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Abstract

Markov chains refer to stochastic processes
whose states change according to transition
probabilities determined only by the states of
the previous time step. They have been crucial
for modeling large-scale systems with random
behavior in various fields such. as control,
communications, biology, optimization, and
economics. In this entry, we focus on their
recent application to the area of search engines,
namely, the PageRank algorithm employed at
Google, which provides a measure of importance
for each page in the web. We present several
researches carried out with control theoretic tools
such as aggregation, distributed randomized
algorithms, and PageRank optimization. Due
to the large size of the web, computational
issues are the underlying motivation of these
studies.
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Introduction

For various real-world large-scale dynamical sys-
tems, reasonable models describing highly com-
plex behaviors can be expressed as stochastic
systems, and one of the most well-studied classes
of such systems is that of Markov chains. A char-
acteristic feature of Markov chains is that their
behavior does not carry any memory. That is, the
current state of a chain is completely determined
by the state of the previous time step and not at all
on the states prior to that step (Kumar and Varaiya
1986; Norris 1997).

Recently, Markov chains have gained
renewed interest due to the extremely successful
applications in the area of web search. The
search engine of Google has been employing
an algorithm known as PageRank to assist
the ranking of search results. This algorithm
models the network of web pages as a Markov
chain whose states represent the pages that
web surfers with various interests visit in a
random fashion. The objective is to find an
order among the pages according to their
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popularity and importance, and this is done by
focusing on the structure of hyperlinks among
pages.

In this entry, we first provide a brief overview
on the basics of Markov chains and then in-
troduce the problem of PageRank computation.
We proceed to provide further discussions on
control theoretic approaches dealing with PageR-
ank problems. The topics covered include ag-
gregated Markov chains, distributed randomized
algorithms, and Markov decision problems for
link optimization.

Markov Chains

In the simplest form, a Markov chain takes its
states in a finite state space with transitions in
the discrete-time domain. The transition from one
state to another is characterized completely by the
underlying probability distribution.

Let X be a finite set given by X :=
{1,2,...,n}, which is called the state space.
Consider a stochastic process {X;}72, taking
values on this set X'. Such a process is called a
Markov chain if it exhibits the following Markov

property:

Prob{Xy41 = j| Xk = ix. Xe—1 = ik—1.. ..,
Xo = io} = Prob{Xp41 = j| Xk = ix},

where Prob{:|-} denotes the conditional probabil-
ity and k € Z4. That is, the state at the next
time step depends only on the current state and
not those of previous times.

Here, we consider the homogeneous case
where the transition probability is constant over
time. Thus, we have for each pair i, j € X, the
probability that the chain goes from state j to
state i at time k expressed as

Dij ‘= Prob{Xk = i|Xk_1 = ]}, k € Zs.

In the matrix form, P := (p;;) is called the
transition probability matrix of the chain. It is
obvious that all entries of P are nonnegative, and
for each j, the entries of the jth column of P
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sumup to 1,ie, >, p; = lforj € X.In
this respect, the matrix P is (column) stochastic
(Horn and Johnson 1985).

In this entry, we assume that the Markov chain
is ergodic, meaning that for any pair of states,
the chain can make a transition from one to the
other over time. In this case, the chain and the
matrix P are called irreducible. This property is
known to imply that P has a simple eigenvalue
of 1. Thus, there exists a unique steady state
probability distribution = € R” given by

7=Pr, "7 =1, m; >0, Vi € X,

where 1 € R” denotes a vector with entries one.
Note that in this distribution s, all entries are
positive.

Ranking in Search Engines: PageRank
Algorithm

At Google, PageRank is used to quantify the
importance of each web page based on the hy-
perlink structure of the web (Brin and Page 1998;
Langville and Meyer 2006). A page is considered
important if (i) many pages have links pointing
to the page, (ii) such pages having links are
important ones, and (iii) the numbers of links
that such pages have are limited. Intuitively, these
requirements are reasonable. For a web page, its
incoming links can be viewed as votes supporting
the page, and moreover the quality of the votes
count through their importance as well as the
number of votes that they make. Even if a minor
page (with low PageRank) has many outgoing
links, its contribution to the linked pages will not
be substantial.

An interesting way to explain the PageRank
is through the random surfer model: The random
surfer starts from a randomly chosen page. Each
time visiting a page, he/she follows a hyperlink in
that page chosen at random with uniform proba-
bility. Hence, if the current page i has n; outgoing
links, then one of them is picked with probability
1/n;. If it happens that the current page has
no outgoing link (e.g., at PDF documents), the
surfer will use the back button. This process
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will be repeated. The PageRank value for a page
represents the probability of the surfer visiting the
page. It is thus higher for pages visited more often
by the surfer.

It is now clear that PageRank is obtained by
describing the random surfer model as a Markov
chain and then finding its stationary distribution.
First, we express the network of web pages as
the directed graph G = (V,&), where V =
{1,2,...,n} is the set of nodes corresponding to
web page indices while £ C V x V is the set of
edges for links among pages. Node i is connected
tonode j by an edge, i.e., (i, j) € &, if page i has
an outgoing link to page ;.

Let x;(k) be the distribution of the random
surfer visiting page i at time k, and let x(k) be
the vector containing all x; (k). Given the initial
distribution x(0), which is a probability vector,
ie, >.'_, x{0) = 1, the evolution of x (k) can
be expressed as

x(k +1) = Ax (k). (1)
The link matrix A = (a;;) € R™" is given by
ajj = 1/n; if (j,i) € £ and 0 otherwise, where
n; is the number of outgoing links of page ;.
Note that this matrix A is the transition proba-
bility matrix of the random surfer. Clearly, it is
stochastic, and thus x(k) remains a probability
vector so that > ;_, x; (k) = 1 for all k.

As mentioned above, PageRank is the
stationary distribution of the process (1) under
the assumption that the limit exists. Hence,
the PageRank vector is given by x* :=
limg — 00 X (k). In other words, it is the solution of
the linear equation

x* = Ax*, x*e0,1]", 1Tx*=1. (2
Notice that the PageRank vector x* is a non-
negative unit eigenvector for the eigenvalue 1 of
A. Such a vector exists since the matrix A is
stochastic, but may not be unique; the reason is
that A4 is a reducible matrix since in the web, not
every pair of pages can be connected by simply
following links. To resolve this issue, a slight
modification is necessary in the random surfer
model.
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The idea of the teleportation model is that
the random surfer, after a while, becomes bored
and stops following the hyperlinks. At such an
instant, the surfer “jumps” to another page not
directly connected to the one currently visiting.
This page can be in fact completely unrelated
in the domains and/or the contents. All n pages
in the web have the same probability 1/n to be
reached by a jump.

The probability to make such a jump is de-
noted by m € (0,1). The original transition
probability matrix A is now replaced with the
modified one M € R"*" defined by

M= —m)A+ %11? 3)

For the value of m, we take m = 0.15 as reported
in the original algorithm in Brin and Page (1998).
Notice that M is a positive stochastic matrix. By
Perron’s theorem (Horn and Johnson 1985), the
eigenvalue 1 is of multiplicity 1 and is the unique
eigenvalue with the maximum modulus. Further,
the corresponding eigenvector is positive. Hence,
we redefine the vector x* in (2) by using M
instead of A as follows:

x*=Mx*, x*e|0,1]", ITx;k =1.

Due to the large dimension of the link matrix
M , the computation of x* is difficult. The solu-
tion employed in practice is based on the power
method given by

x(k +1) = Mx(k) = (1 —m)Ax (k) + %1,
4

where the initial vector x (0) € R” is a probability
vector. The second equality above follows from
the fact 17x(k) = 1 for k € Z.. For imple-
mentation, the form on the far right-hand side is
important, using only the sparse matrix A and not
the dense matrix M . This method asymptotically
finds the value vector as x (k) — x*,k — oo.
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Aggregation Methods for Large-Scale
Markov Chains

In dealing with large-scale Markov chains,
it is often desirable to predict their dynamic
behaviors from reduced-order models that are
more computationally tractable. This enables us,
for example, to analyze the system performance
at a macroscale with some approximation under
different operating conditions. Aggregation
refers to partitioning or grouping the states so
that the states in each group can be treated
as a whole. The technique of aggregation is
especially effective for Markov chains possessing
sparse structures with strong interactions among
states in the same group and weak interactions
among states in different groups. Such methods
have been extensively studied, motivated by
applications in queueing networks, power
systems, etc. (Meyer 1989).

In the context of the PageRank problem, such
sparse interconnection can be expressed in the
link matrix A with a block-diagonal structure
(after some coordinate change, if necessary). The
entries of the matrix A are dense along its diag-
onal in blocks, and those outside the blocks take
small values. More concretely, we write

A=1+ B +¢€C, (5)

where B is a block-diagonal matrix given as
B = diag(Bll, Bs,...,Byy); Bjiisthe ii; X 7i;
matrix corresponding to the ith group with 71;
member pages for i = 1,2,...,N; and € is a
small positive parameter. Here, the non-diagonal
entries of B;; are the same as those in the same
diagonal block of A, but the diagonal entries are
chosen such that I + Bj; becomes stochastic and
thus take nonpositive values. Thus, both B and
C have column sums equal to zero. The small €
suggests us that states can be aggregated into N
groups with strong interactions within the groups,
but connections among different groups are weak.
This class of Markov chains is known as nearly
completely decomposable. In general, however, it
is difficult to uniquely determine the form (5) for
a given chain.
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To exploit the sparse structure in the
computation of stationary probability distribu-
tions, one approach is to carry out decomposition
or aggregation of the chains. The basic approach
here is (i) to compute the local stationary
distributions for I + By, (ii) to find the global
stationary distribution for a chain representing
the group interactions, and (iii) to finally use the
obtained vectors to compute exact/approximate
distribution for the entire chain; for details, see
Meyer (1989). By interpreting such methods
from the control theoretic viewpoints, in Phillips
and Kokotovic (1981) and Aldhaheri and Khalil
(1991), singular perturbation approaches have
been developed. These methods lead us to the
two-time scale decomposition of (controlled)
Markov chain recursions.

In the case of PageRank computation, sparsity
is a relevant property since it is well known
that many links in the web are intra-host ones,
connecting pages within the same domains or
directories. However, in the real web, it is easy
to find pages that have only a few outlinks, but
some of them are external ones. Such pages
will prevent the link matrix from having small
€ when decomposed in the form (5). Hence, the
general aggregation methods outlined above are
not directly applicable.

An aggregation-based method suitable for
PageRank computation is proposed in Ishii et al.
(2012). There, the sparsity in the web is expressed
by the limited number of external links pointing
towards pages in other groups. For each page i,
the node parameter §; € [0, 1] is given by

__ #external outgoing links
i = .

# total outgoing links

Note that smaller §; implies sparser networks. In
this approach, for a given bound §, the condition
8; < & is imposed only in the case page i belongs
to a group consisting of multiple members. Thus,
a page forming a group by itself is not required
to satisfy the condition. This means that we can
regroup the pages by first identifying pages that
violate this condition in the initial groups and
then making them separately as single groups.
By repeating these steps, it is always possible to
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obtain groups for a given web. Once the grouping
is settled, an aggregation-based algorithm can
be applied, which computes an approximated
PageRank vector. A characteristic feature is the
tradeoff between the accuracy in PageRank com-
putation and the node parameter §. More accurate
computation requires a larger number of groups
and thus a smaller §.

Distributed Randomized
Computation

For large-scale computation, distributed algo-
rithms can be effective by employing multiple
processors to compute in parallel. There are
several methods of constructing algorithms to
find stationary distributions of large Markov
chains. In this section, motivated by the current
literature on multi-agent systems, sequential
distributed randomized approaches of gossip
type are described for the PageRank problem.

In gossip-type distributed algorithms, nodes
make decisions and transmit information to
their neighbors in a random fashion. That is,
at any time instant, each node decides whether
to communicate or not depending on a random
variable. The random property is important to
make the communication asynchronous so that
simultaneous transmissions resulting in collisions
can be avoided. Moreover, there is no need of any
centralized decision maker or fixed order among
pages.

More precisely, each page i € V is equipped
with a random process 71; (k) € {0,1} for k €
Zy. If at time k, n; (k) is equal to 1, then page
i broadcasts its information to its neighboring
pages connected by outgoing links. All pages in-
volved at this time renew their values based on the
latest available data. Here, 7; (k) is assumed to be
an independent and identically distributed (i.i.d.)
random process, and its probability distribution
is given by Prob{n;(k) = 1} = «a, k € Z4.
Hence, all pages are given the same probability
o to initiate an update.

One of the proposed randomized approaches
is based on the so-called asynchronous iteration
algorithms for distributed computation of fixed

695

points in the field of numerical analysis (Bert-
sekas and Tsitsiklis 1989). The distributed update
recursion is given as

v

X(k 4+ 1) = My @)...., ) X (k). (©)

where the initial state X(0) is a probability vector
and the distributed link matrices M Plopn ATE
given as follows: Its (i, j)th entry is equal to
(I —=m)a;; +m/nif pj = 1;1if p; = 0 and
i = j; and O otherwise. Clearly, these matrices
keep the rows of the original link matrix M in (3)
for pages initiating updates. Other pages just
keep their previous values. Thus, these matrices
are not stochastic. From this update recursion,
the PageRank x* is probabilistically obtained (in
the mean square sense and in probability one),
where the convergence speed is exponential in
time k. Note that in this scheme (6), due to the
way the distributed link matrices are constructed,
each page needs to know which pages have links
pointing towards it. This implies that popular
pages linked by a number of pages must have
extra memory to keep the data of such links.

