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Abstract

This chapter provides an overview of lane keep-
ing systems. First, a general architecture is in-
troduced and existing solutions for the necessary
sensors and actuators are then overviewed. The
threat assessment and the lane position control
problems are discussed, highlighting challenges
and solutions implemented in lane keeping sys-
tems available on the market.
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Introduction

Lane keeping systems are vehicle guidance
systems that aim at preventing lane departure
maneuvers, which may lead to accidents, i.e.,
collision with surrounding obstacles and vehicles.

By resorting to radar and/or lasers and cameras, a
lane keeping system monitors the adjacent lanes.
Crossing the lane markings in the absence of
vehicles and/or obstacles in the adjacent lanes
should not cause any reaction of the lane keeping
systems and let the driver freely perform the lane
change maneuver. In the presence of vehicles or
obstacles in the adjacent lanes, the system should
assess the threat and, in case a risk of collision is
detected, either warn the driver or automatically
issue either a steering or a single-wheel braking
command, in order to prevent the crossing of
the lane markings. As discussed next, despite
the simplicity of the threat assessment and the
decision-making and control problem, challenges
arise in real traffic scenarios which may lead
to nuisance due to unnecessary warnings and/or
assisting interventions.

In this entry, we overview the most important
aspects in the design of a lane keeping sys-
tem. This entry is structured as follows. Section
“Lane Keeping Systems Architecture” illustrates
a generic architecture. Section “Sensing and Ac-
tuation” reviews the most used sensors suitable
for lane keeping applications. Section “Decision
Making and Control” introduces the threat as-
sessment and the lane position control problems,
highlighting the most relevant challenges.

Lane Keeping Systems Architecture

The main components of a lane keeping system
and their interconnections are shown in Fig. 1.
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Relative positions and velocities of the host ve-
hicle w.r.t. the surrounding environment are mea-
sured by one radar, typically installed on the
front of the vehicle, and possibly by the camera,
typically installed on the windshield. Position
of the host vehicle within the lane and further
information, e.g., road geometry, are measured by
the camera. These measurements are then fused
by the sensor fusion module to provide accurate
measurements of the position and velocity of
the vehicle w.r.t. the surrounding environment
and the lane in the widest range of operating
conditions and scenarios.

The task of the decision-making and control
module is to assess the risk that the vehicle
crosses the lane in a dangerous way and, possibly,
to take an action that can range from warning
the driver or issuing an assisting intervention,
e.g., braking and/or steering. Such steering and
braking commands are actually implemented by
low-level controllers.

The different modules will be overviewed in
the following sections.

Sensing and Actuation

Radar

Radars for automotive applications are placed in
the front of the car, typically behind the grille.
The radar emits radio waves and distance from
the vehicle ahead is calculated by measuring the
arrival time and direction of the reflected radio
waves. The relative velocity is determined by
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relying on the Doppler effect, i.e., by measuring
the frequency change of the reflected waves.
Relative distance and velocity measurements are
typically updated with a frequency of 10 Hz.

Radars for automotive applications emit waves
with a frequency of 77 GHz and detect objects
within an approximate range of 150m and a
view angle of about +10°, with a deviation of
20-30cm from the correct value for 95% of
the measurements (Eidehall 2004). New radar
systems increase the range up to about 200 m
with a view angle of about £10° (News Releases
DENSO Corporation 2013a).

Typically, radar units are equipped with com-
puter systems running signal processing algo-
rithms that detect and track objects and, for each
of them, calculate relative position and speed,
azimuth angle, also providing additional informa-
tion, e.g., the time an object has been tracked and
a flag indicating that a target has been locked.
Such additional information are typically used in
logics implementing the decision-making algo-
rithms of, among others, the lane keeping system.

There are several issues arising from the use of
a radar in automotive applications, e.g., wave re-
flections due to road bumps and barriers that may
induce the signal processing algorithms to false
object detections (Eidehall 2004). Moreover, in-
terference and the vehicle dynamics (News Re-
leases DENSO Corporation 2013a), e.g., pitching
due to braking, may limit the capability of the sig-
nal processing algorithms of correctly detecting
and tracking the surrounding objects. The latter
may be solved by, e.g., using electric motors that
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adjust the radar antenna axes in order to com-
pensate for the vehicle dynamics (News Releases
DENSO Corporation 2013a).

Vision Systems

Vision systems in lane keeping applications
are typically based on a single, CCD camera
mounted next to the rear-view mirror placed at the
center of the windshield. The image is typically
captured by 640 x 480 pixels and then processed
by an image processing unit. The sampling time
of the vision system is about 0.1s, but it can
change depending on, e.g., the complexity of the
scene, for example, in city traffic (Eidehall 2004).

Lane markings are detected by using differ-
ences in the image contrast (Technology Daim-
ler and Safety Innovation 2013). The camera
can be either monochrome or full colored. The
latter is used to enhance the detection of lane
markings, which have different colors around
the world (News Releases DENSO Corporation
2013b). Distances to the lane markings and road
geometry parameters, like heading angle and cur-
vature, are determined by the image processing
algorithms, which must be robust to poor image
due to bad weather conditions or worn lane mark-
ings. Estimation of road geometry parameters,
like curvature measurement, can be a challenging
problem (Lundquist and Schon 2011), especially
during rain or fog (Eidehall 2004).

Depending on the image processing al-
gorithms the cameras are equipped with,
surrounding objects can also be detected
and tracked. In particular, pattern recognition
algorithm can be used to find objects in the
images and classify them into cars, trucks,
motorcycles, and pedestrians. Vehicles (or other
objects) can be typically detected in a range
of about 60-70m, with lower accuracy than a
radar (Eidehall 2004).

Actuators

In order to keep the vehicle within its lane, the
most convenient actuator is the steering. Hence,
a lane keeping system can be quite easily built
in those vehicles equipped with electric power-
assisted steering (EPAS) systems. In particular,
an additional steering torque can be added by the
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EPAS to the driver’s steering torque, in order to
generate the desired yaw moment calculated by
the decision-making and control module.

Clearly, the steering command is not the only
available to affect the vehicle yaw motion, thus
changing its orientation and lateral position
within the lane. Individual wheel braking may
also be used (Technology Daimler and Safety
Innovation 2013). In particular, in vehicles
equipped with yaw motion control system via
individual braking, a braking torque request
for each wheel can be sent to the yaw motion
control system in order to generate the desired
yaw motion.

Decision Making and Control

The decision making and control in a lane keep-
ing problem can be conceptually divided into two
tasks: the threat assessment and the lane position
control. The threat assessment problem can be
stated as the problem of detecting the risk of
accident due to an unintended lane departure, for
a given situation of the surrounding environment
(i.e., surrounding vehicles and obstacles). The
lane position control problem is the problem of
controlling the vehicle yaw and lateral motion in
order to stay within the lane. The lane position
control is activated once the threat assessment
detects the risk of accident.

We point out that the border between the corre-
sponding modules executing these two tasks may
be blurred for different existing commercial lane
keeping systems. That is, the two problems may
not be solved by two separate modules, but rather
seen and solved as a single problem. Moreover,
the following presentation of the threat assess-
ment and the lane position control problems and
approaches abstracts from the implementation of
a particular lane keeping system available on the
market, rather focusing on fundamental concepts.

Threat Assessment

The core information in a threat assessment algo-
rithm for lane keeping applications is given by a
measure called time to lane crossing (TLC). This
is the predicted time when a front tire intersects a
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lane boundary. As explained in van Winsum et al.
(2000), the TLC can be calculated in different
ways. Next, its simplest expression is reported as
(Eidehall 2004)

— W/2 - erh/2 — Yoff

TLC -
Yoft

ey

where W is the lane width, y.s is the vehicle

lateral position within the lane, and W, is the

vehicle width. Equation (1) can be easily modi-
fied to calculate the TLC w.r.t. any lane boundary
relative to the adjacent lanes.

The simplest way of using the TLC is just
monitoring it and triggering an action as the
TLC passes a threshold. Nevertheless, depending
on the vehicle manufacturer, more sophisticated
logics can be developed in order to correctly
interpret the driver’s intention and minimize the
unnecessary assisting interventions. Next, few
scenarios follow that must be taken into account
while developing such logics in order to not
interfere with the driver. In particular, the threat
assessment module should stop or not trigger
any assisting intervention while the vehicle is
approaching or crossing a lane boundary if
¢ The indicators are active,

* A risk of collision with the vehicle ahead
is detected, such that the vehicle is crossing
the lane markings as results of an evasive
maneuver,

* The radar detects a slower vehicle ahead and
the driver accelerates, since this may be an
overtaking (Technology Daimler and Safety
Innovation 2013),

* The driver’s steering wheel torque indicates
that the driver is acting against the system,

e The driver manually initiates a maneuver,
driving the vehicle back to its lane (i.e., the
driver executes “the right” maneuver)

e The vehicle enters a motor highway or
a bend (Technology Daimler and Safety
Innovation 2013).

Part of the threat assessment task is predicting
the trajectories of the surrounding vehicles. For
instance, if a threat vehicle is traveling in the
adjacent lane (in the same or opposite direction),
its position has to be predicted at the TLC in
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order to decide whether to trigger an intervention,
if a collision is predicted, or not (Eidehall
2004). This step is repeated for all the detected
threat vehicles, provided that the onboard
radar and the camera support multiple-target
tracking.

In order to minimize the interference of the
lane keeping system with the driver and/or to
not let the system perform dangerous maneuvers,
assisting interventions should not be triggered if
the quality of the measurements is such that the
information about the surrounding environment
is poor. For instance, in case of low visibility
that limits the detection of the lane markings
and the estimation of the road geometry, the sys-
tem should be temporarily deactivated or down-
graded.

In summary, the threat assessment module has
to be designed with the objective of detecting
the risk of accident due to lane departure while
not interfering with the driver with unnecessary
interventions (i.e., nuisance minimization).

Lane Position Control

As observed in section “Actuators,” the vehicle
motion within the lane can be affected in two
ways, i.e., through steering and individual wheel
braking. Clearly, a steering command can be
issued by both the driver and the lane keeping
system.

Before issuing a steering command, in order to
minimize the system nuisance, the lane keeping
system may issue other types of low-intrusiveness
interventions. For instance, if a “low”-level threat
is detected by the threat assessment module (i.e.,
a threat where the risk of accidents is not im-
minent), warnings or other stimuli to the driver
may be issued in order to induce the driver to
execute the right maneuver. For instance, based
on, e.g., spectrum analysis of the driver’s steering
command, driver’s inattention or drowsiness may
be detected and a warning issued. As observed
in Technology Daimler and Safety Innovation
(2013), different types of warning can be used for
different vehicle types. In passenger cars, in such
cases, a vibration motor in the steering wheel may
warn the driver. In trucks, audible, directional
warning signals can be used to let the driver know
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that the vehicle trajectory needs to be adjusted. In
buses, in order to avoid bothering the passengers,
driver warning is issued through vibration motors
placed in the driver’s seat.

Other types of “soft intervention” aim at in-
creasing the steering impedance in the direction
leading to lane crossing that might cause a col-
lision with surrounding vehicles. Generating the
desired steering impedance can be easily formu-
lated as a steering torque control problem. Never-
theless, tuning the control algorithm to obtain the
desired steering feeling can be an involving and
time-consuming procedure based on extensive in-
vehicle testing.

Besides warnings and “soft interventions”
aiming at inducing the driver to perform correct
maneuvers, as part of the lane position control
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task in a lane keeping system, a lateral control
algorithm w.r.t. the lane boundaries is needed.
Consider the vehicle sketched in Fig.2. The
equations describing the vehicle motion within
the lane can be compactly written in a state-space
form as

% = Ax + BS + Dges, 2)

where x = [e, é, ey éy ], ¥ is the desired yaw
rate, e.g., calculated based on the road curvature,
and A, B, D are speed-dependent matrices that
can be found in Rajamani (2003). The (unstable)
system can be stabilized by a state-feedback con-
trol law

§=—Kx+3;s, 3)
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where K is a stabilizing static gain and § 77 is a
feedforward term that can be used to compensate
for the road curvature. In Rajamani (2003), it is
shown that, while e, () — 0 ast — 0, ey ap-
proaches a nonzero steady-state value, no matter
how § #7 1s chosen, for non-straight road.

Despite a simple problem formulation and
solution, controlling the vehicle position within
the lane is not a trivial task. Indeed, having
the control law (3) active all the time may
increase the nuisance, leading to unacceptable
driving experience. For this reason, the steering
command calculated through the (3) may be
active only when the vehicle significantly
deviates from the road centerline, i.e., approaches
the lane markings. Clearly, adding such logics
complicates the analysis of the closed-loop
behavior, thus making necessary extensive in-
vehicle tuning and verification.

Summary and Future Directions

In this chapter, we have overviewed the general
issues and requirements that must be considered
in the design of a lane-keeping system.

The variety of environmental conditions the
sensing system should operate in, together with
the range of diverse scenarios the decision-
making module should cope with, render the
design and verification problems challenging,
costly, and time consuming for a lane-keeping
system. It is, therefore, necessary to approach
the design of such systems by also providing
safety guarantees to the largest extent, yet
minimizing conservatism and intrusiveness of
the overall system. Model-based approaches to
threat assessment and decision-making problems,
as proposed in Falcone et al. (2011) for a
lane departure application, provide neat design
and verification frameworks, which can clearly
describe the safe operation of the overall
system. Adopting such design methodologies can
potentially contribute to a consistent reduction of
the development time by consistently reducing
the a posteriori safety verification phase. On the
other hand, the computational complexity of
formal model-based verification methods can
dramatically increase in those scenarios where
system nonlinearity and nonconvex state spaces
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become relevant. Hence, future research efforts
aiming at developing low-complexity verification
methods might greatly impact the future
development of automated driving systems.
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Abstract

In a Nash equilibrium, each player selects a
strategy that is optimal with respect to the strate-
gies of other players. This definition does not
mention the process by which players reach a
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Nash equilibrium. The topic of learning in games
seeks to address this issue in that it explores how
simplistic learning/adaptation rules can lead to
Nash equilibrium. This entry presents a selec-
tive sampling of learning rules and their long-
run convergence properties, i.e., conditions under
which player strategies converge or not to Nash
equilibrium.

Keywords

Cournot best response; Fictitious play; Log-linear
learning; Mixed strategies; Nash equilibrium

Introduction

In a Nash equilibrium, each player’s strategy is
optimal with respect to the strategies of other
players. Accordingly, Nash equilibrium offers a
predictive model of the outcome of a game. That
is, given the basic elements of a game — (i) a set
of players; (ii) for each player, a set of strategies;
and (iii) for each player, a utility function that
captures preferences over strategies — one can
model/assert that the strategies selected by the
players constitute a Nash equilibrium.

In making this assertion, there is no suggestion
of how players may come to reach a Nash equi-
librium. Two motivating quotations in this regard
are:

The attainment of equilibrium requires a disequi-
librium process (Arrow 1986).

and

The explanatory significance of the equilibrium
concept depends on the underlying dynamics
(Skyrms 1992).

These quotations reflect that a foundation for
Nash equilibrium as a predictive model is dynam-
ics that lead to equilibrium. Motivated by these
considerations, the topic of “learning in games”
shifts the attention away from equilibrium and
towards underlying dynamic processes and their
long-run behavior. The intent is to understand
how players may reach an equilibrium as well
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as understand possible barriers to reaching Nash
equilibrium.

In the setup of learning in games, players
repetitively play a game over a sequence
of stages. At each stage, players use past
experiences/observations to select a strategy
for the current stage. Once player strategies
are selected, the game is played, information
is updated, and the process is repeated. The
question is then to understand the long-run
behavior, e.g., whether or not player strategies
converge to Nash equilibrium.

Traditionally the dynamic processes consid-
ered under learning in games have players se-
lecting strategies based on a myopic desire to
optimize for the current stage. That is, play-
ers do not consider long-run effects in updating
their strategies. Accordingly, while players are
engaged in repetitive play, the dynamic processes
generally are not optimal in the long run (as in the
setting of “repeated games”). Indeed, the survey
article of Hart (2005) refers to the dynamic pro-
cesses of learning in games as “adaptive heuris-
tics.” This distinction is important in that an
implicit concern in learning in games is to un-
derstand how “low rationality” (i.e., suboptimal
and heuristic) processes can lead to the “high ra-
tionality” (i.e., mutually optimal) notion of Nash
equilibrium.

This entry presents a sampling of results from
the learning in games literature through a selec-
tion of illustrative dynamic processes, a review
of their long-run behaviors relevant to Nash equi-
librium, and pointers to further work.

lllustration: Commuting Game

We begin with a description of learning in games
in the specific setting of the commuting game,
which is a special case of so-called congestion
games (cf., Roughgarden 2005). The setup is as
follows. Each player seeks to plan a path from
an origin to a destination. The origins and desti-
nations can differ from player to player. Players
seek to minimize their own travel times. These
travel times depend both on the chosen path
(distance traveled) and the paths of other players
(road congestion). Every day, a player uses past
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information and observations to select that day’s

path according to some selection rule, and this

process is repeated day after day.

In game-theoretic terms, player “strategies”
are paths linking their origins to destinations, and
player “utility functions” reflect travel times. At
a Nash equilibrium, players have selected paths
such that no individual player can find a shorter
travel time given the chosen paths of others. The
learning in games question is then whether player
paths indeed converge to Nash equilibrium in the
long run. Not surprisingly, the answer depends
on the specific process that players use to select
paths and possible additional structure of the
commuting game.

Suppose that one of the players, say “Alice,”
is choosing among a collection of paths. For
the sake of illustration, let us give Alice the
following capabilities: (i) Alice can observe the
paths chosen by all other players and (ii) Alice
can compute off-line her travel time as a function
of her path and the paths of others.

With these capabilities, Alice can compute
running averages of the travel times along all
available paths. Note that the assumed capabili-
ties allow Alice to compute the travel time of a
path and hence its running average, whether or
not she took the path on that day. With average
travel time values in hand, two possible learning
rules are:

— Exploitation: Choose the path with the lowest
average travel time.

— Exploitation with Exploration: With high
probability, choose the path with the lowest
average travel time, and with low probability,
choose a path at random.

Assuming that all players implement the same

learning rule, each case induces a dynamic pro-

cess that governs the daily selection of paths
and determines the resulting long-run behavior.

We will revisit these processes in a more formal

setting in the next section.

A noteworthy feature of these learning rules is
that they do not explicitly depend on the utility
functions of other players. For example, suppose
one of the other players is willing to trade off
travel time for more scenic routes. Similarly,
suppose one of the other players prefers to travel
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on high congestion paths, e.g., a rolling billboard
seeking to maximize exposure. The aforemen-
tioned learning rules for Alice remain unchanged.
Of course, Alice’s actions implicitly depend on
the utility functions of other players, but only
indirectly through their selected paths. This char-
acteristic of no explicit dependence on the utility
functions of others is known as “uncoupled”
learning, and it can have major implications on
the achievable long-run behavior (Hart and Mas-
Colell 2003a).

In assuming the ability to observe the paths of
other players and to compute off-line travel times
as a function of these paths, these learning rules
impose severe requirements on the information
available to each player. Less restrictive are learn-
ing rules that are “payoff based” (Young 2005).
A simple modification that leads to payoff-based
learning is as follows. Alice maintains an empiri-
cal average of the travel times of a path using only
the days that she took that path. Note the distinc-
tion — on any given day, Alice remains unaware
of travel times for the routes not selected. Using
these empirical average travel times, Alice can
then mimic any of the aforementioned learning
rules. As intended, she does not directly observe
the paths of others, nor does she have a closed-
form expression for travel times as a function of
player paths. Rather, she only can select a path
and measure the consequences. As before, all
players implementing such a learning rule induce
a dynamic process, but the ensuing analysis in
payoff-based learning can be more subtle.

Learning Dynamics

We now give a more formal presentation of se-
lected learning rules and results concerning their
long-run behavior.

Preliminaries

We begin with the basic setup of games with a
finite set of players, {1,2,..., N}, and for each
player i, a finite set of strategies, A;. Let

A=A x...x Ax
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denote the set of strategy profiles. Each player, i,
is endowed with a utility function

u . A—R.

Utility functions capture player preferences over
strategy profiles. Accordingly, for any a,a’ € A,
the condition

ui(a) > u;(a’)

indicates that player i prefers the strategy profile
aovera'.

The notation —i indicates the set of players
other than player i. Accordingly, we sometimes
write a € A as (a;,a—;) to isolate a;, the strategy
of player i, versus a_;, the strategies of other
players. The notation —i is used in other settings
as well.

Utility functions induce best-response sets.
Fora_; € A_;, define

Bi(a—i) = {ai tui(a;,a—;) = ui(a},a—;)

forall a] € A;}.

In words, B;(a—;) denotes the set of strategies
that are optimal for player i in response to the
strategies of other players, a_;.

A strategy profile a* € A is a Nash equilib-
rium if for any player i and any a; € A;,

wi(al,ar;) > ui(a,a*;).

In words, at a Nash equilibrium, no player can
achieve greater utility by unilaterally changing
strategies. Stated in terms of best-response sets,
a strategy profile, a*, is a Nash equilibrium if for
every player i,

a¥ € Bi(a*)).

We also will need the notions of mixed strate-
gies and mixed strategy Nash equilibrium. Let
A(A;) denote probability distributions (i.e., non-
negative vectors that sum to one) over the set
A;. A mixed strategy profile is a collection of
probability distributions, &« = (a1, ...,ay), with
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o; € A(A;) foreachi. Let us assume that players
choose a strategy randomly and independently
according to these mixed strategies. Accordingly,
define Pr[a; ] to be the probability of strategy a
under the mixed strategy profile ¢, and define the
expected utility of player i as

Ui(a) = Z ui(a) - Pria; o].

acA

A mixed strategy Nash equilibrium is a mixed
strategy profile, «*, such that for any player i and
any o) € A(A),

Ui, aX;) = Ui(ey, o).

Special Classes of Games

We will reference three special classes of games:
(i) zero-sum games, (ii) potential games, and (iii)
weakly acyclic games.

Zero-sum games: There are only two players (i.e.,
N =2),and u;(a) = —uz(a).

Potential games: There exists a (potential) func-
tion,

¢p: A—>R

such that for any pair of strategies, a = (a;,a—;)
and a’ = (a}, a—;), that differ only in the strategy
of player i,

wi(ai,a—j)—ui(a;,a—;)=¢(a;,a—;)—p(a;,a—;).

Weakly acyclic games: There exists a function
¢p: A—->R

with the following property: if a € A is not a

Nash equilibrium, then at least one player, say

player 7, has an alternative strategy, say a; € A;,
such that

ui(a),a—;) > ui(a;,a—;)

and
b(aj,a—;) > ¢p(ai,a;).

Potential games are a special class of games
for which various learning dynamics converge to
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a Nash equilibrium. The aforementioned com-
muting game constitutes a potential game under
certain special assumptions. These are as follows:
(i) the delay on a road only depends on the
number of users (and not their identities) and (ii)
all players measure delay in the same manner
(Monderer and Shapley 1996).

Weakly acyclic games are a generalization of
potential games. In potential games, there ex-
ists a potential function that captures differences
in utility under unilateral (i.e., single player)
changes in strategy. In weakly acyclic games
(see Young 1998), if a strategy profile is not a
Nash equilibrium, then there exists a player who
can simultaneously achieve an increase in utility
while increasing the potential function. The char-
acterization of weakly acyclic games through a
potential function herein is not traditional and is
borrowed from Marden et al. (2009a).

Forecasted Best-Response Dynamics

One family of learning dynamics involves players
formulating a forecast of the strategies of other
players based on past observations and then play-
ing a best response to this forecast.

