

c

t

130 3 Centers of Mass

3.14 Find the coordinates of the centroid of the region is bounded by the curves
y = x and y = √

x where 0 ≤ x ≤ 1. All coordinates may be treated as
dimensionless.

3.15 Determine the coordinates of the centroid of the region is bounded by the
curves y = x2 and y = √

x where 0 ≤ x ≤ 1. All coordinates may be treated
as dimensionless.

3.9 Programs

3.9.1 Program 3.1

% example 3.1
% center of mass of a curve
clear all; clc; close all;
syms x real

a = 3;
b = 2;
y = b*sqrt(xˆa);
dy = diff(y,x);
dl =sqrt(1+dyˆ2);
% ds = (1+ (dy/dx)ˆ2)ˆ0.5
% 0< x < 1
L = eval(int(dl,0,1));
My=eval(int(x*dl,0,1));
xC=My/L;
Mx=eval(int(y*dl,0,1));
yC=Mx/L;
fprintf(’L = %4.3f (m) \n’, L)
fprintf(’xC = %4.3f (m) \n’, xC)
fprintf(’yC = %4.3f (m) \n’, yC)

% plot the curve and CM
xf=1;
xn = 0:xf/100:xf;
yn = b*sqrt(xn.ˆa);
axis ([0 1 0 1])
plot(xn,yn,’-b’,’LineWidth’,2)
hold on
plot(xC,yC,’o’,’MarkerSize’,12,...

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

3.9 Programs 131

text(xC,yC,’ C’,’FontSize’,18)
title(’y=f(x)=2 xˆ{3/2}’)
grid on
xlabel(’x(m)’)
ylabel(’y(m)’)

% end of program

3.9.2 Program 3.2

% example 3.2
% center of mass
% circle (Cartesian equation)
% xˆ2+yˆ2=1
% semi-circle
% quarter-circle
clear all; clc; close all;
syms r t real

% parametric equation
x = r*cos(t);
y = r*sin(t);
% 0 < t < 2*pi
% r > 0
dx = diff(x,t);
dy = diff(y,t);
% arc length
% dl = ((dx/dt)ˆ2+(dy/dt)ˆ2)ˆ0.5 dt

dl = (dxˆ2+dyˆ2)ˆ0.5;
dl = simplify(dl);
fprintf(’dl = %s dt \n’, char(dl));
L = int(dl,t,0,2*pi);
fprintf(’L = %s \n’, char(L))
fprintf(’\n’);

% semi-circle
Ls = int(dl,t,0,pi);
Mys = int(x*dl,t,0,pi);
xCs = simplify(Mys/Ls);
Mxs = int(y*dl,t,0,pi);
yCs = simplify(Mxs/Ls);
fprintf(’Ls = %s \n’, char(Ls))

132 3 Centers of Mass

fprintf(’xCs = %s \n’, char(xCs))
fprintf(’yCs = %s \n’, char(yCs))
fprintf(’\n’);

% quarter-circle
Lq = int(dl,t,0,pi/2);
Myq = int(x*dl,t,0,pi/2);
xCq = simplify(Myq/Lq);
Mxq = int(y*dl,t,0,pi/2);
yCq = simplify(Mxq/Lq);
fprintf(’Lq = %s \n’, char(Lq))
fprintf(’xCq = %s \n’, char(xCq))
fprintf(’yCq = %s \n’, char(yCq))

rn=1;
% plot the semi-circle and CM
figure(1)
xCsn = subs(xCs,r,1);
yCsn = subs(yCs,r,1);

tn = 0:pi/18:pi;
xn = rn*cos(tn);
yn = rn*sin(tn);
axis manual
axis equal
hold on
grid on
sa = 1;
axis ([-sa sa -sa sa])
plot(xn,yn,’-b’,’LineWidth’,2)
text(0,0,’ O’,’fontsize’,14)
line([-sa,sa],[0,0],’Color’,’k’)
line([0,0],[0,sa],’Color’,’k’)
plot(xCsn,yCsn,’o’,’MarkerSize’,12,...

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

text(xCsn,yCsn,’ C’,’FontSize’,18)
title(’semi-circle’)
xlabel(’x(m)’)
ylabel(’y(m)’)

% plot the quarter-circle and CM

figure(2)
xCqn = subs(xCq,r,1);

3.9 Programs 133

yCqn = subs(yCq,r,1);

tn = 0:pi/18:pi/2;
xn = rn*cos(tn);
yn = rn*sin(tn);
axis manual
axis equal
hold on
grid on
sa = 1;
axis ([-sa sa -sa sa])
plot(xn,yn,’-b’,’LineWidth’,2)
text(0,0,’ O’,’fontsize’,14)
line([0,sa],[0,0],’Color’,’k’)
line([0,0],[0,sa],’Color’,’k’)
plot(xCqn,yCqn,’o’,’MarkerSize’,12,...

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

text(xCqn,yCqn,’ C’,’FontSize’,18)
title(’quarter-circle’)
xlabel(’x(m)’)
ylabel(’y(m)’)

% end of program

3.9.3 Program 3.3

% example 3.3
% quarter-astroid (one cusp)
% astroid=hypocycloid with 4 cusps
% xˆ(2/3)+yˆ(2/3)=aˆ(2/3)
clear all; clc; close all;
syms t real
a = 1; % (m)
x = a*cos(t)ˆ3;
y = a*sin(t)ˆ3;
% a > 0
% 0 < t < pi/2 - quarter-astroid
dx = diff(x,t);
dy = diff(y,t);
% dl=((dx/dt)ˆ2+(dy/dt)ˆ2)ˆ0.5 dt
dl = (dxˆ2+dyˆ2)ˆ0.5;
dl = simplify(dl);

134 3 Centers of Mass

L = int(dl,t,0,pi/2);
L = double(L);
% L = int(dl,0,pi/2);
My = int(x*dl,t,0,pi/2);
xC = My/L;
xC = double(xC);
Mx = int(y*dl,t,0,pi/2);
yC = Mx/L;
yC = double(yC);
fprintf(’L = %4.3f (m)\n’, L)
fprintf(’xC = %4.3f (m)\n’, xC)
fprintf(’yC = %4.3f (m)\n’, yC)
fprintf(’\n’);

% plot and CM
tn = 0:pi/18:pi/2;
xn = a*cos(tn).ˆ3;
yn = a*sin(tn).ˆ3;
axis manual
axis equal
hold on
grid on
sa = 1;
axis ([0 sa 0 sa])
plot(xn,yn,’-b’,’LineWidth’,2)
text(0,0,’ O’,’fontsize’,14)
line([0,sa],[0,0],’Color’,’k’)
line([0,0],[0,sa],’Color’,’k’)
plot(xC,yC,’o’,’MarkerSize’,12,...

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

text(xC,yC,’ C’,’FontSize’,18)
title(’quarter-astroid’)
xlabel(’x(m)’)
ylabel(’y(m)’)

% end of program

3.9.4 Program 3.4

% example 3.4
% three-dimensional helix
clear all; clc; close all

3.9 Programs 135

syms a h t real
% circular helix
% radius a and pitch 2*pi*h
% cartesian coordinates
x = a*cos(t);
y = a*sin(t);
z = h*t;

dx = diff(x,t);
dy = diff(y,t);
dz = diff(z,t);
%dl=((dx/dt)ˆ2+(dy/dt)ˆ2+(dz/dt)ˆ2)ˆ0.5 dt
dl = (dxˆ2+dyˆ2+dzˆ2)ˆ0.5;
dl = simplify(dl);
fprintf(’dl = %s dt \n’, char(dl));
fprintf(’\n’);
% dl =(aˆ2 + hˆ2)ˆ(1/2)

% numerical data a=h=1 (m)
x = cos(t);
y = sin(t);
z = t;
dl=(diff(x)ˆ2+diff(y)ˆ2+diff(z)ˆ2)ˆ0.5;

tf = 6*pi;
L = int(dl,t,0,tf);
L = double(L);
xC = int(x*dl,t,0,tf)/L;
xC = double(xC);
yC = int(y*dl,t,0,tf)/L;
yC = double(yC);
zC = int(z*dl,t,0,tf)/L;
zC = double(zC);
fprintf(’L = %4.3f (m)\n’, L)
fprintf(’xC = %4.3f (m)\n’, xC)
fprintf(’yC = %4.3f (m)\n’, yC)
fprintf(’zC = %4.3f (m)\n’, zC)
fprintf(’\n’);

% plot helix
tn = 0:pi/50:tf;
plot3(sin(tn),cos(tn),tn)
hold on
plot3(xC,yC,zC,...
’o’,’MarkerSize’,12,...

136 3 Centers of Mass

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)
text(xC,yC,zC,’ C’,’FontSize’,18)
xlabel(’x(m)’)
ylabel(’y(m)’)
zlabel(’z(m)’)
grid on
axis square

% end of program

3.9.5 Program 3.5

% example 3.5
clear all; clc; close all;
syms t real
a=2; k=1;
x = a*exp(k*t)*cos(t);
y = a*exp(k*t)*sin(t);
z = a*exp(k*t);

dx = diff(x,t);
dy = diff(y,t);
dz = diff(z,t);
%dl=((dx/dt)ˆ2+(dy/dt)ˆ2+(dz/dt)ˆ2)ˆ0.5 dt
dl = (dxˆ2+dyˆ2+dzˆ2)ˆ0.5;
dl = simplify(dl);
fprintf(’dl = %s dt\n’,char(dl))

tf = 3;
L = int(dl,0,tf);
L = double(L);

xC = int(x*dl,t,0,tf)/L;
xC = double(xC);
yC = int(y*dl,t,0,tf)/L;
yC = double(yC);
zC = int(z*dl,t,0,tf)/L;
zC = double(zC);
fprintf(’L = %4.3f (m)\n’, L)
fprintf(’xC = %4.3f (m)\n’, xC)
fprintf(’yC = %4.3f (m)\n’, yC)
fprintf(’zC = %4.3f (m)\n’, zC)

3.9 Programs 137

fprintf(’\n’);

% plot the curve
tn = 0:pi/100:tf;
xn = a*exp(k*tn).*cos(tn);
yn = a*exp(k*tn).*sin(tn);
zn = a*exp(k*tn);
ht = plot3(xn,yn,zn);
hold on
plot3(xC,yC,zC,...
’o’,’MarkerSize’,12,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)
text(xC,yC,zC,’ C’,’FontSize’,18)
xlabel(’x(m)’)
ylabel(’y(m)’)
zlabel(’z(m)’)
grid on
axis square

% end of program

3.9.6 Program 3.6

% example 3.6
clear all; clc; close all
syms x y a b real

% f(x) = y(x) = b*x/a;
f = b*x/a;
% 0 < x < xf
xf = a;

% Area = int(dx dy) where
% 0<x<xf and 0<y<f
% Ay = int(dy) where 0<y<f
Ay = int(1,y,0,f);
% Area = int(Ay dx) where 0<x<xf
Area = int(Ay,x,0,xf);

% first moment of area about y-axis
% My = int(x dx dy) where
% 0<x<xf and 0<y<f

138 3 Centers of Mass

% Qyy = int(dy) ; 0<y<f
Qyy = int(1,y,0,f);
% My = int(x Qyy dx) where 0<x<xf
My = int(x*Qyy,x,0,xf);
% centroid xC = My/Area
xC = My/Area;

% first moment of area about x-axis
% Mx = int(y dx dy) where
% 0<x<xf and 0<y<f
% Qxy = int(y dy) ; 0<y<f
Qxy = int(y,y,0,f);
% Mx = int(x Qxy dx) where 0<x<xf
Mx = int(Qxy,x,0,xf);
yC = Mx/Area;

ls = {a,b};
ln = {1,1}; % (m)

xfn = subs(xf,ls,ln);
xCn = subs(xC,ls,ln);
yCn = subs(yC,ls,ln);

fprintf(’xf = %s = %4.3f (m)\n’,char(xf),double(xfn))
fprintf(’Area = %s (mˆ2)\n’,char(Area))
fprintf(’My = %s (mˆ3)\n’,char(My))
fprintf(’xC = %s = %4.3f (m)\n’,char(xC),double(xCn))
fprintf(’Mx = %s (mˆ3)\n’,char(Mx))
fprintf(’yC = %s = %4.3f (m)\n’,char(yC),double(yCn))

sa = 1.5;
axis([0 sa 0 sa])
hold on, grid on
xx = 0:.1:xfn;
fx = subs(f,{a,b,x},{1,1,xx});
plot(xx,fx,’--’,’LineWidth’,2)
hold on
area(xx,fx,’FaceColor’,’b’,...

’EdgeColor’,’k’,...
’LineWidth’,2)

hold on
plot(xCn,yCn,...
’o’,’MarkerSize’,12,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

3.9 Programs 139

xlabel(’x (m)’), ylabel(’y (m)’)
text(xCn,yCn,’ C’,’fontsize’,14,’fontweight’,’b’)

% end of program

3.9.7 Program 3.7

% example 3.7
clear all; clc; close all
syms x y A k real

% f(x) = y(x) = A*sin(k*x);
f = A*sin(k*x);
% 0 < x < xf
xf = (3*pi/4)/k;

% Area = int(dx dy) where
% 0<x<xf and 0<y<f
% Ay = int(dy) where 0<y<f
Ay = int(1,y,0,f);
% Ay = A*sin(k*x)
% Area = int(Ay dx) where 0<x<xf
Area = int(Ay,x,0,xf);

% first moment of area about y-axis
% My = int(x dx dy) where
% 0<x<xf and 0<y<f
% Qyy = int(dy) ; 0<y<f
Qyy = int(1,y,0,f);
% My = int(x Qyy dx) where 0<x<xf
My = int(x*Qyy,x,0,xf);
xC = My/Area;

% first moment of area about x-axis
% Mx = int(y dx dy) where
% 0<x<xf and 0<y<f
% Qxy = int(y dy) ; 0<y<f
Qxy = int(y,y,0,f);
% Mx = int(x Qxy dx) where 0<x<xf
Mx = int(Qxy,x,0,xf);
yC = Mx/Area;

140 3 Centers of Mass

% A = 1.5; % m
% k = 0.75; % mˆ(-1)
xfn = subs(xf,{A,k},{1.5,0.75});
xCn = subs(xC,{A,k},{1.5,0.75});
yCn = subs(yC,{A,k},{1.5,0.75});
Arean = subs(Area,{A,k},{1.5,0.75});

fprintf(’xf = %s = %4.3f (m)\n’,char(xf),double(xfn))
fprintf(’\n’)
fprintf(’Area = ’)
pretty(Area)
fprintf(’\n’)
fprintf(’My = ’)
pretty(My)
fprintf(’\n’)
fprintf(’xC = ’)
pretty(xC)
fprintf(’\n’)
fprintf(’xC = %4.3f (m)\n’,double(xCn))
fprintf(’\n’)
fprintf(’Mx = ’)
pretty(Mx)
fprintf(’\n’)
fprintf(’yC = ’)
pretty(yC)
fprintf(’\n’)
fprintf(’yC = %4.3f (m)\n’,double(yCn))

A = 1.5; % m
k = 0.75; % mˆ(-1)
sa = 4;
axis([0 sa 0 sa])
hold on, grid on
xx = 0:.1:xfn;
fx = A*sin(k*xx);
plot(xx,fx,’--’,’LineWidth’,2)
hold on
area(xx,fx,’FaceColor’,’b’,...

’EdgeColor’,’k’,...
’LineWidth’,2)

hold on
plot(xCn,yCn,...
’o’,’MarkerSize’,12,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)

3.9 Programs 141

xlabel(’x (m)’), ylabel(’y (m)’)
text(xCn,yCn,’ C’,...
’fontsize’,14,’fontweight’,’b’)

% end of program

3.9.8 Program 3.8

% example 3.8
clear all; clc; close all
syms x y real
% y1 = x/4
% y2 = sqrt(2*(x-3))

y1 = x/4;
y2 = sqrt(2*(x-3));

sol = eval(solve(y2-y1));
if sol(2) > sol(1)
x1 = sol(1); x2 = sol(2);
else
x1 = sol(2); x2 = sol(1);
end

y11 = subs(y1,x,x1);
y12 = subs(y1,x,x2);

axis equal
g1=ezplot(y1,[0,x2+5])
set(g1, ’Color’, ’r’,’LineWidth’,3)
hold on
g2=ezplot(y2,[0,x2+5])
set(g2, ’Color’, ’b’,’LineWidth’,2)
hold on
line([x1 x1],[0 y11],...

’Color’,’k’,’LineWidth’,1,...
’Marker’,’.’,’LineStyle’,’-’)

hold on
line([x2 x2],[0 y12],...

’Color’,’k’,’LineWidth’,1,...
’Marker’,’.’,’LineStyle’,’-’)

hold on
grid on

142 3 Centers of Mass

title(’region bounded by y1 and y2’)
xlabel(’x(m)’), ylabel(’y(m)’)

% Area = eval(int(abs(y2-y1),x,x1,x2))
A = double(int(int(1,y1,y2),x1,x2));

Qyy = int(1, y, y1, y2);
My = int(x*Qyy, x, x1, x2);
xC = eval(My/A);

Qxy = int(y, y, y1, y2);
Mx = int(Qxy, x, x1, x2);
yC = eval(Mx/A);

plot(xC,yC,...
’o’,’MarkerSize’,6,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)
text(xC,yC,’ C’,...
’fontsize’,14,’fontweight’,’b’)

text(x1,0,’ x_1’,...
’fontsize’,14,’fontweight’,’b’)
text(x2,0,’ x_2’,...
’fontsize’,14,’fontweight’,’b’)

fprintf(’x1 = %4.3f (m)\n’,double(x1))
fprintf(’x2 = %4.3f (m)\n’,double(x2))
fprintf(’A = %4.3f (mˆ2)\n’,double(A))
fprintf(’xC = %4.3f (m)\n’,double(xC))
fprintf(’yC = %4.3f (m)\n’,double(yC))

% end of program

3.9.9 Program 3.9

% example 3.9
clear all; clc; close all
% f = f(x)
% A = int(f,x,a,b)
% xC = int(x*f,x,a,b)/A
% yC = 0.5*int(fˆ2,x,a,b)/A

syms x a b real

3.9 Programs 143

sl = {a,b};
sn = {4,2};

y1 = 2*b;
y2 = b;

A1 = int(y1,x,0,a);
A2 = int(y2,x,a,2*a);
A = A1+A2;

Mx1 = int(x*y1,x,0,a);
Mx2 = int(x*y2,x,a,2*a);
Mx = Mx1 + Mx2;

xC1 = Mx1/A1;
xC2 = Mx2/A2;

xC = (Mx1+Mx2)/A;

My1 = 0.5*int(y1ˆ2,x,0,a);
My2 = 0.5*int(y2ˆ2,x,a,2*a);
My = My1 + My2;

yC1 = My1/A1;
yC2 = My2/A2;

yC = (My1+My2)/A;

An = subs(A,sl,sn);
xCn = subs(xC,sl,sn);
yCn = subs(yC,sl,sn);

xC1n = subs(xC1,sl,sn);
yC1n = subs(yC1,sl,sn);

xC2n = subs(xC2,sl,sn);
yC2n = subs(yC2,sl,sn);

fprintf(’A = ’)
pretty(A)
fprintf(’\n’)
fprintf(’A = %4.3f (mˆ2)\n’,double(An))
fprintf(’\n’)
fprintf(’My = ’)
pretty(My)

144 3 Centers of Mass

fprintf(’\n’)
fprintf(’xC = ’)
pretty(xC)
fprintf(’\n’)
fprintf(’xC = %4.3f (m)\n’,double(xCn))
fprintf(’\n’)
fprintf(’Mx = ’)
pretty(Mx)
fprintf(’\n’)
fprintf(’yC = ’)
pretty(yC)
fprintf(’\n’)
fprintf(’yC = %4.3f (m)\n’,double(yCn))

an = subs(a,sl,sn);
bn = subs(b,sl,sn);
xA = 2*an; yA = 0;
xB = xA; yB = bn;
xD = an; yD = yB;
xE = xD; yE = 2*bn;
xF = 0; yF = yE;

% axis square

sa = 8;
axis([0 sa 0 sa])
hold on, grid on

line([0 xA],[0 yA],...
’Color’,’k’,’LineWidth’,1,...
’Marker’,’.’,’LineStyle’,’-’)

hold on
line([xA xB],[yA yB],...

’Color’,’k’,’LineWidth’,1,...
’Marker’,’.’,’LineStyle’,’-’)

hold on
line([xB xD],[yB yD],...

’Color’,’r’,’LineWidth’,2,...
’Marker’,’.’,’LineStyle’,’-’)

hold on
line([xD xE],[yD yE],...

’Color’,’k’,’LineWidth’,1,...
’Marker’,’.’,’LineStyle’,’-’)

hold on
line([xE xF],[yE yF],...

3.9 Programs 145

’Color’,’b’,’LineWidth’,2,...
’Marker’,’.’,’LineStyle’,’-’)

hold on
line([0 xF],[0 yF],...

’Color’,’k’,’LineWidth’,1,...
’Marker’,’.’,’LineStyle’,’-’)

plot(xCn,yCn,...
’o’,’MarkerSize’,8,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’r’)
text(xCn,yCn,’ C’,...
’fontsize’,14,’fontweight’,’b’)

plot(xC1n,yC1n,...
’o’,’MarkerSize’,6,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’b’)
text(xC1n,yC1n,’ C1’,...
’fontsize’,14,’fontweight’,’b’)

plot(xC2n,yC2n,...
’o’,’MarkerSize’,6,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’b’)
text(xC2n,yC2n,’ C2’,...
’fontsize’,14,’fontweight’,’b’)

xlabel(’x(m)’), ylabel(’y(m)’)
text(xA,yA,’ A’,...
’fontsize’,14,’fontweight’,’b’)
text(xB,yB,’ B’,...
’fontsize’,14,’fontweight’,’b’)
text(xD,yD,’ D’,...
’fontsize’,14,’fontweight’,’b’)
text(xE,yE,’ E’,...
’fontsize’,14,’fontweight’,’b’)
text(xF,yF,’ F’,...
’fontsize’,14,’fontweight’,’b’)
text(0,0,’ O’,...
’fontsize’,14,’fontweight’,’b’)

% end of program

146 3 Centers of Mass

3.9.10 Program 3.10

% example 3.10

% frustum of a right-circular cone
% volume of a frustum of a cone
% h height
% R radius of large base
% r radius of small base

clear all; clc; close all
% f = y(x)
% V = pi*int(fˆ2,x,a,b)

syms R r h x real

f = (R-r)*x/h+r;

% volume of thin disk differential element
% dV = pi fˆ2 dx

V = pi*int(fˆ2,x,0,h);

% centroid
% xC = int(x*pi*fˆ2,x,0,h)/V;

xC = int(x*pi*fˆ2,x,0,h)/V;
xC = simplify(xC);

fprintf(’V = ’)
fprintf(’\n’)
pretty(V)
fprintf(’\n’)
fprintf(’xC = ’)
fprintf(’\n’)
pretty(xC)
fprintf(’\n’)

ls = {R,r,h};
ln = {2,1,2};
fn = subs(f,ls,ln);
Vn = subs(V,ls,ln);
xCn= subs(xC,ls,ln);

3.9 Programs 147

fprintf(’V = %4.3f (mˆ3)\n’,double(Vn))
fprintf(’xC = %4.3f (mˆ3)\n’,double(xCn))

g1 = ezplot(fn,[0,2]);
set(g1,’Color’,’b’,’LineWidth’,2)
grid on

% end of program

3.9.11 Program 3.11

% example 3.11
% torus volume
% xˆ2+(y-b)ˆ2-rˆ2=, b>0
% torus can be generated by revolving
% the circular area of radius r
% through 360 deg. about the x-axis
clear all; clc; close all
% f = f(x)
% V = pi*int(fˆ2,x,x1,x2)

syms b r x real

f1 = b-sqrt(rˆ2-xˆ2);
f2 = b+sqrt(rˆ2-xˆ2);
V = pi*int(f2ˆ2-f1ˆ2,x,-r,r);
fprintf(’V = %s \n’,char(V))

% theorems of Guldinus-Pappus
%
% S = 2 pi yC L surface of revolution
% L length of generating curve
% yC centroid of generating curve
%
% V = 2 pi yC A volume of revolution
% A area of generating plane surface
% yC centroid of generating plane surface

yC = b;
A = pi*rˆ2;
Vg = 2*pi*yC*A;
L = 2*pi*r;
S = 2*pi*yC*L;

148 3 Centers of Mass

fprintf(’\n’)
fprintf(’Vg = %s \n’,char(Vg))
fprintf(’\n’)
fprintf(’S = %s \n’,char(S))
fprintf(’\n’)

% end of program

References

1. P. Appell, Traité de mécanique rationnelle (Gauthier-Villars, Paris, 1955)
2. M. Atanasiu, Mechanics (EDP, Bucharest, 1973)
3. H. Baruh, Analytical Dynamics (WCB/McGraw-Hill, Boston, 1999)
4. G. Baumann, Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear

Dynamics (Springer-Verlag, New York, 2005a)
5. G. Baumann, Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics,

General Relativity and Fractals (Springer-Verlag, NewYork, 2005b)
6. F.P. Beer, E.R. Johnston, Vector Mechanics for Engineers: Statics and Dynamics 5/e (McGraw-

Hill Publishing Company, New York, 1988)
7. F.P. Beer, E.R. Johnston, D.F. Mazurek, Vector Mechanics for Engineers: Statics, 10/e

(McGraw-Hill Publishing Company, New York, 2012)
8. A.M. Bedford, W. Fowler, K.M. Liechti, Statics and Mechanics of Materials (Prentice Hall,

Inc., Upper Saddle River, 2002)
9. A.M. Bedford, W. Fowler, Engineering Mechanics: Statics, 5/e (Prentice Hall, Inc., Upper

Saddle River, 2007)
10. A.P. Boresi and R.J. Schmidt, Engineering Mechanics: Statics (PWS Publishing Company,

Boston, 2000)
11. M.I. Buculei, Mechanics (University of Craiova Press, Craiova, 1974)
12. M.I. Buculei, D. Bagnaru, G. Nanu, D.B. Marghitu, Analysis of Mechanisms with Bars (Scrisul

romanesc, Craiova, 1986)
13. I. Stroe et al., Analytical Mechanics Problems, University Politehnica of Bucharest, 1997
14. V. Ceausu, N. Enescu, F. Ceausu, Mechanics Problems (Printech, Bucuresti, 1999)
15. S.J. Chapman, MATLAB Programming for Engineers (Thomson Learning, Pacific Grove, CA,

2002)
16. S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving

(Butterworth-Heinemann, Elsevier, Amsterdam, 2012)
17. D.M. Etter, D.C. Kuncicky, Introduction to MATLAB for Engineers and Scientists (Prentice

Hall, Inc., Upper Saddle River, 1996)
18. C. Iacob, Theoretical Mechanics (EDP, Bucharest, 1980)
19. J.H. Ginsberg, Advanced Engineering Dynamics (Cambridge University Press, Cambridge,

1995)
20. D.T. Greenwood, Principles of Dynamics (Prentice-Hall, Inc., Englewood Cliffs, 1998)
21. L.E. Goodman, W.H. Warner, Statics (Dover Publications Inc., Mineola, 2001)
22. R.C. Hibbeler, Engineering Mechanics: Statics and Dynamics 13/e (Prentice-Hall Inc., Upper

Saddle River, 2013)
23. T.R. Kane, Analytical Elements of Mechanics, vol. 1 (Academic Press, New York, 1959)
24. T.R. Kane, Analytical Elements of Mechanics, vol. 2 (Academic Press, New York, 1961)
25. T.R. Kane, P.W. Likins, D.A. Levinson, Spacecraft Dynamics (McGraw-Hill, New York, 1983)
26. T.R. Kane, D.A. Levinson, Dynamics (McGraw-Hill, New York, 1985)

References 149

27. R. Maeder, Programming in Mathematica (Addison-Wesley Publishing Company, Redwood
City, 1990)

28. N.H. Madsen, Statics and Dynamics, class notes, http://www.eng.auburn.edu/users/nmadsen/
29. D.B. Marghitu, Mechanical Engineer’s Handbook (Academic Press, San Diego, 2001)
30. D.B. Marghitu, M.J. Crocker, Analytical Elements of Mechanisms (Cambridge University Press,

Cambridge, 2001)
31. D.B. Marghitu, Kinematic Chains and Machine Component Design (Elsevier, Amsterdam,

2005)
32. D.B. Marghitu, Mechanisms and Robots Analysis with MATLAB (Springer, New York, 2009)
33. D.B. Marghitu, M. Dupac, Advanced Dynamics: Analytical and Numerical Calculations with

MATLAB (Springer, New York, 2012)
34. D.B. Marghitu, Statics and Dynamics, class notes, http://www.eng.auburn.edu/users/marghitu/
35. D.J. McGill, W.W. King, Engineering Mechanics: Statics and An Introduction to Dynamics

(PWS Publishing Company, Boston, 1995)
36. J.L. Meriam, L.G. Kraige, Engineering Mechanics: Statics, 7/e (Wiley, New York, 2011)
37. R.L. Mott, Machine Elements in Mechanical Design (Prentice Hall, Upper Saddle River, 1999)
38. R.L. Norton, Machine Design (Prentice-Hall, Upper Saddle River, 1996)
39. L.A. Pars, A Treatise on Analytical Dynamics (Wiley, New York, 1965)
40. M. Plesha, G. Gray, F. Costanzo, Engineering Mechanics: Statics, 2/e (McGraw-Hill Publishing

Company, New York, 2012)
41. M. Radoi, E. Deciu, Mechanics (EDP, Bucharest, 1981)
42. W.F. Riley, L.D. Sturges, Engineering Mechanics: Statics, 2/e (Wiley, New York, 1995)
43. A. Ruina, R. Pratap, Introduction to Statics and Dynamics (Oxford University Press, Oxford,

2002)
44. A. Ripianu, P. Popescu, B. Balan, Technical Mechanics (EDP, Bucharest, 1979)
45. I.H. Shames, Engineering Mechanics Statics, 4/e (Prentice Hall Inc., Upper Saddle River, 1996)
46. S.D. Sheppard, B.H. Tongue, Statics: Analysis and Design of Systems in Equilibrium (Wiley,

New York, 2005)
47. D. Smith, Engineering Computation with MATLAB (Pearson Education, Upper Saddle River,

2008)
48. R.W. Soutas-Little, D.J. Inman, Engineering Mechanics: Statics and Dynamics (Prentice-Hall,

Upper Saddle River, 1999)
49. R.W. Soutas-Little, D.J. Inman, D. Balint, Engineering Mechanics: Statics (Cengage Learning,

Independence, KY, 2007)
50. S. Staicu, Theoretical Mechanics (EDP, Bucharest, 1998)
51. A. Stan, M. Grumazescu, Mechanics Problems (EDP, Bucharest, 1973)
52. J. Sticklen, M.T. Eskil, An Introduction to Technical Problem Solving with MATLAB (Great

Lakes Press, Wildwood, 2006)
53. A. Stoenescu, G. Silas, Theoretical Mechanics (ET, Bucharest, 1957)
54. J.H. Jackson, H.G. Wirtz, Schaum’s Outline of Theory and Problems of Statics and Strength of

Materials (McGraw-Hill Publishing Company, New York, 1983)
55. The MathWorks, https://www.mathworks.com/
56. Statics eBook, https://ecourses.ou.edu/
57. R. Voinea, D. Voiculescu, V. Ceausu, Mechanics (EDP, Bucharest, 1983)
58. V. Valcovici, S. Balan, R. Voinea, Theoretical Mechanics (ET, Bucharest, 1959)
59. K.J. Waldron, G.L. Kinzel, Kinematics, Dynamics, and Design of Machinery (Wiley, New

York, 1999)
60. H.B. Wilson, L.H. Turcotte, D. Halpern, Advanced Mathematics and Mechanics Applications

Using MATLAB (Chapman & Hall/CRC, Boca Raton, 2003)
61. J.H. Williams Jr, Fundamentals of Applied Dynamics (Wiley, New York, 1996)
62. S. Wolfram, Mathematica, Wolfram Media (Cambridge University Press, Cambridge, 1999)

http://www.eng.auburn.edu/users/nmadsen/
http://www.eng.auburn.edu/users/marghitu/
https://www.mathworks.com/
https://ecourses.ou.edu/

Chapter 4
Equilibrium

4.1 Equilibrium Equations

A a body is in equilibrium when it is stationary or in steady translation relative to an
inertial reference frame. The following conditions are satisfied when a body, acted
upon by a system of forces and moments, is in equilibrium

1. the sum of the forces is zero ∑
F = 0. (4.1)

2. the sum of the moments about any point is zero

∑
MP = 0, ∀P. (4.2)

If the sum of the forces acting on a body is zero and the sum of the moments about
one point is zero, then the sum of the moments about every point is zero.