Another recently developed approach Ishii and
Tempo (2010) and Zhao et al. (2013) has several
notable differences from the asynchronous
iteration approach above. First, the pages need
to transmit their states only over their outgoing
links; the information of such links are by
default available locally, and thus, pages are
not required to have the extra memory regarding
incoming links. Second, it employs stochastic
matrices in the update as in the centralized
scheme; this aspect is utilized in the convergence
analysis. As a consequence, it is established
that the PageRank vector x* is computed in
a probabilistic sense through the time average
of the states x(0),...,x(k) given by y(k) :=
1/(k+1) Zﬁ:o x(€). The convergence speed in
this case is of order 1/k.

PageRank Optimization
via Hyperlink Designs

For owners of websites, it is of particular interest
to raise the PageRank values of their web pages.
Especially in the area of e-business, this can
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be critical for increasing the number of visitors
to their sites. The values of PageRank can be
affected by changing the structure of hyperlinks
in the owned pages. Based on the random surfer
model, intuitively, it makes sense to arrange the
links so that surfers will stay within the domain
of the owners as long as possible.

PageRank optimization problems have rigor-
ously been considered in, for example, de Ker-
chove et al. (2008) and Fercoq et al. (2013).
In general, these are combinatorial optimization
problems since they deal with the issues on where
to place hyperlinks, and thus the computation for
solving them can be prohibitive especially when
the web data is large. However, the work Fercoq
et al. (2013) has shown that the problem can
be solved in polynomial time. In what follows,
we discuss a simplified discrete version of the
problem setup of this work.

Consider a subset Vy C V of web pages over
which a webmaster has control. The objective is
to maximize the total PageRank of the pages in
this set Vp by finding the outgoing links from
these pages. Each page i € ) may have con-
straints such as links that must be placed within
the page and those that cannot be allowed. All
other links, i.e., those that one can decide to have
or not, are the design parameters. Hence, the
PageRank optimization problem can be stated as

max{U(x*, M) : x* = Mx*, x* €[0,1]",
1"x* =1, M e M},

where U is the utility function U(x*, M) :=
> iev, X and M represents the set of admissible
link matrices in accordance with the constraints
introduced above.

In Fercoq et al. (2013), an extended continu-
ous problem is also studied where the set M of
link matrices is a polytope of stochastic matrices
and a more general utility function is employed.
The motivation for such a problem comes from
having weighted links so that webmasters can
determine which links should be placed in a more
visible location inside their pages to increase
clickings on those hyperlinks. Both discrete and
continuous problems are shown to be solvable
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in polynomial time by modeling them as con-
strained Markov decision processes with ergodic
rewards (see, e.g., Puterman 1994).

Summary and Future Directions

Markov chains form one of the simplest classes
of stochastic processes but have been found pow-
erful in their capability to model large-scale com-
plex systems. In this entry, we introduced them
mainly from the viewpoint of PageRank algo-
rithms in the area of search engines and with a
particular emphasis on recent works carried out
based on control theoretic tools. Computational
issues will remain in this area as major chal-
lenges, and further studies will be needed. As we
have observed in PageRank-related problems, it
is important to pay careful attention to structures
of the particular problems.
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Abstract

Marine intervention requires the use of manip-
ulators mounted on support vehicles. Such sys-
tems, defined as vehicle-manipulator systems,
exhibit specific mathematical properties and re-
quire proper control design methodologies. This
article briefly discusses the mathematical model
within a control perspective as well as sensing
and actuation peculiarities.

Keywords

Floating-base manipulators; Marine robotics;
Underwater intervention; Underwater robotics

Introduction

In case of marine operations that require
interaction with the environment, an underwater
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vehicle is usually equipped with one or more
manipulators; such systems are defined under-
water vehicle-manipulator systems (UVMSs). A
UVMS holding six degree-of-freedom (DOF)
manipulators is illustrated in Fig. 1. The vehicle
carrying the manipulator may or may not be
connected to the surface; in the first case we face
a so-called remotely operated vehicle (ROV),
while in the latter an autonomous underwater
vehicle (AUV). ROVs, being physically linked,
via the tether, to an operator that can be on a
submarine or on a surface ship, receives power as
well as control commands. AUVs, on the other
hand, are supposed to be completely autonomous,
thus relying to onboard power system and
intelligence.

Remotely controlled UVMSs represent the
state of the art in underwater manipulation, while
autonomous or semiautonomous UVMSs still are
in their embryonic stage. All over the world, few
experimental setups have been developed within
on-purpose projects; see, e.g., the European
project Trident (2012).

Sensory System

Any manipulation task requires that some vari-
ables are measured; those may concern the inter-
nal state of the system such as the end effector
as well the vehicle position and orientation or the
velocities. Some others concern the surrounding
environment as it is the case of vision systems
or range measurements. Underwater sensing is
characterized by poorer performance with respect
to the ground corresponding variables due to
the physical properties of the water as medium
carrying the electromagnetic or acoustic signals.

One of the major challenges in underwater
robotics is the localization due to the absence
of a single, proprioceptive sensor that measures
the vehicle position and the impossibility to use
the Global Navigation Satellite System (GNSS)
under the water. The use of redundant multisensor
systems, thus, is common in order to perform sen-
sor fusion and give fault detection and tolerance
capabilities to the vehicle.
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Mathematical Models of Marine Vehicle-Manipulator Systems, Fig. 1 Sketch of a UVMS, the inertial frame as
well as the frames attached to all the rigid bodies are highlighted

Localization

A possible approach for AUV localization is to
rely on inertial navigation systems (INSs); those
are algorithms that implement dead reckoning
techniques, i.e., the estimation of the position by
properly merging and integrating measurements
obtained with inertial and velocity sensors. Dead
reckoning suffers from numerical drift due to the
integration of sensor noise, as well as sensor bias
and drift, and may be prone to the presence of
external currents and model uncertainties. Since
the variance of the estimation error grows with
the distance traveled, this technique is only used
for short dives.

Several algorithms are based on the concept
of trilateration. The vehicle measures its distance
with respect to known positions and properly uses
this information by applying geometric-based
formulas. Under the water, the technology for
trilateration is not based on the electromagnetic
field, due to the attenuation of its radiations, but
on acoustics.

Among the commercially available solutions,
long, short, and ultrashort baseline systems have
found widespread use. The differences are in
the baseline wavelength, the required distance
among the transponders, the accuracy, and the
installation cost. Acoustic underwater positioning
is commercially mature, and several companies
offer a variety of products.

In case of intervention, when the UVMS is
close to the target, rather than the absolute posi-
tion with respect to an inertial frame, it is crucial
to estimate the relative position with respect to
the target itself. In such a case, vision-based
systems may be considered.

Actuation

Underwater vehicles are usually controlled
by thrusters and/or control surfaces. Control
surfaces, such as rudders and sterns, are typically
used in vehicles working at cruise speed,
i.e., torpedo-shaped vehicles usually used in
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monitoring or cable/pipeline inspection. In such
vehicles a main thruster is used together with at
least one rudder and one stern.

This configuration is unsuitable for UVMSs
since the force/moment provided by the control
surfaces is the function of the velocity and it is
null in hovering, when typically manipulation is
performed.

The relationship between the force/moment
acting on the vehicle and the control input of the
thrusters is highly nonlinear. It is the function
of structural variables such as the density of the
water, the tunnel cross-sectional area, the tunnel
length, the volumetric flow rate between input
and output of the thrusters, and the propeller di-
ameter. The state of the dynamic system describ-
ing the thrusters is constituted by the propeller
revolution, the speed of the fluid going into the
propeller, and the input torque.

Modeling

UVMSs can be modeled as rigid bodies con-
nected to form a serial chain; the vehicle is the
floating base, while each link of the manipulator
represents an additional rigid body with one DOF,
typically the rotation around the corresponding
joint’s axis. Roughly speaking, modeling of a
UVMS is the effort to represent the physical
relationships of those bodies in order to measure
and control its end effector, typically involved in
a manipulation task.

The first step of modeling is the so-called di-
rect kinematics, consisting in computing the po-
sition/orientation of the end effector with respect
to an inertial, i.e., world fixed, frame. This is done
via geometric relationship function of the system
kinematic parameters, typically the lengths of
the links, and the current system configuration,
i.e., the vehicle position/orientation and the joint
positions.

Velocities of each rigid body affect the follow-
ing rigid bodies and thus the end effector. For
example, a vehicle roll movement or the joint
velocity is projected into a linear and angular
end-effector velocity. This velocity transforma-
tion is studied by the differential kinematics.
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Analytic and/or geometric approaches may be
used to retrieve those relationships. The study
of the velocity-related equations is fundamental
to understand how to balance the movement be-
tween vehicle and manipulator and, within the
manipulator, how to distribute it among the joints.
This topic is strictly related to differential, and
inverse, kinematics for industrial robots.

The extension of Newton’s second law to
UVMSs leads to a number of nonlinear differ-
ential equations that link together the systems
generalized forces and accelerations. With the
word generalized forces, it is here intended as
the forces and moments acting on the vehicles
and the joint torques. Correspondingly, one is
interested in the vehicle linear and angular accel-
erations and joint accelerations. Those equations
couple together all the DOFs of the structure, e.g.,
a force applied to the vehicle causes acceleration
also on the joints. Study of the dynamics is crucial
to design the controller.

It is not possible to neglect that the bodies are
moving in the water, the theory of fluidodynamics
is rather complex, and it is difficult to develop
a simple model for most of the hydrodynamic
effects. A rigorous analysis for incompressible
fluids would need to resort to the Navier-Stokes
equations (distributed fluid flow). However, most
of the hydrodynamic effects have no significant
influence in the range of the operative velocities
for UVMS intervention tasks. In particular, it
is necessary to model added masses, linear and
quadratic damping terms, and the buoyancy.

Control

Not surprisingly, the mathematical model of

UVMS shares most of the characteristics

of industrial robots as well as space robots

modeling. Having taken into account to the
physical differences, the control problems are
also similar:

* Kinematic control. The control problem is
given in terms of motion of the end effector
and needs to be transformed into the motion
of the vehicle and the manipulator. This is
often approached by resorting to the inverse
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differential kinematic algorithms. In particu-
lar, algorithms for redundant systems need to
be considered since a UVMS always possess
at least six DOFs. Moving a UVMS requires
to handle additional variables with respect to
the end effector such as the vehicle roll and
pitch to preserve energy, the robot manipula-
bility, the mechanical joint limits, or eventual
directional sensing.

* Motion control. Low-level control algorithms
are designed to allow the system tracking the
desired trajectory. UVMSs are characterized
by different dynamics between vehicle and
manipulator, uncertainty in the model parame-
ter knowledge, poor sensing performance, and
limit cycle in the thruster model. On the other
hand, the limited bandwidth of the closed-
loop system allows the use of simple control
approaches.

* Interaction control. Several applications re-
quire exchange of forces with the environ-
ment. A pure motion control algorithm is
not devised for such operation and specific
force control algorithms, both direct and indi-
rect, may be necessary. Master/slave systems
or haptic devices may be used on the pur-
pose, while autonomous interaction control
still is in the research phase for the marine
environment.

Summary and Future Directions

This article is aimed at giving a short overview
of the main mathematical and technological chal-
lenges arising with UVMSs. All the components
of an underwater mission, perception, actuation,
and communication with the surface, are char-
acterized by poorer performances with respect
to the current industrial or advanced robotics
applications.

The underwater environment is hostile; as an
example the marine current provides disturbances
to be counteracted by the dynamic controller, or
the sand’s whirlwinds obfuscate the vision-based
operations close to the sea bottom. Both tele-
operated and autonomous underwater missions
require a significant human effort in planning,
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testing, and monitoring all the operations. Fault
detection and recovery policies are necessary in
each step to avoid loss of expensive hardware.

Future generation of UVMSs needs to be au-
tonomous, to percept and contextualize the en-
vironment, to react with respect to unplanned
situations, and to safely reschedule the tasks
of complex missions. Those characteristics are
being shared by all the branches of the service
robotics.

Cross-References

Advanced Manipulation for Underwater Sam-
pling

Mathematical Models of Ships and Underwater
Vehicles

Redundant Robots

Recommended Reading

The book of Fossen (1994) is one of the first
books dedicated to control problems of marine
systems, both underwater and surface. The same
author presents, in Fossen (2002), an updated
and extended version of the topics developed in
the first book and in Fossen (2011), a handbook
on marine craft hydrodynamics and control. A
short introductory chapter to marine robotics may
be found in Antonelli et al. (2008). Robotics
fundamentals are also useful and can be found
in Siciliano et al. (2009). To the best of our
knowledge, Antonelli (2014) is the only mono-
graph devoted to addressing the specific problems
of underwater vehicle-manipulator systems.
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Abstract

This entry describes the equations of motion
of ships and underwater vehicles. Standard
hydrodynamic models in the literature are
reviewed and presented using the nonlinear
robot-like vectorial notation of Fossen (1991,
1994, 2011). The matrix-vector notation is highly
advantageous when designing control systems
since well-known system properties such as
symmetry, skew-symmetry, and positiveness can
be exploited in the design.
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Introduction

The subject of this entry is mathematical model-
ing of ships and underwater vehicles. With ship
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we mean “any large floating vessel capable of
crossing open waters,” as opposed to a boat,
which is generally a smaller craft. An underwater
vehicle is a “small vehicle that is capable of
propelling itself beneath the water surface as well
as on the water’s surface.” This includes un-
manned underwater vehicles (UUVs), remotely
operated vehicles (ROVs), autonomous under-
water vehicles (AUVs) and underwater robotic
vehicles (URVs).

This entry is based on Fossen (1991, 2011),
which contains a large number of standard
models for ships, rigs, and underwater vehicles.
There exist a large number of textbooks on
mathematical modeling of ships; see Rawson
and Tupper (1994), Lewanddowski (2004), and
Perez (2005). For underwater vehicles, see
Allmendinger (1990), Sutton and Roberts (2006),
Inzartsev (2009), Anotonelli (2010), and Wadoo
and Kachroo (2010). Some useful references
on ship hydrodynamics are Newman (1977),
Faltinsen (1990), and Bertram (2012).