Cournot Best-Response Dynamics

The simplest illustration is Cournot best-response

dynamics. Players repetitively play the same

game over stages ¢ = 0,1,2,.... At stage ¢,

a player forecasts that the strategies of other

players are the strategies played at the previous

stage ¢ — 1. The following rules specify Cournot

best response with inertia. For each stage ¢ and

for each player i:

e With probability p € (0,1),a;(t) =a;(t — 1)
(inertia).

e With probability 1 — p, a; (t) € Bi(a—;(t — 1))
(best response).

e Ifa;(t —1) € Bi(a—;(t — 1)), then q;(t) =
a;(t — 1) (continuation).

Proposition 1 For weakly acyclic (and hence
potential) games, player strategies
Cournot best-response dynamics with inertia
converge to a Nash equilibrium.

under
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Cournot best-response dynamics need not al-
ways converge in games with a Nash equilibrium,
hence the restriction to weakly acyclic games.

Fictitious Play
In fictitious play, introduced in Brown (1951),
players also use past observations to construct a
forecast of the strategies of other players. Unlike
Cournot best-response dynamics, this forecast is
probabilistic.

As a simple example, consider the commuting
game with two players, Alice and Bob, who both
must choose between two paths, A and B. Now
suppose that on stage ¢ = 10, Alice has observed
Bob used path A for 6 out of the previous 10
days and path B for the remaining days. Then
Alice’s forecast of Bob is that he will chose path
A with 60 % probability and path B with 40 %
probability. Alice then chooses between path A
and B in order to optimize her expected utility.
Likewise, Bob uses Alice’s empirical averages to
form a probabilistic forecast of her next choice
and selects a path to optimize his expected utility.

More generally, let 77 () € A(A;) denote the
empirical frequency for player j at stage ¢. This
vector is a probability distribution that indicates
the relative frequency of times player j played
each strategy in A; over stages 0,1,...,7 —1.In
fictitious play, player i assumes (incorrectly) that
at stage ¢, other players will select their strategies
independently and randomly according to their
empirical frequency vectors. Let I1_;(¢) denote
the induced probability distribution over A_; at
stage 7. Under fictitious play, player i selects an
action according to

a;(t) € arg max Z ui(ai,a—;)
T a_je A

Prla_;; I1;(2)].

In words, player i selects the action that
maximizes expected utility assuming that other
players select their strategies randomly and
independently according to their empirical
frequencies.

Proposition 2 For (i) zero-sum games, (ii)
potential games, and (iii) two-player games
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in which one player has only two actions,
player empirical frequencies under fictitious play
converge to a mixed strategy Nash equilibrium.

These results are reported in Fudenberg and
Levine (1998), Hofbauer and Sandholm (2002),
and Berger (2005). Fictitious play need not
converge to Nash equilibria in all games. An
early counterexample is reported in Shapley
(1964), which constructs a two-player game
with a unique mixed strategy Nash equilibrium.
A weakly acyclic game with multiple pure
(i.e., non-mixed) Nash equilibria under which
fictitious play does not converge is reported in
Foster and Young (1998).

A variant of fictitious play is “joint strategy”
fictitious play (Marden et al. 2009b). In this
framework, players construct as forecasts empir-
ical frequencies of the joint play of other players.
This formulation is in contrast to constructing
and combining empirical frequencies for each
player. In the commuting game, it turns out that
joint strategy fictitious play is equivalent to the
aforementioned “exploitation” rule of selecting
the path with lowest average travel time. Marden
et al. (2009b) show that action profiles under joint
strategy fictitious play (with inertia) converge to
a Nash equilibrium in potential games.

Log-Linear Learning
Under forecasted best-response dynamics,
players chose a best response to the forecasted
strategies of other players. Log-linear learning,
introduced in Blume (1993), allows the
possibility of “exploration,” in which players can
select nonoptimal strategies but with relatively
low probabilities.
Log-linear learning proceeds as follows. First,
introduce a “temperature” parameter, 7 > 0.
— At stage ?, a single player, say player i, is
selected at random.
— For player i,

Prla;(t) = d/] = leui(fl,{ﬂ—i([_l))/T.
! zZ
— For all other players, j # i,

aj(t) =Clj(t—1).
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In words, under log-linear learning, only a single
player performs a strategy update at each stage.
The probability of selecting a strategy is expo-
nentially proportional to the utility garnered from
that strategy (with other players repeating their
previous strategies). In the above description, the
dummy parameter Z is a normalizing variable
used to define a probability distribution. In fact,
the specific probability distribution for strategy
selection is a Gibbs distribution with tempera-
ture parameter, 7. For very large T, strategies
are chosen approximately uniformly at random.
However, for small 7', the selected strategy is
a best response (i.e., a;(t) € Bi(a—i(t — 1)))
with high probability, and an alternative strategy
is selected with low probability.

Because of the inherent randomness, strategy
profiles under log-linear learning never converge.
Nonetheless, the long-run behavior can be char-
acterized probabilistically as follows.

Proposition 3 For potential games with poten-
tial function ¢(-) under log-linear learning, for
anya € A,

1
; — gl = ¢@)/T
tl_l)mooPr[a(t) =a] = Ze .

In words, the long-run probabilities of strategy
profiles conform to a Gibbs distribution con-
structed from the underlying potential function.
This characterization has the important implica-
tion of (probabilistic) equilibrium selection. Prior
convergence results stated convergence to Nash
equilibria, but did not specify which Nash equi-
librium in the case of multiple equilibria. Under
log-linear learning, there is a probabilistic prefer-
ence for the Nash equilibrium that maximizes the
underlying potential function.

Extensions and Variations

Payoff-based learning. The discussion herein
presumed that players can observe the actions of
other players and can compute utility functions
off-line. Payoftf-based algorithms, i.e., algorithms
in which players only measure the utility
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garnered in each stage, impose less restrictive
informational requirements. See Young (2005)
for a general discussion, as well as Marden et al.
(2009¢), Marden and Shamma (2012), and Arslan
and Shamma (2004) for various payoff-based
extensions.

No-regret learning. The broad class of so-called
“no-regret” learning rules has the desirable prop-
erty of converging to broader solution concepts
(namely, Hannan consistency sets and correlated
equilibria) in general games. See Hart and Mas-
Colell (2000, 2001, 2003b) for an extensive dis-
cussion.

Calibrated forecasts. Calibrated forecasts are
more sophisticated than empirical frequencies
in that they satisfy certain long-run consistency
properties. Accordingly, forecasted best-response
learning using calibrated forecasts has stronger
guaranteed convergence properties, such as
convergence to correlated equilibria. See Foster
and Vohra (1997), Kakade and Foster (2008), and
Mannor et al. (2007).

Impossibility results. This entry focused on con-
vergence results in various special cases. There
are broad impossibility results that imply the
impossibility of families of learning rules to con-
verge to Nash equilibria in all games. The focus
is on uncoupled learning, i.e., the learning dy-
namics for player i does not depend explicitly
on the utility functions of other players (which
is satisfied by all of the learning dynamics pre-
sented herein). See Hart and Mas-Colell (2003a,
2006), Hart and Mansour (2007), and Shamma
and Arslan (2005). Another type of impossibility
result concerns lower bounds on the required rate
of convergence to equilibrium (e.g., Hart and
Mansour 2010).

Welfare maximization. Of special interest is
learning dynamics that select welfare (i.e.,
sum of utilities) maximizing strategy profiles,
whether or not they are Nash equilibria.
Recent contributions include Pradelski and
Young (2012), Marden et al. (2011), and
Arieli and Babichenko (2012).

Learning in Games

Summary and Future Directions

We have presented a selection of learning dynam-
ics and their long-run characteristics, specifically
in terms of convergence to Nash equilibria. As
stated early on, the original motivation of learn-
ing in games research has been to add credence
to solution concepts such as Nash equilibrium as
a model of the outcome of a game. An emerging
line of research stems from engineering consid-
erations, in which the objective is to use the
framework of learning in games as a design tool
for distributed decision architecture settings such
as autonomous vehicle teams, communication
networks, or smart grid energy systems. A related
emerging direction is social influence, in which
the objective is to steer the collective behaviors
of human decision makers towards a socially
desirable situation through the dispersement of
incentives. Accordingly, learning in games can
offer baseline models on how individuals update
their behaviors to guide and inform social influ-
ence policies.
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Introduction

How does a machine learn an abstract concept
from examples? How can a machine generalize
to previously unseen situations? Learning theory
is the study of (formalized versions of) such
questions. There are many possible ways to for-
mulate such questions. Therefore, the focus of
this entry is on one particular formalism, known
as PAC (probably approximately correct) learn-
ing. It turns out that PAC learning theory is rich
enough to capture intuitive notions of what learn-
ing should mean in the context of applications
and, at the same time, is amenable to formal
mathematical analysis. There are several precise
and complete studies of PAC learning theory,
many of which are cited in the bibliography.
Therefore, this article is devoted to sketching
some high-level ideas.

Keywords

Machine learning; Probably approximately cor-
rect (PAC) learning; Support vector machine;
Vapnik-Chervonenkis (V-C) dimension

Problem Formulation

In the PAC formalism, the starting point is the
premise that there is an unknown set, say an
unknown convex polygon, or an unknown half-
plane. The unknown set cannot be completely
unknown; rather, something should be specified
about its nature, in order for the problem to be
both meaningful and tractable. For instance, in
the first example above, the learner knows that
the unknown set is a convex polygon, though
it is not known which polygon it might be.

Learning Theory

Similarly, in the second example, the learner
knows that the unknown set is a half-plane,
though it is not known which half-plane. The
collection of all possible unknown sets is known
as the concept class, and the particular unknown
set is referred to as the “target concept.” In the
first example, this would be the set of all convex
polygons and in the second case it would be
the set of half-planes. The unknown set cannot
be directly observed of course; otherwise, there
would be nothing to learn. Rather, one is given
clues about the target concept by an “oracle,”
which informs the learner whether or not a
particular element belongs to the target concept.
Therefore, the information available to the learner
is a collection of “labelled samples,” in the form
{(x;, I7(x;),i = 1,...,m}, where m is the
total number of labelled samples and I,(:) is
the indicator function of the target concept 7.
Based on this information, the learner is expected
to generate a “hypothesis” H,, that is a good
approximation to the unknown target concept 7.

One of the main features of PAC learning
theory that distinguishes it from its forerunners is
the observation that, no matter how many training
samples are available to the learner, the hypoth-
esis H,, can never exactly equal the unknown
target concept 7. Rather, all that one can expect
is that H,, converges to T in some appropriate
metric. Since the purpose of machine learning
is to generate a hypothesis H,, that can be used
to approximate the unknown target concept T
for prediction purposes, a natural candidate for
the metric that measures the disparity between
H,, and T is the so-called generalization error,
defined as follows: Suppose that, after m training
samples that have led to the hypothesis H,,, a
testing sample x is generated at random. One
can now ask: what is the probability that the
hypothesis H,, misclassifies x? In other words,
what is the value of Pr{/y, (x) # Ir(x)}? This
quantity is known as the generalization error, and
the objective is to ensure that it approaches zero
as m — oo.

The manner in which the samples are gener-
ated leads to different models of learning. For
instance, if the learner is able to choose the
next sample x,,4+; on the basis of the previous
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m labelled samples, which is then passed on to
the oracle for labeling, this is known as “active
learning.” More common is “passive learning,” in
which the sequence of training samples {x;};>;
is generated at random, in an independent and
identically distributed (i.i.d.) fashion, according
to some probability distribution P. In this case,
even the hypothesis H,, and the generalization
error are random, because they depend on the
randomly generated training samples. This is the
rationale behind the nomenclature “probably ap-
proximately correct.” The hypothesis H,, is not
expected to equal to unknown target concept T’
exactly, only approximately. Even that is only
probably true, because in principle it is possible
that the randomly generated training samples
could be totally unrepresentative and thus lead to
a poor hypothesis. If we toss a coin many times,
there is a small but always positive probability
that it could turn up heads every time. As the coin
is tossed more and more times, this probability
becomes smaller, but will never equal zero.

Examples

Example 1 Consider the situation where the con-
cept class consists of all half-planes in R?, as
indicated in the left side of Fig.1. Here the
unknown target concept T is some fixed but
unknown half-plane. The symbol T is next to
the boundary of the half-plane, and all points to
the right of the line constitute the target half-
plane. The training samples, generated at random
according some unknown probability distribution
P, are also shown in the figure. The samples that
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belong to 7" are shown as blue rectangles, while
those that do not belong to 7" are shown as red
dots. Knowing only these labelled samples, the
learner is expected to guess what 7" might be.

A reasonable approach is to choose some
half-plane that agrees with the data and correctly
classifies the labelled data. For instance, the well-
known support vector machine (SVM) algorithm
chooses the unique half-plane such that the
closest sample to the dividing line is as far as
possible from it; see the paper by Cortes and
Vapnik (1997).

The symbol H denotes the boundary of a hy-
pothesis, which is another half-plane. The shaded
region is the symmetric difference between the
two half-planes. The set TA H is the set of points
that are misclassified by the hypothesis H. Of
course, we do not know what this set is, because
we do not know 7. It can be shown that, when-
ever the hypothesis H is chosen to be consistent
in the sense of correctly classifying all labelled
samples, the generalization error goes to zero as
the number of samples approaches infinity.

Example 2 Now suppose the concept class con-
sists of all convex polygons in the unit square,
and let T denote the (unknown) target convex
polygon. This situation is depicted in the right
side of Fig. 1. This time let us assume that the
probability distribution that generates the sam-
ples is the uniform distribution on X. Given a
set of positively and negatively labelled samples
(the same convention as in Example 1), let us
choose the hypothesis H to be the convex hull
of all positively labelled samples, as shown in
the figure. Since every positively labelled sample
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belongs to 7', and 7T is a convex set, it follows
that H is a subset of T. Moreover, P(T \ H)
is the generalization error. It can be shown that
this algorithm also “works” in the sense that the
generalization error goes to zero as the number of
samples approaches infinity.

Vapnik-Chervonenkis Dimension

Given any concept class C, there is a single
integer that offers a measure of the richness of
the class, known as the Vapnik-Chervonenkis (or
VC) dimension, after its originators.

Definition 1 A set SCX is said to be shattered
by a concept class C if, for every subset BCS,
there is a set A € C such that S N A = B. The
VC dimension of C is the largest integer d such
that there is a finite set of cardinality d that is
shattered by C.

Example 3 It can be shown that the set of half-
planes in R? has VC dimension two. Choose a
set S = {x,y,z} consisting of three points that
are not collinear, as in Fig.2. Then there are
23 = 8 subsets of S. The point is to show that
for each of these eight subsets, there is a half-
plane that contains precisely that subset, nothing
more and nothing less. That this is possible is
shown in Fig. 2. Four out of the eight situations
are depicted in this figure, and the remaining four
situations can be covered by taking the comple-
ment of the half-plane shown. It is also necessary
to show that no set with four or more elements
can be shattered, but that step is omitted; instead

oy
oz b
B = {z}
oy
B={z}

the reader is referred to any standard text such
as Vidyasagar (1997). More generally, it can be
shown that the set of half-planes in R¥ has VC
dimension k + 1.

Example 4 The set of convex polygons has infi-
nite VC dimension. To see this, let S be a strictly
convex set, as shown in Fig.2b. (Recall that a
set is “strictly convex” if none of its boundary
points is a convex combination of other points in
the set.) Choose any finite collection of boundary
points, call it S = {x,...,x,}. If B is a
subset of S, then the convex hull of B does not
contain any other point of S, due to the strict
convexity property. Since this argument holds for
every integer n, the class of convex polygons has
infinite VC dimension.

Two Important Theorems

Out of the many important results in learning
theory, two are noteworthy.

Theorem 1 (Blumer et al. (1989)) A concept
class is distribution-free PAC learnable if and
only if it has finite VC dimension.

Theorem 2 (Benedek and Itai (1991)) Suppose
P is a fixed probability distribution. Then the
concept class C is PAC learnable if and only if,
for every positive number €, it is possible to cover
C by a finite number of balls of radius €, with
respect to the pseudometric dp.

Now let us return to the two examples stud-
ied previously. Since the set of half-planes has
finite VC dimension, it is distribution-free PAC
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learnable. The set of convex polygons can be
shown to satisfy the conditions of Theorem 2
if P is the uniform distribution and is therefore
PAC learnable. However, since it has infinite VC
dimension, it follows from Theorem 1 that it is
not distribution-free PAC learnable.

Summary and Future Directions

This brief entry presents only the most basic
aspects of PAC learning theory. Many more re-
sults are known about PAC learning theory, and
of course many interesting problems remain un-
solved. Some of the known extensions are:

e Learning under an “intermediate” family of
probability distributions P that is not neces-
sarily equal to P*, the set of all distributions
(Kulkarni and Vidyasagar 1997)

* Relaxing the requirement that the algorithm
should work uniformly well for all target
concepts and requiring instead only that it
should work with high probability (Campi
and Vidyasagar 2001)

e Relaxing the requirement that the training
samples are independent of each other
and permitting them to have Markovian
dependence (Gamarnik 2003; Meir 2000) or
B-mixing dependence (Vidyasagar 2003)
There is considerable research in finding al-

ternate sets of necessary and sufficient conditions

for learnability. Unfortunately, many of these
conditions are unverifiable and amount to tauto-
logical restatements of the problem under study.
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Abstract

Lie algebraic methods generalize matrix methods
and algebraic rank conditions to smooth nonlin-
ear systems. They capture the essence of noncom-
muting flows and give rise to noncommutative
analogues of Taylor expansions. Lie algebraic
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rank conditions determine controllability, observ-
ability, and optimality. Lie algebraic methods are
also employed for state-space realization, control
design, and path planning.

Keywords

Baker-Campbell-Hausdorff formula; Chen-Fliess
series; Lie bracket

Definition

This article considers generally nonlinear control
systems (affine in the control) of the form

X = fo(x) +ur fi(x) + ...t fin(X) )
¥y = ¢(x)

where the state x takes values in R”, or more
generally in an n-dimensional manifold M", the
f; are smooth vector fields, p:R" +— R? is a
smooth output function, and the controls u =
(ui,...,up):[0,T] +— U are piecewise contin-
uous, or, more generally, measurable functions
taking values in a closed convex subset U € R™
that contains 0 in its interior.

Lie algebraic techniques refers to analyzing
the system (1) and designing controls and sta-
bilizing feedback laws by employing relations
satisfied by iterated Lie brackets of the system
vector fields f;.

Introduction

Systems of the form (1) contain as a special case
time-invariant linear systems X = Ax+ Bu, y =
Cx (with constant matrices A € R"*" B €
R™ ™ and C € R?*") that are well-studied and
are a mainstay of classical control engineering.
Properties such as controllability, stabilizability,
observability, and optimal control and various
others are determined by relationships satisfied
by higher-order matrix products of 4, B, and C.

Since the early 1970s, it has been well un-
derstood that the appropriate generalization of
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this matrix algebra, and, e.g., invariant linear
subspaces, to nonlinear systems is in terms of
the Lie algebra generated by the vector fields f;,
integral submanifolds of this Lie algebra, and the
algebra of iterated Lie derivatives of the output
function.

The Lie bracket of two smooth vector fields
f, &M +— TM is defined as the vector field
[f. g]l: M — TM that maps any smooth function
@ € C®(M) to the function [f, gl = fgp —

gfe.
In local coordinates, if

S =3 f'(x)5 and

i=1

n ) a
g = &),

i=1

then

el = 3 (0

Q=1
d
oxi’

. of'
2/ (035 )

With some abuse of notation, one may abbreviate
this to [ f, g] = (Dg)f — (Df)g, where f and
g are considered as column vector fields and Df
and Dg denote their Jacobian matrices of partial
derivatives.

Note that with this convention the Lie bracket
corresponds to the negative of the commutator
of matrices: If P, Q € R"™*" define, in matrix
notation, the linear vector fields f(x) = Px and
g(x) = Qx, then [f. g](x) = (QP — PQ)x =
_[P s Q]X .

Noncommuting Flows

Geometrically the Lie bracket of two smooth
vector fields f; and f5 is an infinitesimal measure
of the lack of commutativity of their flows. For a
smooth vector field f and an initial point x (0) =
p € M, denote by e’/ p the solution of the
differential equation X = f(x) at time ¢. Then
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1 ify
Lfi fle(p) = lim (¢ (e™Pe™1et el p)

—o(p).

As a most simple example, consider parallel
parking a unicycle, moving it sideways without
slipping. Introduce coordinates (x, y, 6) for the
location in the plane and the steering angle. The
dynamics are governed by X = ujcosf, y =
up sin 0, and 6 = uy where the control u; is
interpreted as the signed rolling speed and u, as
the angular velocity of the steering angle. Written
in the form (1), one has f; = (cos®,sin8,0)”
and f>» = (0,0, 1)7. (In this case the drift vector
field fo = O vanishes.) If the system starts at
(0,0,0)7, then via the sequence of control actions
of the form turn left, roll forward, turn back, and
roll backwards, one may steer the system to a
point (0, Ay,0)” with Ay > 0. This sideways
motion corresponds to the value (0, 1,0)7 of the
Lie bracket [f1, f>] = (—sin#,cosf,0)” at the
origin. It encapsulates that steering and rolling do
not commute. This example is easily expanded
to model, e.g., the sideways motion of a car, or
a truck with multiple trailers; see, e.g., Bloch
(2003), Bressan and Piccoli (2007), and Bullo
and Lewis (2005). In such cases longer iterated
Lie brackets correspond to the required more
intricate control actions needed to obtain, e.g., a
pure sideways motion.

In the case of linear systems, if the Kalman
rank condition rank[B, AB, A’B, ... A""'B] =
n is not satisfied, then all solutions curves of the
system starting from the same point x (0) = p are
at all times 7 > 0 constrained to lie in a proper
affine subspace. In the nonlinear setting the role
of the compound matrix of that condition is taken
by the Lie algebra L = L(fy, fi,... fm) of all
finite linear combinations of iterated Lie brackets
of the vector fields f;. As an immediate conse-
quence of the Frobenius integrability theorem, if
at a point x(0) = p the vector fields in L span
the whole tangent space, then it is possible to
reach an open neighborhood of the initial point by
concatenating flows of the system (1) that corre-
spond to piecewise constant controls. Conversely,
in the case of analytic vector fields and a compact
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set U of admissible control values, the Hermann-
Nagano theorem guarantees that if the dimension
of the subspace L(p) = {f(p):f € L} <
n is not maximal, then all such trajectories are
confined to stay in a lower-dimensional proper
integral submanifold of L through the point p.
For a comprehensive introduction, see, e.g., the
textbooks Bressan and Piccoli (2007), Isidori
(1995), and Sontag (1998).

Controllability

Define the reachable set Ry (p) as the set of all
terminal points x(7; u, p) at time T of trajecto-
ries of (1) that start at the initial point x(0) =
p and correspond to admissible controls. Com-
monly known as the Lie algebra rank condi-
tion (LARC), the above condition determines
whether the system is accessible from the point
p, which means that for arbitrarily small time
T > 0, the reachable set Rr(p) has nonempty
n-dimensional interior. For most applications one
desires stronger controllability properties. Most
amenable to Lie algebraic methods, and practi-
cally relevant, is small-time local controllability
(STLC): The system is STLC from p if p lies in
the interior of Ry (p) forevery T > 0. In the case
that there is no drift vector field fy, accessibility
is equivalent to STLC. However, in general, the
situation is much more intricate, and a rich liter-
ature is devoted to various necessary or sufficient
conditions for STLC. A popular such condition
is the Hermes condition. For this define the sub-
spaces S' = span{(ad’ fy, f;i):1 < j <m, j €
7%}, and recursively S**! = span{[g;., gx]: g1 €
S'. g € SFY. Here (ad’f.g) = g, and
recursively (ad**' f.g) = [f.(ad* f.g)]. The
Hermes condition guarantees in the case of an-
alytic vector fields and, e.g., U = [-1,1]"
that if the system satisfies the (LARC) and for
every k > 1, S*(p) < S*~!(p), then the
system is (STLC). For more general conditions,
see Sussmann (1987) and also Kawski (1990) for
a broader discussion.

