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Abstract

Economic model predictive control (EMPC) is
a variant of model predictive control aimed at
maximization of system’s profitability. It allows
one to explicitly deal with hard and average
constraints on system’s input and output variables
as well as with nonlinearity of dynamics. We
provide basic definitions and concepts of the
approach and highlight some promising research
directions.
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Introduction

Most control tasks involve some kind of eco-
nomic optimization. In classical linear quadratic

(LQ) control, for example, this is cast as a trade-
off between control effort and tracking perfor-
mance. The designer is allowed to settle such a
trade-off by suitably tuning weighting parameters
of an otherwise automatic design procedure.

When the primary goal of a control system
is profitability rather than tracking performance,
a suboptimal approach has often been devised,
namely, a hierarchical separation is enforced be-
tween the economic optimization layer and the
dynamic real-time control layer.

In practice, while set points are computed by
optimizing economic revenue among all equilib-
ria fulfilling the prescribed constraints, the task
of the real-time control layer is simply to drive
(basically as fast as possible) the system’s state
to the desired set-point value.

Optimal control or LQ control may be used
to achieve the latter task, possibly in conjunc-
tion with model predictive control (MPC), but
the actual economics of the plant are normally
neglected at this stage.

The main benefits of this approach are
twofold:

1. Reduced computational complexity with re-
spect to infinite-horizon dynamical program-
ming

2. Stability robustness in the face of uncertainty,
normally achieved by using some form of
robust control in the real-time control layer
The hierarchical approach, however, is subop-

timal in two respects:

1. First of all, given nonlinearity of the
plant’s dynamics and/or nonconvexity of the
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functions characterizing the economic
revenue, there is no reason why the most
profitable regime should be an equilibrium.

2. Even when systems are most profitably oper-
ated at equilibrium, transient costs are totally
disregarded by the hierarchical approach and
this may be undesirable if the time constants
of the plant are close enough to the time scales
at which set point’s variations occur.
Economic model predictive control seeks to

remove these limitations by directly using the

economic revenue in the stage cost and by the for-
mulation of an associated dynamic optimization
problem to be solved online in a receding horizon
manner. It was originally developed by Rawlings
and co-workers, in the context of linear control
systems subject to convex constraints as an effec-
tive technique to deal with infeasible set points
(Rawlings et al. 2008) (in contrast to the classical
approach of redesigning a suitable quadratic cost
that achieves its minimum at the closest feasible
equilibrium). Preserving the original cost has
the advantage of slowing down convergence to
such an equilibrium when the transient evolution
occurs in a region where the stage cost is better
than at steady state. Stability and convergence
issues are at first analyzed, thanks to convexity
and for the special case of linear systems only.

Subsequently Diehl introduced the notion of ro-

tated cost (see Diehl et al. 2011) that allowed a

Lyapunov interpretation of stability criteria and

paved the way for the extension to general dissi-

pative nonlinear systems (Angeli et al. 2012).

Economic MPC Formulation

In order to describe the most common versions
of economic MPC, assume that a discrete-time
finite-dimensional model of state evolution is
available for the system to be controlled:

xT = f(x,u) (1)
where x € X C R” is the state variable, u €
U C R™ is the control input, and f: X x U —

X is a continuous map which computes the next
state value, given the current one and the value of
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the input. We also assume that Z C X x U is a
compact set which defines the (possibly coupled)
state/input constraints that need to hold pointwise
in time:
(x(@), ut)) ez vVt e N. 2)
In order to introduce a measure of economic
performance, to each feasible state/input pair
(x,u) € Z, we associate the instantaneous net
cost of operating the plant at that state when
feeding the specified control input:
L(x,u) : Z—R. 3)
The function £ (which we assume to be contin-
uous) is normally referred to as stage cost and
together with actuation and/or inflow costs should
also take into account the profits associated to
possible output/outflows of the system. Let (x*,

u*) denote the best equilibrium/control input pair
associated to (3) and (2), namely,

L(x*,u*) = miny, £(x, u)
subject to
(x,u) €Z
x = f(x,u)

“4)

Notice that, unlike in tracking MPC, it is not
assumed here that

L(x*, u*) <dl(x,u) VY(x,u) €Z. (5)

This is, technically speaking, the main point of
departure between economic MPC and tracking
MPC.

As there is no natural termination time to
operation of a system, our goal would be to
optimize the infinite-horizon cost functional:

> lx (). u() (6)

teN

possibly in an average sense (or by introducing
some discounting factor to avoid infinite
costs) and subject to the dynamic/operational
constraints (1) and (2).
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To make the problem computationally more
tractable and yet retain some of the desirable
economic benefits of dynamic programming, (6)
is truncated to the following cost functional:

N—1

J(z,v) = Y Lz(k), v(k) + Vy((N) (D)

k=0

where z = [2(0),z(1),...,2(N)] € XNTl v =
[v(0),v(1),..,v(N=1)] € UN and V;: X > R
is a terminal weighting function whose properties
will be specified later.

The virtual state/control pair (z*, v*) at time ¢
is the solution (which for the sake of simplicity
we assume to be unique) of the following opti-
mization problem:

V(x(t)) = mingy J(z,v)
subject to

2k +1) = f(z(k), v(k))
(z(k),v(k)) e Z

fork €{0,1,...,N — 1}
2(0) = x(t), z(N) e X;.

®)

Notice that z(0) is initialized at the value of the
current state x (¢). Thanks to this fact, z* and v*
may be seen as functions of the current state x ().
At the same time, z(N) is constrained to belong
to the compact set X y C X whose properties will
be detailed in the next paragraph.

As customary in model predictive control, a
state-feedback law is defined by applying the first
virtual control to the plant, that is, by letting
u(t) = v*(0) and restating, at the subsequent
time instant, the same optimization problem from
initial state x (¢ + 1) which, in the case of exact
match between plant and model, can be computed
as f(x(t),u(r)).

In the next paragraph, we provide details on
how to design the “terminal ingredients” (namely,
Vi and Xr) in order to endow the basic algo-
rithm (8) with important features such as recur-
sive feasibility and a certain degree of average
performance and/or stability).

Hereby it is worth pointing out how, in
the context of economic MPC, it makes
sense to treat, together with pointwise-in-time
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constraints, asymptotic average constraints on
specified input/output variables. In tracking
applications, where the control algorithm
guarantees asymptotic convergence of the state to
a feasible set point, the average asymptotic value
of all input/output variables necessarily matches
that of the corresponding equilibrium/control
input pair. In economic MPC, the asymptotic
regime resulting in closed loop may, in general,
fail to be an equilibrium; therefore, it might
be of interest to impose average constraints on
system’s inflows and outflows which are more
stringent than those indirectly implied by the
fulfillment of (2). To this end, let the system’s
output be defined as

y() = h(x(1), u(?)) )

with h(x,u) : Z — RP, a continuous map, and
consider the convex compact set Y. We may de-
fine the set of asymptotic averages of a bounded
signal y as follows:

Av[y] = {n e R?:3{1,}°2,:t, — oo as n—00

t,—1

and n = lim (Z y(k)) /tn%
n—o00 \ /2

Notice that for converging signals, or even
for periodic ones, Av[y] always is a singleton
but may fail to be such for certain oscillatory
regimes. An asymptotic average constraint can be
expressed as follows:

Av[y]C Y (10)

where y is the output signal as defined in (9).

Basic Theory

The main theoretical results in support of the

approach discussed in the previous paragraph are

discussed below. Three fundamental aspects are

treated:

* Recursive feasibility and constraint satisfac-
tion

* Asymptotic performance

» Stability and convergence
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Feasibility and Constraints
The departing point of most model predictive
control techniques is to ensure recursive
feasibility, namely, the fact that feasibility of
the problem (8) at time 0 implies feasibility at all
subsequent times, provided there is no mismatch
between the true plant and its model (1). This is
normally achieved by making use of a suitable
notion of control invariant set which is used as
a terminal constraint in (8). Economic model
predictive control is not different in this respect,
and either one of the following set of assumptions
is sufficient to ensure recursive feasibility:
1. Assumption 1: Terminal constraint

X f = {x *} Vf =0
2. Assumption 2: Terminal penalty function

There exists a continuous map « : Xy —
U such that

(x,K(x)) e Z
S(x, Kx)) e Xy

VXEXf
VXEXf

The following holds:

Theorem 1 Let x(0) be a feasible state for (8)
and assume that either Assumption 1 or 2 hold.
Then, the closed-loop trajectory x(t) resulting
from receding horizon implementation of the
feedback u(t) = v*(0) is well defined for all
t € N (i.e,, x(t) is a feasible initial state of (8)
for all t € N) and the resulting closed-loop
variables (x(t), u(t)) fulfill the constraints in (2).

The proof of this Theorem can be found in
Angeli et al. (2012) and Amrit et al. (2011), for
instance. When constraints on asymptotic aver-
ages are of interest, the optimization problem (8)
can be augmented by the following constraints:

N—1
> h(zk). v(k)) € Y, (11)
k=0

provided Y, is recursively defined as

Y1 =Y, @Y & {—h(x(1), u(®))} (12)
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where @ denotes Pontryagin’s set sum. (A®B :=
{c :da € A,3b € B : ¢ = a + b}) The sequence
is initialized as Yo = NY & Yoo where Yy is
an arbitrary compact set in R” containing 0 in its
interior. The following result can be proved.

Theorem 2 Consider the optimization prob-
lem (8) with additional constraints (11), and
assume that x(0) is a feasible initial state.
Then, provided a terminal equality constraint
is adopted, the closed-loop solution x(t) is
well defined and feasible for all t € N and
the resulting closed-loop variable y(t) =
h(x(t), u(t)) fulfills the constraint (10).

Extending average constraints to the case of eco-
nomic MPC with terminal penalty function is
possible but outside the scope of this brief tuto-
rial. It is worth mentioning that the set Yo plays
the role of an initial allowance that is shrunk or
expanded as a result of how close are closed-
loop output signals to the prescribed region. In
particular, Yoy can be selected a posteriori (after
computation of the optimal trajectory) just for
t = 0, so that the feasibility region of the
algorithm is not affected by the introduction of
average asymptotic constraints.

Asymptotic Average Performance

Since economic MPC does not necessarily lead
to converging solutions, it is important to have
bounds which estimate the asymptotic average
performance of the closed-loop plant. To this end,
the following dissipation inequality is needed for
the approach with terminal penalty function:

Vi(f (. K(x)) = V() —L£0x, K(x)+£(x7, u”)
(13)

which shall hold for all x € Xr. We are now
ready to state the main bound on the asymptotic
performance:

Theorem 3 Let x(0) be a feasible state for (8)
and assume that either Assumption 1 or Assump-
tion 2 together with (13) hold. Then, the closed-
loop trajectory x (t) resulting from receding hori-
zon implementation of the feedback u(t) = v*(0)
is well defined for all t € N and fulfills
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T—1
lim sup D= L(x(1), u(t))

< L(x*,u*). (14)
T—>+o00 T ( )

The proof of this fact can be found in Angeli et al.
(2012) and Amrit et al. (2011). When periodic
solutions are known to outperform, in an average
sense, the best equilibrium/control pair, one may
replace terminal equality constraints by periodic
terminal constraints (see Angeli et al. 2012). This
leads to an asymptotic performance at least as
good as that of the solution adopted as a terminal
constraint.

Stability and Convergence

It is well known that the cost-to-go V(x) as
defined in (8) is a natural candidate Lyapunov
function for the case of tracking MPC. In fact,
the following estimate holds along solutions of
the closed-loop system:

Vix@E+1)<V(x@)—L(x@), u®))+L(x*, u").
(15)

This shows, thanks to inequality (5), that V(x(¢))
is nonincreasing. Owing to this, stability and con-
vergence can be easily achieved under mild addi-
tional technical assumptions. While property (15)
holds for economic MPC, both in the case of
terminal equality constraint and terminal penalty
function, it is no longer true that (5) holds. As
a matter of fact, x* might even fail to be an
equilibrium of the closed-loop system, and hence,
convergence and stability cannot be expected in
general.

Intuitively, however, when the most profitable
operating regime is an equilibrium, the aver-
age performance bound provided by Theorem 3
seems to indicate that some form of stability or
convergence to x* could be expected. This is
true under an additional dissipativity assumption
which is closely related to the property of optimal
operation at steady state.

Definition 1 A system is strictly dissipative with
respect to the supply function s(x,u) if there
exists a continuous function A : X — R and
p 1 X — R positive definite with respect to x*
such that for all x and u in X x U, it holds:
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ACf(x u)) = A(x) +5(x,u) — p(x). (16)
The next result highlights the connection between
dissipativity of the open-loop system and stability
of closed-loop economic MPC.

Theorem 4 Assume that either Assumption 1 or
Assumption 2 together with (13) hold. Let the
system (1) be strictly dissipative with respect to
the supply function s(x,u) = £(x,u) —€(x*, u*)
as from Definition 1 and assume there exists a
neighborhood of feasible initial states containing
x* in its interior. Then provided V is continuous
at x*, x* is an asymptotically stable equilibrium
with basin of attraction equal to the set of feasible
initial states.

See Angelietal. (2012) and Amritet al. (2011)
for proofs and discussions. Convergence results
are also possible for the case of economic MPC
subject to average constraints. Details can be
found in Miiller et al. (2013a).

Hereby it is worth mentioning that finding
a function satisfying (16) (should one exist) is
in general a hard task (especially for nonlinear
systems and/or nonconvex stage costs); it is akin
to the problem of finding a Lyapunov function
and therefore general construction methods do
not exist. Let us emphasize, however, that while
existence of a storage function A is a sufficient
condition to ensure convergence of closed-loop
economic MPC, formulation and resolution of
the optimization problem (8) can be performed
irrespectively of any explicit knowledge of such
function. Also, we point out that existence of A
as in Definition 1 and Theorem 4 is only possible
if the optimal infinite-horizon regime of operation
for the system is an equilibrium.

Summary and Future Directions

Economic model predictive control is a fairly
recent and active area of research with great
potential in those engineering applications where
economic profitability is crucial rather than track-
ing performance.

The technical literature is rapidly growing in
application areas such as chemical engineering
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(see Heidarinejad 2012) or power systems engi-
neering (see Hovgaard et al. 2010; Miiller et al.
2013a) where system’s output is in fact physical
outflows which can be stored with relative ease.

We only dealt with the basic theoretical de-
velopments and would like to provide pointers to
interesting recent and forthcoming developments
in this field:

* Generalized terminal constraints: possibility
of enlarging the set of feasible initial states
by using arbitrary equilibria as terminal
constraints, possibly to be updated on line in
order to improve asymptotic performance (see
Fagiano and Teel 2012; Miiller et al. 2013b).

* Economic MPC without terminal constraints:
removing the need for terminal constraints
by taking a sufficiently long control horizon
is an interesting possibility offered by
standard tracking MPC. This is also possible
for economic MPC at least under suitable
technical assumptions as investigated in
Griine (2012, 2013).

* The basic developments presented in the
previous paragraph only deal with systems
unaffected by uncertainty. This is a severe
limitation of current approaches and it is to be
expected that, as for the case of tracking MPC,
a great deal of research in this area could be
developed in the future. In particular, both
deterministic and stochastic uncertainties are
of interest.

Cross-References

Model-Predictive Control in Practice
Optimization Algorithms for Model Predictive
Control

Recommended Reading

Papers Amrit et al. (2011), Angeli et al. (2011,
2012), Diehl et al. (2011), Miiller et al. (2013a),
and Rawlings et al. (2008) set out the basic
technical tools for performance and stability anal-
ysis of EMPC. To readers interested in the gen-
eral theme of optimization of system’s economic
performance and its relationship with classical
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turnpike theory in economics, please refer to
Rawlings and Amrit (2009). Potential applica-
tions of EMPC are described in Hovgaard et al.
(2010), Heidarinejad (2012), and Maet al. (2011)
while Rawlings et al. (2012) is an up-to-date
survey on the topic. Fagiano and Teel (2012) and
Griine (2012, 2013) deal with the issue of relax-
ation or elimination of terminal constraints, while
Miiller et al. (2013b) explore the possibility of
adaptive terminal costs and generalized equality
constraints.
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Abstract

Power electronics and their applications for elec-
tric energy transfer and control are introduced.
The fundamentals of the power electronics are
presented, including the commonly used semi-
conductor devices and power converter circuits.
Different types of power electronic controllers
for electric power generation, transmission and
distribution, and consumption are described. The
advantages of power electronics over traditional
electromechanical or electromagnetic controllers
are explained. The future directions for power
electronic application in electric power systems
are discussed.

Keywords

Electric energy control; Electric energy transfer;
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Introduction

Modern society runs on electricity or electric
energy. The electric energy generally must be
transferred before consumption since the energy
sources, such as thermal power plants, hydro
dams, and wind farms, are often some distances
away from the loads. In addition, electric energy
needs to be controlled as well since the energy
transfer and use often require electricity in a
form different from the raw form generated at
the source. Examples are the voltage magnitude
and frequency for long distance transmission; the
voltage needs to be stepped up at the sending end
to reduce the energy loss along the lines and then
stepped down at the receiving end for users; for
many modern consumer devices, DC voltage is
needed and obtained through transforming the 50
or 60 Hz utility power. Note that electric energy
transfer and control is often used interchangeably
with the electric power transfer and control. This
is because the modern electric power systems
have very limited energy storage and the energy
generated must be consumed at the same time.

Since the beginning of the electricity era,
electric energy transfer and control technologies
have been an essential part of electric power
systems. Many types of equipment were invented
and applied for these purposes. The commonly
used equipment includes electric transmission
and distribution lines, generators, transformers,
switchgears, inductors or reactors, and capacitor
banks. The traditional equipment has limited
control capability. Many cannot be controlled
at all or can only be connected or disconnected
with mechanical switches, others with limited
range, such as transformers with tap changers.
Even with fully controllable equipment such as
generators, the control dynamics is relatively
slow due to the electromechanical or magnetic
nature of the controller.

Power electronics are based on semiconductor
devices. These devices are derivatives from tran-
sistors and diodes used in microelectronic circuits
with the additional large power handling capa-
bility. Due to their electronic nature, power elec-
tronic devices are much more flexible and faster
than their electromechanical or electromagnetic
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counterparts for electric energy transfer and con-
trol. Since the advent of power electronics in the
1950s, they have steadily gained ground in power
system applications. Today, power electronic
controllers are an important part of equipment
for electric energy transfer and control. Their
roles are growing rapidly with the continuous im-
provement of the power electronic technologies.

Fundamentals of Power Electronics

Different from semiconductor devices in micro-
electronics, the power electronic devices only act
as switches for desired control functions, such
that they incur minimum losses when they are
either on (closed) or off (open). As a result,
the power electronic controllers are basically the
switching circuits. The semiconductor switches
are therefore the most important elements of the
power electronic controllers. Since the 1950s,
many different types of power semiconductor
switches have been developed and can be selected
based on the applications.

The performance of the power semiconductor
devices is mainly characterized by their voltage
and current ratings, conduction or on-state loss,
as well as the switching speed (or switching
frequency capability) and associated switching
loss. Main types of power semiconductor devices
are listed with their symbols and state-of-the-art
rating and frequency range shown in Table 1:

* Power diode — a two terminal device with
similar characteristics to diodes used in micro-
electronics but with higher-voltage and power
ratings.
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Thyristor — also called SCR (silicon-
controlled rectifier). Unlike diode, thyristor
is a three-terminal device with an additional
gate terminal. It can be turned on by a current
pulse through gate but can only be turned
off when the main current goes to zero with
external means. Thyristor has low conduction
loss but slow switching speed.

GTO - stands for gate-turn-off thyristor. GTO
can be turned on similarly as a regular thyris-
tor and can also be turned off with a large
negative gate current pulse. GTO has been
largely replaced by IGBT and IGCT due to its
complex gate driving needs and slow switch-
ing speed.

Power BJT - similar to bipolar transistor
for microelectronics and requires a sustained
gate current to turn on and off. It has been
replaced by IGBT and power MOSFET with
simpler gate signals and faster switching
speed.

Power MOSFET - similar to metal-oxide
semiconductor field effect transistor for
microelectronics and can be turned on and
off with a gate voltage signal. It is the
fastest device available but has relatively
high conduction loss and relatively low-
voltage/power ratings.

IGBT - stands for insulated-gate bipolar tran-
sistor. Unlike regular BJT, it can be turned
on and off with a gate voltage like MOS-
FET. It has relatively low conduction loss and
fast switching speed. IGBT is becoming the
workhorse of the power electronics for high
power applications.

Electric Energy Transfer and Control via Power Electronics, Table 1 Commonly use Si-based power semiconduc-

tor devices and their ratings

Types Symbol Voltage Current Switching frequency
Power diodes _K_ Max 80kV, typical < 10kV 10kA Various

Thyristor Max 8kV 4.5kA AC line frequency
GTO 5 | Max 10kV 6.5kA <500Hz

Power MOSFET Jﬁ Max 4.5kV, typical <600V 1.6kA 10s of kHz to MHz
IGBT J< Max 6.5kV, typical > 600 V 24KkA 1kHz to 10 s of kHz
IGCT '_tl 1 Max 10kV, typical > 4.5kV 6.5kA <2kHz
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* IGCT - stands for integrated-gate-commutated
thyristor. It is basically a GTO with an
integrated gate drive circuit allowing a hard
driven turnoff. It therefore has faster switching
speed than regular GTO but slower than IGBT.

Except for diodes, all other devices above can

be turned on and/or off through a gate signal, so

they are active switches, while diodes are called
passive switch.

With different types of power semiconduc-
tors, many power electronics circuits have been
developed. Based on their functions, they can be
classified as:

» Rectifier — rectifiers convert AC to DC. De-
pending on AC sources, rectifiers can be three
phase or single phase; depending on device
types, they can be passive (diode based), phase
controlled (thyristor controlled), or actively
switched.

* Inverter — inverters convert DC to AC. They
again can be three phase or single phase.
Inverters generally require active switching
devices.

* DC-DC converter — also called choppers, DC-
DC converters convert one DC voltage level
to another. Sometimes they also contains a
magnetic isolation. DC-DC converters can
have unidirectional or bidirectional power
flow and generally requires active switching
devices.

e AC-AC converter — directly converts one AC
to another, either only the voltage magnitude
or both magnitude and frequency. The former
can also be called AC switch, and the latter can
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be called frequency changer. Active devices

are needed for these types of converters.

There are a variety of converter topologies
for each type of the converters listed above.
The most commonly used basic topologies for
power system applications are shown in Fig. 1.
These basic topologies can be expanded through
paralleling or series of devices and/or converters
to achieve higher current and voltage ratings.
Other variations such as multilevel converters are
also popular for high-voltage applications using
lower-voltage rating devices.

It should be noted that passive components,
i.e., inductors and capacitors, are essential parts
of power electronic converters. In fact, power
electronic converters transfer or control the elec-
tric energy by storing it temporarily in induc-
tors or capacitors while reformatting the original
voltage or current waveform through switching
actions. The other key function of the passives is
filtering the harmonics caused by switching.

Power Electronic Controller Types for

Energy Transfer and Control

For almost all traditional non-power-electronic
equipment for electric energy transfer and
control, there can be corresponding power
electronic-based counterpart, often with better
controllability. However, power electronic
equipment can be more expensive and therefore
only used when it provides better overall
performance and cost benefits. In other cases,
only power electronic equipment can achieve the
required control functions.

—|t£—|

a i £ % b
_|
| ——
—_—m
_m
2 X X - _ﬁa -

¥

Thyristor based rectifier

Voltage source inverter (VSI)

Bi-directional AC switch

Electric Energy Transfer and Control via Power Electronics, Fig. 1 Commonly used basic power electronics
converter topologies (only one phase shown for the AC switch)
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The power electronic controllers can be
categorized as for energy generation, delivery,
and consumption. For generation, the thermal or
hydro generators both use synchronous machines
with excitation windings on the rotor, which
require DC current. A thyristor-based rectifier,
called exciter, is generally used for this purpose.
Wind turbine generators usually use a back-to-
back VSI to interface to the AC grid, and PV
solar sources use a DC-DC converter cascaded
with a VSL

Power electronic controllers for transmission
and distribution controllers include so-called
flexible AC transmission systems (FACTS) and
high-voltage DC transmission (HVDC). Some of
the more commonly used controllers and their
functions and circuit topologies are listed in
Table 2.

The main power electronic controllers for
loads include variable speed motor drives;
electronic ballast for fluorescent lights and power
supplies for LED; various power supplies for
computer, IT, and other electronic loads; and
chargers for electric vehicles. The percentage
of power electronics controlled loads in power
systems have been steadily increasing. Power
electronics can generally result in improved
performance and efficiency.

Future Directions

Power electronics have progressed steadily
since the invention of thyristors in the 1950s.
The progress is in all aspects, semiconductor
devices, passives, circuits, control, and system
integration, leading to converter systems with
better performance, higher efficiency, higher
power density, higher reliability, and lower
cost. Because of these progresses, the power
electronics applications in power systems have
become more and more widespread. However,
in general, power electronic controllers are
still not sufficiently cost-effective, reliable,
or efficient. Many improvements are needed
and expected, especially in the following
areas:

Electric Energy Transfer and Control via Power Electronics

* Semiconductor devices — Devices used today
are almost exclusively based on silicon. The
emerging devices based on wide-bandgap
materials such as SiC and GaN are expected
to revolutionize power electronics with their
capabilities of higher voltage, lower loss,
faster switching speed, higher temperature,
and smaller size.

* Power electronic converters — More cost-
effective and reliable converters will be
developed as a result of better devices,
passive components, and circuit structures.
Modular, distributed, and hybrid with non-
power-electronics approaches are expected to
result in overall better benefits.