Proof The body shown in Fig. 4.1, is subjected to forces FAi, i = 1, ..., n, and
couples Mj, j = 1, ..., m. The sum of the forces is zero

∑
F =

n∑

i=1

FAi = 0,

and the sum of the moments about a point P is zero

∑
MP =

n∑

i=1

rPAi × FAi +
m∑

j=1

Mj = 0,

where rPAi = −→
PAi, i = 1, ..., n. The sum of the moments about any other point Q is

D. B. Marghitu et al., Statics with MATLAB®, 151
DOI: 10.1007/978-1-4471-5110-4_4, © Springer-Verlag London 2013

152 4 Equilibrium

M

Q

P

FAi

Mj

rPAi

rQAi

rQP

...

Mm

...

... A i

1

A
A n

1

FA1

...

FAn

rQA1
rPA1

rQAi = rQP + rPAi

Fig. 4.1 Body subjected to forces FAi and couples Mj

∑
MQ =

n∑

i=1

rQAi × FAi +
m∑

j=1

Mj

=
n∑

i=1

(
rQP + rPAi

) × FAi +
m∑

j=1

Mj

= rQP ×
n∑

i=1

FAi +
n∑

i=1

rPAi × FAi +
m∑

j=1

Mj

= rQP × 0 +
n∑

i=1

rPAi × FAi +
m∑

j=1

Mj

=
n∑

i=1

rPAi × FAi +
m∑

j=1

Mj =
∑

MP = 0.

A body is subjected to concurrent forces F1, F2, . . ., Fn and no couples. If the sum
of the concurrent forces is zero,

F1 + F2 + · · · + Fn = 0,

the sum of the moments of the forces about the concurrent point is zero, so the sum of
the moments about every point is zero. The only condition imposed by equilibrium
on a set of concurrent forces is that their sum is zero.

4.2 Supports 153

4.2 Supports

4.2.1 Planar Supports

The reactions are forces and couples exerted on a body by its supports. The following
force convention is defined: Fij represents the force exerted by link i on link j.

Pin Support
Figure 4.2 shows a pin support. A beam 1 is attached by a smooth pin to a ground
bracket 0. The pin passes through the bracket and the beam. The beam can rotate
about the axis of the pin. The beam cannot translate relative to the bracket because
the support exerts a reactive force that prevents this movement. The pin support is
not capable of exerting a couple. Thus a pin support can exert a force on a body in
any direction. The force of the pin support 0 on the beam 1 at point A, Fig. 4.3, is
expressed in terms of its components in plane

F01 = F01x ı + F01y j.

bracket

bracket

pin
pin

beam
beam

pin beam

schematic

side

support

view

representation

Fig. 4.2 Pin joint

x

y

x

y

x

y
-

-

0
0

01xF

01yF

01yF

01xF
11 =10yF

=10xF

link 1 link 0

A

A
A

Fig. 4.3 Pin joint forces

154 4 Equilibrium

x

y

01yF

1
1

0

link 1(a) (b)

(c)
smooth

Fig. 4.4 Roller support

The directions of the reactions F01x and F01y are positive. If one determine F01x or
F01y to be negative, the reaction is in the direction opposite to that of the arrow. The
force of the beam 1 on the pin support 0 at point A, Fig. 4.3, is expressed

F10 = F10x ı + F10y j = −F01x ı − F01y j,

where F10x = −F01x and F10y = −F01y The pin supports are used in mechanical
devices that allow connected links to rotate relative to each other.
Roller Support
Figure 4.4a represents a roller support which is a pin support mounted on rollers.

The roller support 0 can only exert a force normal (perpendicular) to the surface
1 on which the roller support moves freely, Fig. 4.4b

F01 = F01y j.

The roller support cannot exert a couple about the axis of the pin and it cannot exert a
force parallel to the surface on which it translates. Figure 4.4c shows other schematic
representations used for the roller support. A plane link on a smooth surface can also
modeled by a roller support. Bridges and beams can be supported in this way and
they will be capable of expansion and contraction.

Fixed Support
Figure 4.5 shows a fixed support or built-in support. The body is literally built into a
wall. A fixed support 0 can exert two components of force and a couple on the link 1

F01 = F01xı + F01yj, and M01 = M01z k.

4.2 Supports 155

x

y
1

0

1
01xF

01yF01zM

link 1

Fig. 4.5 Fixed support

4.2.2 Three-Dimensional Supports

Ball and Socket Support
Figure 4.6 shows a ball and socket support, where the supported body is attached to
a ball enclosed within a spherical socket. The socket permits the body only to rotate
freely. The ball and socket support cannot exert a couple to prevent rotation. The ball
and socket support can exert three components of force

F21 = F21xı + F21yj + F21yk.

Bearing Support
The type of bearing shown in Fig. 4.7a supports a circular shaft while permitting it to
rotate about its axis, z-axis. In the most general case, as shown in Fig. 4.7b, the bearing
can exert a force on the supported shaft in each coordinate direction, F21x, F21y, F21z,
and can exert couples about axes perpendicular to the shaft, M21x, M21y, but cannot
exert a couple about the axis of the shaft. Situations can occur in which the bearing
exerts no couples, or exerts no couples and no force parallel to the shaft axis as shown
in Fig. 4.7c. Some radial bearings are designed in this way for specific applications.

4.3 Free-Body Diagrams

Free-body diagrams are used to determine forces and moments acting on simple
bodies in equilibrium. The beam in Fig. 4.8a has a pin support at the left end A and
a roller support at the right end B. The beam is loaded by a force F and a moment
M at C. To obtain the free-body diagram first the beam is isolated from its supports.
Next, the reactions exerted on the beam by the supports are shown on the free-
body diagram, Fig. 4.8. Once the free-body diagram is obtained one can apply the
equilibrium equations.

The steps required to determine the reactions on bodies are

1. draw the free-body diagram, isolating the body from its supports and showing the
forces and the reactions;

2. apply the equilibrium equations to determine the reactions.

156 4 Equilibrium

x

y

z

1

2
21zF 21xF

21yF

link 1

1

Fig. 4.6 Ball and socket support

bearing

z

y

x

z

y

x

1

2

21zF

21xF

21yF

link 1

1

21yM

21xM

z

y

x

21xF

21yF

(c)

1

(a) (b)

Fig. 4.7 Bearing support

BA

F

BA

F

C

MM

(a) (b)

C

Fig. 4.8 Free-body diagram of a beam

For two-dimensional systems, the forces and moments are related by three scalar
equilibrium equations

∑
Fx = 0, (4.3)

∑
Fy = 0, (4.4)

∑
MP = 0, ∀P. (4.5)

One can obtain more than one equation from Eq. (4.5) by evaluating the sum of the
moments about more than one point. The additional equations will not be indepen-
dent of Eqs. (4.3)–(4.5). One cannot obtain more than three independent equilibrium
equations from a two-dimensional free-body diagram, which means one can solve
for at most three unknown forces or couples.

4.3 Free-Body Diagrams 157

unknowns

Δ Δ

ΔΔ

slider

F

x

pin

F

x

F =FF21x

F21y

unknowns

F21y

F21x

1

2

1

2

(b)

1

2

1 2

(a)

12

12

12 12

F12y

F12x

jointjoint

Fig. 4.9 Joint reaction forces

Free-Body Diagrams for Kinematic Chains
A free-body diagram is a drawing of a part of a complete system, isolated in order
to determine the forces acting on that rigid body. The vector Fij represents the force
exerted by link i on link j and Fij = −Fji. Figure 4.9 shows the joint reaction forces
for a pin joint, Fig. 4.9a, and a slider joint, Fig. 4.9b. Figure 4.10 shows various
free-body diagrams that are considered in the analysis of a slider-crank mechanism
Fig. 4.10a. In Fig. 4.10b, the free body consists of the three moving links isolated
from the frame 0. The forces acting on the system include an external driven force
F, and the forces transmitted from the frame at joint A, F01, and at joint C, F03.
Figure 4.10c is a free-body diagram of the two links 1 and 2 and Fig. 4.10d is a
free-body diagram of the two links 0 and 1. Figure 4.10e is a free-body diagram of
crank 1 and Fig. 4.10f is a free-body diagram of slider 3.

The force analysis can be accomplished by examining individual links or a sub-
system of links. In this way the joint forces between links as well as the required
input force or moment for a given output load are computed.

For three-dimensional systems, the forces and moments are related by six scalar
equilibrium equations

∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0,

∑
Mx = 0,

∑
My = 0,

∑
Mz = 0.

(4.6)

158 4 Equilibrium

1

A

B

C

2

3

0
0

F

1

A

B

C

2

3

F
F01

F03

(a)

(b)

1

A

B

C

2

F01

F32

(c)

1

A

B

F01

F21

(d)

C 3

F

F03

F23

(e)

1

A

B

0

F21

(f)

Fig. 4.10 Free-body diagrams of a slider-crank mechanism

One can evaluate the sums of the moments about any point. Although one can obtain
other equations by summing the moments about additional points, they will not
be independent of these equations. For a three-dimensional free-body diagram one
can obtain six independent equilibrium equations and one can solve for at most six
unknown forces or couples.

A body has redundant supports when the body has more supports than the mini-
mum number necessary to maintain it in equilibrium. Redundant supports are used
whenever possible for strength and safety. Each support added to a body results in
additional reactions. The difference between the number of reactions and the number
of independent equilibrium equations is called the degree of redundancy.

4.3 Free-Body Diagrams 159

A body has improper supports if it will not remain in equilibrium under the action
of the loads exerted on it. The body with improper supports will move when the loads
are applied.

4.4 Two-Force and Three-Force Members

A body is a two-force member if the system of forces and moments acting on the
body is equivalent to two forces acting at different points.

For example a body is subjected to two forces, FA and FB, at A and B. If the body
is in equilibrium, the sum of the forces equals zero only if FA = −FB. Furthermore,
the forces FA and −FB form a couple, so the sum of the moments is not zero unless
the lines of action of the forces lie along the line through the points A and B. Thus
for equilibrium the two forces are equal in magnitude, are opposite in direction, and
have the same line of action. However, the magnitude cannot be calculated without
additional information.

A body is a three-force member if the system of forces and moments acting on
the body is equivalent to three forces acting at different points.

Theorem If a three-force member is in equilibrium, the three forces are coplanar
and the three forces are either parallel or concurrent.

Proof Let the forces F1, F2, and F3 acting on the body at A1, A2, and A3. Let π be
the plane containing the three points of application A1, A2, and A3. Let Δ = A1A2
be the line through the points of application of F1 and F2. Since the moments due to
F1 and F2 about Δ are zero, the moment due to F3 about Δ must equal zero,

[n · (r × F3)] n = [F3 · (n × r)] n = 0,

where n is the unit vector of Δ. This equation requires that F3 be perpendicular to
n × r, which means that F3 is contained in π. The same procedure can be used to
show that F1 and F2 are contained in π, so the forces F1, F2, and F3 are coplanar.

If the three coplanar forces are not parallel, there will be points where their lines of
action intersect. Suppose that the lines of action of two forces F1 and F2 intersect at
a point P. Then the moments of F1 and F2 about P are zero. The sum of the moments
about P is zero only if the line of action of the third force, F3, also passes through
P. Therefore either the forces are concurrent or they are parallel.

The analysis of a body in equilibrium can often be simplified by recognizing the
two-force or three-force member.

160 4 Equilibrium

Fig. 4.11 Basic element of a
plane truss, a triangle

Fig. 4.12 Link in tension (T)
and compression (C)

C

C

T

T

4.5 Plane Trusses

A structure composed of links joined at their ends to form a rigid structure is called
a truss. Roof supports and bridges are common examples of trusses. When the links
of the truss are in a single plane, the truss is called a plane truss. Three bars linked by
pins joints at their ends form a rigid frame or noncollapsible frame. The basic element
of a plane truss is the triangle, Fig. 4.11. Four, five or more bars pin-connected to
form a polygon of as many sides form a nonrigid frame. A nonrigid frame is made
rigid, or stable, by adding a diagonal bars and forming triangles. Frameworks built
from a basic triangle are known as simple trusses. The truss is statically indeterminate
when more links are present than are needed to prevent collapse. Additional links or
supports which are not necessary for maintaining the equilibrium configuration are
called redundant.

Several assumptions are made in the force analysis of simple trusses. First, all the
links are considered to be two-force members. Each link of a truss is straight and has
two nodes as points of application of the forces. The two forces are applied at the
ends of the links and are necessarily equal, opposite, and collinear for equilibrium.
The link may be in tension (T) or compression (C), as shown in Fig. 4.12.

The weight of the link is small compared with the force it supports. If the weight
of the link is not small, the weight W of the member is replaced by two forces, each
W/2 one force acting at each end of the member. These weight forces are considered
as external loads applied to the pin connections. The connection between the links
are assumed to be smooth pin joints. All the external forces are applied at the pin
connections of the trusses. For large trusses, a roller support is used at one of the

4.5 Plane Trusses 161

A
B

DE

C A
B

DE

C

F F

1

2 3

4

5

6

7

F0A
F0C

0 0

(a) (b)

Fig. 4.13 Simple truss

supports to provide for expansion and contraction due to temperature changes and
for deformation from applied loads. Trusses and frames in which no such provision
is made are statically indeterminate. Two methods for the force analysis of simple
trusses will be given. Each method will be explained for the simple truss shown in
Fig. 4.13a. The length of the links are AB = BE = ED = BC = CD = a. The
external force at E is given and has the magnitude of F. The free-body diagram of
the truss as a whole is shown in Fig. 4.13b. The external support reactions are usually
determined first, by applying the equilibrium equations to the truss as a whole. The
reaction force of the ground 0 on the truss at the pin support A is F0A = F/2 and the
reaction force of the ground 0 on the truss at the roller support C is F0C = F/2.

Method of Joints
This method for calculating the forces in the members consists of writing the con-
ditions of equilibrium for the forces acting on the connecting pin of each joint. The
method deals with the equilibrium of concurrent forces, and only two independent
equilibrium equations are involved. The analysis starts with any joint where at least
one known force exists and where not more than two unknown forces are located.
For the truss shown in Fig. 4.13 the analysis begins with the pin at A. The force in
each link is designated by one letter defining the node and one number defining the
member. The proper directions of the forces should be evident by inspection for sim-
ple cases. The free-body diagram of the joint A is shown in Fig. 4.14a. Figure 4.14a
indicates the process of the action and reaction in the members and joints. The force
F1A is the force of the member 1 (member AB) on the node A and is drawn acting
away from the pin A. The force FA1 is the force of node A on the member 1 and
F1A = −FA1, F1A = FA1. The tension in member 1 (force FA1) is indicated by an
arrow away from the pin A (force F1A).

The force F2A is the force of the member 2 (member AE) on the node A and is
drawn toward the pin A. The force FA2 is the force of node A on the member 2 and
F2A = −FA2, F2A = FA2. The compression (force F2A) is indicated by an arrow
toward the pin A (force F2A).

The magnitudes of F1A and F2A are obtained from the conditions of equilibrium
for the joint A

162 4 Equilibrium

(a) (b)

A

y

x

compression

tension
x

tension

(c)

E

F
(d)

B

C

compression

F1A 1

2

4

5

F
A1

F2A

F
A2

F0A F0C

F4C

F5C

F
C5

F
C4

F6E

F2E
F3E

F
E2

F1B

F3B

F7B

Fig. 4.14 Free-body diagrams of portions of members

∑
FA = F0A + F1A + F2A = 0,

or ∑
FA

x = 0 and
∑

FA
y = 0,

or
−F2A

√
2/2 + F1A = 0 and F0A − F2A

√
2/2 = 0,

or
F2A = F

√
2/2 and F1A = F/2.

Joint C is analyzed next, Fig. 4.14b, since it contains only two unknowns, F4C and
F5C

F4C = 0 and F5C = FC = F/2.

For joint E the force equilibrium conditions give

F6E + F2E
√

2/2 = 0 and F3E + F2E
√

2/2 − F = 0,

or
F6E = −F/2 and F3E = F/2.

4.5 Plane Trusses 163

Fig. 4.15 Free-body dia-
grams of each joint

A
B

D
E

C1

2
3

4

5

6

7

F
E2

F
E6

F
D7

F
D6

F
B7

F
A2

F
A1 F

B1

The force in the member F6E is toward the pin E (compression). For joint B,
Fig. 4.14c, the force equilibrium condition for y-axis gives

F7B
√

2/2 − F3B = 0 or F7B = F
√

2/2.

The correctness of the analysis is checked with the force equilibrium condition for
x-axis

F7B
√

2/2 − F1B = 0.

Figure 4.15 shows the free-body diagram of each member. The method of joints
for plane trusses employees only two of the three equilibrium equations because the
method involves concurrent forces at each joint. A plane truss is statically determinate
internally if n + 3 = 2 c, where n is number of its links and c is the number of its
joints.

Method of Sections
The method of sections has the advantage that the force in almost any member
may be found directly from an analysis of a section which has cut that link. Since
there are only three independent equilibrium equations in plane not more than three
members whose forces are unknown should be cut. For the truss shown in Fig. 4.13
for ready reference the external reactions are first computed by considering the truss
as a whole. The force in the members 6, 7, and 4 will be determined. An imaginary
section, indicated by the dashed line, is passed through the truss, cutting it into two
parts, Fig. 4.16. This section has cut three links whose forces FD6, FD7, and FC4
are initially unknown. The left-hand section is in equilibrium under the action of
the external force F at E, the pin support reaction F0A = F/2, and the three forces
exerted FD6, FD7, and FC4 on the cut members by the right-hand section which has
been removed. In general, the forces are represented with their proper senses by a
visual approximation of the system in equilibrium. The proper senses will also result
from the computations. The sum of the moments about point B for the left-hand
section (LHS) gives

∑
MLHS

B = FD6 a + F0A a = 0 or FD6 = F0A = F/2.

164 4 Equilibrium

A
B

DE

C

F

a

a a

y

x

1

2
3

4

5

6

7

F0A
F0C

A
B

DE

C

F

a

a a

y

x

1

2
3

4

5

6

7

F0A
F0C

F
D6

F
D7

F
C4

6

4

7
F

E6

F
B7

F
B4

6

4

7

Fig. 4.16 Method of sections

The sum of the moments about point D for the right-hand section gives

∑
MRHS

D = FB4 a + FC (0) = 0 or FB4 = 0.

The sum of the forces for right-hand section on x-axis is

FE6 − FB7
√

2/2 = 0 or FB7 = FE6
√

2 = F
√

2/2.

4.6 Particle on a Smooth Surface and on a Smooth Curve

Consider a particle at rest on a smooth surface. The equation of the surface in a
cartesian reference is

f (x, y, z) = 0. (4.7)

This is a ideal bilateral constraint for the particle. The mathematical expression for
a unilateral constraint would be f (x, y, z) ≥ 0. The constraint given by Eq. (4.7)
reduces the number of degrees of freedom. The particle has only two degrees of
freedom. The reaction of the surface on the particle is perpendicular to the surface
and it is a vector collinear to grad f = ∇ f The normal reaction is

4.6 Particle on a Smooth Surface and on a Smooth Curve 165

N = λ ∇ f = λ

(
∂f

∂x
ı + ∂f

∂y
j + ∂f

∂z
k
)

, λ ∈ R. (4.8)

The vectorial equilibrium equation for a particle on a surface is

F + λ ∇ f = 0, (4.9)

where F is the external force on the particle. The scalar equilibrium equations of a
particle on a surface are

Fx + λ
∂f

∂x
= 0,

Fy + λ
∂f

∂y
= 0, (4.10)

Fz + λ
∂f

∂z
= 0.

The surface equation given by Eq. (4.7) is added to the scalar equilibrium equations.
From Eqs. (4.7) and (4.9) the coordinates x, y, z determine the equilibrium position
of the particle and the normal reaction is given by λ.

Consider a particle at rest on a smooth curve. The equation of the smooth curve
in a cartesian reference frame is given as the intersection of two surfaces

f1(x, y, z) = 0 and f2(x, y, z) = 0. (4.11)

The constraints given by Eq. (4.11) reduce the number of degrees of freedom of the
particle to one. The reaction of the curve on the particle is perpendicular to the curve
(normal reaction) and it is a vector calculated with

N = N1 + N2 = λ1 ∇ f1 + λ2 ∇ f2

=λ1

(
∂f1
∂x

ı + ∂f1
∂y

j + ∂f1
∂z

k
)

+ λ2

(
∂f2
∂x

ı + ∂f2
∂y

j + ∂f2
∂z

k
)

λ ∈ R. (4.12)

The vectorial equilibrium equation for a particle on a smooth curve is

F + λ1 ∇ f1 + λ2 ∇ f2 = 0. (4.13)

The scalar equilibrium equations of a particle on the curve are

Fx + λ1
∂f1
∂x

+ λ2
∂f2
∂x

= 0,

Fy + λ1
∂f1
∂y

+ λ2
∂f2
∂y

= 0,

166 4 Equilibrium

21nF

21tF

1

2

FBD 1

O

O

x

x

m

m

y

y

G

21F

(a)

(b)
1

blockof

α

αα

Fig. 4.17 Example 4.1

Fz + λ1
∂f1
∂z

+ λ2
∂f2
∂z

= 0. (4.14)

The curve equations given by Eq. (4.12) is added to the scalar equilibrium equa-
tions. From Eqs. (4.12) and (4.14) the coordinates x, y, z determine the equilibrium
position of the particle and the normal reaction is given by λ1 and λ2.

4.7 Examples

Example 4.1 A block 1 with the mass m is on an inclined plane 2 with the angle α
with the horizontal, as shown in Fig. 4.17a. Find the normal (perpendicular to the
plane) and the tangential (parallel to the plane) components of the reaction force
of the inclined 2 plane on the block 1. The dimensions of the block are negligible.
Numerical application: m = 100 kg, g = 9.81 m/s2, and α = 30◦.

Solution The free-body diagram of the block 1 is shown in Fig. 4.17b and the reac-
tion force of the inclined plane on the block is F21.

4.7 Examples 167

F21 = F21n + F21t

The equilibrium equation for the block 1 is

∑
F = 0 =⇒ G + F21 = 0,

or
G + F21n + F21t = 0.

The normal component of the reaction force F21n is at an angle of α = 30◦ with the
gravitational force vector G = mg and

F21n = G cos α = mg cos α = 100(9.81) cos 30◦ = 849.571 N.

The parallel component to the plane is

F21t = G sin α = mg sin α = 100(9.81) sin 30◦ = 490.5 N.

Example 4.2 Figure 4.18a shows a block of mass m supported by two cables AB and
AC. The distance BO is a1, the distance OC is a2 and the distance AO is a3. Find the
tension in each cable. Numerical application: m = 10 kg, g = 9.81 m/s2, a1 = 3 m,
a2 = 5 m, and a3 = 1 m.

Solution The free-body diagram of the knot at A is shown in Fig. 4.18a with mg
acting vertically down and the tensions in AC and AB. The force equilibrium equations
are

∑
Fx = −TAB sin θ1 + TAC sin θ2 = 0, (4.15)

∑
Fy = TAB cos θ1 + TAC cos θ2 = mg. (4.16)

There are two equations with two unknowns. The problem is therefore statically

determinate, i.e., it can be solved. From Eq. (4.15), TAC = sin θ1

sin θ2
TAB. Substituting

into Eq. (4.16) it results

TAB cos θ1 + sin θ1

sin θ2
TAB cos θ2 = mg,

or

TAB = mg

cos θ1 + sin θ1

sin θ2
cos θ2

= mg sin θ2

cos θ1 sin θ2 + sin θ1 cos θ2
.

168 4 Equilibrium

(a)

(b)

x

y

a1 a2

a3
COB

A

m

x

y

a1 a2

a3
C

O

B

A

TAB
θ1

TAC

θ2

G

Fig. 4.18 Example 4.2

The trigonometric functions are sin θ1 = a1

lAB
, cos θ1 = a3

lAB
, sin θ2 = a2

lAC
, and

cos θ2 = a3

lAC
, where lAB =

√
a2

1 + a2
3 and lAC =

√
a2

2 + a2
3.

It results

TAB = mg
a2

√
a2

1 + a2
3

a3(a1 + a2)
= 10 (9.81)

5
√

32 + 12

(1)(3 + 5)
= 193.887 N,

and in a similar way

TAC = mg
a1

√
a2

2 + a2
3

a3(a1 + a2)
= 10 (9.81)

3
√

52 + 12

(1)(3 + 5)
= 187.58 N.

The same solution could also be obtained by writing an equilibrium moment equation
with respect to a point that yields to one unknown. Suppose, for example, the moment
equation is written about the point B. Then

∑
MB = rBA × (TAB + TAC + G) = rBA × (TAC + G) = 0, (4.17)

4.7 Examples 169

where

G = Gj = −mgj, TAB = TABxı + TAByj, TAC = TACxı + TACyj,

and
rBA × TAB = 0. (4.18)

The position vectors of the points A, B, and C are

rA = xAı + yAj = −a3j, rB = xBı + yBj = −a1ı, rC = xC ı + yCj = a2ı.

Equation (4.17) becomes

∑
MB = rBA × TAC + rBA × G

=
∣∣∣∣∣∣

ı j k
xA − xB yA − yB 0

−TAC sin θ2 TAC cos θ2 0

∣∣∣∣∣∣
+

∣∣∣∣∣∣

ı j k
xA − xB yA − yB 0

0 G 0

∣∣∣∣∣∣

= ((xA − xB) TAC cos θ2 − (yA − yB) TAC sin θ2) k + (xA − xB) Gk

= [
(xA − xB) TAC cos θ2 − (yA − yB) TAC sin θ2 + (xA − xB) G

]
k = 0,

or
(xA − xB) TAC cos θ2 − (yA − yB) TAC sin θ2 + (xA − xB) G = 0.

It results

TAC = mg
(xA − xB)

(xA − xB) cos θ2 − (yA − yB) sin θ2
.

The unknown TAB is calculated from a equilibrium moment equation of the system
about the point C.

∑
MC = rCA × (TAB + TAC + G) = rCA × (TAB + G) = 0,

and from the previous relation the tension TAB is calculated. The MATLAB program
for the second method is given by

rB_=[-a1, 0, 0];
rC_=[a2, 0, 0];
rA_=[0,-a3,0];
SMB_=cross(rA_-rB_,TAC_+G_);
TACs=solve(SMB_(3),’TAC’);
SMC_=cross(rA_-rC_,TAB_+G_);
TABs=solve(SMC_(3),’TAB’);

and the results in MATLAB are:

170 4 Equilibrium

sum M about B = rBA_ x (TAC_+G_) = 0_
TAC =

2 2 1/2
a1 g m (a2 + a3)

a3 (a1 + a2)

TAC = 187.58 (N)

sum M about C = rCA_ x (TAB_+G_) = 0_
TAB =

2 2 1/2
a2 g m (a1 + a3)

a3 (a1 + a2)

TAB = 193.887 (N)

Example 4.3 A particle P of mass m, shown in Fig. 4.19, is at rest on a plane given
by the cartesian equation

f (x, y, z) = a x + b y + c z + d = 0.

The gravity force on the particle is G = −mg k, where g is the gravitational accel-
eration. A fixed point A of coordinates xA = yA = 0 and zA = h is on the z−axis.
An attraction force proportional with the distance from P to A acts on the particle:
F = k rPA where k > 0. Find the equilibrium position of the particle and the reac-
tion force of the plane for this case. For the numerical application use m = 10 kg,
g = 9.8 m/s2, a = 1, b = 1, c = 1, d = 1.5, h = 5 m, and k = 10 N/m (Fig. 4.19).

