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1 Introduction

To achieve information integration among CAx applications, a shared common
product model is crucial. Such a multi-view product engineering model should
support different disciplinary views for various applications. Here, the term view
refers to the context-dependent and self-contained interpretation data set (subset)
of the entire product model (EPM) related to one particular engineering domain or
aspect of the product.

In this chapter, a four-layer information integration infrastructure is presented
based on Tang’s work [28] for building the shared product model. Tang’s product
feature model is built on the Standard for the Exchange of Product model data
(STEP) framework [23], because STEP is the international standard and has been
widely accepted by both vendors and users. However, using only STEP-based
product specification cannot ensure feature model integration, because STEP does
not define interrelationships and constraints between applications. In this product
model, the STEP framework is extended with a new concept, the unified feature
model [4], under which a generic feature representation schema is given. Next,
design and manufacturing feature models are described based on the new concept.
The different definitions of slot features in both applications are analyzed as
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examples. For feature-based modeling processes, the concept of operation is
introduced, followed by its representation schema. Finally, the cellular geometric
model, shared by different applications, is described.

As reviewed in “A Review of Data Representation of Product and Process
Models”, most of the current software tools for product development are already
feature based, but are limited to individual applications. In the authors’ previous
work [28], the proposed information integration infrastructure supports multi-stage
applications throughout the product lifecycle, owing to the adoption of a unified
feature modeling scheme [4]. This infrastructure is centered with a core model
representation of a basic feature type, generic feature, which is defined based on
the associative feature constraint management method.

The definition of generic feature was first introduced in Chen et al.’s work [5],
which used unified modeling language (UML) and in which it was dubbed a
“unified feature.” The authors felt it necessary to reconsider the name convention
for the related feature terminology. As shown in Fig. 1, the authors decided to give
a clear definition of generic feature, which is supposed to be the smallest grain
element in the so-called feature-based informatics domain. In fact, the only change
that has been made from the original publication is that the name “unified feature”
has been changed to generic feature. The reason for this renaming is to maintain
the consistency of conceptual understanding about the proposed feature-based
theoretical informatics model. Generic feature is defined as the most basic feature
entity template, or a common class as defined in an object-oriented software
engineering approach; that is, the ultimate bottom-level engineering character-
ization data structure. Generic feature is expected to reflect the reusability and
abstracting capability of the engineering semantic patterns for different engi-
neering applications. The term unified feature is reserved to refer to the systematic
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framework that has been developed for implementing application systems based
on the generic feature definition.

As shown in Fig. 1, generic feature consists of four main fields: Attributes,
parameters, constraints, and topological entity pointers. Aftributes here refer to the
properties of the feature that do not specify a feature’s shape, dimension, orien-
tation, or position, but rather such attributes as material and surface finish (which
are self-describing attributes), and non-geometric entities such as functions, rules,
and machining operations (which are association attributes). On the other hand,
parameters are the key to describing the shape, dimensions, orientation, and
position of entities. Topological entities are those that can be shown to the user on
the screen, such as a point, line, cylinder, or cube.

The major fields and methods defined in the generic feature class are described
in Table 1 below with reference to Ma et al.’s recent work [13]. Again, note that
there has been a name change, such that the common generic class definition,
abstracted from different features, has been renamed from the original unified
feature to generic feature.

2 Generic Feature Model

Theoretically, the unified feature model allows different applications to define
specific features in a unified approach. Application features are modeled as the
child class of the generic feature. In other words, unified feature modeling allows
for the coexistence of specific views for different applications. However, although
from an application point of view it is essential that each feature type has a well-
defined meaning, or semantics, as a base class, a generic feature definition that
enables common mechanisms, such as data storage, searching, validation, updat-
ing, and information sharing, must be modeled and developed. For more details
about the class definition and properties of generic features, see Ma et al. [12].

The generic feature class includes the structured description of all common
properties and methods of application feature types. Such properties include fea-
ture shape representation with parameters, constraint types, reference mechanisms,
and validity methods. For example, all types of constraints are used for capturing
design intent in the context of product design models. The generic feature rep-
resentation schema in EXPRESS-G for database design and implementation can
also be found in the literature [12]. The generic feature model provides a template
for application-specific feature definition.

2.1 Feature Shape Representation

Representing the shape of a feature means defining feature geometry, topology,
and their associated entities, such as Attributes, parameters, and feature
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Table 1 Major fields and methods of the generic feature class [13]

Class Element types Member element Description
section lists
Fields  Attributes Association Identities of the associated objects, such as
attributes functions and behaviors in a conceptual
design, machines and cutters in a process
plan, other features, etc.
Self-describing Material, surface finish, belonging application,
attributes etc.
Parameters Variables used as input to geometry creation
methods
Constraints Geometric Dependency relations among the feature’s
constraints geometrical and topological entities
Algebraic Engineering equation relations among the
constraints feature’s self-defined attributes and
parameters, mainly applied for physics and
mechanism principle formulas
Rule-based Identities of rules that the feature or its self-
constraints describing attributes, parameters, or

Geometric references

Methods Geometry
construction
Interface to
geometric
model

Interface to
expert
system

Interface to
relation
manager

Interface to
database

createGeometry()
getCell()
setCell()
insertGeometry()
deleteGeometry()

getFact(), setFact()

getRule(), setRule()

checkRule()

addToJTMS()

validityChecking()
saveFeature(),

retrieveFeature()

numerical constraints participated in
Topological entities
Generate the feature geometry