* Enhanced functions — Power electronic con-
trollers can be designed to have multiple func-
tions in the system. For example, wind and PV
solar inverters can provide reactive power to
the grid in addition to transferring real energy.
Today, power electronic controllers are mostly
locally controlled. With better measurement
and communication technologies, they may be
controlled over a wide area for supporting the
system level functions.

* New applications — The new applications for
future power system include DC grid based
on multiterminal HVDC and energy storage.
Critical technologies include cost-effective
and efficient DC transformers and DC circuit
breakers. Power electronics will play key roles
in these technologies.
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Engine Control
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Abstract

Engine control is the enabling technology for
efficiency, performance, reliability, and cleanli-
ness of modern vehicles for a wide variety of
uses and users. It has also a paramount impor-
tance for many other engine applications like
power plants. Engines are essentially chemical
reactors, and the core task of engine control
consists in preparing and starting the reaction
(mixing the reactants and igniting the mixture)
while the reaction itself is not controlled. The
technical challenge derives from the combination
of high complexity, wide range of conditions of
use, performance requirements, significant time
delays, and use of the constraints on the choice
of components. In practice, engine control is to a
large extent feed-forward control, feedback loops
being used either for low-level control or for up-
dating the feed-forward. Industrial engine control
is based on very complex structures calibrated
experimentally, but there is a growing interest
for model-based control with stronger feedback
action, supported by the breakthrough of new
computational and communication possibilities,
as well as the introduction of new sensors.

Engine Control

Keywords

Compression ignition; Emissions; Exhaust af-
tertreatment; Internal combustion engines; Spark
ignition

Introduction

Most vehicles are moved by internal combus-
tion engines (ICE), whose key function is the
conversion of chemical into mechanical energy,
basically by oxidation, e.g., in the case of propane

C3Hg+50, = 3CO,+4H,0+46.3 M /kg (1)

The chemical energy is first transformed into
heat and then converted by the ICE into me-
chanical energy (Heywood 1988). The key task
of engine control (Guzzella and Onder 2010;
Kiencke and Nielssen 2005) is to make sure that
the reactants (fuel and oxygen) meet in the right
proportion (“mixture formation”) and that the
combustion is started (or “ignited”) to deliver the
required torque at the engine crankshaft. Several
combustion processes are known, the most com-
mon ones being Otto and Diesel. For the first
kind (also called SI for spark ignited), the mix-
ture is prepared outside the combustion chamber
and combustion is ignited by spark, while in
the second one fuel is injected directly into the
combustion chamber and combustion is ignited
by compression (CI, compression ignited). GDI
(gasoline direct injection) is a variant of SI en-
gines with direct fuel injection as CI but spark
ignition as SI.

Unfortunately, the chemical equation (1) is not
the whole truth. Indeed, the way the mixture is
prepared and ignited affects the efficiency of the
conversion from thermal into mechanical energy,
but also secondary reactions, like pollutant for-
mation, and other aspects, like noise, vibrations
and harshness (NVH), and mechanical fatigue
and thus life expectancy. Furthermore, driveabil-
ity requirements are primarily determined by the
ability of an ICE to change fast its operating
point, and this sets additional requirements to
the engine control. These requirements have to
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be met for all vehicles in spite of production
variability and under all relevant operating con-
ditions, including all drivers, road, traffic, and
weather conditions.

As first principle models are often not avail-
able or very time-consuming to tune and sel-
dom precise enough, engine control is based on
very complex heuristic descriptions which can
be tuned experimentally and even automatically
(Schoggl et al. 2002) — a modern engine control
unit (ECU) can include up to 40.000 labels (pa-
rameters or maps). This structure is mainly feed-
forward, with feedback loops typically used for
control of actuators, primarily calibrated under
laboratory conditions but with adaptation loops
designed to correct parameters to take in account
production and wear effects. Figure 1 shows an
engine test bench setup with the engine control
unit (ECU) and a calibration system.

The Target System

Figure 2 shows the basic setup of an ICE as CI
and SI. In both cases, the main components of an
ICE are fuel path, air path, combustion chamber,
and exhaust aftertreatment system.

Roughly speaking, ICEs exhibit three time
scales. Changes in the setting of the fuel path —
responsible to deliver the fuel to the combus-
tion chamber — act very fast for CI and GDI
engines (e.g., 50 Hz) and rather fast for SI engines
(10Hz or more). The same is not true for the
air path which brings the gas mixture (fresh air
and possibly recirculated exhaust gas) into the
combustion chamber and is the slowest system
(typically in the range of 0.5-2Hz). In SI and
GDI engines, spark timing can be changed for
each combustion too. A still faster dynamics is
associated with the combustion process itself,
pressure sensors with the required dynamics to
monitor it are being introduced in a growing
number of applications, but until now no suitable
actuators are available for its closed loop control.
The torque demand changes typically with the
vehicle dynamics, which are usually still slower
than the air path.
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The Control Tasks

The high-level control task can be defined as the
minimization of the average fuel consumption
while providing the required torque and respect-
ing the constraints on emissions (i.e., nitrogen
oxides and dioxides (NOy) and particulate matter
(PM)), noise, temperature, etc. The legislators in
different countries have defined test procedure,
including a specified road profile and correspond-
ing emission limits. Figure 3 shows the progres-
sive reduction of the limits and the speed profile
used to assess this value.

Even if fuel consumption is not yet limited by
law, the control problem associated can be stated
as an optimal constrained control problem:

1120
min 7 rdt 2
nir / qy (2)
0
so that
V(t) = vaem(t) £ Av 3)
and 1120
/ gidt < Q; “4)
0

where u(t) are all available control inputs, 1120
is the duration of the European cycle, vgem(t)
the corresponding speed, Av the speed tolerance,
q ris the instantaneous fuel consumption, ¢;each
limited quantity (e.g., NOx), and Q; the corre-
sponding limit for the whole test. In practice,
other criteria must be considered as well, like
NVH, but even this problem is never solved
using the standard tools of optimal control es-
sentially for the nonlinearity (and following non-
convexity) of the problem, but even more for the
lack of explicit models of sufficient quality relat-
ing the inputs to the target quantities, especially
combustion depending quantities like emissions.

In practice, different simpler subproblems are
solved separately and tuned to achieve sufficient
results also in terms of the general problem to
achieve the required performance. In the follow-
ing, we concentrate on the main high-level tasks,
omitting many others, e.g., all the control loops
required for the correct operation of the single
actuators.
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Engine Control, Fig. 1 Light duty engine test bench with ECU and calibration system
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Engine Control, Fig. 3 Left: different steps of limits of emissions per km as defined by the European Union (Euro 1
introduced in 1991 and Euro 6 from 2014). Right: New European Driving Cycle (NEDC)

Air Path Control
The main source of oxygen for the reaction of
Eq. (1) is ambient air which contains about 21 %
oxygen. The engine — essentially a volumetric air
pump — aspires air flow roughly proportional to
the cylinder volume and the revolution speed of
the engine. The amount of oxygen entering the
combustion chamber, however, will depend also
on temperature, pressure, and moisture. This flow
can be reduced (as in the standard SI engines)
by throttling, e.g., by adding an additional flow
resistance between the air intake and the com-
bustion chamber, or increased by compressing
the fresh air, most commonly by turbocharging
(especially in CI engines). A turbocharger con-
sists essentially of a turbine, which transforms
part of the enthalpy of the exhaust gas into me-
chanical power, and a compressor, driven by this
power to compress the fresh air on its way to
the combustion chamber, thus increasing both
its density and temperature. Turbocharger oper-
ation is typically controlled either directly (for
instance, with variable vane angles) or indirectly,
by bypass valves which deviate the gas flows in
parallel to the turbine.

If only ambient air is fed to the combus-
tion chamber, a proportional amount of the other
gases present in the atmosphere will enter the

combustion chamber and be available for com-
bustion side reactions as well. In the case of
nitrogen, these reactions lead to the undesired for-
mation of nitrogen oxides (NOx). Therefore, in
some engines, especially in CI engines, part of the
combusted gases are recirculated to the combus-
tion chamber (‘“exhaust gas recirculation”, EGR),
providing advantages in terms of NOx reduction.
While EGR is typically realized at high pressures
(path HP in Fig. 1), it is realized also at low
pressure (path LP), even though less frequently.
Typically, the air path includes some coolers
designed to increase gas densities.

Air path control is designed to track dynamical
references, for instance, the total fresh air mass
(MAF) entering the cylinder and the correspond-
ing pressure (MAP), but also other quantities are
possible. The references are typically generated
by the calibration engineers on the basis of tests.
The control inputs of the air path are mostly the
turbine (and possibly compressor) steering angle,
the EGR, and — if available — throttle(s) setpoints.
Most commonly used sensors include a mass
flow meter (hot film sensor), rather slow and dy-
namically not reliable, pressure, and temperature
sensors, and sometimes the actual position of the
valves is measured as well and the turbocharger
speed.
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Engine Control, Fig. 4
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Fuel Path Control

The fuel path delivers the correct amount of fuel
for the reaction (1). In almost every ICE, a rail
is filled with fuel at a given pressure (from few
bars for SI to about 2000 bars for CI), from
which the required amount of fuel is injected into
the cylinder. The injection can occur inside the
combustion chamber (as for CI and GDI engines)
or near to the intake valve (“port injection”) for
standard SI engines.

The injection amount is always set taking in
account the available oxygen mass. In SI engines
with three-way catalyst, the fuel injection is given
by the stoichiometric condition. A control uses
an oxygen sensor in the exhaust to determine the
actual fuel/oxygen ratio and if appropriate correct
the injection tables. In CI and GDI the maximum
fuel injection is limited to prevent smoke forma-
tion, typically by tables, even though A control
can be and is partly used (Amstutz and del Re
1995).

In SI engines with port injection, the liquid
fuel is injected near to the inlet valve and is
expected to vaporize due to the local temperature
and pressure conditions. During load changes,
however, it can happen that part of the fuel
is not vaporized, remains on the duct wall
(“wall wetting”), and vaporizes at a later
time, leading in both cases to a deviation
from the expected values (Turin et al. 1995),

crank angle [deg]

which must be compensated by the injection
control.

Injection in CI engines is typically splitted in
a main injection for torque and a pilot injection
for NVH control and sometimes also a post-
injection for emission control or regeneration of
aftertreatment devices. Figure 4 shows the typical
effect of a pilot injection on the pressure trace of
a CI engine.

Differences between injectors of different
cylinders are compensated by cylinder balancing
control (typically using irregularities in the
engine acceleration). Rail pressure is also an
important control variable for the direct injection.

Ignition

Once the combustion chamber is filled, the
combustion can be started. In SI and GDI
combustion is started by a spark) leading to
a flame front which propagates through the
whole combustion chamber. Very few SI engines
have a second spark plug to better control the
combustion. Under some circumstances, e.g.,
high temperature, an undesired auto-ignition
(“knock’) can occur with potentially catastrophic
consequences for the engine durability but also
unconventional NVH. To cope with this, SI
engines have vibration sensors whose output is
used to modify the engine operation, in particular
the spark timing, to prevent it.
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In CI engines, the injection leads almost im-
mediately to the combustion which has more the
character of an explosion and starts typically at
several undefined locations.

Additional control during the combustion is up
to now only theoretically feasible, as the combus-
tion takes place in an extremely short time, but
also because adequate actuators are not available.

Aftertreatment

As the combustion mixture will always contain
more potential reactants than oxygen and fuel,
side reactions will always take place, yielding
toxic products, in particular NOx, incompletely
burnt fuel (HC), carbon monoxide (CO), and par-
ticulate matter (PM). Even if much effort is spent
on reducing their formation, this is almost never
sufficient, so additional aftertreatment equipment
is used. Table 1 gives an overview over the most
common aftertreatment systems as well as over
their control aspects.

Thermal Management

All main properties of engines are strongly af-
fected by its temperature, which depends on the
varying load conditions. Engine operation is typ-
ically optimal for a relatively narrow temperature
range, the same is even more critical for the
exhaust aftertreatment system. Engine heat is also
required for other purposes (like defrosting of
windshields in cold climates).

Thus the engine control system has two main
tasks: bringing the engine and the exhaust af-
tertreatment system as fast as possible into the
target temperature range and taking in account
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deviation from this target. The first task is per-
formed both by control of the cooling circuit
and by specific combustion-related measures, the
second one by taking the measured or estimated
temperature as input for the controllers.

Fast heating is especially important for SI
engines, because almost all toxic emissions are
produced when the three-way catalyst is cold. To
achieve faster heating, SI engines tend to operate
in a less fuel efficient, but “hotter” operation
mode during this warm-up phase, one of the
causes of increased consumption of cold engines
and short trips.

Cranking Idle Speed and Gear Shifting
Control

Initially, the engine is cranked by the starter until
a relatively low speed and then injection starts
bringing the engine to the minimum operational
speed. If the injected fuel is not immediately
burnt, very high emissions will arise. At cranking,
the cylinder walls are typically very cold and
combustion of a stoichiometric mixture is hardly
possible. So engine control has the task to inject
as little as possible but as much as needed only in
the cylinder which is going to fire.

Normally an ICE is expected to provide a
torque to the driveline, speed being the result
of the balance between it and the load. In idle
control, no torque is transmitted to the driveline,
but the engine speed is expected to remain stable
in spite of possible changes of local loads (like
cabin climate control). This boils down to a
robust control problem (Hrovat and Sun 1997).

Engine Control, Table 1 Main exhaust aftertreatment systems

System Purpose

Three-way catalyst
than 98 %

Oxydation catalyst

Particulate filter Traps PM

NOx lean trap Traps NOx

Selective catalyst reaction ~ Reduces NOx

Reduction of HC, CO, and NOx by more

Reduction of HC and CO, partly of PM

Control targets

Achieve fast and maintain operating
temperature and keep A = 1

Achieve fast and maintain operating
temperature and keep A > 1

Check trap state and regenerate by
increasing exhaust temperature for short
time if needed

Estimate trap state and shift combustion to
CO rich when required

Estimate required quantity of additional
reactant (urea) and dose it



354

Gear shifting requires several steps. Smooth-
ness and speed of the shifting depend on the
coordination of engine operating point change.
Actual hardware developments (double clutches,
automated gear boxes) make a better operation,
but require precise control.

New Trends

The utilization environment of engine control is
changing. On one side, customer and legisla-
tor expectations continue producing pressure, but
there is a shift in priority from emissions to fuel
efficiency and safety. Driver support systems, for
instance, automated parking, are becoming the
longer the more pervasive, and many functions
must be included or affect immediately the ECU,
even though they are frequently hosted on own
control hardware. Hybrid vehicles are gaining
popularity, and this implies a different operation
mode for the engine, for instance, thermal man-
agement becomes much more complex for range
extender vehicles with long “cold” phases.

Maybe even more important is the diffusion
of new devices and communication possibilities,
so that, for instance, fuel saving preview-based
gear shifting can be easily implemented using
infrastructure-to-vehicle information, or even just
navigation data. Further extensions, like cooper-
ative adaptive cruise control (CACC), plan to use
vehicle-to-vehicle information to increase both
safety and efficiency.

Against this background, there is a growing
consciousness that the actual industrial approach
based on huge calibration work is becoming the
longer the less viable and bears a steadily increas-
ing risk of wasting potential performance. Some
model-based controls have already found their
way into the ECU, and the academy has shown
in several occasions that model-based control is
able to achieve better performance, but it has not
yet been shown how this could comply with other
industrialization requirements.

Actually, new faster sensors (e.g., pressure
sensors in the combustion chambers) are being
introduced; the interest in model-based control
(Alberer et al. 2012) and in system identification

Estimation and Control over Networks

techniques (del Re et al. 2010) are increasing, but
they are not yet widespread.

Cross-References
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Estimation and control of systems when
data is being transmitted across nonideal

communication channels has now become an
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important research topic. While much progress
has been made in the area over the last few
years, many open problems still remain. This
entry summarizes some results available for such
systems and points out a few open research
directions. Two popular channel models are
considered — the analog erasure channel model
and the digital noiseless model. Results are pre-
sented for both the multichannel and multisensor
settings.

Keywords

Analog erasure channel; Digital noiseless chan-
nel; Networked control systems; Sensor fusion

Introduction

Networked control systems refer to systems in
which estimation and control is done across
communication channels. In other words, these
systems feature data transmission among the
various components — Sensors, estimators, con-
trollers, and actuators — across communication
channels that may delay, erase, or otherwise
corrupt the data. It has been known for a long time
that the presence of communication channels
has deep and subtle effects. As an instance, an
asymptotically stable linear system may display
chaotic behavior if the data transmitted from
the sensor to the controller and the controller
to the actuator is quantized. Accordingly, the
impact of communication channels on the
estimation/control performance and design of
estimation/control algorithms to counter any
performance loss due to such channels have both
become areas of active research.

Preliminaries

It is not possible to provide a detailed overview
of all the work in the area. This entry attempts to
summarize the flavor of the results that are avail-
able today. We focus on two specific communi-
cation channel models — analog erasure channel
and the digital noiseless channel. Although other
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channel models, e.g., channels that introduce de-
lays or additive noise, have been considered in
the literature, these models are among the ones
that have been studied the most. Moreover, the
richness of the field can be illustrated by concen-
trating on these models.

An analog erasure channel model is defined
as follows. At every time step k, the channel
supports as its input a real vector i(k) € R’
with a bounded dimension . The output o(k)
of the channel is determined stochastically. The
simplest model of the channel is when the output
is determined by a Bernoulli process with proba-
bility p. In this case, the output is given by

i(k—1) withprobability 1 — p

¢ otherwise,

o(k) =

where the symbol ¢ denotes the fact that the
receiver does not obtain any data at that time
step and, importantly, recognizes that the channel
has not transmitted any data. The probability p
is termed the erasure probability of the channel.
More intricate models in which the erasure pro-
cess is governed by a Markov chain, or by a
deterministic process, have also been proposed
and analyzed. In our subsequent development, we
will assume that the erasure process is governed
by a Bernoulli process.

A digital noiseless channel model is defined
as follows. At every time step k, the channel
supports at its input one out of 2™ symbols.
The output of the channel is equal to the input.
The symbol that is transmitted may be generated
arbitrarily; however, it is natural to consider the
channel as supporting m bits at every time step
and the specific symbol transmitted as being
generated according to an appropriately design
quantizer. Once again, additional complications
such as delays introduced by the channel have
been considered in the literature.

A general networked control problem consists
of a process whose states are being measured
by multiple sensors that transmit data to multi-
ple controllers. The controllers generate control
inputs that are applied by different actuators.
All the data is transmitted across communication
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channels. Design of control inputs when multiple
controllers are present, even without the pres-
ence of communication channels, is known to be
hard since the control inputs in this case have
dual effect. It is, thus, not surprising that not
many results are available for networked control
systems with multiple controllers. We will thus
concentrate on the case when only one controller
and actuator is present. However, we will review
the known results for the analog erasure channel
and the digital noiseless channel models when
(i) multiple sensors observe the same process
and transmit information to the controller and (ii)
the sensor transmits information to the controller
over a network of communication channels with
an arbitrary topology.

An important distinction in the networked
control system literature is that of one-block
versus two-block designs. Intuitively, the
one-block design arises from viewing the
communication channel as a perturbation to
a control system designed without a channel.
In this paradigm, the only block that needs
to be designed is the receiver. Thus, for
instance, if an analog erasure channel is present
between the sensor and the estimator, the sensor
continues to transmit the measurements as if
no channel is present. However, the estimator
present at the output of the channel is now
designed to compensate for any imperfections
introduced by the communication channel.
On the other hand, in the two-block design
paradigm, both the transmitter and the receiver
are designed to optimize the estimation or control
performance. Thus, if an analog erasure channel
is present between the sensor and the estimator,
the sensor can now transmit an appropriate
function of the information it has access to.
The transmitted quantity needs to satisfy the
constraints introduced by the channel in terms of
the dimensions, bit rate, power constraints, and
so on. It is worth remembering that while the
two-block design paradigm follows in spirit from
communication theory where both the transmitter
and the receiver are design blocks, the specific
design of these blocks is usually much more
involved than in communication theory. It is
not surprising that in general performance with
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two-block designs is better than the one-block
designs.

Analog Erasure Channel Model

Consider the usual LQG formulation. A linear
process of the form

x(k + 1) = Ax(k) + Bu(k) + w(k).

with state x(k) € R? and process noise w(k)
is controlled using a control input u(k) € R™.
The process noise is assumed to be white, Gaus-
sian, zero mean, with covariance X,,. The initial
condition x(0) is also assumed to be Gaussian
and zero mean with covariance I1y. The process
is observed by n sensors, with the i-th sensor
generating measurements of the form

vi(k) = Cix(k) + v;i (k),

with the measurement noise v; (k) assumed to be

white, Gaussian, zero mean, with covariance Zf}.

All the random variables in the system are as-

sumed to be mutually independent. We consider

two cases:

e If n = 1, the sensor communicates with
the controller across a network consisting of
multiple communication channels connected
according to an arbitrary topology. Every
communication channel is modeled as an
analog erasure channel with possibly a
different erasure probability. The erasure
events on the channels are assumed to be
independent of each other, for simplicity. The
sensor and the controller then form two nodes
of a network each edge of which represents a
communication channel.

e If » > 1, then every sensor communicates
with the controller across an individual com-
munication channel that is modeled as an ana-
log erasure channel with possibly a different
erasure probability. The erasure events on the
channels are assumed to be independent of
each other, for simplicity.

The controller calculates the control input to

optimize a quadratic cost function of the form
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K—1
T =E| > (x"(k)Qx(k) + u” (k) Ru(k))
k=0
+ xT(K)Pxx(K) |.

All the covariance matrices and the cost matri-
ces O, R, and Pk are assumed to be positive
definite. The pair (A4, B) is controllable and the
pair (A4, C) is observable, where C is formed
by stacking the matrices C;’s. The system is
said to be stabilizable if there exists a design
(within the specified one-block or two-block de-
sign framework) such that the cost limg oo % Jx
is bounded.

A Network of Communication Channels

We begin with the case when N = 1 as men-
tioned above. The one-block design problem in
the presence of a network of communication
channels is identical to the one-block design as
if only one channel were present. This is be-
cause the network can be replaced by an “equiv-
alent” communication channel with the erasure
probability as some function of the reliability
of the network. This can lead to poor perfor-
mance, since the reliability may decrease quickly
as the network size increases. For this reason,
we will concentrate on the two-block design
paradigm.

The two-block design paradigm permits the
nodes of the network to process the data prior
to transmission and hence achieve much better
performance. The only constraint imposed on the
transmitter is that the quantity that is transmitted
is a causal function of the information that the
node has access to, with a bounded dimension.
The design problem can be solved using the
following steps. The first step is to prove that a
separation principle holds if the controller knows
the control input applied by the actuator at ev-
ery time step. This can be the case if the con-
troller transmits the control input to the actuator
across a perfect channel or if the control input is
transmitted across an analog erasure channel but
the actuator can transmit an acknowledgment to
the controller. For simplicity, we assume that the
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controller transmits the control input to the ac-
tuator across a perfect channel. The separation
principle states that the optimal performance is
achieved if the control input is calculated using
the usual LQR control law, but the process state
is replaced by the minimum mean squared error
(MMSE) estimate of the state. Thus, the two-
block design problem needs to be solved now for
an optimal estimation problem.

The next step is to realize that for any allowed
two-block design, an upper bound on estima-
tion performance is provided by the strategy of
every node transmitting every measurement it
has access to at each time step. Notice that this
strategy is not in the set of allowed two-block
designs since the dimension of the transmitted
quantity is not bounded with time. However, the
same estimate is calculated at the decoder if the
sensor transmits an estimate of the state at every
time step and every other node (including the
decoder) transmits the latest estimate it has access
to from either its neighbors or its memory. This
algorithm is recursive and involves every node
transmitting a quantity with bounded dimension,
however, since it leads to calculation of the same
estimate at the decoder, and is, thus, optimal. It
is worth remarking that the intermediate nodes
do not require access to the control inputs. This
is because the estimate at the decoder is a linear
function of the control inputs and the measure-
ments: thus, the effect of control inputs in the
estimate can be separated from the effect of
the measurements and included at the controller.
Moreover, as long as the closed loop system is
stable, the quantities transmitted by various nodes
are also bounded. Thus, the two-block design
problem can be solved.

The stability and performance analysis with
the optimal design can also be performed. As an
example, a necessary and sufficient stabilizability
condition is that the inequality

Pmaxcurp(A)* < 1,

holds, where p(A) is the spectral radius of A
and Pmaxcut 1S the max-cut probability evaluated
as follows. Generate cut-sets from the network
by dividing the nodes into two sets — a source
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set containing the sensor and a sink set con-
taining the controller. For each cut-set, obtain
the cut-set probability by multiplying the erasure
probabilities of the channels from the source set
to the sink set. The max-cut probability is the
maximum such cut-set probability. The necessity
of the condition follows by recognizing that the
channels from the source set to the sink set need
to transmit data at a high enough rate even if
the channels within each set are assumed not to
erase any data. The sufficiency of the condition
follows by using the Ford-Fulkerson algorithm to
reduce the network into a collection of parallel
paths from the sensor to the controller such that
each path has links with equal erasure probability
and the product of these probabilities for all paths
is the max-cut probability. More details can be
found in Gupta et al. (2009a).