Solution The input data and the forces on the particle are given in MATLAB as:

syms x y z a b c d h k m g lambda
f = a*x+b*y+c*z+d; % surface equation
rP_ = [x y z]; % position vector of the particle P
rA_ = [0 0 h]; % position vector of fixed point A
F_ = k*(rA_-rP_); % attraction force on the particle
G_ = [0 0 -m*g]; % gravity force on particle P

The normal reaction perpendicular to the surface f is

N = λ ∇ f = λ

(
∂f

∂x
ı + ∂f

∂y
j + ∂f

∂z
k
)

,

or in MATLAB:

4.7 Examples 171

−10 −5 0 5 10 −10
−5

0
5

10
−10

−5

0

5

10

y(m)

 x

 y

 N

 G

 P

 O

 A

 z

x(m)

z(
m

)
a x + b y +c z + d = 0

 F

Fig. 4.19 Example 4.3

gradf_ = [diff(f,x), diff(f,y), diff(f,z)];
N_ = lambda*gradf_;

The sum of all the forces on the particle is:
∑

F = F + G + N. The equilibrium
equations are

(∑
F
)

· ı = 0,
(∑

F
)

· j = 0,
(∑

F
)

· k = 0,

a x + b y + c z + d = 0,

or in MATLAB:

a*lambda - k*x = 0
b*lambda - k*y = 0
c*lambda - g*m + k*(h - z) = 0
d + a*x + b*y + c*z = 0

The equilibrium position for the particle and the reaction force given by λ are solved
in MATLAB:

SF_ = F_+G_+N_;
sol=solve...
(SF_(1),SF_(2),SF_(3),f,’x,y,z,lambda’);
xe = eval(sol.x);

172 4 Equilibrium

ye = eval(sol.y);
ze = eval(sol.z);
lambdae = eval(sol.lambda);
Ne_ = lambdae*gradf_;
Ne = sqrt(simple(Ne_*Ne_.’));

and the results are:

x =

a (d k + c h k - c g m)
- -----------------------

2 2 2
k (a + b + c)

y =

b (d k + c h k - c g m)
- -----------------------

2 2 2
k (a + b + c)

z =

2 2 2 2
h a + h b - c d g m (a + b)
----------------- - ----------------

2 2 2 2 2 2
a + b + c k (a + b + c)

normal reaction force N_:

lambda =

d k + c h k - c g m
- -------------------

2 2 2
a + b + c

N_ =

+- -+
| a #1 b #1 c #1 |
| - ------------, - ------------, - ------------ |
| 2 2 2 2 2 2 2 2 2 |
| a + b + c a + b + c a + b + c |

4.7 Examples 173

+- -+

where

#1 == d k + c h k - c g m

N = |N_| =

/ 2 \1/2
(d k + c h k - c g m)
2 2 2
\ a + b + c /

Example 4.4 A particle P of mass m is on a parabola given by the cartesian equation

f = y + a x2 = 0 and z = 0.

The gravity force on the particle is G = −mg j, where g is the gravitational accel-
eration. An attraction force proportional with the distance from P to y−axis acts on
the particle: F = −k x ı where k > 0. Find the equilibrium position of the particle
and the reaction force of the curve. For the numerical application use a = 1 m−1,
g = 9.8 m/s2, m = 10 kg, and k = 10 N/m.

Solution The parabola equation and the forces on the particle are written in MAT-
LAB as:

syms x y z a k m g lambda
f = y+a*xˆ2; % parabola equation
rP_ = [x y 0]; % particle position vector
F_ = -k*[rP_(1) 0 0]; % attraction force on particle
G_ = [0 -m*g 0]; % gravity force on particle P

The normal reaction perpendicular to f is

N = λ ∇ f = λ

(
∂f

∂x
ı + ∂f

∂y
j + ∂f

∂z
k
)

,

or in MATLAB:

gradf_ = [diff(f,x), diff(f,y), diff(f,z)];
N_ = lambda*gradf_;

The sum of all the forces on the particle is:

SF_ = F_ + G_ + N_;

174 4 Equilibrium

and the equilibrium equations are:

2*a*lambda*x - k*x = 0 (1)
lambda - g*m = 0 (2)
y + a*xˆ2 = 0 (3)

The equilibrium position for the particle and the reaction force are determined in
MATLAB:

sol=solve...
(SF_(1),SF_(2),f,’x,y,lambda’);
xe = eval(sol.x);
ye = eval(sol.y);
lambde = eval(sol.lambda);

One equilibrium position, Fig. 4.20, is given by:

x = 0
y = 0
lambda = g*m
curve reaction force N_
Nx = 0
Ny = g*m
numerical application
N_ = [0,98.000,0] (N)

From the first equilibrium equation2*a*lambda*x - k*x = 0 the equilibrium
condition for any point on the curve is k = 2*a*g*m.

Example 4.5 A particle P of mass m is on a circle given by the cartesian equation

f = x2 + y2 − R2 = 0 and z = 0.

The gravity force on the particle is G = −mg j, where g is the gravitational acceler-
ation. An reaction force proportional with the distance from P to y−axis acts on the
particle: F = k x ı where k > 0. Find the equilibrium position of the particle and the
reaction force of the curve. For the numerical application use R = 1 m, g = 9.8 m/s2,
m = 1 kg, and k = 20 N/m.

Solution The circle equation and the forces on the particle are written in MATLAB
as:

syms x y z R k m g lambda
f = xˆ2+yˆ2-Rˆ2;
rP_ = [x y 0];
F_ = k*[x 0 0];
G_ = [0 -m*g 0];

The normal reaction perpendicular to f is:

4.7 Examples 175

−2 −1.5 −1 −0.5 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

x(m)

y(
m

)

N

G

y + a*x^2 = 0

P
F

O x

0

Fig. 4.20 Example 4.4

gradf_ = [diff(f,x), diff(f,y), diff(f,z)];
N_ = lambda*gradf_;

and the sum of all the forces on the particle is:

SF_ = F_ + G_ + N_;

The equilibrium equations are:

k*x + 2*lambda*x = 0
2*lambda*y - g*m = 0
xˆ2 - Rˆ2 + yˆ2 = 0

There are four equilibrium positions, as shown in Fig. 4.21:

equilibrium position P1:

x = 0
y = R
lambda = (g*m)/(2*R)
Nx = 0
Ny = g*m
Nz = 0

equilibrium position P2:

x = 0

176 4 Equilibrium

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
 N1

 N2

 N3 N4

x(m)

y(
m

)
 P1

 P2

 P3 P4

P

O x

y

G F

Fig. 4.21 Example 4.5

y = -R
lambda = -(g*m)/(2*R)
Nx = 0
Ny = g*m
Nz = 0

equilibrium position P3:

x = ((R*k + g*m)*(R*k - g*m))ˆ(1/2)/k
y = -(g*m)/k
lambda = -k/2
Nx = -((R*k + g*m)*(R*k - g*m))ˆ(1/2)
Ny = g*m
Nz = 0

equilibrium position P4:

x = -((R*k + g*m)*(R*k - g*m))ˆ(1/2)/k
y = -(g*m)/k
lambda = -k/2
Nx = ((R*k + g*m)*(R*k - g*m))ˆ(1/2)
Ny = g*m
Nz = 0

4.7 Examples 177

B

D
C

A

F

x

y

1

2

3

4 5
l

l

B

C

A

F

x

y

1

2

3

4 5

l

0AyF

D

0AxF

0ByF

2F

D

(a)

3DF

4DF

(c)

(b)

C F3CF

2CF

(d)

5CF

B
1BF

2BF

(e)

0ByF

2F

2F

α θ

θ
θ

α

θ

Fig. 4.22 Example 4.6

Example 4.6 Find the force in each member of the truss, shown in Fig. 4.22a, in
terms of the external force F. State if the members are in tension or compression.
For the numerical application use: AB = CD = l = 1 m and F = 100 daN.

Solution The free-body diagram of the truss is shown in Fig. 4.22b. For the method
of joints the support reactions are not required for determining the member forces.
The analysis begins with the pin at D. The free-body diagram of the joint D is shown
in Fig. 4.22c. The force in each link is designated by one letter defining the node
and one number defining the member. The proper directions of the forces should be
evident by inspection for simple cases. The force F4D is the force of the member 4
(member AD) on the node D. The force F3D is the force of the member 3 (member

178 4 Equilibrium

CD) on the node D. The magnitudes of F4D and F3D are obtained from the conditions
of equilibrium for the joint D:

Fn =100.; % daN
syms F
theta=atan(1/2);
alpha=atan(1);
% sumFDy = F4D*sin(alpha)- 2*F = 0
F4D = 2*F/sin(alpha);
% sumFDx = F4D*cos(alpha)- F3D = 0
F3D = F4D*cos(alpha);

and the results are:

% F4D = 2*2ˆ(1/2)*F = 282.843 (daN) =>
% 4=AD (Compression)
% F3D = 2*F = 200.000 (daN) =>
% 3=DC (Compression)

The free-body diagram of the joint C is shown in Fig. 4.22d. The magnitudes of F2C

and F5C are obtained from the equilibrium conditions for the joint C:

syms F2C F5C
F3C = F3D;
% sumFCx = F3C-F5C*cos(theta)+F2C*cos(alpha)-F=0
sumFCx = F3C-F5C*cos(theta)+F2C*cos(alpha)-F;
% sumFCy = -F5C*sin(theta)+F2C*sin(alpha)=0
sumFCy = -F5C*sin(theta)+F2C*sin(alpha);
solC=solve(sumFCx,sumFCy,’F2C’,’F5C’);
F2Cs = solC.F2C;
F5Cs = solC.F5C;

The results are:

% F2C = 2ˆ(1/2)*F = 141.421 (daN) =>
% 2=BC (Compression)
% F5C = 5ˆ(1/2)*F = 223.607 (daN) =>
% 5=AC (Tension)

From the free-body diagram of the joint B, shown in Fig. 4.22e, the magnitude of
F1B is calculated:

F2B = F2Cs;
% sumFBx = F1B-F2B*cos(alpha)=0
F1B=F2B*cos(alpha);

and the result is:

% F1B = F = 100.000 (daN) =>
% 1=AB (Tension)

4.7 Examples 179

BA

y

x

DO

α β

γ

FA

FB

G
FD

MC
MO

 x

 y

 O A B MC D

 F
A F

B

 F
D G

(a)

(b)

Fig. 4.23 Example 4.7 (a) free-body diagram and (b) MATLAB figure

Example 4.7 A horizontal uniform cantilever beam OD has the length l, the mass m,
and is fixed at O. The forces FA, FB, and FD act on the beam at the points A, B, and
D. The angles of these external forces with the horizontal are α, β, and γ as shown in
Fig. 4.23. A counter-clockwise couple MC is applied on the beam. Find the reaction
force and the reaction moment at the support O. For the numerical application use:

% xA=1; xB=3; xD=8; (m)
% FA=3000; FB=3500; FD= 4000; (N)
% alpha=pi/4; beta=pi/6; gamma=pi/6; (rad)
% MC=10*10ˆ3; (N m)
% m=250; (kg)
% g=8.81;(m/sˆ2)

Solution The weight of the beam G is acting at the midpoint of the beam. In order
to determine vertical and horizontal components of the reaction force, the following
equations are written. The sum of all the forces acting on the beam is zero, that is:

∑
F = FO + FA + FB + FD + G = 0,

or equivalent

180 4 Equilibrium

∑
Fx = FOx + FAx + FBx + FDx + Gx = 0,

∑
Fy = FOy + FAy + FBy + FDy + Gy = 0.

The component of FA on the x−axis is FAx = FA sin α and on the y−axis is F1y =
FA cos α. The components of FB are FBx = −FB sin β and FBy = FB cos β. The
components of FD are FDx = −FD sin γ and FDy = −FD cos γ. The components of
weight G are Gx = 0 and Gy = −mg. The MATLAB commands for the forces are:

syms FA alpha
FAx=FA*cos(alpha);
FAy=FA*sin(alpha);
FA_=[FAx,FAy,0];
syms FB beta
FBx=-FB*cos(beta);
FBy=FB*sin(beta);
FB_=[FBx,FBy,0];
syms FD gamma
FDx=-FD*cos(gamma);
FDy=-FD*sin(gamma);
FD_=[FDx,FDy,0];
syms m g
G_=[0,-m*g,0];
syms FOx FOy
FO_=[FOx,FOy,0];

From the equilibrium equations the reaction force at O is

FOx = −FA cos α + FB cos β + FD cos γ,

FOy = −FA sin α − FB sin β + FD sin γ + mg,

or in MATLAB:

FO_=-(G_+FA_+FB_+FD_);
FOx = FO_(1);
FOy = FO_(2);

The sum of all moments of all forces and moments on the beam about O is zero

∑
M = MO + rA × FA + rG × G + rB × FB + MC + rD × FD = 0,

or

4.7 Examples 181

∑
M = MO + xAFAy + xGGy + xBFBy + MC + xDFDy

= MO + xAFA sin α − l

2
mg + xBFB sin β + MC − xDFD sin γ = 0

where xG = xD/2 = l/2. It results

MO = −xAFA sin α + l

2
mg − xBFB sin β − MC + lFD sin γ.

The numerical values for the reaction at O are:

FOx = 4.374 (kN)
FOy = 0.581 (kN)
MOz = 8.439 (kN m)

Example 4.8 The vertical shaft AB, shown in Fig. 4.24, is mounted through bearings
at A and B and is supporting a uniform rectangular plate ABED with mass m and
edges length AB = DE = h and AD = BE = b. The mass of the shaft is negligible
and the mass of the plate is m. The distance between the upper bearing located at
B and the lower bearing located at A is equal with h. The bearing at A supports the
entire vertical load. A moment of magnitude Me is applied to shaft in the vertically
upward direction. The plate is constrained from rotating about the vertical axis by the
action of a cable attached to outside corner of the plate denoted by D. The other end
of the cable is attached to a fixed support point P that is in a perpendicular line PA to
the pate. The perpendicular distance from the cable attachment point, P, to the plate
is equal to PA = a. Find the bearing reaction forces and the tension in the cable PD.
For the numerical application use h = 0.6 m, b = 0.6 m, a = 0.5 m, m = 100 kg,
Me = 120 N m, and g = 9.81 m/s2.

Solution Both bearings A and B can exert forces perpendicular to the shaft direction
on the shaft but are such that individually they provide no resistance to rotational
movements (no couples exerted by the bearings). The bearing forces are contained
in a horizontal plane. The plate is uniform and its center of mass is at its geometric
center. The weight of the plate is equal to its mass, m, multiplied by the gravitational
acceleration g. This force acts vertically downward through the mass center of the
plate G.

A reference frame Oxyz with the origin located at the bearing A and having the
z-axis directed upward along the shaft is chosen. The plate is contained in the yz
plane such that the positive x−axis will be directed from the shaft toward the cable
tie-down point P as shown in Fig. 4.24.

Considering the mechanical system to be the shaft-plate combination, the bearing
force of interest at A and B acts on the mechanical system. The weight of the plate as
well as the known couple (moment) acts on the mechanical system. In addition to the

182 4 Equilibrium

O

C

z

yA D

E
B

P

Me

b

h

a

x

(a)

(b)

Fig. 4.24 Example 4.8 (a) Mechanical system and (b) MATLAB figure

two unknown horizontal force components at the bearing B, the mechanical system
will also be acted upon by the cable force on the plate, and the three bearing reactions
at A (the vertical support on the shaft plus the two horizontal bearing components).

In order to determine vertical and horizontal components of the reaction force,
the following equations are written. The sum of all the forces acting on the system
is zero, that is ∑

F = FA + FB + G + T = 0,

or equivalent

4.7 Examples 183

∑
F = FAx ı + FAy j + FAzk + FBx ı + FBy j + T rDP/|rDP| − mg k = 0,

or equivalent

∑
Fx = FAx + FBx + Tx = 0,

∑
Fy = FAy + FBy + Ty = 0,

∑
Fz = FAz − mg = 0,

where

Tx = T
xP − xD√(

(xP − xD)2 + (yP − yD)2
) ,

Ty = T
yP − yD√(

(xP − xD)2 + (yP − yD)2
) .

The sum of moments of all forces about point A is zero, that is

∑
MA = Me + rAB × FB + rAD × T + rAC × G = 0,

or equivalent

∑
MA = Mek +

∣∣∣∣∣∣

ı j k
xB yB zB

FAx FAy 0

∣∣∣∣∣∣
+

∣∣∣∣∣∣

ı j k
xD yD 0
Tx Ty 0

∣∣∣∣∣∣
+

∣∣∣∣∣∣

ı j k
xC yC zC

0 0 −mg

∣∣∣∣∣∣
= 0.

The equilibrium equations in MATLAB are:

h=0.6; % m
b=0.6; % m
a=0.5; % m
m = 100.; % kg
g = 9.81; % m/sˆ2
Me = 120.; % N m

xA=0; yA=0; zA=0; % m
xB=0; yB=0; zB=h; % m
xD=0; yD=b; zD=0; % m
xE=0; yE=b; zE=h; % m
xC=0; yC=b/2;zC=h/2; % m
xP=a; yP=0; zP=0; % m

rA_=[xA yA zA];

184 4 Equilibrium

rB_=[xB yB zB];
rD_=[xD yD zD];
rE_=[xE yE zE];
rC_=[xC yC zC];
rP_=[xP yP zP];

G_ = [0 0 -m*g];
syms FAx FAy FAz
FA_ = [FAx,FAy,FAz];
syms FBx FBy
FB_ = [FBx,FBy,0];
u_=(rP_-rD_)/norm(rP_-rD_);
syms T
T_ = T*u_;
SF_ = FA_ + FB_ + G_ + T_;

Me_=[0,0,Me];
SMA_ = ...
cross(rC_,G_)+cross(rD_,T_)+cross(rB_,FB_)+Me_;

The six equilibrium equations are solved with MATLAB:

sol=solve(...
SF_(1) , SF_(2), SF_(3),...
SMA_(1),SMA_(2),SMA_(3));

FAxs=eval(sol.FAx);
FAys=eval(sol.FAy);
FAzs=eval(sol.FAz);
FBxs=eval(sol.FBx);
FBys=eval(sol.FBy);
Ts=eval(sol.T);

and the results are:

FAx= -200.000 (N)
FAy= 730.500 (N)
FAz= 981.000 (N)
FBx= 0.000 (N)
FBy= -490.500 (N)
T= -312.410 (N)

4.8 Problems 185

O
A B

C

l

A

a b

F FB

Fig. 4.25 Problem 4.1

l

a a

F F

Fig. 4.26 Problem 4.2

Fig. 4.27 Problem 4.3 l

a

w

4.8 Problems

4.1 The beam shown in Fig. 4.25 is loaded with the concentrated forces F1 = 100 N
and F2 = 500 N. The following dimensions are given: a = 0.5 m, b = 0.3 m,
and l = 1 m. Find the reactions at the supports O and C.

4.2 The beam depicted in Fig. 4.26 is loaded with the two concentrated forces with
the magnitude F = 200 lbs. The dimensions of the beam are given: a = 5 in
and l = 1 ft. Find the reactions at the supports.

4.3 Consider the cantilever beam of Fig. 4.27, subjected to a uniform load distrib-
uted, w = 100 N/m, over a portion of its length. The dimensions of the beam
are: a = 10 cm and l = 1 m. Find the support reaction on the beam.

4.4 A smooth sphere of mass m is resting against a vertical surface and an inclined
surface that makes an angle θ with the horizontal, as shown in Fig. 4.28. Find
the forces exerted on the sphere by the two contacting surfaces.

186 4 Equilibrium

Fig. 4.28 Problem 4.4

θ

Fig. 4.29 Problem 4.5

1

2

P

A

B

C

θ

D
θ

Numerical application: (a) m = 10 kg, θ = 30◦, and g = 9.8 m/s2; (b) m =
2 slugs, θ = 60◦, and g = 32.2 ft/sec2.

4.5 The links 1 and 2 shown in Fig. 4.29 are each connected to the ground at A and
C, and to each other at B using frictionless pins. The length of link 1 is AB = l.
The angle between the links is ∠ABC = θ. A force of magnitude P is applied
at the point D (AD = 2l/3) of the link 1. The force makes an angle θ with
the horizontal. Find the force exerted by the lower link 2 on the upper link 1.
Numerical application: (a) l = 1 m, θ = 30◦, and P = 1000 N; (b) l = 2 ft,
θ = 45◦, and P = 500 lb.

4.6 The shaft shown in Fig. 4.30 turns in the bearings A and B. The dimensions of
the shaft are a = 6 in. and b = 3 in. The forces on the gear attached to the shaft
are Ft = 900 lb and Fr = 500 lb. The gear forces act at a radius R = 4 in. from
the axis of the shaft. Find the loads applied to the bearings.

4.7 The shaft shown in Fig. 4.31 turns in the bearings A and B. The dimensions of
the shaft are a = 120 mm and b = 30 mm. The forces on the gear attached to
the shaft are Ft = 4500 N, Fr = 2500 N, and Fa = 1000 N. The gear forces
act at a radius R = 100 mm from the shaft axis. Determine the bearings loads.

4.8 The dimensions of the shaft shown Fig. 4.32 are a = 2 in. and l = 5 in. The
force on the disk with the radius r1 = 5 in. is F1 = 600 lb and the force on the

4.8 Problems 187

R

bearing A

bearingB

a

b

Fr

Ft

Fig. 4.30 Problem 4.6

Fig. 4.31 Problem 4.7

bearing A

bearingB

R

a

b

Fr

Ft

Fa

disk with the radius r2 = 2.5 in. is F2 = 1200 lb. Determine the forces on the
bearings at A and B.

4.9 The dimensions of the shaft shown Fig. 4.33 are a = 50 mm and l = 120 mm.
The force on the disk with the radius r1 = 50 mm is F1 = 4000 N and the
force on the disk with the radius r2 = 100 mm is F2 = 2000 N. Determine the
bearing loads at A and B.

4.10 The force on the gear in Fig. 4.34 is F = 1.5 kN and the radius of the gear is
R = 60 mm. The dimensions of the shaft are l = 300 mm and a = 60 mm.
Determine the bearing loads at A and B.

4.11 A torque (moment) of 24 N m is required to turn the bolt about its axis, as shown
in Fig. 4.35, where d = 120 mm and l = 14 mm. Determine P and the forces
between the smooth hardened jaws of the wrench and the corners of A and B

188 4 Equilibrium

Fig. 4.32 Problem 4.8

A

B

F1

F2

r
1

r2

a

a

l

Fig. 4.33 Problem 4.9

A

B

F1F

F2

r
1

r2

a

a

l

of the hexagonal head. Assume that the wrench fits easily on the bolt so that
contact is made at corners A and B only.

4.9 Programs

4.9.1 Program 4.2

% example 4.2
% equilibrium of a particle

4.9 Programs 189

A

F
0

a

l

B

20

R

Fig. 4.34 Problem 4.10

Fig. 4.35 Problem 4.11

A

PB

l

d

clear all; clc; close

syms a1 a2 a3 TAB TAC m g

list={m, g, a1, a2, a3 };
listn={10, 9.81, 3, 5, 1 };

lAB=sqrt(a1ˆ2+a3ˆ2);
lAC=sqrt(a2ˆ2+a3ˆ2);

stheta1=a1/lAB;
ctheta1=a3/lAB;
stheta2=a2/lAC;
ctheta2=a3/lAC;

TAB_ = [-TAB*stheta1, TAB*ctheta1, 0];
TAC_ = [TAC*stheta2, TAC*ctheta2, 0];
G_ = [0, -m*g, 0];

fprintf(’Method I \n’)
% SF_ = TAB_ + TAC_ + G_ = 0
fprintf(’sum forces = TAB_ + TAC_ + G_ = 0_ \n’)

190 4 Equilibrium

SF_=TAB_+TAC_+G_;
SFx=SF_(1);
SFy=SF_(2);

sol=solve(SFx, SFy,’TAB, TAC’);

Tab=eval(sol.TAB);
Tac=eval(sol.TAC);
Tabn=subs(Tab, list, listn);
Tacn=subs(Tac, list, listn);

fprintf(’TAB = \n’);pretty(simple(Tab));
fprintf(’= %g (N) \n’, Tabn);

fprintf(’\n’)
fprintf(’TAC = \n’);pretty(simple(Tac));
fprintf(’= %g (N) \n’, Tacn);

fprintf(’\n’)
fprintf(’Method II \n’)

rB_=[-a1, 0, 0];
rC_=[a2, 0, 0];
rA_=[0,-a3,0];

% SMB_ = rBA_ x (TAC_+G_) = 0_
fprintf(’sum M about B = rBA_ x (TAC_+G_) = 0_ \n’)

SMB_=cross(rA_-rB_,TAC_+G_);

TACs=solve(SMB_(3),’TAC’);

fprintf(’TAC = \n’)
pretty(simple(TACs))
fprintf(’\n’)
TACn=subs(TACs, list, listn);
fprintf(’TAC = %g (N) \n’, TACn)

fprintf(’\n’)
% SMC = rCA_ x (TAB_+G_) = 0_
fprintf(’sum M about C = rCA_ x (TAB_+G_) = 0_ \n’)

SMC_=cross(rA_-rC_,TAB_+G_);

4.9 Programs 191

TABs=solve(SMC_(3),’TAB’);

fprintf(’TAB = \n’)
pretty(simple(TABs))
fprintf(’\n’)
TABn=subs(TABs, list, listn);
fprintf(’TAB = %g (N) \n’, TABn)

% end of program

4.9.2 Program 4.3

% example 4.3
% equilibrium of a particle on a surface

clear all; clc; close

syms x y z a b c d h k m g lambda
f = a*x+b*y+c*z+d; % surface equation
rP_ = [x y z]; % position vector of the particle P
rA_ = [0 0 h]; % position vector of fixed point A
F_ = k*(rA_-rP_); % attraction force on the particle
G_ = [0 0 -m*g]; % gravity force on particle P
% net force on the particle: F_+G_
% reaction force of the surface on the particle
gradf_ = [diff(f,x), diff(f,y), diff(f,z)];
N_ = lambda*gradf_;
% equilibrium equations
SF_ = F_+G_+N_;
sol=solve...
(SF_(1),SF_(2),SF_(3),f,’x,y,z,lambda’);
xe = eval(sol.x);
ye = eval(sol.y);
ze = eval(sol.z);
lambdae = eval(sol.lambda);
Ne_ = lambdae*gradf_;
Ne = sqrt(simple(Ne_*Ne_.’));

fprintf(’equilibrium equations: \n’)
fprintf(’\n’)
fprintf(’%s = 0 \n’,char(SF_(1)))
fprintf(’%s = 0 \n’,char(SF_(2)))
fprintf(’%s = 0 \n’,char(SF_(3)))

192 4 Equilibrium

fprintf(’%s = 0 \n’,char(f))
fprintf(’\n’)

fprintf(’equilibrium position: \n’)
fprintf(’\n’)
fprintf(’x = \n’)
pretty(simple(xe))
fprintf(’\n’)
fprintf(’y = \n’)
pretty(simple(ye))
fprintf(’\n’)
fprintf(’z = \n’)
pretty(simplify(ze))
fprintf(’\n’)

fprintf(’normal reaction force N_: \n’)
fprintf(’\n’)
fprintf(’lambda = \n’)
pretty(simple(lambdae))
fprintf(’\n’)
fprintf(’N_ = \n’)
pretty(simple(Ne_))
fprintf(’\n’)
fprintf(’N = |N_| = \n’)
pretty(Ne)

% numerical application

lists = {a, b, c, d, h, k, m, g};
% numbers for lists
listn = {1,1,1,1.5,5,10,10,9.8};

xn = subs(xe,lists,listn);
yn = subs(ye,lists,listn);
zn = subs(ze,lists,listn);
ln = subs(lambdae,lists,listn);

rPn_ = [xn yn zn];
rAn_ = subs(rA_,lists,listn);
rPAn_ = rAn_-rPn_;
Gn_ = subs(G_,lists,listn);
Fn_ = subs(k*rPAn_,lists,listn);
Nn_ = subs(Ne_,lists,listn);

4.9 Programs 193

quiver3(0,0,0,xn,yn,zn,1,...
’Color’,’k’,’LineWidth’,1.5)

hold on
quiver3(xn,yn,zn, rPAn_(1),rPAn_(2),rPAn_(3),1,...

’Color’,’k’,’LineWidth’,1.5)
hold on
ff=10;
quiver3(xn,yn,zn,Nn_(1)/ff,Nn_(2)/ff,Nn_(3)/ff,1,...

’Color’,’k’,’LineWidth’,1.5)
hold on
quiver3(xn,yn,zn,Gn_(1)/ff,Gn_(2)/ff,Gn_(3)/ff,1,...

’Color’,’k’,’LineWidth’,1.5)
hold on

% surface equation
mg = 6;
[X,Y] = meshgrid(-mg:1:mg);
Z = (-a*X - b*Y -d)/c;
Z = subs(Z,lists,listn);
surf(X,Y,Z)
mesh(X,Y,Z,’EdgeColor’,’black’)

xlabel(’x(m)’), ylabel(’y(m)’), zlabel(’z(m)’)
sf=12;
axis([-sf sf -sf sf -sf sf])

text(0,0,0,’ O’,’HorizontalAlignment’,’right’)
text(xn,yn,zn,’ P’,’HorizontalAlignment’,’right’)
text(rAn_(1),rAn_(2),rAn_(3),’ A’,...