Retrieve the feature’s member cell entity
properties by a pointer or a name

Assign a topological entity as the feature’s
identity

Notify the geometric model to insert the feature
geometry

Notify the geometric model to delete the
feature geometry

Retrieve or create the corresponding facts

Retrieve or assign the corresponding rules

Check whether the related rules are satisfied or
not

Add a node to the graph of JTMSJustification-
based truth maintenance systems (JTMS)
managed by the system to track the feature,
and its constraints, attributes, and
parameters for validation-checking
purposes

Call the relation manager for feature validation

Store a feature in or retrieve a feature from the
database

manipulation (e.g., creation, modification, and deletion) functions. Feature
parameters support user interfaces to create and modify features in modeling
operations. To explicitly maintain the shape of a feature in a part model, shape
representation in the research discussed here is based on the cellular topology of



Fundamental Concepts of Generic Features 93

Fig. 2 Block feature A
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ACIS, which is on the top of the common B-rep model. For example, a block
feature may have four parameters: length, width, height, and position point (see
Fig. 2). Creation of a block feature is associated with the function api_solid_-
block(), which creates a primitive solid block with two positions. With these four
parameters and feature creation schema, the shape of the block feature can be
determined. Note that the length parameter is along the x-axis; the width parameter
is along the y-axis; and height is along the z-axis. Other primitive features with
parameters, such as cone, cylinder, wedge, and sphere, are shown in Fig. 3.

Table 2 lists other types of features with their basic parameters. Note that in the
authors’ opinion, datum entities (which include datum plane, datum axis, and
datum point) are also regarded as a kind of feature.

2.2 Validity Condition (Constraint) Definition

Validity conditions, namely constraints, must be explicitly defined in the unified
feature model to specify relationships among features and geometric or topological
entities, and provide invariant characteristics in the model.

Constraints may have various types. Some classifications, such as Dohmen’s [7]
and Bettig and Shah’s [2], are reviewed below. In this work, we follow the
classification by Dohmen (which is also used in most current CAD systems).
Constraints can be classified as geometric constraints, dimension constraints,
algebraic constraints, or semantic constraints, a constraint schema defined by Ma
et al. [12].

Geometric constraints specify the geometric relations between feature ele-
ments; they can be classified into two categories, dimensional and semantic.
Dimensional constraints specify distances between two feature member entities.
Semantic constraints specify the topological properties of feature elements. For a
vertex, edge, or face, a semantic constraint specifies the extent to which the
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Fig. 3 Other primitive features with parameters

element must lie on the product boundary. For a volume, a semantic constraint
specifies the extent to which the volume is allowed to be intersected by other
feature volumes instantiated later [7]. For example, a through_hole feature has
semantic constraints in that the cylindrical side face must at least be partly on the
material boundary, and the top and bottom faces of the cylinder must not be on
the material boundary. If in the later design stage, a boss, which is a solid with
material, is placed just over the hole, the semantic constraint on the top face is
violated, and the through_hole feature is no longer valid. It becomes a new
blind_hole feature. If both the top and bottom of the cylinder space are blocked
with other material features, the feature then is transformed into a hollow_space
with no accessibility to the open space.

In the generic feature definition, constraints are modeled as Attributes attached
to topological entities or sub-features with the associative validation methods
defined in the feature definition. Although different types of constraints have
different attributes, some attributes are common:

Constraint_ID is the identifier of a constraint instance.

Constraint_name specifies the name of a constraint instance.

Owner_ID uniquely identifies which feature a constraint belongs to.
Constraint_expression represents the relationship between the constrained
elements and referenced elements.
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Table 2 Other features with parameters
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Feature type

Primary feature parameters

Slot

Hole

Pocket

Extrusion

Revolution

Sweep
Chamfer
Fillet

Array

Offset
Mirror

Datum

1.

A 2D profile (e.g., U profile)

2. A path
3. Slot end type (if it is not through slot)
Simple hole — 1. Radius

Countable hole —

N = N = N = W= N =B~ WK~

Polar —

1.
2.
1.
2.

. Depth

. Countable_hole radius
. Countable_hole depth
. Hole radius

4. Hole depth

W N =N

. The pocket profile (rectangular or circular)

. Depth

. Corner radius

. Floor radius

. A 2D sketch profile

. An extrusion path (or direction with distance)
. A 2D sketch profile

. An axis

. Revolution angle

. A 2D sketch profile

. A sweep guide (path)

. An edge (chain of edges) or connected faces
. Two distances (or a distance with angle)

. An edge (chain of edges) or connected faces
. Radius
Rectangular —

. Arrayed objects

. Arrayed objects
. Axis of polar

W RN = W N =

Offset objects

Offset distance with direction
Mirror objects

Mirror plane

Datum plane — 1. A point

2. A plane normal (vector)

Datum axis — 1. A point

2. A direction (vector)

Datum point — A point

. Column offset with number of instances
. Row offset with number of instances

. Number of instances (with fulfilled angle)

e Constrained_entity_ID 1is used to specify a list of pointers of the constrained

entities.

e Referenced_entity_ID list can be used to uniquely identify referenced entities.
In modern CAD systems, the reference_entity, which is the existing geometry
(a face, edge, or vertex), is regarded as a kind of datum for positioning
(or orienting) a new feature.
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e Constraint_strength has an enumeration data type, which may include several
levels, such as required, strong, medium, or weak. It represents the extent to
which the constraint needs to be imposed when constraints conflict with one
another.

e Constraint_sense is used to specify the direction between constrained entities
and referenced entities.

e Constraint solving functions are responsible for solving constraints according to
constraint types.

e Other manipulation functions may include attribute access functions, behavior
control functions, and so on.