Degrees of Freedom

A mathematical model of marine craft is usu-
ally represented by a set of ordinary differential
equations (ODEs) describing the motions in six
degrees of freedom (DOF): surge, sway, heave,
roll, pitch, and yaw.

Hydrodynamics

In hydrodynamics it is common to distinguish

between two theories:

* Seakeeping theory: The motions of ships
at zero or constant speed in waves are an-
alyzed using hydrodynamic coefficients and
wave forces, which depends of the wave ex-
citation frequency and thus the hull geometry
and mass distribution. For underwater vehicles
operating below the wave-affected zone, the
wave excitation frequency will not influence
the hydrodynamic coefficients.

* Maneuvering theory: The ship is moving in
restricted calm water — that is, in sheltered
waters or in a harbor. Hence, the maneuvering
model is derived for a ship moving at positive
speed under a zero-frequency wave excitation
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assumption such that added mass and damping

can be represented by constant parameters.

Seakeeping models are typically used for
ocean structures and dynamically positioned
vessels. Several hundred ODEs are needed to
effectively represent a seakeeping model; see
Fossen (2011), and Perez and Fossen (2011a,b).

The remainder of this entry assumes maneu-
vering theory, since this gives lower-order mod-
els typically suited for controller-observer design.
Six ODEs are needed to describe the kinemat-
ics, that is, the geometrical aspects of motion
while Newton-Euler’s equations represent addi-
tional six ODEs describing the forces and mo-
ments causing the motion (kinetics).

Notation

The equations of motion are usually represented
using generalized position, velocity and forces
(Fossen 1991, 1994, 2011) defined by the state
vectors:

= [x.y.2.6.0.9]" (1)
y = [u,v,w,p,q,r]T 2)
t:=[X,Y.Z.K.M,N]" (3)

where 7 is the generalized position expressed in
the north-east-down (NED) reference frame {n}.
A body-fixed reference frame {b} with axes:

xp — longitudinal axis (from aft to fore)

yp — transversal axis (to starboard)

zp — normal axis (directed downward)

is rotating about the NED reference frame {n}
with angular velocity @ = [p,q,r]". The gen-
eralized velocity vector v and forces 7 are both
expressed in {b}, and the 6-DOF states are de-
fined according to SNAME (1950):

* Surge position x, linear velocity u, force X

* Sway position y, linear velocity v, force Y

* Heave position z, linear velocity w, force Z

* Roll angle ¢, angular velocity p, moment K
 Pitch angle 0, angular velocity ¢, moment M
* Yaw angle ¥, angular velocity r, moment N

Kinematics

The generalized velocities 7§ and v in {b} and
{n}, respectively satisfy the following kinematic
transformation (Fossen 1994, 2011):
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n=Jmv 4

R(©) 0:x; } -

o= |: 0;x; T(®)
where © = [¢, 0, ] is the Euler angles and
cych

sych
—sf

—sycg + cyrsOsd
cyrcg + spsOsyr
cls¢

sys¢ + cyrepso
—cyrs¢ + sfsyrcd 6)
clce

R(©) =

with s - = sin(-), ¢ - = cos(:) and t - = tan(-).
The matrix R is recognized as the Euler angle
rotation matrix R € SO(3) satisfying RR'™ =
R'R = I, and det(R) = 1, which implies that R
is orthogonal. Consequently, the inverse rotation
matrix is given by: R™! = RT. The Euler rates
0= T (®)w are singular for 6 # +7/2 since:

1 s¢td  cotd .
TO®)=|0 «c¢ —s¢ |, 0# iE
0 s¢/cld c¢/co
(7

Singularities can be avoided by using unit quater-
nions instead (Fossen 1994, 2011).

Kinetics

The rigid-body kinetics can be derived using the
Newton-Euler formulation, which is based on
Newton’s second law. Following Fossen (1994,
2011) this gives:

Mppv + Crp(v)v = T3 8

where Mpp is the rigid-body mass matrix, Crp
is the rigid-body Coriolis and centripetal matrix
due to the rotation of {b} about the geographical
frame {n}. The generalized force vector 7 g rep-
resents external forces and moments expressed in
{b}. In the nonlinear case:

TR = —MAI)—CA(V)V—D(V)V_g(n)'i_T )
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where the matrices My and C,4(v) represent
hydrodynamic added mass due to acceleration
v and Coriolis acceleration due to the rotation
of {b} about the geographical frame {n}. The
potential and viscous damping terms are lumped
together into a nonlinear matrix D(v) while
g(n) is a vector of generalized restoring forces.
The control inputs are generalized forces given
by .

Formulae (8) and (9) together with (4) are
the fundamental equations when deriving the ship
and underwater vehicle models. This is the topic
for the next sections.

Ship Model

The ship equations of motion are usually
represented in three DOFs by neglecting heave,
roll and pitch. Combining (4), (8), and (9)
we get:

7 =R(y)v (10)
My + C(V)V+D(V)v = T + Twind T Twave
(1D
where 5 := [x,y,¥]", v :=[u,v,7]" and
cy —sy O
Ry)=|sy cy 0 (12)
0 0 1

is the rotation matrix in yaw. It is assumed that
wind and wave-induced forces Tying and T wave
can be linearly superpositioned. The system ma-
trices M = Mgp + My and C(v) = Crp(v) +
C4(v) are usually derived under the assumption
of port-starboard symmetry and that surge can
be decoupled from sway and yaw (Fossen 2011).
Moreover,

m— X, 0 0
M= 0
0 mxg, — Nj

m-—Y; mxg —Y;
I, — N;

(13)
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0 —mr —mxgr

Crp(v) = mr 0 0 (14)

mxgr 0 0
0 0 Yyv+Yir
Ca(v) = 0 0 —X;u

—Yl;v — Y;r X;Au 0

(15)

Hydrodynamic damping will, in its simplest
form, be linear:

-X, 0 0
D=| 0 -Y, -V, (16)
0 —N, —N,

while a nonlinear expression based on second-
order modulus functions describing quadratic
drag and cross-flow drag is:

_Xlulu |u| 0
_ 0 _Y\v\v |U| _Y\r\v |r|
D(v) =
0 _N\U\v |U| _N\r\v |r|
0

_Y\v\r |U| _Y|r|r |r|
_N\U\r |U| _N\r\r |r|

(17)

Other nonlinear representations are found in Fos-
sen (1994, 2011).

In the case of irrotational ocean currents, we
introduce the relative velocity vector:

v, =V —v,
where v, = [ub,v?,0]T is a vector of current
velocities in {b}. Hence, the kinetic model takes

the form:

Mpgpv + Crp(v)v

rigid-body forces

+MA‘.’r + CA(vr)vr + D(vr)vr

hydrodynamic forces

=T + Twind + Twave
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This model can be simplified if the ocean cur-
rents are assumed to be constant and irrotational
in {n}. According to Fossen (2011, Property 8.1),
Mpgpv + Crp(v)v = Mgy, + Crp(v,)v, if
the rigid-body Coriolis and centripetal matrix sat-
isfies Crp(v,) = Cprp(v). One parametrization
satisfying this is (14). Hence, the Coriolis and
centripetal matrix satisfies C(v,) = Crp(v,) +
C.4(v,) and it follows that:

My, + C(v,)vr + D(Vr)vr = T + Twind + Twave
(18)

The kinematic equation (10) can be modi-
fied to include the relative velocity v, according
to:

i =R, + [w.02.0]" (19
where the ocean current velocities u! = constant
and v!! =constant in {n}. Notice that the body-
fixed velocities v, = R(¥)T[u’,v",0]T will
vary with the heading angle .

The maneuvering model presented in this
entry is intended for controller-observer design,
prediction, and computer simulations, as
well as system identification and parameter
estimation. A large number of application-
specific models for marine craft are found in
Fossen (2011, Chap. 7).

Hydrodynamic programs compute mass, iner-
tia, potential damping and restoringforces while

m—X,; 0 -X;
0 m-—Y, 0
-X;, 0 m—Z,;
M =
0 —mzg—Y 0
mzg—Xg 0 -mx,—2,
i 0 mxg—Y; 0
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a more detailed treatment of viscous dissipa-
tive forces (damping) and sealoads are found in
the extensive literature on hydrodynamics — see
Faltinsen (1990) and Newman (1977).

Underwater Vehicle Model

The 6-DOF underwater vehicle equations of
motion follow from (4), (8), and (9) under the
assumption that wave-induced motions can be
neglected:

n=Jmv (20)

My +Cw)v +Dv)v+g(n) =< (21)
with generalized position 5 := [x, y,z,¢.6, %]
and velocity v := [u,v,w, p,q,r]". Assume that
the gravitational force acts through the center
of gravity (CG) defined by the vector ry :=
[Xg, Vg, 2¢] T With respect to the coordinate origin
{b}. Similarly, the buoyancy force acts through
the center of buoyancy (CB) defined by the vector
Ty =[x, ¥»,2»] . For most vehicles Yo =Yp =
0.

For a port-starboard symmetrical vehicle with
homogenous mass distribution, CG satisfying
Y¢ = 0 and products of inertia I, = I,; = 0,
the system inertia matrix becomes:

0 mzg—X 0
—-mzg—Y; 0 mxg—Y;
0 —mxg—2; 0
(22)
I,—-K,; 0 —1.—K;
0 I,—M, 0
—1I—K; 0 I,—N; B
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where the hydrodynamic derivatives are defined where

according to SNAME (1950). The Coriolis and
centripetal matrices are:

a) = Xﬁu—i-wa—i-qu

0 0 0 0 —asz dp
0 0 0 a 0 —a a2 = Yivt¥yp+Xir 24
0 0 0 -a a 0 y = ZiutZiw+Z4q .
Ca(v)= 0 —as ay O —by by by = Kjv+K; p+K;r
a5 0 —a; b 0 —b b, = ML',I/H-M;VW-FM‘?L]
—ay a0 —by b 0 by = Nyv+Nyp+N;ir
(23)
and
m 0 —mr mq mzer —MXgq —mXxgr ]
mr 0 —mp 0 m(z,r + xgp) 0
—mgq mp 0 —MZzZg P —MZgq MmXxgp
Cra(v) = —mzgr 0 mzg p Og —Lp j— 1,r —qu
mxgq —m(z,r +Xgp)  mzgq  Lyep—1I.r 0 —I,r +1p
| mxgr 0 —mxgp I,q Lyr —1xp 0 i
(25)
Notice that this representation of Cgp(v) (W —B)so
only depends on the angular velocities p, —(W — B)cs¢
q, and r, and not the linear velocities g(n)= —(W = B)ched

u,v, and r. This property will be exploited
when including drift due to ocean cur-
rents.

Linear damping for a port-starboard symmet-

rical vehicle takes the following form:

X, 0 X, 0 X, O
o v, 0 Y, 0 Y
D—_ zZ, 0 2z, 0 Z, 0
0 kK, 0 K, 0 K,
M, 0 M, 0 M, O
o N 0 N, 0 N,
(26)
Let W = mg and B = pgV denote

the weight and buoyance where m is the
mass of the vehicle including water in
free floating space, V the volume of fluid
displaced by the vehicle, g the accelera-
tion of gravity (positive downward), and p
the water density. Hence, the generalized
restoring forces for a vehicle satisfying
Ye = y» = 0 becomes (Fossen 1994,
2011):

(zg W — 2 B)cOs¢
(zgW —zp B)sO+(x W — xpp B)cOce
—(xgW — xpB)ctsg

27

The expression for D can be extended to include
nonlinear damping terms if necessary. Quadratic
damping is important at higher speeds since
the Coriolis and centripetal terms C(v)v can
destabilize the system if only linear damping is
used.

In the presence of irrotational ocean currents,
we can rewrite (20) and (21) in terms of relative
velocity v, = v — v, according to:

i = Jw, + [ul, v w,0,0,0]"  (28)

My, + C(v,)v, + D(v,)v, +g(n) = (29)

where it is assumed that Cgp(v,) = Cgrp(v),
which clearly is satisfied for (25). In addition, it
is assumed that &, v}, and w!. are constant. For
more details see Fossen (2011).
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Programs and Data

The Marine Systems Simulator (MSS) is a Mat-
lab/Simulink library and simulator for marine
craft (http://www.marinecontrol.org). It includes
models for ships, underwater vehicles, and float-
ing structures.

Summary and Future Directions

This entry has presented standard models for
simulation of ships and underwater vehicles. It
is recommended to consult Fossen (1994, 2011)
for a more detailed description of marine craft
hydrodynamics.

Cross-References

Control of Networks of Underwater

Vehicles

Control of Ship Roll Motion

Dynamic Positioning Control Systems for
Ships and Underwater Vehicles

Underactuated Marine Control

Systems
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Abstract

Mean Field Game (MFG) theory studies the ex-
istence of Nash equilibria, together with the indi-
vidual strategies which generate them, in games
involving a large number of agents modeled by
controlled stochastic dynamical systems. This
is achieved by exploiting the relationship be-
tween the finite and corresponding infinite limit
population problems. The solution of the infi-
nite population problem is given by the fun-
damental MFG Hamilton-Jacobi-Bellman (HJB)
and Fokker-Planck-Kolmogorov (FPK) equations
which are linked by the state distribution of a
generic agent, otherwise known as the system’s
mean field.
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Keywords

Fokker-Planck-Kolmogorov (FPK) equa-
tion; Hamilton-Jacobi-Bellman (HJB) equa-
tion; Nash equilibrium; Stochastic dynamical
systems

Introduction

Large-population,  dynamical,  multi-agent,
competitive, and cooperative phenomena occur
in a wide range of designed and natural
settings such as communication, environmental,
epidemiological, transportation, and energy
systems, and they underlie much economic
and financial behavior. Analysis of such
systems is intractable using the finite population
game theoretic methods which have been
developed for multi-agent control systems
(see, e.g., Basar and Ho 1974; Basar and
Olsder 1999; Ho 1980; and Bensoussan and
Frehse 1984). The continuum population game
theoretic models of economics (Aumann and
Shapley 1974; Neyman 2002) are static, as,
in general, are the large-population models
employed in network games (Altman et al.
2002) and transportation analysis (Correa
and Stier-Moses 2010; Haurie and Marcotte
1985; Wardrop 1952). However, dynamical (or
sequential) stochastic games were analyzed in
the continuum limit in the work of Jovanovic
and Rosenthal (1988) and Bergin and Bernhardt
(1992), where the fundamental mean field
equations appear in the form of a discrete
time dynamic programming equation and an
evolution equation for the population state
distribution.