’HorizontalAlignment’,’right’)
text(xn+Nn_(1)/ff,yn+Nn_(2)/ff,zn+Nn_(3)/ff,...
’ N’,’fontsize’,14,’fontweight’,’b’)
text(xn+Gn_(1)/ff,yn+Gn_(2)/ff,zn+Gn_(3)/ff,...
’ G’,’fontsize’,14,’fontweight’,’b’)

% cartesian axes
quiver3(0,0,0,sf,0,0,1,’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,sf,0,1,’Color’,’k’,’LineWidth’,1)
quiver3(0,0,0,0,0,sf,1,’Color’,’k’,’LineWidth’,1)

text(sf,0,0,’ x’,’fontsize’,12,’fontweight’,’b’)
text(0,sf,0,’ y’,’fontsize’,12,’fontweight’,’b’)
text(0,0,sf,’ z’,’fontsize’,12,’fontweight’,’b’)

AZ = 35;

194 4 Equilibrium

EL = 14;
view(AZ,EL)

% end of program

4.9.3 Program 4.4

% example 4.4
% equilibrium of a particle on a curve

clear all; clc; close

syms x y z a k m g lambda
% parabola equation: y+a*xˆ2=0 & z=0
f = y+a*xˆ2; % a>0
% particle position vector
rP_ = [x y 0];
% attraction force on particle
% proportional to the y-axis distance
% F_ = -k*[rP_(1),0,0]
F_ = -k*[rP_(1) 0 0];
% gravity force on particle P
G_ = [0 -m*g 0];
% reaction force of the surface on the particle
gradf_ = [diff(f,x), diff(f,y), diff(f,z)];
N_ = lambda*gradf_;
% equilibrium equations
SF_ = F_ + G_ + N_;
fprintf(’equilibrium equations: \n’)
fprintf(’\n’)
fprintf(’%s = 0 (1)\n’,char(SF_(1)))
fprintf(’%s = 0 (2)\n’,char(SF_(2)))
fprintf(’%s = 0 (3)\n’,char(f))
fprintf(’\n’)
sol=solve...
(SF_(1),SF_(2),f,’x,y,lambda’);
xe = eval(sol.x);
ye = eval(sol.y);
lambde = eval(sol.lambda);

list ={x,y,lambda};
liste ={xe,ye,lambde};
Ne_ = subs(N_,list,liste);

4.9 Programs 195

Ne = sqrt(simple(Ne_*Ne_.’));

fprintf(’I. one equilibrium position is \n’)
fprintf(’x = %d \n’,xe)
fprintf(’y = %d \n’,ye)
fprintf(’lambda = %s \n’,char(lambde))
fprintf(’curve reaction force N_ \n’)
fprintf(’Nx = %s \n’,char(Ne_(1)))
fprintf(’Ny = %s \n’,char(Ne_(2)))
fprintf(’ \n’)
% numerical application
lists = {a, k, m, g};
% numbers for lists
listn = {1, 10, 10, 9.8};

xn = subs(xe,lists,listn);
yn = subs(ye,lists,listn);
ln = subs(lambde,lists,listn);
Gn_ = subs(G_,lists,listn);
rPn_ = [xn yn 0];
Nn_ = subs(Ne_,lists,listn);
fprintf(’numerical application \n’)
fprintf(’G_ = [%g,%6.3f,%g] (N)\n’,Gn_)
fprintf(’N_ = [%g,%6.3f,%g] (N)\n’,Nn_)
fprintf(’ \n’)

fprintf(’II. from Eq.(1)=> \n’)
fprintf...
(’equilibrim condition for any point on the curve\n’)
sole=solve...
(SF_(1),SF_(2),’k,lambda’);
ke = eval(sole.k);
lame = eval(sole.lambda);
fprintf(’k = %s \n’,char(ke))

% plot the curve
x = -2:1/10:2;
y = -x.ˆ2;
plot(x,y,’-’,’LineWidth’,2)
hold on
ff = 50;
quiver(xn,yn,Gn_(1)/ff,Gn_(2)/ff,1,...

’Color’,’k’,’LineWidth’,1.5)
quiver(xn,yn,Nn_(1)/ff,Nn_(2)/ff,1,...

’Color’,’r’,’LineWidth’,1.5)

196 4 Equilibrium

grid on
xlabel(’x(m)’), ylabel(’y(m)’)
text(xn+Nn_(1)/ff,yn+Nn_(2)/ff,...
’ N’,’fontsize’,14,’fontweight’,’b’)
text(xn+Gn_(1)/ff,yn+Gn_(2)/ff,...
’ G’,’fontsize’,14,’fontweight’,’b’)

% end of program

4.9.4 Program 4.5

% example 4.5
% equilibrium of a particle on a circle

clear all; clc; close

syms x y z R k m g lambda
% circle equation
f = xˆ2+yˆ2-Rˆ2;
% position vector of the particle P
rP_ = [x y 0];
% reaction force on the particle
% F_ = k*[x 0 0]
F_ = k*[x 0 0];
% gravity force on particle P
G_ = [0 -m*g 0];
% external force on the particle: F_+G_
% reaction force of the surface on the particle
gradf_ = [diff(f,x), diff(f,y), diff(f,z)];
N_ = lambda*gradf_;
% equilibrium equations
SF_ = F_ + G_ + N_;
fprintf(’equilibrium equations: \n’)
fprintf(’\n’)
fprintf(’%s = 0 \n’,char(SF_(1)))
fprintf(’%s = 0 \n’,char(SF_(2)))
fprintf(’%s = 0 \n’,char(f))
fprintf(’\n’)

sol=solve...
(SF_(1),SF_(2),f,’x,y,lambda’);
xe = eval(sol.x);
ye = eval(sol.y);

4.9 Programs 197

lambde = eval(sol.lambda);
list ={x,y,lambda};

fprintf(’equilibrium position P1: \n\n’)
fprintf(’x = %s \n’,char(xe(1)))
fprintf(’y = %s \n’,char(ye(1)))
fprintf(’lambda = %s \n’,char(lambde(1)))
list1 ={xe(1),ye(1),lambde(1)};
N1_ = subs(N_,list,list1);
fprintf(’Nx = %s \n’,char(N1_(1)))
fprintf(’Ny = %s \n’,char(N1_(2)))
fprintf(’Nz = %s \n’,char(N1_(3)))
fprintf(’\n’)

fprintf(’equilibrium position P2: \n\n’)
fprintf(’x = %s \n’,char(xe(2)))
fprintf(’y = %s \n’,char(ye(2)))
fprintf(’lambda = %s \n’,char(lambde(2)))
list2 ={xe(2),ye(2),lambde(2)};
N2_ = subs(N_,list,list2);
fprintf(’Nx = %s \n’,char(N2_(1)))
fprintf(’Ny = %s \n’,char(N2_(2)))
fprintf(’Nz = %s \n’,char(N2_(3)))
fprintf(’\n’)

fprintf(’equilibrium position P3: \n\n’)
fprintf(’x = %s \n’,char(xe(3)))
fprintf(’y = %s \n’,char(ye(3)))
fprintf(’lambda = %s \n’,char(lambde(3)))
list3 ={xe(3),ye(3),lambde(3)};
N3_ = subs(N_,list,list3);
fprintf(’Nx = %s \n’,char(N3_(1)))
fprintf(’Ny = %s \n’,char(N3_(2)))
fprintf(’Nz = %s \n’,char(N3_(3)))
fprintf(’\n’)

fprintf(’equilibrium position P4: \n\n’)
fprintf(’x = %s \n’,char(xe(4)))
fprintf(’y = %s \n’,char(ye(4)))
fprintf(’lambda = %s \n’,char(lambde(4)))
list4 ={xe(4),ye(4),lambde(4)};
N4_ = subs(N_,list,list4);
fprintf(’Nx = %s \n’,char(N4_(1)))
fprintf(’Ny = %s \n’,char(N4_(2)))
fprintf(’Nz = %s \n’,char(N4_(3)))

198 4 Equilibrium

fprintf(’\n’)

% numerical application
lists = {R, k, m, g};
% numbers for lists
listn = {1, 20, 1, 9.8};

x1 = subs(xe(1),lists,listn);
y1 = subs(ye(1),lists,listn);
N1n_= subs(N1_,lists,listn);

x2 = subs(xe(2),lists,listn);
y2 = subs(ye(2),lists,listn);
N2n_= subs(N2_,lists,listn);

x3 = subs(xe(3),lists,listn);
y3 = subs(ye(3),lists,listn);
N3n_= subs(N3_,lists,listn);

x4 = subs(xe(4),lists,listn);
y4 = subs(ye(4),lists,listn);
N4n_= subs(N4_,lists,listn);

xC = 0; yC = 0; R = 1;
phi=0:0.01:2*pi;
xp=R*cos(phi);
yp=R*sin(phi);
plot(xC+xp,yC+yp,’--’,’LineWidth’,1)
hold on

plot(x1,y1,’r.’)
plot(x2,y2,’r.’)
plot(x3,y3,’r.’)
plot(x4,y4,’r.’)

ff = 25;
quiver...
(x1,y1,N1n_(1)/ff,N1n_(2)/ff,1,...
’Color’,’k’,’LineWidth’,1.5)
quiver...
(x2,y2,N2n_(1)/ff,N2n_(2)/ff,1,...
’Color’,’k’,’LineWidth’,1.5)
quiver...
(x3,y3,N3n_(1)/ff,N3n_(2)/ff,1,...
’Color’,’k’,’LineWidth’,1.5)

4.9 Programs 199

quiver...
(x4,y4,N4n_(1)/ff,N4n_(2)/ff,1,...
’Color’,’k’,’LineWidth’,1.5)

text...
(x1+N1n_(1)/ff,y1+N1n_(2)/ff,...
’ N1’,’fontsize’,14,’fontweight’,’b’)
text...
(x2+N2n_(1)/ff,y2+N2n_(2)/ff,...
’ N2’,’fontsize’,14,’fontweight’,’b’)
text...
(x3+N3n_(1)/ff,y3+N3n_(2)/ff,...
’ N3’,’fontsize’,14,’fontweight’,’b’)
text...
(x4+N4n_(1)/ff,y4+N4n_(2)/ff,...
’ N4’,’fontsize’,14,’fontweight’,’b’)

xlabel(’x(m)’), ylabel(’y(m)’)
sf=1.5;
axis([-sf sf -sf sf])
grid on

text(x1,y1,’ P1’,’fontsize’,14,’fontweight’,’b’)
text(x2,y2,’ P2’,’fontsize’,14,’fontweight’,’b’)
text(x3,y3,’ P3’,’fontsize’,14,’fontweight’,’b’)
text(x4,y4,’ P4’,’fontsize’,14,’fontweight’,’b’)

% end of program

4.9.5 Program 4.6

% example 4.6
% method of joints:
% support reactions are not required
% for determining the member forces

clear all; clc; close all

Fn =100.; % daN
syms F
theta=atan(1/2);
alpha=atan(1);

200 4 Equilibrium

% joint D
% sumFDy = F4D*sin(alpha)- 2*F = 0
F4D = 2*F/sin(alpha);
% sumFDx = F4D*cos(alpha)- F3D = 0
F3D = F4D*cos(alpha);

fprintf(’F4D = %s ’,char(F4D))
fprintf(’ = %6.3f (daN) \n’,subs(F4D,F,Fn))
fprintf(’F3D = %s ’,char(F3D))
fprintf(’ = %6.3f (daN) \n’,subs(F3D,F,Fn))
fprintf(’\n’)

% F4D = 2*2ˆ(1/2)*F = 282.843 (daN) =>
% 4=AD (Compression)

% F3D = 2*F = 200.000 (daN) =>
% 3=DC (Compression)

syms F2C F5C
% joint C
F3C = F3D;
% sumFCx = F3C-F5C*cos(theta)+F2C*cos(alpha)-F=0
sumFCx = F3C-F5C*cos(theta)+F2C*cos(alpha)-F;
% sumFCy = -F5C*sin(theta)+F2C*sin(alpha)=0
sumFCy = -F5C*sin(theta)+F2C*sin(alpha);
solC=solve(sumFCx,sumFCy,’F2C’,’F5C’);
F2Cs = solC.F2C;
F5Cs = solC.F5C;
fprintf(’F2C = %s ’,char(F2Cs))
fprintf(’ = %6.3f (daN) \n’,subs(F2Cs,F,Fn))
fprintf(’F5C = %s ’,char(F5Cs))
fprintf(’ = %6.3f (daN) \n’,subs(F5Cs,F,Fn))
fprintf(’\n’)

% F2C = 2ˆ(1/2)*F = 141.421 (daN) =>
% 2=BC (Compression)

% F5C = 5ˆ(1/2)*F = 223.607 (daN) =>
% 5=AC (Tension)

% joint B
F2B = F2Cs;
% sumFBx = F1B-F2B*cos(alpha)=0
F1B=F2B*cos(alpha);
% sumFBy = -F2B*sin(alpha)+F0By=0

4.9 Programs 201

F0By = F2B*sin(alpha);
fprintf(’F1B = %s ’,char(F1B))
fprintf(’ = %6.3f (daN) \n’,subs(F1B,F,Fn))

% F1B = F = 100.000 (daN) =>
% 1=AB (Tension)

% end of program

4.9.6 Program 4.7

% example 4.7

clear all; clc; close all

syms xO yO xA yA xB yB xC yC xD yD
rO_=[xO,yO,0];
rA_=[xA-xO,yA-yO,0];
rB_=[xB-xO,yB-yO,0];
rC_=[xC-xO,yC-yO,0];
rD_=[xD-xO,yC-yO,0];

syms FA alpha
FAx=FA*cos(alpha);
FAy=FA*sin(alpha);
FA_=[FAx,FAy,0];
fprintf(’FA_=[%s,%s] \n\n’,...

char(FAx),char(FAy))

syms FB beta
FBx=-FB*cos(beta);
FBy=FB*sin(beta);
FB_=[FBx,FBy,0];
fprintf(’FB_=[%s,%s]\n\n’,...

char(FBx),char(FBy))

syms FD gamma
FDx=-FD*cos(gamma);
FDy=-FD*sin(gamma);
FD_=[FDx,FDy,0];
fprintf(’FD_=[%s,%s]\n\n’,...

char(FDx),char(FDy))

202 4 Equilibrium

syms m g
G_=[0,-m*g,0];
fprintf(’G_ =[%s,%s] \n\n’,...

char(G_(1)),char(G_(2)))

syms FOx FOy
FO_=[FOx,FOy,0];

sumF_ = FO_+G_+FA_+FB_+FD_;
SFx = sumF_(1);
SFy = sumF_(2);

fprintf(’sum of forces on x:\n\n’)
fprintf(’sumFx = %s \n\n’, char(SFx))
fprintf(’sum of forces on y:\n\n’)
fprintf(’sumFy = %s \n\n’, char(SFy))

FOx=solve(SFx, FOx);
FOy=solve(SFy, FOy);
fprintf(’reaction FOx is \n\n’)
fprintf(’FOx = %s \n\n’, char(FOx))
fprintf(’reaction FOy is \n\n’)
fprintf(’FOy = %s \n\n’, char(FOy))

syms MOz MCz
MO_=[0,0,MOz];
MC_=[0,0,MCz];

sumMO_=MO_+MC_...
+cross(rA_,FA_)+cross(rB_,FB_)+...
cross(0.5*rD_,G_)+cross(rD_,FD_);
SMO=sumMO_(3);
fprintf(’sum of moments about O:\n\n’)
fprintf(’SMO = %s \n\n’, char(SMO));

MOz=solve(SMO, MOz);
fprintf(’The moment MO is \n\n’)
fprintf(’MOz = %s \n\n’, char(MOz));

lists = {xO,yO,xA,yA,xB,yB,xC,yC,xD,yD,...
FA,FB,FD,alpha,beta,gamma,m,g,MCz};

listt = {0,0,1,0,3,0,5,0,8,0,...
3000,3500,4000,45*pi/180,30*pi/180,...
30*pi/180,250,9.81,10*10ˆ3};

4.9 Programs 203

FOx=subs(FOx,lists,listt);
FOy=subs(FOy,lists,listt);
MOz=subs(MOz ,lists,listt);
fprintf(’ FOx = %g (kN)\n\n’, FOx/1000);
fprintf(’ FOy = %g (kN)\n\n’, FOy/1000);
fprintf(’ MOz = %g (kN m)\n\n’, MOz/1000);

a = 7000;
axis([-a/2 a -a a])
hold on
axis equal

ax=0; ay=8000;
bx=0; by=0;
A = [ax ay];
B = [bx by];
line(A,B,’LineStyle’,’-’,...

’Color’,’r’,’LineWidth’,6)

ax=11000;
ay=6000;
quiver(0,0,ax,0,...
’Color’,’b’,’LineWidth’,1.0);
text(ax,0,’ x’,...
’fontsize’,12,’fontweight’,’b’);
quiver(0,0,0,ay,...
’Color’,’b’,’LineWidth’,1.0);
text(0,ay,’ y’,...
’fontsize’,12,’fontweight’,’b’);

x_O=0;y_O=0;
yy=400;
text(x_O-yy,y_O-yy,’ O’,...
’fontsize’,12,’fontweight’,’b’);
x_A=1;y_A=0;
text(x_A*1000-yy,y_A-yy,’ A’,...
’fontsize’,12,’fontweight’,’b’);
x_B=3;y_B=0;
text(x_B*1000-yy,y_B-yy,’ B’,...
’fontsize’,12,’fontweight’,’b’);
x_C=5;y_C=0;
text(x_C*1000-yy,y_C-yy,’ C’,...
’fontsize’,12,’fontweight’,’b’);
x_D=8;y_D=0;
text(x_D*1000-yy,y_D-yy,’ D’,...

204 4 Equilibrium

’fontsize’,12,’fontweight’,’b’);

x_A=1;
FA_=subs(FA_,lists,listt);
quiver(x_A*1000,0,FA_(1),FA_(2),...
’Color’,’k’,’LineWidth’,1.25)
text(FA_(2)+200,FA_(1)+200,’ F_A’,...
’fontsize’,12,’fontweight’,’b’);

x_B=3;
FB_=subs(FB_,lists,listt);
quiver(x_B*1000,0,FB_(1),FB_(2),...
’Color’,’k’,’LineWidth’,1.25);
text(x_B*1000+FB_(1),FB_(2)+200,’ F_B’,...
’fontsize’,12,’fontweight’,’b’);

x_D=8;
FD_=subs(FD_,lists,listt);
quiver(x_D*1000,0,FD_(1),FD_(2),...
’Color’,’k’,’LineWidth’,1.25);
text(x_D*1000+FD_(1),FD_(2)-500,’ F_D’,...
’fontsize’,12,’fontweight’,’b’);

x_G=x_D/2;
G_=subs(G_,lists,listt);
quiver(x_G*1000,0,0,G_(2),...
’Color’,’k’,’LineWidth’,1.25)
text(x_G*1000-800,G_(2)+1,’ G ’,...
’fontsize’,12,’fontweight’,’b’)

XMO1 = 0;
YMO1 = 0;
x_C = 5;
XMB1 = x_C*1000;
YMB1 = 0;
scatter(XMO1,YMO1,80,2)
scatter(XMO1,YMO1,30,50,’filled’)
scatter(XMB1,YMB1,80,2)
scatter(XMB1,YMB1,30,50,’filled’)

% end of program

4.9 Programs 205

4.9.7 Program 4.8

% example 4.8
% equilibrium 3D

clear all; clc; close all

h=0.6; % m
b=0.6; % m
a=0.5; % m
m = 100.; % kg
g = 9.81; % m/sˆ2
Me = 120.; % N m

xA=0; yA=0; zA=0; % m
xB=0; yB=0; zB=h; % m
xD=0; yD=b; zD=0; % m
xE=0; yE=b; zE=h; % m
xC=0; yC=b/2;zC=h/2; % m
xP=a; yP=0; zP=0; % m

rA_=[xA yA zA];
rB_=[xB yB zB];
rD_=[xD yD zD];
rE_=[xE yE zE];
rC_=[xC yC zC];
rP_=[xP yP zP];

G_ = [0 0 -m*g];
syms FAx FAy FAz
FA_ = [FAx,FAy,FAz];
syms FBx FBy
FB_ = [FBx,FBy,0];
u_=(rP_-rD_)/norm(rP_-rD_);
syms T
T_ = T*u_;

SF_ = FA_ + FB_ + G_ + T_;

Me_=[0,0,Me];
SMA_ = ...
cross(rC_,G_)+cross(rD_,T_)+cross(rB_,FB_)+Me_;

Fx=vpa(SF_(1),3);

206 4 Equilibrium

fprintf(’Fx : %s = 0 \n’,char(Fx))
Fy=vpa(SF_(2),3);
fprintf(’Fy : %s = 0 \n’,char(Fy))
Fz=vpa(SF_(3),3);
fprintf(’Fz : %s = 0 \n’,char(Fz))

Mx=vpa(SMA_(1),3);
fprintf(’Mx : %s = 0 \n’,char(Mx))
My=vpa(SMA_(2),3);
fprintf(’My : %s = 0 \n’,char(My))
Mz=vpa(SMA_(3),3);
fprintf(’Mz : %s = 0 \n’,char(Mz))

sol=solve(...
SF_(1) , SF_(2), SF_(3),...
SMA_(1),SMA_(2),SMA_(3));

FAxs=eval(sol.FAx);
FAys=eval(sol.FAy);
FAzs=eval(sol.FAz);
FBxs=eval(sol.FBx);
FBys=eval(sol.FBy);
Ts=eval(sol.T);

fprintf(’=>\n’)
fprintf(’FAx= %6.3f (N)\n’,FAxs)
fprintf(’FAy= %6.3f (N)\n’,FAys)
fprintf(’FAz= %6.3f (N)\n’,FAzs)
fprintf(’FBx= %6.3f (N)\n’,FBxs)
fprintf(’FBy= %6.3f (N)\n’,FBys)
fprintf(’T= %6.3f (N)\n’,Ts)

FAs_ = [FAxs FAys FAzs];
FBs_ = [FBxs FBys 0];
Ts_ = Ts*u_;

as=1;
hold on
axis([-as as -as as -as as])
grid on
view(136,18);

quiver3(0,0,0,as+0.1,0,0,...
’Color’,’b’,’LineWidth’,1.0);
text(as+0.1,0,0,’ x’,...
’fontsize’,12,’fontweight’,’b’);

4.9 Programs 207

quiver3(0,0,0,0,as+0.1,0,...
’Color’,’b’,’LineWidth’,1.0);
text(0,as+0.1,0,’ y’,...
’fontsize’,12,’fontweight’,’b’);
quiver3(0,0,0,0,0,as+0.1,...
’Color’,’b’,’LineWidth’,1.0);
text(0,0,as+0.1,’ z’,...
’fontsize’,12,’fontweight’,’b’);

% scatter3(x,y,z,S,C) displays
% colored circles at (x,y,z)
% S area of the marker
% C color of the marker

scatter3(xA,yA,zA,60,’k’,’filled’)
scatter3(xB,yB,zB,60,’k’,’filled’)
scatter3(xD,yD,zD,30,’b’,’filled’)
scatter3(xE,yE,zE,30,’b’,’filled’)
scatter3(xC,yC,zC,30,’r’,’filled’)
scatter3(xP,yP,zP,30,’b’,’filled’)

text(xA,yA,zA,’ A’,’fontsize’,12);
text(xB,yB,zB+0.05,’ B’,’fontsize’,12);
text(xD,yD,zD,’ D’,’fontsize’,12);
text(xE,yE,zE,’ E’,’fontsize’,12);
text(xC,yC,zC,’ C’,’fontsize’,12);
text(xP,yP,zP+0.05,’ P’,’fontsize’,12);

%input the vertices
vert = ...
[xA yA zA; xB yB zB; xE yE zE; xD yD zD];
%input the faces
fac = [1 2 3 4];
%draw using patch function
prism=patch(’Faces’,fac,...
’Vertices’,vert,’FaceColor’,’g’);

line([xP xD],[yP yD],[zP zD],...
’LineStyle’,’--’,’Color’,’k’,’LineWidth’,1)

fs = 1000;
quiver3(xD,yD,zD,Ts_(1)/fs,Ts_(2)/fs,Ts_(3)/fs,...
’Color’,’k’,’LineWidth’,2);
text...
(xD+Ts_(1)/fs,yD+Ts_(2)/fs,zD+0.03+Ts_(3)/fs,’T’);

208 4 Equilibrium

quiver3(xA,yA,zA,FAs_(1)/fs,FAs_(2)/fs,FAs_(3)/fs,...
’Color’,’k’,’LineWidth’,2);
text...
(xA+FAs_(1)/fs,yA+FAs_(2)/fs,...
zA-0.1+FAs_(3)/fs,’F_A’);

quiver3(xB,yB,zB,FBs_(1)/fs,FBs_(2)/fs,FBs_(3)/fs,...
’Color’,’k’,’LineWidth’,2);
text...
(xB+FBs_(1)/fs,yB+FBs_(2)/fs,...
zB+0.05+FBs_(3)/fs,’F_B’);

quiver3(xC,yC,zC,G_(1)/fs,G_(2)/fs,G_(3)/fs,...
’Color’,’k’,’LineWidth’,2);
text...
(xC+G_(1)/fs,yC+G_(2)/fs,zC+G_(3)/fs,’G’);

quiver3(xB,yB,zB,Me_(1)/fs,Me_(2)/fs,Me_(3)/fs,...
’Color’,’k’,’LineWidth’,2);
text...
(xB+Me_(1)/fs,yB+0.05+Me_(2)/fs,...
zB+0.05+Me_(3)/fs,’M_e’);

light(’Position’,[1 3 2]);
alpha(prism,0.3);
%alpha sets one of three transparency properties
%depending on the specified arguments
xlabel(’x(m)’); ylabel(’y(m)’);zlabel(’z(m)’);

% end of program

References

1. P. Appell, Traité de mécanique rationnelle (Gauthier-Villars, Paris, 1955)
2. M. Atanasiu, Mechanics (EDP, Bucharest, 1973)
3. H. Baruh, Analytical Dynamics (WCB/McGraw-Hill, Boston, 1999)
4. G. Baumann, Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear

Dynamics (Springer, New York, 2005)
5. G. Baumann, Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics,

General Relativity and Fractals (Springer, New York, 2005)
6. F.P. Beer, E.R. Johnston, Vector Mechanics for Engineers: Statics and Dynamics 5/e (McGraw-

Hill, New York, 1988)
7. F.P. Beer, E.R. Johnston, D.F. Mazurek, Vector Mechanics for Engineers: Statics,

10/e(McGraw-Hill, New York, 2012)

References 209

8. A.M. Bedford, W. Fowler, K.M. Liechti, Statics and Mechanics of Materials (Prentice Hall,
Upper Saddle River, 2002)

9. A.M. Bedford, W. Fowler, Engineering Mechanics: Statics, 5/e (Prentice Hall, Upper Saddle
River, 2007)

10. A.P. Boresi, R.J. Schmidt, Engineering Mechanics: Statics (PWS Publishing Company, Boston,
2000)

11. M.I. Buculei, Mechanics (University of Craiova Press, Craiova, 1974)
12. M.I. Buculei, D. Bagnaru, G. Nanu, D.B. Marghitu, Analysis of Mechanisms with Bars (Scrisul

romanesc, Craiova, 1986)
13. I. Stroe et al., Analytical Mechanics Problems (University Politehnica of Bucharest, Romania,

1997)
14. V. Ceausu, N. Enescu, F. Ceausu, Mechanics Problems (Printech, Bucharest, 1999)
15. S.J. Chapman, MATLAB Programming for Engineers (Thomson Learning, Pacific Grove, CA,

2002)
16. S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving

(Butterworth-Heinemann, Elsevier, Amsterdam, 2012)
17. D.M. Etter, D.C. Kuncicky, Introduction to MATLAB for Engineers and Scientists (Prentice

Hall, Upper Saddle River, 1996)
18. C. Iacob, Theoretical Mechanics (EDP, Bucharest, 1980)
19. J.H. Ginsberg, Advanced Engineering Dynamics (Cambridge University Press, Cambridge,

1995)
20. D.T. Greenwood, Principles of Dynamics (Prentice-Hall, Englewood Cliffs, 1998)
21. L.E. Goodman, W.H. Warner, Statics (Dover Publications, New York, 2001)
22. R.C. Hibbeler, Engineering Mechanics: Statics and Dynamics 13/e (Prentice-Hall, Upper Sad-

dle River, 2013)
23. T.R. Kane, Analytical Elements of Mechanics, vol. 1 (Academic Press, New York, 1959)
24. T.R. Kane, Analytical Elements of Mechanics, vol. 2 (Academic Press, New York, 1961)
25. T.R. Kane, P.W. Likins, D.A. Levinson, Spacecraft Dynamics (McGraw-Hill, New York, 1983)
26. T.R. Kane, D.A. Levinson, Dynamics (McGraw-Hill, New York, 1985)
27. R. Maeder, Programming in Mathematica (Addison-Wesley, Redwood City, 1990)
28. N.H. Madsen, Statics and Dynamics, class notes, http://www.eng.auburn.edu/users/nmadsen/
29. D.B. Marghitu, Mechanical Engineer’s Handbook (Academic Press, San Diego, 2001)
30. D.B. Marghitu, M.J. Crocker, Analytical Elements of Mechanisms (Cambridge University Press,

Cambridge, 2001)
31. D.B. Marghitu, Kinematic Chains and Machine Component Design (Elsevier, Amsterdam,

2005)
32. D.B. Marghitu, Mechanisms and Robots Analysis with MATLAB (Springer, New York, 2009)
33. D.B. Marghitu, M. Dupac, Advanced Dynamics: Analytical and Numerical Calculations with

MATLAB (Springer, New York, 2012)
34. D.B. Marghitu, Statics and Dynamics, class notes, http://www.eng.auburn.edu/users/marghitu/
35. D.J. McGill, W.W. King, Engineering Mechanics: Statics and an Introduction to Dynamics

(PWS Publishing Company, Boston, 1995)
36. J.L. Meriam, L.G. Kraige, Engineering Mechanics: Statics, 7/e (Wiley, New York, 2011)
37. R.L. Mott, Machine Elements in Mechanical Design (Prentice Hall, Upper Saddle River, 1999)
38. R.L. Norton, Machine Design (Prentice-Hall, Upper Saddle River, 1996)
39. L.A. Pars, A Treatise on Analytical Dynamics (Wiley, New York, 1965)
40. M. Plesha, G. Gray, F. Costanzo, Engineering Mechanics: Statics, 2/e (McGraw-Hill, New

York, 2012)
41. M. Radoi, E. Deciu, Mechanics (EDP, Bucharest, 1981)
42. W.F. Riley, L.D. Sturges, Engineering Mechanics: Statics, 2/e (Wiley, New York, 1995)
43. A. Ruina, R. Pratap, Introduction to Statics and Dynamics (Oxford University Press, Oxford,

2002)
44. A. Ripianu, P. Popescu, B. Balan, Technical Mechanics (EDP, Bucharest, 1979)
45. I.H. Shames, Engineering Mechanics Statics, 4/e (Prentice Hall, New Jersey, 1996)

http://www.eng.auburn.edu/users/nmadsen/
http://www.eng.auburn.edu/users/marghitu/

210 4 Equilibrium

46. S.D. Sheppard, B.H. Tongue, Statics: Analysis and Design of Systems in Equilibrium (Wiley,
New York, 2005)

47. D. Smith, Engineering Computation with MATLAB (Pearson Education, Upper Saddle River,
2008)

48. R.W. Soutas-Little, D.J. Inman, Engineering Mechanics: Statics and Dynamics (Prentice-Hall,
Upper Saddle River, 1999)

49. R.W. Soutas-Little, D.J. Inman, D. Balint, Engineering Mechanics: Statics (Cengage Learning,
Independence, KY, 2007)

50. S. Staicu, Theoretical Mechanics (EDP, Bucharest, 1998)
51. A. Stan, M. Grumazescu, Mechanics Problems (EDP, Bucharest, 1973)
52. J. Sticklen, M.T. Eskil, An Introduction to Technical Problem Solving with MATLAB (Great

Lakes Press, Wildwood, 2006)
53. A. Stoenescu, G. Silas, Theoretical Mechanics (ET, Bucharest, 1957)
54. J.H. Jackson, H.G. Wirtz, Schaum’s Outline of Theory and Problems of Statics and Strength of

Materials (McGraw-Hill, New York, 1983)
55. The MathWorks: https://www.mathworks.com/
56. Statics eBook : https://ecourses.ou.edu/
57. R. Voinea, D. Voiculescu, V. Ceausu, Mechanics (EDP, Bucharest, 1983)
58. V. Valcovici, S. Balan, R. Voinea, Theoretical Mechanics (ET, Bucharest, 1959)
59. K.J. Waldron, G.L. Kinzel, Kinematics, Dynamics, and Design of Machinery (Wiley, New

York, 1999)
60. H.B. Wilson, L.H. Turcotte, and D. Halpern, Advanced Mathematics and Mechanics Applica-

tions Using MATLAB (Chapman & Hall/CRC, Boca Raton, FL, 2003)
61. J.H. Williams Jr, Fundamentals of Applied Dynamics (Wiley, New York, 1996)
62. S. Wolfram, Mathematica (Wolfram Media/Cambridge University Press, Cambridge, 1999)

https://www.mathworks.com/
https://ecourses.ou.edu/

Chapter 5
Friction

5.1 Introduction

Friction (from Latin fricare, to rub), is the term given to the resistance caused by
the moving of the surfaces of bodies over each other. The resistance is due to the
roughness of the surfaces. The first experiments on friction were made by Guillaume
Amontons (1699) when he published his rediscovery of the laws of friction first
presented by Leonardo da Vinci. Leonardo da Vinci (1452–1519) studied screws,
gears, mechanisms, wear, bearings, friction, and lubrication. At Rochefort in 1781,
Charles-Augustin de Coulomb verified the laws friction. The laws of dry friction
are: 1. friction is directly proportional to the normal force between the surfaces of
contact (Amontons 1st Law); 2. friction is independent of the apparent area of con-
tact (Amontons 2nd Law); 3. friction is independent of the velocity with which the
surfaces slide one on the other (Coulomb’s Law). Arthur Jules Morin confirmed and
extended Coulomb’s work on friction (1830–1834). He build an experimental appa-
ratus under the supervision of Jean-Victor Poncelet. He developed an apparatus to
study the laws of falling bodies presented an accurate experimental proof of Galileo’s
result that distances travelled by a falling body increase as the square of the time.

