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1 Introduction

This chapter proposes a method for feature synthesis of mechanisms and
manipulators from user specifications based on a hybrid approach employing both
neural network and optimization techniques. The mechanism design modeling
problem with the lack of solution convergence observed in optimization is
addressed by using a neural network method to generate reliable initial solutions.
This chapter also discusses a module by which the validation of prescribed pre-
cision configuration points is evaluated. An excavator arm mechanism is used as a
case study to test and validate the method. The necessary training data for the
neural network is generated primarily through the use of forward kinematics
equations, while the proposed method is analyzed using dimensional data collected
from existing products.

Existing products are frequently modeled as a type of assembly features [9].
They can be redesigned and customized to meet specific operational needs and
increase efficiency. Such customizable and yet conceptually proven products are
commonly used to perform atypical tasks under space constraints, such as spe-
cialized manipulators. These products can be developed as a cluster of instances of
a generic product because of their inherent common engineering principles. The
generic product model are modeled in the form of assembly features. In most
cases, the design objective can be achieved by adopting a different set of con-
figuration parameter values based on a generic product model of the existing
design features using the same design procedures developed during the initial
design. Such well-defined assembly features, whose parameters can be assigned
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with different values, enable the product configuring mechanism to achieve
increasing versatility and to address customization needs. However, specifying an
effective and valid design feature data set for those existing feature models is
difficult given the expected complicated and interdependent constraints [8].

For certain machinery equipment, such as excavators, the final spatial access
envelope diagrams of the overall assemblies, which are referred to here as product
specification features, are the basis of customer evaluation of the dimensional
specifications. This kind of specification feature can be appreciated as a subtype of
the assembly design feature as defined by Ma et al. [9]. Unlike those well-defined
modular mechanical products, such as the mold bases used in the plastic molding
industry [9], the conceptual design of manipulator products usually starts with a set
of target specification features, i.e., the envelope diagrams or prescribed paths and
motions identified by end users that need to be achieved by the overall mechanism.

There is another type of feature that has to be defined in this chapter: the design
configuration feature, which is a product-level assembly feature [9] that represents
the design intent with characteristic dimensions, geometry, patterns, and other
associative relations to interfacing components. In the context of typical manipu-
lator mechanism design, the configuration features are realized by materializing the
component design features [10] involved. The process of design realization involves
a feature dimensional synthesis phase in which engineers analyze relations among
component design features to compose a workable and satisfactory product con-
figuration that is governed by the aforementioned configuration feature. Of course,
the final product design has to be completed by focusing on determining individual
component feature dimensions and their related constraints, as well as material
application patterns, in order to meet the configuration feature requirements after the
mechanism is assembled. This chapter covers the design transformation process
from the specification features to the configuration features. The remaining further
design processes will be covered in the next chapter.

With reference to the context of manipulator design, a single pose (position and
orientation) of the end effectors of the manipulator, or a valid instance of the
specification feature, is defined by customers with their application demands; to
translate the specification features into a set of configuration design features, the
transformation process needs to use those known values of the manipulator’s
linkage dimensions together with the joint parameters to go through trials of
inverse kinematic fitting. Typically, the specified poses (or instances of specifi-
cation features) can only be verified and eventually confirmed by using kinematics
procedures with the assumed (or known) linkage dimensions in the manipulator, or
in other words, the related component design features.

However, the challenge arises when the customer requires and defines a set of
expected configuration poses: what is the method to transform such input into those
materialized linkage configuration features? In such a case, instead of solving a
forward kinematics problem (direct configuration feature development) from the
known components, the nature of the (which is common manipulator design)
problems require solving kinematics problems in reverse based on a set of given
specification feature instances. In other words, with the predefined specification
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feature instances defined in the form of access envelopes, the configuration defini-
tion of the mechanism needs to be inversely calculated.

Multiple configuration solutions to such inverse kinematics problems usually
exist. Obviously, with a set of required feature behavior instances (poses) to be
targeted in the form of an access envelope space or, even more critically, an access
path, the calculation for the mechanism dimensions becomes very complicated due
to the combined constraints of kinematics and the existence of multiple solutions.
Finding these solutions is already a challenge, but evaluating or validating them is
even more difficult. For a single pose problem, the existing methods are man-
ageable with reasonable effort. However, a multi-pose problem, which requires
that the calculated linkage dimensions and joint variables fully satisfy a set of
configurations or path parameters, makes the inverse kinematics approach difficult
to implement.

Thus far most researchers have tried to solve the inverse kinematics and opti-
mization problems by using a computational workspace searching method, but the
optimization results are not reliable due to the fact that there are multiple solutions.
To obtain the necessary convergence toward the expected range of a solution,
researchers need initial suggestions as the input of the searching procedures. This
initial solution requirement creates considerable challenges when trying to auto-
mate the conceptual design process and implement it using computer programs.
There are dense correlations among the configuration feature parameters; arbitrary
values cannot be assumed in their places when solving the system equations.
Failure to use an appropriate starting parameter vector may produce mathemati-
cally accurate but physically impossible solutions.

The two remaining tasks are formulating a set of parametric geometric rela-
tionships for the specification feature of a manipulator, which has to be associated
with typical linkage configuration feature parameters, and searching a workable
solution, which needs an optimization technique.