The definition of constraint_strength is for handling over-constrained situations.
Such constraint attributes were used in another external constraint solver, SkyBlue,
to solve the over-constraint problem [21, 22]. The use of constraint_strength is
supported by this solver. SkyBlue constraints each have an associated priority, or
strength, indicating how important it is to satisfy the constraint. A constraint of
lower priority is said to be weaker than a constraint of higher priority, which is
called stronger. The highest strength is “required;” the lowest is “weak.” An
arbitrary number of strength levels may be defined. If the SkyBlue constraint graph
has conflicting constraints, SkyBlue will always determine a solution such that no
unsatisfied constraint can be satisfied by making a weaker constraint unsatisfied. An
example is shown in Fig. 4. Note that in the figure, a box represents a constraint,
and a circle represents a variable or parameter. In the first graph, the strong con-
straint C2 has just been added. The second graph shows a possible chain of con-
straints without conflicts; in order to satisfy C2, weak constraint C1 is left
unsatisfied. Another solution would be to leave C4 unsatisfied instead of C1. Since

weak strong medium weak
C1 V1 2 V2 c3 V3 C4
weak strong medium weak

C1 Vi 2 V2 3 V3 C4

weak strong medium weak
C1 V1 C2 V2 C3 V3 C4

Fig. 4 Constraint_strength for constraint solving
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Cl1 and C4 have equal strength, SkyBlue will arbitrarily choose one of these
solutions. The third graph shows the solution that results when the strength of the
constraint has been set to medium. Here, C4 is left unsatisfied. For details of
constraint solving in SkyBlue, please refer to Sannella [21, 22].

The constraint_sense attribute can be assigned with two string options, directed
and undirected. A constraint is directed if any of the members of the constrained
entities is constrained with respect to a sequence of evaluation, where those ref-
erenced entities must exist and be evaluated first. A constraint is undirected if there
is no required sequence of evaluation among referenced entities, and the constraint
is mutually applicable among member-constrained entities. Stated differently, in
the undirected constraint, there is no difference between constrained entities and
referenced entities [12].

2.3 Other Generic Feature Properties

Other properties defined in the generic feature schema can be defined as follows:

o General feature Attributes. General feature attributes such as feature_name and
feature_id are defined to serve as the index for searching during feature mod-
eling operations.

e Feature type. Feature type is essentially determined by the instance feature class
name derived from a generic feature class, e.g., block feature or slot feature.

o Depended_feature_id list. To maintain feature relationships, feature dependency
relations should be kept during the modeling procedure [26]. The feature
dependency relation is described by Bidarra et al. [3]: “feature fl directly
depends on feature f2 whenever f1 is attached, positioned or, in some other way,
constrained relative to f2.” The feature dependency graph illustrates the feature
dependency relations with a simplified constraint graph. In the graph, each of
the edges of the graph is directed. The direction of each edge in the feature
dependency graph runs from one feature to another feature that depends on it.
For example, the part in Fig. 5 can be expressed as both a constraint graph and
feature dependency graph as shown in Fig. 6. In these graphs, the slot and two
holes are depended_feature of the base block feature. Depended_feature_id
records the feature dependency relation. It plays an important role in main-
taining the feature dependency graph, as well as in maintaining feature rela-
tionships during feature modeling operations. Modern CAD systems also retain
feature dependency relations. For example, in Siemens NX 7.0, users can query
all such information.

o Feature label is an entity_list in the feature definition, used to record feature
elements. Feature labels are attached as attributes to feature member entities,
e.g., faces, edges, and vertices.

e Domain specification. As the proposed feature model must support collaborative
feature-based modeling among multiple applications [30], domain is used to
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Fig. 5 A simple example
part

1. <block>
2. <slot>

3. <holel>
4. <hole2>

designate which application a feature belongs to. Domain has the enumeration
data type; values can be “design,” “manufacturing,” “assembly,” and others.
By specifying different domains, multiple application features that refer to the
same product geometry can coexist in the feature-oriented database.

e Nature. The nature feature is the enumeration data type, which is either additive
or subtractive. Additive means that the feature is to be instantiated by adding
material. Subtractive means that the feature must be obtained by subtracting
material.

ELINNT3 9

2.4 Member Functions

o Attributes access functions need to be defined to manage a feature’s attributes.
Most of these functions are common to all types of features, e.g., backup(),
findOwner(), findConstraint(), getParameter(), setParameter(), and so on. Other
specific attribute methods for individual application features will be addressed at
the application level.