If a body rests on an incline plane, the friction force exerted on it by the surface
prevents it from sliding down the incline. The question is, what is the steepest incline
on which the body can rest?

A body is placed on a horizontal surface. The body is pushed with a small hori-
zontal force F . If the force F is sufficiently small, the body does not move.

Figure 5.1 shows the free-body diagram of the body, where the force W is the
weight force of the body, and N is the normal force exerted by the surface on the
body. The force F is the horizontal force, and Ff is the friction force exerted by
the surface. Friction force arises in part from the interactions of the roughness, or
asperities, of the contacting surfaces. The body is in equilibrium and Ff = F .

The force F is slowly increased. As long as the body remains in equilibrium, the
friction force Ff must increase correspondingly, since it equals the force F . The body
slips on the surface. The friction force, after reaching the maximum value, cannot

D. B. Marghitu et al., Statics with MATLAB®, 211
DOI: 10.1007/978-1-4471-5110-4_5, © Springer-Verlag London 2013

212 5 Friction

Fig. 5.1 Free-body diagram
of the body

F

W

N

body

Ff

maintain the body in equilibrium. The force applied to keep the body moving on
the surface is smaller than the force required to cause it to slip. Why more force is
required to start the body sliding on a surface than to keep it sliding is explained in
part by the necessity to break the asperities of the contacting surfaces before sliding
can begin.

The theory of dry friction, or Coulomb friction, predicts:

• the maximum friction forces that can be exerted by dry, contacting surfaces that
are stationary relative to each other;

• the friction forces exerted by the surfaces when they are in relative motion, or
sliding.

5.2 Static Coefficient of Friction

The magnitude of the maximum friction force, Ff , that can be exerted between two
plane dry surfaces in contact is

Ff = μs N , (5.1)

where μs is a constant, the static coefficient of friction, and N is the normal component
of the contact force between the surfaces. The value of the static coefficient of friction,
μs , depends on:

• the materials of the contacting surfaces;
• the conditions of the contacting surfaces namely smoothness and degree of con-

tamination.

Typical values of μs for various materials are shown in Table 5.1.
Equation (5.1) gives the maximum friction force that the two surfaces can exert

without causing it to slip. If the static coefficient of friction μs between the body
and the surface is known, the largest value of F one can apply to the body without
causing it to slip is F = Ff = μs N . Equation (5.1) determines the magnitude of the
maximum friction force but not its direction. The friction force resists the impending
motion.

5.3 Kinetic Coefficient of Friction 213

Table 5.1 Typical values of
the static coefficient of
friction

Materials μs

Metal on metal 0.15–0.20
Metal on wood 0.20–0.60
Metal on masonry 0.30–0.70
Wood on wood 0.25–0.50
Masonry on masonry 0.60–0.70
Rubber on concrete 0.50–0.90

5.3 Kinetic Coefficient of Friction

The magnitude of the friction force between two plane dry contacting surfaces that
are in motion relative to each other is

Ff = μk N , (5.2)

where μk is the kinetic coefficient of friction and N is the normal force between the
surfaces. The value of the kinetic coefficient of friction is generally smaller than the
value of the static coefficient of friction, μs .

To keep the body in Fig. 5.1 in uniform motion (sliding on the surface) the force
exerted must be F = Ff = μk N . The friction force resists the relative motion, when
two surfaces are sliding relative to each other.

The body RB shown in Fig. 5.2a is moving on the fixed surface 0.
The direction of motion of RB is the positive axis x . The friction force on the

body RB acts in the direction opposite to its motion, and the friction force on the
fixed surface is in the opposite direction as shown in Fig. 5.2b.

5.4 Angle of Friction

The angle of friction, θ, is the angle between the friction force, Ff = |Ff |, and the
normal force to the surface N = |N|, as shown in Fig. 5.3.

The magnitudes of the normal force and friction force, and θ are related by

Ff = R sin θ,

N = R cos θ,

where R = |R| = |N + F f |.
The value of the angle of friction when slip is impending is called the static angle

of friction, θs ,
tan θs = μs .

214 5 Friction

Fig. 5.2 Directions of the
friction forces

RB

Ff

0

RB

0

N

N

=μkN

=μkNFf

direction of slip

direction of slip

(a)

(b)

Fig. 5.3 Angle of friction, θ

Ff

R

θ

N

The value of the angle of friction when the surfaces are sliding relative to each other
is called the kinetic angle of friction, θk ,

tan θk = μk .

Example 5.1 The prism 1 of mass m1 makes an angle α with the horizontal and
can slide along the horizontal surface as shown Fig. 5.4. The slider 2 of mass m2 is
prevented from horizontal movement and can slide down on the inclined prism 1.
The coefficients of static friction between the prism 1 and the slider 2, between the
prism 1 and the horizontal surface 0, between the slider 2 and the vertical support 0

5.4 Angle of Friction 215

Fig. 5.4 Example 5.1

O

C1

C2

m1g

m2g

x

y

2

1

0

0

α

F

are equal to μ. The friction is sufficient to prevent the prism from moving without
the application of any force.

Determine the greatest value of the horizontal force F that acts on the prism 1
without causing the motion of the system.

For the numerical example use m1 = 10 kg, m2 = 5 kg, α = 10◦, μ = 0.2, and
g = 9.81 m/s2.

Solution A reference frame xy having the y-axis directed upward and the x-axis
directed along the horizontal surface was considered, as shown Fig. 5.5.

Considering the mechanical system to be the slider-prism combination, the weight
of the slider and the external force F will act on the prism making the prism to move.
In addition to the weights and external force, the mechanical system will also be
acted upon reaction and friction forces as shown in Fig. 5.5. The sum of all the forces
acting on slider 2 can be expressed as:

∑
F(2) = F02 + F f 02 + F12 + F f 12 + G2,

where F02 is the of force of the ground (vertical support) on slider 2, F02 ⊥ y−axis,
F f 02 is the friction force between the ground 0 and slider 2, F f 02 = μ F02, F12 is the
force of prism 1 on slider 2, F f 12 is friction force between 1 and 2, F f 12 = μ F12
and G2 is the weight of body 2. The frictional force is equal to the product of the
static coefficient of friction with the normal force between the bodies in contact. As
the direction of the frictional force must resist the tendency to slip. The MATLAB
commands for the forces on slider 2 are:

F02_ = [-F02 0 0];
Ff02_ = [0 mu*F02 0];
F12_ = [-F12*sin(alpha) F12*cos(alpha) 0];
Ff12_ = [mu*F12*cos(alpha) mu*F12*sin(alpha) 0];
G2_ = [0 -m2*g 0];

216 5 Friction

F01

F02

F12

F21

Ff12

Ff21

G2

G1

α x

y

O

C1

C2

Ff01

ı

2

j

1

Ff02

F

Fig. 5.5 Example 5.1 Free-Body diagrams

F2_ = F02_+Ff02_+F12_+Ff12_+G2_;
F2x = F2_(1);
F2y = F2_(2);

The two scalar equilibrium equations on x−axis and y−axis are:

Fx on 2:
F12*mu*cos(alpha) - F12*sin(alpha) - F02 = 0
Fy on 2:
F02*mu - g*m2 + F12*cos(alpha) + F12*mu*sin(alpha)=0

The joint forces reaction forces F02 and F12 are

F02 = (g*m2*(mu - tan(alpha)))/(muˆ2 + 1)
F12 = (g*m2)/(cos(alpha)*(muˆ2 + 1))

The sum of all the forces acting on the inclined prism 1 can be expressed as

∑
F(1) = F01 + F f 01 + F21 + F f 21 + G1 + F,

where F01 is the of force of the ground (vertical support) on wedge 1, F f 01 is the
friction force between the ground 0 and 1, F f 01 = μ F01, F21 = −F12 is the force of
2 on 1, F f 21 = −F f 12 is friction force between 1 and 2, G1 is the weight of body 1
and F is the horizontal external force on 1. The MATLAB exressions for the forces
on prism 1 are:

5.4 Angle of Friction 217

sol2 = solve(F2x,F2y,F02,F12);
F21_ = ...
-[-F12s*sin(alpha) F12s*cos(alpha) 0];
Ff21_ = ...
-[mu*F12s*cos(alpha) mu*F12s*sin(alpha) 0];
F01_ = [0 F01 0];
Ff01_ = -mu*[F01 0 0];
G1_ = [0 -m1*g 0];
F_ = [F 0 0];

The equilibrium equations for the prism 1 are:

F1_ = F01_+Ff01_+F21_+Ff21_+G1_+F_;
F1x = F1_(1);
F1y = F1_(2);

or

Fx on 1: 0 =

g m2 mu g m2 sin(alpha)
F - F01 mu - ------- + --------------------

2 2
mu + 1 cos(alpha) (mu + 1)

Fy on 1: 0 =

g m2 g m2 mu sin(alpha)
F01 - g m1 - ------- - --------------------

2 2
mu + 1 cos(alpha) (mu + 1)

The joint force reaction force F01 and the external force F are:

F01 =

g m2 (mu tan(alpha) + 1)
g m1 + ------------------------

2
mu + 1

F =

2 g m2 (mu - tan(alpha))
g (m1 mu+m2 tan(alpha)) + ------------------------

2
mu + 1

218 5 Friction

−40 −20 0 20 40 60 80 100 120
−50

0

50

100

x

y

 F12

 F

Fig. 5.6 Example 5.1 MATLAB representation of the mechanical system

The numerical results are for the joint forces are:

F02 = 1.117 (N), F01 = 146.927 (N), F12 = 47.891 (N)

and the greatest value of the horizontal force that acts on the prism 1 without causing
the motion of the system is F = 30.502 (N). The MATLAB representation of
the mechanical system is shown in Fig. 5.6.

The MATLAB commands for the graphics are:

% system plot
aa = 100;
axis([-aa/2 aa -aa/2 aa])
grid on, hold on
axis equal

quiver(0,0,aa,0,...
’Color’,’b’,’LineWidth’,1.0);
text(aa-8,0,’x’,’fontsize’,12);
quiver(0,0,0,aa,...
’Color’,’b’,’LineWidth’,1.0);
text(0,aa-8,’y’,’fontsize’,12);

a=60; b=25;c=10;
alpha=10*pi/180;
x_F=c; y_F=0;

5.4 Angle of Friction 219

x_H=a; y_H=0;
x_E=x_H; y_E=(x_H-x_F)*sin(alpha);
x_O=0; y_O=0;
% slider vertices
vert = [x_F y_F 0; x_E y_E 0; x_H y_H 0;];
% slider faces
fac = [2 1 3];
% draw the slider
slider=patch...
(’Faces’,fac,’Vertices’,vert,’FaceColor’,’b’);

h=50;f=12;
x_A=x_F+f; y_A=(x_A-x_F)*sin(alpha);
x_B=x_A; y_B=y_A+h;
x_D=x_H-f; y_D=(x_D-x_F)*sin(alpha);
x_C=x_D; y_C=y_B;
% prism vertices
vert = ...
[x_A y_A 0; x_B y_B 0; x_D y_D 0; x_C y_C 0;];
% prism faces
fac = [2 1 3 4];
% draw the prism
prism=patch...
(’Faces’,fac,’Vertices’,vert,’FaceColor’,’y’);

% draw body left wall
s1x=x_A-f/6; s1y=x_A-f/6;
s2x=y_B+f; s2y=y_D+f;
s1 = [s1x s1y];
s2 = [s2x s2y];
line(s1,s2,’LineStyle’,’-’,...

’Color’,’k’,’LineWidth’,4)

% draw body right wall
s3x=x_D+f/5; s3y=x_D+f/5;
s4x=y_B+f; s4y=y_D+f;
s3 = [s3x s3y];
s4 = [s4x s4y];
line(s3,s4,’LineStyle’,’-’,...

’Color’,’k’,’LineWidth’,4)

quiver(x_A+(x_D-x_A)/2,y_A+(y_D-y_A)/2,...
F12n*cos(alpha+pi/2),F12n*sin(alpha+pi/2),...
’Color’,’r’,’LineWidth’,1.5);
t0=text(abs(F12n*cos(alpha+pi/2))+20,...

220 5 Friction

O

C

mg x

y

A

B

F
l

α β

D

H E

Fig. 5.7 Example 5.2

F12n*sin(alpha+pi/2), 0,’ F12’,’fontsize’,12);

quiver(x_A+(x_D-x_A)/2,y_A+(y_D-y_A)/2,Fn,0,...
’Color’,’r’,’LineWidth’,1.5);
t0=text(abs(Fn)+33,5, 0,’ F’,’fontsize’,12);

Example 5.2 The rod AB of length l shown in Fig. 5.7 is supported at end B on a
horizontal surface and at the other end (end A) by a inclined surface which makes an
angle α with the horizontal. The coefficient of static friction between the rod and the
inclined surface and the horizontal surface is μ. The weight of the rod is G = mg.
The end A of the rod (supported by the inclined surface) is positioned in such a way
that the angle between the rod and the horizontal supporting surface is equal to β.
The end A of the rod can slid down on the inclined plane. A force F which has its
directions parallel with the rod is applied at the left end A of the rod as shown in
Fig. 5.7. Determine the greatest value of F without causing the motion of the rod.
For the numerical example use: l = 1 m, m = 10 kg, μ = 0.2, β = π/6 rad,
α = π/4 rad, and g = 9.81 m/s2.

Solution The frictional force at the contact point of the end of the rod with the
inclined plane is equal to the product of the static coefficient of friction with the
normal force between that same end of the rod and the inclined surface. The normal
force is always perpendicular at the contact point to the inclined plane, while the
friction force is parallel to the inclined plane. As the direction of the frictional force
must resist the tendency to slip, the frictional force must be acting “up” the inclined
plane. At the other end of the rod resting on a horizontal surface. The force exerted by
the horizontal surface must be vertical and the frictional force is equal to the product
of the static coefficient of friction with the normal force as shown in Fig. 5.8.

The weight G is also a vertical force. The sum of all the forces acting on the left
end A can be expressed as

∑
F = NA + F f A + F + NB + F fB + G = 0,

where NA is the of force of the ground (prism) on the rod at A, F f A is the friction
force between the prism and the rod at A, F f A = μ NA, F is the external force

5.4 Angle of Friction 221

α βG

F

NA

NB

FfA

FfB

x

y

O ı

j
B

A

C

Fig. 5.8 Example 5.2 Free-Body diagram

along the rod at A, NB is the of force of the horizontal surface (ground) on the rod
at B, NB ⊥ x−axis, F fB is the friction force between the ground and the rod at B,
F fB = μ NB , and G2 is the weight of the rod. The MATLAB commands for the
forces on the rod are:

syms NA NB F
NA_=[NA*sin(alpha) NA*cos(alpha) 0];
FfA=mu*NA;
FfA_=[-FfA*cos(alpha) FfA*sin(alpha) 0];
F_=[-F*cos(beta) F*sin(beta) 0];
NB_=[0 NB 0];
FfB=mu*NB;
FfB_=[-FfB 0 0];
G_=[0 -m*g 0];
eqF_=NA_+FfA_+F_+NB_+FfB_+G_;
eqFx=eqF_(1);
eqFy=eqF_(2);

The sum of the moments of all forces about the left end A of the rod can be
expressed as

∑
MA = − l

2
mg cos β + l NB cos β = 0.

The scalar equilibrium equations in MATLAB are:

sum Fx:
NA*sin(alpha)-F*cos(beta)-NB*mu-NA*mu*cos(alpha)=0
sum Fy:
NB-g*m+NA*cos(alpha)+F*sin(beta)+NA*mu*sin(alpha)=0
moment about A:
NB*l*cos(beta)-(g*l*m*cos(beta))/2=0

The normal reactions are:

222 5 Friction

NA =

g m (cos(beta) + mu sin(beta))
--
2 (cos(alpha - beta) + mu sin(alpha - beta))

NA = 46.560 (N)

NB =

g m

2

NB = 49.050 (N)

and the greatest value of F without causing the motion of the rod is

F =
2

g m (sin(alpha) mu + 2 cos(alpha) mu - sin(alpha))
- --

2 (cos(alpha-beta) + mu sin(alpha-beta))

F = 19.085 (N)

The MATLAB representation of the mechanical system is shown in Fig. 5.9.

5.5 Technical Applications of Friction: Screws

A screw thread is a uniform wedge-shaped section in the form of a helix on the
external or internal surface of a cylinder (straight thread) or a cone (taper thread).
The basic arrangement of a helical thread wound around a cylinder is illustrated in
Fig. 5.10.

The terminology of an external screw threads is:

• pitch denoted by p is the distance, parallel to the screw axis, between corresponding
points on adjacent thread forms having uniform spacing.

• major diameter denoted by d is the largest (outside) diameter of a screw thread.
• minor diameter denoted by dr or d1, is the smallest diameter of a screw thread.
• pitch diameter denoted by dm or d2 is the imaginary diameter for which the width

of the threads and the grooves are equal.

The lead denoted by l is the distance the nut moves parallel to the screw axis when the
nut is given one turn (distance a threaded section moves axially in one revolution).

5.5 Technical Applications of Friction: Screws 223

−20 0 20 40 60 80 100 120 140

−60

−40

−20

0

20

40

60

x

y x

y

 O
 B

 A

 C

 NA

 F
 FfA

 NB

Ff
B

 G

Fig. 5.9 Example 5.2 MATLAB representation of the mechanical system

Fig. 5.10 Screw thread Major diameter
Pitch diameter
Minor diameter

Pitch p

Root
Crest

Thread angle 2α

dm

d

dr

,d2
,d1

A screw with two or more threads cut beside each other is called a multiple-threaded
screw. The lead is equal to twice the pitch for a double-threaded screw, and up to 3
times the pitch for a triple-threaded screw. The pitch p, lead l, and lead angle λ are
represented in Fig. 5.11.

Figure 5.11a shows a single thread right-hand screw and Fig. 5.11b shows a
double-threaded left-hand screw. If a thread traverses a path in a clockwise and
receding direction when viewed axially, it is a right-hand thread. All threads are
assumed to be right-hand, unless otherwise specified.

Metric threads are specified by the letter M preceding the nominal major diameter
in millimeters and the pitch in millimeters per thread. For example: M 14 × 2,
M is the SI thread designation, 14 mm is the outside (major) diameter, and the pitch
is 2 mm per thread. Screw size in the Unified system is designated by the size number

224 5 Friction

l

p

λ

l

p

λ

(a) (b)

Fig. 5.11 Pitch p, lead l, and lead angle λ. a single thread-right hand, b double thread-left hand

Fig. 5.12 Power screw with a
single thread

dm

Nut

λ

F/2

p

F/2

F

for major diameter (in.), the number of treads per in., and the thread form and series,

like this:
5′′

8
− 18, UNF

5′′

8
is the outside (major) diameter where the double tick

marks mean inches, and 18 threads per in.

5.5.1 Power Screws

Power screws are used to convert rotary motion to linear motion of the meeting
member along the screw axis. These screws are used to lift weights (screw-type
jacks) or exert large forces (presses, tensile testing machines). The power screws can
also be used to obtain precise positioning of the axial movement.

A square-threaded power screw with a single thread having the pitch diameter dm ,
the pitch p, and the helix angle λ is considered in Fig. 5.12. A square thread profile
is shown in Fig. 5.13.

5.5 Technical Applications of Friction: Screws 225

Fig. 5.13 Square thread

dr

d

p
2

p
2

p

dm

μN

N

F

λ

πdm

l

πdm
N

F
μN

l

λ

Pr Pl

yy

x x

(a) (b)

Fig. 5.14 a Force diagram for lifting the load and b force diagram for lowering the load

Consider that a single thread of the screw is unrolled for exactly one turn. The
edge of the thread is the hypotenuse of a right triangle and the height is the lead. The
base of the right triangle is the circumference of the pitch diameter circle (Fig. 5.14).
The lead angle λ is the helix angle of the thread. The screw is loaded by an axial
compressive force F (Figs. 5.12 and 5.14). The force diagram for lifting the load is
shown in Fig. 5.14a, (the force Pr is positive). The force diagram for lowering the
load is shown in Fig. 5.14b, (the force Pl is negative). The friction force is

Ff = μN ,

where μ is the coefficient of dry friction and N is the normal force. The friction force
is acting opposite to the motion. The equilibrium of forces for raising the load gives

∑
Fx = Pr − N sin λ − μ N cos λ = 0, (5.3)

∑
Fy = F + μ N sin λ − N cos λ = 0. (5.4)

Similarly, for lowering the load one may write the equations

∑
Fx = −Pl − N sin λ + μ N cos λ = 0, (5.5)

∑
Fy = F − μ N sin λ − N cos λ = 0. (5.6)

Eliminating N and solving for Pr

Pr = F (sin λ + μ cos λ)

cos λ − μ sin λ
, (5.7)

226 5 Friction

and for lowering the load

Pl = F (μ cos λ − sin λ)

cos λ + μ sin λ
. (5.8)

Using the relation
tan λ = l/(πdm),

and dividing the equations by cos λ one may obtain

Pr = F [(l π dm) + μ]
1 − (μ l π dm)

, (5.9)

Pl = F [μ − (l π dm)]
1 + (μ l π dm)

. (5.10)

The moment required to overcome the thread friction and to raise the load is

Mr = Pr
dm

2
= F dm

2

(
l + π μ dm

π dm − μ l

)
. (5.11)

The moment required to lower the load (and to overcome a part of the friction) is

Ml = F dm

2

(
π μ dm − l

π dm + μ l

)
. (5.12)

When the lead, l, is large or the friction, μ, is low the load will lower itself. In this
case the screw will spin without any external effort, and the moment Ml in Eq. (5.12)
will be negative or zero. When the moment is positive, Ml > 0, the screw is said to
be self-locking. The condition for self-locking is

π μ dm > l.

Dividing both sides of this inequality by π dm , and using l/(π dm) = tan λ, yields

μ > tan λ. (5.13)

The self-locking is obtained whenever the coefficient of friction is equal to or greater
than the tangent of the thread lead angle.

The moment, M0, required only to raise the load when the friction is zero, μ = 0,
is obtained from Eq. (5.11):

M0 = F l

2 π
. (5.14)

5.5 Technical Applications of Friction: Screws 227

The screw efficiency e can be defined as

e = M0

Mr
= F l

2 π Mr
. (5.15)

For square threads the normal thread load, F , is parallel to the axis of the screw. The
preceding equations can be applied for square threads.

5.5.2 Force Analysis for a Square-Threaded Screw

Consider a square-threaded jack under the action of a axial load F and a moment
M about the axis of the screw, Fig. 5.15. The screw has the mean radius rm and the
lead l. The force exerted by the frame thread on the screw thread is R. The angle θ
made by R with the normal to the thread is the angle of friction (see Fig. 5.15)

tan θ = μ = Ff

N
.

The unwrapped thread of the screw shown in Fig. 5.15 is for lifting the load. The
force equilibrium equation in the axial direction is

F = R cos(λ + θ),

where λ is the helix angle, tan λ = l/(2 π rm). The moment of R about the vertical
axis of the screw is R rm sin(λ+θ). The moment equilibrium equation for the screw
becomes

M = R rm sin(λ + θ).

Combining the expression for F and M gives

M = Mr = F rm tan(λ + θ). (5.16)

Fig. 5.15 Force diagram for
a square-fhreaded screw

r

r

y

B

xO

C
B

C

A A

π dm

m

m

λ

λ

l

F

λ

P

R

θ

φ
φ

l

228 5 Friction

F

Nut

Collar dc

dc

F
2

Nut

F
2

F
2

F
2

Collar

Fig. 5.16 Thrust collar

The force required to push the thread up is P = M/rm . The moment required to
lower the load by unwinding the screw is obtained in a similar manner:

M = Ml = F rm tan(θ − λ). (5.17)

If θ < λ the screw will unwind by itself.
In general, when the screw is loaded axially, a thrust bearing or thrust collar

may be used between the rotating and stationary links to carry the axial component
(Fig. 5.16). The load is concentrated at the mean collar diameter dc. The moment
required is

Mc = F μc dc

2
, (5.18)

where μc is the coefficient of collar friction.

Example 5.3 A square-thread power screw, as shown in Fig. 5.17 has the major
diameter d = 38 mm and the pitch p = 6 mm. The coefficient of friction of the
thread is μ = 0.08 and the coefficient of collar friction is μc = 0.1. The mean collar
diameter is dc = 45 mm. The external load on the screw is F = 9 kN. Find: (a) the
lead, the pitch (mean) diameter and the minor diameter; (b) the moment required to
raise the load; (c) the moment required to lower the load; (d) the efficiency of the
device.

Solution (a) From Fig. 5.13:
the minor diameter is dr = d − p
the pitch (mean) diameter is dm = d − p/2
the lead isl = p,

or:

l = p = 6.000 (mm)
dr = d - p = 32.000 (mm)

5.5 Technical Applications of Friction: Screws 229

Fig. 5.17 Example 5.1 F

dc

d

dm = d - p/2 = 35.000 (mm)

(b) The moment required to raise the load is

Mr = Fdm

2

(
l + πμdm

πdm − μl

)
+ Fμcdc

2
,

and:

Mr =0.5*F*dm*(pi*mu*dm+l)/(pi*dm-mu*l)...
+0.5*F*dc*muc;

Mr = 41.537 (kN m)

(c) The moment required to lower the load is

Ml = Fdm

2

(
πμdm − l

πdm + μl

)
+ Fμcdc

2
,

and:

Ml =0.5*F*dm*(pi*mu*dm-l)/(pi*dm+mu*l)...
+0.5*F*dc*muc;

Ml = 24.238 (kN m)

The sef-locking condition:

% (pi*mu*dm - l) > 0
sf = (pi*mu*dm - l);
fprintf(’sf = %6.3f \n’,sf)
if sf > 0
fprintf(’sf>0 => screw is sef-locking\n\n’)
else

230 5 Friction

fprintf(’sf<0 => screw is not sef-locking\n\n’)
end

The screw is self-locking sf = 2.796.

(d) The overall efficiency is calculated with

e = Fl

2πMr
,

and:

e = F*l/(2*pi*Mr);
e = 0.207

5.6 Problems

5.1 Find the orientation angle θ of the force P for the smallest possible force P that
can be applied so that the body shown in Fig. 5.18 is on the verge of moving. The
body has weight the mass m and the coefficient of static friction at the surface
is μs = 0.4.

5.2 The car shown in Fig. 5.19 has the mass m, the center of mass at C , and travels
along a track with a constant speed. Find the greatest slope θ of the track without
causing the car to tip or to slip. The coefficient of static friction between the
road and the car is μ. For the numerical example use: m = 2000 kg, μ = 0.3,
l = 1.75 m, h = 0.5 m, and g = 9.81 m/s2.