This chapter proposes a method by which feature dimensional synthesis for
manipulator mechanisms is performed based on the end user’s specification
parameter input. The implementation of this method requires a vector of initial
suggestions of linkage configuration parameters that has to be close to the expected
solution. A smart neutral network procedure is used to generate the feasible initial
suggestions of the linkage parameters. A case study of an excavator arm mecha-
nism is carried out and the results are promising. The algorithm has been imple-
mented in MATLAB, a numerical analysis software tool produced by MathWorks.

2 Background of Relevant Research

Optimizing mechanism dimensions is a well-known design problem in the field of
robotics and machinery, and a broadly studied research area. However, due to the
multiple members of a mechanism and the dependencies among them that are
constrained by kinematics, the problem is complicated. For example, Wu et al.
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[13] formulated the kinematic constraints of closed chain mechanism as a mapping
from Cartesian space to a higher dimensional projective space called image space
by representing planar displacements with planar quaternions. The researchers
pointed out that the use of this method enables one to reduce the problem of
dimensional synthesis by determining algebraic parameters that define the image
spaces. Computational simplification was achieved by transforming kinematic
equations into geometric constraints. Dealing with the geometric parameters of the
constraint manifold instead of the mechanism parameters provides ease and
flexibility due to the decoupled nature of the relationships.

Optimization techniques are usually applied to solve the mechanism linkage
dimensions). For example, a procedure of synthesizing the linkage dimensions of a
four-bar spherical linkage mechanism was proposed by Alizade and Kilit [1] The
procedure used a polynomial approximation to transform 5 nonlinear equations
into 15 linear equations and solve five design parameters. The objective of this
study was to determine the dimensions of a spherical four-bar linkage mechanism
by linearizing a set of nonlinear equations. The requirement for the mechanism
was that it will be able to trace five precision points in space. The minimum
deviation area (MDA) was proposed as a constraint criterion to select the most
appropriate solution. The result of this investigation was tested by plotting the path
of the mechanism against the prescribed precision points using AutoCAD 2000.

Jensen and Hansen [6] have suggested a method by which dimensional syn-
thesis for both planar and spatial mechanisms are accomplished by taking the
problem of non-assembly into consideration. The method makes use of a gradient-
based optimization algorithm. Analytic calculation of sensitivities is performed by
direct differentiation. The problem was mathematically formulated as a standard
optimization problem with inequality to take the non-assembly nature of the
problem into account. The Newton–Raphson method, due to its rapid convergence
property, is used in the minimization of the kinematic constraints. Saddle’s point
and steepest descent methods were used to verify the direction of convergence and
stability of the minimization method, respectively.

Kinematic synthesis of redundant serial manipulators has become the focus of
research for Singla et al. [11]. They used an augmented Lagrangian optimization
technique to determine optimum dimensions for a redundant serial manipulator.
The algorithm was used for its robustness in identifying feasible solution ranges
effectively. The formulation of the problem was based on the minimization of the
positional error subject to the constraints of avoiding manipulator collisions with
either external obstacles or its own links.

The workspace boundary definition can be more complicated. Laribi et al. [7]
discussed an optimization technique used for determining the linkage dimen-
sions)of a DELTA parallel robot for a prescribed workspace. The technique uses a
genetic algorithm to minimize an objective function developed by writing
expressions for the end effector location, based on a concept called the power of
the point. The dimensions of the robots were calculated by minimizing a volume
created by three intersecting surfaces that contain the prescribed cubic workspace.
A penalty function screened out infeasible and select feasible solutions from the
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available solution domain. Zhao et al. [15] used a similar approach, but the pre-
scribed workspace was represented by a cylinder contained inside the minimum
workspace volume and enclosed by the manipulator movement boundary surfaces.
An optimization-based dimensional synthesis procedure was suggested to deter-
mine dimensional parameters for the design of a 2-UPS-PU parallel manipulator.
The researchers used a cylindrical coordinate system when formulating the kine-
matic relationships, including the forward and inverse kinematics of the manip-
ulator together with the Jacobian matrix for force and velocity analysis.

However, it has been identified that the multiple numbers of possible solutions
is the primary disadvantage of analytical solutions methods. Gao et al. [4] reported
that for their six degree of freedom (DOF) parallel manipulator, the traditional
optimization techniques in the areas of dimensional synthesis lack the badly
needed convergence property in their solutions when it is used for handling a
larger number of geometric variables and complex objective functions. Non-tra-
ditional optimization methods need to be explored in order to address the problems
of convergence uncertainties and limitations, on a maximum number of precision
point problems solved using optimization and analytical techniques.

Gao et al. [4] also used generic algorithms and artificial neural networks
(ANNs) as tools to deal with the optimization of the manipulator’s stiffness and
dexterity based on kinematic analysis procedures. Levenberg–Marquardt and
standard back propagation algorithms were used in the neural network to
approximate stiffness and dexterity analytical solutions. Because of the large
numbers of variables included in the analysis, they have used two different
approaches for the optimizations: Single Objective Optimizations (SOOs) and
Multiple Objective Optimizations (MOOs) multiple objective optimization
(MOO). With the first approach, the two objectives, stiffness and dexterity, were
investigated separately; with the second approach, they were investigated together
to understand their combined effect. Both approaches proved to be compatible.