Multiple Sensors

Let us now consider the case when the process
is observed using multiple sensors that transmit
data to a controller across an individual analog
erasure channel. A separation principle to reduce
the control design problem into the combination
of an LQR control law and an estimation prob-
lem can once again be proven. Thus, the two-
block design for the estimation problem asks
the following question: what quantity should the
sensors transmit such that the decoder is able
to generate the optimal MMSE estimate of the
state at every time step, given all the information
the decoder has received till that time step. This
problem is similar to the track-to-track fusion
problem that has been studied since the 1980s
and is still open for general cases (Chang et al.
1997). Suppose that at time k, the last successful
transmission from sensor i happened at time
ki < k. The optimal estimate that the decoder
can ever hope to achieve is the estimate of the
state x (k) based on all measurements from the
sensor 1 till time k;, from sensor 2 till time k,,
and so on. However, it is not known whether
this estimate is achievable if the sensors are con-
strained to transmit real vectors with a bounded
dimension. A fairly intuitive encoding scheme is
if the sensors transmit the /ocal estimates of the
state based on their own measurements. However,
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it is known that the global estimate cannot, in
general, be obtained from local estimates because
of the correlation introduced by the process noise.
If erasure probabilities are zero, or if the process
noise is not present, then the optimal encoding
schemes are known. Another case for which the
optimal encoding schemes are known is when
the estimator sends back acknowledgments to the
encoders.

Transmitting local estimates does, however,
achieve optimal stability conditions as compared
to the conditions obtained from the optimal (un-
known) two-block design (Gupta et al. 2009b).
As an example, the necessary and sufficient sta-
bility conditions for the two sensor cases are
given by

pip(A1)? <1
pap(A2)* <1

pipap(A3)* <1,

where p; and p, are erasure probabilities from
sensors 1 and 2, respectively, p(A4) is the spectral
radius of the unobservable part of the matrix A
from the second sensor, p(A;) is the spectral
radius of the unobservable part of the matrix A
from the first sensor, and p(A3) is the spectral
radius of the observable part of the matrix A
from both the sensors. The conditions are fairly
intuitive. For instance, the first condition provides
a bound on the rate of increase of modes for
which only sensor 1 can provide information
to the controller, in terms of how reliable the
communication channel from the sensor 1 is.

Digital Noiseless Channels

Similar results as above can be derived for the
digital noiseless channel model. For the digital
noiseless channel model, it is easier to consider
the system without either measurement or pro-
cess noises (although results with such noises are
available). Moreover, since quantization is inher-
ently highly nonlinear, results such as separation
between estimation and control are not available.
Thus, encoders and controllers that optimize a



Estimation and Control over Networks

cost function such as a quadratic performance
metric are not available even for the single sen-
sor or channel case. Most available results thus
discuss stabilizability conditions for a given data
rate that the channels can support.

While early works used the one-block design
framework to model the digital noiseless channel
as introducing an additive white quantization
noise, that framework obscures several crucial
features of the channel. For instance, such an
additive noise model suggests that at any bit
rate, the process can be stabilized by a suitable
controller. However, a simple argument can show
that is not true. Consider a scalar process in which
at time k, the controller knows that the state is
within a set of length /(k). Then, stabilization is
possible only if / (k) remains bounded as k — oo.
Now, the evolution of /(k) is governed by two
processes: at every time step, this uncertainty
can be (i) decreased by a factor of at most 2™
due to the data transmission across the channel
and (ii) increased by a factor of a (where a is
the process matrix governing the evolution of the
state) due to the process evolution. This implies
that for stabilization to be possible, the inequality
m > log,(a) must hold. Thus, the additive
noise model is inherently wrong. Most results
in the literature formalize this basic intuition
above (Nair et al. 2007).

A Network of Communication Channels

For the case when there is only one sensor that
transmits information to the controller across a
network of communication channels connected
in arbitrary topology, an analysis similar to that
done for analog erasure channels can be per-
formed (Tatikonda 2003). A max-flow min-cut
like theorem again holds. The stability condition
now becomes that for any cut-set

DR > )

all unstable eigenvalues

log, (%),

where ) R; is the sum of data rates supported
by the channels joining the source set to sink
set for any cut-set and A; are the eigenvalues of
the process matrix A. Note that the summation
on the right hand side is only over the unstable
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eigenvalues, since no information needs to be
transmitted about the modes that are stable in
open loop.

Multiple Sensors

The case when multiple sensors transmit
information across an individual digital noiseless
channel to a controller can also be considered.
For every sensor i, define a rate vector
{Ri,, Riy. -, R;,} corresponding to the d modes
of the system. If a mode j cannot be observed
from the sensor i, set R; ;= 0. For stability, the
condition

Z R,’j > max(O, A,j),
i

for every mode j must be satisfied. All such rate
vectors stabilize the system.

Summary and Future Directions

This entry provided a brief overview of some
results available in the field of networked
control systems. Although the area is seeing
intense research activity, many problems
remain open. For control across analog erasure
channels, most existing results break down
if a separation principle cannot be proved.
Thus, for example, if control packets are also
transmitted to the actuator across an analog
erasure channel, the LQG optimal two-block
design is unknown. There is some recent
work on analyzing the stabilizability under
such conditions (Gupta and Martins 2010),
but the problem remains open in general.
For digital noiseless channels, controllers that
optimize some performance metric are largely
unknown. Considering more general channel
models is also an important research direction
(Martins and Dahleh 2008; Sahai and Mitter
2006).

Cross-References
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Estimation for Random Sets
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Abstract

The random set (RS) concept generalizes that
of a random vector. It permits the mathematical
modeling of random systems that can be inter-
preted as random patterns. Algorithms based on
RSs have been extensively employed in image
processing. More recently, they have found appli-
cation in multitarget detection and tracking and in
the modeling and processing of human-mediated
information sources. The purpose of this entry
is to briefly summarize the concepts, theory, and
practical application of RSs.
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Keywords

Image processing; Multitarget processing; Ran-
dom finite sets; Stochastic geometry

Introduction

In ordinary signal processing, one models
physical phenomena as “sources,” which generate
“signals” obscured by random “noise.” The
sources are to be extracted from the noise
using optimal-estimation algorithms. Random
set (RS) theory was devised about 40 years
ago by mathematicians who also wanted to
construct optimal-estimation algorithms. The
“signals” and “noise” that they had in mind,
however, were geometric patterns in images.
The resulting theory, stochastic geometry, is
the basis of the “morphological operators”
commonly employed today in image-processing
applications. It is also the basis for the theory of
RSs. An important special case of RS theory, the
theory of random finite sets (RFSs), addresses
problems in which the patterns of interest consist
of a finite number of points. It is the theoretical
basis of many modern medical and other image-
processing algorithms. In recent years, RFS
theory has found application to the problem
of detecting, localizing, and tracking unknown
numbers of unknown, evasive point targets.
Most recently and perhaps most surprisingly,
RS theory provides a theoretically rigorous
way of addressing “signals” that are human-
mediated, such as natural-language statements
and inference rules. The breadth of RS theory
is suggested in the various chapters of Goutsias
et al. (1997).

The purpose of this entry is to summarize the
RS and RFS theories and their applications. It is
divided in to the following sections: A Simple
Example, Mathematics of Random Sets, Ran-
dom Sets and Image Processing, Random Sets
and Multitarget Processing, Random Sets and
Human-Mediated Data, Summary and Future Di-
rections, Cross-References, and Recommended
Reading.
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A Simple Example

To illustrate the concept of a RS, let us begin by
examining a simple example: locating stars in the
nighttime sky. We will proceed in successively
more illustrative steps:

Locating a single non-dim star (estimating
a random point). When we try to locate a star,
we are trying to estimate its actual position — its
“state” X = (p,0p) — in terms of its azimuth
angle ap and elevation angle 6. When the star
is dim but not too dim, its apparent position will
vary slightly. We can estimate its position by
averaging many measurements —i.e., by applying
a point estimator.

Locating a very dim star (estimating an RS
with at most one element). Assume that the star is
so dim that, when we see it, it might be just a mo-
mentary visual illusion. Before we can estimate
its position, we must first estimate whether or not
it exists. We must record not only its apparent
position z = («, ) (if we see it) but its apparent
existence ¢, with ¢ = 1 (we saw it) or £ = 0 (we
did not). Averaging ¢ over many observations, we
get a number g between 0 and 1. If ¢ > le (say),
we could declare that the star probably actually
is a star; and then we could average the non-null
observations to estimate its position.

Locating multiple stars (estimating an RFS).
Suppose that we are trying to locate all of the
stars in some patch of sky. In some cases, two
dim stars may be so close that they are difficult
to distinguish. We will then collect three kinds
of measurements from them: Z = @ (did not
see either star), Z = {(«,60)} (we saw one or
the other), or Z = {(«a1, 61), (a2, 62)} (saw both).
The total collected measurement in the patch of
sky is a finite set Z = {z,...,zy,} of point
measurements with z; = (6;,«;), where each z;
is random, where m is random, and where m = 0
corresponds to the null measurement Z = @.

Locating multiple stars in a quantized sky
(estimation using imprecise measurements). Sup-
pose that, for computational reasons, the patch
of sky must be quantized into a finite number
of hexagonal-shaped cells, cy, ..., cy. Then, the
measurement from any star is not a specific point
z, but instead the cell ¢ that contains z. The
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measurement c¢ is imprecise — a randomly varying
hexagonal cell c. There are two ways of thinking
about the total measurement collection. First, it is
a finite set Z = {c{,....c,,} € {c1,....cm} of
cells. Second, it is the union Z = ¢j U...Uc,, of
all of the observed cells —i.e., it is a geometrical
pattern.

Locating multiple stars over an extended
period of time (estimating multiple moving tar-
gets). As the night progresses, we must contin-
ually redetermine the existence and positions of
each star — a process called multitarget tracking.
We must also account for appearances and disap-
pearances of the stars in the patch —i.e., for rarget
death and birth.

Mathematics of Random Sets

The purpose of this section is to sketch the ele-
ments of the theory of random sets. It is organized
as follows: General Theory of Random Sets, Ran-
dom Finite Sets (Random Point Processes), and
Stochastic Geometry. Of necessity, the material
is less elementary than in later sections.

General Theory of Random Sets
Let ) be a topological space — for example, an
N -dimensional Euclidean space RY. The power
set 2% of Q) is the class of all possible sub-
sets S C 9. Any subclass of 2% is called
a “hyperspace.” The “elements” or “points” of
a hyperspace are thus actually subsets of some
other space. For a hyperspace to be of interest,
one must extend the topology on ) to it. There
are many possible topologies for hyperspaces
(Michael 1950). The most well studied is the
Fell-Matheron topology, also called the “hit-and-
miss” topology (Matheron 1975). It is applicable
when 2) is Hausdorff, locally compact, and com-
pletely separable. It topologizes only the hyper-
space ¢(27) of all closed subsets C of 9). In this
case, a random (closed) set ©® is a measurable
mapping from some probability space into ¢(2%).
The Fell-Matheron topology’s major strength
is its relative simplicity. Let “Pr(£)” denote the
probability of a probabilistic event £. Then,
normally, the probability law of ® would be
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described by a very abstract probability measure
pe(0O) = Pr(® € O). This measure must
be defined on the Borel-measurable subsets
0O C c(223), with respect to the Fell-Matheron
topology, where O is itself a class of subsets
of 2). However, define the Choquet capacity
functional by cg(G) = Pr(® N G # @) for
all open subsets G < 2). Then, the Choquet-
Matheron theorem states that the probability law
of ® is completely described by the simpler,
albeit nonadditive, measure ce (G).

The theory of random sets has evolved
into a substantial subgenre of statistical theory
(Molchanov 2005). For estimation theory, the
concept of the expected value E[®] of a random
set © is of particular interest. Most definitions
of E[®] are very abstract (Molchanov 2005,
Chap.2). In certain circumstances, however,
more conventional-looking definitions are
possible. Suppose that ) is a Euclidean space
and that ¢(29) is restricted to £(2¥), the
bounded, convex, closed subsets of ). If C,C’
are two such subsets, their Minkowski sum is
C+C' ={c+|ceC, €C'}. Endowed
with this definition of addition, £(2¥) can
be homeomorphically and homomorphically
embedded into a certain space of functions
(Molchanov 2005, pp.199-200). Denote this
embedding by C +— ¢¢. Then, the expected
value E[®] of ®, defined in terms of Minkowski
addition, corresponds to the conventional
expected value E[¢g] of the random function ¢e.

Random Finite Sets (Random Point
Processes)

Suppose that the ¢(29) is restricted to §(2%),
the class of finite subsets of 2). (In many for-
mulations, f(2¥) is taken to be the class of
locally finite subsets of %) — i.e., those whose
intersection with compact subsets is finite.) A
random finite set (RFS) is a measurable mapping
from a probability space into f(2¥). An example:
the field of twinkling stars in some patch of a
night sky. RES theory is a particular mathematical
formulation of point process theory (Daley and
Vere-Jones 1998; Snyder and Miller 1991; Stoyan
et al. 1995).
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A Poisson RFS W is perhaps the simplest
nontrivial example of a random point pattern. It
is specified by a spatial distribution s(y) and an
intensity |4. At any given instant, the probability
that there will be n points in the pattern is p(n) =
e *u" /n! (the value of the Poisson distribution).
The probability that one of these n points will be
y is s(y). The function Dy(y) = w-s(y) is called
the intensity function of V.

At any moment, the point pattern produced
by W is a finite set ¥ = {yi,...,y,} of points
Yi,--.,¥n in %), where n = 0,1,... and where
Y =0ifn = 0.If n = 0 then Y represents
the hypothesis that no objects at all are present. If
n = 1 then Y = {y;} represents the hypothesis
that a single object y; is present. If n = 2 then
Y = {yi1,y.} represents the hypothesis that there
are two distinct objects y; # y». And so on.

The probability distribution of ¥ — i.e., the
probability that W will have ¥ = {yi,...,¥u}
as an instantiation — is entirely determined by its
intensity function Dy (y):

Se¥Y) = folyt,....¥n})
=e ™ Dy(y1)---Du(ys)

Every suitably well-behaved RFS W has a
probability distribution fy(Y) and an intensity
function Dy (y) (a.k.a. first-moment density). A
Poisson RFS is unique in that fy(Y) is com-
pletely determined by Dy (y).

Conventional signal processing is often con-
cerned with single-object random systems that
have the form

Z=nx)+V

where x is the state of the system; 7(x) is the
“signal” generated by the system; the zero-mean
random vector V is the random “noise” associ-
ated the sensor; and Z is the random measurement
that is observed. The purpose of signal processing
is to construct an estimate X(zi,....,z;) of X,
using the information contained in one or more
draws zy, . .. ., z; from the random variable Z.

RFS theory is analogously concerned with
random systems that have the form
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T=TX)UQ

where a random finite point pattern Y (X) is the
“signal” generated by the point pattern X (which
is an instantiation of a random point pattern E);
Q2 is a random finite point “noise” pattern; X is
the total random finite point pattern that has been
observed; and “U” denotes set-theoretic union.
One goal of RFS theory is to devise algorithms
that can construct an estimate X(Zl, oo Zi)of
X, using multiple point patterns Zy,....,Z; <
) drawn from X. One approximate approach is
that of estimating only the first-moment density
Dz (x) of E.

Stochastic Geometry

Stochastic geometry addresses more complicated
random patterns. An example: the field of twin-
kling stars in a guantized patch of the night
sky, in which case the measurement is the union
c; U...U ¢, of a finite number of hexagonally
shaped cells.

This is one instance of a germ-grain process
(Stoyan et al. 1995, pp. 59—-64). Such a process is
specified by two items: an RFS W and a function
¢y that associates with each y in 2) a closed subset
¢y € 3. For example, if 9 = R? is the real-
valued plane, then cy could be the disk of radius
r centered aty = (x,y). Let Y = {yi,...,¥n}
be a particular random draw from W. The points
Yi....,yn are the “germs,” and cy,,...,cy, are
the “grains” of this random draw from the germ-
grain process ©. The total pattern in %) is the
union ¢y, U ... U ¢y, of the grains — a random
draw from ®. Germ-grain processes can be used
to model many kinds of natural processes. One
example is the distribution of graphite particles
in a two-dimensional section of a piece of iron,
in which case the ¢y could be chosen to be line
segments rather than disks.

Stochastic geometry is concerned with ran-
dom binary images that have observation struc-
tures such as

O@=(NAUQ

where S is a “signal” pattern; A is a random
pattern that models obscurations; €2 is a random
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pattern that models clutter; and ® is the total
pattern that has been observed. A common sim-
plifying assumption is that 2 and A¢ are germ-
grain processes. One goal of stochastic geometry
is to devise algorithms that can construct an opti-
mal estimate S’(Tl, ..., T) of S, using multiple
patterns 71, . ..., Ty € %) drawn from ©.

Random Sets and Image Processing

Both point process theory and stochastic
geometry have found extensive application
to image-processing applications. These are
considered briefly in turn.

Stochastic Geometry and Image Processing.
Stochastic geometry methods are based on the
use of a “structuring element” B (a geometrical
shape, such as a disk, sphere, or more complex
structure) to modify an image.

The dilation of a set S by B is S & B where
“@” is Minkowski addition (Stoyan et al. 1995).
Dilation tends to fill in cavities and fissures in
images. The erosionof S is S© B = (S ® B°)*
where ““” indicates set-theoretic complement.
Erosion tends to create and increase the size of
cavities and fissures. Morphological filters are
constructed from various combinations of dila-
tion and erosion operators.

Suppose that a binary image X = S has been
degraded by some measurement process — for
example, the process ® = (S N A) U Q. Then,
image restoration refers to the construction of an
estimate S (T) of the original image S from a
single degraded image ® = T. The restoration
operator S‘(T) is optimal if it can be shown to
be optimally close to S, given some concept of
closeness. The symmetric difference

iuT, =(TUT)—(ThNT)

is a commonly used method for measuring the
dissimilarity of binary images. It can be used to
construct measures of distance between random
images. One such distance is

d(0,0,) =E[|0; U6,
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where | S| denotes the size of the set S and E[A]
is the expected value of the random number A.
Other distances require some definition of the
expected value E[®] of a random set ®. It has
been shown that, under certain circumstances,
certain morphological operators can be viewed as
consistent maximum a posteriori (MAP) estima-
tors of S (Goutsias et al. 1997, p.97).

RFS Theory and Image Processing. Positron-
emission tomography (PET) is one example of
the application of RFS theory. In PET, tissues
of interest are suffused with a positron-emitting
radioactive isotope. When a positron annihilates
an electron in a suitable fashion, two photons
are emitted in opposite directions. These photons
are detected by sensors in a ring surrounding the
radiating tissue. The location of the annihilation
on the line can be estimated by calculating time
difference of arrival.

Because of the physics of radioactive decay,
the annihilations can be accurately modeled
as a Poisson RFS W. Since a Poisson RFS is
completely determined by its intensity function
Dy(x), it is natural to try to estimate Dy(x).
This yields the spatial distribution sg(y) of
annihilations — which, in turn, is the basis of the
PET image (Snyder and Miller 1991, pp. 115-
119).

Random Sets and Multitarget
Processing

The purpose of this section is to summarize
the application of RFS theory to multitarget de-
tection, tracking, and localization. An example:
tracking the positions of stars in the night sky
over an extended period of time.

Suppose that at time #; there are an unknown
number n of targets with unknown states
Xj,...,X,. The state of the entire multitarget
system is a finite set X = {xi,...,X,} with
n > 0. When interrogating a scene, many
sensors (such as radars) produce a measurement
of the form Z = {z,...,2,} — ie. a
finite set of measurements. Some of these
measurements are generated by background
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clutter Q2. Others are generated by the targets,
with some targets possibly not having generated
any. Mathematically speaking, Z is a random
draw from an RFS ¥; that can be decomposed
as Xy = Y(Xx) Uy, where T (Xy) is the set of
target-generated measurements.

Conventional Multitarget Detection and
Tracking. This is based on a “divide and
conquer” strategy with three basic steps: time
update, data association, and measurement
update. At time t; we have n “tracks” ty,..., T,
(hypothesized targets). In the time update, an
extended Kalman filter (EKF) is used to time-
predict the tracks t; to predicted tracks ‘L’l-+
at the time f#;4+; of the next measurement set
Zk+1 = {Zl, e ,Zm}.

Given Zi41, we can construct the following
data-association hypothesis H: for each i =
1,...,n, the predicted track ri+ generated the
detection z;;, for some index j;, or, alternatively,
this track was not detected at all. If we remove
from Zj 4 all of the z;,,...,z;,, the remaining
measurements are interpreted either as being clut-
ter or as having been generated by new targets.
Enumerating all possible association hypotheses
(which is a combinatorily complex procedure),
we end up with a “hypothesis table” Hj, ..., H,.

Given H;, let z;; be the measurement that is
hypothesized to have been generated by predicted
track ‘L’i+. Then, the measurement-update step of
an EKF is used to construct a measurement-
updated track 7 ;; from ;% and zj,. Attached
to each H; is a hypothesis probability p; — the
probability that the particular hypothesis H; is the
correct one. The hypothesis with largest p; yields
the multitarget estimate X = {Xy,...,%;}.

RFS Multitarget Detection and Tracking. In
the place of tracks and hypothesis tables, this uses
multitarget state sets and multitarget probability
distributions. In place of the conventional time
update, data association, and measurement
update, it uses a recursive Bayes filter. A random
multitarget state set is an RFS Epj whose
points are target states. A multitarget probability
distribution is the probability distribution
SXklZik) = S5, (X) of the RFS Eyy,
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where Zi.x : Zi,...,Z; is the time sequence
of measurement sets at time 7.

RFS Time Update. The Bayes filter time-
update step f(Xk|Zix) — f(Xit1lZix)
requires a multitarget Markov transition function
f(Xk+11Xk). It is the probability that the
multitarget system will have multitarget state set
Xi+1 at time fx 4, if it had multitarget state set
X at time #;. It takes into account all pertinent
characteristics of the targets: individual target
motion, target appearance, target disappearance,
environmental constraints, etc. It is explicitly
constructed from an RFS multitarget motion
model using a multitarget integrodifferential
calculus.

RFS Measurement Update. The Bayes filter
measurement-update step f(Xi+1|Z1k) —
f(Xi+11Z1:k+1) is just Bayes rule. It requires
a multitarget likelihood function fir+1(Z|X) -
the likelihood that a measurement set Z will be
generated, if a system of targets with state set
X is present. It takes into account all pertinent
characteristics of the sensor(s): sensor noise,
fields of view and obscurations, probabilities
of detection, false alarms, and/or clutter. It is
explicitly constructed from an RF'S measurement
model using multitarget calculus.

RFS State Estimation. Determination of the
number n and states X, ..., X, of the targets is
accomplished using a Bayes-optimal multitarget
state estimator. The idea is to determine the Xj 4+
that maximizes f(Xx+1|Z1:x+1) in some sense.

Approximate Multitarget RFS Filters.
The multitarget Bayes filter is, in general,
computationally intractable. Central to the RFS
approach is a toolbox of techniques — including
the multitarget calculus — designed to produce
statistically principled approximate multitarget
filters. The two most well studied are the
probability hypothesis density (PHD) filter and
its generalization the cardinalized PHD (CPHD)
filter. In such filters, f(Xi|Z1) is replaced by
the first-moment density D(Xk|Z1x) of .
These filters have been shown to be faster and
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perform better than conventional approaches in
some applications.
Random Sets and Human-Mediated Data

Random Sets and Human-Mediated
Data

Natural-language statements and inference rules
have already been mentioned as examples of
human-mediated information. Expert-systems
theory was introduced in part to address
situations — such as this — that involve
uncertainties other than randomness. Expert-
system methodologies include fuzzy set theory,
the Dempster-Shafer (D-S) theory of uncertain
evidence, and rule-based inference. RS theory
provides solid Bayesian foundations for them
and allows human-mediated data to be processed
using standard Bayesian estimation techniques.
The purpose of this section is to briefly
summarize this aspect of the RS approach.

The relationships between expert-systems
theory and random set theory were first
established by researchers such as Orlov (1978),
Hohle (1982), Nguyen (1978), and Goodman and
Nguyen (1985). At a relatively early stage, it
was recognized that random set theory provided
a potential means of unifying much of expert-
systems theory (Goodman and Nguyen 1985;
Kruse et al. 1991).

A conventional sensor measurement at time #;
is typically represented as Zy = n(xx) + Vi —
equivalently formulated as a likelihood function
f(zk|x;). It is conventional to think of z; as
the actual “measurement” and of f(zx|x;) as the
full description of the uncertainty associated with
it. In actuality, z; is just a mathematical model
z;, of some real-world measurement {j. Thus,
the likelihood actually has the form f({x|x;) =
f (Zé'k |Xk)~

This observation assumes crucial importance
when one considers human-mediated data. Con-
sider the simple natural-language statement

¢ = “The target is near the tower”
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where the tower is a landmark, located at a known
position (xg, o), and where the term “near” is
assumed to have the following specific meaning:
(x, y) is near (xg, yp) means that (x,y) € Ts
where Ts is a disk of radius 5m, centered at
(x0, y0). If z = (x, y) is the actual measurement
of the target’s position, then ¢ is equivalent to the
formula z € Ts. Since z is just one possible draw
from Zi, we can say that { — or, equivalently,
Ts — is actually a constraint on the underlying
measurement process: Zy € Ts.

Because the word “near” is rather vague, we
could just as well say that z € 75 is the best
choice, with confidence ws = 0.7; that z € T} is
the next best choice, with confidence wy = 0.2;
and that z € Ty is the least best, with confidence
we = 0.1. Let ©® be the random subset of 3
defined by Pr(® = T;) = w; fori = 4,5,6.In
this case, ¢ is equivalent to the random constraint

Zk € 0.
The probability

ok (O[xx) = Pr(n(xx) + Vi € ©)
= Pr(Zk S ®|Xk = Xk)

is called a generalized likelihood function (GLF).
GLFs can be constructed for more complex
natural-language statements, for inference rules,
and more. Using their GLF representations,
such “nontraditional measurements” can be
processed using single- and multi-object
recursive Bayes filters and their approximations.
As a consequence, it can be shown that fuzzy
logic, the D-S theory, and rule-based inference
can be subsumed within a single Bayesian-
probabilistic paradigm.