5.3 A uniform bar of mass m and length l is placed on a rough wall at A and on a
smooth floor at B at shown in Fig. 5.20. The coefficient of static friction between
the bar and the wall is μ. The distance OB = d is given. Find if the bar will
remain in the initial position when it is released. For the numerical example use:
μ = 0.4, l = 1 m, d = O B = 0.3 m, and g = 9.81 m/s2.

5.4 The block 1, shown in Fig. 5.21, has the mass m and is placed on a rough wall.
Find the minimum force F required to move the block of mass m. The coefficient
of static friction is μ. The angle of the two wedges 2 and 3 is α. For the numerical
example use: m = 80 kg, μ = 0.4, α = π/180 rad, and g = 9.81 m/s2.

5.5 The wedge 3, shown in Fig. 5.22, has the mass 2 m. The wedges 2 has the mass
m. Find the minimum force F required to move the wedge 3. The coefficient of

Fig. 5.18 Problem 5.1

θ

P

m

5.6 Problems 231

Fig. 5.19 Problem 5.2

θ

h

l

C

Fig. 5.20 Problem 5.3

O

A

B

Fig. 5.21 Problem 5.4

m

F
α

2

1

3
α

0

0

Fig. 5.22 Problem 5.5

α

2

1

3

α

F

232 5 Friction

static friction is μ. The angle of the wedges is α. For the numerical example use:
m = 10 kg, μ = 0.2, α = 15◦ rad, and g = 9.81 m/s2.

5.6 A double square-thread power screw has a pitch (mean) diameter of 30 mm and
a pitch of 6 mm. The coefficient of friction of the thread is 0.1 and the coefficient
of collar friction is also 0.2. The mean collar diameter is 40 mm. The external
load on the screw is 8 kN. Determine the moment required to lower the load and
the overall efficiency.

5.7 A power screw has a double square thread with a mean diameter of 50 mm and a
pitch of 8 mm. The coefficient of friction in the thread is 0.15. Determine if the
screw is self-locking.

5.8 A triple-thread screw is used in a jack to raise a load of 3000 lb. The major
diameter of the screw is 4 in. A plain thrust collar is used. The mean diameter
of the collar is 5 in. The coefficient of friction of the thread is 0.08 and the
coefficient of collar friction is 0.2. Determine: (a) the screw pitch, lead, thread
depth, mean pitch diameter, and helix angle; (b) the starting moment for raising
and for lowering the load; (c) the efficiency of the jack.

5.7 Programs

5.7.1 Program 5.1

% example 5.1
clear all; clc; close all

syms F02 F12 F01 F
syms m1 m2 g alpha mu

list ={m1,m2,g,alpha,mu};
listn={10,5,9.81,10*pi/180,0.2};

% slider 2
% force of ground (vertical support) on body 2
F02_ = [-F02 0 0];
% friction force between 0 and 2
Ff02_ = [0 mu*F02 0];
% force of prism 1 on body 2
F12_ = ...
[-F12*sin(alpha) F12*cos(alpha) 0];
% friction force between 1 and 2
Ff12_ = ...
[mu*F12*cos(alpha) mu*F12*sin(alpha) 0];
% weight of body 2

5.7 Programs 233

G2_ = [0 -m2*g 0];
% sum of forces on body 2
F2_ = F02_+Ff02_+F12_+Ff12_+G2_;
F2x = F2_(1);
F2y = F2_(2);

fprintf(’Fx on 2:\n’)
fprintf(’ %s = 0 \n’,char(F2x))
fprintf(’Fy on 2:\n’)
fprintf(’ %s = 0 \n’,char(F2y))

sol2 = solve(F2x,F2y,F02,F12);
F02s = simple(sol2.F02);
F12s = simple(sol2.F12);
fprintf(’=>\n’)
fprintf(’F02 = %s\n’,char(F02s))
fprintf(’F12 = %s\n’,char(F12s))
fprintf(’\n’)

% prism 1
% force of body 2 on prism 1
F21_ = ...
-[-F12s*sin(alpha) F12s*cos(alpha) 0];
% friction force between 2 and 1
Ff21_ = ...
-[mu*F12s*cos(alpha) mu*F12s*sin(alpha) 0];

% force of ground on prism 1
F01_ = [0 F01 0];
% friction force between 0 prism 1
Ff01_ = -mu*[F01 0 0];
% weight of prism 1
G1_ = [0 -m1*g 0];
% external force of prism 1
F_ = [F 0 0];

% sum of forces on prism 1
F1_ = F01_+Ff01_+F21_+Ff21_+G1_+F_;
F1x = F1_(1);
F1y = F1_(2);

fprintf(’Fx on 1: 0 = \n’)
pretty(F1x)
fprintf(’Fy on 1: 0 = \n’)
pretty(F1y)

234 5 Friction

sol1 = solve(F1x,F1y,F01,F);
F01s = simple(sol1.F01);
Fs = simple(sol1.F);
fprintf(’=>\n’)
fprintf(’F01 = \n’)
pretty(F01s)
fprintf(’F = \n’)
pretty(Fs)

F02n = subs(F02s,list,listn);
F01n = subs(F01s,list,listn);
F12n = subs(F12s,list,listn);
Fn = subs(Fs,list,listn);

fprintf(’\n\n’)
fprintf(’F02 = %6.3f (N) \n’,F02n)
fprintf(’F01 = %6.3f (N) \n’,F01n)
fprintf(’F12 = %6.3f (N) \n’,F12n)
fprintf(’F = %6.3f (N) \n’,Fn)

% system plot
aa = 100;
axis([-aa/2 aa -aa/2 aa])
grid on, hold on
axis equal

quiver(0,0,aa,0,...
’Color’,’b’,’LineWidth’,1.0);
text(aa-8,0,’x’,’fontsize’,12);
quiver(0,0,0,aa,...
’Color’,’b’,’LineWidth’,1.0);
text(0,aa-8,’y’,’fontsize’,12);

a=60; b=25;c=10;
alpha=10*pi/180;
x_F=c; y_F=0;
x_H=a; y_H=0;
x_E=x_H; y_E=(x_H-x_F)*sin(alpha);
x_O=0; y_O=0;
% slider vertices
vert = [x_F y_F 0; x_E y_E 0; x_H y_H 0;];
% slider faces
fac = [2 1 3];
% draw the slider

5.7 Programs 235

slider=patch...
(’Faces’,fac,’Vertices’,vert,’FaceColor’,’b’);

h=50;f=12;
x_A=x_F+f; y_A=(x_A-x_F)*sin(alpha);
x_B=x_A; y_B=y_A+h;
x_D=x_H-f; y_D=(x_D-x_F)*sin(alpha);
x_C=x_D; y_C=y_B;
% prism vertices
vert = ...
[x_A y_A 0; x_B y_B 0; x_D y_D 0; x_C y_C 0;];
% prism faces
fac = [2 1 3 4];
% draw the prism
prism=patch...
(’Faces’,fac,’Vertices’,vert,’FaceColor’,’y’);

% draw body left wall
s1x=x_A-f/6; s1y=x_A-f/6;
s2x=y_B+f; s2y=y_D+f;
s1 = [s1x s1y];
s2 = [s2x s2y];
line(s1,s2,’LineStyle’,’-’,...

’Color’,’k’,’LineWidth’,4)

% draw body right wall
s3x=x_D+f/5; s3y=x_D+f/5;
s4x=y_B+f; s4y=y_D+f;
s3 = [s3x s3y];
s4 = [s4x s4y];
line(s3,s4,’LineStyle’,’-’,...

’Color’,’k’,’LineWidth’,4)

quiver(x_A+(x_D-x_A)/2,y_A+(y_D-y_A)/2,...
F12n*cos(alpha+pi/2),F12n*sin(alpha+pi/2),...
’Color’,’r’,’LineWidth’,1.5);
t0=text(abs(F12n*cos(alpha+pi/2))+20,...
F12n*sin(alpha+pi/2), 0,’ F12’,’fontsize’,12);

quiver(x_A+(x_D-x_A)/2,y_A+(y_D-y_A)/2,Fn,0,...
’Color’,’r’,’LineWidth’,1.5);
t0=text(abs(Fn)+33,5, 0,’ F’,’fontsize’,12);
% end of program

236 5 Friction

5.7.2 Program 5.2

% example 5.2
clear all; clc; close all

syms l m g mu alpha beta
syms NA NB F

NA_=[NA*sin(alpha) NA*cos(alpha) 0];

FfA=mu*NA;
FfA_=[-FfA*cos(alpha) FfA*sin(alpha) 0];

F_=[-F*cos(beta) F*sin(beta) 0];

NB_=[0 NB 0];

FfB=mu*NB;
FfB_=[-FfB 0 0];

G_=[0 -m*g 0];

eqF_=NA_+FfA_+F_+NB_+FfB_+G_;

eqFx=eqF_(1);
eqFy=eqF_(2);

eqMA=-l/2*m*g*cos(beta)+l*NB*cos(beta);

fprintf(’sum Fx:\n’)
fprintf(’ %s = 0 \n’,char(eqFx))
fprintf(’sum Fy:\n’)
fprintf(’ %s = 0 \n’,char(eqFy))
fprintf(’moment about A:\n’);
fprintf(’ %s = 0 \n\n’,char(eqMA))

sol=solve(eqFx,eqFy,eqMA,F,NA,NB);

NAs=simplify(sol.NA);
NBs=sol.NB;
Fs=simplify(sol.F);

list={l,m,g,mu,beta,alpha};
listn={1,10,9.81,0.2,pi/6,pi/4};

5.7 Programs 237

NAn=subs(NAs,list,listn);
NBn=subs(NBs,list,listn);
Fn=subs(Fs,list,listn);

fprintf(’NA =\n’)
pretty(NAs);
fprintf(’\n’)
fprintf(’NA = %6.3f (N)\n\n’,NAn)
fprintf(’NB =\n’)
pretty(NBs);
fprintf(’\n’)
fprintf(’NB = %6.3f (N)\n\n’,NBn)
fprintf(’F =\n’)
pretty(Fs);
fprintf(’\n’)
fprintf(’F = %6.3f (N)\n\n’,Fn)

% graphic
a = 70;
axis([-a/2 a -a a])
grid on, hold on
axis equal
xlabel(’x’), ylabel(’y’)

quiver(0,0,2*a+10,0,...
’Color’,’b’,’LineWidth’,1.0);
text(2*a,0,’ x’,’fontsize’,12);
quiver(0,0,0,a,...
’Color’,’b’,’LineWidth’,1.0);
text(0,a,’ y’,’fontsize’,12);

a=80; b=35;c=20;
alpha=45*pi/180;
x_O=0; y_O=0;
x_F=c; y_F=0;
x_E=a; y_E=0;
x_D=c; y_D=(x_E)*sin(alpha);

t0=text(x_O, y_O, 0,’ O’,’fontsize’,12);
t1=text(x_F-1, y_F-4, 0,’ F’,’fontsize’,12);
t2=text(x_D-1, y_D+2, 0,’ D’,’fontsize’,12);
t3=text(x_E-1, y_E-4, 0,’ E’,’fontsize’,12);
% prism vertices
vert = [x_F y_F 0; x_D y_D 0; x_E y_E 0;];

238 5 Friction

% prism faces
fac = [2 1 3];
% draw the prism
prism=patch...
(’Faces’,fac,’Vertices’,vert,’FaceColor’,’y’);

offset=1;
beta=30*pi/180;
x_A=x_F+(x_E-x_F)/2; y_A=y_D/2+2*offset;
x_B=x_A+y_A/tan(beta); y_B=offset;
A = [x_A x_B];
B = [y_A y_B];
x_C=x_A+(x_B-x_A)/2;
y_C=(y_A)/2+offset/2;
C = [x_C y_C];

t4=text...
(x_B-1, y_B-5, 0,’ B’,’fontsize’,12);
t5=text...
(x_A, y_A+4, 0,’ A’,’fontsize’,12);
t6=text...
(x_C-1, y_C+4, 0,’ C’,’fontsize’,12);
% draw the rod
line(A,B,’LineStyle’,’-’,...

’Color’,’r’,’LineWidth’,6)
scatter(x_C,y_C,3,5,’filled’,’b’)

quiver(....
x_A-NAn*cos(alpha)+2*offset,...
y_A-NAn*sin(alpha)+2*offset,...
NAn*cos(alpha),NAn*sin(alpha),...
’Color’,’b’,’LineWidth’,1.5);
t0=text(...
x_A-NAn*cos(alpha)/2,...
y_A-NAn*sin(alpha)/2-5*offset,...
0,’ N_A’,’fontsize’,12);

quiver(...
x_A,y_A,Fn*cos(beta+pi),...
Fn*sin(beta),...
’Color’,’k’,’LineWidth’,1.5);
t0=text(...
x_A-Fn*cos(alpha)-9*offset,...
y_A+Fn*sin(alpha)-4*offset,...
0,’ F’,’fontsize’,12);

5.7 Programs 239

FfA=subs(FfA,list,listn);
FfA=subs(FfA,NAn,NA);
quiver(...
x_A,y_A,...
FfA*cos(alpha+pi)-offset,...
FfA*sin(alpha),...
’Color’,’g’,’LineWidth’,1.5);
t0=text(...
x_A-Fn*cos(alpha)+2*offset,...
y_A+Fn*sin(alpha)-3.0*offset,...
0,’ Ff_A’,’fontsize’,12);

quiver(x_B,y_B-offset,0,NBn,...
’Color’,’b’,’LineWidth’,1.5);
t0=text(...
x_B,y_B+NBn-4*offset,...
0,’ N_B’,’fontsize’,12);

quiver(x_B,y_B-offset,-Fn,0,...
’Color’,’g’,’LineWidth’,1.5);
t0=text(...
x_B-Fn,y_B+2*offset, 0,...
’Ff_B’,’fontsize’,12);

G=subs(G_,list,listn);
quiver(x_C,y_C,0,G(2),...
’Color’,’b’,’LineWidth’,1.5);
t0=text(...
x_C,y_C+G(2)/2, 0,...
’ G’,’fontsize’,12);
% end of program

5.7.3 Program 5.3

% example 5.3
clear all; clc; close all

% major diameter d
d = 38; % mm
% screw pitch p
p = 6; % mm
% coefficient of friction for thread
mu = 0.08;

240 5 Friction

% coefficient of collar friction
muc = 0.1;
% mean collar diameter dc
dc = 45; % mm
% external load F
F = 9; % kN

% lead l
l = p;
% minor diameter dr
dr = d-p;
% (pitch) mean diameter dm
dm = d-p/2;

fprintf(’l = p = %6.3f (mm)\n’,l)
fprintf(’dr = d - p = %6.3f (mm)\n’,dr)
fprintf(’dm = d - p/2 = %6.3f (mm)\n\n’,dm)

% momemnt required to raise the load
Mr =0.5*F*dm*(pi*mu*dm+l)/(pi*dm-mu*l)...

+0.5*F*dc*muc;
fprintf(’Mr = %6.3f (kN m)\n\n’,Mr)

% moment required to lower load
Ml =0.5*F*dm*(pi*mu*dm-l)/(pi*dm+mu*l)...

+0.5*F*dc*muc;
fprintf(’Ml = %6.3f (kN m)\n\n’,Ml)

% sef-locking condition: (pi*mu*dm - l) > 0
sf = (pi*mu*dm - l);
fprintf(’sf = %6.3f \n’,sf)

if sf > 0
fprintf(’sf>0 => screw is sef-locking\n\n’)
else
fprintf(’sf<0 => screw is not sef-locking\n\n’)
end

% If sf > 0 => the screw is sef-locking
% If sf <= 0 => the screw is not sef-locking

% efficiency
e = F*l/(2*pi*Mr);
fprintf(’e = %6.3f \n\n’,e)
% end of program

References 241

References

1. P. Appell, Traité de mécanique rationnelle (Gauthier-Villars, Paris, 1955)
2. M. Atanasiu, Mechanics (EDP, Bucharest, 1973)
3. H. Baruh, Analytical Dynamics (WCB/McGraw-Hill, Boston, 1999)
4. G. Baumann, Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear

Dynamics (Springer, New York, 2005)
5. G. Baumann, Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics,

General Relativity and Fractals (Springer, New York, 2005)
6. F.P. Beer, E.R. Johnston, Vector Mechanics for Engineers: Statics and Dynamics 5th edn.

(McGraw-Hill Publishing Company, New York, 1988)
7. F.P. Beer, E.R. Johnston, D.F. Mazurek, Vector Mechanics for Engineers: Statics 10th edn.

McGraw-Hill Publishing Company, New York, 2012)
8. A.M. Bedford, W. Fowler, K.M. Liechti, Statics and Mechanics of Materials (Prentice Hall,

Inc., Upper Saddle River, NJ, 2002)
9. A.M. Bedford, W. Fowler, Engineering Mechanics: Statics 5th edn. (Prentice Hall, Inc., Upper

Saddle River, NJ, 2007)
10. A.P. Boresi, R.J. Schmidt, Engineering Mechanics: Statics (PWS Publishing Company, Boston,

2000)
11. M.I. Buculei, Mechanics (University of Craiova Press, Craiova, 1974)
12. M.I. Buculei, D. Bagnaru, G. Nanu, D.B. Marghitu, Analysis of Mechanisms with Bars (Scrisul

romanesc, Craiova, 1986)
13. I. Stroe et al., Analytical Mechanics Problems (University Politehnica of Bucharest, Bucharest,

1997)
14. V. Ceausu, N. Enescu, F. Ceausu, Mechanics Problems (Printech, Bucharest, 1999)
15. S.J. Chapman, MATLAB Programming for Engineers (Thomson Engineering, 2007).
16. S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving

(Butterworth-Heinemann, Elsevier, Amsterdam, 2012)
17. D.M. Etter, D.C. Kuncicky, Introduction to MATLAB for Engineers and Scientists (Prentice

Hall, Inc., Upper Saddle River, NJ, 1996)
18. C. Iacob, Theoretical Mechanics (EDP, Bucharest, 1980)
19. J.H. Ginsberg, Advanced Engineering Dynamics (Cambridge University Press, Cambridge,

1995)
20. D.T. Greenwood, Principles of Dynamics (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1998)
21. L.E. Goodman, W.H. Warner, Statics (Dover Publications, Inc., New York, 2001)
22. R.C. Hibbeler, Engineering Mechanics: Statics and Dynamics 13th edn. (Prentice-Hall, Inc.,

Upper Saddle River, NJ, 2013)
23. T.R. Kane, Analytical Elements of Mechanics, vol. 1 (Academic Press, New York, 1959)
24. T.R. Kane, Analytical Elements of Mechanics, vol. 2 (Academic Press, New York, 1961)
25. T.R. Kane, P.W. Likins, D.A. Levinson, Spacecraft Dynamics (McGraw-Hill, New York, 1983)
26. T.R. Kane, D.A. Levinson, Dynamics (McGraw-Hill, New York, 1985)
27. R. Maeder, Programming in Mathematica (Addison-Wesley Publishing Company, Redwood

City, CA, 1990)
28. N.H. Madsen, Statics and dynamics, class notes, available at http://www.eng.auburn.edu/users/

nmadsen/
29. D.B. Marghitu, Mechanical Engineer’s Handbook (Academic Press, San Diego, CA, 2001)
30. D.B. Marghitu, M.J. Crocker, Analytical Elements of Mechanisms (Cambridge University Press,

Cambridge, 2001)
31. D.B. Marghitu, Kinematic Chains and Machine Component Design (Elsevier, Amsterdam,

2005)
32. D.B. Marghitu, Mechanisms and Robots Analysis with MATLAB (Springer, New York , 2009)
33. D.B. Marghitu, M. Dupac, Advanced Dynamics: Analytical and Numerical Calculations with

MATLAB (Springer, New York, 2012)

http://www.eng.auburn.edu/users/nmadsen/
http://www.eng.auburn.edu/users/nmadsen/

242 5 Friction

34. D.B. Marghitu, Statics and dynamics, class notes, available at http://www.eng.auburn.edu/
users/marghitu/

35. D.J. McGill, W.W. King, Engineering Mechanics: Statics and an Introduction to Dynamics
(PWS Publishing Company, Boston, 1995)

36. J.L. Meriam, L.G. Kraige, Engineering Mechanics: Statics 7th edn. (John Wiley & Sons, New
York, 2011)

37. R.L. Mott, Machine Elements in Mechanical Design (Prentice Hall, Upper Saddle River, NJ,
1999)

38. R.L. Norton, Machine Design (Prentice-Hall, Upper Saddle River, NJ, 1996)
39. L.A. Pars, A Treatise on Analytical Dynamics (John Wiley & Sons, New York, 1965)
40. M. Plesha, G. Gray, F. Costanzo, Engineering Mechanics: Statics 2nd edn. (McGraw-Hill, New

York, 2012)
41. M. Radoi, E. Deciu, Mechanics (EDP, Bucharest, 1981)
42. W.F. Riley, L.D. Sturges, Engineering Mechanics: Statics 2nd edn. (John Wiley & Sons, Inc.,

New York, 1995)
43. A. Ruina, R. Pratap, Introduction to Statics and Dynamics (Oxford University Press, Oxford,

2002)
44. A. Ripianu, P. Popescu, B. Balan, Technical Mechanics (EDP, Bucharest, 1979)
45. I.H. Shames, Engineering Mechanics Statics 4th edn. (Prentice Hall, Inc., New Jersey, 1996)
46. S.D. Sheppard, B.H. Tongue, Statics: Analysis and Design of Systems in Equilibrium (John

Wiley & Sons, New York, 2005)
47. D. Smith, Engineering Computation with MATLAB (Pearson Education, Upper Saddle River,

NJ, 2008)
48. R.W. Soutas-Little, D.J. Inman, Engineering Mechanics: Statics and Dynamics (Prentice-Hall,

Upper Saddle River, NJ, 1999)
49. R.W. Soutas-Little, D.J. Inman, D. Balint, Engineering Mechanics: Statics (Cengage Learning,

Independence, KY, 2007)
50. S. Staicu, Theoretical Mechanics (EDP, Bucharest, 1998)
51. A. Stan, M. Grumazescu, Mechanics Problems (EDP, Bucharest, 1973)
52. J. Sticklen, M.T. Eskil, An Introduction to Technical Problem Solving with MATLAB (Great

Lakes Press, Wildwood, MO, 2006)
53. A. Stoenescu, G. Silas, Theoretical Mechanics (ET, Bucharest, 1957)
54. J.H. Jackson, H.G. Wirtz, Schaum’s Outline of Theory and Problems of Statics and Strength of

Materials (McGraw-Hill, New York, 1983)
55. The MathWorks: https://www.mathworks.com/
56. Statics eBook : https://ecourses.ou.edu/
57. R. Voinea, D. Voiculescu, V. Ceausu, Mechanics (EDP, Bucharest, 1983)
58. V. Valcovici, S. Balan, R. Voinea, Theoretical Mechanics (ET, Bucharest, 1959)
59. K.J. Waldron, G.L. Kinzel, Kinematics, Dynamics, and Design of Machinery (John Wiley &

Sons, New York, 1999)
60. H.B. Wilson, L.H. Turcotte, D. Halpern, Advanced Mathematics and Mechanics Applications

Using MATLAB (Chapman & Hall/CRC, Boca Raton, 2003)
61. J.H. Williams Jr, Fundamentals of Applied Dynamics (John Wiley & Sons, New York, 1996)
62. S. Wolfram, Mathematica (Wolfram Media/Cambridge University Press, Cambridge, 1999)

http://www.eng.auburn.edu/users/marghitu/
http://www.eng.auburn.edu/users/marghitu/
https://www.mathworks.com/
https://ecourses.ou.edu/

Chapter 6
Virtual Work and Stability

6.1 Virtual Displacement and Virtual Work

A particle in static equilibrium position is considered, Fig. 6.1a. The static equilib-
rium position of the particle is determined by the forces that act on it. The virtual
displacement, δr, is any arbitrary small displacement away from this natural position
and consistent with the system constraints. The term virtual is used to indicate that
thedisplacement does not really exist but only is assumed to exist. The virtual work is
the work done by any force F acting on the particle during the virtual displacement δr:

δU = F · δr = Fδr cos α,

where α is the angle between F and δr (|δr| = δr). The actual infinitesimal change
in position dr can be integrated and the infinitesimal virtual or assumed movement
δr cannot be integrated. Mathematically, both quantities are first-order differentials.
The force F is constant during any infinitesimal virtual displacement.

Consider a particle in equilibrium position as a result of the forces F1, F2, . . . , Fn .
For an assumed virtual displacement δr of the particle away from its equilibrium
position, the total virtual work done on the particle is

δU = ΣF · δr = Σ Fx δx + Σ Fy δy + Σ Fz δz = 0.

The sum is zero, since ΣF = 0. The equation δU = 0 is therefore an alternative
statement of the equilibrium conditions for a particle. This condition of zero virtual
work for equilibrium is both necessary and sufficient.

The principle of virtual work for a single particle can be extended to a rigid body
treated as a system of small elements or particles rigidly attached to one another.
Because the virtual work done on each particle of the body in equilibrium is zero, it
results that the virtual work done on the entire rigid body is zero.

All the internal forces appear in pairs of equal, opposite, and collinear forces, and
the net work done by these forces during any movement is zero. Only the virtual

D. B. Marghitu et al., Statics with MATLAB®, 243
DOI: 10.1007/978-1-4471-5110-4_6, © Springer-Verlag London 2013

244 6 Virtual Work and Stability

F

α

δr

δθ

F δr cosα

P

M

(a) (b)

Fig. 6.1 a Force acting on a particle and b couple acting on an object

work done by external forces are taken into account in the evaluation of δU = 0
for the entire body. A virtual displacement may also be a rotation δθ of a body as
shown in Fig. 6.1b. The virtual work done by a couple M during a virtual angular
displacement δθ is δU = Mδθ. The force F or couple M remain constant during any
infinitesimal virtual displacement.

The principle of virtual work will be extended to the equilibrium of an intercon-
nected ideal system of rigid bodies. The ideal systems are systems composed of two
or more rigid bodies linked together by mechanical connections which are incapable
of absorbing energy through elongation or compression, and in which friction is
small enough to be neglected. There are two types of forces which act in such an
interconnected system:

• active forces are external forces capable of doing virtual work during possible
virtual displacements;

• joint forces are forces in the connections between members. During any possible
movement of the system or its parts, the net work done by the joint forces at the
connections is zero, because the joint forces always exist in pairs of equal and
opposite forces.

Principle of Virtual Work: The work done by external active forces on an ideal
mechanical system in equilibrium is zero for any and all virtual displacements con-
sistent with the constraints.

Mathematically, the principle can be expressed as

δU = 0. (6.1)

The advantage of the method of virtual work is that relations between the active
forces can be determined directly without reference to the joint forces. The method
is useful in determining the position of equilibrium of a system under known forces.
The method of virtual work cannot be applied for the system where the internal
friction in a mechanical system is appreciable (the work done by internal friction
should be included).

6.2 Elastic Potential Energy 245

6.2 Elastic Potential Energy

The work done by any force F acting on the particle due to a differential displacement
dr of the force application point is

dU = F · dr.

A function of position V is the potential energy associated with the force F if for
any dr

dV = −F · dr = −dU.

The force F (for which a potential function exists) is called a conservative force.
The work done on an elastic body is accumulated in the body in the form of

elastic potential energy, Ve. The potential energy can do work on other body dur-
ing the compression or extension. A spring can store and release potential energy.
A spring with the elastic constant or stiffness k is attached to a particle P as shown
in Fig. 6.2. The spring is connected to a fixed support. A force F acts on the particle
and the spring is compressed. The spring exerts a force Fs on the particle. The spring
is linear elastic and the force Fs is directly proportional to its deflection x

Fs = kx .

The work done by the elastic force of the spring, Fs , on the particle is calculated
from

dU = −Fs dx,

where dx is the differential displacement. The work done is negative since the spring
exerts a force Fs on the particle that is opposite to the particle displacement dx

U = −
x∫

0

Fs dx = −
x∫

0

k xdx = −1

2
kx2.

Fig. 6.2 Force acting on
a spring

k

F

O

x

(undeformed)

P

F

sF

P

246 6 Virtual Work and Stability

The elastic potential energy of the spring on the attached particle for the compression
x is

Ve =
x∫

0

Fs dx =
x∫

0

kxdx = 1

2
kx2.

For an increase in the compression of the spring from x1 to x2 the change in elastic
potential energy is

ΔVe =
x2∫

x1

kxdx = 1

2
k(x2

2 − x2
1).

During a virtual displacement δx , the virtual change in elastic potential energy is

δVe = Fδx = kxδx .

If the spring is elongated, the work and energy relations are the same as those for
compression, where x is the stretch of the spring.

For a torsional spring the elastic moment is

Ms = Kθ,

where K is the torsional stiffness. The potential energy becomes

Ve =
θ∫

0

Kθdθ = 1

2
Kθ2,

which is analogous to the expression for the linear extension spring. The torsional
spring resists the rotaten. The units of elastic potential energy are the same as those
of work and are expressed in joules (J) in SI units and in foot-pounds (ft·lb) in U.S.
customary units. The force developed by a an elastic spring is a conservative force.

For springs in parallel having individual spring rates, ki , Fig. 6.3a, the spring rate
k is

k = k1 + k2 + k3. (6.2)

For springs in series, with individual spring rates, ki , Fig. 6.3b, the spring rate k is

k = 1
1

k1
+ 1

k2
+ 1

k3

. (6.3)

6.3 Gravitational Potential Energy 247

k2

k1 k2 k3

k1

k3

(a) (b)

Fig. 6.3 Springs in a parallel and b series

6.3 Gravitational Potential Energy

Consider a body P of weight G = mg. The body is initially at P1 and is moved down
at the position P along an arbitrary path I, as shown in Fig. 6.4. The magnitude of
the displacement in the G direction is dh = ds cos α, where ds is the displacement
along the path. The displacement and the force are in the same direction and the work
is dU = G · ds. It results

U =
∫

s
G cos αds =

h∫

0

mgdy = mgh.