The mean field equations for dynamical games
with large but finite populations of asymptotically
negligible agents originated in the work of Huang
et al. (2003, 2006, 2007) (where the framework
was called the Nash Certainty Equivalence
Principle) and independently in that of Lasry
and Lions (2006a,b, 2007), where the now
standard terminology of Mean Field Games
(MFGs) was introduced. Independent of both
of these, the closely related notion of Oblivious
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Equilibria for large-population dynamic games
was introduced by Weintraub et al. (2005) in
the framework of Markov Decision Processes
(MDPs).

One of the main results of MFG theory is that
in large-population stochastic dynamic games in-
dividual feedback strategies exist for which any
given agent will be in a Nash equilibrium with
respect to the pre-computable behavior of the
mass of the other agents; this holds exactly in
the asymptotic limit of an infinite population and
with increasing accuracy for a finite population
of agents using the infinite population feedback
laws as the finite population size tends to infinity,
a situation which is termed an e-Nash equilib-
rium. This behavior is described by the solution
to the infinite population MFG equations which
are fundamental to the theory; they consist of
(1) a parameterized family of HJB equations (in
the nonuniform parameterized agent case) and
(i1) a corresponding family of McKean-Vlasov
(MV) FPK PDEs, where (i) and (ii) are linked
by the probability distribution of the state of
a generic agent, that is to say, the mean field.
For each agent, these yield (i) a Nash value
of the game, (ii) the best response strategy for
the agent, (iii) the agent’s stochastic differential
equation (SDE) (i.e., the MV-SDE pathwise de-
scription), and (iv) the state distribution of such
an agent (via the MV FPK for the parameterized
individual).

Dynamical Agents

In the diffusion-based models of large-population
games, the state evolution of a collection of N
agents A;,1 <i < N < o0, is specified by a set
N of controlled stochastic differential equations
(SDEs) which in the important linear case take
the form

dxi(t) = [Fixi(t) + Giu;(t)]dt + D;dw;(t),
1<i <N,

where x; € R" is the state, u; € R” the control
input, and w; the state Wiener process of the ith
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agent A;, where {w;,1 < i < N} is a collec-
tion of N independent standard Wiener processes
in R" independent of all mutually independent
initial conditions. For simplicity, throughout this
entry, all collections of system initial conditions
are taken to be independent, zero mean and have
finite second moment.

A simplified form of the general case treated
in Huang et al. (2007) and Nourian and Caines
(2013) is given by the following set of controlled
SDEs which for each agent A; includes state
coupling with all other agents:

1 N
dxi(t) = = 3 f (6 x:(0), i (1), x; (1))t
j=1

+odw;i(t), 1<i=<N,

where here, for the sake of simplicity, only
the uniform (non-parameterized) generic
agent case is presented. The dynamics of
a generic agent in the infinite population
limit of this system is then described by the
following controlled MV stochastic differential
equation:

dx(t) = f[t,x@),u(t), u;ldt + odw(t),

where f[tvxvu’u“l] = fRn f(t’x’uvy):u“l‘(dy)?
with the initial condition measure ( specified,
where ,(-) denotes the state distribution
of the population at t € [0,7T]. The dy-
namics used in the analysis in Lasry and
Lions (2006a,b, 2007) and Cardaliaguet
(2012) are of the form dx;(t) = u;(t)dt +
odw;(t).

The dynamical evolution of the state x; of
the ith agent A; in the discrete time Markov
Decision Processes (MDP)-based formulation
of the so-called anonymous sequential games
(Bergin and Bernhardt 1992; Jovanovic and
Rosenthal 1988; Weintraub et al. 2005) is
described by a Markov state transition function,
or kernel, of the form P,y; = P(x;(t +

1)|xi (t),x_i (t), u; (l), Pt)

Mean Field Games

Agent Performance Functions

In the basic finite population linear-quadratic dif-
fusion case, the agent 4;,1 <i < N, possesses
a performance, or loss, function of the form

TN (i u_;) = E/T{Hxi(t) —my ()|
i o [
+ Jlui (1)1 % 1,

where we assume the cost coupling to be of the
form my (1) := (xy (1) + n), n € R", where u_;
denotes all agents’ control laws except for that
of the ith agent and X denotes the population
average state (1/N) Zf\/:l X;, and where here and
below the expectation is taken over an underlying
sample space which carries all initial conditions
and Wiener processes.

For the nonlinear case introduced in the pre-
vious section, a corresponding finite population
mean field loss function is

IN (Ui uy) =

T N
£ |/M Y L @m0

Jj=1

1<i <N,

where L is the nonlinear state cost-coupling
function. Setting, by possible abuse of notation,
Llt,x,u, ] = Jou L. x,u,y)pe(dy), the
infinite population limit of this cost function
for a generic individual agent A4 is given by

T
) = E /0 Lit.x(0). u(t). i d.

which is the general expression for the infinite
population individual performance functions
appearing in Huang et al. (2006) and Nourian and
Caines (2013) and which includes those of Lasry
and Lions (2006a,b, 2007) and Cardaliaguet
(2012). Exponentially discounted costs with
discount rate parameter p are employed for
infinite time horizon performance functions in
Huang et al. (2003, 2007), while the sample path
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limit of the long-range average is used for ergodic
MFG problems in Lasry and Lions (2006a, 2007)
and Li and Zhang (2008) and in the analysis of
adaptive MFG systems (Kizilkale and Caines
2013).

The Existence of Equilibria

The objective of each agent is to find strategies
(i.e., control laws) which are admissible with
respect to information and other constraints and
which minimize its performance function. The
resulting problem is necessarily game theoretic

2
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and consequently central results of the topic con-
cern the existence of Nash Equilibria and their
properties.

The basic linear-quadratic mean field problem
has an explicit solution characterizing a Nash
equilibrium (see Huang et al. 2003, 2007).
Consider the scalar infinite time horizon
discounted case, with nonuniform parameterized
agents Ay with parameter distribution F(0),0 €
A, and dynamical parameters identified as
ag Fy, by = GO,Q = 1,r : R; then
the so-called Nash Certainty Equivalence (NCE)
equation scheme generating the equilibrium
solution takes the form

dS@
pSg = —— + agsyp — —9H0S9 —x*,

dt

r

dxy bg _ 5
— = |ag — =11y ) X9 — 59, 0<t<o0,
dt r r
x0) = [ 0dre)
A
x*(t) = y(x(t) +n),
b2 R
plly = 2a9llyg — —Ilg + 1, TIIp >0, Riccati Equation
r

where the control action of the generic
parameterized agent Ag is given by ug ) =
—b%(l'[gxg(t) + 50(1)).0 < t < oo. u is the
optimal tracking feedback law with respect to
x*(t) which is an affine function of the mean field
term X (¢), the mean with respect to the parameter
distribution F of the § € A parameterized state
means of the agents. Subject to the conditions
for the NCE scheme to have a solution, each
agent is necessarily in a Nash equilibrium in all
full information causal (i.e., non-anticipative)
feedback laws with respect to the remainder of
the agents when these are employing the law u°.
It is an important feature of the best response
control law ug that its form depends only on
the parametric data of the entire set of agents,

and at any instant it is a feedback function
of only the state of the agent Ay itself and
the deterministic mean field-dependent offset
So.

For the general nonlinear case, the MFG
equations on [0,T] are given by the linked
equations for (i) the performance function
V for each agent in the continuum, (ii) the
FPK for the MV-SDE for that agent, and
(iii) the specification of the best response
feedback law depending on the mean field
measure (i, and the agent’s state x(¢). In the
uniform agents case, these take the following
form.

The Mean Field Game HJB: (MV) FPK
Equations



710

Mean Field Games

[MV-HJIB] — % = inf Flx@) 1), 1) ED L x (), ute) ]
0% 3V (t,x)
2 ox2
V(T,x) =0, (t,x) € [0, T] xR,
I, x) S, x,u@), wlpt, x)} | o Ppult, x)
IMV-EPK] =5~ =~ dx 2 a2
[MV-BR] u(t) = o, x@)|pu:), (@, x)el0,T]xR.

The general nonlinear MFG problem is
approached by different routes in Huang et al.
(2006) and Nourian and Caines (2013), and Lasry
and Lions (2006a,b, 2007) and Cardaliaguet
(2012), respectively. In the former, the so-called
probabilistic method solves the MFG equations
directly. Subject to technical conditions, an
iterated contraction argument establishes the
existence of a solution to the HIB-(MV) FPK
equations; the best response control laws are
obtained from these MFG equations, and
these are necessarily Nash equilibria within all
causal feedback laws for the infinite population
problem. In Lasry and Lions (2006a, 2007) the
MFG equations on the infinite time interval (i.e.,
the ergodic case) are obtained as the limit of Nash
equilibria for increasing finite populations, while
in the expository notes of Cardaliaguet (2012) the
analytic properties of solutions to the HIB-FPK
equations on the finite interval are analyzed using
PDE methods including the theory of viscosity
solutions.

In Huang et al. (2003, 2006, 2007), Nourian
and Caines (2013), and Cardaliaguet (2012), it
is shown that subject to technical conditions,
the solutions to the HIB-FPK scheme yield e-
Nash solutions for finite population MFGs in that
for any ¢ > O, there exists a population size
N, such that for all larger populations the use

of the feedback law given by the MFG infinite
population scheme gives each agent a value to
its performance function within ¢ of the infinite
population Nash value.

A counterintuitive feature of these results is
that, asymptotically in population size, observa-
tions of the states of rival agents are of no value to
any given agent; this is in contrast to the situation
in single-agent optimal control theory where the
value of observations on an agent’s environment
is in general positive.

Current Developments and Open
Problems

There is now an extensive literature on Mean
Field Games, the following being a sample:
the mathematical literature has focused on
the study of general classes of solutions to
the fundamental HIB-FPK equations (see e.g.,
Cardaliaguet (2013)), while in systems and
control, the theory of major-minor agent MFG
problems (in economics terminology, atoms
and continua) is being developed (Huang 2010;
Nourian and Caines 2013; Nguyen and Huang
2012), adaptive control extensions of the LQG
theory have been carried out (Kizilkale and
Caines 2013), and the risk-sensitive case has
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been analyzed (Tembine et al. 2012). Much work
is now under way in the applications of MFG
theory to economics, finance, distributed energy
systems, and electrical power markets. Each
of these areas has significant open problems,
including the application of mathematical
transport theory to HIB-FPK equations, the
role of MFG theory in portfolio optimization,
and the analysis of systems where the presence
of partially observed major and minor agent
states incurs mean field and agent state
estimation.
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Abstract

Mechanism design is concerned with the design
of strategic environments to achieve desired
outcomes at equilibria of the resulting game.
We briefly overview central ideas in mechanism
design. We survey both objectives the mechanism
designer may seek to achieve, as well as
equilibrium concepts the designer may use
to model agents. We conclude by discussing
a seminal example of mechanism design
at work: the Vickrey-Clarke-Groves (VCGQG)
mechanisms.

Keywords

Game theory; Incentive compatibility; Vickrey-
Clarke-Groves mechanisms

Introduction

Informally, mechanism design might be
considered “inverse game theory.” In mechanism
design, a principal (the “designer”) creates a
system (the “mechanism”) in which strategic
agents interact with each other. Typically, the
goal of the mechanism designer is to ensure
that at an “equilibrium” of the resulting strategic
interaction, a ‘“desirable” outcome is achieved.

Examples of mechanism design at work include

the following:

1. The FCC chooses to auction spectrum among
multiple competing, strategic bidders to max-
imize the revenue generated. How should the
FCC design the auction?

2. A search engine decides to run a market for
sponsored search advertising. How should the
market be designed?

3. The local highway authority decides to charge
tolls for certain roads to reduce congestion.
How should the tolls be chosen?

Mechanism Design

In each case, the mechanism designer is shap-
ing the incentives of participants in the system.
The mechanism designer must first define the
desired objective and then choose a mechanism
that optimizes that objective given a prediction of
how strategic agents will respond. The theory of
mechanism design provides guidance in solving
such optimization problems.

We provide a brief overview of some central
concepts in mechanism design. In the first
section, we delve into more detail on the structure
of the optimization problem that a mechanism
designer solves. In particular, we discuss two
central features of this problem: (1) What
is the objective that the mechanism designer
seeks to achieve or optimize? (2) How does the
mechanism designer model the agents, i.e., what
equilibrium concept describes their strategic
interactions? In the second section, we study
a specific celebrated class of mechanisms, the
Vickrey-Clarke-Groves mechanisms.