It is worth pointing out, as Vasiliu and Yannou [12] did in their work, that ‘‘the
absence of continuity between different morphologies prohibited and discouraged
the use of interpolation techniques’’ in such a problem. Vasiliu and Yannou also
proposed the use of ANNs. The ANN designed to be used for the synthesis
application takes in the prescribed path and motion as an input and gives out the
linkage parameters as an output. Erkaya and Uzmay [2] aimed to overcome
problems arising from joint clearances in a four-bar mechanism. They used neural
networks to characterize the clearances and the mechanism, and genetic algorithms
to optimize them with the path and transmission angle errors used as part of the
objective function. The clearances were represented by high stiffness and
weightless links to make them suitable to be studied under rigid motion consid-
erations but without affecting the overall inertial property of the mechanism. ANN
procedures were also used by Hasan et al. [5] to study the relationship between the
joint variables and the position and orientation of the end effector of a six DOF
robot. The study was motivated by the fact that the use of ANN does not require an
explicit knowledge of the physics behind the mechanism. The network was trained
by the use of real-time data collected by sensors mounted on the robot. Designed
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with an input layer of six neurons for three Cartesian location coordinates and
three linear velocity components, the network was used to establish a mapping
pattern between the input and output. The project mainly focused on finding the
kinematic Jacobian solutions.

The advantage of using ANN is that it does not require any details of the
mathematical and engineering knowledge involved [5]; it is thus suited to a wide
range of similar applications. It was suggested that as long as there is sufficient
data for training purposes, the ANN can be used to predict the Jacobian kinematics
of other configurations without the need to learn and understand the explicit robot
philosophies. Modifications and changes in existing robot structures can always be
addressed by training the ANN with a new set of data reflecting the new
modifications.

The problems and shortcoming associated with using ANN are also discussed in
Hasan et al. [5]. The first challenge discussed is the difficulty of selecting the
appropriate network architecture, activation functions, and bias weights. The other
problem discussed is the difficulty and impracticality of collecting large amounts
of data for the purpose of training the neural network.

As an alternative to using the ANN approach, some researchers are more
interested in simulation and spatial configuration performance analysis of
manipulators. Their work is motivated by the need to understand the manipulators’
performance under certain environmental constraints. Frimpong and Li [3], for
example, modeled and simulated a hydraulic shovel to investigate its kinematics
and spatial configurations when the shovel is deployed in a constrained mining
environment. Denavit-Hartenberg homogeneous coordinate transformation tech-
niques were used to represent the relative orientations and configurations of
adjacent links as well as the overall assembly. Forward kinematics of the machine
was investigated as a five-linkage manipulator. After formulating the kinematics
equations the manipulator was modeled in 3D and was simulated using the MSC
ADAMS simulation software for selected time steps.

Therefore, as suggested by Vasiliu and Yannou [12], the requirement of a large
number of data for training ANN can be addressed by simulation of the paths for a
number of given sets of linkage parameters. The ANN can be trained using the
simulated data in reverse, i.e., that for the given sets of mechanism parameters, the
information of the access paths were determined. The other important point dis-
cussed in Vasiliu and Yannou’s work is that neural networks perform well only
within the data range they were trained with. Normalization of parameters during
the utilization phase of the network is needed to bring the input values to the
known range of the training set.

The constraints imposed for manufacturing the products usually dictates the
capacities and efficiencies of the machineries. The general design and modification
requirements can sometimes be achieved by merely redesigning an existing
mechanism out of a different set of existing product sales materials.

Remote operability of hydraulic excavators, initiated due to operational safety
and hazard issues, has recently become the focus of some researchers. The task of
controlling the motion of excavator arm mechanisms has been attempted by
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various remote control mechanisms. The method developed by Yoon and Manu-
rung [14] is based on mapping the angular joint displacements of the human arm
joints to that of the excavator arm joints. Their work is motivated by the need to
include intuitivism into the control system.

3 The Proposed Hybrid Approach

3.1 Overall Concept Description

Most optimization techniques usually require a very good initial solution to be
defined in order to produce sound solutions. One of the objectives of this chapter is
to introduce a feature-based system by which a set of initial solutions that are
reasonably close to the actual solution can be generated. Optimization techniques,
when applied to the problems of dimensional synthesis of prescribed precision
points, commonly encounter the difficulty of giving reasonable and practical
results. There are two reasons for this: first is the proximity of the goal solution to
the predefined initial solution; second is the compatibility or feasibility of the
prescribed precision points. This is to say that prescription of unrealistic and
ambitious specifications most likely produce, if the search converges to a solution
at all, mathematically sound but physically inapplicable solutions.

The hybrid method proposed in this paper can be summarized by the flowchart
as shown in Fig. 1. It is the objective of this chapter to introduce a new method in
which a well-trained artificial neural network (ANN) tool is used to generate a set
of high-quality initial solution suggestions for mechanism parameters based on
user specifications, while optimization techniques are used to finally synthesize the
necessary dimensions. The hybrid method attempts to jointly employ optimization
and neural network procedures to synthesize the linkage design mechanisms’
feature dimensions and further map them to the real manipulators. User specifi-
cations are also qualified with the checking of their priorities and ranges accept-
able as the prescribed input values. The individual modules and procedures are
explained in detail in the following subsection.