Summary and Future Directions

In the engineering world, the theory of random
sets has been associated primarily with certain
specialized image-processing applications, such
as morphological filters and tomographic imag-
ing. It has more recently found application in
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fields such as multitarget tracking and in expert-
systems theory. All of these fields of application
remain areas of active research.

Cross-References

Estimation, Survey on
Extended Kalman Filters
Nonlinear Filters

Recommended Reading

Molchanov (2005) provides a definitive exposi-
tion of the general theory of random sets. Two
excellent references for stochastic geometry are
Stoyan et al. (1995) and Barndorff-Nielsen and
van Lieshout (1999). The books by Kingman
(1993) and Daley and Vere-Jones (1998) are
good introductions to point process theory. The
application of point process theory and stochas-
tic geometry to image processing is addressed
in, respectively, Snyder and Miller (1991) and
Stoyan et al. (1995). The application of RFSs to
multitarget estimation is addressed in the tutorials
Mabhler (2004, 2013) and the book Mahler (2007).
Introductions to the application of random sets to
expert systems can be found in Kruse et al. (1991)
and Mabhler (2007), Chaps. 3—6.
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Abstract

This entry discusses the history and describes
the multitude of methods and applications of this
important branch of stochastic process theory.

Keywords

Linear stochastic filtering; Markov step pro-
cesses; Maximum likelihood estimation; Riccati
equation; Stratonovich-Kushner equation

Estimation is the process of inferring the value of
an unknown given quantity of interest from noisy,
direct or indirect, observations of such a quantity.
Due to its great practical relevance, estimation
has a long history and an enormous variety
of applications in all fields of engineering and
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science. A certainly incomplete list of possible
application domains of estimation includes the
following: statistics (Bard 1974; Ghosh et al.
1997; Koch 1999; Lehmann and Casella 1998;
Tsybakov 2009; Wertz 1978), telecommunication
systems (Sage and Melsa 1971; Schonhoff
and Giordano 2006; Snyder 1968; Van Trees
1971), signal and image processing (Barkat
2005; Biemond et al. 1983; Elliott et al. 2008;
Itakura 1971; Kay 1993; Kim and Woods 1998;
Levy 2008; Najim 2008; Poor 1994; Tuncer
and Friedlander 2009; Wakita 1973; Woods and
Radewan 1977), aerospace engineering (McGee
and Schmidt 1985), tracking (Bar-Shalom and
Fortmann 1988; Bar-Shalom et al. 2001, 2013;
Blackman and Popoli 1999; Farina and Studer
1985, 1986), navigation (Dissanayake et al.
2001; Durrant-Whyte and Bailey 2006a,b; Farrell
and Barth 1999; Grewal et al. 2001; Mullane
et al. 2011; Schmidt 1966; Smith et al. 1986;
Thrun et al. 2006), control systems (Anderson
and Moore 1979; Athans 1971; Goodwin et al.
2005; Joseph and Tou 1961; Kalman 1960a;
Maybeck 1979, 1982; Soderstrém 1994; Stengel
1994), econometrics (Aoki 1987; Pindyck
and Roberts 1974; Zellner 1971), geophysics
(e.g., seismic deconvolution) (Bayless and
Brigham 1970; Flinn et al. 1967; Mendel
1977, 1983, 1990), oceanography (Evensen
1994a; Ghil and Malanotte-Rizzoli 1991),
weather forecasting (Evensen 1994b, 2007;
McGarty 1971), environmental engineering
(Dochain and Vanrolleghem 2001; Heemink
and Segers 2002; Nachazel 1993), demographic
systems (Leibungudt et al. 1983), automotive
systems (Barbarisi et al. 2006; Stephant et al.
2004), failure detection (Chen and Patton
1999; Mangoubi 1998; Willsky 1976), power
systems (Abur and Goémez Espésito 2004;
Debs and Larson 1970; Miller and Lewis
1971; Monticelli 1999; Toyoda et al. 1970),
nuclear engineering (Robinson 1963; Roman
et al. 1971; Sage and Masters 1967; Venerus
and Bullock 1970), biomedical engineering
(Bekey 1973; Snyder 1970; Stark 1968), pattern
recognition (Andrews 1972; Ho and Agrawala
1968; Lainiotis 1972), social networks (Snijders
et al. 2012), etc.
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Chapter Organization

The rest of the chapter is organized as follows.
Section “Historical Overview on Estimation”
will provide a historical overview on estimation.
The next section will discuss applications of
estimation. Connections between estimation and
information theories will be explored in the sub-
sequent section. Finally, the section “Conclusions
and Future Trends” will conclude the chapter
by discussing future trends in estimation. An
extensive list of references is also provided.

Historical Overview on Estimation

A possibly incomplete, list of the major achieve-
ments on estimation theory and applications is
reported in Table 1. The entries of the table,
sorted in chronological order, provide for each
contribution the name of the inventor (or inven-
tors), the date, and a short description with main
bibliographical references.

Probably the first important application of
estimation dates back to the beginning of
the nineteenth century whenever least-squares
estimation (LSE), invented by Gauss in 1795
(Gauss 1995; Legendre 1810), was successfully
exploited in astronomy for predicting planet
orbits (Gauss 1806). Least-squares estimation
follows a deterministic approach by minimizing
the sum of squares of residuals defined as
differences between observed data and model-
predicted estimates. A subsequently introduced
statistical approach is maximum likelihood
estimation (MLE), popularized by R. A. Fisher
between 1912 and 1922 (Fisher 1912, 1922,
1925). MLE consists of finding the estimate of
the unknown quantity of interest as the value
that maximizes the so-called likelihood function,
defined as the conditional probability density
function of the observed data given the quantity to
be estimated. In intuitive terms, MLE maximizes
the agreement of the estimate with the observed
data. Whenever the observation noise is assumed
Gaussian (Kim and Shevlyakov 2008; Park et al.
2013), MLE coincides with LSE.
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While estimation problems had been
addressed for several centuries, it was not
until the 1940s that a systematic theory of
estimation started to be established, mainly
relying on the foundations of the modern theory
of probability (Kolmogorov 1933). Actually, the
roots of probability theory can be traced back to
the calculus of combinatorics (the Stomachion
puzzle invented by Archimedes (Netz and Noel
2011)) in the third century B.C. and to the
gambling theory (work of Cardano, Pascal, de
Fermat, Huygens) in the sixteenth—seventeenth
centuries.

Differently from the previous work devoted to
the estimation of constant parameters, in the
period 1940-1960 the attention was mainly
shifted toward the estimation of signals. In
particular, Wiener in 1940 (Wiener 1949)
and Kolmogorov in 1941 (Kolmogorov 1941)
formulated and solved the problem of linear
minimum mean-square error (MMSE) estimation
of continuous-time and, respectively, discrete-
time stationary random signals. In the late 1940s
and in the 1950s, Wiener-Kolmogorov’s theory
was extended and generalized in many directions
exploiting both time-domain and frequency-
domain approaches. At the beginning of the
1960s Rudolf E. Kalmidn made pioneering
contributions to estimation by providing the
mathematical foundations of the modern theory
based on state-variable representations. In
particular, Kdlméan solved the linear MMSE
filtering and prediction problems both in discrete-
time (Kalman 1960b) and in continuous-time
(Kalman and Bucy 1961); the resulting optimal
estimator was named after him, Kalman filter
(KF). As a further contribution, Kalman also
singled out the key technical conditions, i.e.,
observability and controllability, for which the
resulting optimal estimator turns out to be
stable. Kalman’s work went well beyond earlier
contributions of A. Kolmogorov, N. Wiener, and
their followers (“frequency-domain™ approach)
by means of a general state-space approach. From
the theoretical viewpoint, the KF is an optimal
estimator, in a wide sense, of the state of a linear
dynamical system from noisy measurements;
specifically it is the optimal MMSE estimator in
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Estimation, Survey on, Table 1 Major developments on estimation

Archimedes

G. Cardano, B. Pascal, P. de
Fermat, C. Huygens

J. F. Riccati

T. Bayes

C. F. Gauss, A. M. Legendre

P. S. Laplace
R. A. Fisher

A. N. Kolmogorov
N. Wiener

A. N. Kolmogorov
H. Cramér, C. R. Rao

S. Ulam, J. von Neumann,
N. Metropolis, E. Fermi

J. Sklansky, T. R. Benedict,
G. W. Bordner, H. R. Simp-
son, S. R. Neal
R. L.

H. J. Kushner

Stratonovich,

R. E. Kalman
R. E. Kalman
R. E. Kalman, R. S. Bucy

A. E. Bryson, M. Frazier,
H. E. Rauch, F. Tung, C. T.
Striebel, D. Q. Mayne, J. S.
Meditch, D. C. Fraser, L. E.
Zachrisson, B. D. O. Ander-
son, etc.

D. G. Luenberger

Y. C. Ho,R. C. K. Lee
W. M. Wonham

A. H. Jazwinski

Third century B.C.

Sixteenth—seventeenth cen-
turies

1722-1723
1763
1795-1810
1814
1912-1922

1933
1940

1941
1945

1946-1949

1957-1967

1959-1964

1960
1961
1961

Since 1963

1964
1964

1965

1966

Combinatorics (Netz and Noel 2011) as the basis of
probability

Roots of the theory of probability (Devlin 2008)

Differential Riccati equation (Riccati 1722, 1723), sub-
sequently exploited in the theory of linear stochastic
filtering

Bayes’ formula on conditional probability (Bayes
1763; McGrayne 2011)

Least-squares estimation and its applications to the pre-
diction of planet orbits (Gauss 1806, 1995; Legendre
1810)

Theory of probability (Laplace 1814)

Maximum likelihood estimation (Fisher 1912, 1922,
1925)

Modern theory of probability (Kolmogorov 1933)
Minimum mean-square error estimation of continuous-
time stationary random signals (Wiener 1949)
Minimum mean-square error estimation of discrete-
time stationary random signals (Kolmogorov 1941)

Theoretical lower bound on the covariance of estima-
tors (Cramér 1946; Rao 1945)

Monte Carlo method (Los Alamos Scientific Labora-
tory 1966; Metropolis and Ulam 1949; Ulam 1952;
Ulam et al. 1947)

o — B and « — B — y filters (Benedict and Bordner
1962; Neal 1967; Painter et al. 1990; Simpson 1963;
Sklansky 1957)

Bayesian approach to stochastic nonlinear filtering of
continuous-time systems, i.e., Stratonovich-Kushner
equation for the evolution of the state conditional
probability density (Jazwinski 1970; Kushner 1962,
1967; Stratonovich 1959, 1960)

Linear filtering and prediction for discrete-time sys-
tems (Kalman 1960b)

Observability of linear dynamical systems (Kalman
1960a)

Linear filtering and prediction for continuous-time sys-
tems (Kalman and Bucy 1961)

Smoothing of linear and nonlinear systems (Anderson
and Chirarattananon 1972; Bryson and Frazier 1963;
Mayne 1966; Meditch 1967; Rauch 1963; Rauch et al.
1965; Zachrisson 1969)

State observer for a linear system (Luenberger 1964)

Bayesian approach to recursive nonlinear estimation
for discrete-time systems (Ho and Lee 1964)
Optimal filtering for Markov step processes (Wonham
1965)
Bayesian approach to stochastic nonlinear filtering for
continuous-time stochastic systems with discrete-time
observations (Jazwinski 1966)

(continued)



370

Estimation, Survey on, Table 1 (continued)

Archimedes
S. F. Schmidt

P. L. Falb, A. V. Balakr-
ishnan, J. L. Lions, S. G.
Tzafestas, J. M. Nightin-
gale, H. J. Kushner, J. S.
Meditch, etc.

T. Kailath

A. H. Jazwinski, B. Rawl-
ings, etc.

F. C. Schweppe, D. P. Bert-
sekas, 1. B. Rhodes, M. Mi-
lanese, etc.

J. E. Potter, G. Golub, S.
F. Schmidt, P. G. Kaminski,
A. E. Bryson, A. Andrews,
G. J. Bierman, M. Morf, T.
Kailath, etc.

C. W. Helstrom

D. L. Alspach, H. W. Soren-
son

T. Kailath, M. Morf, G. S.
Sidhu

A. Segall

J. W. Woods and C. Rade-
wan

J. H. Taylor

D. Reid

L. Servi, Y. Ho

V. E. Benes

H. V. Poor, D. Looze, J. Dar-
ragh, S. Verdd, M. J. Grim-
ble, etc.

V. J. Aidala, S. E. Hammel

F. E. Daum

Third century B.C.

1966

Since 1967

1968

Since 1968

Since 1968

1968-1975

1969
1970-1972

1973-1974

1976

1977

1979

1979

1981

1981

1981-1988

1983

1986
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Combinatorics (Netz and Noel 2011) as the basis of
probability

Extended Kalman filter and its application for the
manned lunar missions (Schmidt 1966)

State estimation for infinite-dimensional (e.g., dis-
tributed parameter, partial differential equation (PDE),
delay) systems (Balakrishnan and Lions 1967; Falb
1967; Kushner 1970; Kwakernaak 1967; Meditch
1971; Tzafestas and Nightingale 1968)

Principle of orthogonality and innovation approach
to estimation (Frost and Kailath 1971; Kailath 1968,
1970; Kailath and Frost 1968; Kailath et al. 2000)
Limited memory (receding-horizon, moving-horizon)
state estimation with constraints (Alessandri et al.
2005, 2008; Jazwinski 1968; Rao et al. 2001, 2003)

Set-membership recursive state estimation with sys-
tems with unknown but bounded noises (Alamo et al.
2005; Bertsekas and Rhodes 1971; Chisci et al. 1996;
Combettes 1993; Milanese and Belforte 1982; Mi-
lanese and Vicino 1993; Schweppe 1968; Vicino and
Zappa 1996)

Square-root filtering (Andrews 1968; Bierman 1974,
1977; Golub 1965; Kaminski and Bryson 1972; Morf
and Kailath 1975; Potter and Stern 1963; Schmidt
1970)

Quantum estimation (Helstrom 1969, 1976)
Gaussian-sum filters for nonlinear and/or non-

Gaussian systems (Alspach and Sorenson 1972;
Sorenson and Alspach 1970, 1971)
Fast Chandrasekhar-type algorithms for recursive state
estimation of stationary linear systems (Kailath 1973;
Morf et al. 1974)
Recursive estimation from point processes (Segall
1976)
Kalman filter in two dimensions (Woods and Radewan
1977) for image processing
Cramér-Rao lower bound (CRLB) for recursive state
estimation with no process noise (Taylor 1979)
Multiple Hypothesis Tracking (MHT) filter for multi-
target tracking (Reid 1979)
Optimal filtering for linear systems with uniformly
distributed measurement noise (Servi and Ho 1981)
Exact finite-dimensional optimal MMSE filter for a
class of nonlinear systems (Benes 1981)
Robust (e.g., Hoo) filtering (Darragh and Looze 1984;
Grimble 1988; Hassibi et al. 1999; Poor and Looze
1981; Simon 2006; Verdu and Poor 1984)
Bearings-only tracking (Aidala and Hammel 1983;
Farina 1999)
Extension of the Benes filter to a more general class of
nonlinear systems (Daum 1986)

(continued)



Estimation, Survey on

Estimation, Survey on, Table 1 (continued)

Archimedes Third century B.C.
L. Dai and others Since 1987
N.J. Gordon, D.J. Salmond, 1993

A. M. F. Smith

K. C. Chou, A. S. Willsky, 1994

A. Benveniste

G. Evensen 1994

R. P. S. Mahler 1994

S. J. Julier, J. K. Uhlmann, 1995

H. Durrant-Whyte

A. Germani et al. Since 1996
P. Tichavsky, C. H. Mu- 1998
ravchik, A. Nehorai

R. Mahler 2003, 2007
A.G. Ramm 2005

M. Hernandez, A. Farina, B. 2006
Ristic

Olfati-Saber and others Since 2007

the Gaussian case (e.g., for normally distributed
noises and initial state) and the best linear
unbiased estimator irrespective of the noise
and initial state distributions. From the practical
viewpoint, the KF enjoys the desirable properties
of being linear and acting recursively, step-by-
step, on a noise-contaminated data stream. This
allows for cheap real-time implementation on
digital computers. Further, the universality of
“state-variable representations” allows almost
any estimation problem to be included in the
KF framework. For these reasons, the KF is,
and continues to be, an extremely effective and
easy-to-implement tool for a great variety of
practical tasks, e.g., to detect signals in noise
or to estimate unmeasurable quantities from
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Combinatorics (Netz and Noel 2011) as the basis of
probability

State estimation for linear descriptor (singular, im-
plicit) stochastic systems (Chisci and Zappa 1992; Dai
1987, 1989; Nikoukhah et al. 1992)

Particle (sequential Monte Carlo) filter (Doucet et al.
2001; Gordon et al. 1993; Ristic et al. 2004)

Multiscale Kalman filter (Chou et al. 1994)

Ensemble Kalman filter for data assimilation in meteo-
rology and oceanography (Evensen 1994b, 2007)

Random set filtering (Mahler 1994, 2007a; Ristic et al.
2013)

Unscented Kalman filter (Julier and Uhlmann 2004,
Julier et al. 1995)

Polynomial extended Kalman filter for nonlinear
and/or non-Gaussian systems (Carravetta et al. 1996;
Germani et al. 2005)

Posterior Cramér-Rao lower bound (PCRLB) for recur-
sive state estimation (Tichavsky et al. 1998; van Trees
and Bell 2007)

Probability hypothesis density (PHD) and cardinalized
PHD (CPHD) filters (Mahler 2003, 2007b; Ristic 2013;
Vo and Ma 1996; Vo et al. 2007)

Estimation of random fields (Ramm 2005)

PCRLB for tracking in the case of detection probability
less than one and false alarm probability greater than
zero (Hernandez et al. 2006)

Consensus filters (Olfati-Saber et al. 2007; Calafiore
and Abrate 2009; Xiao et al. 2005; Alriksson and
Rantzer 2006; Olfati-Saber 2007; Kamgarpour and
Tomlin 2007; Stankovic et al. 2009; Battistelli et al.
2011, 2012, 2013; Battistelli and Chisci 2014) for
networked estimation

accessible observables. Due to the generality
of the state estimation problem, which actually
encompasses parameter and signal estimation as
special cases, the literature on estimation since
1960 till today has been mostly concentrated
on extensions and generalizations of Kalman’s
work in several directions. Considerable efforts,
motivated by the ubiquitous presence of
nonlinearities in practical estimation problems,
have been devoted to nonlinear and/or non-
Gaussian filtering, starting from the seminal
papers of Stratonovich (1959, 1960) and Kushner
(1962, 1967) for -continuous-time systems,
Ho and Lee (1964) for discrete-time systems,
and Jazwinski (1966) for continuous-time
systems with discrete-time observations. In these
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papers, state estimation is cast in a probabilistic
(Bayesian) framework as the problem of evolving
in time the state conditional probability density
given observations (Jazwinski 1970). Work on
nonlinear filtering has produced over the years
several nonlinear state estimation algorithms,
e.g., the extended Kalman filter (EKF) (Schmidt
1966), the unscented Kalman filter (UKF) (Julier
and Uhlmann 2004; Julier et al. 1995), the
Gaussian-sum filter (Alspach and Sorenson
1972; Sorenson and Alspach 1970, 1971), the
sequential Monte Carlo (also called particle) filter
(SMCF) (Doucet et al. 2001; Gordon et al. 1993;
Ristic et al. 2004), and the ensemble Kalman filter
(EnKF) (Evensen 1994a,b, 2007) which have
been, and are still now, successfully employed
in various application domains. In particular,
the SMCF and EnKF are stochastic simulation
algorithms taking inspiration from the work in the
1940s on the Monte Carlo method (Metropolis
and Ulam 1949) which has recently got renewed
interest thanks to the tremendous advances in
computing technology. A thorough review on
nonlinear filtering can be found, e.g., in Daum
(2005) and Crisan and Rozovskii (2011).

Other interesting areas of investigation have
concerned smoothing (Bryson and Frazier 1963),
robust filtering for systems subject to model-
ing uncertainties (Poor and Looze 1981), and
state estimation for infinite-dimensional (i.e., dis-
tributed parameter and/or delay) systems (Bal-
akrishnan and Lions 1967). Further, a lot of
attention has been devoted to the implementa-
tion of the KF, specifically square-root filtering
(Potter and Stern 1963) for improved numerical
robustness and fast KF algorithms (Kailath 1973;
Morf et al. 1974) for enhancing computational
efficiency. Worth of mention is the work over
the years on theoretical bounds on the estimation
performance originated from the seminal papers
of Rao (1945) and Cramér (1946) on the lower
bound of the MSE for parameter estimation and
subsequently extended in Tichavsky et al. (1998)
to nonlinear filtering and in Hernandez et al.
(2006) to more realistic estimation problems with
possible missed and/or false measurements. An
extensive review of this work on Bayesian bounds
for estimation, nonlinear filtering, and tracking
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can be found in van Trees and Bell (2007). A brief
review of the earlier (until 1974) state of art in
estimation can be found in Lainiotis (1974).

Applications

Astronomy

The problem of making estimates and predictions
on the basis of noisy observations originally at-
tracted the attention many centuries ago in the
field of astronomy. In particular, the first attempt
to provide an optimal estimate, i.e., such that a
certain measure of the estimation error be min-
imized, was due to Galileo Galilei that, in his
Dialogue on the Two World Chief Systems (1632)
(Galilei 1632), suggested, as a possible criterion
for estimating the position of Tycho Brahe’s su-
pernova, the estimate that required the “mini-
mum amendments and smallest corrections” to
the data. Later, C. F. Gauss mathematically speci-
fied this criterion by introducing in 1795 the least-
squares method (Gauss 1806, 1995; Legendre
1810) which was successfully applied in 1801
to predict the location of the asteroid Ceres.
This asteroid, originally discovered by the Italian
astronomer Giuseppe Piazzi on January 1, 1801,
and then lost in the glare of the sun, was in
fact recovered 1 year later by the Hungarian
astronomer F. X. von Zach exploiting the least-
squares predictions of Ceres’ position provided
by Gauss.

Statistics

Starting from the work of Fisher in the 1920s
(Fisher 1912, 1922, 1925), maximum likelihood
estimation has been extensively employed
in statistics for estimating the parameters of
statistical models (Bard 1974; Ghosh et al.
1997; Koch 1999; Lehmann and Casella 1998;
Tsybakov 2009; Wertz 1978).

Telecommunications and Signal/Image
Processing

Wiener-Kolmogorov’s theory on signal esti-
mation, developed in the period 1940-1960
and originally conceived by Wiener during
the Second World War for predicting aircraft
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trajectories in order to direct the antiaircraft fire,
subsequently originated many applications in
telecommunications and signal/image processing
(Barkat 2005; Biemond et al. 1983; Elliott
et al. 2008; Itakura 1971; Kay 1993; Kim
and Woods 1998; Levy 2008; Najim 2008;
Poor 1994; Tuncer and Friedlander 2009;
Van Trees 1971; Wakita 1973; Woods and
Radewan 1977). For instance, Wiener filters have
been successfully applied to linear prediction,
acoustic echo cancellation, signal restoration, and
image/video de-noising. But it was the discovery
of the Kalman filter in 1960 that revolutionized
estimation by providing an effective and powerful
tool for the solution of any, static or dynamic,
stationary or adaptive, linear estimation problem.
A recently conducted, and probably non-
exhaustive, search has detected the presence
of over 16,000 patents related to the “Kalman
filter,” spreading over all areas of engineering
and over a period of more than 50 years. What
is astonishing is that even nowadays, more than
50 years after its discovery, one can see the
continuous appearance of lots of new patents and
scientific papers presenting novel applications
and/or novel extensions in many directions (e.g.,
to nonlinear filtering) of the KF. Since 1992
the number of patents registered every year and
related to the KF follows an exponential law.

Space Navigation and Aerospace
Applications

The first important application of the Kalman
filter was in the NASA (National Aeronautic
and Space Administration) space program. As
reported in a NASA technical report (McGee and
Schmidt 1985), Kalman presented his new ideas
while visiting Stanley F. Schmidt at the NASA
Ames Research Center in 1960, and this meeting
stimulated the use of the KF during the Apollo
program (in particular, in the guidance system of
Saturn V during Apollo 11 flight to the Moon),
and, furthermore, in the NASA Space Shuttle
and in Navy submarines and unmanned aerospace
vehicles and weapons, such as cruise missiles.
Further, to cope with the nonlinearity of the space
navigation problem and the small word length
of the onboard computer, the extended Kalman
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filter for nonlinear systems and square-root filter
implementations for enhanced numerical robust-
ness have been developed as part of the NASA’s
Apollo program. The aerospace field was only
the first of a long and continuously expanding
list of application domains where the Kalman
filter and its nonlinear generalizations have found
widespread and beneficial use.

Control Systems and System Identification
The work on Kalman filtering (Kalman 1960b;
Kalman and Bucy 1961) had also a significant
impact on control system design and implemen-
tation. In Kalman (1960a) duality between esti-
mation and control was pointed out, in that for a
certain class of control and estimation problems
one can solve the control (estimation) problem
for a given dynamical system by resorting to a
corresponding estimation (control) problem for
a suitably defined dual system. In particular, the
Kalman filter has been shown to be dual of
the linear-quadratic (LQ) regulator, and the two
dual techniques constitute the linear-quadratic-
Gaussian (LQG) (Joseph and Tou 1961) regula-
tor. The latter consists of an LQ regulator feeding
back in a linear way the state estimate provided
by a Kalman filter, which can be independently
designed in view of the separation principle.
The KF as well as LSE and MLE techniques
are also widely used in system identification
(Ljung 1999; Soderstrom and Stoica 1989) for
both parameter estimation and output prediction
purposes.