® Modeling operation functions. These functions are used to control the behavior
of a feature during a modeling operation, e.g., creating, editing, deleting,
splitting owners, merging owners, or translation.

e Feature validation functions. Whenever a feature operation is activated via the
user interface, the product model needs to be modified and updated. This process
requires feature evaluation, which ensures the consistency of the geometrical
model at low levels. In the work discussed here, the run-time product model is
generated via an integrated solid modeler and managed based on the database
records. All feature evaluation functions triggered by such operations call the
solid modeler’s APIs to access and determine the geometrical procedures; they
are implemented separately in the feature classes. In this way, the details of
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geometrical operations are maintained by the solid modeler; hence, the devel-
opment effort is significantly reduced. Theoretically, feature process functions
can be classified into two kinds, those dealing with the geometry and those
managing constraints. With the incorporation of a solid modeler, feature process
functions rely on the solid modeler for manipulating and validating feature
geometry. Constraint solving functions need to call on specific algorithms
defined in the individual constraint sub-classes to solve different associative
relations according to their types.

e Save and restore function. For repository purposes, feature saving and restoring
functions, which are the interactions between the run-time feature model and the
database, must be defined in the unified feature model classes, because these
functions have to organize information for different application views according
to users’ requirements.

3 Advanced Feature-Based Engineering Modeling:
A Prospect of Advanced Design and Manufacturing
Methodology

It is expected by the authors that with the generic feature implementation and the
related database schemas [14, 16], the implementation methods of different fea-
ture-based engineering applications can be unified and developed within a sys-
tematic framework. A holistic feature-based engineering informatics modeling
scheme that is based on the generic feature concept presents a complete product
and process information repository, and supports high-level feature information
integration across different engineering application software tools; this is dubbed
unified feature modeling. This approach is to be introduced in “Unified Feature
Paradigm”. The authors suggest a unified information infrastructure model that has
been published by Tang et al. [29] with reference to Zha and Du’s work [31]. To
briefly introduce the concept, a partial schema-level EPM representation is defined
as shown in Fig. 7. A design feature model and a manufacturing feature model are
represented as sub-models in the application layer; they need to be integrated with
application-specific functional modules. The commonly shared feature information
model below the application modules contains all components defined with a
unified feature modeling scheme supporting the entire product model (EPM) with
generic features as the basic semantic building units. The EPM describes infor-
mation across applications, and contains the domain classification ontology and
metadata. This layer contains assembly-part models, product geometry and
topology, the related attributes, and so on. This chapter is dedicated to presenting
the fundamentals of the generic feature concept.

All EXPRESS-G representations in this work follow a convention defined by
the ISO standard [9], as shown in Fig. 8. Note that in this work, those entities
shown in EXPRESS-G diagrams with page reference “#, #” have been defined in
the standard.
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Fig. 7 Partial schema-level EPM (enhanced from Tang [28])

In this chapter, we focus only on the feature-based design and manufacturing
models of a product, which includes geometry, constraints, parameters, and
dimensions. Other related information, such as product-related documents and
categories, are not discussed here. In the following section, design and manufac-
turing feature models are described.

4 Application-Specific Feature Models

Much research effort has been directed toward feature classification. Shah and
Rogers have classified features according to three basic forms: form features,
precision features, and material features [25]. They considered that features can
represent other logical information sets, such as assembly relations and functional
entities. Rossignac clarified the distinction between intentional features and their
geometric embodiment, and between volume features and surface features [20].
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Juri further classified the form features into primary and secondary, and also into
external and internal. Primary features correspond to cylindrical and conical shafts,
whereas the secondary are holes, threads, fillets, and so on [10]. In this work, we
consider only design and manufacturing features. The design feature classification
used here is similar to those in commercial CAD systems (such as Pro-E, NX, and
others). The classification of manufacturing features is based on the AP 224 of
STEP.

4.1 Design Feature Representation

4.1.1 Design Feature Representation Schema

In this section, design features are used as an example subgroup to illustrate how
application-specific feature models can be defined. A design feature model can be
expressed as shown in Fig. 9.

The primitive feature type is separated into two subtypes, additive and sub-
tractive features. Additive features include all instances of features formed by
adding material, such as cylinder, taper, sphere, boss, block, torus, and so on.
Subtractive feature types represent all features such as hole, pocket, and slot that
are formed by subtracting material. The transition feature type includes chamfer,
edge_round, and fillet, which are always associated with other primitive features.
The compound feature type is a union of several primitive features. Datum, which
is used as the reference for feature-based modeling, is also regarded as a kind of
design feature in the authors’ opinion. Datum has three subtypes, namely datum
plane, datum axis, and datum point. Additional feature types such as extrusion,
revolution, sweep, and others are also accommodated in this schema. Each specific
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design feature type has predefined explicit geometry, topology, parameterization,
and constraints specifications. Note that not all the feature types are included in
this schema, because the number of feature types is infinite [24]. But by using the
generic feature model, feature definitions are extensible.

4.1.2 Example of a Design Feature Definition: Slot

Based on the generic feature definition, design features such as slof can be defined
in EXPRESS-G according to STEP AP 224 [9], as shown by Ma et al. [12]. The
Slot feature class inherits all the common properties and methods from the generic
feature class.
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Generic Shape Representation of Slot Feature

The shape of the slot feature is expressed as swept depression volume with a cross-
section profile and a continuous curve of travel. The member elements associated
with a slot feature are listed below:

e Course_of _travel. This member entity specifies a 3D space curve (e.g., line and
circle), that when combined with a “profile,” creates the shape of the slot. The
course_of _travel can be represented as a path in EXPRESS-G. A path shall be
defined as the geometrical entity pointer, which serves as the input parameter for
the slot feature creation function.

e End_conditions. End_conditions specifies the type of implicit shape at the ends
of the slot, which can be blind_slot_end_type or open_slot_end_type [28].
Different slot end types require different parameters. These parameters are
associated with the create_slot_end function that will be called in the slot
feature creation function.

e Sweep_shape. The sweep_shape defines the sectional 2D sweeping profile.
When combined with the course of travel, the sweep operation creates the shape
of a slot. For the slot feature, the sweep_shape is represented as an open_profile
that could be square_u_profile, rounded_u_profile, linear_profile, vee_profile,
partial_circular_profile, or tee_profile. Each type of 2D profile has its own
initializing parameters. For example, square_U_profile has two parameters,
length and height, which will be used in create_profile() functions to create the
2D profile. This 2D profile will be defined as an entity pointer and will serve as
an input parameter for the slot feature creation function.