3.2 Synthesis and Validation Procedure

The proposed method can be divided into the following stages: (1) ANN training;
(2) input parameter validation; (3) system testing; (4) initial solution generation;
(5) mechanism parameter synthesis; (6) result verification; and (7) random system
check. To make full use of the neural network’s advantage, its inner transformation
matrices must first be trained to reflect the intricate nature of input and output
relations.
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3.2.1 Artificial Neural Network Training

Essentially, the purpose of training the ANN is to build a database that will be used
to generate the feasible suggestions of the initial mechanism parameters according
to new configuration specifications. The first step is to collect the training data.
Ideally, such training data can be obtained from existing similar product infor-
mation catalogues, usually in the form of product families, because the relevant
data from that channel is proven workable with both input and output sets. As
shown in Fig. 1, the proposed method makes use of such data as indicated by the
top job block. Unfortunately, although these real product data sets are quite useful
for training the ANN, the number of available data sets is never sufficient. To find
a solution for the shortage of training data, forward mechanism simulation can be
utilized to create as many input/output data sets as required [5]. Note that the
generation of such simulation data is necessary because the available data is
usually insufficient to serve the training purpose and the extra effort of collecting
additional real product data is prohibitively costly.

In the case of the data generation process, the specification feature parameters
which define the total workspace of the mechanism assembly will be generated
from the given set of linkage configuration feature dimensions using forward
kinematic equations. This is a mapping process in which the mechanism design
feature parameters (linkage dimensions) are mapped to the specification feature
terms, i.e., the envelope configuration parameters of the workspace or the working
path in the case of a planar mechanism.

When training the ANN, both the existing real product feature data sets and the
generated data sets will be used in reverse: the existing specification feature
parameters are used as the input data for the training while the mechanism con-
figuration feature parameters are used as the target output data. Note that most of
the training data sets can be generated from the ‘‘artificial’’ forward mechanism
behavior algorithm as used by Laribi et al. [7], which had provided a satisfactory
outcome. In addition, real product data sets are collected from the market, and play
a more important role in incorporating the industrial optimization factors into the
ANN module. Those overall industrial design factors are embedded implicitly in
real products on top of engineering mathematical solutions.

Since the ANN is expected to be effectively used only for those parameters
lying within the ranges of its training data [7], to make the training data more
generically useful, unification of the input vector as well as the output vector
during the training cycles should be assured. Similarly, during the application of
the trained neural network, the input and output for the new dimensional param-
eters have to be scaled or normalized to make sure they lie within the training
ranges.
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3.2.2 Input Specification Feature Parameter Validation

In addition to the training of the ANN, to search for a feasible mechanism
parameter solution from a given set of configuration parameters it is necessary that
the configuration parameter values be compatible with each other and their
practical coexistence be feasible. If this condition is not met, the results of the
analysis may be inapplicable. Figure 2 shows the procedure adopted to validate
input configuration parameters. It is worth noting that the term validation is used
here only to describe the applicability of a prescribed parameter set to a particular
machine or manipulator configuration. The validation is performed by determining
whether the configuration’s given multiple input parameters, after being scaled or
normalized, lie within the relative ranges established by the collected and gener-
ated data. The ranges derived from collected data are based on the results of
statistical analysis of all the real product models available. The ranges derived
from ANN-generated data are to be discussed in Sect. 4.3, which addresses the
implementation algorithm.

Select the First 
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Scale Input Vector 
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Ranges

Record Vector Values Real Product 
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Priority Confi-

guration 

Select Value
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Fig. 2 Configuration prioritizing and selection
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3.2.3 System Testing

To validate the overall procedure, real product specification feature data sets are to
be used again for testing purposes, as shown by the step ‘‘Selection of Validated
Input specification Feature Parameters’’ in Fig. 1. To test the system’s reliability,
which is different from the ANN training process, the real product configuration
parameters are fed into a trained ANN module to generate initial suggestions of the
linkage configuration feature dimensions. Then, together with envelope specifi-
cation feature parameters, the initial linkage configuration feature dimensions are
used as the seeding vector to search for the goal vector of the targeted mechanism
configuration dimensions. Then the output goal vector is compared with the real
product mechanism dimension vectors. Theoretically, the system output deviations
should be well within the specified tolerance of the system’s accuracy require-
ments. Note that the real product data sets are only a relatively small portion of the
overall ANN training data sets. If the system does not meet the accuracy expec-
tations, then more training data sets are required from both channels (as discussed
previously).

3.3 Application of the Smart Design Feature Transformation

3.3.1 Initial Inverse Kinematic Solution Generation for Application

After the ANN has been successfully configured, it should be ready for applica-
tion. At the beginning of the application design stage, the validated specification
feature parameters are passed to the ANN module to generate initial design
solutions. The initial solutions will then be used by the appropriate optimization
procedure to refine and derive the goal solutions.

3.3.2 Mechanism Configuration Feature Dimension Synthesis

The dimension synthesis, which is specific to the nature of the mechanism in
question, is carried out through optimization algorithms. The case that follows in
Sect. 4 is a study of an excavator arm linkage system, and includes details of the
algorithms. Ultimately, the resulting mechanism configuration feature parameter
solutions in this research must be scaled back to the original ratio before being
further processed.
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3.4 Results Validation

The optimization results are to be validated before they are adopted in the design
and displayed in an appropriate CAD context. This straightforward procedure is to
apply forward mechanism simulation and check the envelope space or path details
against the specifications. If the results are not satisfactory, a troubleshooting
procedure must be carried out. As discussed in the following case study, the
reported research results have so far been satisfactory with a limited number of
tests; the troubleshooting method was therefore not further explored.