Tracking

One of the major application areas for estimation
is tracking (Bar-Shalom and Fortmann 1988; Bar-
Shalom et al. 2001, 2013; Blackman and Popoli
1999; Farina and Studer 1985, 1986), i.e., the
task of following the motion of moving objects
(e.g., aircrafts, ships, ground vehicles, persons,
animals) given noisy measurements of kinematic
variables from remote sensors (e.g., radar, sonar,
video cameras, wireless sensors, etc.). The de-
velopment of the Wiener filter in the 1940s was
actually motivated by radar tracking of aircraft
for automatic control of antiaircraft guns. Such
filters began to be used in the 1950s whenever
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computers were integrated with radar systems,
and then in the 1960s more advanced and better
performing Kalman filters came into use. Still
today it can be said that the Kalman filter and
its nonlinear generalizations (e.g., EKF (Schmidt
1966), UKF (Julier and Uhlmann 2004), and
particle filter (Gordon et al. 1993)) represent
the workhorses of tracking and sensor fusion.
Tracking, however, is usually much more compli-
cated than a simple state estimation problem due
to the presence of false measurements (clutter)
and multiple objects in the surveillance region
of interest, as well as for the uncertainty about
the origin of measurements. This requires to use,
besides filtering algorithms, smart techniques for
object detection as well as for association be-
tween detected objects and measurements. The
problem of joint target tracking and classifica-
tion has also been formulated as a hybrid state
estimation problem and addressed in a number of
papers (see, e.g., Smeth and Ristic (2004) and the
references therein).

Econometrics
State and parameter estimation have been widely
used in econometrics (Aoki 1987) for analyz-
ing and/or predicting financial time series (e.g.,
stock prices, interest rates, unemployment rates,
volatility etc.).

Geophysics

Wiener and Kalman filtering techniques are em-
ployed in reflection seismology for estimating the
unknown earth reflectivity function given noisy
measurements of the seismic wavelet’s echoes
recorded by a geophone. This estimation prob-
lem, known as seismic deconvolution (Mendel
1977, 1983, 1990), has been successfully ex-
ploited, e.g., for oil exploration.

Data Assimilation for Weather Forecasting
and Oceanography

Another interesting application of estimation
theory is data assimilation (Ghil and Malanotte-
Rizzoli 1991) which consists of incorporating
noisy observations into a computer simulation
model of a real system. Data assimilation has
widespread use especially in weather forecasting
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and oceanography. A large-scale state-space
model is typically obtained from the physical
system model, expressed in terms of partial
differential equations (PDEs), by means of
a suitable spatial discretization technique so
that data assimilation is cast into a state
estimation problem. To deal with the huge
dimensionality of the resulting state vector,
appropriate filtering techniques with reduced
computational load have been suitably developed
(Evensen 2007).

Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSSs),
such as GPS put into service in 1993 by the
US Department of Defense, provide nowadays a
commercially diffused technology exploited by
millions of users all over the world for navigation
purposes, wherein the Kalman filter plays a key
role (Bar-Shalom et al. 2001). In fact, the Kalman
filter not only is employed in the core of the
GNSS to estimate the trajectories of all the satel-
lites, the drifts and rates of all system clocks, and
hundreds of parameters related to atmospheric
propagation delay, but also any GNSS receiver
uses a nonlinear Kalman filter, e.g., EKF, in order
to estimate its own position and velocity along
with the bias and drift of its own clock with
respect to the GNSS time.

Robotic Navigation (SLAM)

Recursive state estimation is commonly em-
ployed in mobile robotics (Thrun et al. 2006) in
order to on-line estimate the robot pose, location
and velocity, and, sometimes, also the location
and features of the surrounding objects in the
environment exploiting measurements provided
by onboard sensors; the overall joint estimation
problem is referred to as SLAM (simultaneous
localization and mapping) (Dissanayake et al.
2001; Durrant-Whyte and Bailey 2006a,b;
Mullane et al. 2011; Smith et al. 1986; Thrun
et al. 2006).

Automotive Systems

Several automotive applications of the Kalman
filter, or of its nonlinear variants, are reported
in the literature for the estimation of various
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quantities of interest that cannot be directly mea-
sured, e.g., roll angle, sideslip angle, road-tire
forces, heading direction, vehicle mass, state of
charge of the battery (Barbarisi et al. 2000),
etc. In general, one of the major applications of
state estimation is the development of virtual sen-
sors, i.e., estimation algorithms for physical vari-
ables of interest, that cannot be directly measured
for technical and/or economic reasons (Stephant
et al. 2004).

Miscellaneous Applications

Other areas where estimation has found
numerous applications include electric power
systems (Abur and Gémez Espésito 2004; Debs
and Larson 1970; Miller and Lewis 1971;
Monticelli 1999; Toyoda et al. 1970), nuclear
reactors (Robinson 1963; Roman et al. 1971;
Sage and Masters 1967; Venerus and Bullock
1970), biomedical engineering (Bekey 1973;
Snyder 1970; Stark 1968), pattern recognition
(Andrews 1972; Ho and Agrawala 1968;
Lainiotis 1972), and many others.

Connection Between Information and
Estimation Theories

In this section, the link between two fundamental
quantities in information theory and estimation
theory, i.e., the mutual information (MI) and
respectively the minimum mean-square error
(MMSE), is investigated. In particular, a
strikingly simple but very general relationship
can be established between the MI of the input
and the output of an additive Gaussian channel
and the MMSE in estimating the input given the
output, regardless of the input distribution (Guo
et al. 2005). Although this functional relation
holds for general settings of the Gaussian channel
(e.g., both discrete-time and continuous-time,
possibly vector, channels), in order to avoid the
heavy mathematical preliminaries needed to treat
rigorously the general problem, two simple scalar
cases, a static and a (continuous-time) dynamic
one, will be discussed just to highlight the main
concept.
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Static Scalar Case
Consider two scalar real-valued random vari-
ables, x and y, related by

y=Jox+v (1)

where v, the measurement noise, is a standard
Gaussian random variable independent of x and
o can be regarded as the gain in the output
signal-to-noise ratio (SNR) due to the channel.
By considering the MI between x and y as a
function of o, ie., I(0) = I (x,/ox +v), it
can be shown that the following relation holds
(Guo et al. 2005):

d 1 R 2
1) = E[c -] @

where x(0) = E [x|\/5x + v] is the minimum
mean-square error estimate of x given y. Figure 1
displays the behavior of both MI, in natural log-
arithmic units of information (nats), and MMSE
versus SNR.

As mentioned in Guo et al. (2005), the above
information-estimation relationship (2) has found
a number of applications, e.g., in nonlinear filter-
ing, in multiuser detection, in power allocation
over parallel Gaussian channels, in the proof
of Shannon’s entropy power inequality and its
generalizations, as well as in the treatment of the
capacity region of several multiuser channels.

Linear Dynamic Continuous-Time Case
While in the static case the MI is assumed to be
a function of the SNR, in the dynamic case it
is of great interest to investigate the relationship
between the MI and the MMSE as a function of
time.

Consider the following first-order (scalar) lin-
ear Gaussian continuous-time stochastic dynami-
cal system:

dxt = ax,dl + dW[

dy; = Jox, dt + dv, 3)

where a is a real-valued constant while w;
and v, are independent standard Brownian
motion processes that represent the process and,
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measurement noises.

by x|, 2 {x;,0 < s < ¢t} the collection
of all states up to time ¢ and analogously
Nz £ {¥s,0 <s <t} for the channel outputs
(i.e., measurements) and considering the MI
between x), and y{ as a function of time ¢, i.e.,
Ity =1 (x(’), ¥5), it can be shown that (Duncan
1970; Mayer-Wolf and Zakai 1983)

respectively, Defining

d o .2
ZI0 =S E|[w-%)?] @

where £, = E[x|y}] is the minimum mean-
square error estimate of the state x, given all the
channel outputs up to time ¢, i.e., y,. Figure 2
depicts the time behavior of both MI and MMSE
for several values of o anda = 1.

Conclusions and Future Trends

Despite the long history of estimation and the
huge amount of work on several theoretical and
practical aspects of estimation, there is still a lot
of research investigation to be done in several

SNR

directions. Among the many new future trends,
networked estimation and quantum estimation
(briefly overviewed in the subsequent parts of this
section) certainly deserve special attention due to
the growing interest on wireless sensor networks
and, respectively, quantum computing.

Networked Information Fusion and
Estimation

Information or data fusion is about combining,
or fusing, information or data from multiple
sources to provide knowledge that is not
evident from a single source (Bar-Shalom
et al. 2013; Farina and Studer 1986). In
1986, an effort to standardize the terminol-
ogy related to data fusion began and the
JDL (Joint Directors of Laboratories) data
fusion working group was established. The
result of that effort was the conception of
a process model for data fusion and a data
fusion lexicon (Blasch et al. 2012; Hall and
Llinas 1997). Information and data fusion are
mainly supported by sensor networks which
present the following advantages over a single
Sensor:
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* Can be deployed over wide regions
* Provide diverse characteristics/viewing angles
of the observed phenomenon
* Are more robust to failures
* Gather more data that, once fused, provide a
more complete picture of the observed phe-
nomenon
* Allow better geographical coverage, i.e.,
wider area and less terrain obstructions.
Sensor network architectures can be centralized,
hierarchical (with or without feedback), and
distributed (peer-to-peer). Today’s trend for
many monitoring and decision-making tasks is
to exploit large-scale networks of low-cost and
low-energy consumption devices with sensing,
communication, and processing capabilities.
For scalability issues, such networks should
operate in a fully distributed (peer-to-peer)
fashion, i.e., with no centralized coordination,
so as to achieve in each node a global
estimation/decision objective through localized
processing only.
The attainment of this goal actually requires
several issues to be addressed like:

» Spatial and temporal sensor alignment
* Scalable fusion
* Robustness with respect to data incest (or dou-
ble counting), i.e., repeated use of the same
information
* Handling data latency (e.g., out-of-sequence
measurements/estimates)
* Communication bandwidth limitations
In particular, to counteract data incest the
so-called covariance intersection (Julier and
Uhlmann 1997) robust fusion approach has
been proposed to guarantee, at the price of
some conservatism, consistency of the fused
estimate when combining estimates from
different nodes with unknown correlations. For
scalable fusion, a consensus approach (Olfati-
Saber et al. 2007) can be undertaken. This
allows to carry out a global (i.e., over the
whole network) processing task by iterating
local processing steps among neighboring
nodes.
Several consensus algorithms have been
proposed for distributed parameter (Calafiore
and Abrate 2009) or state (Alriksson and
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Rantzer 2006; Kamgarpour and Tomlin 2007;
Olfati-Saber 2007; Stankovic et al. 2009; Xiao
et al. 2005) estimation. Recently, Battistelli and
Chisci (2014) introduced a generalized consensus
on probability densities which opens up the
possibility to perform in a fully distributed
and scalable way any Bayesian estimation
task over a sensor network. As by-products,
this approach allowed to derive consensus
Kalman filters with guaranteed stability under
minimal requirements of system observability
and network connectivity (Battistelli et al. 2011,
2012; Battistelli and Chisci 2014), consensus
nonlinear filters (Battistelli et al. 2012), and a
consensus CPHD filter for distributed multitarget
tracking (Battistelli et al. 2013). Despite these
interesting  preliminary results, networked
estimation is still a very active research area with
many open problems related to energy efficiency,
estimation performance optimality, robustness
with respect to delays and/or data losses, etc.

Quantum Estimation

Quantum estimation theory consists of a general-
ization of the classical estimation theory in terms
of quantum mechanics. As a matter of fact, the
statistical theory can be seen as a particular case
of the more general quantum theory (Helstrom
1969, 1976). Quantum mechanics presents prac-
tical applications in several fields of technology
(Personick 1971) such as, the use of quantum
number generators in place of the classical ran-
dom number generators. Moreover, manipulating
the energy states of the cesium atoms, it is
possible to suppress the quantum noise levels
and consequently improve the accuracy of
atomic clocks. Quantum mechanics can also be
exploited to solve optimization problems, giving
sometimes optimization algorithms that are faster
than conventional ones. For instance, McGeoch
and Wang (2013) provided an experimental
study of algorithms based on quantum annealing.
Interestingly, the results of McGeoch and Wang
(2013) have shown that this approach allows to
obtain better solutions with respect to those found
with conventional software solvers. In quantum
mechanics, also the Kalman filter has found
its proper form, as the quantum Kalman filter.
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In Iida et al. (2010) the quantum Kalman filter is
applied to an optical cavity composed of mirrors
and crystals inside, which interacts with a probe
laser. In particular, a form of a quantum stochastic
differential equation can be written for such a
system so as to design the algorithm that updates
the estimates of the system variables on the basis
of the measurement outcome of the system.
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Abstract

Recent developments in computer and commu-
nication technologies have led to a new type
of large-scale resource-constrained wireless
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embedded control systems. It is desirable in
these systems to limit the sensor and control
computation and/or communication to instances
when the system needs attention. However,
classical sampled-data control is based on
performing sensing and actuation periodically
rather than when the system needs attention.
This article discusses event- and self-triggered
control systems where sensing and actuation is
performed when needed. Event-triggered control
is reactive and generates sensor sampling and
control actuation when, for instance, the plant
state deviates more than a certain threshold from
a desired value. Self-triggered control, on the
other hand, is proactive and computes the next
sampling or actuation instance ahead of time. The
basics of these control strategies are introduced
together with references for further reading.

Keywords

Event-triggered control; Hybrid systems; Real-
time control; Resource-constrained embedded
control; Sampled-data systems; Self-triggered
control

Introduction

In standard control textbooks, e.g., Astrom and
Wittenmark (1997) and Franklin et al. (2010), pe-
riodic control is presented as the only choice for
implementing feedback control laws on digital
platforms. Although this time-triggered control
paradigm has proven to be extremely success-
ful in many digital control applications, recent
developments in computer and communication
technologies have led to a new type of large-scale
resource-constrained (wireless) control systems
that call for a reconsideration of this traditional
paradigm. In particular, the increasing popularity
of (shared) wired and wireless networked con-
trol systems raises the importance of explicitly
addressing energy, computation, and communi-
cation constraints when designing feedback con-
trol loops. Aperiodic control strategies that allow
the inter-execution times of control tasks to be
varying in time offer potential advantages with
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respect to periodic control when handling these
constraints, but they also introduce many new
interesting theoretical and practical challenges.

Although the discussions regarding periodic
vs. aperiodic implementation of feedback control
loops date back to the beginning of computer-
controlled systems, e.g., Gupta (1963), in the
late 1990s two influential papers (Arzén 1999;
Astrém and Bernhardsson 1999) highlighted the
advantages of event-based feedback control.
These two papers spurred the development
of the first systematic designs of event-based
implementations of stabilizing feedback control
laws, e.g., Yook et al. (2002), Tabuada (2007),
Heemels et al. (2008), and Henningsson et al.
(2008). Since then, several researchers have
improved and generalized these results and
alternative approaches have appeared. In the
meantime, also so-called self-triggered control
(Velasco et al. 2003) emerged. Event-triggered
and self-triggered control systems consist of
two elements, namely, a feedback controller
that computes the control input and a triggering
mechanism that determines when the control
input has to be updated again. The difference
between event-triggered control and self-
triggered control is that the former is reactive,
while the latter is proactive. Indeed, in event-
triggered control, a triggering condition based on
current measurements is continuously monitored
and when the condition holds, an event is
triggered. In self-triggered control the next
update time is precomputed at a control update
time based on predictions using previously
received data and knowledge of the plant
dynamics. In some cases, it is advantageous
to combine event-triggered and self-triggered
control resulting in a control system reactive
to unpredictable disturbances and proactive by
predicting future use of resources.

Time-Triggered, Event-Triggered and
Self-Triggered Control

To indicate the differences between various dig-
ital implementations of feedback control laws,
consider the control of the nonlinear plant
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X = f(x,u) (1)

with x € R”"r the state variable and u € R«
the input variable. The system is controlled by a
nonlinear state feedback law

u = h(x) 2

where & : R"* — R« is an appropriate mapping
that has to be implemented on a digital platform.
Recomputing the control value and updating the
actuator signals will occur at times denoted by
to,t1, 1, ... with . = 0. If we assume the inputs
to be held constant in between the successive re-
computations of the control law (referred to as
sample-and-hold or zero-order-hold), we have

u®) =u(t) =h(x@)) Vi€l ti1), k €N
3)

We refer to the instants {t };en as the triggering
times or execution times. Based on these times
we can easily explain the difference between
time-triggered control, event-triggered control,
and self-triggered control.

In time-triggered control we have the equality
tr = kT, with T; > 0 being the sampling period.
Hence, the updates take place equidistantly in
time irrespective of how the system behaves.
There is no “feedback mechanism” in determin-
ing the execution times; they are determined a
priori and in “open loop.” Another way of writing
the triggering mechanism in time-triggered con-
trol is

tiy1 =t + Ty, k eN 4)

with 7o = 0.

In event-triggered control the next execution
time of the controller is determined by an event-
triggering mechanism that continuously verifies
if a certain condition based on the actual state
variable becomes true. This condition includes
often also information on the state variable x (#;)
at the previous execution time #; and can be
written, for instance, as C(x(¢), x(t)) > 0. For-
mally, the execution times are then determined by
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tk41 = inf{t > 1 [ C(x(2), x (%)) > 0} (5)

with f = 0. Hence, it is clear from (5) that
there is a feedback mechanism present in the
determination of the next execution time as it is
based on the measured state variable. In this sense
event-triggered control is reactive.

Finally, in self-triggered control the next ex-
ecution time is determined proactively based on
the measured state x (#;) at the previous execution
time. In particular, there is a function M : R —
R that specifies the next execution time as

et = te + M(x(t)) (6)

with ) = 0. As a consequence, in self-triggered
control both the control value u(#;) and the next
execution time fx4; are computed at execution
time #x. In between #;, and ;4 1, no further actions
are required from the controller. Note that the
time-triggered implementation can be seen as a
special case of the self-triggered implementation
by taking M (x) = T; for all x € R"~.

Clearly, in all the three implementation
schemes Ty, C and M are chosen together with
the feedback law given through % to provide
stability and performance guarantees and to
realize a certain utilization of computer and
communication resources.

Lyapunov-Based Analysis

Much work on event-triggered control used one
of the following two modeling and analysis
frameworks: The perturbation approach and the
hybrid system approach.

Perturbation Approach

In the perturbation approach one adopts
perturbed models that describe how the event-
triggered implementation of the control law per-
turbs the ideal continuous-time implementation
u(t) = h(x()), t € Rsp. In order to do so,
consider the error e given by

e(t) =x(ty) —x() fort € [ty,t+1), k € N.
(7
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Using this error variable we can write the closed-
loop system based on (1) and (3) as

x = f(x,h(x + e)). )

Essentially, the three implementations discussed
above have their own way of indicating when
an execution takes place and the error e is reset
to zero. The equation (8) clearly shows how the
ideal closed-loop system is perturbed by using a
time-triggered, event-triggered, or self-triggered
implementation of the feedback law in (2). In-
deed, when e = 0 we obtain the ideal closed loop

X = f(x.h(x)). ©)

The control law in (2) is typically chosen so
as to guarantee that the system in (9) has certain
global asymptotic stability (GAS) properties. In
particular, it is often assumed that there exists a
Lyapunov function V' : R,, — R in the sense
that V' is positive definite and for all x € R"x we
have

av
o[ @) < =IxI”. (10
X

Note that this inequality is stronger than strictly
needed (at least for nonlinear systems), but for
pedagogical reasons we choose this simpler for-
mulation. For the perturbed model, the inequality
in (10) can in certain cases (including linear
systems) be modified to

g—zf(x,h(x» < —llxI* + Bllel> D
in which 8 > 0 is a constant used to indicate
how the presence of the implementation error e
affects the decrease of the Lyapunov function.
Based on (10) one can now choose the function
C in (5) to preserve GAS of the event-triggered
implementation. For instance, C(x(¢), x(t)) =
lx (@) = x(@] —ollx (. ie.,

lev1 = inf{t > g [ fle@)]| > olx@]}.  (12)

assures that

lell < ollxll (13)
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holds. When o < 1/8, we obtain from (11) and
(13) that GAS properties are preserved for the
event-triggered implementation. Besides, under
certain conditions provided in Tabuada (2007), a
global positive lower bound exists on the inter-
execution times, i.e., there exists a Ty, > 0 such
that t; 41 — tx > Ty for all k € N and all initial
states Xo.

Also self-triggered controllers can be derived
using the perturbation approach. In this case, sta-
bility properties can be guaranteed by choosing
M in (6) ensuring that C(x(¢), x(¢;)) < 0 holds
for all times ¢ € [tx, tx+1) and all k € N.

Hybrid System Approach

By taking as a state variable £ = (x,e), one
can write the closed-loop event-triggered control
system given by (1), (3), and (5) as the hybrid
impulsive system (Goebel et al. 2009)

SO h(x +e)) §
£ = (—f(x,h(x N e))) when C(x,x +¢) >0

(14a)

£t = (g) when C(x, x + ¢) < 0. (14b)

This observation was made in Donkers and
Heemels (2010, 2012) and Postoyan et al. (2011).
Tools from hybrid system theory can be used to
analyze this model, which is more accurate as it
includes the error dynamics of the event-triggered
closed-loop system. In fact, the stability bounds
obtained via the hybrid system approach can be
proven to be never worse than ones obtained
using the perturbation approach in many cases,
see, e.g., Donkers and Heemels (2012), and
typically the hybrid system approach provides
(strictly) better results in practice. However,
in general an analysis via the hybrid system
approach is more complicated than using a
perturbation approach.

Note that by including a time variable t,
one can also write the closed-loop system corre-
sponding to self-triggered control (1), (3), and (6)
as a hybrid system using the state variable y =
(x, e, 7). This leads to the model
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F(x, h(x + e))
x=|—f(x,h(x +e)) |whenO0<7< M(x + ¢e)
1

(15a)

X
xt=10] whent = M(x + e), (15b)

0

which can be used for analysis based on hybrid
tools as well.

Alternative Event-Triggering
Mechanisms

There are various alternative event-triggering
mechanisms. A few of them are described in this
section.

Relative, Absolute, and Mixed Triggering
Conditions
Above we discussed a very basic event-triggering
condition in the form given in (12), which is
sometimes called relative triggering as the next
control task is executed at the instant when the
ratio of the norms of the error ||e| and the
measured state ||x|| is larger than or equal to o.
Also absolute triggering of the form
ler = inf{z > 4 | le@)[| = 8} (16)
can be considered. Here § > 0 is an abso-
lute threshold, which has given this scheme the
name send-on-delta (Miskowicz 2006). Recently,
a mixed triggering mechanism of the form

ler = inf{r > g | [le@)]| = allx(@)] + 8},
(17)

combining an absolute and a relative threshold,
was proposed (Donkers and Heemels 2012). It
is particularly effective in the context of output-
based control.

Model-Based Triggering
In the triggering conditions discussed so far, es-
sentially the current control value u(¢) is based
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on a held value x(t;) of the state variable, as
specified in (3). However, if good model-based
information regarding the plant is available, one
can use better model-based predictions of the
actuator signal. For instance, in the linear context,
(Lunze and Lehmann 2010) proposed to use a
control input generator instead of a plain zero-
order hold function. In fact, the plant model was
described by

%= Ax + Bu+ Ew (18)

with x € R~ the state variable, u € R"* the input
variable, and w € R"™ a bounded disturbance
input. It was assumed that a well functioning state
feedback controller u = Kx was available. The
control input generator was then based on the
model-based predictions given for [t, t;+1) by

Xs(t) = (A + BK)x,(t) + Ew(ty)

with x; () = x(t) (19)
and w(f;) is an estimate for the (average) dis-
turbance value, which is determined at execution
time #, k € N. The applied input to the actuator
is then given by u(t) = Kx,(¢) fort € [tx, ty+1),
k € N. Note that (19) provides a prediction of
the closed-loop state evolution using the latest
received value of the state x(#) and the esti-
mate w(t;) of the disturbances. Also the event-
triggering condition is based on this model-based
prediction of the state as it is given by

lepr = inf{r > g | [xg (1) —x (@) = 8} (20)
Hence, when the prediction x,(¢) diverts to far
from the measured state x(¢), the next event is
triggered so that updates of the state are sent
to the actuator. These model-based triggering
schemes can enhance the communication savings
as they reduce the number of events by using
model-based knowledge.

Other model-based event-triggered control
schemes are proposed, for instance, in Yook
et al. (2002), Garcia and Antsaklis (2013), and
Heemels and Donkers (2013).
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Triggering with Time-Regularization
Time-regularization was proposed for output-
based triggering to avoid the occurrence of
accumulations in the execution times (Zeno
behavior) that would obstruct the existence of
a positive lower bound on the inter-execution
times #;4+; — t, k € N. In Tallapragada and
Chopra (2012a,b), the triggering update

eyt = inf{t > 4 + T | le()] = ollx @)}

1)
was proposed, where T > 0 is a built-in lower
bound on the minimal inter-execution times. The
authors discussed how T and o can be designed
to guarantee closed-loop stability. In Heemels
et al. (2008) a similar triggering was proposed
using an absolute-type of triggering.