The importance and value of Lie algebraic
conditions may in large part be ascribed to their
geometric character, their being invariant under
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coordinate changes and feedback. In particular, in
the analytic case, the Lie relations completely de-
termine the local properties of the system, in the
sense that Lie algebra homomorphism between
two systems gives rise to a local diffeomorphism
that maps trajectories to trajectories (Sussmann
1974).

Exponential Lie Series

A central analytic tool in Lie algebraic methods
that takes the role of Taylor expansions in clas-
sical analysis of dynamical system is the Chen-
Fliess series which associates to every admissible
control u: [0, T] +— U a formal power series

T
CFu,T) = Z/ du' - X, ... X;, (2
It 0

over a set {Xo, X1,...X,,} of noncommuting
indeterminates (or letters). For every multi-index
I = (i1,i2,...1,) € {0,1,...m}*, s > 0, the
coefficient of X is the iterated integral defined
recursively

T ) T d
/ du(l.j) — / (/ MI) duj(l). 3)
0 0 \JO

Upon evaluating this series via the substitutions
X; <— f;, it becomes an asymptotic series for
the propagation of solutions of (1): For f;, ¢
analytic, U compact, p in a compact set, and
T > 0 sufficiently small, one has

T
o) = Y [dd (i fo0) )
7 0
4)

One application of particular interest is to
construct approximating systems of a given
system (1) that preserve critical geometric
properties, but which have an simpler structure.
One such class is that of nilpotent systems,
that is, systems whose Lie algebra L =
L(fo, fi,... fm) is nilpotent, and for which
solutions can be found by simple quadratures.
While truncations of the Chen-Fliess series
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never correspond to control systems of the
same form, much work has been done in recent
years to rewrite this series in more useful
formats. For example, the infinite directed
exponential product expansion in Sussmann
(1986) that uses Hall trees immediately may be
interpreted in terms of free nilpotent systems
and consequently helps in the construction
of nilpotent approximating systems. More
recent work, much of it of a combinatorial
algebra nature and utilizing the underlying
Hopf algebras, further simplifies similar
expansions and in particular yields explicit
formulas for a continuous Baker-Campbell-
Hausdorff formula or for the logarithm of
the Chen-Fliess series (Gehrig and Kawski
2008).

Observability and Realization

In the setting of linear systems a well-
defined algebraic sense dual to the concept of
controllability is that of observability. Roughly
speaking the system (1) is observable if
knowledge of the output y(t) = ¢@(x(t;u, p))
over an arbitrarily small interval suffices to
construct the current state x(¢;u, p) and indeed
the past trajectory x( - ;u, p). In the linear
setting observability is equivalent to the rank
condition rank[CT, (CA)T,...,(CA")T] = n
being satisfied. In the nonlinear setting, the place
of the rows of this compound matrix is taken
by the functions in the observation algebra,
which consists of all finite linear combinations of
iterated Lie derivatives f; --- fi, ¢ of the output
function.

Similar to the Hankel matrices introduced in
the latter setting, in the case of a finite Lie rank,
one again can use the output algebra to construct
realizations in the form of (1) for systems which
are initially only given in terms of input-output
descriptions, or in terms of formal Fliess oper-
ators; see, e.g., Fliess (1980), Gray and Wang
(2002), and Jakubczyk (1986) for further reading.
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Optimal Control

In a well-defined geometric way, conditions for
optimal control are dual to conditions for con-
trollability and thus are directly amenable to
Lie algebraic methods. Instead of considering a
separate functional

T
Jw) =y (s p) + /0 L(t. x (@, p).u(e)) di
)

to be minimized, it is convenient for our purposes
to augment the state by, e.g., defining xo = 1
and X,4+; = L(xo,x,u). For example, in the
case of time-optimal control, one again obtains
an enlarged system of the same form (1); else one
utilizes more general Lie algebraic methods that
also apply to systems not necessarily affine in the
control.

The basic picture for systems with a compact
set U of admissible values of the controls in-
volves the attainable funnel R<7(p) consisting
of all trajectories of the system (1) starting at
x(0) = p that correspond to admissible controls.
The trajectory corresponding to an optimal con-
trol u* must at time 7T lie on the boundary of
the funnel R<r(p) and hence also at all prior
times (using the invariance of domain property
implied by the continuity of the flow). Hence one
may associate a covector field along such optimal
trajectory that at every time points in the direction
of an outward normal. The Pontryagin Maximum
Principle is a first-order characterization of such
trajectory covector field pairs. Its pointwise max-
imization condition essentially says that if at any
time ¢y € [0, T'] one replaces the optimal control
u*(-) by any admissible control variation on an
interval [fo, %y + €], then such variation may be
transported along the flow to yield, in the limit
as ¢ N\ 0, an inward pointing tangent vector to
the reachable set Ry (p) at x(T'; u*, p). To obtain
stronger higher-order conditions for maximality,
one may combine several such families of control
variations. The effects of such combinations are
again calculated in terms of iterated Lie brackets
of the vector fields f;. Indeed, necessary con-
ditions for optimality, for a trajectory to lie on
the boundary of the funnel R <7 (p), immediately
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translate into sufficient conditions for STLC, for
the initial point to lie in the interior of Rz (p),
and vice versa. For recent work employing Lie
algebraic methods in optimality conditions, see,
e.g., Agrachev et al. (2002).

Summary and Future Research

Lie algebraic techniques may be seen as a direct
generalization of matrix linear algebra tools that
have proved so successful in the analysis and de-
sign of linear systems. However, in the nonlinear
case, the known algebraic rank conditions still ex-
hibit gaps between necessary and sufficient con-
ditions for controllability and optimality. Also,
new, not yet fully understood, topological and
resonance obstructions stand in the way of con-
trollability implying stabilizability. Systems that
exhibit special structure, such as living on Lie
groups, or being second order such as typical
mechanical systems, are amenable to further re-
finements of the theory; compare, e.g., the use of
affine connections and the symmetric product in
Bullo et al. (2000). Other directions of ongoing
and future research involve the extension of Lie
algebraic methods to infinite dimensional sys-
tems and to generalize formulas to systems with
less regularity; see, e.g., the work by Rampazzo
and Sussmann (2007) on Lipschitz vector fields,
thereby establishing closer connections with non-
smooth analysis (Clarke 1983) in control.
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Abstract

LMI (linear matrix inequality) techniques offer
more flexibility in the design of dynamic linear
systems than techniques that minimize a scalar
functional for optimization. For linear state space
models, multiple goals (performance bounds) can
be characterized in terms of LMIs, and these can
serve as the basis for controller optimization via
finite-dimensional convex feasibility problems.
LMI formulations of various standard control
problems are described in this article, including
dynamic feedback stabilization, covariance con-
trol, LQR, Hy control, L, control, and infor-
mation architecture design.

Keywords
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Early Optimization History

Hamilton invented state space models of
nonlinear dynamic systems with his generalized
momenta work in the 1800s (Hamilton 1834,
1835), but at that time the lack of computational
tools prevented broad acceptance of the first-
order form of dynamic equations. With the rapid
development of computers in the 1960s, state
space models evoked a formal control theory
for minimizing a scalar function of control and
state, propelled by the calculus of variations
and Pontryagin’s maximum principle. Optimal
control has been a pillar of control theory for
the last 50 years. In fact, all of the problems
discussed in this article can perhaps be solved
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by minimizing a scalar functional, but a search
is required to find the right functional. Globally
convergent algorithms are available to do just
that for quadratic functionals, but more direct
methods are now available.

Since the early 1990s, the focus for linear
system design has been to pose control problems
as feasibility problems, to satisfy multiple con-
straints. Since then, feasibility approaches have
dominated design decisions, and such feasibility
problems may be convex or not. If the problem
can be reduced to a set of linear matrix inequal-
ities (LMIs) to solve, then convexity is proven.
However, failure to find such LMI formulations
of the problem does not mean it is not convex, and
computer-assisted methods for convex problems
are available to avoid the search for LMIs (see
Camino et al. 2003).

In the case of linear dynamic models of
stochastic processes, optimization methods led
to the popularization of linear quadratic Gaussian
(LQG) optimal control, which had globally
optimal solutions (see Skelton 1988). The first
two moments of the stochastic process (the
mean and the covariance) can be controlled
with these methods, even if the distribution of
the random variables involved is not Gaussian.
Hence, LQG became just an acronym for the
solution of quadratic functionals of control
and state variables, even when the stochastic
processes were not Gaussian. The label LQG
was often used even for deterministic problems,
where a time integral, rather than an expectation
operator, was minimized, with given initial
conditions or impulse excitations. These were
formally called LQR (linear quadratic regulator)
problems. Later the book (Skelton 1988) gave
the formal conditions under which the LQG and
the LQR answers were numerically identical, and
this particular version of LQR was called the
deterministic LOG.

It was always recognized that the quadratic
form of the state and control in the LQG problem
was an artificial goal. The real control goals usu-
ally involved prespecified performance bounds
on each of the outputs and bounds on each chan-
nel of control. This leads to matrix inequalities
(MIs) rather than scalar minimizations. While
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it was known early that any stabilizing linear
controller could be obtained by some choice of
weights in an LQG optimization problem (see
Chap. 6 and references in Skelton 1988), it was
not known until the 1980s what particular choice
of weights in LQG would yield a solution to
the matrix inequality (MI) problem. See early
attempts in Skelton (1988), and see Zhu and Skel-
ton (1992) and Zhu et al. (1997) for a globally
convergent algorithm to find such LQG weights
when the MI problem has a solution. Since then,
rather than stating a minimization problem for
a meaningless sum of outputs and inputs, linear
control problems can now be stated simply in
terms of norm bounds on each input vector and/or
each output vector of the system (L, bounds,
Lo, bounds, or variance bounds and covariance
bounds). These feasibility problems are convex
for state feedback or full-order output feedback
controllers (the focus of this elementary intro-
duction), and these can be solved using linear
matrix inequalities (LMIs), as illustrated in this
article. However, the earliest approach to these
MI problems was iterative LQG solutions (to
find the correct weights to use in the quadratic
penalty of the state), as in Skelton (1988), Zhu
and Skelton (1992), and Zhu et al. (1997).

Matrix Inequalities

Let Q be any square matrix. The linear matrix
inequality (LMI) “Q > 0” is just a short-hand
notation to represent a certain scalar inequality.
That is, the matrix notation “Q > 0” means “the
scalar xTQx is positive for all values of x, except
x = 0.” Obviously this is a property of Q, not
X, hence the abbreviated matrix notation Q > 0.
This is called a linear matrix inequality (LMI),
since the matrix unknown Q appears linearly
in the inequality Q > 0. Note also that any
square matrix Q can be written as the sum of
a symmetric matrix Qs = %(Q +Q"), and a
skew-symmetric matrix Qx = %(Q —QD), but
xTQyx = 0, so only the symmetric part of the
matrix Q affects the scalar xTQx. We assume
hereafter without loss of generality that Q is
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symmetric. The notation “Q > 0” means “the

scalar xTQx cannot be negative for any x.”
Lyapunov proved that x(t) converges to zero

if there exists a matrix Q such that, along the

nonzero trajectory of a dynamic system (e.g., the
system X = AX), two scalars have the property,

x()TQx(t) > 0 and d/dt(xT(t)Qx(t)) < O.

This proves that the following statements are all

equivalent:

1. For any initial condition x(0) of the system
x = Ax, the state x(t) converges to zero.

2. All eigenvalues of A lie in the open left half
plane.

3. There exists a matrix Q with the two proper-
ties Q > 0 and QA + ATQ < 0.

4. The set of all quadratic Lyapunov functions
that can be used to prove the stability or
instability of the null solution of X = Ax
is given by xTQ™!x, where Q is any square
matrix with the two properties of item 3
above.

LMIs are prevalent throughout the fundamen-
tal concepts of control theory, such as control-
lability and observability. For the linear system
example X = Ax + Bu, y = Cx, the “Ob-
servability Gramian” is the infinite integral Q =
i eA"tCTCeAtdt. Furthermore Q > 0 if and only
if (A, C) is an observable pair, and Q is bounded
only if the observable modes are asymptotically
stable. When it exists, the solution of QA +
ATQ + CTC = 0 satisfies Q > 0 if and only
if the matrix pair (A, C) is observable.

Likewise the “Controllability Gramian” X =
[ eABBTeA'tdt > 0 if and only if the pair (A, B)
is controllable. If X exists, it satisfies XAT +
AX + BBT = 0, and X > 0 if and only if (A, B)
is a controllable pair. Note also that the matrix
pair (A, B) is controllable for any A if BBT > 0,
and the matrix pair (A, C) is observable for any
A if CTC > 0. Hence, the existence of Q > 0
or X > 0 satisfying either (QA + ATQ < 0) or
(AX 4+ XAT < 0) is equivalent to the statement
that “all eigenvalues of A lie in the open left half
plane.”

It should now be clear that the set of all
stabilizing state feedback controllers, u = Gx, is
parametrized by the inequalities Q > 0, Q(A +
BG) + (A + BG)TQ < 0. The difficulty in this
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MI is the appearance of the product of the two
unknowns Q and G, so more work is required to
show how to use LMIs to solve this problem.

In the sequel some techniques are borrowed
from linear algebra, where a linear matrix equal-
ity (LME) TGA = O may or may not have
a solution G. For LMEs there are two separate
questions to answer. The first question is “Does
there exist a solution?” and the answer is “if and
only if [ TT@ATA = ©.” The second question
is “What is the set of all solutions?” and the
answer is “G = TTOAT + Z - TTTZAA™,
where Z is arbitrary, and the + symbol denotes
Pseudo Inverse.” LMI approaches employ the
same two questions by formulating the necessary
and sufficient conditions for the existence of an
LMI solution and then to parametrize all solu-
tions.

Perhaps the earliest book on LMI control
methods was Boyd et al. (1994), but the results
and notations used herein are taken from Skelton
et al. (1998). Other important LMI papers and
books can give the reader a broader background,
including Iwasaki and Skelton (1994), Gahinet
and Apkarian (1994), de Oliveira et al. (2002),
Li et al. (2008), de Oliveira and Skelton
(2001), Camino et al. (2001, 2003), Boyd and
Vandenberghe (2004), Iwasaki et al. (2000),
Khargonekar and Rotea (1991), Vandenberghe
and Boyd (1996), Scherer (1995), Scherer et al.
(1997), Balakrishnan et al. (1994), Gahinet et al.
(1995), and Dullerud and Paganini (2000).

Control Design Using LMIs

Consider the feedback control system

Xp Ap Dy Bp| (%
y|=|1C Dy By w |,
z M, D, 0 u

=[] =els] o

where z is the measurement vector, y is the output
to be controlled, u is the control vector, x,, is the
plant state vector, X, is the state of the controller,
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and w is the external disturbance (in some cases
below we treat w as a zero-mean white noise).
We seek to choose the control matrix G to satisfy
the given upper bounds on the output covariance
E[yy"] <Y, where E represents the steady-state
expectation operator in the stochastic case (i.e.,
when w is white noise), and in the deterministic
case E represents the infinite integral of the ma-
trix [yyT]. The math is the same in each case, with
appropriate interpretations of certain matrices.
For a rigorous equivalence of the deterministic
and stochastic interpretations, see Skelton (1988).
By defining the matrices,

X
x=|P[,
Xc

[33 gﬂ - [é ]I:} * m G[ME] )

C=[C,0]. H=[By0], F=Dy,, (4

one can write the closed-loop system dynamics in

the form

X Acl Bclj| I:Xj|
= . 5
|:y:| |:Ccl Dcl w ( )
Often it is of interest to characterize the set
of all controllers that can satisfy performance
bounds on both the outputs and inputs, E [yyT] <
Y and E[uu”] < U, and we call these covari-
ance control problems. But without prespecified

performance bounds Y. U, one can require stabil-
ity only. Such examples are given below.

Many Control Problems Reduce to the
Same LMI

Let the left (right) null spaces of any matrix B
be defined by matrices Ug (Vg), where U%B =
0, UfUg > 0, BVg = 0, ViVg > 0). For
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any given matrices I', A, ©, Chap. 9 of the book
(Skelton et al. 1998) provides all G which solve

TGA +(TGA)T+ 0 <0, (6)

and proves that there exists such a matrix G if and
only if the following two conditions hold:

UleUr <0, or I'TT >0, (7)

ViOV, <0, or ATA >0. (8)

If G exists, then one set of such G is given by

G=—pITOATAPAT) ', & =(pI'TT—0)7!,
)

where p > 0 is an arbitrary scalar such that

®=(pIrr'-oe)!>o. (10)
All G which solve the problem are given by
Theorem 2.3.12 in Skelton et al. (1998). As
elaborated in Chap.9 of Skelton et al. (1998),
17 different control problems (using either state
feedback or full-order dynamic controllers) all re-
duce to this same mathematical problem. That is,
by defining the appropriate @, A, I', a very large
number of different control problems, including
the characterization of all stabilizing controllers,
covariance control, H -infinity control, L-infinity
control, LQG control, and H, control, can be re-
duced to the same matrix inequality (13). Several
examples from Skelton et al. (1998) follow.

Stabilizing Control

There exists a controller G that stabilizes the
system (1) if and only if (7) and (8) hold, where
the matrices are defined by

[ AT ©]=[B XM" AX+XA'].
(11)

One can also write such results in another way,
as in Corollary 6.2.1 of Skelton et al. (1998,
p. 135): There exists a control of the form u =
Gx that can stabilize the system x = Ax + Bu
if and only if there exists a matrix X > 0
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satisfying B-(AX + XAT)(BH)T < 0, where
B+ denotes the left null space of B. In this case
all stabilizing controllers may be parametrized by
G = —BTP + LQY?2, for any Q > 0 and a
P > 0 satisfying PA + ATP — PBB'P + Q = 0.
The matrix L is any matrix that satisfies the norm
bound |L| < 1. Youla et al. (1976) provided
a parametrization of the set of all stabilizing
controllers, but the parametrization was infinite
dimensional (as it did not impose any restriction
on the order or form of the controller). So for
finite calculations one had to truncate the set to a
finite number before optimization or stabilization
started. As noted above, on the other hand, all
stabilizing state feedback controllers G can be
parametrized in terms of an arbitrary but finite-
dimensional norm-bounded matrix L. Similar re-
sults apply for the dynamic controllers of any
fixed order (see Chap. 6 in Skelton et al. 1998).

Covariance Upper Bound Control

In the system (1), suppose that Dy = 0, By = 0

and that w is zero-mean white noise with intensity

I. Let a required upper bound Y > 0 on the

steady-state output covariance Y = E[yy'] be

given. The following statements are equivalent:

(i) There exists a controller G that solves the
covariance upper bound control problem
Y<Y

(i) There exists a matrix X > 0 such that Y =
CXCT < Y and (7) and (8) hold, where the
matrices are defined by

[T AT O]

_[B XM" AX+XAT D

o ET DT -1
(12)

(® occupies the last two columns).
Proof is provided by Theorem 9.1.2 in Skelton
et al. (1998).

Linear Quadratic Regulator

Consider the linear time-invariant system (1).
Suppose that Dy = 0, D, = 0 and that w is
the impulsive disturbance w(t) = woé(t). Let
a performance bound y > 0 be given, where
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the required performance is to keep the integral

squared output (||y||,) less than the prespecified

value |y|l2 < y for any vector wp such that

WOTW() < 1, and xo = 0. This problem is labeled

linear quadratic regulator (LQR). The following

statements are equivalent:

(i) There exists a controller G that solves the
LQR problem.

(i1) There exists a matrix Y > 0 such that
[DTYD|| < y? and (7) and (8) hold, where
the matrices are defined by

[T AT O]
YB M' YA +ATY MT
B M g 1

Proof is provided by Theorem 9.1.3 in Skelton
et al. (1998).

H, Control
LMI techniques provided the first papers to solve
the general H, problem, without any restrictions
on the plant. See Iwasaki and Skelton (1994) and
Gahinet and Apkarian (1994).

Let the closed-loop transfer matrix from w to
y with the controller in (1) be denoted by T(s):

T(s) = Ca(sI — Aa) 'Ba+Da. (14

The Ho control problem can be defined as fol-
lows:

Let a performance bound y > 0 be given. Deter-
mine whether or not there exists a controller G in
(1) which asymptotically stabilizes the system and
yields the closed-loop transfer matrix (14) such that
the peak value of the frequency response is less
than y. That is, | T|lge, = sup [T(jw)l| < y.

For the H control problem, we have the follow-
ing result. Let a required H, performance bound
y > 0 be given. The following statements are

equivalent:
(i) A controller G solves the H, control prob-
lem.

(ii) There exists a matrix X > 0 such that (7)
and (8) holds, where
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[T AT O]
B XM!' AX+XAT XCcT D
=|H 0 CX —yI F
0 ET DT FT  —yI
(15)

(® occupies the last three columns).
Proof is provided by Theorem 9.1.5 in Skelton
et al. (1998).

L » Control
The peak value of the frequency response is
controlled by the above H, controller. A similar
theorem can be written to control the peak in the
time domain.

Define supy(t)Ty(t) = ||y[l} ... and let the
statement |y||Lco < Y mean that the peak value
of y(t)Ty(t) is less than y2. Suppose that Dy = 0
and By = 0. There exists a controller G which
maintains [|y|lre0c < ¥ in the presence of any
energy-bounded input w(t) (i.e., f0°° wliwdt < 1)
if and only if there exists a matrix X > 0 such that
CXCT < )/21 and (7) and (8) hold, where

[T AT O]
_[B xM" AX+XAT D
|10 ET D’ —1 |

(16)

Proof is provided by Theorem 9.1.4 in Skelton
et al. (1998).

Information Architecture in
Estimation and Control Problems

In the typical “control problem” that occupies
most research literature, the sensors and actuators
have already been selected. Yet the selection of
sensors and actuators and their locations greatly
affect the ability of the control system to do its
job efficiently. Perhaps in one location a high-
precision sensor is needed, and in another loca-
tion high precision is not needed, and paying for
high precision in that location would therefore
be a waste of resources. These decisions must be
influenced by the control dynamics which are yet
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to be designed. How does one know where to ef-
fectively spend money to improve the system? To
answer this question, we must optimize the infor-
mation architecture jointly with the control law.

Let us consider the problem of selecting the
control law jointly with the selection of the
precision (defined here as the inverse of the
noise intensity) of each actuator/sensor, subject
to the constraint of specified upper bounds on the
covariance of output error and control signals,
and specified upper bounds on the sensor/actuator
cost. We assume the cost of these devices is
proportional to their precision (i.e., the cost is
equal to the price per unit of precision, times
the precision). Traditionally, with full-order
controllers, and prespecified sensor/actuator
instruments (with specified precisions); this is a
well-known solved convex problem (which
means it can be converted to an LMI problem
if desired), see Chap. 6 of Skelton et al. (1998). If
we enlarge the domain of the freedom to include
sensor/actuator precisions, it is not obvious
whether the feasibility problem is convex or
not. The following shows that this problem of
including the sensor/actuator precisions within
the control design problem is indeed convex
and therefore completely solved. The proof is
provided in Li et al. (2008).

Consider the linear control system (1)—(5).
Assume that the cost of sensors and actuators is
proportional to their precision, which we herein
define to be the inverse of the noise intensity (or
variance, in the discrete-time case). So if the price
per unit of precision of the i-th sensor/actuator
is Pj, and if the variance (or intensity) of the
noise associated with the i-th sensor/actuator
is W;;, then the total cost of all sensors and
actuators is ZP,-iW,.i_l, or simply tr(PW‘l),
where P = diag(P;;) and W™ = diag(W;!).