3.5 Random System Validation Check

To measure and validate the performance of the system, randomly selected con-
figuration parameter data sets from the existing products’ database can be selected
and the corresponding mechanism configuration feature parameters generated
using the proposed method. The results can be cross-checked against the actual
dimensions and the efficiency of the method will be determined.

4 Case Study

4.1 Excavator Case Representation

In the conceptual process of designing an excavator, translating the access spec-
ification parameters (prescribed points or an envelope path) into linear dimensions
of the arm mechanism represents the first stage. To do this, the boom, stick, and
buckets of the planar mechanism are represented by linear linkages, and other
elements, such as hydraulic cylinders and bucket transition four-bar linkages, are
left out of consideration at this stage (see Fig. 3). These three links, connected in
boom-stick-bucket sequence, are positioned and oriented in different poses such
that their final configurations pass through the input specifications. Figures 3a and
3b show the traditional catalogue specification dimensions S1; S2; . . .S5ð Þ, listed in
Table 1, and the representation of the mechanism by linear elements ðl1; l2; l3; bÞ,
respectively.

Hence, the design process involves determining a set of individual linkage
dimensions) for the excavator arm mechanism (listed in Table 2) so that when they
are connected to each other and conform to the overall mechanism, they will
satisfy the working-range requirements.

Unlike forward kinematic problems in which the location and other properties
of the end effector are to be calculated based on different joint variables and
linkage dimensional inputs, this problem involves determining the joint variables
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(a)

(b)

Fig. 3 An example excavator arm configuration. a Typical commercial work-range specifica-
tions. b Linear arm elements

Table 1 Hydraulic
excavator workspace
configuration parameters

S1 Maximum reach at ground level
S2 Maximum digging depth
S3 Maximum cutting height
S4 Maximum loading height
S5 Minimum loading height
S6 Maximum depth cut at level bottom
S7 Maximum vertical wall digging depth

Feature Transformation from Configuration of Open-Loop Mechanisms 287



and linkage dimensions) for a given set of end effector configurations (bucket in
this case). In forward kinematics or direct configuration analysis, the task is
usually to determine the final configuration of the mechanism based on a given set
of joint variables and linkage dimensions); this is a relatively simple and
straightforward process, since the analysis usually leads to a unique solution. The
inverse process in question, on the other hand, is relatively complex due to the
availability of multiple solutions.

4.2 Data Generation for Neural Network Training

The main purpose of this task is to generate configuration and linkage parameter
data sets to be used for training the proposed ANN. The ANN will be used in later
stages to narrow down and select a physically viable set of linkage parameters to
be used as initial solutions. This is entirely a forward kinematic procedure in which
each final vector of configuration parameters, S; is determined from a given set of
linkage dimensions) and joint variables, L.

Here S ¼ ðS1; S2; . . .; S5Þ; L ¼ ðl1; l2; l3; bÞ:
The following subsections describe the mathematical model used for working

out the envelope path configuration parameters ðS1; S2; . . .; S5Þ from the mecha-
nism linkage parameters, ðl1; l2; l3; bÞ:

4.2.1 Maximum Reach-Out at Ground Level (S1)

The position of the bucket tip is calculated using forward kinematic methods. The
individual rotational and linear transformation matrices are formulated using the
Denavit-Hartenberg convention.

By applying the Law of Cosine to Fig. 4, the following mathematical rela-
tionship is formulated:

c2 ¼ ðl2 þ l3Þ2 þ l2
1 � 2l1 l2 þ l3ð Þ cosð180� bÞ ð1Þ

c2 ¼ ðl2 þ l3Þ2 þ l2
1 þ 2l1 l2 þ l3ð Þ cos b ð2Þ

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl2 þ l3Þ2 þ l2
1 þ 2l1 l2 þ l3ð Þ cos b

q

ð3Þ

Table 2 Mechanism linkage
dimensions

l1 Hinge to hinge boom length
l2 Stick length
l3 Hinge to tip bucket length
b Boom deflection angle
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sin b0 ¼ V

c
¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl2 þ l3Þ2 þ l21 þ 2l1 l2 þ l3ð Þ cos b
q ð4Þ

b0 ¼ sin�1 V

c

� �

¼ sin�1 V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl2 þ l3Þ2 þ l21 þ 2l1 l2 þ l3ð Þ cos b
q

0

B

@

1

C

A

ð5Þ

ðS1 � HÞ2 ¼ ðl2 þ l3Þ2 þ l2
1 þ 2l1 l2 þ l3ð Þ cos b� V2 ð6Þ

ðl2 þ l3Þ2 þ l2
1 þ 2l1 l2 þ l3ð Þ cos b� V2 � ðS1 � HÞ2 ¼ 0 ð7Þ

The sequence of frame of reference translation from the origin to a frame
located at the tip of the bucket is represented by the homogeneous transformation

A ¼ Tx0HTy0VRz0�bRz0�b0 ð8Þ

where
Tx0H Linear displacement in the positive x direction with H value
Ty0V Linear displacement in the positive y direction with V value
Rz0�b0 Rotation about the z axis by angular value of �b0

Tx0c Linear displacement in the positive x direction by a value of c:

The rotation sequences of Eq. 8, when represented by the corresponding
matrices, take the following form:

AS1 ¼
1 0 0 H
0 1 0 0
0
0

0
0

1
0

0
1

2

6

4

3

7

5

1 0 0 0
0 1 0 V
0
0

0
0

1
0

0
1

2

6

4

3

7

5

cos �b0ð Þ � sin �b0ð Þ 0 0
sin �b0ð Þ cos �b0ð Þ 0 0

0
0

0
0

1
0

0
1

2

6

6

4

3

7

7

5

1 0 0 c
0 1 0 0
0
0

0
0

1
0

0
1

2

6

4

3

7

5

ð9Þ

The resulting homogenous transformation matrix is then given by

Fig. 4 Maximum out-reach at ground level
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As1 ¼
cosb0 sin b0 0 H þ c cos b0

� sin b0 cos b0 0 V � c sin b0

0 0 1 0
0 0 0 1

2

6

6

4

3

7

7

5

ð10Þ

The value of the maximum out-reach at ground level is then extracted from the
above homogenous transformation matrix. The expression in cell ð1; 4Þ is the value
of the x coordinate of the bucket tip from the origin of the fixed reference frame,
which in this case is the same as the value of the maximum reach-out at ground
level, S1.

S1 ¼ AS1ð1; 4Þj j ¼ jH þ c cos b0j ð11Þ

4.2.2 Maximum Digging Depth (S2)

The maximum digging depth requires the definition of angle a2, measured from the
vertical to indicate the lower limit of the boom angular displacement around the
base hinge. For a given value of this limiting angle, the maximum digging depth is
expressed mathematically using the Denavit-Hartenberg convention:

Again, by using Law of Cosine,

l2
1 ¼ b2 þ b2 � 2b2 cosð180� 2bÞ ð12Þ

where b is the length of each side of the boom. For the purpose of simplification,
they are assumed to be of equal length in this development.

l1 ¼ 2b cos b ð13Þ

Referring to Fig. 5,

S2 ¼ l1 cos a2 þ l2 þ l3 � V ð14Þ

S2 ¼ l1 cos a2 þ l2 þ l3 � V ð15Þ

l1 cos a2 þ l2 þ l3 � V � S2 ¼ 0 ð16Þ

The homogeneous transformation sequence in this case is given by

AS2 ¼ Tx0HTy0V Rz0 a2ð ÞTy0�l1Rz0�bTy0�b ð17Þ
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ð18Þ

The resulting homogeneous transformation matrix takes the form of

Fig. 5 Maximum digging
depth
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AS2 ¼

cosða2 � bÞ � sinða2 � bÞ 0 H þ l1 sinða2Þ þ b sinða2 � bÞ
sinða2 � bÞ cosða2 � bÞ 0 V � l1 cosða2Þ � b cosða2 � bÞ

0 0 1 0
0 0 0 1

2

6

6
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7

7

5

ð19Þ

The cell in this matrix representing the maximum digging depth is the y dis-
placement in cell ð2; 1Þ.

S2 ¼ AS2 2; 1ð Þj j ¼ jV � l1 cosða2Þ � b cosða2 � bÞj ð20Þ

4.2.3 Maximum Cutting Height (S3)

For a given value of the upper angular limit of the boom rotation, a1, the procedure
for the maximum cutting height expression formulation follows a procedure
similar to the maximum digging depth calculation.

Referring to Fig. 6, the following relationship is developed for the maximum
cutting height configuration:

H2 ¼ l1 cos h ð21Þ

where h in this case is given by

h ¼ ða1 � bÞ ð22Þ

H2 ¼ l1 cosða1 � bÞ ð23Þ

H3 ¼ l2 cos h� bð Þ ð24Þ

H3 ¼ l2 cos a1 � 2bð Þ ð25Þ

H4 ¼ l3 cos h� bþ abuð Þ ð26Þ

S3 ¼ V þ H2 þ H3 þ H4 ð27Þ

S3 ¼ V þ l1 cosða1 � bÞ þ l2 cos a1 � 2bð Þ þ l3 cos a1 � 2bþ abuð Þ ð28Þ

l1 cos a1 � bð Þ þ l2 cos a1 � 2bð Þ þ l3 cos a1 � 2bþ abuð Þ þ V � S3 ¼ 0 ð29Þ

The homogenous coordinate transformation sequence for this configuration is
given by

AS3 ¼ Tx0HTy0V Rz0ða1�bÞTy0l1Rz0�b; Ty0b ð30Þ
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ð31Þ

Fig. 6 Maximum cutting height
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AS3 ¼

cos a1 � 2bð Þ � sin a1 � 2bð Þ 0 H � b sin a1 � 2bð Þ � l1 sinða1 � bÞ
sin a1 � 2bð Þ cos a1 � 2bð Þ 0 V þ b cos 2b� a1ð Þ þ l1 cosða1 � bÞ
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ð32Þ

The y displacement component of this matrix represents the maximum cutting
height.

S3 ¼ jAS3ð2; 4Þj ¼ jV þ b cos 2b� a1ð Þ þ l1 cosða1 � bÞj ð33Þ

4.2.4 Maximum Loading Height (S4)

The vertical position assumed by l3 in Fig. 7 is represented by slightly modifying
the expression developed for maximum cutting height and ignoring the orientation
angle of the last frame of reference, as follows:

S4 ¼ V þ H2 þ H3 � l3 ð34Þ

l1 cosða1 � bÞ þ l2 cos a1 � 2bð Þ � l3 þ V � S4 ¼ 0 ð35Þ

The expression for maximum cutting height is modified with minor changes to
make it fit this configuration. The last linear coordinate translation in this case is
limited to l2 instead of b ¼ l2 þ l3ð Þ: The bucket length l3 is further deducted from
the y displacement component of the matrix.