The work done by the weight G when the body moves up from P to position P1
along the arbitrary path II is the negative work

P

(datum)

h

-h

G

G

1

P2

G

P

II

I
α

ds cosα=dhds

O

Fig. 6.4 Gravitational potential energy

248 6 Virtual Work and Stability

U = −mgh.

The work done by the weight depends only on the vertical displacement h and is
independent of the path of the body.

The gravitational potential energy Vg of a body is defined as the work done on the
body by a force equal and opposite to the weight in bringing the body to the position
under consideration from an arbitrary datum where the potential energy is defined
to be zero. The potential energy is the negative of the work done by the weight. At
the datum h = 0 and Vg = 0. At a height h above the datum plane, the gravitational
potential energy of the body is Vg = mgh. If the body is a distance h below the
datum the gravitational potential energy is Vg = −mgh.

Remarks:

1. the datum for zero potential energy is arbitrary because only the change in poten-
tial energy is considered;

2. the gravitational potential energy is independent of the path followed in arriving
at a particular level h.

The virtual change in gravitational potential energy is

δVg = mgδh,

where δh is the upward virtual displacement of the mass center of the body. The units
of gravitational potential energy are the same as those for work and elastic potential
energy, joules (J) in SI units and foot-pounds (ft·lb) in U.S. customary units.

Consider a linear spring attached to a body of mass m. The work done by the
linear spring on the body is the negative of the change in elastic potential energy.
The work done by the gravitational force is the negative of the change in gravitational
potential energy.

The total virtual work δU is the sum of the work δUa done by the active forces
(other than spring forces and gravitational forces) and the work done by the spring
forces and gravitational forces. For this case the virtual work equation δU = 0 is

δUa − (δVe + δVg) = 0 or δUa = δV, (6.4)

where V = Ve + Vg is the total potential energy of the system.

6.4 Stability of Equilibrium

For a system the sum of the work done by the active forces other than spring forces
and gravitational forces is considered zero (δUa = 0). With δUa = 0 and Eq. (6.4)
the relation of the virtual work is

δ(Ve + Vg) = 0, (6.5)

6.4 Stability of Equilibrium 249

or
δV = 0. (6.6)

Equation (6.6) expresses the principle of virtual work for conservative forces. Con-
sider a mechanical system in equilibrium. If the forces that do work are conservative
the total potential energy V of the system has a stationary value.

For a system with one degree of freedom the configuration is described by a single
independent variable q. The equilibrium condition is δV = 0 or

δV = dV

dq
δq = 0,

or
dV

dq
= 0. (6.7)

A mechanical system is in equilibrium when the derivative of its total potential energy
is zero. For systems with multiple degrees of freedom, the partial derivative of V
with respect to each independent coordinate qi must be zero for equilibrium.

The following three cases are considered for Eq. (6.7), as shown in Fig. 6.5:

• the total potential energy is a minimum (stable equilibrium),
• the total potential energy is a maximum (unstable equilibrium),
• the total potential energy is constant (neutral equilibrium).

For a continuous function with continuous derivatives, the second derivative is
positive at a minimum point of the function and negative at a maximum point of
the function. The mathematical conditions for equilibrium and stability of the one
degree of freedom system are:

Equilibrium : dV

dq
= 0;

stable : d2V

dq2 > 0;

unstable : d2V

dq2 < 0.

stable

V

unstable neutral
q

Fig. 6.5 Equilibrium positions

250 6 Virtual Work and Stability

B

A
C

x
y

F

1 2
0

0

k

C1

C2

mgmg

θ
m, l

m, l

B

A
C

x
y

0
θ

2kl(1-cosθ)

F
(a)

(b)

h

Fig. 6.6 Example 6.1

6.5 Examples

Example 6.1 In a vertical plane two uniform links, each of mass m and length l, are
connected and constrained as shown in Fig. 6.6a. The spring is not stretched when the
links are horizontal (θ = 0). The angle θ increases with the application of the known
horizontal force F. Determine the spring stiffness k which will produce equilibrium
at a given angle θ. For the numerical values use l = 5 m, θ = π/6 rad, m = 1 kg,
F = 500 N, and g = 9.81 m/s2.

Solution The mechanical system has one degree of freedom. The position of each
link can be expressed in terms of the angle θ. The MATLAB commands for the
positions A, B, C , and D are:

syms l theta m F g k
rA_=[0,0,0];
xB=l*cos(theta);
yB=-l*sin(theta);
rB_=[xB,yB,0];
xC=2*l*cos(theta);
yC=0;
rC_=[xC,yC,0];
xD=2*l;
yD=0;
rD_=[xD,yD,0];

The point D represents the unstretched position of C when θ = 0. The spring
deflection is

x = 2 l − 2 l cos θ = 2 l(1 − cos θ),

or with MATLAB:

6.5 Examples 251

xS=xD-xC;

The force diagram is shown in Fig. 6.6b. The joint forces are not included in the
diagram. The elastic potential energy of the spring is

Ve = 1

2
kx2 = 2 kl2 (1 − cos θ)2,

or with MATLAB:

Ve=1/2*k*xSˆ2;

The virtual change in elastic potential energy is

δVe = δ
[
2 kl2(1 − cos θ)2

]
= 2 kl2δ(1 − cos θ)2 = 4 kl2(1 − cos θ) sin θδθ,

or in MATLAB:

dVe=diff(Ve,theta);

The gravitational potential energy is

Vg = −2 mgh = −2 mg

(
l

2
sin θ

)
= −mgl sin θ.

The datum for zero gravitational potential energy was taken through the support at A.
The gravitational potential energy in MATLAB for the two links 1 and 2 is:

h1=l*sin(theta)/2;
h2=h1;
m1=m;
m2=m;
Vg=-m1*g*h1-m2*g*h2;

The virtual change in gravitational potential energy is

δVg = δ(−mgl sin θ) = −mgl cos θδθ

or with MATLAB:

dVg=diff(Vg,theta);

The virtual work done by the active external force F is

δUa = Fδ = Fδ [2 l(1 − cos θ)] = 2 Flδ(1 − cos θ) = 2 Fl sin θδθ.

dUa=F*diff(xS,theta);

252 6 Virtual Work and Stability

The virtual work equation δUa = δVe + δVg gives

2 Fl sin θδθ = 4 kl2(1 − cos θ) sin θδθ − mgl cos θδθ.

The stiffness of the spring is

k = 2 F sin θ + mg cos θ

4 l(1 − cos θ) sin θ
.

The MATLAB commands for the calculation of the stiffness of the spring are:

dW = dUa - (dVe + dVg);
ks = solve(dW, k);

The numerical value for the stiffness of the spring is calculated with:

lists = {l, theta, m, F, g};
listt = {5, pi/6, 1, 500, 9.81};
ks=subs(ks,lists,listt);

and the results is: k = 379.546 (N/m). The MATLAB figure of the system is shown
in Fig. 6.7.

Example 6.2 Figure 6.8 shows a uniform bar of mass m and length l that moves
in the vertical and horizontal directions. The spring has the stiffness k and is not
compressed when the bar is vertical. Find the equilibrium positions and examine the
stability. For the numerical values use l = 5 m, θ = π/6 rad, m = 1 kg, F = 500 N,
and g = 9.81 m/s2.

−2 0 2 4 6 8 10 12 14

−4

−2

0

2

4

6

x
 C0C

x

F

B

y

A

y

Fig. 6.7 Example 6.1 MATLAB figure of the system

6.5 Examples 253

Fig. 6.8 Example 6.2

B

A

C

x

y

k θ
m, l

O

mg

Solution The displacement of the bar shown in Fig. 6.8 can be expressed in term of
the angle θ. The spring is undeformed when θ = 0. The datum for zero gravitational
potential energy is the horizontal x-axis. The positions of A, B, and the mass center
C are given in MATLAB by:

xO=0;
yO=0;
rO_=[xO,yO,0];
xA=0;
yA=l*cos(theta);
rA_=[xA,yA,0];
xB=l*sin(theta);
yB=0;
rB_=[xB,yB,0];
xC=(xA+xB)/2;
yC=(yA+yB)/2;
rC_=[xC,yC,0];

The spring deflection is

y = l − l cos θ = l(1 − cos θ),

or with MATLAB:

yS=l-yA;

The elastic potential energy of the spring is

Ve = 1

2
ky2 = 1

2
kl2(1 − cos θ)2,

The gravitational potential energy is

Vg = mgh = mg

(
l

2
cos θ

)
= 1

2
mgl cos θ.

254 6 Virtual Work and Stability

The total potential energy is

V = Ve + Vg = 1

2
kl2(1 − cos θ)2 + 1

2
mgl cos θ.

The elastic potential energy, the gravitational potential energy, and the total potential
energy with MATLAB are:

Ve=1/2*k*ySˆ2;
Vg= m*g*yC;
V=Ve+Vg;

The equilibrium position is obtained by differentiating the total potential energy and
setting it to zero

dV

dθ
= kl2(1 − cos θ) sin θ − mgl sin θ

2
= l sin θ

[
kl(1 − cos θ) − mg

2

]
= 0.

The solutions to this equation are the equilibrium positions:

sin θ = 0 and cos θ = 1 − mg

2kl
.

The MATLAB program for calculating the solutions is:

dVdtheta = diff(V,theta);
thetas=solve(dVdtheta, theta);
theta1=thetas(1);
theta2=thetas(2);
theta3=thetas(3);

and the MATLAB results are:

theta1 =
0

theta2 =
/ g m \

pi + acos| ----- - 1 |
\ 2 k l /

theta3 =
/ g m \

pi - acos| ----- - 1 |
\ 2 k l /

6.5 Examples 255

For the numerical data:

list = {l,k,m,g};
listn = {5,100,10,9.8};
theta1n = subs(theta1,list,listn);
theta2n = subs(theta2,list,listn);
theta3n = subs(theta3,list,listn);

the solutions are:

theta1 = 0 (rad) = 0 (deg)
theta2 = 5.84 (rad) = 334 (deg)
theta3 = 0.446 (rad) = 25.6 (deg)

The sign of the second derivative of the potential energy for each of the two equilib-
rium positions will determine the stability of the system. The second derivative of
the total potential energy is

d2V

dθ2 = kl2 sin2 θ + kl2(1 − cos θ) cos θ − mgl cos θ

2
.

Solution 1: sin θ = 0, θ = 0 =⇒
d2V

dθ2 = 0 + kl2(1 − 1)(1) − mgl

2
= −mgl

2
< 0.

Equilibrium for θ = 0 is never stable.

Solutions 2 and 3: cos θ = 1 − mg

2kl
=⇒

d2V

dθ2 = mg
(

l − mg

4k

)
.

For l > mg/(4k) =⇒ d2V/dθ2 > 0 the equilibrium position is stable.
For l < mg/(4k) =⇒ d2V/dθ2 < 0 the equilibrium position is unstable. For

the given numerical data it results:

for theta1 => dˆ2(V)/d(theta)ˆ2 = -245
theta1 is unstable equilibrium position

for theta2 => dˆ2(V)/d(theta)ˆ2 = 466
theta2 is stable equilibrium position

for theta3 => dˆ2(V)/d(theta)ˆ2 = 466
theta3 is stable equilibrium position

The MATLAB figure of the system and the three equilibrium positions A1 B1, A2 B2,
and A3 B3 are shown in Fig. 6.9.

256 6 Virtual Work and Stability

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x
 B3

C

G

 A1

 A2=A3

 B1

x

G

C

 B2

y

Fig. 6.9 Example 7.2 MATLAB figure of the system with equilibrium positions: A1 B1, A2 B2, and
A3 B3

Example 6.3 A particle P of mass m is constrained to a helical trajectory as shown
in the Fig. 6.10. The parametric equations of the particle P are given by

x = a cos θ, y = a sin θ, z = bθ,

where a and b are constants and θ is the angle to the helix axes. The particle is
attracted by the origin O with a force F = krPO . Find the equilibrium positions
of the particle. For the numerical values use a = 3 m, b = 0.5 m, k = 10 N/m,
m = 1 kg, and g = 9.81 m/s2.

Solution The force acting on the particle with respect to the force center O can be
expressed as

F = −k (x ı + yj + zk) = −ka

(
cos θı + sin θı + b

a
θk

)
,

where r = x ı + yj + zk = a cos θı + a sin θj + bθk represents the position vector
of the particle. The sum of the forces acting on the particle are

R = F + G = −ka (cos θı + sin θj) + (−mg − kbθ) k,

where G is the force of gravity. The curl of the vector force R = Rx ı + Ry j + Rzk
in cartesian coordinates is

6.5 Examples 257

Fig. 6.10 Example 6.3

r

a

x

y

z

O

F G

P

∇ × R =

∣∣∣∣∣∣∣∣

ı j k
∂

∂x

∂

∂y

∂

∂z
Rx Ry Rz

∣∣∣∣∣∣∣∣
.

The MATLAB calculations for the curl of R are:

syms x y z a b theta k m g
r_ = [x y z];
F_ = -k*r_;
G_ = [0 0 -m*g];
R_ = F_ + G_;
rotR = curl(R_,[x y z]);

and the results is:

curl(R_) =
+- -+
| 0 |
| 0 |
| 0 |
+- -+

Because ∇ × R = 0 the force R is conservative.
The infinitesimal change in position dr is

dr = ad (cos θ) ı + ad (sin θ) j + bdθk.

258 6 Virtual Work and Stability

The potential energy of the particle is

V = −
∫

R · dr = −
∫ [

−ka2 cos θd (cos θ) − ka2 sin θd (sin θ) − mgbdθ − kb2θdθ
]
.

The partial derivative of the potential energy V with respect to θ is calculated as

∂V

∂θ
= −mgb − kb2θ.

The equilibrium position is calculated from

∂V

∂θ
= 0 ⇒ mgb + kb2θ = 0 ⇒ θb = −mg

k
.

It results
z = θb = −mg

k
< 0,

there is only one equilibrium position. Since

∂2V

∂θ2 = kb2 > 0,

the equilibrium position is stable. The MATLAB program for the equilibrium posi-
tion is:

x = a*cos(theta);
y = a*sin(theta);
z = b*theta;
r_ = [x y z];
F_ = -k*r_;
R_ = F_+G_
dr_ = diff(r_,theta);
V = -int(R_*dr_.’,theta);
dV = simplify(diff(V,theta));
thetae = solve(dV,theta);
d2V = diff(dV,theta);

For the numerical data the stable equilibrium position is calculated with:

list = {a, b, k, m, g};
listn= {3, 0.5, 10, 1, 9.8};
thetan=subs(thetae,list,listn);
liste = {a, b, k, m, g, theta};
listen = {3, 0.5, 10, 1, 9.8, thetan};
xe = subs(x,liste,listen);
ye = subs(y,liste,listen);
ze = subs(z,liste,listen);

6.5 Examples 259

−4

−2

0

2

4
−4

−2
0

2
4

−4

−2

0

2

4

6

8

y

y

x

z

P

x

z

Fig. 6.11 Example 6.3 MATLAB figure for the equilibrium of particle P

and the results is:

equilibrium position
theta = -1.960 (rad) = -112.300 (deg)
x = -1.138 (m)
y = -2.776 (m)
z = -0.980 (m)

The MATLAB figure of the system is shown in Fig. 6.11.

Example 6.4 A particle P of mass m is constrained to slide without friction on the
surface of a sphere of radius R as shown in the Fig. 6.12. The center of the sphere is
located at the origin of a Cartesian reference frame xyz. The particle is attracted by
a point located at A(0, 0, R) with a force proportional to the distance between the
particle and the point A: F = krPA. Find the equilibrium positions of the particle.

Solution The force between the particle and the attractive point A is denoted by F
and the gravity is denoted by G

260 6 Virtual Work and Stability

R

O
P

x

y

z

R

R

A

F

G

Fig. 6.12 Example 6.4

F = krPA = k[−x ı − yj + (R − z)k],
G = −mgk.

The sum of the external forces can be written as

P = F + G = −kx ı − kyj + (k R − kz − mg)k.

The MATLAB expression for the forces on the particle is:

syms x y z R k m g C
rP_ = [x y z];
rA_ = [0 0 R];
rPA_ = rA_ - rP_;
F_ = k*rPA_;
G_ = [0 0 -m*g];
P_ = F_ + G_;

If curl P = ∇×P = 0 the force P is conservative. The expression ∇×P is calculated
with MATLAB:

rotP_ = curl(P_,[x y z]);

and the results is:

curl(P_)=[0, 0, 0]

6.5 Examples 261

The potential energy is calculated with

V (x, y, z) = −
∫

P · dr + C = −
∫

[−kxdx − kydy + (k R − kz − mg)dz] + C

V (x, y, z) = k
x2

2
+ k

y2

2
+ k

(R − z)2

2
+ mgz + C, (6.8)

where C is an arbitrary constant known as the constant of integration.
The equation of the sphere can be written as

x2 + y2 + z2 = R2 or z =
√

R2 − x2 − y2, (6.9)

and with Eq. (6.8) the potential energy function of x and y is calculated in MATLAB
with:

V1=-int(P_(1));
V2=-int(P_(2));
V3=-int(P_(3));
V=V1+V2+V3+C;
fVxy=subs(V,z,sqrt(Rˆ2-xˆ2-yˆ2));
Vxy=simple(simplify(Vxy));

and V (x, y) is obtained as

V (x, y) = k R2 + (mg − k R)

√
R2 − x2 − y2 + C.

The partial derivative of the function V (x, y) with respect to x and y are

∂V

∂x
= − (mg − k R)

x√
R2 − x2 − y2

,

∂V

∂y
= − (mg − k R)

y√
R2 − x2 − y2

.

The equilibrium positions of the particle are obtained from

∂V

∂x
= 0,

∂V

∂y
= 0.

In MATLAB the equilibrium positions are obtained with:

dVxydx = simple(diff(Vxy,x));
dVxydy = simple(diff(Vxy,y));
xe=solve(dVxydx,x);

262 6 Virtual Work and Stability

Fig. 6.13 Example 6.5

O

xı

j

y

P

M

N

R

A θ

mg

ye=solve(dVxydy,y);
ze=solve(xeˆ2+yeˆ2+zˆ2-Rˆ2,z);

The results for the equilibrium positions are M1(0, 0, R) and M2(0, 0,−R).

Example 6.5 A particle P of mass m is on a circle of radius R as shown in the
Fig. 6.13. The circle is on a vertical plane xy. Find the equilibrium positions of the
particle.

Solution The independent variable is the angle θ. The position of the particle P is

x = R*cos(theta);
y = yN+R+R*sin(theta);
r_ = [x y];

where yN is the y coordinate of the lower end N of the circle. The gravity is the only
force acting on the particle and the potential energy is calculated with:

dr_=diff(r_,theta);
G_ = [0 -m*g];
V = -int(G_*dr_.’);
fprintf(’V=%s + C\n’, char(V))

The MATLAB expression for the potential energy is:

V=R*g*m*sin(theta) + C

where C is a constant of integration. The equilibrium positions are calculated from
the equation:

dV = diff(V,theta);
thetae=solve(dV,theta);
theta1=thetae;

6.5 Examples 263

theta2=theta1+pi;

The equilibrium position are the points M and N as shown in Fig. 6.13:
theta1 = pi/2 and theta2 = (3 ∗ pi)/2. The equilibrium stability is verified
with the second derivative of the potential energy:

d2V = diff(dV,theta);
d2V1=subs(d2V,theta,theta1);
d2V2=subs(d2V,theta,theta2);

and the MATLAB results are:

d2V/d(theta)ˆ2=-R*g*m*sin(theta)
for theta1 => d2V/d(theta)ˆ2=-R*g*m
for theta2 => d2V/d(theta)ˆ2=R*g*m

The equilibrium position θ = 3 π/2, position N , is a stable equilibrium because
d2V/dθ2 = Rgm is positive.

6.6 Problems

6.1 Two bars, 1 and 2, each of mass m and length l are connected and constrained
as shown in Fig. 6.14. The angle θ is between the link 1 and the vertical axes.
The spring of stiffness k is not stretched in the position where θ = 0. Find the
force F which will produce equilibrium at the angle θ.

6.2 Figure 6.15 shows a mechanism with two links, 1 and 2. Link 1 has the mass
m1 = m and the length l1 = l. Link 2 has the mass m2 = 2 m and the length
l2 = 2 l. The spring is unstretched in the position θ = 0. A known vertical
force F is applied on link 2 at D. Determine the spring stiffness k which will
establish an equilibrium at a given angle θ.

6.3 For the mechanism shown in Fig. 6.16, link 1 has the mass m1 = 2 m and the
length l1 = 2 l. The link 2 has the mass m2 = m and the length l2 = l. The

Fig. 6.14 Problem 6.1

B

A

C

1

2

k

θ m, l

m, l

F

264 6 Virtual Work and Stability

B

A
C

1 2

k

θ

l

F l

l

2

D

Fig. 6.15 Problem 6.2

Fig. 6.16 Problem 6.3

B

C

1

k
θ

l

F

l

l

2

D

A

spring has an unstretched length of L0. Determine the spring stiffness k for an
equilibrium at a given angle θ and a given force F .

6.4 The link BC shown in Fig. 6.17 has a mass m and is connected to two springs
(AB = BC = l). Each spring has the stiffness k and the unstretched length
of the two springs is L0. Determine the spring stiffness k which will establish
an equilibrium at a given angle θ. Use the following numerical application:
l = L0 = 300 mm, m = 10 kg, and θ = 60◦.

6.5 The mechanism shown in Fig. 6.18, has the link BC with the mass m and
the length l (AB = AC = l/2). The spring has the stiffness k and is
unstretched when θ = 0. Find the equilibrium value for the coordinate θ.
Use the following numerical application: l = 400 mm, m = 10 kg, F = 70 N,
and k = 1.8 kN/m.

6.6 The link of mass m and length l is connected to two identical horizontal springs,
each of stiffness k, as shown in Fig. 6.19. The initial spring compression at θ = 0
is d. For a stable equilibrium position at θ = 0 find the minimum value of k.

Fig. 6.17 Problem 6.4

B

A

C

θ

m, l

l

k

k

6.6 Problems 265

Fig. 6.18 Problem 6.5

B

A

k

O

C

F

θ

Fig. 6.19 Problem 6.6

B

A

k
θ

m, l

k

Fig. 6.20 Problem 6.7

1

2

K

θl

l

m

3

6.7 The mechanism shown in Fig. 6.20 has two identical links, 1 and 2, each of
length l and negligible mass compared with the mass m of the slider 3. The two
light links have a torsion spring at their common joint. The moment developed

266 6 Virtual Work and Stability

Fig. 6.21 Problem 6.8

θ

l

m, l

m, l

m, l

F

B

A

C

D

k

1

2

3

0

0

by the torsion spring is M = K θ, where θ is the relative angle between the links
at
the joint. Determine the minimum value of K which will ensure the stabil-
ity of the mechanism for θ = 0.

6.8 Figure 6.21 shows a four-bar mechanism with AD = l. Each of the links has
the mass m (m1 = m2 = m3 = m) and the lenght l (l1 = l2 = l3 = l). At
B a vertical force F acts on the mechanism and the spring stiffness is k. The
motion is in the vertical plane. Find the equilibrium angle θ. Use the following
numerical application: l = 15 in, m = 10 lb, F = 90 lb, and k = 15 lb/in.
Select an unextended (initial) length L0 for the spring.

6.9 A particle of mass m can move freely in space. The potential energy V of
the particle at x = l, when the particle is subject to a vertical force F =
ax2 + bx + c, is V = s. Find the equilibrium positions of the particle. For the
numerical application use a = 1, b = −3, c = 0, l = 0 m, and s = 5 J.

6.10 A bar of mass m and length l is supported by a vertical wall and a point at O , as
shown in Fig. 6.22. Find the equilibrium positions of the bar. For the numerical
application use l = 0.5 m, a = 0.1 m, m = 1 kg, and g = 9.81 m/s2.

6.7 Programs

6.7.1 Program 6.1

% example 6.1

clear all; clc; close all

6.7 Programs 267

Fig. 6.22 Problem 6.10

C

θ
x

y

O

mg

a

y
C

syms l theta m F g k

rA_=[0,0,0];
xB=l*cos(theta);
yB=-l*sin(theta);
rB_=[xB,yB,0];
xC=2*l*cos(theta);
yC=0;
rC_=[xC,yC,0];
xD=2*l;
yD=0;
rD_=[xD,yD,0];

xS=xD-xC;
fprintf(’spring deflection:\n’)
fprintf(’xS = x - xS0 = %s \n\n’,char(xS))

Ve=1/2*k*xSˆ2;
fprintf(’elastic potential energy:\n’)
fprintf(’Ve = %s \n\n’,char(simple(Ve)))

dVe=diff(Ve,theta);
fprintf(’dVe/d(theta)\n’)
fprintf(’= %s \n\n’,char(simple(dVe)))

h1=l*sin(theta)/2;
h2=h1;

268 6 Virtual Work and Stability

m1=m;
m2=m;
Vg=-m1*g*h1-m2*g*h2;

fprintf(’gravitational potential energy:\n’)
fprintf(’Vg = %s \n\n’,char(simple(Vg)))

dVg=diff(Vg,theta);
fprintf(’dVg/d(theta)\n’)
fprintf(’= %s \n\n’,char(simple(dVg)))

dUa=F*diff(xS,theta);
fprintf(’F*dxS/d(theta)\n’)
fprintf(’= %s \n\n’,char(simple(dUa)))

dW = dUa - (dVe + dVg);
fprintf(’virtual work equation: 0 = \n’)
pretty(dW)
fprintf(’\n’)

ks = solve(dW, k);
fprintf(’spring stiffness: k = \n’)
pretty(ks)
fprintf(’\n’)

lists = {l, theta, m, F, g};
listt = {5, pi/6, 1, 500, 9.81};

ks=subs(ks,lists,listt);
fprintf(’k = %6.3f (N/m)\n’,ks);

% plot of the mechanical system
xA=0; yA=0;
xB=subs(xB,lists,listt);
yB=subs(yB,lists,listt);
xC=subs(xC,lists,listt);
yC=subs(yC,lists,listt);
xD=subs(xD,lists,listt);
yD=subs(yD,lists,listt);
F=subs(F,lists,listt);

axis([-2 14 -2 6])
grid on, hold on
axis equal
xlabel(’x’), ylabel(’y’)

6.7 Programs 269

line([0,xB],[0,yB],...
’LineStyle’,’-’,’Color’,’b’,’LineWidth’,4)
line([xB,xC],[yB,yC],...
’LineStyle’,’-’,’Color’,’b’,’LineWidth’,4)
quiver(xC,yC,-F/100,0,...
’Color’,’k’,’LineWidth’,2.0);
text(xC-F/100+1,yC+0.5,’F’,...
’fontsize’,14,’fontweight’,’b’);

ax=14; ay=6;
quiver(0,0,ax,0,...
’Color’,’b’,’LineWidth’,1.0);
text(ax-1,0,’x’,...
’fontsize’,12,’fontweight’,’b’);
quiver(0,0,0,ay,...
’Color’,’b’,’LineWidth’,1.0);
text(0,ay-.3,’y’,...
’fontsize’,12,’fontweight’,’b’);

text(xA,yA-0.7,’ A’,...
’fontsize’,12,’fontweight’,’b’);
text(xB,yB+0.5,’ B’,...
’fontsize’,12,’fontweight’,’b’);
text(xC,yC+0.5,’ C’,...
’fontsize’,12,’fontweight’,’b’);
text(xD,yD+0.5,’ C0’,...
’fontsize’,12,’fontweight’,’b’);

scatter(xA,yA,80,2)
scatter(xA,yA,30,50,’filled’)
scatter(xB,yB,80,2)
scatter(xB,yB,30,50,’filled’)

scatter(xC,yC,80,2)
scatter(xC,yC,30,50,’filled’)
scatter(xD,yD,80,2)
scatter(xD,yD,30,50,’filled’)

t = xC:0.1:xD; % spring plot
n=10;
plot3(t,cos(n*t)/n,sin(n*t)/n,...