Consider the control system (1). Suppose that
Dy =0,By =0, w=[wS WE]T is the zero-
mean sensor/actuator noise, D, = [0 D;] and
D, = [D; 0].If the $ represents the allowed upper
bound on sensor/actuator costs, there exists a
dynamic controller G that satisfies the constraints

trPW1) < §
(17)

Ew'] <U, E[yy'<Y,
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in the presence of sensor/actuator noise with
intensity diag(W;;) = W (which like G should
be considered a design variable not fixed
a priori) if and only if there exist matrices
L,F,Q,X,Z, W™! such that

trPW) < § (18)
Y CX G U L 0
CX)" X I[>0, LT X I|>0,
C,’ | Y / 0 I Z
@, @
[%1 wh| <0 (19)
[Da 0
P21 = [ZDa FDJ ’
o= [MXFBL A
Q  ZA,+FM, |’
@ =¢+¢". (20)

Note that the matrix inequalities (18)—(20)
are LMIs in the collection of variables
(L,F,Q.X,Z, W), whereby joint con-
trol/sensor/actuator design is a convex problem.

Assume a solution (L, F, Q, X, Z, W) is found
for the LMIs (18)—(20). Then the problem (17) is
solved by the controller

|9 I Q-ZAX F
vt -vizs, L 0
0 v !

I —MXV. !’

where V) and V, are left and right factors of the
matrix I — YX (which can be found from the
singular value decompositionI-YX = UXVT =
(US)(Z2VT) = (V)(V)).

To emphasize the theme of this article, to
relate optimization to LMIs, we note that three
optimization problems present themselves in the
above problem with three constraints: control
effort U, output performance Y, and instrument
costs $. To solve optimization problems, one can

21

Linear Matrix Inequality Techniques in Optimal Control

fix any two of these prespecified upper bounds
and iteratively reduce the level set value of the
third “constraint” until feasibility is lost. This
process minimizes the resource expressed by the
third constraint, while enforcing the other two
constraints.

As an example, if cost is not a concern, one
can always set large limits for $ and discover the
best assignment of sensor/actuator precisions for
the specified performance requirements. These
precisions produced by the algorithm are the val-
ues Wil-_l, produced from the solution (18)—(20),
where the observed rankings Wii_1 > Wjjl >
W,JCI > ... indicate which sensors or actuators
are most critical to the required performance
goals (U, Y, $). If any precision W, ! is essen-
tially zero, compared to other required precisions,
then the math is asserting that the information
from this sensor (n) is not important for the
control objectives specified, or the control signals
through this actuator channel (n) are ineffective
in controlling the system to these specifications.
This information leads us to a technique for
choosing the best sensor actuators and their lo-
cation.

The previous discussion provides the preci-
sions (Wl-i_l) required of each sensor and each
actuator in the system. Our final application of
this theory locates sensors and actuators in a
large-scale system, by discarding the least effec-
tive ones. Suppose we solve any of the above
feasibility problems, by starting with the entire
admissible set of sensors and actuators (without
regard to cost). For example, in a flexible struc-
ture control problem we might not know whether
to place a rate sensor or displacement sensors at
a given location, so we add both. We might not
know whether to use torque or force actuators, so
we add both. We fill up the system with all the
possibilities we might want to consider, and let
the above precision rankings (available after the
above LMI problem is solved) reveal how much
precision is needed at each location and at each
sensor/actuator. If there is a large gap in the pre-
cisions required (say W,7! > W' > Wil >>

.. W), then delete the sensor/actuator n and
repeat the LMI problem with one less sensor or
actuator. Continue deleting sensors/actuators in
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this manner until feasibility of the problem is
lost. Then this algorithm, stopping at the previous
iteration, has selected the best distribution of
sensors/actuators for solving the specific prob-
lem specified by the allowable bounds (@, I_J, S_().
The most important contribution of the above
algorithm has been to extend control theory to
solve system design problems that involve more
than just deigning control gains. This enlarges the
set of solved linear control problems, from solu-
tions of linear controllers with sensors/actuators
prespecified to solutions which specify the sen-
sor/actuator requirements jointly with the control
solution.

Summary

LMI techniques provide more powerful tools
for designing dynamic linear systems than
techniques that minimize a scalar functional for
optimization, since multiple goals (bounds) can
be achieved for each of the outputs and inputs.
Optimal control has been a pillar of control theory
for the last 50 years. In fact, all of the problems
discussed in this article can perhaps be solved
by minimizing a scalar functional, but a search
is required to find the right functional. Globally
convergent algorithms are available to do just
that for quadratic functionals. But more direct
methods are now available (since the early 1990s)
for satisfying multiple constraints. Since then,
feasibility approaches have dominated design
decisions (at least for linear systems), and such
feasibility problems may be convex or not. If
the problem can be reduced to a set of LMIs
to solve, then convexity is proven. However,
failure to find such LMI formulations of the
problem does not mean it is not convex, and
computer-assisted methods for convex problems
are available to avoid the search for LMIs (see
Camino et al. 2003). Optimization can also be
achieved with LMI methods by reducing the
level set for one of the bounds, while maintaining
all the other bounds. This level set is reduced
iteratively, between convex (LMI) solutions,
until feasibility is lost. A most amazing fact is
that most of the common linear control design
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problems all reduce to exactly the same matrix
inequality problem (6). The set of such equivalent
problems includes LQR, the set of all stabilizing
controllers, the set of all Hy, controllers, and the
set of all L, controllers. The discrete and robust
versions of these problems are also included in
this equivalent set; 17 control problems have
been found to be equivalent to LMI problems.

LMI techniques extend the range of
solvable system design problems beyond just
control design. By integrating information
architecture and control design, one can
simultaneously choose the control gains and
the precision required of all sensor/actuators to
satisfy the closed-loop performance constraints.
These techniques can be used to select the
information (with precision requirements)
required to solve a control or estimation problem,
using the best economic solution (minimal
precision). For a more complete discussion of
LMI problems in control, read Dullerud and
Paganini (2000), de Oliveira et al. (2002), Li
et al. (2008), de Oliveira and Skelton (2001),
Gahinet and Apkarian (1994), Iwasaki and
Skelton (1994), Camino et al. (2001, 2003),
Skelton et al. (1998), Boyd and Vandenberghe
(2004), Boyd et al. (1994), Iwasaki et al. (2000),
Khargonekar and Rotea (1991), Vandenberghe
and Boyd (1996), Scherer (1995), Scherer et al.
(1997), Balakrishnan et al. (1994), and Gahinet
et al. (1995).
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Abstract

Linear quadratic optimal control is a collective
term for a class of optimal control problems
involving a linear input-state-output system
and a cost functional that is a quadratic form
of the state and the input. The aim is to
minimize this cost functional over a given
class of input functions. The optimal input
depends on the initial condition, but can be
implemented by means of a state feedback
control law independent of the initial condition.
Both the feedback gain and the optimal cost can
be computed in terms of solutions of Riccati
equations.
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Introduction

Linear quadratic optimal control is a generic
term that collects a number of optimal control
problems for linear input-state-output systems in
which a quadratic cost functional is minimized
over a given class of input functions. This func-
tional is formed by integrating a quadratic form
of the state and the input over a finite or an infi-
nite time interval. Minimizing the energy of the
output over a finite or infinite time interval can be
formulated in this framework and in fact provides
a major motivation for this class of optimal con-
trol problems. A common feature of the solutions
to the several versions of the problem is that the
optimal input functions can be given in the form
of a linear state feedback control law. This makes
it possible to implement the optimal controllers
as a feedback loop around the system. Another
common feature is that the optimal value of the
cost functional is a quadratic form of the initial
condition on the system. This quadratic form is
obtained by taking the appropriate solution of a
Riccati differential equation or algebraic Riccati
equation associated with the system.

Systems with Inputs and Outputs

Consider the continuous-time, linear time-
invariant input-output system in state space form
represented by

X() = Ax(t) + Bu(t), z(t) = Cx(t) + Du(?).
(1)

This system will be referred to as X. In (1),
A, B, C, and D are maps between suitable
spaces (or matrices of suitable dimensions) and
the functions x, u, and z are considered to be
defined on the real axis R or on any subinterval
of it. In particular, one often assumes the domain
of definition to be the nonnegative part of R. The
function u is called the input, and its values are
assumed to be given from outside the system.
The class of admissible input functions will be
denoted U. Often, U will be the class of piecewise
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continuous or locally integrable functions, but for
most purposes, the exact class from which the
input functions are chosen is not important. We
will assume that input functions take values in an
m-dimensional space ¢/, which we often identify
with R™. The variable x is called the state
variable and it is assumed to take values in an n-
dimensional space X'. The space X will be called
the state space. It will usually be identified with
R”. Finally, z is called the to be controlled output
of the system and takes values in a p-dimensional
space Z, which we identify with R?. The solution
of the differential equation of ¥ with initial value
x(0) = xo will be denoted as x,(¢, xo). It can be
given explicitly using the variation-of-constants
formula (see Trentelman et al. 2001, p. 38). The
set of eigenvalues of a given matrix M is called
the spectrum of M and is denoted by o (M). The
system (1) is called stabilizable if there exists a
map (matrix of suitable dimensions) F' such that
0(A+BF) C C.Here, C™ denotes the open left
half complex plane, i.e., {A € C | Re(X) < 0}.
We often express this property by saying that the
pair (A, B) is stabilizable.

The Linear Quadratic Optimal Control
Problem

Assume that our aim is to keep all components
of the output z(¢) as small as possible, for all
t > 0. In the ideal situation, with initial state
x(0) = 0, the uncontrolled system (with control
input 4 = 0) evolves along the stationary solution
x(t) = 0. Of course, the output z(¢) will then
also be equal to zero for all 7. If, however, at
time ¢+ = 0 the state of the system is perturbed
to, say, x(0) = xg, with xo9 # O, then the
uncontrolled system will evolve along a state
trajectory unequal to the stationary zero solution,
and we will get z(t) = Ce'x,. To remedy this,
from time + = 0 on, we can apply an input
function u, so that for ¢ > 0 the corresponding
output becomes equal to z(r) = Cx,(t,x0) +
Du(t). Keeping in mind that we want the output
z(z) to be as small as possible for all t > 0,
we can measure its size by the quadratic cost
functional
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J(xo.u) = /0 OlRd. @

where || - || denotes the Euclidean norm. Our
aim to keep the values of the output as small as
possible can then be expressed as requiring this
integral to be as small as possible by suitable
choice of input function u. In this way we arrive
at the linear quadratic optimal control problem:

Problem 1 Consider the system ¥ : X(t) =
Ax(t) + Bu(t), z(t) = Cx(t) + Du(t). Deter-
mine for every initial state xo an input # € U (a
space of functions [0, co) — /) such that

Jro,u) i = /0 OlRd G

is minimal. Here z(¢) denotes the output trajec-
tory z,(t, xo) of X corresponding to the initial
state xo and input function u.

Since the system is linear and the integrand in
the cost functional is a quadratic function of z,
the problem is called linear quadratic. Of course,
lzI> = xTC"Cx +2u"DTCx + u" D" Du,
so the integrand can also be considered as a
quadratic function of (x, u). The convergence of
the integral in (3) is of course a point of concern.
Therefore, one often considers the corresponding
finite-horizon problem in a preliminary investiga-
tion. In this problem, a final time 7 is given and
one wants to minimize the integral

T
J(xo,u,T) : = /O llz(2)||? dr. 4)

In contrast to this, the first problem above is
sometimes called the infinite horizon problem.
An important issue is also the convergence of
the state. Obviously, convergence of the integral
does not always imply the convergence to zero of
the state. Therefore, distinction is made between
the problem with zero and with free endpoint.
Problem 1 as stated is referred to as the problem
with free endpoint. If one restricts the inputs u
in the problem to those for which the resulting
state trajectory tends to zero, one speaks about
the problem with zero endpoint. Specifically:
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Problem 2 In the situation of Problem 1, deter-
mine for every initial state xp an input # € U such
that x,(t, xo) — 0 (t — o0) and such that under
this condition, J(x, 1) is minimized.

In the literature various special cases of these
problems have been considered, and names have
been associated to these special cases. In partic-
ular, Problems 1 and 2 are called regular if the
matrix D is injective, equivalently, DTD > 0.1f,
in addition, CTD = 0and DD = I, then the
problems are said to be in standard form. In the
standard case, the integrand in the cost functional
reduces to ||z]|> = xTCTCx + u"u. We often
write Q = C TC. The standard case is a special
case, which is not essentially simpler than the
general regular problem, but which gives rise to
simpler formulas. The general regular problem
can be reduced to the standard case by means of
a suitable feedback transformation.

The Finite-Horizon Problem

The finite-horizon problem in standard from is
formulated as follows:

Problem 3 Given the system x() = Ax(¢) +
Bu(t), a final time 7 > 0, and symmetric
matrices N and Q suchthat N > Oand Q > O,
determine for every initial state xp a piecewise
continuous input function u : [0, 7] — U such
that the integral

J(xo,u, T i= fi x(0)T Qx(t) + u(t) Tu(r) dt
+x(T)"Nx(T) (5)

is minimized.
In this problem, we have introduced a weight
on the final state, using the matrix N. This
generalization of the problem does not give rise
to additional complications.

A key ingredient in solving this finite-horizon

problem is the Riccati differential equation asso-
ciated with the problem:

P(t) = ATP(t) + P(1)A—P(1)BBT P(1)+ 0,
P(0) = N. (6)
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This is a quadratic differential equation on the
interval [0, o0] in terms of the matrices A, B,
and @, and with initial condition given by the
weight matrix N on the final state. The unknown
in the differential equation is the matrix valued
function P(t¢). The following theorem solves the
finite-horizon problem. It states that the Riccati
differential equation with initial condition (6) has
a unique solution on [0, 00), that the optimal
value of the cost functional is determined by the
value of this solution at time 7", and that there
exists a unique optimal input that is generated by
a time-varying state feedback control law:

Theorem 1 Consider Problem 3. The following

properties hold:

1. The Riccati differential equation with initial
value (6) has a unique solution P(t) on
[0, 00). This solution is symmetric and positive
semidefinite for all t > 0.

2. For each x there is exactly one optimal input
function, i.e., a piecewise continuous func-
tion u* on [0,T] such that J(xo,u*,T) =
J*(x0,T) := inf{J(xp,u,T) | u € U}. This
optimal input function u* is generated by the
time-varying feedback control law

u(t)=—-BTP(T —0)x(t) (0<t<T).
)
3. For each x, the minimal value of the cost
functional equals

J*(x0,T) = xo" P(T)xo.

4. If N = 0, then the function t — P(t) is an
increasing function in the sense that P(t) —
P(s) is positive semidefinite fort > s.

The Infinite-Horizon Problem with
Free Endpoint

We consider the situation as described in Theo-
rem 1 with N = 0. An obvious conjecture is
that xo " P(T)x, converges to the minimal cost
of the infinite-horizon problem as T — oo. The
convergence of xo ' P(T)x, for all x, is equiva-
lent to the convergence of the matrix P(7T") for
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T — oo to some matrix P~. Such a convergence
does not always take place. In order to achieve
convergence, we make the following assumption:
for every Xy, there exists an input u for which the
integral

J(xo,u) 1= /oo x()TOx(t) + u(t) Tu(r)dr
0
(3)

converges, i.e., for which the cost J(xo, u) is fi-
nite. Obviously, for the problem to make sense for
all x, this condition is necessary. It is easily seen
that the stabilizability of (A, B) is a sufficient
condition for the above assumption to hold (not
necessary, take, e.g., @ = 0). Take an arbitrary
initial state xo and assume that u is a function
such that the integral (8) is finite. We have for
every T > 0 that

xo' P(T)xo < J(xo. i1, T) < J(x0, 1),

which implies that for every xy, the expression
xo" P(T)x is bounded. This implies that P(T")
is bounded. Since P (T') is increasing with respect
to T, it follows that P~ := limy_o P(T)
exists. Since P satisfies the differential equa-
tion (6), it follows that also P (¢) has a limit as
t — oo. Itis easily seen that this latter limit must
be zero. Hence, P = P~ satisfies the following
equation:

AP+ PA—PBBTP+0=0. (9

This is called the algebraic Riccati equation
(ARE). The solutions of this equation are exactly
the constant solutions of the Riccati differential
equation. The previous consideration shows that
the ARE has a positive semidefinite solution
P~. The solution is not necessarily unique, not
even with the extra condition that P > 0.
However, P~ turns out to be the smallest real
symmetric positive semidefinite solution of the
ARE.

The following theorem now establishes a com-
plete solution to the regular standard form version
of Problem 1:
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Theorem 2 Consider the system Xx(t) =
Ax(t) + Bu(t) together with the cost functional

J(xout) = / " OT 0x (1) + u(t) Tut) i,
0

with Q > 0. Factorize Q = CTC. Then, the

following statements are equivalent:

1. Forevery xo € X, there exists u € U such that
J(xo,u) < oo.

2. The ARE (9) has a real symmetric positive
semidefinite solution P.

Assume that one of the above conditions holds.

Then, there exists a smallest real symmetric pos-

itive semidefinite solution of the ARE, i.e., there

exists a real symmetric solution P~ > 0 such

that for every real symmetric solution P > 0, we

have P~ < P. For every xy, we have

J*(x0) : = inf{J(xo,u) | u € U} = xo' P xo.

Furthermore, for every Xy, there is exactly one
optimal input function, i.e., a function u* € U
such that J(xo, u*) = J*(xo). This optimal input
is generated by the time-invariant feedback law

u(t) = =BT P~ x(1).

The Infinite-Horizon Problem with
Zero Endpoint

In addition to the free endpoint problem, we con-
sider the version of the linear quadratic problem
with zero endpoint. In this case the aim is to
minimize for every x, the cost functional over all
inputs u such that x, (¢, xo) — 0 (¢ — 00). For
each x¢ such u exists if and only if the pair (4, B)
is stabilizable. A solution to the regular standard
form version of Problem 2 is stated next:

Theorem 3 Consider the system Xx(t) =
Ax(t) + Bu(t) together with the cost functional

J(xout) = / " OT 0x (1) + ut) Tut) i,
0

Linear Quadratic Optimal Control

with Q > 0. Assume that (A, B) is stabilizable.

Then:

1. There exists a largest real symmetric solution
of the ARE, i.e., there exists a real symmetric
solution P such that for every real symmet-
ric solution P, we have P < Pt. Pt is
positive semidefinite.

2. For every initial state x,, we have

JO*(X()) = X()TP+X().

3. For every initial state Xy, there exists an op-
timal input function, ie., a function u* €
U with x(c0) = 0 such that J(xo,u*) =
J (x0) if and only if every eigenvalue of A on
the imaginary axis is (Q, A) observable, i.e.,

rank (A _QAI) = n forall A € o(A) with

Re(A) = 0.
Under this assumption we have:

4. For every initial state xy, there is exactly one
optimal input function u*. This optimal input
function is generated by the time-invariant
feedback law

u(t) = =BT PHx(1).

5. The optimal closed-loop system x(t) = (A —
BBT PH)x(t) is stable. In fact, P% is the
unique real symmetric solution of the ARE for
whicho(A— BBTPT) c C.

Summary and Future Directions

Linear quadratic optimal control deals with find-
ing an input function that minimizes a quadratic
cost functional for a given linear system. The
cost functional is the integral of a quadratic form
in the input and state variable of the system. If
the integral is taken over, a finite time interval
the problem is called a finite-horizon problem,
and the optimal cost and optimal state feedback
gain can be expressed in terms of the solution of
an associated Riccati differential equation. If we
integrate over an infinite time interval, the prob-
lem is called an infinite-horizon problem. The
optimal cost and optimal feedback gain for the
free endpoint problem can be found in terms of
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the smallest nonnegative real symmetric solution
of the associated algebraic Riccati equation. For
the zero endpoint problem, these are given in
terms of the largest real symmetric solution of the
algebraic Riccati equation.
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Recommended Reading

The linear quadratic regulator problem and the
Riccati equation were introduced by R.E. Kalman
in the early 1960s (see Kalman 1960). Extensive
treatments of the problem can be found in the
textbooks Brockett (1969), Kwakernaak and
Sivan (1972), and Anderson and Moore (1971).
For a detailed study of the Riccati differential
equation and the algebraic Riccati equation, we
refer to Wonham (1968). Extensions of the linear
quadratic regulator problem to linear quadratic
optimization problems, where the integrand
of the cost functional is a possibly indefinite
quadratic function of the state and input variable,
were studied in the classical paper of Willems
(1971). A further reference for the geometric
classification of all real symmetric solutions
of the algebraic Riccati equation is Coppel
(1974). For the question what level of system
performance can be obtained if, in the cost
functional, the weighting matrix of the control
input is singular or nearly singular leading to
singular and nearly singular linear quadratic
optimal control problems and “cheap control”
problems, we refer to Kwakernaak and Sivan
(1972). An early reference for a discussion on
the singular problem is the work of Clements and
Anderson (1978). More details can be found
in Willems (1971) and Schumacher (1983).
In singular problems, in general one allows
for distributions as inputs. This approach was
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worked out in detail in Hautus and Silverman
(1983) and Willems et al. (1986). For a more
recent reference, including an extensive list
of references, we refer to the textbook of
Trentelman et al. (2001).
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Abstract
As in optimal control theory, linear quadratic

(LQ) differential games (DG) can be solved,
even in high dimension, via a Riccati equation.
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However, contrary to the control case, existence
of the solution of the Riccati equation is not
necessary for the existence of a closed-loop
saddle point. One may “survive” a particular,
nongeneric, type of conjugate point. An
important application of LQDGs is the so-called
H-optimal control, appearing in the theory of
robust control.

Keywords

Differential games; Finite horizon; H-infinity
control; Infinite horizon

Perfect State Measurement

Linear quadratic differential games are a spe-
cial case of differential games (DG). See the
article » Pursuit-Evasion Games and Zero-Sum
Two-Person Differential Games. They were first
investigated by Ho et al. (1965), in the context
of a linearized pursuit-evasion game. This sub-
section is based upon Bernhard (1979, 1980). A
linear quadratic DG is defined as
X =Ax+ Bu+ Dv, x(t) = xo,

with x € R, u € R", v € RY u() €
L?([0, T],R™), v(-) € L*([0, T],RY). Final time
T is given, there is no terminal constraint, and
using the notation x’ Kx = ||x||%,

T
J(to, xo3u(), v()) = (Tl + / ('l v

0 Si 8\ /y
St R 0 ||u]dr.
Sy 0 -/ \V

The matrices of appropriate dimensions, 4, B, D,
0, S, R, and I", may all be measurable functions
of time. R and I must be positive definite with
inverses bounded away from zero. To get the most
complete results available, we assume also that K
and Q are nonnegative definite, although this is
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only necessary for some of the following results.
Detailed results without that assumption were
obtained by Zhang (2005) and Delfour (2005).
We chose to set the cross term in uv in the
criterion null; this is to simplify the results and
is not necessary. This problem satisfies Isaacs’
condition (see article DG) even with nonzero
such cross terms.

Using the change of control variables
u=1i—R'Sx, v="70+T""Sx,
yields a DG with the same structure, with mod-
ified matrices A and Q, but without the cross
terms in xu and xv. (This extends to the case with
nonzero cross terms in #v.) Thus, without loss of
generality, we will proceed with (S; S2) = (0 0).

The existence of open-loop and closed-loop
solutions to that game is ruled by two Riccati
equations for symmetric matrices P and P*,
respectively, and by a pair of canonical equations
that we shall see later:

P+ PA+ A'P— PBR™'B'P + PDI"'D'P

+0=0,P(T)=K, (1)
P*+ P*A+ AP+ P*DI'D'P*+0=0,
P*(T)=K. 2)

When both Riccati equations have a solution over
[t, T], it holds that in the partial ordering of
definiteness,

0<P(t) < P*(1).

When the saddle point exists, it is represented by
the state feedback strategies

u=¢*(t,x) =—R'B'P(t)x,
v=y*(t,x)=T"'D'P(t)x. (3)

The control functions generated by this pair of
feedbacks will be noted u(-) and 0(-).

Theorem 1
* A sufficient condition for the existence of
a closed-loop saddle point, then given by
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(p*,¥*) in (3), is that Eq. (1) has a solution
P(t) defined over [ty, T].

* A necessary and sufficient condition for the
existence of an open-loop saddle point is that
Eq.(2) has a solution over [ty, T (and then so
does (1)). In that case, the pairs (a(-), 0()),
@(-), v*), and (¢*, ¥*) are saddle points.