Objectives and Equilibria

A mechanism design problem requires two essen-
tial inputs, as described in the introduction. First,
what is the objective the mechanism designer is
trying to achieve or optimize? And second, what
are the constraints within which the mechanism
designer operates? On the latter question, perhaps
the biggest “constraint” in mechanism design is
that the agents are assumed to act rationally in
response to whatever mechanism is imposed on
them. In other words, the mechanism designer
needs to model how the agents will interact with
each other. Mathematically, this is modeled by
a choice of equilibrium concept. For simplicity,
we focus only on static mechanism design, i.e.,
mechanism design for settings where all agents
act simultaneously.

Objectives

In this section we briefly discuss three objec-
tives the mechanism designer may choose to
optimize for: efficiency, revenue, and a fairness
criterion.
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1. Efficiency. When the mechanism designer fo-
cuses on ‘“efficiency,” they are interested in
ensuring that the equilibrium outcome of the
game they create is a Pareto efficient outcome.
In other words, at an equilibrium of the game,
there should be no individual that can be made
strictly better off while leaving all others at
least as well off as they were before. The most
important instantiation of the efficiency crite-
rion arises in quasilinear settings, i.e., settings
where the utility of all agents is measured in
a common, transferable monetary unit. In this
case, it can be shown that achieving efficient
outcomes is equivalent to maximizing the ag-
gregate utility of all agents in the system.
See Chap.23 in Mas-Colell et al. (1995) for
more details on mechanism design for efficient
outcomes.

2. Revenue. Efficiency may be a reasonable goal
for an impartial social planner; on the other
hand, in many applied settings, the mechanism
designer is often herself a profit-maximizing
party. In these cases, it is commonly the goal
of the mechanism designer to maximize her
own payoff from the mechanism itself.

A common example of this scenario is in
the design of optimal auctions. An auction is a
mechanism for the sale of a good (or multiple
goods) among many competing buyers. When
the principal is self-interested, she may wish
to choose the auction design that maximizes
her revenue from sale; the celebrated paper
of Myerson (1981) studies this problem in
detail.

3. Fairness. Finally, in many settings, the
mechanism designer may be interested more
in achieving a “fair” outcome — even if such
an outcome is potentially not Pareto efficient.
Fairness is subjective, and therefore, there
are many potential objectives that might be
viewed as fair by the mechanism designer.
One common setting where the mechanism
design strives for fair outcomes is in cost
sharing: in a canonical example, the cost
of a project must be shared “fairly” among
many participants. See Chap.15 of Nisan
et al. (2007) for more discussion of such
mechanisms.
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Equilibrium Concepts
In this section we briefly discuss a range of equi-
librium concepts the mechanism designer might
use to model the behavior of players. From an op-
timization viewpoint, mechanism design should
be viewed as maximization of the designer’s
objective, subject to an equilibrium constraint.
The equilibrium concept used captures the mech-
anism designer’s judgment about how the agents
can be expected to interact with each other, once
the mechanism designer has fixed the mech-
anism. Here we briefly discuss three possible
equilibrium concepts that might be used by the
mechanism designer.

1. Dominant strategies. In dominant strategy
implementation, the mechanism designer
assumes that agents will play a (weak or strict)
dominant strategy against their competitors.
This equilibrium concept is obviously quite
strong, as dominant strategies may not exist
in general. However, the advantage is that
when the mechanism possesses dominant
strategies for each player, the prediction of
play is quite strong. The Vickrey-Clarke-
Groves mechanisms described below are
central in the theory of mechanism design
with dominant strategies.

2. Bayesian equilibrium. In a Bayesian
equilibrium, agents optimize given a common
prior distribution about the other agents’
preferences. In Bayesian mechanism design,
the mechanism designer chooses a mechanism
taking into account that the agents will play
according to a Bayesian equilibrium of the
resulting game. This solution concept allows
the designer to capture a lack of complete
information among players, but typically
allows for a richer family of mechanisms than
mechanism design with dominant strategies.
Myerson’s work on optimal auction design is
carried out in a Bayesian framework (Myerson
1981).

3. Nash equilibrium. Finally, in a setting where
the mechanism designer believes the agents
will be quite knowledgeable about each
other’s preferences, it may be reasonable to
assume they will play a Nash equilibrium of
the resulting game. Note that in this case,
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it is typically assumed the designer does not
know the utilities of agents at the time the
mechanism is chosen — even though agents do
know their own utilities at the time the result-
ing game is actually played. See, e.g., Moore
(1992) for an overview of mechanism design
with Nash equilibrium as the solution concept.

The Vickrey-Clarke-Groves
Mechanisms

In this section, we describe a seminal exam-
ple of mechanism design at work: the Vickrey-
Clarke-Groves (VCG) class of mechanisms. The
key insight behind VCG mechanisms is that by
structuring payment rules correctly, individuals
can be incentivized to truthfully declare their
utility functions to the market and in turn achieve
an efficient allocation. VCG mechanisms are an
example of mechanism design with dominant
strategies and with the goal of welfare maxi-
mization, i.e., efficiency. The presentation here
is based on the material in Chap.5 of Berry and
Johari (2011), and the reader is referred there
for further discussion. See also Vickrey (1961),
Clarke (1971), and Groves (1973) for the original
papers discussing this class of mechanisms.

To illustrate the principle behind VCG mech-
anisms, consider a simple example where we al-
locate a single resource of unit capacity among R
competing users. Each user’s utility is measured
in terms of a common currency unit; in particular,
if the allocated amount is x, and the payment to
user r is t,, then her utility is U, (x,) + t,; we
refer to U, as the valuation function, and let the
space of valuation functions be denoted by U.
For simplicity we assume the valuation functions
are continuous. In line with our discussion of
efficiency above, it can be shown that the Pareto
efficient allocation is obtained by solving the
following:

maximize Z U, (x;) (D

subject to Zx, <1
r

x > 0.

@
3

Mechanism Design

However, achieving the efficient allocation re-
quires knowledge of the utility functions; what
can we do if these are unknown? The key insight
is to make each user act as if they are opti-
mizing the aggregate utility, by structuring pay-
ments appropriately. The basic approach in a
VCG mechanism is to let the strategy space of
each user r be the set I/ of possible valuation
functions and make a payment 7, to user r so that
her net payoff has the same form as the social
objective (1). In particular, note that if user r
receives an allocation x, and a payment 7., the
payoff to user r is

Ur(x;) + ¢

On the other hand, the social objective (1) can be
written as
Ur(xr) + ) Us(xy).
sFEr

Comparing the preceding two expressions, the
most natural means to align user objectives with
the social planner’s objectives is to define the
payment t, as the sum of the valuations of all
users other than r.

A VCG mechanism first asks each user to
declare a valuation function. For each r, we use
U, to denote the declared valuation function of
user 7 and use U = (Ul, e UR) to denote the
vector of declared valuations. Formally, given a
vector of declared valuation functions ﬁ, a VCG
mechanism chooses the allocation X(fj) as an
optimal solution to (1)—(2) given fJ, i.e.,

U) e U, r). 4
x(U) argxzozr%?ﬁrslz (). (4

The payments are then structured so that
0(0) =Y U, (0) + h,(0-). (5)

SFEr

Here h, is an arbitrary function of the declared
valuation functions of users other than r, and
various definitions of h, give rise to variants of
the VCG mechanisms. Since user r cannot affect
this term through the choice of ﬁr, she chooses

A

U, to maximize
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Ur (x(0)) + Y Us(x,(0)).
sFEr

Now note that given U_,, the above expression is
bounded above by

max
x>0, x, <1

Ur(x) + ) Us(xy)
SFEr

But since X(ﬁ) satisfies (4), user r can achieve
the preceding maximum by truthfully declaring
U, = U,. Since this optimal strategy does not
depend on the valuation functions (Us, s #r)
declared by the other users, we recover the impor-
tant fact that in a VCG mechanism, truthful dec-
laration is a weak dominant strategy for user r.

For our purposes, the interesting feature of the
VCG mechanism is that it elicits the true utilities
from the users and in turn (because of the defini-
tion of x(fJ)) chooses an efficient allocation. The
feature that truthfulness is a dominant strategy is
known as incentive compatibility: the individual
incentives of users are aligned, or “compatible,”
with overall efficiency of the system. The VCG
mechanism achieves this by effectively paying
each agent to tell the truth. The significance of
the approach is that this payment can be properly
structured even if the resource manager does
not have prior knowledge of the true valuation
functions.

Summary and Future Directions

Mechanism design provides an overarching
framework for the “engineering” of economic
systems. However, many significant challenges
remain. First;, VCG mechanisms are not
computationally tractable in complex settings,
e.g., combinatorial auctions (Hajek 2013);
finding computationally tractable yet efficient
mechanisms is a very active area of current
research. Second, VCG mechanisms optimize
for overall welfare, rather than revenue, and
finding simple mechanisms that maximize
revenue also presents new challenges. Finally,
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we have only considered implementation in static
environments. Most practical mechanism design
settings are dynamic. Dynamic mechanism
design remains an active area of fruitful research.
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Abstract

The process of developing control-oriented math-
ematical models of physical systems is a complex
task, which in general implies a careful combi-
nation of prior knowledge about the physics of
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the system under study with information coming
from experimental data. In this article the role
of mathematical models in control system design
and the problem of developing compact control-
oriented models are discussed.

Keywords

Analytical models; Computational modeling;
Continuous-time systems; Control-oriented mod-
eling; Discrete-time systems; Parameter-varying
systems; Simulation; System identification;
Time-invariant systems; Time-varying systems;
Uncertainty

Introduction

The design of automatic control systems requires
the availability of some knowledge of the dynam-
ics of the process to be controlled. In this respect,
current methods for control system synthesis can
be classified in two broad categories: model-free
and model-based ones.

The former aim at designing (or tuning) con-
trollers solely on the basis of experimental data
collected directly on the plant, without resorting
to mathematical models.

The latter, on the contrary, assume that suit-
able models of the plant to be controlled are
available, and rely on this information to work
out control laws capable of meeting the design
requirements.

While the research on model-free design
methods is a very active field, the vast majority
of control synthesis methods and tools fall in
the model-based category and therefore assume
that knowledge about the plant to be controlled
is encoded in the form of dynamic models of
the plant itself. Furthermore, in an increasing
number of application areas, control system
performance is becoming a key competitive
factor for the success of innovative, high-
tech systems. Consider, for example, high-
performance mechatronic systems (such as
robots); vehicles enhanced by active integrated
stability, suspension, and braking control;

Model Building for Control System Synthesis

aerospace systems; advanced energy conversion
systems. All the abovementioned applications
possess at least one of the following features,
which in turn call for accurate mathematical
modeling for the design of the control system:
closed-loop performance critically depends on
the dynamic behavior of the plant; the system
is made of many closely interacting subsystems;
advanced control systems are required to obtain
competitive performance, and these in turn
depend on explicit mathematical models for their
design; the system is safety critical and requires
extensive validation of closed-loop stability and
performance by simulation.

Therefore, building control-oriented mathe-
matical models of physical systems is a crucial
prerequisite to the design process itself (see, e.g.,
Lovera (2014) for a more detailed treatment of
this topic).

In the following, two aspects related to mod-
eling for control system synthesis will be dis-
cussed, namely, the role of models for control
system synthesis and the actual process of model
building itself.

The Role of Models for Control
System Synthesis

Mathematical models play a number of different
roles in the design of control systems. In particu-
lar, different classes of mathematical models are
usually employed: detailed, high-fidelity models
for system simulation and compact models for
control design. In this section the two model
classes are presented and their respective roles in
the design of control systems are described. Note,
in passing, that although hybrid system control is
an interesting and emerging field, this entry will
focus on purely continuous-time physical mod-
els, with application to the design of continuous-
time or sampled-time control systems.

Detailed Models for System Simulation

Detailed models play a double role in the control
design process. On one hand, they allow checking
how good (or crude) the compact model is, com-
pared to a more detailed description, thus helping
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to develop good compact models. On the other
hand, they allow closed-loop performance verifi-
cation of the controlled system, once a controller
design is available. Indeed, verifying closed-loop
performance using the same simplified model
that was used for control system design is not
a sound practice; conversely, verification per-
formed with a more detailed model is usually
deemed a good indicator of the control system
performance, whenever experimental validation
is not possible for some reason.

Object-oriented modeling (OOM) method-
ologies and equation-based, object-oriented
languages (EOOLs) provide very good support
for the development of such high-fidelity
models, thanks to equation-based modeling,
acausal physical ports, hierarchical system
composition, and inheritance; see Tiller (2001)
for a comprehensive overview. Any continuous-
time EOOL model is equivalent to the set of
differential-algebraic equations (DAEs)

F(X(Z),).C(Z),M(l),y(l),p,Z) =0, (D
where x is the vector of dynamic variables, u is
the vector of input variables, y is the vector of
algebraic variables, p is the vector of parameters
and ¢ is the time. It is interesting to highlight that
the object-oriented approach (in particular, the
use of replaceable components) allows defining
and managing families of models of the same
plant with different levels of complexity, by pro-
viding more or less detailed implementations of
the same abstract interfaces. This feature of OOM
allows the development of simulation models for
different purposes and with different degrees of
detail throughout the entire life of an engineering
project, from preliminary design down to com-
missioning and personnel training, all within a
coherent framework.

In particular, when focusing on control sys-
tems verification (and regardless of the actual
control design methodology) once the controller
has been set up, an OOM tool can be used to
run closed-loop simulations, including both the
plant and the controller model. Many OOM tools
provide model export facilities, which allow to
connect a plant model with only causal external
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connectors (actuator inputs and sensor outputs)
to a causal controller model in a causal simu-
lation environment. From a mathematical point
of view, this corresponds to reformulating (1) in
state-space form, by means of analytical and/or
numerical transformations.

Finally, it is important to point out that
physical model descriptions based on partial-
differential equations (PDEs) can be handled in
the OOM framework by means of discretization
using finite volume, finite elements, or finite
differences methods.