Constraints

In the slot feature definition, constraints are regarded as an attribute list attached to
the slot feature, and are therefore defined as an attribute list. Different types of
constraints (e.g., distance and angle constraints) are defined first. All the con-
straints are treated as common attributes in the feature’s attribute list and, to
maintain feature validity, are accessible for the validity check.

Other Feature Properties

feature name: slot,
depended_feature_id: entity_list,
domain: “design,”
nature: “negative.”

Given the slot feature definition described above, instantiating a design feature
slot shall be carried out in two steps: defining the shape of the slot and positioning
the slor feature. Using the through_slot feature with square_U_profile and a
straight line path shown in Fig. 10 as an example, the details are shown as follows:
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(a) Specify the type of the slor feature. This is to define the sweep shape (such as
square_U_profile, T_profile, or round_U_profile) of the slot feature by spec-
ifying the required parameters. In the instantiation function of slot feature, a
square_U_profile entity is then parametrically created.

(b) Specify the slot end type. A slot feature may have a number of end types. The
shape of the slot end will be created and combined with the main body of the
slot feature to complete the shape of the slot. A slot end type with parameters
will be recorded as the entity pointer. In the example cited here, for open_-
slot_end_type, no action will be taken for the creation of the slot end shape.

(c) Define a course of travel for the slot feature: it can be a line, a circle, or a 3D
space curve. By default, a straight line perpendicular to the sweeping profile
will be taken as the course of travel. This course of travel will be stored as an
entity pointer. Here, a course of travel with direction (0, —1, 0) is created by
specifying the start and end face of the slor.

(d) Create the body of the slot feature by sweeping the profile along the path. This
kind of operation will result in a solid as the main body of the slot feature. In
this example, the given square_U_profile is swept along the direction (0, —1,
0) for a distance equal to the distance between start face and end face of the
slot. The result is shown in Fig. 10.

(e) Position the slot feature. To position the slot feature on a planar surface,
dimension constraints, which are used to define constrained_entity (the
geometry of feature to be created) and referenced_entity (existing geometry on
the model), are used. In this case, for the definition of through_slot feature, two
coplanar constraints (C; and C,) are defined to determine the start and end of
the slot feature. There is thus no need to set such a constraint along the y-axis. In
addition, a distance constraint, D, is used to dimension the distance between the
slot_left face (constrained_entity) and block_left face (reference_entity or

datum).
zZ Open_slot_end_type
Slot shape P P
/ Slot_top  Block_top
Distance constraint (C3) Path (direction Coplanar constraint (C2)
D = fixed_value (0.0--1) / slot_top = block_top

Slot_left / Slot_end Block_back

. Coplanar constraint (C1)
f}g;};;:;g;?mhle X slot_end = block_back

Width=30;
Height=15;

Coplanar constraint (C0O)
/ slot_start = block_front
Block_left 7

<«— Block_right

Block_bottom Open_slot_end_type

P Slot_start  Block_front

y

Fig. 10 An open-ended slot design feature with the square_U_profile
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(f) Generate the 3D cell to the shape of the feature on the basis of cellular
topology, and insert the shape into the part by carrying out a non-regular
Boolean operation. Details for cellular topology will be described later in this
chapter. Here, the slot shape will be Boolean union with the base_block and
will result in the final part shown in Fig. 10.

The slot feature instance, in the example, can therefore be expressed as shown
in Fig. 11. Note that upon cellular decomposition, there are two cells (3D cells) in
the cellular model of the part shown in Fig. 10. The shaded cell represents a cell of
slot shape, while the remainder represents the cell of the base_block.

4.2 Manufacturing Feature Representation

4.2.1 Manufacturing Feature Representation Schema

A manufacturing feature represents a geometric shape that is associated with a
manufacturing process to produce the associated part faces as designed. STEP AP
224 [9] has categorized manufacturing features into three groups: machining

features, replicate features, and transition features.

Coplanar constraint:
Attribute:

Owner_ID: ENTITY*;
Constraint_ID:

Co;

=

Constraint_expression:
slot_start=block_front;
Constraint_strength: int;
Constraint_sense: string;
Constrained_entity:
ENTITY_LIST;
Reference_entity_list:
ENTITY_LIST;

Other attribute:

Member function:
getAttribute();
setAttribute();
solveConstraint();
Other function:

Coplanar constraint:
Attribute:

Owner_ID: ENTITY*;
Constraint_ID:

Cl;

Coplanar constraint:
Attribute:

Owner_ID: ENTITY*;
Constraint_ID:

Slot feature
Attribute:

Name: slotl;

ID: ENTITY*;
Domain: design;
Nature: negative;
Owner ID: ENTITY*;

Cell
ID:ENTITY*

Functions:

Depend_feature_ID:ENTITY*;
Feature_element_list: a list of feature labels
Parameter list:

Profile: ENTITY*;
Path: direction (0,-1,0);

Block feature
ID:ENTITY*

Functions:

Slot_end_type: ENTITY*;
Position: derived by constraints;
Depth: = 15;

Width: derived from width of profile;
length: derived from distance between
hole_start and hole_end;

Constraint list:

Constraint_ID: ENTITY * (C0);
Constraint_ID: ENTITY* (C1);
Constraint_ID: ENTITY*(C2);
Member functions:

Attribute acess: getAttribute(),setAttribute()...