An alternative to exploiting a built-in lower
bound T is combining ideas from time-triggered
control and event-triggering control. Essentially,
the idea is to only verify a specific event-
triggering condition at certain equidistant time
instants kT;, k € N, where T, > 0 is the
sampling period. Such proposals were mentioned
in, for instance, Arzén (1999), Yook et al. (2002),
Henningsson et al. (2008), and Heemels et al.
(2008, 2013). In this case the execution times are
given by

tky1 = inf{t > Iy | = kTy, k e N,

and [[e()| = allx@)}  (22)
in case a relative triggering is used. In Heemels
et al. (2013) the term periodic event-triggered
control was coined for this type of control.

Decentralized Triggering Conditions

Another important extension of the mentioned
event-triggered controllers, especially in large-
scale networked systems, is the decentralization
of the event-triggered control. Indeed, if one
focuses on any of the abovementioned event-
triggering conditions (take, e.g., (5)), it is ob-
vious that the full state variable x(¢) has to be
continuously available in a central coordinator
to determine if an event is triggered or not. If
the sensors that measure the state are physically
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distributed over a wide area, this assumption is
prohibitive for its implementation. In such cases,
it is of high practical importance that the event-
triggering mechanism can be decentralized and
the execution of control tasks can be executed
based on local information. One first idea could
be to use local event-triggering mechanisms for
the i-th sensor that measures x;. One could “de-
centralize” the condition (5), into

li gy = If{ > 1 | lei (O] = o||xi (]I}
(23)
in which ¢;(t) = x;(t,) — x;(t) for t €
[t]i,-,t]i,-H), k' € N. Note that each sensor
now has its own execution times t]i,-, ki e N at
which the information x; (¢) is transmitted. More
importantly, the triggering condition (23) is based
on local data only and does not need a central
coordinator having access to the complete state
information. Besides since (23) still guarantees
that (13) holds, stability properties can still be
guaranteed; see Mazo and Tabuada (2011).
Several other proposals for decentralized
event-triggered control schemes were made,
e.g., Persis et al. (2013), Wang and Lemmon
(2011), Garcia and Antsaklis (2013), Yook et al.
(2002), and Donkers and Heemels (2012).

Triggering for Multi-agent Systems

Event-triggered control strategies are suitable
for cooperative control of multi-agent systems.
In multi-agent systems, local control actions of
individual agents should lead to a desirable global
behavior of the overall system. A prototype
problem for control of multi-agent systems is the
agreement problem (also called the consensus
or rendezvous problem), where the states of
all agents should converge to a common value
(sometimes the average of the agents’ initial
conditions). The agreement problem has been
shown to be solvable for certain low-order
dynamical agents in both continuous and discrete
time, e.g., Olfati-Saber et al. (2007). It was
recently shown in Dimarogonas et al. (2012), Shi
and Johansson (2011), and Seyboth et al. (2013)
that the agreement problem can be solved using
event-triggered control. In Seyboth et al. (2013)
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the triggering times for agent i are determined
by

t = inf{t > t/ii | C,-(xi (t),x,- (tllc’)) > 0},

(24)
which should be compared to the triggering
times as specified through (5). The triggering
condition compares the current state value with
the one previously communicated, similarly to
the previously discussed decentralized event-
triggered control (see (23)), but now the
communication is only to the agent’s neighbors.
Using such event-triggered communication,
the convergence rate to agreement (i.e.,
lxi(t) — x; ()| — 0 ast — oo for all
i,j) can be maintained with a much lower
communication rate than for time-triggered
communication.

i
k41

Outlook

Many simulation and experimental results show
that event-triggered and self-triggered control
strategies are capable of reducing the number
of control task executions, while retaining a
satisfactory closed-loop performance. In spite
of these results, the actual deployment of these
novel control paradigms in relevant applications
is still rather marginal. Some exceptions include
recent event-triggered control applications in
underwater vehicles (Teixeira et al. 2010),
process control (Lehmann et al. 2012), and
control over wireless networks (Araujo et al.
2014). To foster the further development of
event-triggered and self-triggered controllers in
the future, it is therefore important to validate
these strategies in practice, next to building up
a complete system theory for them. Regarding
the latter, it is fair to say that, even though
many interesting results are currently available,
the system theory for event-triggered and self-
triggered control is far from being mature,
certainly compared to the vast literature on time-
triggered (periodic) sampled-data control. As
such, many theoretical and practical challenges
are ahead of us in this appealing research field.

Event-Triggered and Self-Triggered Control

Cross-References

Discrete Event Systems and Hybrid Systems,
Connections Between

Hybrid Dynamical Systems, Feedback Control
of

Models for Discrete Event Systems:
Overview

Supervisory Control of Discrete-Event Systems

An

Acknowledgments The work of Maurice Heemels was
partially supported by the Dutch Technology Foundation
(STW) and the Dutch Organization for Scientific Re-
search (NWO) under the VICI grant “Wireless controls
systems: A new frontier in automation”. The work of
Karl Johansson was partially supported by the Knut and
Alice Wallenberg Foundation and the Swedish Research
Council. Maurice Heemels and Karl Johansson were also
supported by the European 7th Framework Programme
Network of Excellence under grant HYCON2-257462.
The work of Paulo Tabuada was partially supported by
NSF awards 0834771 and 0953994.

Bibliography

Araujo J, Mazo M Jr, Anta A, Tabuada P, Johansson
KH (2014) System architectures, protocols, and al-
gorithms for aperiodic wireless control systems. In-
dustrial Informatics, IEEE Trans Ind Inform. 10(1):
175-184

Arzén K-E (1999) A simple event-based PID controller.
In: Proceedings of the IFAC World Congress, Beijing,
China, vol 18, pp 423-428. Preprints

Astrom KJ, Bernhardsson BM (1999) Comparison of peri-
odic and event based sampling for first order stochastic
systems. In: Proceedings of the IFAC World Congress,
Beijing, China, pp 301-0306

Astrom, KJ, Wittenmark B (1997) Computer controlled
systems. Prentice Hall, Upper Saddle River

De Persis C, Sailer R, Wirth F (2013) Parsimonious event-
triggered distributed control: a Zeno free approach.
Automatica 49(7):2116-2124

Dimarogonas DV, Frazzoli E, Johansson KH (2012) Dis-
tributed event-triggered control for multi-agent sys-
tems. IEEE Trans Autom Control 57(5):1291-1297

Donkers MCF, Heemels WPMH (2010) Output-based
event-triggered control with guaranteed £o-gain and
improved event-triggering. In: Proceedings of the
IEEE conference on decision and control, Atlanta,
Georgia, USA, pp 3246-3251

Donkers MCF, Heemels WPMH (2012) Output-based
event-triggered control with guaranteed L£oo-gain and
improved and decentralised event-triggering. IEEE
Trans Autom Control 57(6): 1362-1376


http://dx.doi.org/10.1007/978-1-4471-5058-9_55
http://dx.doi.org/10.1007/978-1-4471-5058-9_271
http://dx.doi.org/10.1007/978-1-4471-5058-9_52
http://dx.doi.org/10.1007/978-1-4471-5058-9_54

Evolutionary Games

Franklin GF, Powel JD, Emami-Naeini A (2010) Feed-
back control of dynamical systems. Prentice Hall,
Upper Saddle River

Garcia E, Antsaklis PJ (2013) Model-based event-
triggered control for systems with quantization and
time-varying network delays. IEEE Trans Autom Con-
trol 58(2):422-434

Goebel R, Sanfelice R, Teel AR (2009) Hybrid dynamical
systems. IEEE Control Syst Mag 29: 28-93

Gupta S (1963) Increasing the sampling efficiency for
a control system. IEEE Trans Autom Control 8(3):
263-264

Heemels WPMH, Donkers MCF (2013) Model-based
periodic event-triggered control for linear systems.
Automatica 49(3):698-711

Heemels WPMH, Sandee JH, van den Bosch PPJ (2008)
Analysis of event-driven controllers for linear systems.
Int J Control 81:571-590

Heemels WPMH, Donkers MCF, Teel AR (2013) Periodic
event-triggered control for linear systems. IEEE Trans
Autom Control 58(4):847-861

Henningsson T, Johannesson E, Cervin A (2008) Sporadic
event-based control of first-order linear stochastic sys-
tems. Automatica 44:2890-2895

Lehmann D, Kiener GA, Johansson KH (2012) Event-
triggered PI control: saturating actuators and anti-
windup compensation. In: Proceedings of the IEEE
conference on decision and control, Maui

Lunze J, Lehmann D (2010) A state-feedback approach to
event-based control. Automatica 46:211-215

Mazo M Jr, Tabuada P (2011) Decentralized event-
triggered control over wireless sensor/actuator net-
works. IEEE Trans Autom Control 56(10):2456-2461.
Special issue on Wireless Sensor and Actuator Net-
works

Miskowicz M (2006) Send-on-delta concept: an event-
based data-reporting strategy. Sensors 6: 49-63

Olfati-Saber R, Fax JA, Murray RM (2007) Consensus
and cooperation in networked multi-agent systems.
Proc IEEE 95(1):215-233

Postoyan R, Anta A, NeSi¢ D, Tabuada P (2011) A
unifying Lyapunov-based framework for the event-
triggered control of nonlinear systems. In: Proceedings
of the joint IEEE conference on decision and control
and European control conference, Orlando, pp 2559—
2564

Seyboth GS, Dimarogonas DV, Johansson KH (2013)
Event-based broadcasting for multi-agent average con-
sensus. Automatica 49(1):245-252

Shi G, Johansson KH (2011) Multi-agent robust
consensus—part II: application to event-triggered co-
ordination. In: Proceedings of the IEEE conference on
decision and control, Orlando

Tabuada P (2007) Event-triggered real-time scheduling of
stabilizing control tasks. IEEE Trans Autom Control
52(9):1680-1685

Tallapragada P, Chopra N (2012a) Event-triggered de-
centralized dynamic output feedback control for LTI
systems. In: IFAC workshop on distributed estimation
and control in networked systems, pp 31-36

391

Tallapragada P, Chopra N (2012b) Event-triggered dy-
namic output feedback control for LTI systems. In:
IEEE 51st annual conference on decision and control
(CDC), Maui, pp 6597-6602

Teixeira PV, Dimarogonas DV, Johansson KH, Borges
de Sousa J (2010) Event-based motion coordination of
multiple underwater vehicles under disturbances. In:
IEEE OCEANS, Sydney

Velasco M, Marti P, Fuertes JM (2003) The self triggered
task model for real-time control systems. In: Pro-
ceedings of 24th IEEE real-time systems symposium,
work-in-progress session, Cancun, Mexico

Wang X, Lemmon MD (2011) Event-triggering in dis-
tributed networked systems with data dropouts and
delays. IEEE Trans Autom Control 586-601

Yook JK, Tilbury DM, Soparkar NR (2002) Trading
computation for bandwidth: reducing communica-
tion in distributed control systems using state es-
timators. IEEE Trans Control Syst Technol 10(4):
503-518

Evolutionary Games

Eitan Altman
INRIA, Sophia-Antipolis, France

Abstract

Evolutionary games constitute the most recent
major mathematical tool for understanding,
modelling and predicting evolution in biology
and other fields. They complement other well
establlished tools such as branching processes
and the Lotka-Volterra (1910) equations (e.g.
for the predator - prey dynamics or for epidemics
evolution). Evolutionary Games also brings novel
features to game theory. First, it focuses on the
dynamics of competition rather than restricting
attention to the equilibrium. In particular, it
tries to explain how an equilibrium emerges.
Second, it brings new definitions of stability,
that are more adapted to the context of large
populations. Finally, in contrast to standard
game theory, players are not assumed to be
“rational” or “knowledgeable” as to anticipate
the other players’ choices. The objective of this
article, is to present foundations as well as recent
advances in evolutionary games, highlight the
novel concepts that they introduce with respect
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to game theory as formulated by John Nash, and
describe through several examples their huge
potential as tools for modeling interactions in
complex systems.

Keywords

Evolutionary stable strategies; Fitness; Replicator
dynamics

Introduction

Evolutionary game theory is the youngest of
several mathematical tools used in describing and
modeling evolution. It was preceded by the the-
ory of branching processes (Watson and Francis
Galton 1875) and its extensions (Altman 2008)
which have been introduced in order to explain
the evolution of family names in the English
population of the second half of the nineteenth
century. This theory makes use of the probabilis-
tic distribution of the number of offspring of an
individual in order to predict the probability at
which the whole population would become even-
tually extinct. It describes the evolution of the
number of offsprings of a given individual. The
Lotka-Volterra equations (Lotka-Volterra 1910)
and their extensions are differential equations that
describe the population size of each of several
species that have a predator-prey type relation.
One of the foundations in evolutionary games
(and its extension to population games) which is
often used as the starting point in their definition
is the replicator dynamics which, similarly to the
Lotka-Volterra equations, describe the evolution
of the size of various species that interact with
each other (or of various behaviors within a given
population). In both the Lotka-Volterra equations
and in replicator dynamics, the evolution of the
size of one type of population may depend on
the sizes of all other populations. Yet, unlike
the Lotka-Volterra equations, the object of the
modeling is the normalized sizes of populations
rather than the size itself. By normalized size
of some type, we mean the fraction of that type
within the whole population. A basic feature in
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evolutionary games is, thus, that the evolution
of the fraction of a given type in the population
depends on the sizes of other types only through
the normalized size rather than through their
actual one.

The relative rate of the decrease or increase
of the normalized population size of some type
in the replicator dynamics is what we call fitness
and is to be understood in the Darwinian sense.
If some type or some behavior increases more
than another one, then it has a larger fitness.
the evolution of the fitness as described by the
replicator dynamics is a central object of study in
evolutionary games.

So far we did not actually consider any
game and just discussed ways of modeling
evolution. The relation to game theory is due
to the fact that under some conditions, the fitness
converges to some fixed limit, which can be
identified as an equilibrium of a matrix game
in which the utilities of the players are the
fitnesses. This limit is then called an ESS -
evolutionary stable strategy — as defined by
Meynard Smith and Price in Maynard Smith
and Price (1973). It can be computed using
elementary tools in matrix games and then used
for predicting the (long term) distribution of
behaviors within a population. Note that an
equilibrium in a matrix game can be obtained
only when the players of the matrix game are
rational (each one maximizing its expected
utility, being aware of the utilities of other players
and of the fact that these players maximize
their utilities, etc.). A central contribution of
evolutionary games is thus to show that evolution
of possibly nonrational populations converges
under some conditions to the equilibrium of a
game played by rational players. This surprising
relationship between the equilibrium of a
noncooperative matrix game and the limit points
of the fitness dynamics has been supported by a
rich body of experimental results; see Friedman
(1996).

On the importance of the ESS for understand-
ing the evolution of species, Dawkins writes in
his book “The Selfish Gene” (Dawkins 1976):
“we may come to look back on the invention of
the ESS concept as one of the most important
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advances in evolutionary theory since Darwin.”
He further specifies: “Maynard Smith’s concept
of the ESS will enable us, for the first time, to see
clearly how a collection of independent selfish
entities can come to resemble a single organized
whole.”

Here we shall follow the nontraditional ap-
proach describing evolutionary games: we shall
first introduce the replicator dynamics and then
introduce the game theoretic interpretation re-
lated to it.

Replicator Dynamics

In the biological context, the replicator dynamics
is a differential equation that describes the way
in which the usage of strategies changes in time.
They are based on the idea that the average
growth rate per individual that uses a given strat-
egy is proportional to the excess of fitness of that
strategy with respect to the average fitness.

In engineering, the replicator dynamics could
be viewed as a rule for updating mixed strategies
by individuals. It is a decentralized rule since
it only requires knowing the average utility of
the population rather than the strategy of each
individual.

Replicator dynamics is one of the most studied
dynamics in evolutionary game theory. It has
been introduced by Taylor and Jonker (1978).
The replicator dynamics has been used for de-
scribing the evolution of road traffic congestion in
which the fitness is determined by the strategies
chosen by all drivers (Sandholm 2009). It has
also been studied in the context of the association
problem in wireless communications (Shakkottai
et al. 2007).

Consider a set of N strategies and let p; (¢)
be the fraction of the whole population that uses
strategy j at time ¢. Let p(¢) be the correspond-
ing N -dimensional vector. A function f; is asso-
ciated with the growth rate of strategy j, and it is
assumed to depend on the fraction of each of the
N strategies in the population. There are various
forms of replicator dynamics (Sandholm 2009)
and we describe here the one most commonly
used. It is given by
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N
pi)= ij(l)|:fj (p(0)) —Zpk(l)fk(P(l))] :

k=1
)

where p is some positive constant and the payoff
function f; is called the fitness of strategy k.

In evolutionary games, evolution is assumed to
be due to pairwise interactions between players,
as will be described in the next section. There-
fore, fi has the form fi(p) = Zf\':l Jk,i)p@)
where J(k, i) is the fitness of an individual play-
ing k if it interacts with an individual that plays
strategy i.

Within quite general settings (Weibull 1995),
the above replicator dynamics is known to con-
verge to an ESS (which we introduce in the next
section).

Evolutionary Games: Fitnesses

Consider an infinite population of players. Each
individual i plays at times 7., n = 1,2,3,...
(assumed to constitute an independent Poisson
process with some rate A) a matrix game against
some player j(n) randomly selected within the
population. The choice j(n) of the other players
at different times is independent. All players have
the same finite space of pure strategies (also
called actions) K. Each time it plays, a player
may use a mixed strategy p, i.e., a probability
measure over the set of pure strategies. We con-
sider J(k,i) (defined in the previous section) to
be the payoff for a tagged individual if it uses
a strategy k, and it interacts with an individual
using strategy i. With some abuse of notation,
one denotes by J(p, q) the expected payoff for a
player who uses a mixed strategy p when meeting
another individual who adopts the mixed strategy
q. If we define a payoff matrix A and consider
p and ¢ to be column vectors, then J(p,q) =
p'Aq. The payoff function J is indeed linear in
p and g. A strategy ¢ is called a Nash equilibrium
if

Vpe AK), Jg.q)=J(p.q) (2

where A(K) is the set of probabilities over the set
K.
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Suppose that the whole population uses a
strategy ¢ and that a small fraction € (called “mu-
tations”) adopts another strategy p. Evolutionary
forces are expected to select against p if

J(g.ep+(1—€)q) > J(p.ep+ (1 —¢€)q). (3)

Evolutionary Stable Strategies: ESS

Definition 1 ¢ is said to be an evolutionary sta-
ble strategy (ESS) if for every p # ¢ there
exists some €, > 0 such that (3) holds for all
€ €(0,€p).

The definition of ESS is thus related to a
robustness property against deviations by a whole
(possibly small) fraction of the population. This
is an important difference that distinguishes the
equilibrium in populations as seen by biologists
and the standard Nash equilibrium often used in
economics context, in which robustness is defined
against the possible deviation of a single user.
Why do we need the stronger type of robust-
ness? Since we deal with large populations, it
is likely to be expected that from time to time,
some group of individuals may deviate. Thus
robustness against deviations by a single user is
not sufficient to ensure that deviations will not
develop and end up being used by a growing
portion of the population.

Often ESS is defined through the following
equivalent definition.

Theorem 1 (Weibull 1995, Proposition 2.1 or
Hofbauer and Sigmund 1998, Theorem 6.4.1,
p 63) A strategy q is said to be an evolutionary
stable strategy if and only if Vp # q one of the
following conditions holds:

J(q.9) > J(p.q), )

or

J(q.q) = J(p.q) and J(q, p) > J(p. p). (5)

In fact, if condition (4) is satisfied, then the
fraction of mutations in the population will tend
to decrease (as it has a lower fitness, meaning a
lower growth rate). Thus, the strategy ¢ is then
immune to mutations. If it does not but if still
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the condition (5) holds, then a population using
q is “weakly” immune against a mutation using
p. Indeed, if the mutant’s population grows, then
we shall frequently have individuals with strategy
q competing with mutants. In such cases, the
condition J(gq, p) > J(p, p) ensures that the
growth rate of the original population exceeds
that of the mutants.

A mixed strategy ¢ that satisfies (4) forall p #
q is called strict Nash equilibrium. Recall that a
mixed strategy ¢ that satisfies (2) for all p # ¢ is
a Nash equilibrium. We conclude from the above
theorem that being a strict Nash equilibrium im-
plies being an ESS, and being an ESS implies
being a Nash equilibrium. Note that whereas a
mixed Nash equilibrium is known to exist in a
matrix game, an ESS may not exist. However,
an ESS is known to exist in evolutionary games
where the number of strategies available to each
player is 2 (Weibull 1995).

Proposition 1 In a symmetric game with two
strategies for each player and no pure Nash
equilibrium, there exists a unique mixed Nash
equilibrium which is an ESS.

Example: The Hawk and Dove Game
We briefly describe the hawk and dove game
(Maynard Smith and Price 1973). A bird
that searches food finds itself competing with
another bird over food and has to decide
whether to adopt a peaceful behavior (dove)
or an aggressive one (hawk). The advantage of
behaving aggressively is that in an interaction
with a peaceful bird, the aggressive one gets
access to all the food. This advantage comes
at a cost: a hawk which meets another hawk
ends up fighting with it and thus takes a risk
of getting wounded. In contrast, two doves that
meet in a contest over food share it without
fighting. The fitnesses for player 1 (who chooses
a row) are summarized in Table 1, in which the
cost for fighting is taken to be some parameter
8> 1/2.

This game has a unique mixed Nash equi-
librium (and thus a unique ESS) in which the
fraction p of aggressive birds is given by



Evolutionary Games

Evolutionary Games, Table 1 The hawk-dove game

H D
H 1235 1
D 0 12
2
P=15+s

Extension: Evolutionary Stable Sets

Assume that there are two mixed strategies p; and
p; that have the same performance against each
other, i.e., J(pi, pj) = J(p;, pj). Then neither
one of them can be an ESS, even if they are
quite robust against other strategies. Now assume
that when excluding one of them from the set
of mixed strategies, the other one is an ESS.
This could imply that different combinations of
these two ESS’s could coexist and would together
be robust to any other mutations. This motivates
the following definition of an ESSet (Cressman
2003):

Definition 2 A set E of symmetric Nash equilib-
ria is an evolutionarily stable set (ESSet) if, for all
q € E,wehave J(q,p) > J(p,p) forall p € E
and such that J(p,q) = J(q,9).

Properties of ESSet:

(i) For all p and p’ in an ESSet E, we have
J(p'.p) = J(p.p)-

(i) If a mixed strategy is an ESS, then the
singleton containing that mixed strategy is
an ESSet.

(ii1) If the ESSet is not a singleton, then there is
no ESS.

(iv) If a mixed strategy is in an ESSet, then it is
a Nash equilibrium (see Weibull 1995, p. 48,
Example 2.7).

(v) Every ESSet is a disjoint union of Nash
equilibria.

(vi) A perturbation of a mixed strategy which is
in the ESSet can move the system to another
mixed strategy in the ESSet. In particular,
every ESSet is asymptotically stable for the
replicator dynamics (Cressman 2003).
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Summary and Future Directions

The entry has provided an overview of the foun-
dations of evolutionary games which include the
ESS (evolutionary stable strategy) equilibrium
concept that is stronger than the standard Nash
equilibrium and the modeling of the dynamics of
the competition through the replicator dynamics.
Evolutionary game framework is a first step in
linking game theory to evolutionary processes.
The payoff of a player is identified as its fitness,
i.e., the rate of reproduction. Further develop-
ment of this mathematical tool is needed for
handling hierarchical fitness, i.e., the cases where
the individual that interacts cannot be directly
identified with the reproduction as it is part of a
larger body. For example, the behavior of a blood
cell in the human body when interacting with a
virus cannot be modeled as directly related to
the fitness of the blood cell but rather to that of
the human body. A further development of the
theory of evolutionary games is needed to define
meaningful equilibrium notions and relate them
to replication in such contexts.

Cross-References

Dynamic Noncooperative Games
Game Theory: Historical Overview

Recommended Reading

Several books cover evolutionary game theory
well. These include Cressman (2003), Hofbauer
and Sigmund (1998), Sandholm (2009), Vincent
and Brown (2005), and Weibull (1995). In ad-
dition, the book The Selfish Gene by Dawkins
presents an excellent background on evolution in
biology.
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Abstract

Understanding the effect of experiment on
estimation result is a crucial part of system
identification — if the experiment is constrained
or otherwise fixed, then the implied limitations
need to be understood — but if the experiment
can be designed, then given its fundamental
importance that design parameter should be fully
exploited, this entry will give an understanding of
how it can be exploited. We also briefly discuss
the particulars of identification for model-based
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control, one of the main applications of system
identification.
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Introduction

The accuracy of an identified model is governed
by:
(i) Information content in the data used for esti-
mation
(ii)) The complexity of the model structure
The former is related to the noise properties and
the “energy” of the external excitation of the
system and how it is distributed. In regard to (ii),
a model structure which is not flexible enough to
capture the true system dynamics will give rise to
a systematic error, while an overly flexible model
will be overly sensitive to noise (so-called overfit-
ting). The model complexity is closely associated
with the number of parameters used. For a linear
model structure with n parameters modeling the
dynamics, it follows from the invariance result
in Rojas et al. (2009) that to obtain a model
for which the variance of the frequency function
estimate is less than 1/y over all frequencies, the
signal-to-noise ratio, as measured by input energy
over noise variance, must be at least n y. With
energy being power x time and as input power
is limited in physical systems, this indicates that
the experiment time grows at least linearly with
the number of model parameters. When the input
energy budget is limited, the only way around
this problem is to sacrifice accuracy over certain
frequency intervals. The methodology to achieve
this in a systematic way is known as experiment
design.
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Model Quality Measures

The Cramér-Rao bound provides a lower bound
on the covariance matrix of the estimation error
for an unbiased estimator. With éN € R” denot-
ing the parameter estimate (based on N input—
output samples) and 6, the true parameters,

we[(Bv=0) (=) ]z v et
()

where Ir(6,, N) € R"*" appearing in the lower
bound is the so-called Fisher information ma-
trix (Ljung 1999). For consistent estimators, i.e.,
when éN — 0, as N — oo, the inequal-
ity (1) typically holds asymptotically as the sam-
ple size N grows to infinity. The right-hand
side in (1) is then replaced by the inverse of
the per sample Fisher information /7(6,) :=
limy o0 IF(6,, N)/N. An estimator is said to
be asymptotically efficient if equality is reached
in(l)as N — oo.