* A necessary and sufficient condition for
(¢*,0(+)) to be a saddle point is that Eq. (1)
has a solution over [ty, T].

e In all cases where a saddle point exists, the
Value function is V(t, x) = ||x||%>(t).

However, Eq. (1) may fail to have a solution and
a closed-loop saddle point still exists. The precise
necessary condition is as follows: let X(-) and
Y(-) be two square matrix function solutions of
the canonical equations

(X) _ ( A —BR7'B' + DF‘ID’) (X)
Y -0 —A! Y]
(i) = ()

The matrix P(¢) exists for t € [tg, T] if and
only if X(¢) is invertible over that range, and
then, P(t) = Y(t)X'(¢). Assume that the rank
of X(t) is piecewise constant, and let XT(z)
denote the pseudo-inverse of X (z) and R(X(¢))
its range.

Theorem 2 A necessary and sufficient condition
for a closed-loop saddle point to exist, which is
then given by (3) with P(t) = Y(@)X'(t), is
that

1. xo € R(X(t)).

2. For almost all t €
3.Vt et T, Y()XT () = 0.

[to. T], R(D(r)) C

In a case where X(¢) is only singular at an
isolated instant ¢* (then conditions 1 and 2 above
are automatically satisfied), called a conjugate
point but where YX~! remains positive defi-
nite on both sides of it, the conjugate point is
called even. The feedback gain F = —R™'B'P
diverges upon reaching z*, but on a trajectory
generated by this feedback, the control u(t) =
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F(¢)x(¢) remains finite. (See an example in Bern-
hard 1979.)

If T = oo, with all system and payoff matrices
constant and Q > 0, Mageirou (1976) has shown
that if the algebraic Riccati equation obtained by
setting P = 0in (1) admits a positive definite
solution P, the game has a Value ||x||%, but (3)
may not be a saddle point. (1* may not be an
equilibrium strategy.)

H,-Optimal Control

This subsection is entirely based upon Bagar and
Bernhard (1995). It deals with imperfect state
measurement, using Bernhard’s nonlinear min-
imax certainty equivalence principle (Bernhard
and Rapaport 1996).

Several problems of robust control may be
brought to the following one: a linear, time-
invariant system with two inputs (control input
u € R™ and disturbance input w € R%) and two
outputs (measured output y € R? and controlled
output z € RY) is given. One wishes to con-
trol the system with a nonanticipative controller
u(-) = ¢(y(-)) in order to minimize the induced
linear operator norm between spaces of square-
integrable functions, of the resulting operator
w() = z().

It turns out that the problem which has a
tractable solution is a kind of dual one: given
a positive number Y, is it possible to make this
norm no larger than y? The answer to this ques-
tion is yes if and only if

Iz = y* Iw@*) dr <0.

w(-)eL? J—oo

inf su
D p

We shall extend somewhat this classical prob-
lem by allowing either a time variable system,
with a finite horizon T, or a time-invariant system
with an infinite horizon.

The dynamical system is

X = Ax + Bu+ Dw, “4)
y=Cx+ Ew, 5)
z=Hx + Gu. (6)
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We let

Q- (2)
(g) (HG) = (g? ;) ,

and we assume that E is onto, & N > 0, and G
is one-to-one < R > 0.

Finite Horizon

In this part, we consider a time-varying system,
with all matrix functions measurable. Since the
state is not known exactly, we assume that the
initial state is not known either. The issue is
therefore to decide whether the criterion

T
I, = XD + / (O = YW

2012
dr —y~llxoll,

(N
may be kept finite and with which strategy. Let

y* = inf{y | inf

su
ey P

xo€ER” ,W(')GLZ

J, < oo}.

Theorem 3 y < y* if and only if the following

three conditions are satisfied:

1. The following Riccati equation has a solution
over [ty, T):

—P =PA+A'P—(PB+S)R™Y(B'P+5")
+y2PMP+Q. P(T)=K. (8)

The following Riccati equation has a solution

over [to, T):

Y =AY+ YA — (ZC'+L)N(CZ+L"
+YTPEQE+ M, Z() = To. 9)

The following spectral radius condition is sat-
isfied:

Vielo.T], p(E@OP@) <y*. (10)
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In that case, the optimal controller ensuring
infy sup, ., Jy, is given by a “worst case state”
X(-) satisfying X(0) = 0 and

x=[A— BR™'(B'P+S")+y2D(D'P+L")|
F+U—y2ZP) N (ZC'+L)(y—CR), (11)

and the certainty equivalent controller

¢*"(y()(@W) =R (B'P + SHx(1). (12)
Infinite Horizon

The infinite horizon case is the traditional Hyo-
optimal control problem reformulated in a state
space setting. We let all matrices defining the
system be constant. We take the integral in (7)
from —oo to 4+ 00, with no initial or terminal term
of course. We add the hypothesis that the pairs
(A, B) and (A, D) are stabilizable and the pairs
(C, A) and (H, A) detectable. Then, the theorem
is as follows:

Theoremd4 y < y* if and only if the fol-
lowing conditions are satisfied: The algebraic
Riccati equations obtained by placing P 0
and ¥ = 0 in (8) and (9) have positive defi-
nite solutions, which satisfy the spectral radius
condition (10). The optimal controller is given
by Egs.(11) and (12), where P and X are the
minimal positive definite solutions of the alge-
braic Riccati equations, which can be obtained
as the limit of the solutions of the differential
equations as t — —oo for P and t — o0

for X.

Conclusion

The similarity of the Hso-optimal control theory
with the LQG, stochastic, theory is in many
respects striking, as is the duality observation
control. Yet, the “observer” of H,-optimal con-
trol does not arise from some estimation the-
ory but from the analysis of a “worst case.”
The best explanation might be in the duality of
the ordinary, or (4, %), algebra with the idem-
potent (max, +) algebra (see Bernhard 1996).
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The complete theory of Hso-optimal control in
that perspective has yet to be written.
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Abstract

Feedback is a fundamental mechanism in nature
and central in the control of systems. The state
contains important system information, and ap-
plying a control law that uses state information is
a very powerful control policy. To illustrate the
effect of feedback in linear systems, continuous-
time and discrete-time state variable descriptions
are used: these allow one to write explicitly the
resulting closed-loop descriptions and to study
the effect of feedback on the eigenvalues of the
closed-loop system. The eigenvalue assignment
problem is also discussed.

Keywords

Feedback; Linear systems; State feedback; State
variables

Introduction

Feedback is a fundamental mechanism arising in
nature. Feedback is also common in engineered
systems and is essential in the automatic control
of dynamic processes with uncertainties in their
model descriptions and in their interactions with
the environment. When feedback is used, the
actual values of the system variables are sensed,
fed back, and used to control the system. That is,
a control law decision process is based not only
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on predictions on the system behavior derived
from a process model (as in open-loop control)
but also on information about the actual behavior
(closed-loop feedback control).

Linear Continuous-Time Systems

Consider, to begin with, time-invariant systems
described by the state variable description

X = Ax + Bu, y=Cx+ Du, (1)
in which x(¢) € R” is the state, u(t) € R™ is the
input, y(¢) € RP? is the output, and A € R"*",
B e R C e RP*", D e RP*™ are constant

matrices. In this case, the linear state feedback
(Isf) control law is selected as

u(t) = Fx(@) +r(), 2)

where F € R"™ " is the constant gain matrix and
r(t) € R™ is a new external input.

Substituting (2) into (1) yields the closed-loop
state variable description, namely,

% = (A+ BF)x + Br,
y = (C + DF)x + Dr.

3

Appropriately selecting F, primarily to modify
A + BF, one affects and improves the behavior
of the system.

A number of comments are in order:

— Feeding back the information from the state x
of the system is expected to be, and it is, an ef-
fective way to alter the system behavior. This
is because knowledge of the (initial) state and
the input uniquely determines the system’s
future behavior and intuitively using the state
information should be a good way to control
the system, i.e., modifying its behavior.

— In a state feedback control law, the input u
can be any function of the state u = f(x,r),
not necessarily linear with constant gain F as
in (2). Typically given (1) and (2) is selected
as the linear state feedback primarily because
the resulting closed-loop description (3) is
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also a linear time-invariant system. However,
depending on the application needs, the state
feedback control law (2) can be more com-
plex.

Although the Egs. (3) that describe the closed-
loop behavior are different from Eq. (1), this
does not imply that the system parameters
have changed. The way feedback control acts
is not by actually changing the system pa-
rameters A, B, C, D but by changing u
so that closed-loop system behaves as if the
parameters were changed. When one applies,
say, a step via r(¢) in the closed-loop system,
then u(¢) in (2) is modified appropriately so
the system behaves in a desired way.

It is possible to implement « in (2) as an open-
loop control law, namely,

i(s) = F[sI — (A + BF)]"'x(0)

+[I — F(sI — A)7'B]7'7(s) (4)

where Laplace transforms have been used for
notational convenience. Equation (4) produces
exactly the same input as Eq.(2), but it has
the serious disadvantage that it is based ex-
clusively on prior knowledge on the system
(notably x(0) and parameters A, B). As a
result, when there are uncertainties (and there
always are), the open-loop control law (4)
may fail, while the closed-loop control law (2)
succeeds.
Analogous definitions exist for continuous-
time, time-varying systems described by the
equations
Xx=At)x + B{t)u, y=C@)x+ D(@)u
(&)

In this framework, the control law is described
by

u=F(t)x +r, (6)

and the resulting closed-loop system is
X =[A(@) + B(@)F(t)]x + B(t)r,

(N
y =[C(t)+ D@)F(t)]x + D(@)r.
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Linear Discrete-Time Systems

For the discrete-time, time-invariant case, the
system description is

x(k+1) = Ax(k)+ Bu(k), y =Cx(k)+ Du(k),
(8)

the linear state feedback control law is defined as
u(k) = Fx(k) + r(k), )
and the closed-loop system is described by

x(k +1) = (A + BF)x(k) + Br(k),
y(k) = (C + DF)x(k) + Dr(k).

Similarly, for the discrete-time, time-varying case

x(k +1) = A(k)x (k) + Bl)u(k),

11)
y(k) = C(k)x (k) + D(k)u(k),
the control law is defined as
u(k) = F(k)x(k) + r(k), (12)

and the resulting closed-loop system is

x(k + 1)=[A(k)+ B(k)F(k)]x(k)+ B(k)r(k),

y(k)=[C(k) + D(k)F(k)]x (k) + D(k)r (k).
(13)

Selecting the Gain F

F (or F(t)) is selected so that the closed-loop
system has certain desirable properties. Stability
is of course of major importance. Many control
problems are addressed using linear state feed-
back including tracking and regulation, diagonal
decoupling, and disturbance rejection. Here we
shall focus on stability. Stability can be achieved
under appropriate controllability assumptions. In
the time-varying case, one way to determine
such stabilizing F(t) (or F(k)) is to use results
from the optimal linear quadratic regulator (LQR)
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theory which yields the “best” F(¢) (or F(k)) in
some sense.

In the time-invariant case, one can also use a
LQR formulation, but here stabilization is equiva-
lent to the problem of assigning the n eigenvalues
of (A 4+ BF) in the stable region of the complex
plane. If A;,i = 1,...,n, are the eigenvalues of
A + BF, then F should be chosen so that, for all
i = 1,...,n, the real part of A;, Re(4;) < 0in
the continuous-time case, and the magnitude of
Ai, |Ai| < 1 in the discrete-time case. Eigenvalue
assignment is therefore an important problem,
which is discussed hereafter.

Eigenvalue Assignment Problem

For continuous-time and discrete-time, time-
invariant systems, the eigenvalue assignment
problem can be posed as follows. Given matrices
A e R and B € R, find F € R™" such
that the eigenvalues of A 4+ BF are assigned to
arbitrary, complex conjugate, locations. Note that
the characteristic polynomial of A + BF, namely,
det(s/ — (A + BF)), has real -coefficients,
which implies that any complex eigenvalue is
part of a pair of complex conjugate eigenvalues.

Theorem 1 The eigenvalue assignment problem
has a solution if and only if the pair (A, B) is
reachable.

For single-input systems, that is, for systems with
m = 1, the eigenvalue assignment problem has
a simple solution, as illustrated in the following
statement:

Proposition 1 Consider system (1) or (8). Let
m = 1. Assume that

rank R = n,

where
R =[B,AB,... A" 'B],

that is, the system is reachable. Let p(s) be a
desired monic polynomial of degree n. Then there
is a (unique) linear state feedback gain matrix F
such that the characteristic polynomial of A+ BF
is equal to p(s). Such linear state feedback gain
matrix F is given by
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F=-[0---01]R"p(4). (19

Proposition 1 provides a constructive way to
assign the characteristic polynomial, hence the
eigenvalues, of the matrix A + BF . Note that, for
low order systems, i.e., if n = 2 or n = 3, it may
be convenient to compute directly the character-
istic polynomial of A + BF and then compute
F using the principle of identity of polynomials,
i.e., F should be such that the coefficients of
the polynomials det(s/ — (A + BF)) and p(s)
coincide. Equation (14) is known as Ackermann’s
formula.

The result summarized in Proposition 1 can be
extended to multi-input systems.

Proposition 2 Consider system (1) or (8). Sup-
pose
rank R = n,

that is, the system is reachable. Let p(s) be a
monic polynomial of degree n. Then there is a
linear state feedback gain matrix F such that the
characteristic polynomial of A + BF is equal

to p(s).

Note that in the case m > 1 the linear state
feedback gain matrix F assigning the character-
istic polynomial of the matrix A + BF is not
unique. To compute such a gain matrix, one may
exploit the following fact:

Lemma 1 Consider system (1). Suppose
rank R = n,

that is, the system is reachable. Let b; be a
nonzero column of the matrix B. Then there is a
matrix G such that the single-input system

X =(A+ BG)x + b;jv (15)

is reachable. Similar results are true for discrete-
time systems (8).

Exploiting Lemma 1, it is possible to design a
matrix F such that the characteristic polynomial
of A 4+ BF equals some monic polynomial p(s)
of degree n in two steps. First, we compute a ma-
trix G such that the system (15) is reachable, and

Linear State Feedback

then we use Ackermann’s formula to compute a
linear state feedback gain matrix F such that the
characteristic polynomial of

A+ BG + b F

is p(s). Note also that if (A, B) is reachable,
under mild conditions on A, there exists vector
g so that (A, Bg) is reachable.

There are many other methods to assign the
eigenvalues which may be found in the references
below.

Transfer Functions

If Hp(s) is the transfer function matrix of the
closed-loop system (3), it is of interest to find its
relation to the open-loop transfer function H(s)
of (1). It can be shown that

Hp(s) = H(s)[I — F(sI — A)~'B]™!
= H(s)[F(sI —(A+ BF))"'B + 1]

In the single-input, single-output case, it can
be readily shown that the linear state feedback
control law (2) only changes the coefficients
of the denominator polynomial in the transfer
function (this result is also true in the multi-
input, multi-output case). Therefore, if any of
the (stable) zeros of H(s) need to be changed,
the only way to accomplish this via linear state
feedback is by pole-zero cancelation (assigning
closed-loop poles at the open-loop zero locations;
in the MIMO case, closed-loop eigenvalue direc-
tions also need to be assigned for cancelations to
take place). Note that it is impossible to change
the unstable zeros of H(s) under stability, since
they would have to be canceled with unstable
poles.

Observer-Based Dynamic Controllers
When the state x is not available for feedback, an

asymptotic estimator (a Luenberger observer) is
typically used to estimate the state. The estimate
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X of the state, instead of the actual x, is then used
in (2) to control the system, in what is known as
the certainty equivalence architecture.

Summary

The notion of state feedback for linear systems
has been discussed. It has been shown that state
feedback modifies the closed-loop behavior. The
related problem of eigenvalue assignment has
been discussed, and its connection with the reach-
ability (controllability) properties of the system
has been highlighted. The class of feedback laws
considered is the simplest possible one. If addi-
tional constraints on the input signal, or on the
closed-loop performance, are imposed, then one
perhaps has to resort to nonlinear state feedback,
for example, if the input signal is bounded in
amplitude or rate. If constraints such as decou-
pling of the systems into m noninteracting sub-
systems or tracking under asymptotic stability are
imposed, then dynamic state feedback may be
necessary.
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Linear Systems: Continuous-Time
Impulse Response Descriptions
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Abstract

An important input—output description of a linear
continuous-time system is its impulse response,
which is the response Ah(z,7) to an impulse ap-
plied at time 7. In time-invariant systems that are
also causal and at rest at time zero, the impulse
response is /(t,0) and its Laplace transform is
the transfer function of the system. Expressions
for h(z, T) when the system is described by state-
variable equations are also derived.

Keywords

Continuous-time; Impulse response descriptions;
Linear systems; Time-invariant; Time-varying;
Transfer function descriptions

Introduction

Consider linear continuous-time dynamical sys-
tems, the input—output behavior of which can
be described by an integral representation of the
form

+o00

y(@) = H(t. t)u(t)dt (1)

—00

where ¢, T € R, the outputis y(¢) € R?, the input
isu(t) € R, and H : RxR — R”*" is assumed
to be integrable. For instance, any system in state-
variable form
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X =A@{t)x + B(t)u
(2)
y=C(t)x + D(t)u
or
X = Ax + Bu
(3)
y=Cx+ Du

also has a representation of the form (1) as we
shall see below.

Note that it is assumed that at T = —oo, the
system is at rest. H(t, t) is the impulse response
matrix of the system (1). To explain, consider first
a single-input single-output system:

+o00
y(t) = /_ W ou@dr, @)

00

and recall that if §(7—7) denotes an impulse (delta
or Dirac) function applied at time ¢ = #, then for
a function f(¢),

+o00

f) = F(D)8( —)dr. 5)

If now in (4) u(t) = 8(f — 1), that is, an impulse
input is applied at T = £, then the output y; (¢) is

yi(t) = h(t.1),

i.e., h(t, 1) is the output at time  when an impulse
is applied at the input at time 7. So in (4), (¢, 7)
is the response at time ¢ to an impulse applied
at time 7. Clearly if the impulse response h(t, t)
is known, the response to any input u(¢) can be
derived via (4), and so Ah(¢, T) is an input/output
description of the system.

Equation (1) is a generalization of (4) for the
multi-input, multi-output case. If we let all the
components of u(7) in (1) be zero except the jth
component, then

+o00
yi(t) = /_ hij(t,Du;(r)dr, (6)

00

hij(t, t) denotes the response of the ith compo-
nent of the output of system (1) at time ¢ due to
an impulse applied to the jth component of the

Linear Systems: Continuous-Time Impulse Response Descriptions

input at time t with all remaining components
of the input being zero. H(t,7) = [h;;(t,7)] is
called the impulse response matrix of the system.

If it is known that system (1) is causal, then
the output will be zero before an input is applied.
Therefore,

H(t,7) =0, fort<r, @)

and (1) becomes

(1) :/_ H(t,")u(r)dr. (8)

Rewrite (8) as
y(t) = /0 H(t,r)u(r)dr+/H(t,z)u(f)df
= y(t) +/ H(t, t)u(r)dr. 9)

If (1) is at rest at t = ¢ty (i.e., if u(z) = 0 for
t > to, then y(¢) = 0fort > t3), y(tp) = 0 and
(9) becomes

y(t) = /t H(, Du(r)dr. (10)

If in addition system (1) is time-invariant, then
H(t,r) = H(t — t,0) (also written as H(t —
7)) since only the elapsed time (¢ — ) from the
application of the impulse is important. Then (10)
becomes

y(t) = /Ot H(t —du(r)dr, t>0, (11)

where we chose #yp = 0 without loss of generality.
Equation (11) is the description for causal, time-
invariant systems, at rest at = 0.

Equation (11) is a convolution integral and
if we take the (one-sided or unilateral) Laplace
transform of both sides,

¥(s) = H(s)i(s), (12)
where y(s), u(s) are the Laplace transforms of
y(t), u(t) and H (s) is the Laplace transform of
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the impulse response H(¢). H (s) is the transfer
function matrix of the system. Note that the trans-
fer function of a linear, time-invariant system is
typically defined as the rational matrix H (s) that
satisfies (12) for any input and its corresponding
output assuming zero initial conditions, which is
of course consistent with the above analysis.

Connection to State-Variable
Descriptions

When a system is described by the state-variable
description (2), then

ﬂn=/XCM®mﬂBu>

+ D(t)3(t — ©v)]u(r)dr, (13)
where it was assumed that x(fp) = 0, i.e., the
system is at rest at ). Here ®(¢, 7) is the state
transition matrix of the system defined by the
Peano-Baker series:

t

Mmo=1+/AmMn
fo

T

+/A(‘L’1) /A(‘L’z)d‘[z dty+---;

fo fo

see » Linear Systems: Continuous-Time, Time—
Varying State Variable Descriptions.

Comparing (13) with (10), the impulse re-
sponse

H(t,1)= g(t)cb(t, 7)B(t)+D(t)8(t—7) ii
(14)

Similarly, when the system is time-invariant
and is described by (3),

y(t) = / [CeA"™™ B + D§(t — 1)Ju(r)d .
0 (15)
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where x(#y) = 0.
Comparing (15) with (11), the impulse re-
sponse

Ce=DB 4+ D§(t — t >,
Hi-71)=1"° e t::

(16)

or as it is commonly written (taking the time
when the impulse is applied to be zero, 7 = 0)

H(t) = B (17)

Ce’"B + D§(t) t >0,
t <O0.

Take now the (one-sided or unilateral) Laplace
transform of both sides in (17) to obtain

H(s)=C(sI—A)7'B+D, (18)

which is the transfer function matrix in terms
of the coefficient matrices in the state-variable
description (3). Note that (18) can also be derived
directly from (3) by assuming zero initial condi-
tions (x(0) = 0) and taking Laplace transform of
both sides.

Finally, it is easy to show that equivalent
state-variable descriptions give rise to the same
impulse responses.

Summary

The continuous-time impulse response is an
external, input—output description of linear,
continuous-time systems. When the system is
time-invariant, the Laplace transform of the
impulse response /(¢,0) (which is the output
response at time ¢ due to an impulse applied at
time zero with initial conditions taken to be zero)
is the transfer function of the system — another
very common input—output description. The
relationships with the state-variable descriptions
are shown.
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Recommended Reading

External or input—output descriptions such as the
impulse response and the transfer function (in
the time-invariant case) are described in several
textbooks below.
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Synonyms

LTI Systems

Abstract

Continuous-time processes that can be modeled
by linear differential equations with constant
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coefficients can also be described in a systematic
way in terms of state variable descriptions of
the form x(t) = Ax(t) + Bu(t), y(t) =
Cx(t)4+Du(t). The response of such systems due
to a given input and a set of initial conditions is
derived and expressed in terms of the variation of
constants formula. Equivalence of state variable
descriptions is also discussed.

Keywords

Continuous-time; Linear systems; State variable
descriptions; Time-invariant

Introduction

Linear, continuous-time systems are of great in-
terest because they model, exactly or approxi-
mately, the behavior over time of many practical
physical systems of interest. We are particularly
interested in systems, the behavior of which is de-
scribed by linear, ordinary differential equations
with constant coefficients.

Such descriptions can always be rewritten as a
set of first-order differential equations, typically
in the following convenient state variable form:

% = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t);
x(0) = xo, (D

where x (1), the state vector, is a column vector of
dimension n (x(¢) € R") and X(t) = % with
the derivative being taken element by element.
AeR™ BeR” CeRP DeRP"are
matrices with real entries (these are the constant
coefficients that make the system time invariant);
and u(t) € R™, y(t) € R? are the inputs and
outputs of the system. The vector differential
equation is the state equation and the algebraic
equation is the output equation.