Compact Models for Control Design
The requirements for a control-oriented model
can vary significantly from application to applica-
tion. Design models can be tentatively classified
in terms of two key features: complexity and
accuracy. For a dynamic model, complexity can
be measured in terms of its order; accuracy, on
the other hand, can be measured using many
different metrics (e.g., time-domain simulation
or prediction error, frequency domain matching
with the real plant, etc.) related to the capability
of the model to reproduce the behavior of the true
system in the operating conditions of interest.
Broadly speaking, it can be safely stated that
the required level of closed-loop performance
drives the requirements on the accuracy and
complexity of the design model. Similarly,
it is intuitive that more complex models
have the potential for being more accurate.
So, one might be tempted to resort to very
detailed mathematical representations of the
plant to be controlled in order to maximize
closed-loop performance. This consideration
however is moderated by a number of additional
requirements, which actually end up driving the
control-oriented modeling process. First of all,
present-day controller synthesis methods and
tools have computational limitations in terms of
the complexity of the mathematical models they
can handle, so compact models representative of
the dominant dynamics of the system under study
are what is really needed. Furthermore, for many
synthesis methods (such as, e.g., LQG or Hy
synthesis), the complexity of the design model
has an impact on the complexity of the controller,
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which in turn is constrained by implementation
issues. Last but not least, in engineering projects,
the budget of the control-oriented modeling
activity is usually quite limited, so the achievable
level of accuracy is affected by this limitation.

It is clear from the above discussion that devel-
oping mathematical models suitable for control
system synthesis is a nontrivial task but rather
corresponds to the pursuit of a careful tradeoff
between complexity and accuracy. Furthermore,
throughout the model development, one should
keep in mind the eventual control application of
the model, so its mathematical structure has to be
compatible with currently available methods and
tools for control system analysis and design.

Control-oriented models are usually formu-
lated in state-space form:

0 = fGO.u).p.0)
y(0) = g(x(@),u(t), p.1)

where x is the vector of state variables, u is the
vector of system inputs (control variables and dis-
turbances), y is the vector of system outputs, p is
the vector of parameters, and ¢ is the continuous
time. In the following, however, the focus will
be on linear models, which constitute the starting
point for most control law design methods and
tools. In this respect, the main categories of
models used in control system synthesis can be
defined as follows.

Linear Time-Invariant Models
Linear time-invariant (LTI) models can be de-
scribed in state-space form as

X(t) = Ax(t) + Bu(z) 3)
y() = Cx(t) + Du(t)

or, equivalently, using an input-output model

given by the (rational) transfer function

G(s) = C(sI —A)'B + D, 4)
where s denotes the Laplace variable. In many
cases, the dynamics of systems in the form (2) in
the neighborhood of an equilibrium (trim) point
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is approximated by (3) via analytical or numerical
linearization.

If, on the contrary, the control-oriented model
is obtained by linearization of the DAE system
(1), then a generalized LTI (or descriptor) model
in the form

Ex(t) = Ax(t) + Bu(z) 5)
y() =Cx(t) + Du(t)

is obtained. Clearly, a generalized LTI model is
equivalent to a conventional one as long as E
is nonsingular. The generalized form, however,
encompasses the wider class of linearized plants
with a singular E.

Linear Time-Varying Models

In some engineering applications, the need may
arise to linearize the detailed model in the neigh-
borhood of a trajectory rather than around an
equilibrium point. Whenever this is the case, a
linear time-varying (LTV) model is obtained, in
the form

X(t) = A(t)x(t) + B(t)u(t) ©)
y() = C@)x(t) + D()u(r).

An important subclass is the one of time periodic
behavior of the state-space matrices of the model,
which corresponds to a linear time periodic (LTP)
model. LTP models arise when considering the
linearization along periodic trajectories or, as it
occurs in a number of engineering problems,
whenever rotating systems are considered (e.g.,
spacecraft, rotorcraft, wind turbines). Finally, it
is interesting to recall that (discrete-time) LTP
models are needed to model multi-rate sampled
data systems.

Linear Parameter-Varying models

The control-oriented modeling problem can be
also formulated as the one of simultaneously
representing all the linearizations of interest
for control purposes of a given nonlinear plant.
Indeed, in many control engineering applications
a single control system must be designed to
guarantee the satisfactory closed-loop operation
of a given plant in many different operating
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conditions (either equilibria or trajectories).
Many design techniques are now available for
this problem (see, e.g., Mohammadpour and
Scherer 2012), provided that a suitable model in
parameter-dependent form has been derived for
the system to be controlled. Linear parameter-
varying (LPV) models, described in state-space
form as

X(1) = A(p())x (1) + B(p(t))u(t)

y(@) = C(p)x(t) + D(p())u(r)
are linear models the state-space representation
of which depends on a parameter vector p that
can be time varying. The elements of vector p
may or may not be measurable, depending on the
specific problem formulation. The present state
of the art of LPV modeling can be briefly sum-
marized by defining two classes of approaches
(see Lopes dos Santos et al. (2011) for details).
Analytical methods based on the availability of
reliable nonlinear equations for the dynamics of
the plant, from which suitable control-oriented
representations can be derived (by resorting to,
broadly speaking, suitable extensions of the fa-
miliar notion of linearization, developed in order
to take into account off-equilibrium operation
of the system). Experimental methods based en-
tirely on identification, i.e., aimed at deriving
LPV models for the plant directly from input/ out-
put data. In particular, some LPV identification
techniques assume that one global identification
experiment in which both the control input and
the parameter vector are (persistently) excited in a
simultaneous way, while others aim at deriving a
parameter-dependent model on the basis of local
experiments only, i.e., experiments in which the
parameter vector is held constant and only the
control input is excited.

Modern control theory provides methods and
tools to deal with design problems in which
stability and performance have to be guaranteed
also in the presence of model uncertainty, both
for regulation around a specified operating point
and for gain scheduled control system design.
Therefore, modeling for control system synthesis
should also provide methods to account for model
uncertainty (both parametric and nonparametric)
in the considered model class.

(N
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Most of the existing control design literature
assumes that the plant model is given in the form
of a linear fractional transformation (LFT) (see,
e.g., Skogestad and Postlethwaite (2007) for an
introduction to LFT modeling of uncertainty and
Hecker et al. (2005) for a discussion of algo-
rithms and software tools). LFT models consist
of a feedback interconnection between a nominal
LTI plant and a (usually norm-bounded) operator
which represents model uncertainties, e.g., poorly
known or time-varying parameters, nonlineari-
ties, etc. A generic such LFT interconnection
is depicted in Fig. 1, where the nominal plant
is denoted with P and the uncertainty block is
denoted with A. The LFT formalism can be also
used to provide a structured representation for the
state-space form of LPV models, as depicted in
Fig.2, where the block A(w) takes into account
the presence of the uncertain parameter vector
a, while the block A(p) models the effect of
the varying operating point, parameterized by the
vector of time-varying parameters p. Therefore,
LFT models can be used for the design of robust
and gain scheduling controllers; in addition they
can also serve as a basis for structured model
identification techniques, where the uncertain pa-
rameters that appear in the feedback blocks are
estimated based on input/output data sequences.
The process of extracting uncertain/scheduling
parameters from the design model of the system

u » P Yy

Model Building for Control System Synthesis, Fig. 1
Block diagram of the typical LFT interconnection adopted
in the robust control framework

[40) }+—

=

u() ) u(?)
—_— —

Model Building for Control System Synthesis, Fig. 2
Block diagram of the typical LFT interconnection adopted
in the robust LPV control framework
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to be controlled is a highly complex one, in which
symbolic techniques play a very important role.
Tools already exist to perform this task (see, e.g.,
Hecker et al. 2005), while a recent overview of
the state of the art in this research area can be
found in Hecker and Varga (2000).

Finally, it is important to point out that there is
a vast body of advanced control techniques which
are based on discrete-time models:

x(k +1) = f0e(k).ulk). p k) o

y(k) = g(x(k),u(k), p.k)
where the integer time step k usually corresponds
to multiples of a sampling period 7. Many tech-
niques are available to transform (2) into (8).
Furthermore, LTI, LTV, and LPV models can
be formulated in discrete time rather than in
continuous time.

Building Models for Control System
Synthesis

The development of control-oriented models of
physical systems is a complex task, which in
general implies a careful combination of prior
knowledge about the physics of the system under
study with information coming from experimen-
tal data. In particular, this process can follow
very different paths depending on the type of
information which is available on the plant to be
controlled. Such paths are typically classified in
the literature as follows (see, e.g., Ljung (2008)
for a more detailed discussion).

White box modeling refers to the development
of control-oriented models on the basis of first
principles only. In this framework, one uses the
available information on the plant to develop
a detailed model using OOM or EOOL tools
and subsequently works out a compact control-
oriented model from it. If the adopted tool
only supports simulation, then one can run
simulations of the plant model, subject to suitably
chosen excitation inputs (ranging from steps to
persistently exciting input sequences such as,
e.g., pseudorandom binary sequences and sine
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sweeps) and then reconstruct the dynamics by
means of system identification methods. Note
that in this way the structure/order selection stage
of the system identification process provides
effective means to manage the complexity versus
accuracy tradeoff in the derivation of the compact
model. A more direct approach, presently
supported by many tools, is to directly compute
the A, B, C, D matrices of the linearized system
around specified equilibrium (trim) points,
using symbolic and/or numerical linearization
techniques. The result is usually a high-order
linear system, which then can (sometimes
must) be reduced to a low-order system by
using model order reduction techniques (such
as, e.g., balanced truncation). Model reduction
techniques (see Antoulas (2009) for an in-depth
treatment of this topic) allow to automatically
obtain approximated compact models such as
(3), starting from much more detailed simulation
models, by formulating specific approximation
bounds in control-relevant terms (e.g., percentage
errors of steady-state output values, norm-
bounded additive or multiplicative errors of
weighted transfer functions, or L,-norm errors
of output transients in response to specified input
signals).

Black box modeling, on the other hand, cor-
responds to situations in which the modeling
activity is entirely based on input-output data
collected on the plant (which therefore must be
already available), possibly in dedicated, suitably
designed, experiments (see Ljung 1999). Regard-
less of the type of model to be built (i.e., linear or
nonlinear, time invariant or time varying, discrete
time or continuous time), the black box approach
consists of a number of well-defined steps. First
of all the structure of the model to be identified
must be defined: in the linear time-invariant case,
this corresponds to the choice of the number of
poles and zeros for an input-output model or
to the choice of model order for a state-space
representation; in the nonlinear case structure
selection is a much more involved process in
view of the much larger number of degrees of
freedom which are potentially involved. Once
a model structure has been defined, a suitable
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cost function to measure the model performance
must be selected (e.g., time-domain simulation or
prediction error, frequency domain model fitting,
etc.) and the experiments to collect identification
and validation data must be designed. Finally,
the uncertain model parameters must be esti-
mated from the available identification dataset
and the model must be validated on the validation
dataset.

Grey box modeling (in various shades) corre-
sponds to the many possible intermediate cases
which can occur in practice, ranging from the
white box approach to the black box one. As
recently discussed in Ljung (2008), the critical
issue in the development of an effective approach
to control-oriented grey box modeling lies in
the integration of existing methods and tools for
physical systems modeling and simulation with
methods and tools for parameter estimation. Such
integration can take place in a number of different
ways depending on the relative role of data and
priors on the physics of the system in the specific
application. A typical situation which occurs fre-
quently in applications is when a white box model
(developed by means of OOM or EOOL tools)
contains parameters having unknown or uncertain
numerical values (such as, e.g., damping factors
in structural models, aerodynamic coefficients
in aircraft models and so on). Then, one may
rely on input-output data collected in dedicated
experiments on the real system to refine the
white box model by estimating the parameters
using the information provided by the data. This
process is typically dependent on the specific
application domain as the type of experiment,
the number of measurements, and the estimation
technique must meet application-specific con-
straints (see, e.g., Klein and Morelli (2006) for
an overview of grey box modeling in aerospace
applications).

Summary and Future Directions

In this article the problem of model building
for control system synthesis has been con-
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sidered. An overview of the different uses
of mathematical models in control system
design has been provided and the process
of building compact control-oriented models
starting from prior knowledge about the system
and/or experimental data has been discussed.
Present-day modeling and simulation tools
support advanced control system design in a
much more direct way. In particular, while
methods and tools for the individual steps in the
modeling process (such as OOM, linearization
and model reduction, parameter estimation) are
available, an integrated environment enabling
the pursuit of all the abovementioned paths
to the development of compact control-
oriented models is still a subject for future
development. The availability of such a tool
might further promote the application of
advanced, model-based techniques that are
currently limited by the model development
process.
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Abstract

Model order reduction (MOR) is here understood
as a computational technique to reduce the order
of a dynamical system described by a set of or-
dinary or differential-algebraic equations (ODEs
or DAESs) to facilitate or enable its simulation,
the design of a controller, or optimization and
design of the physical system modeled. It focuses
on representing the map from inputs into the
system to its outputs, while its dynamics are
treated as a black box so that the large-scale
set of describing ODEs/DAEs can be replaced
by a much smaller set of ODEs/DAEs without
sacrificing the accuracy of the input-to-output
behavior.
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Problem Description

This survey is concerned with linear time-
invariant (LTT) systems in state-space form

Ex(t) = Ax(t) + Bu(?),
y(t) = Cx(t) + Du(r), (1)

where £, A € R"™" are the system matrices,
B € R is the input matrix, C € R”*" is the
output matrix, and D € R”*™ is the feedthrough
(or input—output) matrix. The size n of the matrix
A is often referred to as the order of the LTI
system. It mainly determines the amount of time
needed to simulate the LTT system.