Modeling operation:

create_slot(), splitOwner(), mergeOwner()...
Feature validation:

geometry Validation(), constraintSolving(),...
Save and restore:

Save(),

Restore()

Profile
ID:ENTITY*
Parameters:

First angle = 90;
Second angle= 90;
First radius = 0;
second radius
Width = 30;

Functions:
create profile();

C2;

Fig. 11 Slot, a sub-class of design geometry feature

Open_slot_end_type
ID:ENTITY*

Functions:
create SlotEndType();
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A machining feature is a subtype of manufacturing feature that is formed by
removing solid materials from the initial stock in order to obtain the target part
geometry. According to STEP, machining features can have the following sub-
types: knurl, multi_axis_feature, thread, marking, spherical_cap, outer_round,
revolved_feature, and compound_feature. For details of the definition of the
above-mentioned feature types, please refer to the standard [9].

Each machining feature requires direction and position to place it on a part.
Therefore, a placement data structure is defined. Placement specifies the position
and orientation of a machining feature relative to the base shape of a part. The data
associated with a machining feature also includes the attribute usage_name. The
usage_name specifies a user-defined name that contains additional information
about the use of a feature. The usage_name is optional; it does not need to be
specified for every machining feature.

A compound_feature unites one or more machining feature objects to create a
more complex feature definition. The placement of a compound_feature is relative
to the part, another compound_feature, or a replicate_feature which uses a com-
pound_feature as the base feature. Features that are elements of the com-
pound_feature have their placement defined relative to the compound_feature
placement.

A multi_axis_feature usually identifies milling features for a part, such as boss,
general_removal_volume, hole, rounded_end, planar_face, pocket, profile_fea-
ture, protrusion, rib_top, slot, and step.

In the authors’ view, manufacturing features, unlike design features, depend on
the process plan, although manufacturing features can have predefined geometry.
This means the geometry of a manufacturing feature can be determined only after
a manufacturing operation has been determined by the process planner. In order to
generate a manufacturing feature model from the part model, a predefined generic
feature template library can be used for feature recognition. This procedure can be
implemented automatically or interactively, or as a combination of the two. After
feature recognition) and selection of appropriate machining operations, the shape
of the manufacturing feature can be determined. Each manufacturing feature has
an associated machining_operation, defined and stored as the attributes of the
relevant geometrical entities. Candidate machining operations are those combi-
nations of the machine tool and the cutting tool whose capabilities (shape, size,
tolerance, surface finish) and accessibility satisfy the required manufacturing
specifications. Therefore, the machining operation schema has four major com-
ponents: machining method, machine tool, cutting tool, and machining operation.

The shape of a machining feature contains two volumes: an accessing volume
and a removal volume [19]. In a traditional machining operation, material is
removed by a moving cutting tool, which is attached to the machine tool. The
moving cutting tool together with its chuck, which is driven by the machine tool,
will sweep a volume in space. The cutting portion of this swept volume is known
as the removal volume, i.e., the effective removal volume. The remainder of the
swept volume is referred to as the accessing volume.



108 S.-H. Tang et al.

Generic_constraint_schema \
Descrlptlve parameter Numerlc parameter Descrlptlve paramele/

T constraint L[0:?] feature_name fealurefidT feature_type

feature_label L[1:?]

element L[0:?] | Feature_shape_schema
#, #, Label o Generic feature

depended_feature_id domain_specification | feature_nature

(o)
| | Manufacturing_feature

# #,

. | Domain
umeric_parameter,

| Nature | |

subtractive

g #, #,
Descriptive_parameter

manufacturing

# #, o
Descriptive_parameter

Generic_slot_shape_schema Machining_operation_schema

Fig. 12 Machining feature slot definition in EXPRESS-G (adopted from Ma et al. [12])

4.2.2 Example of a Machining Feature Definition: Slot

A machining feature slot can be represented in schema format as shown in Fig. 12.

Generic Shape of the Machining Feature Slot

The machining feature slot can be used to achieve many kinds of design features.
When a design feature is achieved by applying a slot manufacturing feature, they
become associated; note, however, that they are neither identical nor overlapping.
There are two key differences between design features and manufacturing features.
The first is that in the manufacturing domain, accessing volumes and raw work
piece volume should also be considered for manufacturability analysis. These
volumes are evaluated when a machining operation is decided upon. The other
difference is the associated relationship between the removal volume and the design
feature. The design feature represents the design requirements, while the removal
volume represents machining steps. The removal volumes of a machining feature
are the chunks of material must be machined away with each machining steps in
order to achieve the ideal design features. Unfortunately, machining features and
design features are not corresponded in a one-to-one manner; rather, they are
associated by the critical faces which are defined by the both types of features.
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Design features specify the resulting requirement about critical faces while
machining features define the steps, or how those critical faces are produced.