Even though it is possible to reduce the mean-
square error by constraining the model flexibility
appropriately, it is customary to use consistent
estimators since the theory for biased estimators
is still not well understood. For such estimators,
using some function of the Fisher information as
performance measure is natural.

General-Purpose Quality Measures

Over the years a number of “general-purpose”
quality measures have been proposed. Perhaps
the most frequently used is the determinant of the
inverse Fisher information. This represents the
volume of confidence ellipsoids for the parameter
estimates and minimizing this measure is known
as D-optimal design. Two other criteria relating
to confidence ellipsoids are E-optimal design,
which uses the length of the longest principal
axis (the minimum eigenvalue of /) as quality
measure, and A-optimal design, which uses the
sum of the squared lengths of the principal axes
(the trace of 1;1).
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Application-Oriented Quality Measures

When demands are high and/or experimentation
resources are limited, it is necessary to tailor the
experiment carefully according to the intended
use of the model. Below we will discuss a couple
of closely related application-oriented measures.

Average Performance Degradation

Let Vipp(0) > 0 be a measure of how well the
model corresponding to parameter 6 performs
when used in the application. In finance, Vp,
can, e.g., represent the ability to predict the stock
market. In process industry, V,;,, can represent the
profit gained using a feedback controller based
on the model corresponding to 6. Let us assume
that Vpp is normalized such that ming Vyp(8) =
Vapp(6o) = 0. That Vg, has minimum corre-
sponding to the parameters of the true system is
quite natural. We will call V,,, the application
cost. Assuming that the estimator is asymptoti-
cally efficient, using a second-order Taylor ap-
proximation gives that the average application
cost can be expressed as (the first-order term
vanishes since 8, is the minimizer of Vypp)

E[Vapp(éN)]%E[(éN - 9(,)9;;},(90)(% - 9)}

1 Y _
= T V@1 6} @

This is a generalization of the A-optimal de-
sign measure and its minimization is known as
L-optimal design.

Acceptable Performance

Alternatively, one may define a set of acceptable
models, i.e., a set of models which will give
acceptable performance when used in the appli-
cation. With a performance degradation measure
defined of the type V,p, above, this would be a
level set

1
gapp = %9 : Vapp(e) = ;} 3)

for some constant y > 0. The objective of
the experiment design is then to ensure that the
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resulting estimate ends up in &,p, With high prob-
ability.

Design Variables

In an identification experiment there are a number
of design variables at the user’s disposal. Below
we discuss three of the most important ones.

Sampling Interval

For the sampling interval, the general advice from
an information theoretic point of view is to sam-
ple as fast as possible (Ljung 1999). However,
sampling much faster than the time constants of
the system may lead to numerical issues when
estimating discrete time models as there will be
poles close to the unit circle. Downsampling may
thus be required.

Feedback

Generally speaking, feedback has three effects
from an identification and experiment design
point of view:

(i) Not all the power in the input can be used to
estimate the system dynamics when a noise
model is estimated as a part of the input
signal has to be used for the latter task; see
Section 8.1 in Forssell and Ljung (1999).
When a very flexible noise model is used,
the estimate of the system dynamics then has
to rely almost entirely on external excitation.
Feedback can reduce the effect of distur-
bances and noise at the output. When there
are constraints on the outputs, this allows for
larger (input) excitation and therefore more
informative experiments.

The cross-correlation between input and
noise/disturbances requires good noise
models to avoid biased estimates (Ljung
1999).

Strictly speaking, (i) is only valid when the sys-
tem and noise models are parametrized sepa-
rately. Items (i) and (ii) imply that when there
are constraints on the input only, then the opti-
mal design is always in open loop, whereas for
output constrained only problems, the experiment

(i)

(iii)
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should be conducted in closed loop (Agiiero and
Goodwin 2007).

External Excitation Signals

The most important design variable is the ex-

ternal excitation, including the length of the ex-

periment. Even for moderate experiment lengths,

solving optimal experiment design problems with

respect to the entire excitation sequence can be a

formidable task. Fortunately, for experiments of

reasonable length, the design can be split up in

two steps:

(i) First, optimization of the probability density
function of the excitation

(i) Generation of the actual sequence from the
obtained density function through a stochas-
tic simulation procedure

More details are provided in section “Computa-

tional Issues.”

Experimental Constraints

An experiment is always subject to constraints,
physical as well as economical. Such constraints
are typically translated into constraints on the
following signal properties:

(i) Variability. For example, too high level of
excitation may cause the end product to
go off-spec, resulting in product waste and
associated high costs.

(ii) Frequency content. Often, too harsh move-
ments of the inputs may damage equipment.

(iii)) Amplitudes. For example, actuators have
limited range, restricting input amplitudes.
Waveforms. In process industry, it is not
uncommon that control equipment limit the
type of signals that can be applied. In other
applications, it may be physically possible to
realize only certain types of excitation. See
section “Waveform Generation” for further
discussion.

It is also often desired to limit the experiment
time so that the process may go back to normal
operation, reducing, e.g., cost of personnel. The
latter is especially important in the process in-
dustry where dynamics are slow. The above type
of constraints can be formulated as constraints on

(iv)
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the design variables in section “Design Variables”
and associated variables.

Experiment Design Criteria

There are two principal ways to define an optimal

experiment design problem:

(i) Best effort. Here the best quality as, e.g.,
given by one of the quality measures in
section “Model Quality Measures” is sought
under constraints on the experimental effort
and cost. This is the classical problem for-
mulation.

(ii) Least-costly. The cheapest experiment is
sought that results in a predefined model
quality. Thus, as compared to best effort
design, the optimization criterion and
constraint are interchanged. This type of
design was introduced by Bombois and
coworkers; see Bombois et al. (2006).

As shown in Rojas et al. (2008), the two ap-

proaches typically lead to designs only differing

by a scaling factor.

Computational Issues

The optimal experiment design problem based on
the Fisher information is typically non-convex.
For example, consider a finite-impulse response
model subject to an experiment of length N with
the measured outputs collected in the vector

u0) ...u(—(n—-1))
Y =00+E, 0= : ; :
u(N—=1)... u(N —n)

where E € R is zero-mean Gaussian noise with

covariance matrix 621y xy. Then it holds that
1 7

Ir(0,,N) = a_ch @ 4

From an experiment design point of view, the

input vector u = [u(—(n —1)) ... u(N)]T is

the design Variable, but with the elements of
1r(6,, N) being a quadratic function of the input
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sequence, all typical quality measures become
non-convex.

While various methods for non-convex nu-
merical optimization can be used to solve such
problems, they often encounter problems with,
e.g., local minima. To address this a number
of techniques have been developed where either
the problem is reparametrized so that it becomes
convex or where a convex approximation is used.
The latter technique is called convex relaxation
and is often based on a reparametrization as well.
We use the example above to provide a flavor of
the different techniques.

Reparametrization

If the input is constrained to be periodic so that
u(t) = ut + N),t = —n,...,—1, it follows
that the Fisher information is linear in the sample
correlations of the input. Using these as design
variables instead of u results in that all quality
measures referred to above become convex func-
tions.

This reparametrization thus results in the two-
step procedure discussed in section “External
Excitation Signals”: First, the sample correlations
are obtained from an optimal experiment design
problem, and then an input sequence is generated
that has this sample correlation. In the second
step there is a considerable freedom. Notice,
however, that since correlations do not directly
relate to the actual amplitudes of the resulting
signals, it is difficult to incorporate waveform
constraints in this approach. On the contrary,
variance constraints are easy to incorporate.

Convex Relaxations
There are several approaches to obtain convex
relaxations.

Using the per Sample Fisher Information

If the input is a realization of a stationary random
process and the sample size N is large enough,
Ir(6,, N)/N is approximately equal to the per
sample Fisher matrix which only depends on
the correlation sequence of the input. Using this
approximation, one can now follow the same
procedure as in the reparametrization approach
and first optimize the input correlation sequence.
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The generation of a stationary signal with a cer-
tain correlation is a stochastic realization problem
which can be solved using spectral factorization
followed by filtering white noise sequence, i.e.,
a sequence of independent identically distributed
random variables, through the (stable) spectral
factor (Jansson and Hjalmarsson 2005).

More generally, it turns out that the per sample
Fisher information for linear models/systems
only depends on the joint input/noise spectrum
(or the corresponding correlation sequence).
A linear parametrization of this quantity thus
typically leads to a convex problem (Jansson and
Hjalmarsson 2005).

The set of all spectra is infinite dimensional
and this precludes a search over all possible spec-
tra. However, since there is a finite-dimensional
parametrization of the per sample Fisher informa-
tion (it is a symmetric n X n matrix), it is also pos-
sible to find finite-dimensional sets of spectra that
parametrize all possible per sample Fisher infor-
mation matrices. Multisines with appropriately
chosen frequencies is one possibility. However,
even though all per sample Fisher information
matrices can be generated, the solution may be
suboptimal depending on which constraints the
problem contains.

The situation for nonlinear problems is con-
ceptually the same, but here the entire proba-
bility density function of the stationary process
generating the input plays the same role as the
spectrum in the linear case. This is a much more
complicated object to parametrize.

Lifting

An approach that can deal with amplitude con-
straints is based on a so-called lifting technique:
Introduce the matrix U = wuu’, representing
all possible products of the elements of u. This
constraint is equivalent to

Uu Uu
[uT 1j| > (0, rank |:uT 1j| =1 5

The idea of lifting is now to observe that the
Fisher information matrix is linear in the ele-
ments of U and by dropping the rank constraint
in (5) a convex relaxation is obtained, where both
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U and u (subject to the matrix inequality in (5))
are decision variables.

Frequency-by-Frequency Design

An approximation for linear systems that allows
frequency-by-frequency design of the input spec-
trum and feedback is obtained by assuming that
the model is of high order. Then the variance of an
nth-order estimate, G(e'®, éN), of the frequency
function can approximately be expressed as

i A n &,(w)
Var G(e'”, 0y) =~ N3 Ew)

(6)

(» System Identification: An Overview) in the
open loop case (there is a closed-loop extension
as well), where ®, and ®,, are the input and noise
spectra, respectively. Performance measures of
the type (2) can then be written as

F 4 W(ei‘“) D, (w)

d
. O, ()"

where the weighting W(e’®) > 0 depends on the
application. When only variance constraints are
present, such problems can be solved frequency
by frequency, providing both simple calculations
and insight into the design.

Implementation

We have used the notation /5(6,, N) to indicate
that the Fisher information typically (but not al-
ways) depends on the parameter corresponding to
the true system. That the optimal design depends
on the to-be identified system is a fundamental
problem in optimal experiment design. There are
two basic approaches to address this problem
which are covered below. Another important as-
pect is the choice of waveform for the external
excitation signal. This is covered last in this
section.

Robust Experiment Design

In robust experiment design, it is assumed that
it is known beforehand that the true parameter
belongs to some set, i.e., 8, € ©. A minimax
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approach is then typically taken, finding the ex-
periment that minimizes the worst performance
over the set ®. Such optimization problems are
computationally very difficult.

Adaptive Experiment Design

The alternative to robust experiment design is
to perform the design adaptively or sequentially,
meaning that first a design is performed based
on some initial “guess” of the true parameter,
and then as samples are collected, the design is
revised taking advantage of the data information.
Interestingly, the convergence rate of the parame-
ter estimate is typically sufficiently fast that for
this approach the asymptotic distribution is the
same as for the design based on the true model
parameter (Hjalmarsson 2009).

Waveform Generation

We have argued above that it is the spectrum of

the excitation (together with the feedback) that

determines the achieved model accuracy in the
linear time-invariant case. In section “Using the

per Sample Fisher Information” we argued that a

signal with a particular spectrum can be obtained

by filtering a white noise sequence through a

stable spectral factor of the desired spectrum.

However, we have also in section “Experimental

Constraints” argued that particular applications

may require particular waveforms. We will here

elaborate further on how to generate a waveform
with desired characteristics.

From an accuracy point of view, there are two
general issues that should be taken into account
when the waveform is selected:

* Persistence of excitation. A signal with a spec-
trum having n nonzero frequencies (on the
interval (—, 7r]) can be used to estimate at
most n parameters. Thus, as is typically the
case, if there is uncertainty regarding which
model structure to use before the experiment,
one has to ensure that a sufficient number of
frequencies is excited.

* The crest factor. For all systems, the maximum
input amplitude, say A, is constrained. To deal
with this from an experiment design point of
view, it is convenient to introduce what is
called the crest factor of a signal:
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c? = max; u>(t)

= — ¥
' limy 00 % Zr=1 u*(t)

The crest factor is thus the ratio between
the squared maximum amplitude and the
power of the signal. Now, for a class of signal
waveforms with a given crest factor, the input
power that can be used is upper-bounded
by

1 & A2
. 2
Nhfloﬁg“(’)fc_; (7)

However, the power is the integral of the
signal spectrum, and since increasing the
amplitude of the input signal spectrum will
increase a model’s accuracy, cf. (6), it is
desirable to use as much signal power as
possible. By (7) we see that this means that
waveforms with low crest factor should be
used.
A lower bound for the crest factor is readily seen
to be 1. This bound is achieved for binary sym-
metric signals. Unfortunately, there exists no sys-
tematic way to design a binary sequence that has
a prescribed spectrum. However, the so-called
arcsin law may be used. It states that the sign
of a zero-mean Gaussian process with correlation
sequence r; gives a binary signal having corre-
lation sequence 7, = 2/marcsin(r;). With 7,
given, one can try to solve this relation for the
corresponding r;.

A crude, but often sufficient, method to gen-
erate binary sequences with desired spectral con-
tent is based on the use of pseudorandom binary
signals (PRBS). Such signals (which are gener-
ated by a shift register) are periodic signals which
have correlation sequences similar to random
white noise, i.e., a flat spectrum. By resampling
such sequences, the spectrum can be modified.
It should be noted that binary sequences are less
attractive when it comes to identifying nonlinear-
ities. This is easy to understand by considering a
static system. If only one amplitude of the input is
used, it will be impossible to determine whether
the system is nonlinear or not.
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A PRBS is a periodic signal and can therefore
be split into its Fourier terms. With a period of
M, each such term corresponds to one frequency
on the grid 2znk/M,k = 0,...,M — 1. Such a
signal can thus be used to estimate at most M pa-
rameters. Another way to generate a signal with
period M is to add sinusoids corresponding to
the above frequencies, with desired amplitudes.
A periodic signal generated in this way is com-
monly referred to as a MultiSine. The crest factor
of a multisine depends heavily on the relation
between the phases of the sinusoids. times the
number of sinusoids. It is possible to optimize the
crest factor with respect to the choice of phases
(Rivera et al. 2009). There exist also simple
deterministic methods for choosing phases that
give a good crest factor, e.g., Schroeder phasing.
Alternatively, phases can be drawn randomly and
independently, giving what is known as random-
phase multisines (Pintelon and Schoukens 2012),
a family of random signals with properties similar
to Gaussian signals. Periodic signals have some
useful features:

» Estimation of nonlinearities. A linear time-
invariant system responds to a periodic input
signal with a signal consisting of the same
frequencies, but with different amplitudes
and phases. Thus, it can be concluded
that the system is nonlinear if the output
contains other frequencies than the input.
This can be explored in a systematic way
to estimate also the nonlinear part of a
system.

» Estimation of noise variance. For a linear
time-invariant system, the difference in the
output between different periods is due en-
tirely to the noise if the system is in steady
state. This can be used to devise simple meth-
ods to estimate the noise level.

* Data compression. By averaging measure-
ments over different periods, the noise level
can be reduced at the same time as the number
of measurements is reduced.

Further details on waveform generation and

general-purpose signals useful in system

identification can be found in Pintelon and

Schoukens (2012) and Ljung (1999).
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Implications for the Identification
Problem Per Se

In order to get some understanding of how
optimal experimental conditions influence the
identification problem, let us return to the
finite-impulse response model example in
section “Computational Issues.” Consider a least-
costly setting with an acceptable performance
constraint. More specifically, we would like
to use the minimum input energy that ensures
that the parameter estimate ends up in a set
of the type (3). An approximate solution to
this is that a 99 % confidence ellipsoid for the
resulting estimate is contained in Epp. Now,
it can be shown that a confidence ellipsoid is
a level set for the average least-squares cost
E[Vy(0)] = E[|Y —®0|*] = 0 = 0,37, + 07
Assuming the application cost Vi, also is
quadratic in 6, it follows after a little bit of
algebra (see Hjalmarsson 2009) that it must hold
that

E[Vn(0)] = 0* (1 4 ycVipp(0)) . YO (8)

for a constant ¢ that is not important for our
discussion. The value of E[Vy(0)] = |0 —
9(,||(21>T o T o2 is determined by how large the
weighting ®7 @ is, which in turn depends on how
large the input u is. In a least-costly setting with
the energy ||u||*> as criterion, the best solution
would be that we have equality in (8). Thus we
see that optimal experiment design tries to shape
the identification criterion after the application
cost. We have the following implications of this
result:

(i) Perform identification under appropriate
scaling of the desired operating conditions.
Suppose that Vp,(0) is a function of
how the system outputs deviate from a
desired trajectory (determined by 6,).
Performing an experiment which performs
the desired trajectory then gives that the
sum of the squared prediction errors are
an approximation of V,p(6), at least for
parameters close to 6,. Obtaining equality
in (8) typically requires an additional scaling
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of the input excitation or the length of
the experiment. The result is intuitively
appealing: The desired operating conditions
should reveal the system properties that are
important in the application.

(ii) Identification cost for application perfor-
mance. We see that the required energy
grows (almost) linearly with y, which
is a measure of how close to the ideal
performance (using the true parameter 6,)
we want to come. Furthermore, it is typical
that as the performance requirements in the
application increase, the sensitivity to model
errors increases. This means that V,,(6)
increases, which thus in turn means that the
identification cost increases. In summary,
the identification cost will be higher, the
higher performance that is required in the
application. The inequality (8) can be used
to quantify this relationship.

(iii) Model structure sensitivity. As Vypp will be
sensitive to system properties important for
the application, while insensitive to system
properties of little significance, with the
identification criterion Vy matched to Vi,
it is only necessary that the model structure
is able to model the important properties of
the system.

In any case, whatever model structure
that is used, the identified model will be
the best possible in that structure for the
intended application. This is very different
from an arbitrary experiment where it is
impossible to control the model fit when a
model of restricted complexity is used.

We conclude that optimal experiment de-
sign simplifies the overall system identifica-
tion problem.

Identification for Control

Model-based control is one of the most impor-
tant applications of system identification. Robust
control ensures performance and stability in the
presence of model uncertainty. However, the ma-
jority of such design methods do not employ the
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parametric ellipsoidal uncertainty sets resulting
from standard system identification. In fact only
in the last decade analysis and design tools for
such type of model uncertainty have started to
emerge, e.g., Raynaud et al. (2000) and Gevers
et al. (2003).

The advantages of matching the identification
criterion to the application have been recognized
since long in this line of research. For control
applications this typically implies that the iden-
tification experiment should be performed under
the same closed-loop operation conditions as the
controller to be designed. This was perhaps first
recognized in the context of minimum variance
control (see Gevers and Ljung 1986) where vari-
ance errors were the concern. Later on this was
recognized to be the case also for the bias error,
although here pre-filtering can be used to achieve
the same objective.

To account for that the controller to be
designed is not available, techniques where
control and identification are iterated have been
developed, cf. adaptive experiment design in
section “Adaptive Experiment Design.” Conver-
gence of such schemes has been established when
the true system is in the model set but has proved
out of reach for models of restricted complexity.

In recent years, techniques integrating exper-
iment design and model predictive control have
started to appear. A general-purpose design cri-
terion is used in Rathousky and Havlena (2013),
while Larsson et al. (2013) uses an application-
oriented criterion.

Summary and Future Directions

When there is the “luxury” to design the exper-
iment, then this opportunity should be seized by
the user. Without informative data there is little
that can be done. In this exposé we have outlined
the techniques that exist but also emphasized
that a well-conceived experiment, reflecting the
intended application, significantly can simplify
the overall system identification problem.
Further developments of computational tech-
niques are high on the agenda, e.g., how to handle
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time-domain constraints and nonlinear models.
To this end, developments in optimization
methods are rapidly being incorporated. While,
as reported in Hjalmarsson (2009), there are some
results on how the identification cost depends on
the performance requirements in the application,
further understanding of this issue is highly
desirable. Theory and further development of
the emerging model predictive control schemes
equipped with experiment design may very well
be the direction that will have most impact in
practice.

Cross-References

System Identification: An Overview

Recommended Reading

A classical text on optimal experiment design
is Fedorov (1972). The textbooks Goodwin
and Payne (1977) and Zarrop (1979) cover this
theory adapted to a dynamical system framework.
A general overview is provided in Pronzato
(2008). A semi-definite programming framework
based on the per sample Fisher information is
provided in Jansson and Hjalmarsson (2005).
The least-costly framework is covered in
Bombois et al. (2006). The lifting technique
was introduced for input design in Manchester
(2010). Details of the frequency-by-frequency
design approach can be found in Ljung (1999).
References to robust and adaptive experiment
design can be found in Pronzato (2008) and
Hjalmarsson (2009). For an account of the
implications of optimal experiment design for
the system identification problem as a whole,
see Hjalmarsson (2009). Thorough accounts of
the developments in identification for control
are provided in Hjalmarsson (2005) and Gevers
(2005).
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Abstract

Model predictive control (MPC) has been used
in the process industries for more than 30 years
because of its ability to control multivariable
systems in an optimized way under constraints
on input and output variables. Traditionally, MPC
requires the solution of a quadratic program
(QP) online to compute the control action, often
restricting its applicability to slow processes.
Explicit MPC completely removes the need for
on-line solvers by precomputing the control law
off-line, so that online operations reduce to a
simple function evaluation. Such a function is
piecewise affine in most cases, so that the MPC
controller is equivalently expressed as a lookup
table of linear gains, a form that is extremely easy
to code, requires only basic arithmetic operations,
and requires a maximum number of iterations that
can be exactly computed a priori.

Keywords

Constrained control; Embedded optimization;
Model predictive control; Multiparametric
programming; Quadratic programming
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Introduction

Model predictive control (MPC) is a well-known
methodology for synthesizing feedback control
laws that optimize closed-loop performance
subject to prespecified operating constraints
on inputs, states, and outputs (Borrelli et al.
2011; Mayne and Rawlings 2009). In MPC, the
control action is obtained by solving a finite
horizon open-loop optimal control problem at
each sampling instant. Each optimization yields
a sequence of optimal control moves, but only
the first move is applied to the process: At the
next time step, the computation is repeated over a
shifted time horizon by taking the most recently
available state information as the new initial
condition of the new optimal control problem.
For this reason, MPC is also called “receding
horizon control.” In most practical applications,
MPC is based on a linear discrete-time time-
invariant model of the controlled system and
quadratic penalties on tracking errors and actu-
ation efforts; in such a formulation, the optimal
control problem can be recast as a quadratic
programming (QP) problem, whose linear term
of the cost function and right-hand side of the
constraints depend on a vector of parameters that
may change from one step to another (such as
the current state and reference signals). To enable
the implementation of MPC in real industrial
products, a QP solution method must be embed-
ded in the control hardware. The method must
be fast enough to provide a solution within short
sampling intervals and require simple hardware,
limited memory to store the data defining the
optimization problem and the code implementing
the algorithm itself, a simple program code, and
good worst-case estimates of the execution time
to meet real-time system requirements.

Several online solution algorithms have been
studied for embedding quadratic optimization
in control hardware, such as active-set meth-
ods (Ricker 1985), interior-point methods (Wang
and Boyd 2010), and fast gradient projection
methods (Patrinos and Bemporad 2014). Explicit
MPC takes a different approach to meet the above
requirements, where multiparametric quadratic
programming is proposed to pre-solve the QP
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off-line, therefore converting the MPC law into a
continuous and piecewise-affine function of the
parameter vector (Bemporad et al. 2002b). We
review the main ideas of explicit MPC in the
next section, referring the reader to Alessio and
Bemporad (2009) for a more complete survey
paper on explicit MPC.

Model Predictive Control Problem

Consider the following finite-time optimal con-
trol problem formulation for MPC:

N—1
V(p) =min €y (xn) + Y (e, ur) (1a)
k=0
S.t. Xp41 = Axp + Buy (1b)
Coxi +Cuup <c (1c)
k=0,....,N—1
Cyxy <cn (1d)
Xp =X (le)

where N is the prediction horizon; x € R” is
the current state vector of the controlled system;
ur € R"™ is the vector of manipulated variables
at prediction time k, k = 0,...,N — 1; z 2
[wf..uy_] € R", n 2 n,N, is the vector of
decision variables to be optimized;

1
L(x,u) = Ex’Qx +u'Ru (2a)

Ly(x) = %x’Px (2b)

are the stage cost and terminal cost, respectively;
O, P are symmetric and positive semidefinite
matrices; and R is a symmetric and positive
definite matrix.

Let n, € N be the number of constraints
imposed at prediction time k = 0,..., N — 1,
namely, C, € R">" (C, € R ¢ € R,
and let ny be the number of terminal constraints,
namely, Cy € R">™ ¢y € R"V. The total
number ¢ of linear inequality constraints imposed

Explicit Model Predictive Control

in the MPC problem formulation (1) is g =
Nn.+ny.