The advantage of the above state variable
description is that for given input u(¢) and initial
condition x (0), its solution (state and output mo-
tions or trajectories) can be conveniently and sys-
tematically characterized. This is shown below.
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Deriving State Variable Descriptions

Description (1) may be derived directly, by mod-
eling the behavior of a linear, continuous-time,
time-invariant system, but more often it is de-
rived either from the linearization of a nonlinear
equation around an operating point or a trajectory
or from higher-order differential equations that
model the system’s behavior. The example below
illustrates the latter case.

7 ()

k u?)

Consider a spring-mass example, where a
mass m slides horizontally on a surface with
damping coefficient b due to friction and it is
attached to a wall by a linear spring of spring
constant k. If y(¢) denotes the distance of the
center of the mass from a position of rest of the
spring, by applying Newton’s law the following
second-order linear ordinary differential equation
with constant coefficients is obtained:

my(t) +by@) + ky(t) =u@).  (2)

dy(1)

Here y(t1) = =;~. The motion of the mass
y(t),t > 01is uniquely determined if the applied
force u(t), t > 01is known and at ¢ = 0 the initial
position y(0) = yg and initial velocity y (0) = y;
are given. To obtain a state variable description,
introduce the state variables x; and x, as

xi(t) = y(t), xa(t) = y(¢)

to obtain the set of first-order differential equa-
tions mxy(t) + bxa(t) + kxi1(t) = u(t) and
X(t) = x,(t) which can be rewritten in the form
of (1)
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a0l 70 1 7[x0 0
[;;(t)} = [—— ——} [xim} * H “(e)
3)

and

X2(2)

y(0) = [10] [xl(”]

with |:x1(0)j| = [y 0} as initial conditions. This
x2(0) Vi

is of the form (1) where x(#) is a 2-dimensional

column vector; A is a 2 x 2 matrix; B and

C are 2-dimensional column and row vectors,

respectively; and x (0) = xo.
Notes:

1. It is always possible to obtain a state variable
description which is equivalent to a given set
of higher-order differential equations

2. The choice of the state variables, here x; and
X2, is not unique. Different choices will lead
to different A, B, and C.

3. The number of the state variables is typically
equal to the order of the set of the higher-
order differential equations and equals the
number of initial conditions needed to derive
the unique solution; in the above example this
number is 2.

4. In time-invariant systems, it can be assumed
without loss of generality that the starting time
is # = 0 and so the initial conditions are taken
to be x(0) = xo.

Solving x = A(t)x; x(0) = x¢
Consider the homogeneous equation

¥ =A@)x; x(0) = xo 4
where x(t) = [x1(¢),...,x,(t)] is the state
vector of dimension # and A is an n X n matrix
with entries real numbers (i.e., 4 € R™").

Equation (4) is a special case of (1) where
there are no inputs and outputs, u and y. The
homogeneous vector differential equation (4) will
be solved first, and its solution will be used to find
the solution of (1).
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Solving (4) is an initial value problem. It
can be shown that there always exists a unique
solution ¢(¢) such that

@(t) = Ap(t):  ¢(0) = xo.

To find the unique solution, consider first the
one-dimensional case, namely,

y(@) =ay@): y(0)=yo
the unique solution of which is
y(@) =eyy, t>0.

The scalar exponential e
series form

can be expressed in a

1 1
"( 1+ ta+2t a +gt3a3+...)

= I

The generalization to the n xn matrix exponential
(A is n x n) is given by

1
—A%r 4 ...
2 + )

)

(=1, + Ar +

By analogy, let the solution to (4) be

(x(1) =)p(1) = e"'xg (©6)
It is a solution since if it is substituted into (4),
lAzt2 +...]x0
2

Agp(t)

¢(t) = [A+ At +

At
= Ae™'xy =

and ¢(0) = e4%xy = x, that is, it satisfies
the equation and the initial condition. Since the
solution of (4) is unique, (6) is the unique solution
of (4).

The solution (6) can be derived more formally
using the Peano-Baker series (see » Linear
Systems: Continuous-Time, Time-Varying State
Variable Descriptions), which in the present
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time-invariant case becomes the defining series
for the matrix exponential (5).

System Response

Based on the solution of the homogeneous equa-
tion (4), shown in (6), the solution of the state
equation in (1) can be shown to be

t
x(t) = eY'xo + / AT Bu(vydt.  (7)
0

The following properties for the matrix exponen-

tial e’ can be shown directly from the defining
series:
1. Ae? = e A,

2. ()Tl = e,
Equation (7) which is known as the variation
of constants formula can be derived as follows:
Consider x = Ax + Bu and let z(?)
e~ 4'x(t). Then x(t) = e?'z(t) and substituting

Aeiz(t) + e'z(t) = Ae?'z(t) + Bu(r)

or z(t) = e~ Bu(t) from which

z(t) — z(0) = /Ot e_ATBu(r)dr

or

e x(t) —x(0) = /t e " Bu(t)dt
0

or

t
x(t) = et xo + / e Bu(r)dt
0

which is the variation of constants formula (7).

Equation (7) is the sum of two parts, the state
response (when u(t) = 0 and the system is driven
only by the initial state conditions) and the input
response (when xo = 0 and the system is driven
only by the input u(¢)); this illustrates the linear
system principle of superposition.

If the output equation y(t) = Cx(t) + Du(t)
is considered, then in view of (7),
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t

y(t) = Cetxo+ / Ce "™ Bu(r)dt + Du(t)
0

(®)

t
= Ce’'x —1—/ [Cett—DB
0
+ D&t — 1)Ju(r)dt

The second expression involves the Dirac (or
impulse or delta) function §(¢), and it is derived
based on the basic property for §(¢), namely,

o= TS -0 St

It is clear that the matrix exponential e’ plays
a central role in determining the response of
a linear continuous-time, time-invariant system
described by (1).

Given A, e*" may be determined using several
methods including its defining series, diagonal-
ization of A using a similarity transformation
(PAP™"), the Cayley-Hamilton theorem, using
expressions involving the modes of the system
(e =""_, A;e*' when A has n distinct eigen-
values A;; A; = v;U; with v;, v; the right and left
eigenvectors of A that correspond to A; (V;v; =
1,i = jand %;v; = 0,i # j)), or using
Laplace transform (e = L7'[(s] — A)™']). See
references below for detailed algorithms.

Equivalent State Variable
Descriptions

Given

X=Ax+ Bu, y=Cx+ Du )

consider the new state vector X where

X = Px

with P a real nonsingular matrix. Substituting
x = P7'% in (9), we obtain

= ~)~c+1§u, y=éi—|—l§u, (10)
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where
A=PAP™', B=PB,C=CP™ ', D=D

The state variable descriptions (9) and (10)
are called equivalent and P is the equivalence
transformation. This transformation corresponds
to a change in the basis of the state space, which
is a vector space. Appropriately selecting P, one
can simplify the structure of A(= PAP~'); the
matrices A and A are called similar. When the
eigenvectors of A are all linearly independent
(this is the case, e.g., when all eigenvalues A; of
A are distinct), then P may be found so that A
is diagonal. When e“’ is to be determined, and
A = PAP~! = diag[A;] (4 and A4 have the same
eigenvalues), then

oAl = PT'APL _ p-l dip P~ 'diag[e™'] P.

Note that it can be easily shown that equiva-
lent state space representations give rise to the
same impulse response and transfer function (see

Linear Systems: Continuous-Time Impulse Re-
sponse Descriptions).

Summary

State variable descriptions for continuous-time
time-invariant systems are introduced and the
state and output responses to inputs and initial
conditions are derived. Equivalence of state vari-
able representations is also discussed.

Cross-References

Linear Systems: Continuous-Time Impulse Re-
sponse Descriptions

Linear Systems: Continuous-Time, Time- Vary-
ing State Variable Descriptions

Linear Systems: Discrete-Time, Time-Invariant
State Variable Descriptions
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Recommended Reading

The state variable description of systems received
wide acceptance in systems theory beginning in
the late 1950s. This was primarily due to the
work of R.E. Kalman and others in filtering
theory and quadratic control theory and to the
work of applied mathematicians concerned with
the stability theory of dynamical systems. For
comments and extensive references on some of
the early contributions in these areas, see Kailath
(1980) and Sontag (1990). The use of state vari-
able descriptions in systems and control opened
the way for the systematic study of systems with
multi-inputs and multi-outputs.
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Abstract

Continuous-time processes that can be modeled
by linear differential equations with time-varying
coefficients can be written in terms of state
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variable descriptions of the form x(t) =
A@)x(@) + B@)u@), y@) = C@)x(t) +
D(t)u(t). The response of such systems due
to a given input and initial conditions is derived
using the Peano-Baker series. Equivalence of
state variable descriptions is also discussed.

Keywords

Continuous-time; Linear systems; State variable
descriptions; Time-varying

Introduction

Dynamical processes that can be described or
approximated by linear high-order ordinary dif-
ferential equations with time-varying coefficients
can also be described, via a change of variables,
by state variable descriptions of the form

X() = A@)x(@) + B@)u(?); x(to) = xo

y(t) = C(@)x(t) + D()u(t),

(1)
where x(¢) (t € R, the set of reals) is a col-
umn vector of dimension n (x(¢) € R") and
A(t), B(t), C(t), D(t) are matrices with entries
functions of time ¢. A(t) = [a;; (¥)], aij(?) :
R — R. A(t) € R”" B(t) € R C(t) €
RP*" D(t) € RP*™. The input vector is u(t) €
R™ and the output vector is y(t) € RP”. The
vector differential equation in (1) is the state
equation, while the algebraic equation is the out-

put equation.
The advantage of the state variable description

(1) is that given an input u(z), ¢ = 0 and an
initial condition x(z)) = Xxo, the state trajec-
tory or motion for 1 = fy can be conveniently
characterized. To derive the expressions, we first
consider the homogenous state equation and the
corresponding initial value problem.

Solving x () = A(t)x(t); x(ty) = x9

Consider the homogenous equation with the ini-
tial condition
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x(r) = A()x():  x(to) = xo 2
where x(t) = [x1(2),...,x,(t)] is the state
(column) vector of dimension n and A(¢) is
an n X n matrix with entries functions of time
that take on values from the field of reals
(A e R™M),

Under certain assumptions on the entries
of A(t), a solution of (2) exists and it is
unique. These assumptions are satisfied, and a
solution exists and is unique in the case, for
example, when the entries of A(¢) are continuous
functions of time. In the following we make this
assumption.

To find the unique solution of (2), we use
the method of successive approximations which
when applied to

xX(@) = f@.x@), x@)=x (3
is described by

bo(t) = xo

Om(t) = x0+/f(r,¢m_1(r))dr, m=12,...

“

As m — o0, ¢,, converges to the unique solution
of (3), assuming the f satisfies certain condi-
tions.

Applying the method of successive approxi-
mations to (2) yields

$o(1) = xo

t

@@ZM+/A@MW

gbg(l) = Xo9 + / A(‘L’)d)l (‘L’)XQd‘L’

fo

t

¢Mﬂ=m+/AMWH@MMr

fo
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from which
t
¢m(t) = I+/A(‘L’1)d‘[1
to
t T1
—i—/A(rl)/A(tz)dtzdrl T
1o o
t T] Tm—1
+ [ [a@.. [ A
1o 1o o

dt,...dt | xo

When m — oo, and under the above continuity
assumptions on A(?), ¢, (¢) converges to the
unique solution of (2), i.e.,

(1) = D(t.10)X0 )

where

t

O(t,10) =1 +/A(‘L’1)d‘lfl

fo
t T]

+/A(‘L’1) /A(rz)drz dri + ...
fo fo

(6)

Note that ®(zy, 7)) = I and by differentiation it
can be seen that

P(t,10) = At)g(t,10). (7)

as expected, since (5) is the solution of (2). The
n x n matrix ®(¢, ty) is called the state transition
matrix of (2). The defining series (6) is called the
Peano-Baker series.

Note that when A(¢) = A, a constant matrix,
then (6) becomes

o0 k _ k
D1 =1+ 3 A LS (Ik' W g
k=1 :
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which is the defining series for the matrix expo-
nential e4¢~%) (see » Linear Systems: Continu-
ous-Time, Time-Invariant State Variable Descrip-
tions).

System Response

Based on the solution (5) of X = A(#)x(t), the
solution of the non-homogenous equation

X(1) = A@)x() + B()u(r);  x(t0) = x0 (9)

can be shown to be

t

®(t, 1) B(r)u(r)dr.
(10)

Equation (10) is the variation of constants
formula. This result can be shown via direct
substitution of (10) into (9); note that ¢(z) =
D(t9,t9)x0 = xo. That (10) is a solution can
also be shown using a change of variables in (9),
namely,

$(1) = Ot 10)x0 + /

fo

72(t) = P(tp,1)x(2).

Equation (10) is the sum of two parts, the state
response (when u(¢) = 0 and the system is driven
only by the initial state conditions) and the input
response (when xo = 0 and the system is driven
only by the input u(¢)); this illustrates the linear
system principle of superposition.

In view of (10), the output y(¢) (= C(t)x(t)+
D(t)u(?)) is

y(@) = C@)®(. 10)xo

+/C(t)<I>(t,r)B(r)u(r)dt + D(t)u(t)

= C(t)D(t,t9)xo + / [C()D(t,T)B(7)

fo

+D()é(t — 1)]u(r)dt

The second expression involves the Dirac (or
impulse or delta) function §(¢) and is derived
based on the basic property for §(¢), namely,
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+o00
) = / 5t —0) f(D)d,

where §(¢f — ) denotes an impulse applied at time
T=1.

Properties of the State Transition
Matrix @ (, ty)

In general it is difficult to determine ®(z, 7))
explicitly; however, ®(¢,f) may be readily
determined in a number of special cases including
the cases in which A(t) = A, A(¢) is diagonal,
A)A(r) = A()A(t).

Consider ¥ = A(t)x. We can derive
a number of important properties which
are described below. It can be shown that
given n linearly independent initial con-
ditions xp;, the corresponding n solutions
¢i(t) are also linearly independent. Let a
Sfundamental matrix V() of x = A(t)x
be an n X n matrix, the columns of which
are a set of linearly independent solutions
¢1(t),...,¢,(t). The state transition matrix
@ is the fundamental matrix determined from
solutions that correspond to the initial conditions
[1,0,0,..]", [0,1,0,...,0]",...]0,0,...,1]"
(recall that ®(#,t9) = I). The following are
properties of ®(z, ty):
() @(t.10) = W(t)¥~!(ty) with W(¢) any fun-

damental matrix.
(i1) ®(t,1p) is nonsingular for all ¢ and .
(iii)) ®(¢,7) = P(¢,0)P(0, T) (semigroup prop-
erty).

(iv) [@(,10)]7" = @(t0,1).

In the special case of time-invariant systems
and X = Ax, the above properties can be written
in terms of the matrix exponential since

D(1, 1) = e,


http://dx.doi.org/10.1007/978-1-4471-5058-9_186
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Equivalence of State Variable
Descriptions

Given the system

X = A(t)x + B(t)u
(11)
y = C(t)x + D(t)u

consider the new state vector X

X(t) = P(t)x(2)

where P~!(¢) exists and P and P! are continu-
ous. Then the system

X =A% + B(t)u
y =C()X + D(t)u
where
A@t) = [P()A@) + PP (1)
B(t) = P(1)B(1)
Ct)y=C@t)P7\(r)
D(t) = D(r)

is equivalent to (1). It can be easily shown that
equivalent descriptions give rise to the same im-
pulse responses.

Summary

State variable descriptions for continuous-time
time-varying systems were introduced and the
state and output responses to inputs and initial
conditions were derived. The equivalence of state
variable representations was also discussed.

Cross-References

Linear Systems: Continuous-Time, Time-In-
variant State Variable Descriptions
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Linear Systems: Continuous-Time Impulse Re-
sponse Descriptions

Linear Systems: Discrete-Time, Time-Varying,
State Variable Descriptions

Recommended Reading

Additional information regarding the time-
varying case may be found in Brockett (1970),
Rugh (1996), and Antsaklis and Michel (2006).
For historical comments and extensive references
on some of the early contributions, see Sontag
(1990) and Kailath (1980).
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Linear Systems: Discrete-Time
Impulse Response Descriptions

Panos J. Antsaklis
Department of Electrical Engineering, University
of Notre Dame, Notre Dame, IN, USA

Abstract

An important input-output description of a
linear discrete-time system is its (discrete-time)
impulse response (or pulse response), which
is the response h(k, ko) to a discrete impulse
applied at time ko. In time-invariant systems
that are also causal and at rest at time zero, the
impulse response is i (k, 0), and its z-transform is
the transfer function of the system. Expressions
for h(k, ko) when the system is described by state
variable equations are derived.
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Introduction

Consider linear, discrete-time dynamical systems
that can be described by

+o00

y(ky =Y H(k hu(l) )

I=—00

where k, [ € Z is the set of integers, the output is
y(k) € R?, the inputis u(k) € R”,and H(k,!) :
Z.x7. — RP*™ For instance, any system that can
be written in state variable form

x(k + 1) = A(k)x (k) + B()u(k)
y(k) = C(k)x(k) + D(k)u(k)

or
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

can be represented by (1). Note that it is assumed
that at | = —oo, the system is at rest, i.e., no
energy is stored in the system at time —oo.

Define the discrete-time impulse (or unit
pulse) as

3

1 k=0
5(")_%0 k#0.keZ

and consider a single-input, single-output system:

+o00
vy =" hik,Du(l) )

I=—00

Ifu(l) =4 (i —[), that s, the input is a unit pulse
applied at [ = [, then the output is

yi(k) = hik, D),

Linear Systems: Discrete-Time Impulse Response Descriptions

ie., h(k, I ) is the output at time k when a unit
pulse is applied at time I.

So in (4) h(k,!) is the response at time k to a
discrete-time impulse (unit pulse) applied at time
[. h(k,l) is the discrete-time impulse response
of the system. Clearly if &(k,/) is known, the
response of the system to any input can be de-
termined via (4). So h(k,[l) is an input/output
description of the system.

Equation (1) is a generalization of (4) for the
multi-input, multi-output case. If we let all the
components of u(/) in (1) be zero except for
the jth component, then

+o00
vitk)y = D hijle, Du; (1) ()

[=—00

hij(k,I) denotes the response of the ith compo-
nent of the output of system (1) at time k due to a
discrete impulse applied to the jth component of
the input at time / with all remaining components
of the input being zero. H(k,!) = [h;;(k,[)] is
called the impulse response matrix of the system.

If it is known that system (1) is causal, then
the output will be zero before an input is applied.
Therefore,

Hk,1)=0, fork <I, (6)

and so when causality is present, (1) becomes

k

yly =Y H(k Du(). (7)

l=—00

A system described by (1) is at rest at k = kg
if u(k) = 0 for k = ko implies y(k) = 0 fork >
ko. For a system at rest at k = ko, (7) becomes

k
vy =Y Hk, Dul). ®)

I=ko

If system (1) is time-invariant, then H(k,l) =
H(k —1,0) (also written as H(k —[)) since only
the time elapsed (kK — /) from the application of
the discrete-time impulse is important. Then (8)
becomes
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k
vy = H(k—Dul), k=0, (9

=0

where we chose kg = 0 without loss of gener-
ality. Equation (9) is the description for casual,
time-invariant systems, at rest at k = 0.

Equation (9) is a convolution sum and if we
take the (one-sided or unilateral) z-transform of
both sides,

$(2) = H@)i(). (10)

where ¥(z), u(z) are the z-transforms of y(k),
u(k) and H (z) is the z-transform of the discrete-
time impulse response H (k). H (z) is the transfer
function matrix of the system. Note that the trans-
fer function of a linear, time-invariant system is
defined as the rational matrix H (z) that satisfies
(10) for any input and its corresponding output
assuming zero initial conditions.

Connections to State Variable
Descriptions

When a system is described by (2), then

k—1
yk)y =" Cly®k.1 + 1)B(u(l)
1=k
+D(kyuk), k> ko (11)

where it was assumed that x (ko) = 0, i.e., the
system is at rest at ko. Here ®(k,l) (= A(k —
1)--- A(l)) is the state transition matrix of the
system.

Comparing (11) with (8), the discrete-time
impulse response of the system is

Ck)o(k,l + 1)B() k=>1
H(k,I) = D(k) k=1
0 k<l

(12)

Similarly, when the system is time-invariant and
is described by (3),
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k—1
y(k) = > CAIDBu(l) + Duk), k > ko
I=ko
(13)
where x (ko) = 0 and
CA=UFDB k> ]
H(k,l) = H(k—=1) = D k=1
0 k<l
(14)

When / = 0 (taking the time when the discrete
impulse is applied to be zero, / = 0), the discrete-
time impulse response is

CA*'B k>0
H(k) = D k=0
0 k<0

(15)

Taking (one-sided or unilateral) z-transforms of
both sides in (15),

HGz) =C@El —A)'B+D (16)

which is the transfer function matrix in terms
of the coefficient matrices in the state variable
description (3). Note that (16) can also be derived
directly from (3) by assuming zero initial condi-
tions (x(0) = 0) and taking z-transforms of both
sides.

Finally, it is easy to show that equivalent
state variable descriptions give rise to the same
discrete-impulse response.

Summary

The discrete-time impulse response is an exter-
nal, input-output description of linear, discrete-
time systems. When the system is time-invariant,
the z-transform of the impulse response % (k, 0)
(which is the output response at time k due
to a discrete impulse applied at time zero with
initial conditions taken to be zero) is the transfer
function — another very common input-output
description. The relationships to the state variable
descriptions were shown.
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Recommended Reading
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the time-invariant case) are described in several
textbooks below.
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Linear Systems: Discrete-Time,
Time-Invariant State Variable
Descriptions

Panos J. Antsaklis
Department of Electrical Engineering, University
of Notre Dame, Notre Dame, IN, USA

Abstract

Discrete-time processes that can be modeled by
linear difference equations with constant coeffi-
cients can also be described in a systematic way
in terms of state variable descriptions of the form
x(k +1) = Ax(k) + Bu(k), y(k) = Cx(k) +
Du(k). The response of such systems due to a
given input and subject to initial conditions is de-
rived. Equivalence of state variable descriptions
is also discussed.
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Keywords
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Introduction

Discrete-time systems arise in a variety of ways
in the modeling process. There are systems that
are inherently defined only at discrete points in
time; examples include digital devices, inven-
tory systems, economic systems such as banking
where interest is calculated and added to savings
accounts at discrete time interval, etc. There are
also systems that describe continuous-time sys-
tems at discrete points in time; examples include
simulations of continuous processes using digital
computers and feedback control systems that em-
ploy digital controllers and give rise to sampled-
data systems.

Linear, discrete-time, time-invariant systems
can be modeled via state variable equations,
namely,

x(k +1) = Ax(k) + Bu(k); x(0) = xp

y(k) = Cx(k) + Du(k)

(D
where k € Z, the set of integers, the state vector
x € R”", ie., an n dimensional column vector;
A e R B e R C e RP", D e RP™
are matrices with entries of real numbers; and
y(k) € R?, u(k) € R™ the output and the input,
respectively. The vector difference equation in (1)
is the state equation and the algebraic equation is
the output equation.

Note that (1) could have been equivalently
written as x(/) = Ax(I — 1) + Bu(l — 1) where
[ =k + 1and x(I — 1) is an easily visualized
delayed version of x(I); this is a form more
common in signal processing (where a two-sided
or bilateral z-transform is used). In control where
we assume a known initial condition at time equal
to zero (and one-sided or unilateral z-transform is
taken), the form in (1) is common.

Similar to the continuous-time case, (1) can
be derived from a set of high-order difference
equations by introducing the state variables
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x(k) = [xi(k)....,x,(k)]". Description (1)
can also be derived from continuous-time system
descriptions by sampling (see » Sampled-Data
Systems).

The advantage of the above state variable
description is that given any input u(k) and initial
conditions x(0), its solution (state trajectory or
motion) can be conveniently and systematically
characterized. This is done below. We first con-
sider the solutions of the homogenous equation
x(k +1) = Ax (k).