The final result is given by the following matrix:

AS3 ¼

cos a1 � 2bð Þ � sin a1 � 2bð Þ 0 H � l2 sin a1 � 2bð Þ � l1 sin a1 � bð Þ
sin a1 � 2bð Þ cos a1 � 2bð Þ 0 V � l3þ l2 cos 2b� a1ð Þ þ l1 cos a1 � bð Þ

0 0 1 0
0 0 0 1

2

6

6

4

3

7

7

5

ð36Þ

S4 ¼ jAS3ð2; 4Þj ¼ jV � l3 þ l2 cos 2b� a1ð Þ þ l1 cosða1 � bÞj ð37Þ

4.2.5 Minimum Loading Height (S5)

Following a similar procedure gives an expression for the homogeneous trans-
formation matrix of the minimum cutting height configuration, as represented by
Fig. 8.

S5 ¼ V þ H2 � l2 � l3 ð38Þ

S5 ¼ V þ l1 cos a2 � bð Þ � l2 � l3 ð39Þ
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V þ l1 cos a1 � bð Þ � l2 � l3 � S5 ¼ 0 ð40Þ

AS3 ¼

cos a1 � 2bð Þ � sin a1 � 2bð Þ 0 H � l1 sinða1 � bÞ
sin a1 � 2bð Þ cos a1 � 2bð Þ 0 V þ l1 cosða1 � bÞ � l2� l3

0 0 1 0
0 0 0 1

2

6

6

4

3

7

7

5

ð41Þ

S5 ¼ jAS3ð2; 4Þj ¼ jV þ l1 cosða1 � bÞ � l2� l3j ð42Þ

Fig. 7 Maximum loading height
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4.3 Generation of Training Data

The required training data is generated by mapping the configuration parameter for
a set of mechanism dimension parameters. MATLAB is used to implement this
task.
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ð43Þ

Fig. 8 Minimum loading
height
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4.4 Neural Network Training

Since the ANN is needed to fulfill the purpose of preliminary inverse kinematic
analysis, the output data generated from the forward simulation, S, will be used as
the input data for its training, while the linkage parameters vector L, is the target
data. Since the values of the configuration parameters depend also on the overall
dimensions of the vehicle on which they are mounted, constant values for the xx
and yy coordinates of the base hinge, H and V, are used in the analysis.

Accordingly, as shown in Fig. 9, a two-layer feed forward ANN is designed to
map seven input configuration parameters to four target parameters. The ANN has
one hidden layer with twenty neurons and one output layer with four neurons. The
network is trained using the Levenberg–Marquardt back propagation algorithm.
Sigmoid activation functions are used for the first layer and linear one-to-one
activation functions for the output layer. The neural network is implemented using
the neural network toolbox of the MATLAB programming language.

Given any one of the configuration parameters, S1; S2; . . .; S5; the developed
method identifies possible ranges of the other four configuration parameters based
on the data generated in the previous section. Since the data is generated by
simulating specific ranges of the linkage dimensions), this method scales input
configuration parameters to make sure they lie within the available data range.
Selected output ranges by this method are scaled back to the original before being
displayed for the user.

Fig. 9 Architecture of the
neural network
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The method implemented using a MATLAB program called f_Parame-
ter_Sorter provides an option for the user to select a configuration parameter with
which to begin and the sequence of upcoming selections. This option allows the
flexibility to prioritize the operational configurations as needed. Once the first item
is entered for the first choice of the configuration parameter, four different com-
patible configuration parameter ranges will be suggested for the others.

This process will be repeated on the remaining four parameters by selecting
which configuration parameter to prioritize and picking its value from the range
provided. The result of this second operation modifies the ranges of compatible
values of the remaining three parameters. This process is repeated until all con-
figuration parameters are assigned valid values. Figure 10 shows the convergence
performance of the ANN training cycles, while Fig. 11 shows the standard ANN
algorithm regression chart.

4.5 Solving for Linkage Configuration Feature Parameters

Equations 11, 20, 33, 37, and 42 relate the specification values S1; S2; S3; S4; and S5

to the geometric dimensions of the excavator arm mechanism l1; l2; l3; and b.
Given the values of the other constants, these nonlinear equations can be solved
using optimization techniques to determine the optimum linear and angular
dimensions of the arm mechanism.

Since buckets are available as standard parts, the calculation of this algorithm
focuses on determining the lengths of the boom and the stick together with the
boom deflection angle, i.e., l1; l2; and b. The selection of the bucket is made based
on the initial solution suggested by the ANN. To determine the above three
unknown variables, a combination of three of the above nonlinear equations is

Fig. 10 Performance of the
neural network
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solved using a MATLAB function, fsolve(), which employs the power of the trust-
region-reflective algorithm

F X; Sð Þ ¼ 0 ð44Þ

where X and S are vectors of unknown mechanism dimension variables and input
configuration specification parameters.