By eliminating the states x; = Afx +
le‘;lo Al Buj—— ; from problem (1), the optimal
control problem (1) can be expressed as the
convex quadratic program (QP):

1 1
V*(x) & min EZ/HZ +x'F'z+ Ex’Yx
(3a)

st. Gz<W+ Sx (3b)
where H = H'’ € R" is the Hessian matrix; F €
R"*™ defines the linear term of the cost function;
Y € R™™ has no influence on the optimizer, as
it only affects the optimal value of (3a); and the
matrices G € R?”*" S € R W € RY define
in a compact form the constraints imposed in (1).
Because of the assumptions made on the weight
matrices Q, R, P, matrix H is positive definite
and matrix [ # 1] is positive semidefinite.
The MPC control law is defined by setting

u(x) =[10 ... 0]z(x) 4

where z(x) is the optimizer of the QP problem (3)
for the current value of x and [ is the identity
matrix of dimension n,, X n,.

Multiparametric Solution

Rather than using a numerical QP solver online to
compute the optimizer z(x) of (3) for each given
current state vector x, the basic idea of explicit
MPC is to pre-solve the QP off-line for the entire
set of states x (or for a convex polyhedral subset
X C R™ of interest) to get the optimizer function
z, and therefore the MPC control law u, explicitly
as a function of x.

The main tool to get such an explicit solu-
tion is multiparametric quadratic programming
(mpQP). For mpQP problems of the form (3),
Bemporad et al. (2002b) proved that the opti-
mizer function z* : Xy — R”" is piecewise affine
and continuous over the set Xy of parameters
x for which the problem is feasible (X is a
polyhedral set, possibly Xy = X) and that
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the value function VV* : X, — R associating
with every x € Xy the corresponding optimal
value of (3) is continuous, convex, and piecewise
quadratic.

An immediate corollary is that the explicit
version of the MPC control law u in (4), being
the first n, components of vector z(x), is also
a continuous and piecewise-affine state-feedback
law defined over a partition of the set X s of states
into M polyhedral cells;

Fix + g if Hix < K,

u(x) = Lo ()
Fyx +gu if Hyx < Ky

An example of such a partition is depicted in
Fig. 1. The explicit representation (5) has mapped
the MPC law (4) into a lookup table of linear
gains, meaning that for each given x, the values
computed by solving the QP (3) online and those
obtained by evaluating (5) are exactly the same.

Multiparametric QP Algorithms
A few algorithms have been proposed in the liter-
ature to solve the mpQP problem (3). All of them

construct the solution by exploiting the Karush-
Kuhn-Tucker (KKT) conditions for optimality:

Hz+ Fx+GA=0 (6a)
Ai(Gz—W! —8ix)=0,Vi=1,...,q (6b)
Gz< W + Sx (6¢)
A>0 (6d)

where A € R? is the vector of Lagrange multipli-
ers. For the strictly convex QP (3), conditions (6)
are necessary and sufficient to characterize opti-
mality.

An mpQP algorithm starts by fixing an arbi-
trary starting parameter vector xo € R” (e.g.,
the origin xo = 0), solving the QP (3) to get the
optimal solution z(xp), and identifying the subset

Gzx) =Sx+ W (7a)

of all constraints (6¢) that are active at z(xy) and
the remaining inactive constraints:

Gz(x) <Sx+ W (7b)
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Correspondingly, in view of the complementarity

condition (6b), the vector of Lagrange multipliers

is split into two subvectors:
A(x) >0
i(x) =0

(8a)
(8b)
We assume for simplicity that the rows of G

are linearly independent. From (6a), we have the
relation

2(x) = —H ' (Fx + G'A(x)) ©9)
that, when substituted into (7a), provides
Ax)=-MW + (S +GH'F)x) (10)

where M = G'(GH™'G’)~" and, by substitu-
tion in (9),

2x)=H'"(MW +M(S +GH™'F)x — Fx)
(11)

The solution z(x) provided by (11) is the correct
one for all vectors x such that the chosen com-
bination of active constraints remains optimal.
Such all vectors x are identified by imposing con-
straints (7b) and (8a) on z(x) and )~L(x), respec-
tively, that leads to constructing the polyhedral
set (“critical region”):

CRy={xeR": A(x) >0, Gz(x) < W+Sx}
(12)

Different mpQP solvers were proposed to
cover the rest X \ CRy of the parameter set
with other critical regions corresponding to
new combinations of active constraints. The
most efficient methods exploit the so-called
“facet-to-facet” property of the multiparametric
solution (Spjgtvold et al. 2006) to identify
neighboring regions as in Tgndel et al. (2003a)
and Baoti¢ (2002). Alternative methods were
proposed in Jones and Morari (2006), based
on looking at (6) as a multiparametric linear
complementarity problem, and in Patrinos and
Sarimveis (2010), which provides algorithms for
determining all neighboring regions even in the
case the facet-to-facet property does not hold.
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All methods handle the case of degeneracy,
which may happen for some combinations of
active constraints that are linearly dependent, that
is, the associated matrix G has no full row rank
(in this case, i(x) may not be uniquely defined).

Extensions

The explicit approach described earlier can be
extended to the following MPC setting:

N—1

. 1 1
mzanE (k —1)'Qy (i — rk)+§AM;<RAAMk
© k=0

+ (ux —up) R(ux —up) + pee®  (13a)
(13b)
(13¢)

S.t. Xg+1 = Axy + Bux + Byvk
Yk = Cxx + Dyug + Dyvy

uy = up—1 + Aug, k=0,...,N—1
(13d)

Aug =0, k=N,,...,N—1 (13e)

uk, <we<ub k=0, N,—1(13f)
Auky < Aug < Auk k=0,....N,—1

(13g)
Yo — Vinin < vk < ¥ + €Vinax  (13h)

k=0,...,N.—1

where Ra is a symmetric and positive definite
matrix; matrices Q) and R are symmetric and
positive semidefinite; vk is a vector of measured
disturbances; yy is the output vector; ry its corre-
sponding reference to be tracked; Auy is the vec-
tor of input increments; uy,_ is the input reference;
ul;lin’ u]I;ax’ Aul;;lin’ Aul;lax’ yl;ﬁn’ ylrilax are bOU.IldS;
and N, N,, N, are, respectively, the prediction,
control, and constraint horizons. The extra vari-
able € is introduced to soften output constraints,
penalized by the (usually large) weight p. in the
cost function (13a).

Everything marked in bold-face in (13), to-
gether with the command input u_; applied at
the previous sampling step and the current state
X, can be treated as a parameter with respect to
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which to solve the mpQP problem and obtain the
explicit form of the MPC controller. For example,
for a tracking problem with no anticipative action
(rx =19, Yk =0,...,N — 1), no measured dis-
turbance, and fixed upper and lower bounds, the
explicit solution is a continuous piecewise affine
lr Note that
prediction models and/or weight matrices in (13)
cannot be treated as parameters to maintain the
mpQP formulation (3).

. X
function of the parameter vector [uro ]

Linear MPC Based on Convex
Piecewise-Affine Costs

A similar setting can be repeated for MPC
problems based on linear prediction models
and convex piecewise-affine costs, such as
1- and oo-norms. In this case, the MPC
problem is mapped into a multiparametric linear
programming (mpLP) problem, whose solution
is again continuous and piecewise-affine with
respect to the vector of parameters. For details,
see Bemporad et al. (2002a).

Robust MPC

Explicit solutions to min-max MPC problems
that provide robustness with respect to additive
and/or multiplicative unknown-but-bounded
uncertainty were proposed in Bemporad et al.
(2003), based on a combination of mpLP and
dynamic programming. Again the solution is
piecewise affine with respect to the state vector.

Hybrid MPC

An MPC formulation based on 1- or co-norms
and hybrid dynamics expressed in mixed-logical
dynamical (MLD) form can be solved explic-
itly by treating the optimization problem asso-
ciated with MPC as a multiparametric mixed
integer linear programming (mpMILP) problem.
The solution is still piecewise affine but may be
discontinuous, due to the presence of binary vari-
ables (Bemporad et al. 2000). A better approach
based on dynamic programming combined with
mpLP (or mpQP) was proposed in Borrelli et al.
(2005) for hybrid systems in piecewise-affine
(PWA) dynamical form and linear (or quadratic)
costs.
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Complexity of the Solution

The complexity of the solution is given by the
number M of regions that form the explicit so-
Iution (5), dictating the amount of memory to
store the parametric solution (F;, G;, H;, K;,
1,..., M), and the worst-case execution
time required to compute F;x + G; once the
problem of identifying the index i of the region
{x : H;jx < K;} containing the current state x
is solved (which usually takes most of the time).
The latter is called the “point location problem,”
and a few methods have been proposed to solve
the problem more efficiently than searching lin-
early through the list of regions (see, e.g., the
tree-based approach of Tgndel et al. 2003b).

An upper bound to M is 29, which is the
number of all possible combinations of active
constraints. In practice, M is much smaller than
29, as most combinations are never active at
optimality for any of the vectors x (e.g., lower
and upper limits on an actuation signal cannot
be active at the same time, unless they coin-
cide). Moreover, regions in which the first n,
component of the multiparametric solution z(x)
is the same can be joined together, provided that
their union is a convex set (an optimal merging
algorithm was proposed by Geyer et al. (2008) to
get a minimal number M of partitions). Nonethe-
less, the complexity of the explicit MPC law
typically grows exponentially with the number
q of constraints. The number m of parameters
is less critical and mainly affects the number of
elements to be stored in memory (i.e., the number
of columns of matrices F;, H;). The number n
of free variables also affects the number M of
regions, mainly because they are usually upper
and lower bounded.

1 =

Computer-Aided Tools

The Model Predictive Control Toolbox (Bempo-
rad et al. 2014) offers functions for designing ex-
plicit MPC controllers in MATLAB since 2014.
Other tools exist such as the Hybrid Toolbox
(Bemporad 2003) and the Multi-Parametric Tool-
box (Kvasnica et al. 2006).
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Summary and Future Directions

Explicit MPC is a powerful tool to convert an
MPC design into an equivalent control law that
can be implemented as a lookup table of linear
gains. Whether the explicit form is preferable
to solving the QP problem online depends on
available CPU time, data memory, and program
memory and other practical considerations. Al-
though suboptimal methods have been proposed
to reduce the complexity of the control law, still
the explicit MPC approach remains convenient
for relatively small problems (such as one or
two command inputs, short control and constraint
horizons, up to ten states). For larger problems,
and/or problems that are linear time varying, on
line QP solution methods tailored to embedded
MPC may be preferable.

Cross-References

Model-Predictive Control in Practice

Nominal Model-Predictive Control
Optimization Algorithms for Model Predictive
Control

Recommended Reading
For getting started in explicit MPC, we
recommend reading the paper by Bemporad et al.
(2002b) and the survey paper Alessio and
Bemporad (2009). Hands-on experience using
one of the MATLAB tools listed above is also
useful for fully appreciating the potentials and
limitations of explicit MPC. For understanding
how to program a good multiparametric QP
solver, the reader is recommended to take the
approach of Tgndel et al. (2003a) and Spjgtvold
et al. (2006) or, in alternative, of Patrinos and
Sarimveis (2010) or Jones and Morari (2006).
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Synonyms

EKF

Abstract

The extended Kalman filter (EKF) is the most
popular estimation algorithm in practical appli-
cations. It is based on a linear approximation to
the Kalman filter theory. There are thousands of
variations of the basic EKF design, which are
intended to mitigate the effects of nonlinearities,
non-Gaussian errors, ill-conditioning of the co-
variance matrix and uncertainty in the parameters
of the problem.

Keywords
Estimation; Nonlinear filters

The extended Kalman filter (EKF) is by far
the most popular nonlinear filter in practical
engineering applications. It uses a linear
approximation to the nonlinear dynamics and
measurements and exploits the Kalman filter
theory, which is optimal for linear and Gaussian
problems; Gelb (1974) is the most accessible
but thorough book on the EKF. The real-time
computational complexity of the EKF is rather
modest; for example, one can run an EKF
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with high-dimensional state vectors (d = several
hundreds) in real time on a single microprocessor
chip. The computational complexity of the EKF
scales as the cube of the dimension of the state
vector (d) being estimated. The EKF often gives
good estimation accuracy for practical nonlinear
problems, although the EKF accuracy can be
very poor for difficult nonlinear non-Gaussian
problems. There are many different variations
of EKF algorithms, most of which are intended
to improve estimation accuracy. In particular,
the following types of EKFs are common in
engineering practice: (1) second-order Taylor
series expansion of the nonlinear functions, (2)
iterated measurement updates that recompute the
point at which the first order Taylor series is
evaluated for a given measurement, (3) second-
order iterated (i.e., combination of items 1
and 2), (4) special coordinate systems (e.g.,
Cartesian, polar or spherical, modified polar
or spherical, principal axes of the covariance
matrix ellipse, hybrid coordinates, quaternions
rather than Euler angles, etc.), (5) preferred order
of processing sequential scalar measurement
updates, (6) decoupled or partially decoupled or
quasi-decoupled covariance matrices, and many
more variations. In fact, there is no such thing
as “the” EKF, but rather there are thousands of
different versions of the EKF. There are also
many different versions of the Kalman filter
itself, and all of these can be used to design EKFs
as well. For example, there are many different
equations to update the Kalman filter error
covariance matrices with the intent of mitigating
ill-conditioning and improving robustness,
including (1) square-root factorization of the
covariance matrix, (2) information matrix update,
(3) square-root information update, (4) Joseph’s
robust version of the covariance matrix update,
(5) at least three distinct algebraic versions of the
covariance matrix update, as well as hybrids of
the above.

Many of the good features of the Kalman filter
are also enjoyed by the EKF, but unfortunately
not all. For example, we have a very good theory
of stability for the Kalman filter, but there is
no theory that guarantees that an EKF will be
stable in practical applications. The only method
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to check whether the EKF is stable is to run
Monte Carlo simulations that cover the relevant
regions in state space with the relevant measure-
ment parameters (e.g., data rate and measurement
accuracy). Secondly, the Kalman filter computes
the theoretical error covariance matrix, but there
is no guarantee that the error covariance matrix
computed by the EKF approximates the actual
filter errors, but rather the EKF covariance ma-
trix could be optimistic by orders of magnitude
in real applications. Third, the numerical val-
ues of the process noise covariance matrix can
be computed theoretically for the Kalman filter,
but there is no guarantee that these will work
well for the EKF, but rather engineers typically
tune the process noise covariance matrix using
Monte Carlo simulations or else use a heuris-
tic adaptive process (e.g., IMM). All of these
short-comings of the EKF compared with the
Kalman filter theory are due to a myriad of
practical issues, including (1) nonlinearities in
the dynamics or measurements, (2) non-Gaussian
measurement errors, (3) unmodeled measurement
error sources (e.g., residual sensor bias), (4) un-
modeled errors in the dynamics, (5) data associa-
tion errors, (6) unresolved measurement data, (7)
ill-conditioning of the covariance matrix, etc. The
actual estimation accuracy of an EKF can only
be gauged by Monte Carlo simulations over the
relevant parameter space.

The actual performance of an EKF can depend
crucially on the specific coordinate system that
is used to represent the state vector. This is
extremely well known in practical engineering
applications (e.g., see Mehra 1971; Stallard
1991; Miller 1982; Markley 2007; Daum 1983;
Schuster 1993). Intuitively, this is because the
dynamics and measurement equations can be
exactly linear in one coordinate system but not
another; this is very easy to see; start with dy-
namics and measurements that are exactly linear
in Cartesian coordinates and transform to polar
coordinates and we will get highly nonlinear
equations. Likewise, we can have approximately
linear dynamics and measurements in a specific
coordinate system but highly nonlinear equations
in another coordinate system. But in theory, the
optimal estimation accuracy does not depend on

Extended Kalman Filters

the coordinate system. Moreover, in math and
physics, coordinate-free methods are preferred,
owing to their greater generality and simplicity
and power. The physics does not depend on the
specific coordinate system; this is essentially a
definition of what “physics” means, and it has
resulted in great progress in physics over the
last few hundred years (e.g., general relativity,
gauge invariance in quantum field theory, Lorentz
invariance in special relativity, as well as a host
of conservation laws in classical mechanics that
are explained by Noether’s theorem which relates
invariance to conserved quantities). Similarly
in math, coordinate-free methods have been the
royal road to progress over the last 100 years
but not so for practical engineering of EKFs,
because EKFs are approximations rather than
being exact, and the accuracy of the EKF
approximation depends crucially on the specific
coordinate system used. Moreover, the effect
of ill-conditioning of the covariance matrices
in EKFs depends crucially on the specific
coordinate system used in the computer; for
example, if we could compute the EKF in
principal coordinates, then the covariance
matrices would be diagonal, and there would
be no effect of ill-conditioning, despite enormous
condition numbers of the covariance matrices.
Surprisingly, these two simple points about
coordinate systems are still not well understood
by many researchers in nonlinear filtering.
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Abstract

Extremum seeking (ES) is a method for real-time
non-model-based optimization. Though ES was
invented in 1922, the “turn of the twenty-first cen-
tury” has been its golden age, both in terms of the
development of theory and in terms of its adop-
tion in industry and in fields outside of control
engineering. This entry overviews basic gradient-
and Newton-based versions of extremum seeking
with periodic and stochastic perturbation signals.

Keywords

Gradient climbing; Newton’s method

The Basic Idea of Extremum Seeking

Many versions of extremum seeking exist, with
various approaches to their stability study (Krstic
and Wang 2000; Liu and Krstic 2012; Tan et al.
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Extremum Seeking Control, Fig. 1 The simplest

perturbation-based extremum seeking scheme for a
"

quadratic single-input map f(0) = f* + > 0 —6%)>,

where f*, f”,6* are all unknown. The user has to only
know the sign of f”/, namely, whether the quadratic map
has a maximum or a minimum, and has to choose the
adaptation gain k such that sgnk = —sgn /. The user
has to also choose the frequency w as relatively large
compared to a, k, and f”

2006). The most common version employs per-
turbation signals for the purpose of estimating the
gradient of the unknown map that is being opti-
mized. To understand the basic idea of extremum
seeking, it is best to first consider the case of a
static single-input map of the quadratic form, as
shown in Fig. 1.

Three different thetas appear in Fig. 1: 0* is
the unknown optimizer of the map, é(t) is the
real-time estimate of 6*, and 8(¢) is the actual
input into the map. The actual input 6(¢) is based
on the estimate é(t) but is perturbed by the
signal a sin(wt) for the purpose of estimating the
unknown gradient f”- (6 — 6*) of the map f(6).
The sinusoid is only one choice for a perturbation
signal — many other perturbations, from square
waves to stochastic noise, can be used in lieu of
sinusoids, provided they are of zero mean. The
estimate é(z‘) is generated with the integrator k /s
with the adaptation gain k controlling the speed
of estimation.

The ES algorithm is successful if the error
between the estimate 0 (t) and the unknown 6%,
namely, the signal

0(1) = 0(t) — 6* (1)
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converges towards zero. Based on Fig. 1, the esti-

mate is governed by the differential equation 6 =
k sin(wt) f(0), which means that the estimation
error is governed by

dé "o 2

= ka sin(wt) |:f* + fT (9 +a sin(wt)) :|
2

Expanding the right-hand side, one obtains

do(t 4
46@®) = kaf” sin(wt) + ka3f— sin’ (wt)
dr N——— 2 N———
mean=0 mean=0
"
+ ka— sin(wt) 0(t)*
2 N—— N——
fast, mean=0 slow
+ka* f"  sin®(wt) 6(t) (3)
N—— N——
fast, mean=1/2 slow

A theoretically rigorous time-averaging pro-
cedure allows to replace the above sinusoidal
signals by their means, yielding the ‘“average
system”

<0
dé kf" a® -
d:;vc = ) eavc ’ (4)

which is exponentially stable. The averaging the-
ory guarantees that there exists sufficiently large
 such that, if the initial estimate é(O) is suffi-
ciently close to the unknown 6*,

. . k7 1
0() — 07| < |6(0)—607e = "+ 0| —
w

+a, Ve >0. 5)

For the user, the inequality (5) guarantees that,
if a is chosen small and w is chosen large, the
input 6(¢) exponentially converges to a small in-
terval around the unknown 6* and, consequently,
the output f(6(¢)) converges to the vicinity of the
optimal output f*.
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Extremum Seeking Control, Fig. 2 Extremum seeking
algorithm for a multivariable map y = Q(6), where 0
is the input vector 0 = [0, 60, -* ,0,]". The algorithm
employs the additive perturbation vector signal S(¢) given
in (6) and the multiplicative demodulation vector signal
M(t) given in (7)

ES for Multivariable Static Maps

For static maps, ES extends in a straightforward
manner from the single-input case shown in Fig. 1
to the multi-input case shown in Fig. 2.

The algorithm measures the scalar signal
y() = Q(6(t)), where Q(:) is an unknown map
whose input is the vector 8 = [0y, 6,,--- ,9,,]T.
The gradient is estimated with the help of the
signals

a, sin(w,t) ]T

(6)

S@) = [a1 sin(wi?)

5 T
— sin(wy?) :|
a

M(t) = |:£ sin(w; )
aj n
(7

with nonzero perturbation amplitudes a; and with
a gain matrix K that is diagonal. To guarantee
convergence, the user should choose w; # ;.
This is a key condition that differentiates the
multi-input case from the single-input case. In
addition, for simplicity in the convergence analy-
sis, the user should choose w; /w; as rational and
w; + w; # wy for distinct i, j, and k.

If the unknown map is quadratic, namely,
0(8) = Q*+3(0—6*)" H(6—06*), the averaged
system is

Owe = KH Oy , H = Hessian.  (8)
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Extremum Seeking Control, Fig. 3 The ES algorithm
in the presence of dynamics with an equilibrium map 6 —
y that satisfies the same conditions as in the static case. If
the dynamics are stable and the user employs parameters
in the ES algorithm that make the algorithm dynamics

If, for example, the map Q(-) has a maximum
that is locally quadratic (which implies H =
HT < 0) and if the user chooses the elements
of the diagonal gain matrix K as positive, the
ES algorithm is guaranteed to be locally conver-
gent. However, the convergence rate depends on
the unknown Hessian H. This weakness of the
gradient-based ES algorithm is removed with the
Newton-based ES algorithm.

A stochastic version of the algorithm in Fig. 2
also exists, in which S(¢) and M(t) are re-
placed by

S((0) = [ar sin(mi(1)), ..., ay sin(a ()]

©))

M(n(1)) = [ 5 sin(n1(1)). ...,

ai(l—e 4

T
sin(7), (l))} (10)

a,(1 —e~ar)

N .

where n; = qz—_i_ll[W,] and W; are independent
Eis

unity-intensity white noise processes.

ES for Dynamic Systems
ES extends in a relatively straightforward man-

ner from static maps to dynamic systems, pro-
vided the dynamics are stable and the algorithm’s

slower than the dynamics of the plant, convergence is
guaranteed (at least locally). The two filters are useful
in the implementation to reduce the adverse effect of the
perturbation signals on asymptotic performance but are
not needed in the stability analysis

parameters are chosen so that the algorithm’s
dynamics are slower than those of the plant. The
algorithm is shown in Fig. 3.

The technical conditions for convergence in
the presence of dynamics are that the equilibria
x = [(0) of the system x = f(x,a(x,6)),
where a(x, 0) is the control law of an internal
feedback loop, are locally exponentially stable
uniformly in 6 and that, given the output map

y = h(x), there exists at least one 6* € R”
2

such that %(hol)(@*) = 0and %(kol)(@*) =
H<0, H=H"

The stability analysis in the presence of
dynamics employs both averaging and singular
perturbations, in a specific order. The design
guidelines for the selection of the algorithm’s pa-
rameters follow the analysis. Though the guide-
lines are too lengthy to state here, they ensure
that the plant’s dynamics are on a fast time scale,
the perturbations are on a medium time scale, and
the ES algorithm is on a slow time scale.

Newton ES Algorithm for Static Map

A Newton version of the ES algorithm, shown in
Fig. 4, ensures that the convergence rate be user
assignable, rather than being dependent on the
unknown Hessian of the map.

The elements of the demodulating matrix N (¢)
for generating the estimate of the Hessian are
given by
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Extremum Seeking Control, Fig. 4 A Newton-based
ES algorithm for a static map. The multiplicative excita-

2

tion N(¢) helps generate the estimate of Hessian J aQ@ga)

16 1

N;i(t) = —(sin2 w;t) — —),
0= (s~
4 .
Nij(t) = sin(w; 1) sin(w;1)  (11)
a;a;

For a quadratic map, the averaged system in
error variables 9 = 0 —0*, T =T — H™'is

dome - S
— _K@dve _ K FdVeHedVC,
dt N———
quadratic
df‘ave B B B
— _wrl—wave - w, [ave gave (12)
dt N——

quadratic

Since the eigenvalues are determined by K
and o, and are therefore independent of the
unknown H, the (local) convergence rate is user
assignable.

Further Reading on Extremum
Seeking

Since the publication of the first proof of sta-
bility of extremum seeking (Krstic and Wang
2000), thousands of papers have been published

as H (t) = N(t)y(t). The Riccati matrix differential
equation I'(#) generates an estimate of the Hessian’s
inverse matrix, avoiding matrix inversions of Hessian
estimates that may be singular during the transient

on this topic, presenting further theoretical de-
velopments and applications of ES. A proof that
expands the validity of extremum seeking from
local to global stability was published in Tan et al.
(2006). The book Liu and Krstic (2012) presents
stochastic versions of the algorithms in this entry,
where the sinusoids are replaced by filtered white
noise perturbation signals.

Cross-References
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