Such LTI systems often arise from a finite ele-
ment modeling using commercial software such
as ANSYS or NASTRAN which results in a
second-order differential equation of the form

M5(t) + Dx(t) + Kx(1) = Fu(r),
y(1) = Cpx (1) + Cox (1),

where the mass matrix M, the stiffness matrix K,
and the damping matrix D are square matrices in
R¥>, F e R™™, C, C, € R, x(t) € R’,
u(t) € R™, y(t) € RY. Such second-order dif-
ferential equations are typically transformed to a
mathematically equivalent first-order differential

equation
Ioflx@]| [0 I x(t) 0
Lo ar) Lvo) = e o) 560+ [#] 0
| — ~——— —— N
E (1) A () B
_ x (1)
o =le, ]
C \/—/

z(1)
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where E, A € R**¥ B € R¥*" (C € RI*%,
z2(t) € R*, u(t) € R™, y(t) € RI. Various
other linearizations have been proposed in the
literature.

The matrix £ may be singular. In that case
the first equation in (1) defines a system of
differential-algebraic equations (DAESs); other-
wise it is a system of ordinary differential equa-
tions (ODEs). For example, for £ = [ { J] with
a j x j nonsingular matrix J, only the first j
equations in the left-hand side expression in (1)
form ordinary differential equations, while the
last n — j equations form homogeneous linear
equations. If further A = [“J' 4] and B =
[g;] with the j x j matrix A, the j X m
matrix B, and a nonsingular matrix A, this is
easily seen: partitioning the state vector x(¢) =

1) ] with x; (1) of length ;, the DAE E(r) =
Ax(t) + Bu(t) splits into the algebraic equation

0 = Axnxs(t) + Bous(t), and the ODE
Jx1(t) = Anxi(t) + (B — A1nAs) By) u(t).

To simplify the description, only continuous-
time systems are considered here. The discrete-
time case can be treated mostly analogously; see,
e.g., Antoulas (2005).

An alternative way to represent LTI systems is
provided by the transfer function matrix (TFM),
a matrix-valued function whose elements are ra-
tional functions. Assuming x(0) = 0 and tak-
ing Laplace transforms in (1) yields sX(s) =
AX(s)+BU(s), Y(s) = CX(s)+ DU(s), where
X(s), Y(s), and U(s) are the Laplace transforms
of the time signals x(¢), y(¢) and u(t), respec-
tively. The map from inputs U to outputs Y is
then described by Y(s) = G(s)U(s) with the
TFM

G(s) = C(sE — A)™'B + D, seC. (2)

The aim of model order reduction is to find an
LTI system

Ei(t) = A7)+ Bu(r), 5(t) = Cx(t)+Du(r)
(3)

723

of reduced-order r < n such that the correspond-
ing TFM

Gs)=CGE-A)"'"B+D 4)

approximates the original TFM (2). That is,
using the same input u(¢) in (1) and (3), we
want that the output y(¢) of the reduced order
model (ROM) (3) approximates the output y(t)
of (1) well enough for the application considered
(e.g., controller design). In general, one requires
ly(t) — ()| < e for all feasible inputs u(t),
for (almost) all ¢ in the time domain of interest,
and for a suitable norm || - ||. In control theory
one often employs the £5- or Lo-norms on R
or [0, 0], respectively, to measure time signals
or their Laplace transforms. In the situations
considered here, the L£;-norms employed in
frequency and time domain coincide due to the
Paley-Wiener theorem (or Parseval’s equation
or the Plancherel theorem, respectively); see
Antoulas (2005) and Zhou et al. (1996) for
details. As Y(s) — Y (s) = (G(s) — G(s))U(s),
one can therefore consider the approximation
error of the TFM ||G () — 5(-)” measured in an
induced norm instead of the error in the output
Iy¢) =3Ol

Depending on the choice of the norm, different
MOR goals can be formulated. Typical choices
are (see, e.g., Antoulas (2005) for a more thor-
ough discussion)
* 16() = G(O)ll#oo» Where

IFOlre = SUPS€C+OmaX(F(s)).

Here, omax is the largest singular value of
the matrix F(s). This minimizes the maximal
magnitude of the frequency response of the
error system and by the Paley-Wiener theorem
bounds the £,-norm of the output error.

* IG() = G()llz,, where (with 1 = v/=T)

1 +o00
1FOB, = 5= [ w(Feo) Fuw) do.

27 J_oo

This ensures a small error ||y (-) =5 (*) || £oo (0.00)

= supolly(@) — Y(Oleo (with | [l
denoting the maximum norm of a vector)
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uniformly over all inputs u(¢) having bounded

Lr-energy, that is, [;° u(t) u(t)dt < 1; see

Gugercin et al. (2008).
Besides a small approximation error, one may
impose additional constraints for the ROM. One
might require certain properties (such as sta-
bility and passivity) of the original systems to
be preserved. Rather than considering the full
nonnegative real line in time domain or the full
imaginary axis in frequency domain, one can
also consider bounded intervals in both domains.
For these variants, see, e.g., Antoulas (2005) and
Obinata and Anderson (2001).

Methods

There are a number of different methods to con-
struct ROMs, see, e.g., Antoulas (2005), Ben-
ner et al. (2005), Obinata and Anderson (2001),
and Schilders et al. (2008). Here we concen-
trate on projection-based methods which restrict
the full state x(¢) to an r-dimensional subspace
by choosing X(¢) = W*x(t), where W is an
n x r matrix. Here the conjugate transpose of
a complex-valued matrix Z is denoted by Z*,
while the transpose of a matrix ¥ will be denoted
by YT. Choosing V € C"*" such that W*V =
I € R™" yields an n x n projection matrix IT =
V W* which projects onto the r-dimensional sub-
space spanned by the columns of V' along the
kernel of W*. Applying this projectionto (1), one
obtains the reduced-order LTI system (3) with

E=W*EV, A=W*AV, B=W*B, C=CV
(5)

and an unchanged D=DTIV =W, Iis
an orthogonal projector and is called a Galerkin
projection. If V' # W, II is an oblique projector,
sometimes called a Petrov-Galerkin projection.
In the following, we will briefly discuss the
main classes of methods to construct suitable
matrices V' and W': truncation-based methods and
interpolation-based methods. Other methods, in
particular combinations of the two classes dis-
cussed here, can be found in the literature. In case
the original LTI system is real, it is often desirable
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to construct a real reduced-order model. All of
the methods discussed in the following either do
construct a real reduced-order system or there is
a variant of the method which does. In order to
keep this exposition at a reasonable length, the
reader is referred to the cited literature.

Truncation Based Methods
The general idea of truncation is most easily
explained by modal truncation: For simplicity,
assume that £ = [ and that A4 is diagonalizable,
T~'AT = D, = diag(A,,...,A,). Further we
assume that the eigenvalues Ay € C of A can be
ordered such that

Re(A,) =Re(X,—1) =... =Re(Ay) <0, (6)
(i.e., all eigenvalues lie in the open left half
complex plane). This implies that the system is
stable. Let V' be the n x r matrix consisting of
the first 7 columns of 7" and let W* be the first r
rows of 771, thatis, W = V(V*V)~!. Applying
the transformation 7 to the LTI system (1) yields

T %)= (T 'AT)T % (t) + (T'B)u(t) (7)

y(t)=(CT)T'x(t) + Du(t) (8)
with
—1 _ W*AV —1 _ W*B
TAT—|: AZ,T B= B |
and CT = [CV (], where W*AV =
diag(A;,...,A,) and Ay = diag(A,+1,...,An).

Preserving the r dominant poles (eigenvalues
with largest real part) by truncating the rest (i.e.,
discarding A,, B, and C; from (7)) yields the
ROM as in (5). It can be shown that the error
bound

1GC) — G()|1a < ICall IIlelm

holds (Benner 2006). As eigenvalues contain only
limited information about the system, this is not
necessarily a meaningful reduced-order system.
In particular, the dependence of the input—output
relation on B and C is completely ignored.
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This can be enhanced by more refined dominance
measures taking B and C into account; see, e.g.,
Varga (1995) and Benner et al. (2011).

More suitable reduced-order systems can be
obtained by balanced truncation. To introduce
this concept, we no longer need to assume A to
be diagonalizable, but we require the stability
of A in the sense of (6). For simplicity, we
assume £ = /. For treatment of the DAE case
(E # 1I), see Benner et al. (2005, Chap.3).
Loosely speaking, a balanced representation
of an LTI system is obtained by a change of
coordinates such that the states which are hard
to reach are at the same time those which are
difficult to observe. This change of coordinates
amounts to an equivalence transformation of the
realization (A, B, C, D) of (1) called state-space
transformation as in (7), where T now is the ma-
trix representing the change of coordinates. The
new system matrices (T 'AT,T~'B,CT, D)
form a balanced realization of (1). Truncating in
this balanced realization the states that are hard
to reach and difficult to observe results in a ROM.

Consider the Lyapunov equations

AP+PAT +BBT =0, ATQ+04+CTC =0.

)
The solution matrices P and Q are called con-
trollability and observability Gramians, respec-
tively. If both Gramians are positive definite, the
LTI system is minimal. This will be assumed
from here on in this section.

In balanced coordinates the Gramians P
and Q of a stable minimal LTI system satisfy
P = Q = diag(oy,...,0,) with the Hankel
singular values 07 > 0, > ... > g, > 0. The
Hankel singular values are the positive square
roots of the eigenvalues of the product of the
Gramians PQ, or = /Ax(PQ). They are
system invariants, i.e., they are independent of
the chosen realization of (1) as they are preserved
under state-space transformations.

Given the LTI system (1) in a non-balanced
coordinate form and the Gramians P and Q
satisfying (9), the transformation matrix 7" which
yields an LTI system in balanced coordinates
can be computed via the so-called square root
algorithm as follows:
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* Compute the Cholesky factors S and R of the
Gramians such that P = STS, Q0 = RTR.

* Compute the singular value decomposition of
SRT = ®XT'T, where ® and I are orthogo-
nal matrices and ¥ is a diagonal matrix with
the Hankel singular values on its diagonal.
T = STox~: yields the balancing trans-
formation (note that 7~! = 2:d7S~7 =
Y3TTR).

* Partition ®, X, I" into blocks of corresponding

sizes,

= | d r_[T]
== s oo = (]
with ¥, = diag(oy,...,0,) and apply T

to (1) to obtain (7) with

_ wT AV A12j| _ |:WTB:|
T'AT = ,T7'B= ,
[ Ay Ax B

(10)

=

and CT = [CV Gyl for W = RTT| %,

Vv =STp, Zl_%. Preserving the r dominant
Hankel singular values by truncating the rest
yields the reduced-order model as in (5).
As WTV = I, balanced truncation is an oblique
projection method. The reduced-order model is
stable with the Hankel singular values o1, ..., 0.
It can be shown that if 6, > 0, 41, the error bound

and

IGO) =G Olee <2 Y, ok (11

k=r+1

holds. Given an error tolerance, this allows to
choose the appropriate order r of the reduced
system in the course of the computations.

As the explicit computation of the balancing
transformation 7 is numerically hazardous, one
usually uses the equivalent balancing-free square
root algorithm (Varga 1991) in which orthogonal
bases for the column spaces of V and W are
computed. The so obtained ROM is no longer
balanced, but preserves all other properties (er-
ror bound, stability). Furthermore, it is shown
in Benner et al. (2000) how to implement the
balancing-free square root algorithm using low-
rank approximations to S and R without ever
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having to resort to the square solution matrices
P and Q of the Lyapunov equations (9). This
yields an efficient algorithm for balanced trunca-
tion for LTI systems with large dense matrices.
For systems with large-scale sparse A efficient
algorithms based on sparse solvers for (9) exist;
see Benner (2006).

By replacing the solution matrices P and Q
of (9) by other pairs of positive (semi-)definite
matrices characterizing alternative controllability
and observability related system information,
one obtains a family of model reduction methods
including stochastic/bounded-real/positive-real
balanced truncation. These can be used if further
properties like minimum phase, passivity, etc. are
to be preserved in the reduced-order model; for
further details, see Antoulas (2005) and Obinata
and Anderson (2001).

The balanced truncation yields good approxi-
mation at high frequencies as g(zw) — GGw)
for w — oo (as D = D), while the maximum
error is often attained for w = 0. For a perfect
match at zero and a good approximation for low
frequencies, one may employ the singular pertur-
bation approximation (SPA, also called balanced
residualization). In view of (7) and (10), balanced
truncation can be seen as partitioning 7 'x ac-
cording to (10) into [x], x7]” and setting x, = 0
(i.e., X, = 0 as well). For SPA, one only sets
X, = 0, such that

X1 = WTAVx, + Aixxo + WTBu,
0 = Ayx1 + Axnxy + Bou.

Solving the second equation for x, and inserting
it into the first equation yields

X1 = (WTAV — A1p A5, Ay xy
+ (WTB — ApAy Bo)u.
For the output equation, it follows
¥ = (CV = G435 Ay) x1 + (D — CA5) By) u.
This reduced-order model makes use of the in-

formation in the matrices A1a, A1, A2, B>, and
C, discarded by balanced truncation. It fulfills
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5(0) = G(0) and the error bound (11); more-
over, it preserves stability.

Besides SPA, another related truncation
method that is not based on projection is
optimal Hankel norm approximation (HNA). The
description of HNA is technically quite involved;
for details, see Zhou et al. (1996) and Glover
(1984). It should be noted that the so obtained
ROM usually has similar stability and accuracy
properties as for balanced truncation.

Interpolation-Based Methods

Another family of methods for MOR is based
on (rational) interpolation. The unifying feature
of the methods in this family is that the origi-
nal TFM (2) is approximated by a rational ma-
trix function of lower degree satisfying some
interpolation conditions (i.e., the original and
the reduced-order TFM coincide, e.g., G(sp) =
a(so) at some predefined value sy for which
A — soE is nonsingular). Computationally this
is usually realized by certain Krylov subspace
methods.