’LineStyle’,’-’,’Color’,’r’,’LineWidth’,1.5);

% end of program

270 6 Virtual Work and Stability

6.7.2 Program 6.2

% example 6.2

clear all; clc; close all

syms l theta k m g

xO=0;
yO=0;
rO_=[xO,yO,0];
xA=0;
yA=l*cos(theta);
rA_=[xA,yA,0];
xB=l*sin(theta);
yB=0;
rB_=[xB,yB,0];
xC=(xA+xB)/2;
yC=(yA+yB)/2;
rC_=[xC,yC,0];

yS=l-yA;
fprintf(’spring deflection:\n’)
fprintf(’yS= %s \n\n’,char(yS))

Ve=1/2*k*ySˆ2;
fprintf(’elastic potential energy:\n’)
fprintf(’Ve= %s \n\n’,char(simple(Ve)))

Vg= m*g*yC;
fprintf(’gravitational potential energy:\n’)
fprintf(’Vg= %s \n\n’,char(simple(Vg)))

V=Ve+Vg;
fprintf(’total potential energy V=Ve+Vg\n’)
pretty(V)
fprintf(’\n’)

dVdtheta = diff(V,theta);
fprintf(’d(V)/d(theta):\n\n’)
pretty(simple(dVdtheta))
fprintf(’\n’)

fprintf(’d(V)/d(dtheta)=0 =>\n’)

6.7 Programs 271

fprintf(’\n’)

thetas=solve(dVdtheta, theta);
theta1=thetas(1);
theta2=thetas(2);
theta3=thetas(3);

fprintf(’theta1 = \n’)
pretty(theta1)
fprintf(’\n’)

fprintf(’theta2 = \n’)
pretty(theta2)
fprintf(’\n’)

fprintf(’theta3 = \n’)
pretty(theta3)
fprintf(’\n\n’)

list = {l,k,m,g};
listn = {5,100,10,9.8};

theta1n = subs(theta1,list,listn);
theta2n = subs(theta2,list,listn);
theta3n = subs(theta3,list,listn);

fprintf(’theta1 = %6.3g (rad) = ’,theta1n);
fprintf(’%6.3g (deg)\n’,theta1n*180/pi);

fprintf(’theta2 = %6.3g (rad) = ’,theta2n);
fprintf(’%6.3g (deg)\n’,theta2n*180/pi);

fprintf(’theta3 = %6.3g (rad) = ’,theta3n);
fprintf(’%6.3g (deg)\n’,theta3n*180/pi);
fprintf(’\n\n’)

d2V = diff(dVdtheta,theta);
d2V = simplify(d2V);
fprintf(’dˆ2(V)/d(theta)ˆ2 = \n’)
pretty(d2V)
fprintf(’\n\n’)

d2V1 = subs(d2V,theta,theta1);
d2V1 = simplify(d2V1);

272 6 Virtual Work and Stability

fprintf(’for theta1 => dˆ2(V)/d(theta)ˆ2 = \n’)
pretty(d2V1)
fprintf(’\n\n’)

d2V2 = subs(d2V,theta,theta2);
d2V2 = simplify(d2V2);
fprintf(’for theta2 => dˆ2(V)/d(theta)ˆ2 = \n’)
pretty(d2V2)
fprintf(’\n\n’)

d2V3 = subs(d2V,theta,theta3);
d2V3 = simplify(d2V3);
fprintf(’for theta3 => dˆ2(V)/d(theta)ˆ2 = \n’)
pretty(d2V3)
fprintf(’\n\n’)

d2V1n = subs(d2V1,list,listn);
d2V2n = subs(d2V2,list,listn);
d2V3n = subs(d2V3,list,listn);

fprintf(’for theta1 => dˆ2(V)/d(theta)ˆ2 = ’)
fprintf(’%6.3g \n’,d2V1n);
if d2V1n > 0
fprintf(’theta1 is stable equilibrium position\n’)
else
fprintf(’theta1 is unstable equilibrium position\n’)
end

fprintf(’for theta2 => dˆ2(V)/d(theta)ˆ2 = ’)
fprintf(’%6.3g \n’,d2V2n);
if d2V2n > 0
fprintf(’theta2 is stable equilibrium position\n’)
else
fprintf(’theta2 is unstable equilibrium position\n’)
end

fprintf(’for theta3 => dˆ2(V)/d(theta)ˆ2 = ’)
fprintf(’%6.3g \n’,d2V3n);
if d2V3n > 0
fprintf(’theta3 is stable equilibrium position\n’)
else
fprintf(’theta3 is unstable equilibrium position\n’)
end

lists = {l,’theta’};

6.7 Programs 273

list1 = {5,theta1n};
xA1=subs(xA,lists,list1);
yA1=subs(yA,lists,list1);
xB1=subs(xB,lists,list1);
yB1=subs(yB,lists,list1);
xC1=subs(xC,lists,list1);
yC1=subs(yC,lists,list1);

list2 = {5,theta2n};
xA2=subs(xA,lists,list2);
yA2=subs(yA,lists,list2);
xB2=subs(xB,lists,list2);
yB2=subs(yB,lists,list2);
xC2=subs(xC,lists,list2);
yC2=subs(yC,lists,list2);

list3 = {5,theta3n};
xA3=subs(xA,lists,list3);
yA3=subs(yA,lists,list3);
xB3=subs(xB,lists,list3);
yB3=subs(yB,lists,list3);
xC3=subs(xC,lists,list3);
yC3=subs(yC,lists,list3);

as=6;
axis([-as as -as as])
grid on, hold on

line([xA2 xB2],[yA2 yB2],...
’LineStyle’,’--’,’Color’,’b’,’LineWidth’,3)
line([xA3 xB3],[yA3 yB3],...
’LineStyle’,’-’,’Color’,’b’,’LineWidth’,3)

xlabel(’x’), ylabel(’y’)

quiver(0,0,as,0,...
’Color’,’b’,’LineWidth’,1.0);
text(as-0.5,0,’x’,...
’fontsize’,12,’fontweight’,’b’);

text(xA1+0.1,yA1+0.3,’ A1’,...
’fontsize’,12,’fontweight’,’b’);

text(xA2+0.1,yA2+0.1,’ A2=A3’,...

274 6 Virtual Work and Stability

’fontsize’,12,’fontweight’,’b’);

text(xB2-0.6,yB2+0.3,’ B2’,...
’fontsize’,12,’fontweight’,’b’);
text(xC2-0.6,yC2+0.3,’ C’,...
’fontsize’,12,’fontweight’,’b’);

text(xB3,yB3+0.3,’ B3’,...
’fontsize’,12,’fontweight’,’b’);
text(xC3,yC3+0.3,’ C’,...
’fontsize’,12,’fontweight’,’b’);

G=subs(-m*g,list,listn);
quiver(xC3,yC3,0,G/50,...
’Color’,’k’,’LineWidth’,2.0);
text(xC3,yC3+G/50,’G’,...
’fontsize’,14,’fontweight’,’b’);

quiver(xC2,yC2,0,G/50,...
’Color’,’k’,’LineWidth’,2.0);
text(xC2,yC2+G/50,’G’,...
’fontsize’,14,’fontweight’,’b’);

text(0,0.2,’ B1’,...
’fontsize’,12,’fontweight’,’b’);

scatter(xA1,yA1,80,2)
scatter(xA1,yA1,30,50,’filled’)
scatter(xB1,yB1,80,2)
scatter(xB1,yB1,30,50,’filled’)

scatter(xA2,yA2,80,2)
scatter(xA2,yA2,30,50,’filled’)

scatter(xB2,yB2,80,2)
scatter(xB2,yB2,30,50,’filled’)
scatter(xC2,yC2,80,2)
scatter(xC2,yC2,30,50,’filled’)
scatter(xB3,yB3,80,2)
scatter(xB3,yB3,30,50,’filled’)
scatter(xC3,yC3,80,2)
scatter(xC3,yC3,30,50,’filled’)

t = 2:0.1:yA2; % spring plot

6.7 Programs 275

n=10;
plot3(cos(n*t)/n,t,sin(n*t)/n,...
’LineStyle’,’-’,’Color’,’r’,’LineWidth’,1.5);

% end of program

6.7.3 Program 6.3

% example 6.3

clear all; clc; close all

syms x y z a b theta k m g

r_ = [x y z];
F_ = -k*r_;
% force of gravity
G_ = [0 0 -m*g];
% total force
R_ = F_ + G_;
rotR = curl(R_,[x y z]);
fprintf(’curl(R_) = \n’)
pretty(rotR)
% curl(R_)=0 => R_ conservative

x = a*cos(theta);
y = a*sin(theta);
z = b*theta;
r_ = [x y z];
F_ = -k*r_;
R_ = F_+G_

dr_ = diff(r_,theta);

V = -int(R_*dr_.’,theta);
fprintf(’potential energy V = \n’)
pretty(V)
fprintf(’\n’)

dV = simplify(diff(V,theta));
fprintf(’d(V)/d(theta)=%s\n’,char(simple(dV)))
fprintf(’\n’)

276 6 Virtual Work and Stability

fprintf(’d(V)/d(dtheta)=0 =>\n’)
fprintf(’\n’)
thetae = solve(dV,theta);
fprintf(’theta=%s\n’,char(simple(thetae)))
fprintf(’\n’)

d2V = diff(dV,theta);
fprintf(’dˆ2(V)/d(dtheta)ˆ2=%s\n’,char(d2V))
fprintf(’\n’)

% dˆ2(V)/d(dtheta)ˆ2>0 => stable equilibrium

list = {a, b, k, m, g};
listn= {3, 0.5, 10, 1, 9.8};

fprintf(’equilibrium position \n’)
thetan=subs(thetae,list,listn);
fprintf ...
(’theta = %6.3f (rad) = %6.3f (deg)\n’,...
thetan,thetan*180/pi);

liste = {a, b, k, m, g, theta};
listen = {3, 0.5, 10, 1, 9.8, thetan};

xe = subs(x,liste,listen);
ye = subs(y,liste,listen);
ze = subs(z,liste,listen);

fprintf(’x = %6.3f (m)\n’,xe);
fprintf(’y = %6.3f (m)\n’,ye);
fprintf(’z = %6.3f (m)\n’,ze);

aa=4;
axis manual
axis equal
axis([-aa aa -aa aa -aa 2*aa])
grid on
az = 64;el = 26;
view(az, el);
hold on

quiver3(0,0,0,aa,0,0,...
’Color’,’b’,’LineWidth’,1.0);
text(aa,0,’ x’,’fontsize’,12);

6.7 Programs 277

quiver3(0,0,0,0,aa,0,...
’Color’,’b’,’LineWidth’,1.0);
text(0,aa,’ y’,’fontsize’,12);

quiver3(0,0,0,0,0,2*aa,...
’Color’,’b’,’LineWidth’,1.0);
text(0,0,2*aa,’ z’,’fontsize’,12);

start_value=-3*pi/2;
end_value=3*pi;
step=pi/100;
a=3;b=0.5;
theta = start_value:step:end_value;
plot3(a*cos(theta),a*sin(theta),b*theta)
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)

line([0 xe],[0 ye],[0 ze],...
’Color’,’k’,’LineWidth’,2);
text(xe-.3,ye-.3,ze-.3,’P’,’fontsize’,12);

% end of program

6.7.4 Program 6.4

% example 6.4

clear all; clc; close all

syms x y z R k m g C

rP_ = [x y z];
rA_ = [0 0 R];
rPA_ = rA_ - rP_;

F_ = k*rPA_;
fprintf(’atractive force acting on particle\n’);
fprintf(’F_=[%s, %s, %s] \n\n’,...

char(F_(1)),char(F_(2)),char(F_(3)));

G_ = [0 0 -m*g];

278 6 Virtual Work and Stability

fprintf(’force of gravity on particle\n’);
fprintf(’G_=[0 0 %s] \n\n’,char(G_(3)));

P_ = F_ + G_;
fprintf(’sum of forces on particle\n’);
fprintf(’P_=[%s, %s, %s] \n\n’,...

char(P_(1)),char(P_(2)),char(P_(3)));

rotP_ = curl(P_,[x y z]);
fprintf(’curl(P_)=[%s, %s, %s] \n\n’,...
char(rotP_(1)),char(rotP_(2)),char(rotP_(3)));
% curl(P_)=0 => P_ conservative

V1=-int(P_(1));
V2=-int(P_(2));
V3=-int(P_(3));

V=V1+V2+V3+C;
fprintf(’potential energy V(x,y,z)=’)
pretty(V)
fprintf(’\n’)

Vxy=subs(V,z,sqrt(Rˆ2-xˆ2-yˆ2));
Vxy=simplify(Vxy);
fprintf(’with z=sqrt(Rˆ2-xˆ2-yˆ2)=>V(x,y)=’)
pretty(Vxy)
fprintf(’\n\n’)

dVxydx = simple(diff(Vxy,x));
fprintf(’dV(x,y)/dx=’)
pretty(dVxydx)
fprintf(’\n\n’)

dVxydy = simple(diff(Vxy,y));
fprintf(’dV(x,y)/dy=’)
pretty(dVxydy)
fprintf(’\n\n’)

xe=solve(dVxydx,x);
ye=solve(dVxydy,y);
ze=solve(xeˆ2+yeˆ2+zˆ2-Rˆ2,z);

fprintf(’equilibrium positions =>\n\n’);
fprintf(’M1(%s ,%s ,%s) \n\n’,...

char(xe),char(ye),char(ze(1)));

6.7 Programs 279

fprintf(’M2(%s ,%s ,%s) \n\n’,...
char(xe),char(ye),char(ze(2)));

% end of program

6.7.5 Program 6.5

% example 6.5
clear all; clc; close all

syms R theta yN m g C

% position of the particle
x = R*cos(theta);
y = yN+R+R*sin(theta);
r_ = [x y];

fprintf(’r_=[%s,%s]\n’,char(x),char(y))

dr_=diff(r_,theta);
fprintf(’dr_=[%s,%s] d(theta)\n’,...

char(dr_(1)),char(dr_(2)))

% gravity force on the particle
G_ = [0 -m*g];

% potential energy
V = -int(G_*dr_.’);
fprintf(’V=%s + C\n’, char(V))
% C constant of integration

dV = diff(V,theta);
fprintf(’dV/d(theta)=%s\n’, char(dV))

thetae=solve(dV,theta);
theta1=thetae;
theta2=theta1+pi;

% equilibrium positions
fprintf(’theta1=%s\n’, char(theta1))
fprintf(’theta2=%s\n’, char(theta2))

d2V = diff(dV,theta);

280 6 Virtual Work and Stability

fprintf(’d2V/d(theta)ˆ2=%s\n’, char(d2V))

d2V1=subs(d2V,theta,theta1);
d2V2=subs(d2V,theta,theta2);

fprintf...
(’for theta1 => d2V/d(theta)ˆ2=%s\n’,char(d2V1))
fprintf...
(’for theta2 => d2V/d(theta)ˆ2=%s\n’,char(d2V2))

% end o program

References

1. P. Appell, Traité de Mécanique Rationnelle (Gauthier-Villars, Paris, 1955)
2. M. Atanasiu, Mechanics (EDP, Bucharest, 1973)
3. S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving

(Butterworth-Heinemann, Elsevier, Amsterdam, 2012)
4. H. Baruh, Analytical Dynamics (WCB/McGraw-Hill, Boston, 1999)
5. A.M. Bedford, W. Fowler, Engineering Mechanics: Statics, 5th edn. (Prentice Hall, Inc., Upper

Saddle River, 2007)
6. A.M. Bedford, W. Fowler, K.M. Liechti, Statics and Mechanics of Materials (Prentice Hall,

Inc., Upper Saddle River, 2002)
7. F.P. Beer, E.R. Johnston, Vector Mechanics for Engineers: Statics and Dynamics, 5th edn.

(McGraw-Hill Publishing Company, New York, 1988)
8. F.P. Beer, E.R. Johnston, D.F. Mazurek, Vector Mechanics for Engineers: Statics, 10th edn.

(McGraw-Hill Publishing Company, New York, 2012)
9. A.P. Boresi, R.J. Schmidt, Engineering Mechanics: Statics (PWS Publishing Company, Boston,

2000)
10. M.I. Buculei, Mechanics (University of Craiova Press, Craiova, 1974)
11. V. Ceausu, N. Enescu, F. Ceausu, Mechanics Problems (Printech, Bucuresti, 1999)
12. S.J. Chapman, MATLAB Programming for Engineers (Thomson Learning, Pacific Grove, CA,

2002)
13. D.M. Etter, D.C. Kuncicky, Introduction to MATLAB for Engineers and Scientists (Prentice

Hall, Inc., Upper Saddle River, 1996)
14. J.H. Ginsberg, Advanced Engineering Dynamics (Cambridge University Press, Cambridge,

1995)
15. L.E. Goodman, W.H. Warner, Statics (Dover Publications, Inc., Mineola, 2001)
16. D.T. Greenwood, Principles of Dynamics (Prentice-Hall, Inc., Englewood Cliffs, 1998)
17. R.C. Hibbeler, Engineering Mechanics: Statics and Dynamics, 13th edn. (Prentice-Hall, Inc.,

Upper Saddle River, 2013)
18. C. Iacob, Theoretical Mechanics (EDP, Bucharest, 1980)
19. J.H. Jackson, H.G. Wirtz, Schaum’s Outline of Theory and Problems of Statics and Strength of

Materials (McGraw-Hill Publishing Company, New York, 1983)
20. T.R. Kane, Analytical Elements of Mechanics, vol. 1 (Academic Press, New York, 1959)
21. T.R. Kane, Analytical Elements of Mechanics, vol. 2 (Academic Press, New York, 1961)
22. T.R. Kane, D.A. Levinson, Dynamics (McGraw-Hill, New York, 1985)

References 281

23. R. Maeder, Programming in Mathematica (Addison-Wesley Publishing Company, Redwood
City, 1990)

24. D.B. Marghitu, Statics and dynamics, class notes (2004), http://www.eng.auburn.edu/users/
marghitu/

25. D.B. Marghitu, Mechanical Engineer’s Handbook (Academic Press, San Diego, 2001)
26. D.B. Marghitu, Kinematic Chains and Machine Component Design (Elsevier, Amsterdam,

2005)
27. D.B. Marghitu, Mechanisms and Robots Analysis with MATLAB (Springer, New York, 2009)
28. D.B. Marghitu, M. Dupac, Advanced Dynamics: Analytical and Numerical Calculations with

MATLAB (Springer, New York, 2012)
29. D.J. McGill, W.W. King, Engineering Mechanics: Statics and an Introduction to Dynamics

(PWS Publishing Company, Boston, 1995)
30. J.L. Meriam, L.G. Kraige, Engineering Mechanics: Statics, 7th edn. (John Wiley & Sons, New

York, 2011)
31. L.A. Pars, A Treatise on Analytical Dynamics (John Wiley & Sons, New York, 1965)
32. M. Plesha, G. Gray, F. Costanzo, Engineering Mechanics: Statics, 2nd edn. (McGraw-Hill

Publishing Company, New York, 2012)
33. M. Radoi, E. Deciu, Mechanics (EDP, Bucharest, 1981)
34. W.F. Riley, L.D. Sturges, Engineering Mechanics: Statics, 2nd edn. (John Wiley & Sons, Inc.,

New York, 1995)
35. A. Ripianu, P. Popescu, B. Balan, Technical Mechanics (EDP, Bucharest, 1979)
36. A. Ruina, R. Pratap, Introduction to Statics and Dynamics (Oxford University Press, New York,

2002)
37. I.H. Shames, Engineering Mechanics Statics, 4th edn. (Prentice Hall, Inc., Englewood Cliffs,

1996)
38. S.D. Sheppard, B.H. Tongue, Statics: Analysis and Design of Systems in Equilibrium (John

Wiley & Sons, New York, 2005)
39. D. Smith, Engineering Computation with MATLAB (Pearson Education, Upper Saddle River,

2008)
40. R.W. Soutas-Little, D.J. Inman, Engineering Mechanics: Statics and Dynamics (Prentice-Hall,

Upper Saddle River, 1999)
41. R.W. Soutas-Little, D.J. Inman, D. Balint, Engineering Mechanics: Statics (Cengage Learning,

Boston, 2007)
42. S. Staicu, Theoretical Mechanics (EDP, Bucharest, 1998)
43. A. Stan, M. Grumazescu, Mechanics Problems (EDP, Bucharest, 1973)
44. Statics eBook, https://ecourses.ou.edu/
45. J. Sticklen, M.T. Eskil, An Introduction to Technical Problem Solving with MATLAB (Great

Lakes Press, Wildwood, 2006)
46. A. Stoenescu, G. Silas, Theoretical Mechanics (ET, Bucharest, 1957)
47. I. Stroe et al., Analytical Mechanics Problems (University Politehnica of Bucharest, Bucharest,

1997)
48. The MathWorks, https://www.mathworks.com/
49. V. Valcovici, S. Balan, R. Voinea, Theoretical Mechanics (ET, Bucharest, 1959)
50. R. Voinea, D. Voiculescu, V. Ceausu, Mechanics (EDP, Bucharest, 1983)
51. K.J. Waldron, G.L. Kinzel, Kinematics, Dynamics, and Design of Machinery (John Wiley &

Sons, New York, 1999)
52. J.H. Williams Jr, Fundamentals of Applied Dynamics (John Wiley & Sons, New York, 1996)
53. H.B. Wilson, L.H. Turcotte, D. Halpern, Advanced Mathematics and Mechanics Applications

Using MATLAB (Chapman & Hall/CRC, Boca Raton, 2003)
54. S. Wolfram, Mathematica (Wolfram Media/Cambridge University Press, Cambridge, 1999)

http://www.eng.auburn.edu/users/marghitu/
http://www.eng.auburn.edu/users/marghitu/
https://ecourses.ou.edu/
https://www.mathworks.com/

Index

A
Absolute

value, 1, 2
Angle

of friction, 213, 227
Associative, 3

B
Ball and socket

support, 155
Bearing, 155, 182, 186

forces, 181
loads, 187

Bound vector, 2, 57

C
Cartesian, 5, 24, 89, 131, 174
Centroid, 97, 124, 147
Centroidal

axis, 97
coordinate, 99

Circular, 108, 123, 155
area, 123, 147
cross section, 123
helix, 135
shaft, 135

Collinear, 55, 164, 243
Commutative, 3, 10, 12
Concurrent

force, 59, 152, 161
Constraint, 243

bilateral, 164
unilateral, 164

Coordinates, 9, 20, 101, 112, 165
cartesian, 95, 135
centroidal, 99

independent, 249
spatial, 56

Coplanar, 159
Coulomb

friction, 212
law, 211

Couple, 45
arbitrary, 59
clockwise, 179
null, 57
simple, 54

Cross product, 11, 13, 28
Curve, 95, 109, 170

planar, 122
smooth, 164, 165
spatial, 108
uniform, 95

D
Decomposition, 96
Degrees, 1, 40, 68

of freedom, 164, 249
Density, 95
Derivative, 15, 249, 261
Determinant, 12, 14
Diagonal, 3, 13, 160
Differential

arc length, 103, 108
displacement, 245
element, 95, 100, 111

Direction, 12, 55, 161, 247
angle, 24
cosines, 5, 22, 72
horizontal, 252
proper, 161, 177
receding, 223
upward, 181

D. B. Marghitu et al., Statics with MATLAB�,
DOI: 10.1007/978-1-4471-5110-4, � Springer-Verlag London 2013

283

Displacement, 1, 243, 253
differential, 245
vector, 1
virtual, 243, 246

Distributive, 3, 12
Dot product, 10, 11

E
Elastic, 34

constant, 245
force, 245
moment, 246
potential energy, 245, 251

Equilibrium, 151, 174, 225
condition
equations, 145, 160, 170, 211
force, 163, 167
moment, 169
neutral, 249
position, 170, 176, 197, 254, 263
scalar, 165
stable, 249, 255, 263
unstable, 249, 255
vectorial, 165

Equipollent, 57, 60, 70
External force, 161, 215, 244

F
First moment, 93, 112, 120
Fixed

point, 170, 191
support, 154, 181, 245
surface, 213

Force(s), 1, 55, 161, 211, 245
conservative, 246
elastic, 245
external, 220, 233
friction, 211
gravitational, 248
internal, 243
normal, 211
reaction, 171
resultant, 53, 71
parallel, 59

Frame, 5, 23, 78, 160, 215
Free

body diagram, 155, 216
vector, 2, 55

Friction, 211
angle, 213, 214

dry, 225
force, 211, 233
static, 220, 230
thread, 226, 239

G
Generating, 68

area, 100
circle, 123
curve, 98, 147
equation, 122
plane, 99, 147
surface, 98, 99

Gradient, 16
Gravity, 97, 173, 256, 279

force, 170, 174, 279
Guldinus-Pappus, 94, 119, 143

H
Helical

thread, 222
trajectory, 256

I
Improper

support, 158
Independent

coordinate, 249
equations, 156, 161
equilibrium, 156
linearly, 4
variable, 262
vector, 4

Inertial reference frame, 151
Instant, 55
Invariant, 52

J
Joint, 157, 161, 178, 265

force, 217, 251
pin, 153, 160
reaction, 157
slider, 157

K
Kilogram, 1, 55
Kinematic chain, 157

284 Index

Kinetic
angle of friction, 214
coefficient of friction, 213

L
Lead, 222, 232
Left-handed, 12, 163, 223
Linear

combination, 4
dependent, 156
independent, 4
motion, 218
spring, 248

Line of action, 1, 45, 64, 77
Link, 70, 160, 264

M
Magnitude, 1, 6, 74, 159, 212
Mass, 1, 112, 185, 264

body, 95
center, 110, 112
density, 95
of a particle, 93
per unit of area, 95
per unit of length, 95
per unit volume, 95

MATLAB, 6, 63, 103, 171, 259
Maximum, 4, 212, 249

friction force, 213
value, 212

Member
three-force, 159
two-force, 159
force, 159, 177

Method
of decomposition, 96
of joints, 161, 163, 177, 199
of sections, 163
of virtual work, 244

Module, 1, 2
Moment

about a line
about a point, 74
of a couple, 54
equilibrium, 169
first, 96, 111
of a force, 56, 61
minimum, 53
reaction, 179
resultant, 52
of a system of vectors, 50
of a vector, 45, 49

Motion
linear, 224
relative, 212
rotary, 224
uniform, 213

N
Newton, 55, 77

first principle, 55
second law, 55
third law, 55

Norm, 1, 19
Normal

component, 53, 61, 167
force, 213, 220
reaction, 164, 173, 221
thread load, 227

O
Orientation, 1, 2, 6, 96, 230
Orthogonal

axes, 97
cartesian coordinates, 25, 95
component, 6
reference frame, 6

P
Parallel, 1, 14

component, 61
directions, 56
forces, 60

Parallelogram law, 3
Particle, 55, 97, 164, 245, 259
Period, 11
Perpendicular, 1, 12, 57, 164, 181
Pin, 153, 160, 186

connections, 160
joint, 157
support, 161

Point of application, 2, 61, 79
Pound, 55, 246
Power, 224, 228
Principle

of action, 55
first, 55
of virtual work, 243, 248

Product
of the area, 99
cross, 11, 56, 66
dot, 9
scalar, 9, 52

Index 285

of static coefficient, 215
triple, 13, 24
vector, 11

Projection, 24, 31, 53

R
Radius, 100, 121, 147, 186, 262
Rectangular component, 6
Redundant, 158, 160
Reference frame

axes, 97
frame, 23, 77, 215

Relative
angle, 264
motion, 212
sliding, 213
translation, 151

Resolution
of components, 6
of vectors, 3, 6

Resultant, 3, 18, 55, 97
direction, 52
force, 53, 78
moment, 53, 56
vector, 26, 30, 52

Resultant, 4, 31, 53, 97
Right-hand(ed), 1, 12, 56, 163, 223
Roller support, 154, 155, 161
Revolution

axis, 98
body, 99, 100
surface, 99, 123, 147
volume, 100, 123, 147

S
Scalar

component, 6
equations, 5, 71
equilibrium equations, 155, 165, 216
function, 15
invariant, 52
product, 9, 52
quantity, 1
triple product, 13, 24, 29

Screw, 222, 224, 227
right handed, 12

Sense, 1, 2, 12, 56, 163
SI, 55, 223, 248

Sliding vector, 2, 46
Slip, 211, 215, 230
Socket, 155
Solid, 96
Spatial

coordinates, 6
curve, 108

Strength, 93, 158
Symbolic, 6, 15, 38, 100, 115
Symmetry, 97
Surface, 70, 96, 123, 164,

211, 222

T
Tangential components, 166
Temperature, 1, 160
Transitivity, 57
Translation, 151
Transmissible vector, 2
Transpose, 16, 19, 34
Triangle, 97, 160, 225
Truss plane, 160, 163

U
Unit vector, 5, 22, 163

V
Varignon theorem, 12
Vector

addition, 13
(cross) product, 11
function, 15
position, 9
unit, 8

Velocity, 1, 211
Volume, 94, 124, 147

W
Weight, 24
Work, 243, 268
Wrench, 57, 61, 76, 187

Z
Zero vector, 2, 4, 9

286 Index

	Preface
	Contents
	1 Operation with Vectors
	1.1 Introduction
	1.2 Vector Addition
	1.3 Linear Independence
	1.4 Resolution of Vectors
	1.5 Angle Between Two Vectors
	1.6 Position Vector
	1.7 Scalar Product of Vectors
	1.8 Vector Product of Vectors
	1.9 Scalar Triple Product of Three Vectors
	1.10 Vector Triple Product of Three Vector
	1.11 Derivative of a Vector Function
	1.12 Examples
	1.13 Problems
	1.14 Programs
	1.14.1 Program 1.1
	1.14.2 Program 1.2
	1.14.3 Program 1.3

	References

	2 Moments, Couples, Equipollent Systems
	2.1 Moment of a Vector About a Point
	2.2 Couples
	2.3 Force Vectors
	2.4 Equipollent Force Systems
	2.5 Examples
	2.6 Problems
	2.7 Programs
	2.7.1 Program 2.1
	2.7.2 Program 2.2
	2.7.3 Program 2.3
	2.7.4 Program 2.4
	2.7.5 Program 2.5

	References

	3 Centers of Mass
	3.1 First Moment
	3.2 Center of Mass of a Set of Particles
	3.3 Center of Mass of a Body
	3.4 First Moment of an Area
	3.5 Center of Gravity
	3.6 Theorems of Guldinus-Pappus
	3.7 Examples
	3.8 Problems
	3.9 Programs
	3.9.1 Program 3.1
	3.9.2 Program 3.2
	3.9.3 Program 3.3
	3.9.4 Program 3.4
	3.9.5 Program 3.5
	3.9.6 Program 3.6
	3.9.7 Program 3.7
	3.9.8 Program 3.8
	3.9.9 Program 3.9
	3.9.10 Program 3.10
	3.9.11 Program 3.11

	References

	4 Equilibrium
	4.1 Equilibrium Equations
	4.2 Supports
	4.2.1 Planar Supports
	4.2.2 Three-Dimensional Supports

	4.3 Free-Body Diagrams
	4.4 Two-Force and Three-Force Members
	4.5 Plane Trusses
	4.6 Particle on a Smooth Surface and on a Smooth Curve
	4.7 Examples
	4.8 Problems
	4.9 Programs
	4.9.1 Program 4.2
	4.9.2 Program 4.3
	4.9.3 Program 4.4
	4.9.4 Program 4.5
	4.9.5 Program 4.6
	4.9.6 Program 4.7
	4.9.7 Program 4.8

	References

	5 Friction
	5.1 Introduction
	5.2 Static Coefficient of Friction
	5.3 Kinetic Coefficient of Friction
	5.4 Angle of Friction
	5.5 Technical Applications of Friction: Screws
	5.5.1 Power Screws
	5.5.2 Force Analysis for a Square-Threaded Screw

	5.6 Problems
	5.7 Programs
	5.7.1 Program 5.1
	5.7.2 Program 5.2
	5.7.3 Program 5.3

	References

	6 Virtual Work and Stability
	6.1 Virtual Displacement and Virtual Work
	6.2 Elastic Potential Energy
	6.3 Gravitational Potential Energy
	6.4 Stability of Equilibrium
	6.5 Examples
	6.6 Problems
	6.7 Programs
	6.7.1 Program 6.1
	6.7.2 Program 6.2
	6.7.3 Program 6.3
	6.7.4 Program 6.4
	6.7.5 Program 6.5

	References

	Index