Solvingx(k +1) = Ax(k); x(0) = x
Consider the homogenous equation

x(k+1)=Axk); x(0)=xo 2)
where k € Z7 is a nonnegative integer, x (k) =
[x1(k), ..., x,(k)]" is the state column vectors of
dimension 7, and A is an n X n matrix with entries
real numbers (i.e., A € R"™"),

Write (2) fork = 0,1,2,..., namely, x(1) =
Ax(0), x(2) = Ax(1) = A%x(0), ... to derive
the solution

x(k) = A*x(0), k=0 3)
This result can be shown formally by induction.
Note that A° = 1 by convention and so (3) also
satisfies the initial condition.

If the initial time were some (integer) k¢ in-
stead of zero, then the solution would be

x(k) = A ox(ko), k = ko 4)
The solution can be written as
x(k) = @(k, ko)x (ko)
= @(k — ko, O)X(k()), k>=ko 5)

where @(k, ko) is the state transition matrix and
it equals @(k, ko) = A Note that for time-
invariant systems, the initial time ko can always
be taken to be zero without loss of generality;
this is because the behavior depends only on the
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time elapsed (k — ko) and not on the actual initial
time ky.

In view of (3), it is clear that AX plays an
important role in the solutions of the difference
state equations that describe linear, discrete-
time, time-invariant systems; it is actually
analogous to the role e’ plays in the solutions
of the linear differential state equations that
describe linear, continuous-time, time-invariant
systems.

Notice that in (3), k = 0. This is so because
AF for k < 0 may not exist; this is the case,
for example, when A is a singular matrix — it has
at least one eigenvalue at the origin. In contrast,
e’ exists for any ¢ positive or negative. The
implication is that in discrete-time systems we
may not be able to determine uniquely the initial
past state x (0) from a current state value x (k); in
contrast, in continuous-time systems, it is always
possible to go backwards in time.

There are several methods to calculate A* that
mirror the methods to calculate e“!. One could,
for example, use similarity transformations, or
the z-transform. When all eigenvectors of A are
linearly independent (this is the case, e.g., when
all eigenvalues A; of A are distinct), then a simi-
larity transformation exists so that

PAP™' = A = diag[);].

Then

Ak = p71Akp = p! P.

Alternatively, using the z-transforms, A =
Z7Yz(zI — A)~'}. Also when the eigenvalues A;
of A are distinct, then

Ak = zn:A,-Af‘,
i=0

where A; = v;v; with v;, U; the right and left
eigenvectors of A that correspond to A;. Note that
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Ai)tf-‘ are the modes of the system. One could
also use the Cayley-Hamilton theorem to deter-
mine AF.

System Response

Consider the description (1). The response can
be easily derived by writing the equation for

k = 0,1,2,... and substituting or formally by
induction. It is
k—1 ‘
x(k) = Ax(0) + Y AUtV Bu(j), k>0
j=0
(6)
and
k—1
y(k) = CA*x(0) + Y C AU+ Bug(j)
j=0
+ Du(k), k>0

¥(0) = Cx(0) + Du(0). )

Note that (6) can also be written as

u(k — 1)
x(k)=A*x(0yHB, AB,--- , A*"'B] :
u(0)
®)
Clearly the response is the sum of two compo-
nents, one due to the initial condition (state re-
sponse) and one due to the input (input response).
This illustrates the linear system principle of
superposition.
If the initial time is ko and (4) is used, then

k—1
y(k) = C A ox(ko) + > C AUV Bu())
Jj=ko

+ Du(k), k > ko

y (ko) = Cx(ko) + Du(ko). )
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Equivalence of State Variable
Descriptions

Given description (1), consider the new state
vector X where

%(k) = Px(k)

with P € R"*" a real nonsingular matrix.
Substituting x = P! in (1), we obtain

F(k +1) = Ax(k) + Bu(k)

- - (10)
y(k) = Cx(k) + Du(k)

where
A=PAP™', B=PB,C=CP™ ', D=D

The state variable descriptions (1) and (9)
are called equivalent and P is the equivalence
transformation matrix. This transformation cor-
responds to a change in the basis of the state
space, which is a vector space. Appropriately se-
lecting P one can simplify the structure of A(=
PAP™Y). It can be easily shown that equivalent
description gives rise to the same discrete impulse
response and transfer function.

Summary

State variable descriptions for discrete-time,
time-invariant systems were introduced and the
state and output responses to inputs and initial
conditions were derived. The equivalence of state
variable representations was also discussed.

Cross-References

Linear Systems: Continuous-Time, Time-In-
variant State Variable Descriptions

Linear Systems: Discrete-Time Impulse Re-
sponse Descriptions

Linear Systems: Discrete-Time, Time-Varying,
State Variable Descriptions

Sampled-Data Systems
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Recommended Reading

The state variable descriptions received wide ac-
ceptance in systems theory beginning in the late
1950s. This was primarily due to the work of
R.E. Kalman. For historical comments and ex-
tensive references, see Kailath (1980). The use of
state variable descriptions in systems and control
opened the way for the systematic study of sys-
tems with multi-inputs and multi-outputs.
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Abstract

Discrete-time processes that can be modeled by
linear difference equations with time-varying co-
efficients can be written in terms of state variable
descriptions of the form x (k +1) = A(k)x (k) +
B(k)u(k), y(k) = C(k)x(k) + D(k)u(k). The
response of such systems due to a given input and
initial conditions is derived. Equivalence of state
variable descriptions is also discussed.
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Introduction

Discrete-time systems arise in a variety of ways
in the modeling process. There are systems that
are inherently defined only at discrete points in
time; examples include digital devices, inventory
systems, and economic systems such as banking
where interest is calculated and added to savings
accounts at discrete time interval. There are also
systems that describe continuous-time systems at
discrete points in time; examples include simula-
tions of continuous processes using digital com-
puters and feedback control systems that employ
digital controllers and give rise to sampled-data
systems.

Dynamical processes that can be described or
approximated by linear difference equations with
time-varying coefficients can also be described,
via a change of variables, by state variable
descriptions of the form

x(k + 1) = A(k)x (k) + B(k)u(k); x(ko) = xo

y(k) = C(k)x (k) + D(k)u(k). N

Above, the state vector x (k) (k € Z, the set of in-
tegers) is a column vector of dimension#n (x (k) €
R™); the output is y(k) € R™ and the input is
u(k) € R™. A(k), B(k), C(k), and D(k) are
matrices with entries functions of time k, A(k) =
laij (k)], aij (k) : Z — R (A(k) € R™", B(k) €
R™™ C(k) € RP*", D(k) € RP*™). The vector
difference equation in (1) is the state equation,
while the algebraic equation is the output equa-
tion. Note that in the time-invariant case, A(k) =
A,B(k) = B,C(k) = C,and D(k) = D.

The advantage of the state variable description
(1) is that given an input u(k), k > ko and an
initial condition x (ko) = Xy, the state trajectories
or motions for k > ko can be conveniently
characterized. To determine the expressions, we
first consider the homogeneous state equation
and the corresponding initial value problem.

Solving x (k + 1) = A(k)x (k);
x(k()) =X

Consider the homogenous equation
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x(k+1) = A(k)x(k);  x(ko) =x0  (2)

Note that

x(ko + 1) = A(ko)x (ko)
x(ko +2) = A(ko + 1)A(ko)x (ko)

x(k) = Ak — 1) A(k —2) - -~ Ako)x (ko)

k—1
=[] 40)xtko), k> ko

J=ko

This result can be shown formally by induction.
The solution of (2) is then

x(k) = ®(k. ko)x (ko). A3)

where ®(k, kg) is the state transition matrix of
(2) given by

k—1
O(k.ko)=[] A(). k> ko: ®(ko.ko) = 1.
Jj=ko

“)

Note that in the time-invariant case, ®(k, ko) =
Ak—ko,

System Response

Consider now the state equation in (1). It can be
easily shown that the solution is

x(k) = @(k, ko)x (ko)

k—1
+ ) ok, j + DBu(). k> ko.
Jj=ko
)
and the response y (k) of (1) is

y(k) = C(k)P(k. ko)x (ko)

k—1

+Ck) Y Ok, j + DBG)u())
J=ko

+ D(k)u(k), k > ko, (6)

Linear Systems: Discrete-Time, Time-Varying, State Variable Descriptions

and
y (ko) = C(ko)x (ko) + D(ko)u(ko).

Equation (5) is the sum of two parts, the state
response (when u(k) = 0 and the system is
driven only by the initial state conditions) and the
input response (when x (ko) = 0 and the system
is driven only by the input u(k)); this illustrates
the linear systems principle of superposition.

Equivalence of State Variable
Descriptions

Given (1), consider the new state vector ¥ where
%(k) = P(k)x (k)
where P! (k) exists. Then
Fk + 1) = A(k)Z (k) + B(k)u(k)
y(k) = C (k)% (k) + D (k)u(k)
where
A(k) = P(k + D)A(k) P~ (k),
B(k) = P(k + 1)B(k),
C(k) = C(k)P~" (k).
D(k) = D(k)

is equivalent to (1). It can be easily shown that
equivalent descriptions give rise to the same dis-
crete impulse responses.

Summary

State variable descriptions for linear discrete-
time time-varying systems were introduced and
the state and output responses to inputs and initial
conditions were derived. The equivalence of state
variable representations was also discussed.
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Recommended Reading

The state variable descriptions received wide ac-
ceptance in systems theory beginning in the late
1950s. This was primarily due to the work of
R.E. Kalman. For historical comments and ex-
tensive references, see Kailath (1980). The use of
state variable descriptions in systems and control
opened the way for the systematic study of sys-
tems with multi-inputs and multi-outputs.
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LMI Approach to Robust Control

Kang-Zhi Liu
Department of Electrical and Electronic
Engineering, Chiba University, Chiba, Japan

Abstract
In the analysis and design of robust control sys-

tems, LMI method plays a fundamental role. This
article gives a brief introduction to this topic.
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After the introduction of LMI, it is illustrated how
a control design problem is related with matrix
inequality. Then, two methods are explained on
how to transform a control problem characterized
by matrix inequalities to LMIs, which is the core
of the LMI approach. Based on this knowledge,
the LMI solutions to various kinds of robust
control problems are illustrated. Included are Hoo
and H, control, regional pole placement, and
gain-scheduled control.

Keywords

Gain-scheduled control; Ho and H, control;
LMI; Multi-objective control; Regional pole
placement; Robust control

Introduction of LMI

A matrix inequality in a form of

F(x)=Fo+ ) xF >0 (1)

i=1

is called an LMI (linear matrix inequality). Here,
X = [x1 -+ - Xp,] is the unknown vector and F; (i =
1,...,m)is a symmetric matrix. F(x) is an affine
function of x. The inequality means that F(x) is
positive definite.

LMI can be solved effectively by numeri-
cal algorithms such as the famous interior point
method (Nesterov and Nemirovskii 1994). MAT-
LAB has an LMI toolbox (Gahinet et al. 1995)
tailored for solving the related control problems.
Boyd et al. (1994) provide detailed theoretic
fundamentals of LMI. A comprehensive and up-
to-date treatment on the applications of LMI
in robust control is covered in Liu and Yao
(2014).

The notation He(A) = A + AT is used to
simplify the presentation of large matrices; A
is a matrix whose columns form the basis of
the kernel space of A, i.e., AA; = 0. Further,
A ® B denotes the Kronecker product of matrices
(A, B).


http://dx.doi.org/10.1007/978-1-4471-5058-9_189
http://dx.doi.org/10.1007/978-1-4471-5058-9_190
http://dx.doi.org/10.1007/978-1-4471-5058-9_195
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Control Problems and LMI

In control problems, it is often the case that
the variables are matrices. For example, the nec-
essary and sufficient condition for the stability
of a linear system x(¢) = Ax(t) is that there
exists a positive-definite matrix P satisfying the
inequality AP + PAT < 0. Although this is
different from the LMI of Eq. (1) in form, it can
be converted to Eq. (1) equivalently by using a
basis of symmetric matrices.

Next, consider the stabilization of system x =
AXx + Bu by a state feedback u = Fx. The closed-
loop system is X = (A + BF)x. Therefore, the
stability condition is that there exist a positive-
definite matrix P and a feedback gain matrix F
satisfying the inequality

(A+ BF)P + P(A+ BF)T <0. (2)

In this inequality, FP, the product of unknown
variables F' and P, appears. Such matrix in-
equality is called a bilinear matrix inequality, or
BMI for short. BMI problem is non-convex and
difficult to solve. There are mainly two methods
for transforming a BMI into an LMI: variable
elimination and variable change.

From BMI to LMI: Variable Elimination

The method of variable elimination is good at op-
timizing single-objective problems. This method
is based on the theorem below (Gahinet and
Apkarian 1994).

Lemma 1 Given real matrices E, F, G with G
being symmetric, the inequality

ETXF+FTXTE+G <0 (3)

has a solution X if and only if the following two
inequalities hold simultaneously

E!GE; <0, F[GFL <. 4)
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Application of this theorem to the previous
stabilization problem (2) yields (BT)JT_(AP +
PATY(BT), < 0, which is an LMI about P.
Once P is obtained, it may be substituted back
into the inequality (2) and solve for F.

For output feedback problems, it is often
needed to construct a new matrix from two given
matrices in solving a control problem with LMI
approach. The method is given by the following
lemma.

Lemma 2 Given two n-dimensional positive-
definite matrices X and Y, a 2n-dimensional
positive-definite matrix P satisfying the condi-

tions
P [Y *} pl [X *}
* % * %

can be constructed if and only if

X 1
|:I Y:| > 0. (5)
Factorizing Y — X" as FFT, a solution is given
by
Y F
p=lpr 7]

As an example of output feedback control design,
let us consider the stabilization of the plant

Xp = Axp + Bu, y =Cxp (6)
with a full-order dynamic controller

Xx = Axxg + BKy, u=Cgxg + DKy. (7

The closed-loop system is

Xp -4 Xp A= A+ BDxC BCkg
)'CK e XK T BKC AK ’
8

The stability condition is that the matrix inequal-

1ty

AIP+PA, <0 ©)
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has a solution P > 0. To apply the variable
elimination method, we need to put all coefficient
matrices of the controller into in a single matrix.
This is done as follows:

KC, K = [DK Cx

de=4+ Bx Ak

} (10)

in which A = diag(4,0), B = diag(B, 1),
and C = diag(C, I), all being block diagonal.
Then, based on Lemma 1, the stability condition
reduces to the existence of symmetric matrices
X, Y satisfying LMIs

(BT (AX + xA"Y(BT)L <0 (11)

CcHfya+4ATy)c, <o. (12)

Meanwhile, the positive definiteness of matrix P
is guaranteed by Eq. (5) in Lemma 2.

From BMI to LMI: Variable Change

We may also use the method of variable change
to transform a BMI into an LMI. This method is
good at multi-objective optimization.

The detail is as follows (Gahinet 1996). A
positive-definite matrix can always be factorized
as the quotient of two triangular matrices, i.e.,

PII; =II,, II; = [ASI(T (I):| BIPES |:(I) ;T:| .

(13)
P > 0 is guaranteed by Eq.(5) for a full-
order controller. Further, the matrices M, N are
computed from MNT = [ — XY. Consequently,
they are nonsingular.

An equivalent inequality HITAZ I, +
HZT A1} < 0 is obtained by multiplying Eq. (9)
with HlT and IT;. After a change of variables,
this inequality reduces to an LMI

[AX +BC A+ BDC + AT
He

0 YA +BC }<0' (14

The new variables A, B, C, D are set as

677
LMI Approach to Robust VA w
Control, Fig. 1 G
Generalized feedback
system

i

A= NAgkMT + NBxCX + YBCxMT
+Y(A 4+ BDxC)X

B = NBgx +YBDyg, C=CxMT
+DxCX, D= Dg.

(15)

The coefficient matrices of the controller become

Dx =D,Cx = (C—DgkCX)M™T,
Bx = N'(B - YBDg)

Ax = N7'(A = NBxCX —YBCxMT
—Y(A+ BDkC)X)M™T.

(16)

‘H, and H ,, Control

In system optimization, H, and Heo norms
are the most popular and effective performance
indices. H, norm of a transfer function is closely
related with the squared area of its impulse
response. So, a smaller H, norm implies a
faster response. Meanwhile, Ho, norm of a
transfer function is the largest magnitude of
its frequency response. Hence, for a transfer
function from the disturbance to the controlled
output, a smaller Ho, norm guarantees a better
disturbance attenuation.

Usually H, and Hoo optimization problems
are treated in the generalized feedback system of
Fig. 1. Here, the generalized plant G(s) includes
the nominal plant, the performance index, and the
weighting functions.

Let the generalized plant G(s) be

c _ Du D
G(s):[cj(sl—A) '[B Bz]+|:D; O‘Z}
(17)

Further, the stabilizability of (A, B;) and the
detectability of (C,, A) are assumed. The
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closed-loop transfer matrix from the disturbance
w to the performance output z is denoted by

H.(s) = Cc(sI —A)"'B. + D..  (18)
The condition for H,,(s) to have an H,; norm

less than y, i.e., |Hw|, < ¥, is that there are
symmetric matrices [P and W satisfying

[PACJFAZP CCT} 0 [

14 BCTIP’} o
C. -1

PB. P
(19)
as well as Tr(W) < y?. Here, Tr(W) denotes the
trace of matrix W, i.e., the sum of its diagonal
entries.
The LMI solution is derived via the appli-
cation of the variable change method, as given
below.

Theorem 1 Suppose that Dy, 0. The H,
control problem is solvable if and only if there
exist symmetric matrices X, Y, W and matrices A,

B, C satisfying the following LMIs:

AX + B,C 0 0
He AT + A YA+BC, 0 |<0
CiX + D;,C G 11
(20)
w Bl Bly
B X I | >0 Tr(W) <y2 21)
YB, I Y

When the LMI Eqgs. (20) and (21) have solutions,
an Hj controller is given by Eq.(16) by setting
D=0.

The Hoo control problem is to design a con-
troller so that || H,,||s < v. The starting point of
Hoo control is the famous bounded real lemma,
which states that H,(s) has an Hs norm less
than y if and only if there is a positive-definite
matrix P satisfying

AX + B,C A+ B,DC,
A YA + BGC,

0 0
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ATP +PA. PB. CT
BTP —yI DT |<0. (22
C. D. -yl

There are two kinds of LMI solutions to this con-
trol problem: one based on variable elimination
and one based on variable change.

To state the first solution, define the following
matrices first:

Ny =[C; Dyli, Ny =[B] DL]i. (23)

Theorem 2 The Ho control problem has a solu-
tion if and only if Eq. (5) and the following LMIs
have positive-definite solutions X, Y:

r AX +xAT xcT B
NI 0
|: 0 1:| ClX —]/1 Dll
B Dl, -yl
Ny O
x [ 0 1} <0 (24)
NT o1 [YA+ A"Y YB, Cf
[ i 1} BTY  —yl DI,
Ci Dy —yl
Ny O
X [ 0 I:| <0 (25)

Once a matrix P is computed according to
Lemma 2, Eq.(22) becomes an LMI and its
solution yields the controller.

The second solution is given below.

Theorem 3 The Hoo control problem has a solu-
tion if and only if Eq. (5) and the following LMI
have solutions X, Y and A, B, C, D :

B, + B,DD,,; 0
YB, + BD;; 0
0

—17

< 0. (26)

Ci1X + DxC Cy + D;yDCy Dyy + DoDDyy =51
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The controller is given by Eq. (16).

Regional Pole Placement

The location of system poles determines the re-
sponse quality. However, for uncertain systems
it is impossible to place the closed-loop poles at
fixed points because they move with the variation
of the plant. Nevertheless, it is still possible to
place the closed-loop poles inside a region. For
convex regions characterized by LMI, the design
method is mature and proven effective in practice.

Let us see how to characterize a convex region.
It is easy to know that a complex number z is
inside the disk of Fig. 2a if and only if it satisfies

|:—r z+cj|
_ < 0.
z+c¢c —r

Similarly, z is inside the sector of Fig.2b if and
only if

(z+2)sinf (z—2z)cosb -0
—(z—2)cosf (z+7)sinb :

Generally, the set of complex number z character-
ized by
D={zeC|L+zM+zM" <0} (27)

is called an LMI region, in which L is a symmet-
ric matrix. For the dynamic system

x = Ax, (28)
a Im b Tm
\ Re Re
0

A 4

Disk region

W

Sector region

LMI Approach to Robust Control, Fig.2 Typical exam-
ples of LMI region
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all of its poles are in the LMI region D if and only
if there is a positive-definite matrix P satisfying
the LMI

LOP+M® (AP)+ MT ® (AP)T < 0. (29)

This forms the basis for the regional pole
placement design.
For the disk region in Fig.2a, the condition
becomes
—rP cP+ AP
|:CP AR P } <0 GO
Meanwhile, for the sector region in Fig.2b, the
corresponding LMI is

(AP + PAT)sinf (AP —PAT)cosf -
—(AP —PAT)cosf (AP +PAT)sind :
(€2

Moreover, for a composite LMI region, such as
the intersection of the disk and the sector, the pole
placement is guaranteed by enforcing a common
solution P to all the corresponding LMISs.

In the pole placement design, only the variable
change method is applicable. For example, in
the nominal closed-loop system Eq. (8), the pole
placement condition is that the LMI

X I
sy vl

+tte (w3

AX+BC A+BDC <0
A YA+BC

(32)

and Eq.(5) are solvable (Chilali and Gahinet
1996).

For systems with norm-bounded parameter
uncertainty, a robust pole placement method is
provided in Chilali et al. (1999).

Multi-objective Control
It is noted that all of the preceding control designs

involve a positive-definite matrix P. Therefore, a
multi-objective control design is easily realized
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by enforcing a common solution P to the corre-
sponding matrix inequality conditions.

Gain-Scheduled Control

In practice, many nonlinear systems can be ex-
pressed as linear systems with state-dependent
coefficients in form, which is known as the LPV
(linear parameter-varying) form. For example, in
the model of a robot arm J6 + mglsinf = u,
if we define a parameter as p(¢) = sin 6/0,
then it can be written as an LPV model J6(¢) +
mglp(t)0(t) = u(t). In this class of systems,
when the parameter p(¢) is available online and
its range is finite, one may tune the controller
parameters based on the information of p(¢),
so as to achieve a higher performance. This is
referred to as gain-scheduled control.
Consider the following affine model:

X = A(p(1)x + Bi(p(t))d + Bx(p(1)u (33)

z=Ci(p(t))x + Dyd + Dipu  (34)

y = CG(p@)x + Dud (35)
where A(p) ~ Cy(p) are affine functions of
the time-varying parameter vector p(t), such as
A(p) = Ao+ Y_7_, pi(t)A;. The gain-scheduled
control is to impose, on the coefficient matrices
of the controller, the same affine structure about
p(t) suchas Ax(p) = Axo + > i, pi (1) Axk:.
To simplify the design, it is desirable that the
coefficient matrices of the closed-loop system
become affine functions of the parameter vector
p(t). This may be satisfied by restraining some
of the matrices of the controller to constant ones.
The easy-to-design structure of a gain-scheduled
controller is summarized as follows:
¢ Both B,(p) and C,(p) depend on p(t): (Bk,
Ck) must be constant matrices besides Dg =
0.
¢ Constant (B,, C3): All coefficient matrices of
the controller can be affine functions of the
parameter vector p(t).
e Constant B,: (Bg, Dg) must be constant
matrices.
e Constant Cy: (Cg, Dg) must be constant ma-
trices.

LMI Approach to Robust Control

When the structure of the gain-scheduled con-
troller is chosen as summarized above, the solv-
ability conditions reduce to those at all vertices
0; of the scheduling parameter vector p(¢). Fur-
ther, a multi-objective is achieved by imposing a
common solution PP to all LMI conditions. Some
concrete examples are illustrated below:

Hoo Norm Spec: The conditions of Theorem 3
are satisfied at all vertices 0; of the parameter
vector p(t).

Ho Norm Spec: The conditions of Theorem 1 are
satisfied at all vertices ¢; of the parameter
vector p(t).