X ¼
l1
l2
b
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4
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5 S ¼
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S5
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6
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7
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5

ð45Þ

Considering the maximum reach-out at ground level, maximum cutting height,
and maximum loading height, the vector of equations will be formulated as
follows:

l21 þ ðl2 þ l3Þ2 þ 2l1 l2 þ l3ð Þ cos b� V2 � ðS1 � HÞ2
l1 cosða2 � bÞ þ l2 cos a2 � 2bð Þ þ l3 cos h� bþ abuð Þ þ V � S3

l1 cosða2 � bÞ þ l2 cos a2 � 2bð Þ � l3 þ V � S4

2

4

3

5 ¼ 0 ð46Þ

The trust-region-reflective algorithm used to find the solution requires an initial
solution to be defined as a starting point. The accuracy of the output for this
particular problem greatly depends on the closeness of the initial solution to the
actual solution. This is the stage where the suggested initial solution by the neural

Fig. 11 Regression result
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network is used. It is also expected that at this stage the viability of the initial input
parameters, S1; S2; � � � ; S5; is confirmed by the use of valid ranges developed
according to the procedure discussed previously.

4.6 Case Study Analysis Results and Discussion

In all, ten existing excavator product configuration data sets were collected; their
contents are given in Table 3. A total of 1,296 forward simulation data sets were
generated and they were used to train the ANN module developed with MATLAB.
To test the system performance, the ten product configuration envelope path
parameters were then fed into the ANN, and the output of the ANN, i.e., the initial
suggestions for the downstream optimization module, was presented in Table 4
(left half). For the sake of comparison, the solutions generated after the optimi-
zation process are also listed in Table 4 (right half).

Clearly, the ANN module has served the purpose of providing useful initial
suggestions that enabled the optimization module to find feasible solutions for the
given mechanism. Furthermore, Table 5 shows the comparison results between the
solutions and the original real product data obtained for the ten existing config-
urations. The average errors for linear dimensions are pretty close, i.e., within
10 %, but the angular b shows a bigger difference from the original dimension:
about 24 %. The deviations of these errors are relatively small. Therefore, we can
conclude that the proposed method is feasible and the results show a good
agreement with the testing input data set. The method can be further improved by
fine-tuning the optimization algorithms and the boundary conditions as well as by
using more realistic product data sets for ANN training.

Table 3 System testing data collected from the existing products (units: cm/degree)

Configuration Mechanism dimensions Vehicle

Product S1 S2 S3 S4 S5 11 l2 l3 b H V

1 359 183 344 226 107 174.1 88.2 51.9 24.5 63 75
2 413 252 384 271 109 205.9 102 61.1 25 68 86
3 412 260 359 246 111 201.2 99.4 67.9 28 74 93
4 435 228 422 283 106 203.3 105.2 64.9 30 78 90
5 409 248 385 267 125 201.3 99.5 61.5 25 66 84
6 372 208 371 257 110 171.4 89.1 58.2 24 77 82
7 352 196 331 235 92 159 86.3 49.6 22 77 71
8 345 203 338 238 99 165.1 88.4 49 20 64 73
9 332 184 335 238 104 163.4 83.8 47.5 24 55 71
10 415 254 368 272 110 204.9 102 63.1 25.76 68 81
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5 Conclusion

In this chapter, a hybrid feature transformation method from specification feature
instances to mechanism configuration features was presented. The method uses
ANN and optimization tools to solve feature-based dimension synthesis problems.
The ANN, in order to reflect the mapping relations between accessing the envelope
path and the linkage lengths in an excavator arm case study, needs to be trained
before becoming usable. A mix of real product data sets from those existing
product families and the generated data sets from forward kinematic simulation
calculation methods are used for ANN training purposes. The forward data gen-
eration method is used to solve the problem of a shortage in real product data, and
to produce enough ‘‘artificial’’ training data. The results of the analysis show a
satisfactory estimation of the initial solutions based on the ANN model. For a set
of existing product configurations, after testing the system on the whole cycle and
searching for the final solutions with the optimization module, it can be concluded
that the method is feasible and the results are promising, although more research
analysis and evaluation are required. While this research used an excavator arm
mechanism for the case study, the proposed method is not a product-dependent
approach. Potentially, this hybrid method can be used for many other mechanism
design processes as well.

Table 4 The initial and final solutions generated from the system

ANN initial solution (m) Optimization final solution (m)

Product l1 l2 l3 b l1 l2 l3 b

1 1.747 0.688 0.634 17.28 2.09 0.93 0.634 34.97
2 1.9697 0.9599 0.6556 19.4858 2.0022 0.9547 0.6556 30.0233
3 2.0453 0.8433 0.7019 26.524 2.0282 0.8581 0.7019 35.2464
4 1.8104 0.7914 0.783 10.7072 1.6981 0.8382 0.783 18.6694
5 1.7703 0.7381 0.6662 15.6772 2.0433 0.8323 0.6662 30.1607
6 1.6806 0.805 0.6103 13.2475 1.9883 0.9117 0.6103 25.8929
7 1.5389 0.8259 0.5279 15.2362 2.0148 0.9988 0.5279 30.014
8 1.6275 0.9462 0.5138 12.3882 1.97 0.9848 0.5138 32.8084
9 1.6105 0.909 0.4687 14.3593 2.1144 0.9756 0.4687 32.3521
10 1.9589 1.0773 0.6004 24.8409 1.879 0.926 0.6004 31.9021

Table 5 Accuracy statistics of the system results

Dimensions Average error (%) Unbiased standard deviation Root mean square error (RMSE)

l1 8.627 0.1569 0.1489
l2 1.4641 0.1356 0.1286
l3 7.1778 0.085 0.0806
b 23.858 0.2652 0.2516
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