Validity Condition Definition

e The surface type of the slot feature must match the surface type of at least one
machining operation in a given manufacturing environment.

e Tolerance and surface finish specifications of the slof feature surface must match the
tolerance/surface finish capability of at least one set of machining operations in a
given manufacturing environment. It should be noted that a feature machining pro-
cess is usually an ordered set of machining operations, whose total effects are equal to
or better than the tolerance/surface finish specifications of the finished surface.

e The effective removal volume of the slot machining feature cannot intersect
with the final design part volume.

e The accessing volume of the slot shape must not intersect with the blank or work
piece, fixtures, or other machine tool elements at any time.

e When machining the slot with an end-milling tool, the minimum corner radius
of the slot must not be smaller than the radius of the selected milling tool.

Other Feature Properties

Feature name: slot
Depended_feature_id: entity_list
Domain: manufacturing

Nature: negative.

Instantiating a slot feature in the manufacturing domain often requires automatic
or interactive feature recognition with the input of users. Automatic feature rec-
ognition is very complicated and is an entire research area unto itself; here, due to
space limitations, it will not be discussed. The corresponding features in different
domains are associated with the final product model. Given the design feature slot
shown in Fig. 10, the corresponding machining slot feature as defined in Fig. 12
can be automatically identified. Note that the example contains two features rep-
resented as 3D cells, namely, the slor and the base_block (workpiece). The detailed
properties of a manufacturing feature slot instance are shown in Fig. 13.

5 Operation for Multi-Application Interoperability

Owing to the large sizes of CAD files, data transmission among various CAx appli-
cations over the Internet is quite time-consuming and unreliable, causing intolerable
wait times when updating large CAD models across networks. To reduce the network
load, an appropriate way to represent CAD data is needed. Incremental transfer is one
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Cell
ID:ENTITY* Machine_tool
Attribute:
Slot feature Functions: — Machine_tool_ID: ENTITY*;
Attribute: Machine_tool_name: string;
Name: slotl; Power_constraint: real;
ID: ENTITY*; ] Working_accuracy: real;
Domain: manufacturing; Block fealuri Working_area_constraint_xyz:
Nature: negative; ID:ENTITY* real;
Owner ID: ENTITY*; —_— )
Depend_feature_ID:ENTITY*; — Functions:
Feature_element list: a list of feature lables
Parameter list : Cutting_tool
Length: fixed value; Attribute:
Pmﬁ]e:. ENTITY*; Mac.hining_operalion Cutting_tool_ID: ENTITY*; —
Path: direction (0,-1,0); Almbu}e: Cutting_tool_name: string;
Sl('nicncilftypc: open_slot_end_type; Opcmt!nnJD: ENTI-TY*; Cutting_tool_type: string;
Width: fixed value; Operation_name: string; Other attribute:
Position: derived by constraints; Tolerance_grade: int;
Depth: fixed value; Machine_tool: Member function:
N ) Mac.hmeftooLID: ENTITY*; [T getAttribute();
Machining_operation: Cutting_tool: setAttribute();
machining_operation_ID: ENTITY*; —— Cutting_tool_ID: ENTITY*; —— solveConstraint();
Removal_profile: ENTITY *; Other function:
Member functions: accessibility_profile:
Attribute acess: getAttribute(),setAttribute()... ENTITY*;
Modeling operation: Tool_path: ENTITY*;
create_slot(), splitOwner(), mergeOwner()... Removal_volume: Milling_cutter
Feature validation: ENTITY _list (list of cells); — Attribute:
geometry Validation(), constraintSolving().... Accessibility_volume: Cutter_ID: ENTITY*;
Save and restore: ENTITY _list (list of cells); —— Cutter_diameter: real;
Save(), Other attribute:
Restore() Member function:
getAttribute (); Member function:
setAttribute (); getAttribute();
solveConstraint (); setAttribute();
Other function: solveConstraint();
Other function:

Fig. 13  Sub-class definition of a machining slot feature

way to do this. Only the modifications, instead of the whole CAD model, are
transferred incrementally during the design process. In this method, an operation is
used to incrementally transfer model modifications to reduce the communication load.

Operation is defined as a set of related commands that are responsible for func-
tional manipulation of entities. It is directly used to support the interface of the CAx
system. As categorized by Chen et al. [6], operations have two types: geometry- and
non-geometry-related operations. An operation can be represented using a schema
such as the one shown in Fig. 14. The geometry-related operations can be further
classified into feature-related and low-level operations according to the entities that
they manipulate. Low-level operations create or modify low-level entities, such as
points, lines, and faces. Feature-related operations (feature operations) include
instantiating a feature or modifying a feature. Non-geometry-related operations can
be divided into “auxiliary” and “additional” operations. “Auxiliary” operations
mainly facilitate geometric modeling but do not affect the geometry, such as layer
management and view manipulation. Other non-geometric operations can be clas-
sified into an “additional” group, such as those related to file management. Sup-
porting operations are a basic requirement for generic feature definition; it is
important for the manipulation of the feature model, especially for distributed
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(ABS)Feature_related (ABS)Low_level| |(ABS)Auxiliary (ABS)Additional
_operation _operation _operation _operation

Q QI Q I Q

operation_rational (ABS) Geomet‘ry_related (ABS)Non_geometry_operation
_operation
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J). target_entity_id L[0:?] J).

Fig. 14 Operation representation schema

collaboration over the web [30], because the communication data loads between
distributed clients and database servers can be maximally reduced by using operation
command-based messages.