Regional Pole Placement: Eq.(32) is satisfied at
all vertices 6; of the parameter vector p(¢) and
Eq. (5) holds.

Moreover, a different gain-scheduled method
is proposed in Packard (1994) for parametric
systems with norm-bounded uncertainty.

Summary and Future Direction

LMI approach is a very powerful method that can

be applied to solve most of the robust control

problems smartly and effectively. In particular, its
capability of handling the multi-objective control
problems is very attractive and proven useful in
industrial applications.

Further study is needed in the following direc-
tions.

* New method of variable change is desired
in order to deal with the robust performance
design of parametric systems.

* Almost all robust performance designs are
carried out based on sufficient conditions. It
is very important to discover less conservative
design methods.
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Stability

Hsiao-Dong Chiang
School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY, USA

Abstract

Energy functions, an extension of Lyapunov
functions, have been used in electric power
systems for several applications. An overview
of energy function theory for general nonlinear
autonomous dynamical systems along with
its applications to electric power systems is
presented. The issue of how to optimally
determine the critical level value of an energy
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function for estimating stability regions of
nonlinear dynamical systems is also addressed.

Keywords

Energy function; Lyapunov function theory; Op-
timal estimation; Power system stability; Stabil-
ity region

Introduction

Energy functions, an extension of the Lyapunov
functions, have been practically used in electric
power systems for several applications. A com-
prehensive energy function theory for general
nonlinear autonomous dynamical systems along
with its applications to electric power systems
will be summarized in this article.

We consider a general nonlinear autonomous
dynamical system described by the following
equation:

x(1) = f(x(0) (1)

We say a function V' : R" — R is an energy
function for the system (1) if the following three
conditions are satisfied (Chiang et al. 1987):
(E1): The derivative of the energy function V(x)
along any system trajectory x(¢) is non-
positive, i.e., V(x (7)) < 0.

If x(¢) is a nontrivial trajectory (i.e., x(¢)
is not an equilibrium point), then along the
nontrivial trajectory x(¢) the set {t € R :
V (x(t)) = 0} has measure zero in R.
That a trajectory x (z) has a bounded value
of V(x(t)) for t € RTimplies that the
trajectory x(¢) is also bounded.

Condition (E1) indicates that the value of an
energy function is nonincreasing along its trajec-
tory, but does not imply that the energy function
is strictly decreasing along any trajectory. Condi-
tions (E1) and (E2) imply that the energy function
is strictly decreasing along any system trajectory.
Property (E3) states that the energy function is
a proper map along any system trajectory but
need not be a proper map for the entire state
space. Obviously, an energy function may not be
a Lyapunov function.

(E2):

(E3):


http://dx.doi.org/10.1007/978-1-4471-5058-9_186
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As an illustration of the energy function, we
consider the following classical transient stability
model and derive an energy function for the
model. Consider a power system consisting of
n generators. Let the loads be modeled as con-
stant impedances. Under the assumption that the
transfer conductance of the reduced network after
eliminating all load buses is zero, the dynamics
of the ith generator can be represented by the
equations

Si:wi

M,'d)i = Pi—Dia)i —ZV,VJBUSIH((S,—SJ)
j=1

@

where the voltage at node i+1 is served as the
reference, i.e., §; 41 : = 0. This is a version of the
so-called classical model of the power system. It
can be shown that the following function is an en-
ergy function V' (8, w) which satisfies conditions
(E1)—(E3) for the classical model (2).

Vi, w) = %Z:;l Ml-a),-z— Z?:l P; (81 —85)

n n+1

— cos(8; — 6%) (3)

where x* = (6°, 0) is the stable equilibrium point
under consideration.

Energy Function Theory

In general, the dynamical behaviors of trajecto-
ries of general nonlinear systems can be very
complicated. The asymptotical behaviors (i.e.,
the w-limit set) of trajectories can be quasiperi-
odic trajectories or chaotic trajectories. However,
as shown below, every trajectory of system (1)
having an energy function has only two modes
of behaviors: its trajectory either converges to an
equilibrium point or goes to infinity (becomes
unbounded) as time increases. This result is ex-
plained in the following theorem:

Lyapunov Methods in Power System Stability

Theorem 1 (Global Behavior of Trajectories)
If there exists a function satisfying condition
(E1) and condition (E2) of the energy function
for system (1), then every bounded trajectory of
system (1) converges to one of the equilibrium
points.

Theorem 1 asserts that there does not exist
any limit cycle (oscillatory behavior) or bounded
complicated behavior such as almost periodic
trajectory, chaotic motion, etc. in the system. We
next show a sharper result, asserting that every
trajectory on the stability boundary must con-
verge to one of the unstable equilibrium points
(UEPs) on the stability boundary. Recall that for
a hyperbolic equilibrium point, it is an (asymptot-
ically) stable equilibrium point if all the eigenval-
ues of its corresponding Jacobian have negative
real parts; otherwise it is an unstable equilib-
rium point. Let X be a hyperbolic equilibrium
point. Its stable and unstable manifolds, W*(%)
and W*(x), are well defined. There are many
physical systems such as electric power systems
containing multiple stable equilibrium points. A
useful concept for these kinds of systems is that
of the stability region (also called the region
of attraction). The stability region of a stable
equilibrium point x; is defined as

A(xy) = {x € R": tlgglo P, (x) = xs}

The boundary of stability region A(x;) is called
the stability boundary of (x;) and will be denoted
by 04 (x;).

Theorem 2 (Trajectories on the Stability
Boundary (Chiang et al. 1987)) If there exists
an energy function for system (1), then every
trajectory on the stability boundary 0A(xy)
converges to one of the equilibrium points on
the stability boundary dA(xy).

The significance of this theorem is that it
offers an effective way to characterize the sta-
bility boundary. In fact, Theorem 2 asserts that
the stability boundary dA(x;) is contained in the
union of stable manifolds of the UEPs on the
stability boundary, i.e.,
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U

xi €{ENJA(x5)}

0A(xs) S W*(xi)

The following two theorems give interesting
results on the structure of the equilibrium points
on the stability boundary. Moreover, it presents
a necessary condition for the existence of certain
types of equilibrium points on a bounded stability
boundary.

Theorem 3 (Structure of Equilibrium Points
on the Stability Boundary (Chiang and Thorp
1989)) If there exists an energy function for sys-
tem (1) which has an asymptotically stable equi-
librium point x5 (but not globally asymptotically
stable), then the stability boundary (x;) must
contain at least one type one equilibrium point.
If, furthermore, the stability region is bounded,
then the stability boundary dA(x;) must contain
at least one type one equilibrium point and one
source.

Theorem 4 (Sufficient Condition for Un-
bounded Stability Region (Chiang et al. 1987))
If there exists an energy function for system (1)
which has an asymptotically stable equilibrium
point x; (but not globally asymptotically stable)
and if 0A(xs) contains no source, then the
stability region A(xy) is unbounded.

A direct application of this is that the stability
boundary dA(x;) of an (asymptotically) stable
equilibrium point of the classical power system
stability model (2) is unbounded.

Optimally Estimating Stability Region
Using Energy Functions

In this section, we focus on how to optimally
determine the critical level value of an energy
function for estimating the stability boundary
0A(xy). We consider the following set:
Sy(k) ={x e R": V(x) <k} “)
where V() : R" — R is an energy function.

We shall call the boundary of set (2) dS(k) :=
{x € R" : V(x) = k} the level set (or constant
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energy surface) and k the level value. Generally
speaking, this set S(k) can be very complicated
with several connected components even for the
2-dimensional case. We use the notation Sy (x;)
to denote the only component of the several dis-
joint connected components of Sy that contains
the stable equilibrium point x;.

Theorem 5 (Optimal  Estimation) Consider
the nonlinear system (1) which has an energy
function V(x). Let xy; be an asymptotically
stable equilibrium point whose stability region
A(xs) is not dense in R". Let Ey be the
set of type one equilibrium points and ¢ =
ming co4c)n# V(Xi), and then

1. Se(xs) C A(xs)

2. The set {Sp(xs) N A°(xs)} is nonempty for any

number b > c.

This theorem leads to an optimal estimation of
the stability region A(x;) via an energy function
V(.) (Chiang and Thorp 1989). For the purpose
of illustration, we consider the following simple
example:

X1 =—sinx; —0.5sin(x; — x3) + 0.01

X, =—0.5sinx; — 0.5sin(x; — x1) + 0.05 (5)

It is easy to show that the following function is an
energy function for system (5):

V(x1,x3) = —2cosx; — cos xp — cos(x] — X2)

—0.02x; — 0.1x> (6)

The point x* (x],x3) = (0.02801,0.06403)
is the stable equilibrium point whose stability
region is to be estimated. Applying the optimal
scheme to system (5), we have the critical level
value of —0.31329. The Curve A in Fig.1 is
the exact stability boundary dA(x*) while Curve
B is the stability boundary estimated by the
connected component (containing the s.e.p. x*)
of the constant energy surface. It can be seen that
the critical level value, —0.31329, is indeed the
optimal value.
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Lyapunov Methods in Power System Stability, Fig. 1
Curve A is the exact stability boundary dA(x*) of system
(5), while Curve B is the stability boundary estimated by
the constant energy surface (with level value of —0.31329)
of the energy function

Constructing Analytical Energy
Functions for Transient Stability
Models

The task of constructing an energy function for
a (post-fault) transient stability model is essential
to direct stability analysis of power systems. The
role of the energy function is to make feasible
a direct determination of whether a given point
(such as the initial point of a post-fault power sys-
tem) lies inside the stability region of post-fault
SEP without performing numerical integration. It
has been shown that a general (analytical) energy
function for power systems with losses does not
exist (Chiang 1989). One key implication is that
any general procedure attempting to construct
an energy function for a lossy power system
transient stability model must include a step that
checks for the existence of an energy function.
This step essentially plays the same role as the
Lyapunov equation in determining the stability of
an equilibrium point.

Several schemes are available for constructing
numerical energy functions for power system
transient stability models expressed as a set of
general differential-algebraic equations (DAEs)
(Chu and Chiang 1999, 2005).
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Applications

After decades of research and development in
the energy-function-based direct methods and the
time-domain simulation approach, it has become
clear that the capabilities of direct methods and
that of the time-domain approach complement
each other. The current direction of development
is to include appropriate direct methods and time-
domain simulation programs within the body of
overall power system stability simulation pro-
grams (Chiang 1999, 2011; Chiang et al. 1995;
Fouad and Vittal 1991; Sauer and Pai 1998).
For example, the direct method provides the ad-
vantages of fast computational speed and energy
margins which make it a good complement to
the traditional time-domain approach. The en-
ergy margin and its functional relations to cer-
tain power system parameters are an effective
complement to develop tools such as preventive
control schemes for credible contingencies which
are unstable and to develop fast calculators for
available transfer capability limited by transient
stability.

An effective, theory-based methodology for
online screening and ranking of a large set
of contingencies at operating points obtained
from state estimators has been developed in
Chiang et al. (2013). A set of improved BCU
classifiers, along with their analytical basis,
has been developed. Extensive evaluation of the
improved BCU classifiers on a large test system
and on the actual PJM interconnection system
for a fast screening has been performed. This
evaluation study is the largest in terms of system
size, 14,500 buses and 3,000 generators, for a
practical online transient stability assessment
application. The evaluation results, performed
on a total number of 5.3 million contingencies,
were very promising in terms of speed, accuracy,
reliability, and robustness (Chiang et al. 2013).
This study also confirms the practicality of
theory-based methodology for online transient
stability assessment of large-scale power
systems; in particular, theory-based methods are
suitable for power system online applications
which demand speed, accuracy, reliability, and
robustness.
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Recommended Reading

A recent book which contains a comprehensive
treatment of energy functions theory and applica-
tions is Chiang (2011).
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Abstract

Lyapunov’s theory for characterizing and study-
ing the stability of equilibrium points is presented
for time-invariant and time-varying systems mod-
eled by ordinary differential equations.

Keywords
Asymptotic  stability;  Equilibrium  point;
Exponential  stability; Global asymptotic

stability; Hurwitz matrix; Invariance principle;
Linearization; Lipschitz condition; Lyapunov
function; Lyapunov surface; Negative (semi-)
definite function; Perturbed system; Positive
(semi-) definite function; Region of attraction;
Stability; Time-invariant system; Time-varying
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Introduction

Stability theory plays a central role in systems
theory and engineering. For systems represented
by state models, stability is characterized by
studying the asymptotic behavior of the state
variables near steady-state solutions, like equi-
librium points or periodic orbits. In this article,
Lyapunov’s method for determining the stabil-
ity of equilibrium points is introduced. The at-
tractive features of the method include a solid
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theoretical foundation, the ability to conclude
stability without knowledge of the solution (no
extensive simulation effort), and an analytical
framework that makes it possible to study the ef-
fect of model perturbations and design feedback
control. Its main drawback is the need to search
for an auxiliary function that satisfies certain
conditions.

Stability of Equilibrium Points

We consider a nonlinear system represented by
the state model

X = f(x) ey
where the n-dimensional locally Lipschitz func-
tion f(x) is defined for all x in a domain D C
R". A function f(x) is locally Lipschitz at a
point x¢ if it satisfies the Lipschitz condition

/) = fWII = Llx — y| for all x,y in
some neighborhood of xy, where L is a positive

constant and ||x|| = \/xlz +x3 + -+ + x2. The
Lipschitz condition guarantees that Eq. (1) has
a unique solution for given initial state x(0).
Suppose X € D is an equilibrium point of
Eq.(1); that is, f(x) = 0. Whenever the state
of the system starts at x, it will remain at x for
all future time. Our goal is to characterize and
study the stability of x. For convenience, we take
X = 0. There is no loss of generality in doing so
because any equilibrium point X can be shifted to
the origin via the change of variables y = x — Xx.
Therefore, we shall always assume that f(0) = 0
and study stability of the origin x = 0.

The equilibrium point x = 0 of Eq.(1) is
stable if for each ¢ > 0, thereis § = §(¢) > 0
such that | x(0)|| < & implies that | x(¢)| < e,
for all + > 0. It is asymptotically stable if it is
stable and § can be chosen such that ||x(0)|| < &
implies that x () converges to the origin as ¢ tends
to infinity. When the origin is asymptotically sta-
ble, the region of attraction (also called region
of asymptotic stability, domain of attraction, or
basin) is defined as the set of all points x such
that the solution of Eq. (1) that starts from x at
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time ¢t = 0 approaches the origin as ¢ tends to co.
When the region of attraction is the whole space,
we say that the origin is globally asymptotically
stable. A stronger form of asymptotic stability
arises when there exist positive constants c, k,
and A such that the solutions of Eq. (1) satisfy the
inequality

x@)|| < kllx(©)]e™, V=0 (2)

for all ||x(0)|| < c. In this case, the equilibrium
point x = 0 is said to be exponentially stable.
It is said to be globally exponentially stable if the
inequality is satisfied for any initial state x (0).

Linear Systems
For the linear time-invariant system

¥ = Ax 3)

the stability properties of the origin can be de-
termined by the location of the eigenvalues of
A. The origin is stable if and only if all the
eigenvalues of A satisfy Re[A;] < 0 and for
every eigenvalue with Re[A;] = 0 and algebraic
multiplicity ¢; > 2, rank(4 — A; 1) = n — q;,
where n is the dimension of x and ¢; is the
multiplicity of A; as a zero of det(Al — A). The
origin is globally exponentially stable if and only
if all eigenvalues of A have negative real parts;
that is, A is a Hurwitz matrix. For linear sys-
tems, the notions of asymptotic and exponential
stability are equivalent because the solution is
formed of exponential modes. Moreover, due to
linearity, if the origin is exponentially stable, then
the inequality of Eq.(2) will hold for all initial
states.

Linearization

Suppose the function f(x) of Eq. (1) is continu-
ously differentiable in a domain D containing the
origin. The Jacobian matrix [df/dx] is an n X n
matrix whose (i, j) elementis df; /dx;. Let A be
the Jacobian matrix evaluated at the origin x = 0.
It can be shown that

f(x) =[4A+ G(x)]x, where lin}J G(x)=0
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This suggests that in a small neighborhood of the
origin we can approximate the nonlinear system
X = f(x) by its linearization about the origin
x = Ax. Indeed, we can draw conclusions about
the stability of the origin as an equilibrium point
for the nonlinear system by examining the eigen-
values of A. The origin of Eq. (1) is exponentially
stable if and only if 4 is Hurwitz. It is unstable if
Re[A;] > O for one or more of the eigenvalues of
A. If Re[A;] < O for all i, with Re[A;] = O for
some i, we cannot draw a conclusion about the
stability of the origin of Eq. (1).

Lyapunov’s Method

Let V(x) be a continuously differentiable scalar
function defined in a domain D C R”" that
contains the origin. The function V(x) is said to
be positive definite if 1/(0) = 0 and V(x) > 0
for x # 0. It is said to be positive semidefinite
if V(x) > O for all x. A function V(x) is said
to be negative definite or negative semidefinite
if —V(x) is positive definite or positive semidef-
inite, respectively. The derivative of V' along the
trajectories of Eq. (1) is given by

V. 9

= s
X

V=2 go%i=5

i=l1

where [0V/0x] is a row vector whose i th compo-
nent is dV/dx;.

Lyapunov’s stability theorem states that the
origin is stable if there is a continuously differ-
entiable positive definite function V(x) so that
V(x) is negative semidefinite, and it is asymp-
totically stable if V(x) is negative definite. A
function V(x) satisfying the conditions for sta-
bility is called a Lyapunov function. The surface
V(x) = c, for some ¢ > 0, is called a Lyapunov
surface or a level surface.

When V(x) is only negative semidefinite, we
may still conclude asymptotic stability of the ori-
gin if we can show that no solution can stay iden-
tically in the set {V/(x) = 0}, other than the zero
solution x(¢) = 0. Under this condition, V(x(¢))
must decrease toward 0, and consequently x ()
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converges to zero as t tends to infinity. This
extension of the basic theorem is known as the
invariance principle.

Lyapunov functions can be used to estimate
the region of attraction of an asymptotically sta-
ble origin, that is, to find sets contained in the
region of attraction. Let V(x) be a Lyapunov
function that satisfies the conditions of asymp-
totic stability over a domain D. For a positive
constant ¢, let 2, be the component of {V(x) <
¢} that contains the origin in its interior. The
properties of V' guarantee that, by choosing ¢
small enough, 2, will be bounded and contained
in D. Then, every trajectory starting in €2, re-
mains in 2, and approaches the origin as t — oc.
Thus, €2, is an estimate of the region of attraction.
If D = R" and V(x) is radially unbounded, that
is, ||x|| = oo implies that V(x) — oo, then any
point x € R”" can be included in a bounded set
Q. by choosing ¢ large enough. Therefore, the
origin is globally asymptotically stable if there is
a continuously differentiable, radially unbounded
function V(x) such that for all x € R", V(x)
is positive definite and V (x) is either negative
definite or negative semidefinite but no solution
can stay identically in the set {V(x) = 0} other
than the zero solution x(t) = 0.

Time-Varying Systems
Equation (1) is time-invariant because f does
not depend on 7. The more general time-varying
system is represented by

X = f(t,x) “4)

In this case, we may allow the Lyapunov function
candidate V' to depend on ¢. Let V(¢,x) be a
continuously differentiable function defined for
all# > 0 and x € D. The derivative of V' along
the trajectories of Eq. (4) is given by

. v v
V(va) = E + af(tvx)

If there are positive definite functions Wj(x),
W,(x), and W3(x) such that

Wi(x) = V(1. x) = Wa(x) (&)

V(t,x) < —Ws(x) (6)



688

for all + > 0 and all x € D, then the
origin is uniformly asymptotically stable, where
“uniformly” indicates that the e&—§ definition
of stability and the convergence of x(¢) to
zero are independent of the initial time #.
Such uniformity annotation is not needed with
time-invariant systems since the solution of a
time-invariant state equation starting at time #y
depends only on the difference ¢ — #y, which
is not the case for time-varying systems. If the
inequalities of Eqgs. (5) and (6) hold globally and
Wi(x) is radially unbounded, then the origin
is globally uniformly asymptotically stable.
If Wi(x) = killx]|; Wa(x) = kalx]|, and
Wi(x) = ks||x||* for some positive constants ki,
ko, k3, and a, then the origin is exponentially
stable.

Perturbed Systems
Consider the system

X = ft.x)+g(t.x) )

where f and g are continuous in ¢ and locally
Lipschitz in x, for all + > 0 and x € D,
in which D C R" is a domain that contains
the origin x = 0. Suppose f(¢,0) = 0 and
g(t,0) = 0 so that the origin is an equilibrium
point of Eq.(7). We think of the system (7)
as a perturbation of the nominal system (4).
The perturbation term g(¢, x) could result from
modeling errors, uncertainties, or disturbances.
In a typical situation, we do not know g(¢, x),
but we know some information about it, like
knowing an upper bound on | g(¢, x)|. Suppose
the nominal system has an exponentially stable
equilibrium point at the origin, what can we say
about the stability of the origin as an equilib-
rium point of the perturbed system? A natural
approach to address this question is to use a
Lyapunov function for the nominal system as a
Lyapunov function candidate for the perturbed
system.

Let V(¢, x) be a Lyapunov function that satis-
fies
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allx|* < V(t,x) < ooflx|? (8)
WV s
5"'5]{(1,36)5—03”36” )
v
“a— < clx] (10)
X

for all x € D for some positive constants ¢, ¢z,
¢3, and c4. Suppose the perturbation term g(z, x)
satisfies the linear growth bound

lg@. )l <ylxll, V=0, VxeD (11
where y is a nonnegative constant. We use V' as
a Lyapunov function candidate to investigate the
stability of the origin as an equilibrium point for

the perturbed system. The derivative of V' along
the trajectories of Eq. (7) is given by

Vit x)= %—1; + %f(t,x) + é;—I;g(t,x)
The first two terms on the right-hand side are the
derivative of V (¢, x) along the trajectories of the
nominal system, which is negative definite and
satisfies the inequality of Eq. (9). The third term,
[0V /dx]g, is the effect of the perturbation. Using
Egs. (9) through (11), we obtain

IA

. av
Vi(t,x) < —cllx|* + ”g” lg @ )

IA

—cs||x|* + cayllx|®
If y < c3/cy, then

< —(cs—yea)lx|?, (e3—yes) >0
which shows that the origin is an exponentially
stable equilibrium point of the perturbed sys-
tem (7).
Summary
Lyapunov’s method is a powerful tool for study-

ing the stability of equilibrium points. However,
there are two drawbacks of the method. First,
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there is no systematic procedure for finding Lya-
punov functions. Second, the conditions of the
theory are only sufficient; they are not neces-
sary. Failure of a Lyapunov function candidate to
satisfy the conditions for stability or asymptotic
stability does not mean that the origin is not stable
or asymptotically stable. These drawbacks have
been mitigated by a long history of using the
method in the analysis and design of engineering
systems, where various techniques for finding
Lyapunov functions for specific systems have
been determined.

Cross-References

Feedback Stabilization of Nonlinear Systems
Input-to-State Stability
Regulation and Tracking of Nonlinear Systems

Recommended Reading

For an introduction to Lyapunov’s stability
theory at the level of first-year graduate students,
the textbooks Khalil (2002), Sastry (1999),
Slotine and Li (1991), and (Vidyasagar 2002)
are recommended. The books by Bacciotti and
Rosier (2005) and Haddad and Chellaboina
(2008) cover a wider set of topics at the
same introductory level. A deeper look into
the theory is provided in the monographs
Hahn (1967), Krasovskii (1963), Rouche et al.
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(1977), Yoshizawa (1966), and (Zubov 1964).
Lyapunov’s theory for discrete-time systems is
presented in Haddad and Chellaboina (2008) and
Qu (1998). The monograph Michel and Wang
(1995) presents Lyapunov’s stability theory for
general dynamical systems, including functional
and partial differential equations.
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