An operation entity has a name and an ID. An attribute named time_stamp is
used to record the time sequence during a collaboration session. An operation
records the entities to be created or modified in an operation_entity_list. In the
referenced_entity_list, entities that are related to a particular operation are recor-
ded. For example, when an operation that reconstrains a feature with reference to
an element of another feature is sent, the old and new constrained_entities and
referenced_entities are recorded in the referenced_entity_list such that the appli-
cation, which receives this operation, can easily match the corresponding entities
in its application. Such matched entities in the receiving application are recorded
in the target_entity_list, which is used for model updates according to the oper-
ation. An operation_rational specifies what kind of action the operation will do to
the operation entity, e.g., for a feature-related operation, operation_rational
specifies the actions such as add, delete, or modify.

6 ACIS Cellular Geometrical Representation Schema:
Multi-Application Geometry Interoperability Model

A unified feature model allows different applications to define features in different
ways, but they are associated with the same master product model. As reviewed in
“A Review of Data Representation of Product and Process Models”, explicitly
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maintaining feature shapes in the product model has many advantages. In this
research, the feature-oriented product structure generation is modeled in a neutral
format, which is designed to be an extension of ACIS [1]. A cellular topology-
based geometrical representation schema is adopted as the basic multi-application
oriented geometry model.

The cellular model represents a part as a connected set of volumetric quasi-
disjoint cells [1]. By cellular decomposition of space, cells are never volumetri-
cally overlapped. As each cell lies either entirely inside or outside a shaped cell, a
feature shape can be represented explicitly as one cell or a set of related cells in the
part.

The special characteristics of cellular topology require a special Boolean
operation. This is also directly supported by the geometric modeling kernel ACIS.
ACIS allows the use of non-regularized Boolean operations. This is generally
implemented by specifying a special argument to a Boolean function. In ACIS, the
API function outcome api_boolean has an optional argument Bool_type to specify
the type of the Boolean operation, which can be Union, Intersection, Subtraction,
Nonreg_union, Nonreg_intersection, or Nonreg_subtraction.

Specifying a non-regularized Boolean type essentially adds three new condi-
tions to the Boolean operations:

1. When single_sided faces become double_sided, both_inside faces, they remain
in the resulting body.

2. Any face-face coincident region remains in the resulting body.

3. No edge or vertex merging is performed at the end of the Boolean.

Owing to the first condition, the union operation always keeps all face regions
from the two bodies (though it may split them into separate faces). Owing to the
second condition, the intersection of two blocks that share a coincident face always
leaves the face instead of deleting it. Owing to the third condition, subtracting a
sheet from a non-coincident sheet leaves the imprint of the subtracted sheet on the
other sheet [1].

The cellular model-based geometrical representation schemas adopted in the
authors’ research are further discussed in “Unified Feature Paradigm”. Since the
data structure of feature entities is neutral, in order to support different feature
definitions used by different applications, application-specific feature schemas
need to be mapped onto a set of common schemas. As a default implementation
solution, the common feature schemas are interfaced with the ACIS cellular
model, as currently, only ACIS supports cellular geometrical models. ACIS pro-
vides an intermediate data format, which is used for information integration from
the application angle. Theoretically, any other solid modeler supporting a neutral
format can be adopted as long as it supports multiple application views in a
consistent manner. This has also been addressed by other researchers such as
Owen [15] and Rappoport [17, 18]. In addition, ACIS also provides lower-level
geometric modeling functions, which can greatly reduce development efforts. At
this stage, we believe that it is feasible to evaluate features via a single solid
modeler with a neutral format.
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Collaboration with other feature-based systems requires translators, which are
used to translate both feature-level and geometrical data between proprietary
application formats and the neutral intermediate format. The adoption of ACIS
does not affect our investigation of feature-level association and sharing among
different applications based on a common database structure [14, 16].

Regarding pure geometry data, similar research has been done. Kim and Han
[11] describe an interface (OpenDIS) between the geometric modeling kernel and
the database management system (DBMS) for the implementation of a CAD
system that uses the STEP database as the native storage [11, 27]. A prototype
system was developed using OpenCascade geometric modeling kernel and Ob-
jectStore. Bidarra’s team also uses OpenCascade and its geometric modeling
kernel for information integration purposes [3].

A commercial system, OneSpace by Cocreate [8], allows multiple-system
input, and uses SolidDesigner as its modeling engine to support collaborative
product design, but the system is not feature-based. Feature-level information-
sharing has not been reported thus far in the literature.

7 Summary

In this chapter, a conceptual information infrastructure has been proposed to
integrate product information in EPM and support multi-view applications with its
underlying sub-models. To this end, a generic feature representation schema has
been presented, which includes feature shape representation and constraint rep-
resentation. The generic feature model provides a template for different application
feature definitions. In order to maintain feature relationships, a depended_fea-
ture_id_list, used to maintain feature dependency relations, has been defined; this
is to be further addressed in “Unified Feature Paradigm”. In addition, feature
labels have been defined to record feature elements and support history-indepen-
dent model re-evaluation. On the basis of the generic feature model and STEP AP
224, design feature and manufacturing feature models have been described.
Examples (design slot feature and manufacturing slot feature) were given to
illustrate how a specific feature type can be defined. In order to effectively com-
municate between distributed clients and geometry management servers with
centralized databases during a collaboration session, an operation schema has been
developed. Finally, a detailed geometrical representation schema was investigated
based on cellular topology.
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