The classical approach is known under
the name of moment-matching or Padé(-type)
approximation. In these methods, the transfer
functions of the original and the reduced order
systems are expanded into power series, and
the reduced-order system is then determined so
that the first coefficients in the series expansions
match. In this context, the coefficients of the
power series are called moments, which explains
the term moment matching.

Classically the expansion of the TFM (2) in a
power series about an expansion point s

G(s) =Y M;(s0)(s —s0)  (12)

=0

is used. The moments M;(so),j = 0,1,2,...,
are given by

M;(s0) = —C [(A —s0E)'E)/ (A — s0E) "' B.
Consider the (block) Krylov subspace K (F, H)

= span{H,FH,F?H,... ., FF"'H} for F =
(A—soE)'E and H = —(A — soE)~' B with
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an appropriately chosen expansion point so which
may be real or complex. From the definitions
of A, B, and E, it follows that F e K"
and H €¢ K" where K = Ror K = C
depending on whether 5o is chosen in R or in
C. Considering K (F, H) column by column,
this leads to the observation that the number of
column vectors in {H, FH, F*H, ..., F*"1H}
is given by r = m - k, as there are k blocks
F/H € K™ j = 0,...,k — 1. In the case
when all r column vectors are linearly inde-
pendent, the dimension of the Krylov subspace
Ki(F, H) is m - k. Assume that a unitary basis
for this block Krylov subspace is generated such
that the column space of the resulting unitary
matrix V € C"™ spans Ky (F, G). Applying the
Galerkin projection IT = V' V* to (1) yields a re-
duced system whose TFM satisfies the following
(Hermite) interpolation conditions at so:

6(j)(so) =GY(sp), j=0,1,....k—1.

That is, the first k — 1 derivatives of G and G
coincide at 5. Considering the power series ex-
pansion (12) of the original and the reduced-order
TFM, this is equivalent to saying that at least the
first kK moments M ;j(so) of the transfer function
5(s) of the reduced system (3) are equal to the
first k moments M (so) of the TFM G(s) of the
original system (1) at the expansion point sg:

M;(s)) = M;(s0). j=0.1,....k—1.

If further the r columns of the unitary matrix W
span the block Krylov subspace Ky (F, H) for
F=(A-soE) TEand H = —(A—soE)~TCT,
applying the Petrov-Galerkin projection I1 =
V(W*V)"'W* to (1) yields a reduced system
whose TFM matches at least the first 2k moments
of the TFM of the original system.

Theoretically, the matrix V (and W)
can be computed by explicitly forming the
columns which span the corresponding Krylov
subspace I (F, H) and using the Gram-Schmidt
algorithm to generate unitary basis vectors for
Ky (F, H). The forming of the moments (the
Krylov subspace blocks F/H) is numerically
precarious and has to be avoided under all
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circumstances. Using Krylov subspace methods
to achieve an interpolation-based ROM as
described above is recommended. The unitary
basis of a (block) Krylov subspace can be
computed by employing a (block) Arnoldi or
(block) Lanczos method; see, e.g., Antoulas
(2005), Golub and Van Loan (2013), and Freund
(2003).

In the case when an oblique projection is
to be used, it is not necessary to compute two
unitary bases as above. An alternative is then to
use the nonsymmetric Lanczos process (Golub
and Van Loan 2013). It computes bi-unitary (i.e.,
W*V = 1I,) bases for the above mentioned
Krylov subspaces and the reduced-order model
as a by-product of the Lanczos process. An
overview of the computational techniques for
moment-matching and Padé approximation
summarizing the work of a decade is given in
Freund (2003) and the references therein.

In general, the discussed MOR approaches are
instances of rational interpolation. When the
expansion point is chosen to be s¢ = oo,
the moments are called Markov parameters and
the approximation problem is known as partial
realization. If 5o = 0, the approximation problem
is known as Padé approximation.

As the use of one single expansion point s
leads to good approximation only close to s,
it might be desirable to use more than one ex-
pansion point. This leads to multipoint moment-
matching methods, also called rational Krylov
methods; see, e.g., Ruhe and Skoogh (1998),
Antoulas (2005), and Freund (2003).

In contrast to balanced truncation, these (ratio-
nal) interpolation methods do not necessarily pre-
serve stability. Remedies have been suggested;
see, e.g., Freund (2003).

The use of complex-valued expansion points
will lead to a complex-valued reduced-order sys-
tem (3). In some applications (in particular, in
case the original system is real valued), this
is undesired. In that case one can always use
complex-conjugate pairs of expansion points as
then the entire computations can be done in real
arithmetic.

The methods just described provide good ap-
proximation quality locally around the expansion
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points. They do not aim at a global approxi-
mation as measured by the H,- or Heo-norms.
In Gugercin et al. (2008), an iterative procedure
is presented which determines locally optimal
expansion points w.r.t. the H,-norm approxima-
tion under the assumption that the order r of
the reduced model is prescribed and only Oth-
and 1st-order derivatives are matched. Also, for
multi-input multi-output systems (i.e., m and p
in (1) are both larger than one), no full mo-
ment matching is achieved, but only tangential
interpolation: G(s;)b; = E;'(s,»)b,-, c;G(sj) =
c}*a(sj), c;G'(sj)b; = c}*g/(sj)bj, for certain
vectors b;, c; determined together with the opti-
mal s; by the iterative procedure.

Tools

Almost all commercial software packages
for structural dynamics include modal analy-
sis/truncation as a means to compute a ROM.
Modal truncation and balanced truncation are
available in the MATLAB® Control System
Toolbox and the MATLAB® Robust Control
Toolbox.

Numerically reliable, well-tested, and efficient
implementations of many variants of balancing-
based MOR methods as well as Hankel
norm approximation and singular perturbation
approximation can be found in the Subroutine
Library In Control Theory (SLICOT, http://www.
slicot.org) (Varga 2001). Easy-to-use MATLAB
interfaces to the Fortran 77 subroutines from
SLICOT are available in the SLICOT Model
and Controller Reduction Toolbox (http://
slicot.org/matlab-toolboxes/basic-control); see
Benner et al. (2010). An implementation of
moment matching via the (block) Arnoldi
method is available in MOR for ANSYS® (http:/
modelreduction.com/Software.html).

There exist benchmark collections with
mainly a number of LTI systems from various
applications. There one can find systems in
computer-readable format which can easily be
used to test new algorithms and software:
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* Oberwolfach Model Reduction Benchmark
Collection
http://simulation.uni-freiburg.de/downloads/
benchmark/

* NICONET Benchmark Examples
http://www.icm.tu-bs.de/NICONET/
benchmodred.html
The MOR WiKi http://morwiki.mpi-magde

burg.mpg.de/morwiki/ is a platform for MOR

research and provides discussions of a number
of methods, links to further software packages

(e.g., MOREMBS and MORPACK), as well as

additional benchmark examples.

Summary and Future Directions

MOR of LTI systems can now be considered
as an established computational technique. Some
open issues still remain and are currently investi-
gated. These include methods yielding good ap-
proximation in finite frequency or time intervals.
Though numerous approaches for these tasks
exist, methods with sharp local error bounds are
still desirable. A related problem is the reduction
of closed-loop systems and controller reduction.
Also, the generalization of the methods discussed
in this essay to descriptor systems (i.e., systems
with DAE dynamics), second-order systems, or
unstable LTI systems has only been partially
achieved. An important problem class getting a
lot of current attention consists of (uncertain)
parametric systems. Here it is important to pre-
serve parameters as symbolic quantities in the
ROM. Most of the current approaches are based
in one way or another on interpolation. MOR for
nonlinear systems has also been a research topic
for decades. Still, the development of satisfactory
methods in the context of control design having
computable error bounds and preserving interest-
ing system properties remains a challenging task.
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Abstract

The fundamentals and design principles of
model reference adaptive control (MRAC)
are described. The controller structure and
adaptive algorithms are delineated. Stability and
convergence properties are summarized.

Keywords

Certainty equivalence; Lyapunov-SPR design;
MIT rule

Introduction

Model reference adaptive control (MRAC) is an
important adaptive control approach, supported
by rigorous mathematical analysis and effective
design toolsets. It is made up of a feedback
control law that contains a controller C(s, 6,)
and an adjustment mechanism that generates the
controller parameter updates 6, (z) online. While
different MRAC configurations can be found
in the literature, the structure shown in Fig. 1
is commonly used and includes all the basic
components of an MRAC system. The prominent
features of MRAC are that it incorporates a
reference model which represents the desired
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input—output behavior and that the controller
and adaptation law are designed to force the
response of the plant, y,, to track that of the
reference model, y,,, for any given reference
input r.

Different approaches have been used to
design MRAC, and each may lead to a different
implementation scheme. The implementation
schemes fall into two categories: direct and
indirect MRAC. The former updates the
controller parameters 6, directly using an
adaptive law, while the latter updates the plant
parameters 6, first using an estimation algorithm
and then updates 6. by solving, at each time ¢,
certain algebraic equations that relate 8, with the
online estimates of 8,. In both direct and indirect
MRAC schemes, the controller structure is kept
the same as that which would be used in the case
that the plant parameters are known.

MRC Controller Structure

Consider the design objective of model reference
control (MRC) for linear time-invariant systems:
Given a reference model M (s), find a control law
such that the closed-loop system is stable and
Yp —> Ym as t — oo for any bounded reference
signal r.

For the case of known plant parameters, the
MRC objective can be achieved by designing
the controller so that the closed-loop system
has a transfer function equal to M(s). This
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is the so-called model matching condition.

To assure the existence of a causal controller

that meets the model matching condition and

guarantees internal stability of the closed-
loop system, the following assumptions are
essential:

* Al. The plant has a stable inverse, and
the reference model is chosen to be
stable.

* A2. The relative degree of M(s) is equal to or
greater than that of the plant G,(s). Herein,
the relative degree of a transfer function refers
to the difference between the orders of the
denominator and numerator polynomials.

It should be noted that these assumptions are
imposed to the MRC problem so that there is
enough structural flexibility in the plant and in
the reference model to meet the control objec-
tives. Al is necessary for maintaining internal
stability of the system while meeting the model
matching condition, and A2 is needed to ensure
the causality of the controller. Both assumptions
are essential for non-adaptive applications when
the plant parameters are known, let alone for
the adaptive cases when the plant parameters are
unknown.

The reference model plays an important role
in MRAC, as it will define the feasibility of
MRAC design as well as the performance of
the resulting closed-loop MRAC system. The
reference model should reflect the desired closed-
loop performance. Namely, any time-domain or
frequency-domain specifications, such as time
constant, damping ratio, natural frequency, band-
width, etc., should be properly reflected in the
chosen transfer function M (s).

The controller structure for the MRAC is de-
rived with these assumptions for the known plant
case and extended to the adaptive case by com-
bining it with a proper adaptive law. Under as-
sumptions A1-A2, there exist infinitely many
control solutions C that will achieve the MRC
design objective for a given plant transfer func-
tion G,(s). Nonetheless, only those extendable
to MRAC with the simplest structure are of in-
terest. It is known that if a special controller
structure with the following parametrization is
imposed, then the solution to the model matching
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condition, in terms of the ideal parameter 6, will
be unique:

_ pxT *T *T * . __ n*T
up =0 w1 +0, 0+ 6"y, +cgr =6"w

where 6 € R?", n is the order of the plant,

91* w1
E 3
0* _ 02 _ 0)2
¢ = | p* y W =
3 Yp
ey r

and w;,w; € R"! are signals internal to the
controller generated by stable filters (Ioannou and
Sun 1996).

This MRC control structure is particularly ap-
pealing for adaptive control development, as the
parameters appear linearly in the control law ex-
pression, leading to a convenient linear paramet-
ric model for adaptive algorithm development.

Adaptation Algorithm

Design of adaptive algorithms for parameter
updating can be pursued in several different
approaches, thereby resulting in different MRAC
schemes. Three direct design approaches,
namely, the Lyapunov-SPR, the certainty
equivalence, and the MIT rule, will be briefly
described together with indirect MRAC.

Lyapunov-SPR Design

One popular MRAC algorithm is derived us-
ing Lyapunov’s direct method and the Meyer-
Kalman-Yakubovich (MKY) Lemma based on
the strictly positive real (SPR) argument. The
concept of SPR transfer functions originates from
network theory and is related to the driving point
impendence of dissipative networks. The MKY
Lemma states that given a stable transfer function
M (s) and its realization (A4, B, C,d) where d >
0 and all eigenvalues of the matrix A are in the
open left half plane: If M(s) is SPR, then for
any given positive definite matrix L = LT > 0,
there exists a scalar v > 0, a vector ¢, and a
P = PT > 0 such that
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ATP + PA = —qq" —vL
PB—C = +q/2d

By choosing M(s) to be SPR, one can formulate
a Lyapunov function consisting of the state track-
ing and parameter estimation errors and use the
MKY Lemma to define the adaptive law that will
force the derivative of the Lyapunov function to
be semi-negative definite. The resulting adaptive
law has the following simple form:

6 = —Te wsign(cy)

where e; = y, — yj, is simply the tracking error
and ¢§ = kn/k, with k,,, k, being the high
frequency gain of the transfer function for the
reference model M(s) and the plant G,(s), re-
spectively. This algorithm, however, applies only
to systems with relative degree equal to 0 or 1,
which is implied by the SPR condition imposed
on M(s) and assumption A2.

The Lyapunov-SPR-based MRAC design is
mathematically elegant in its stability analysis but
is restricted to a special class of systems. While
it can be extended to more general cases with
relative degrees equal to 2 and 3, the resulting
control law and adaptive algorithm become much
more complicated and cumbersome as efforts
must be made to augment the control signal in
such a way that the MKY Lemma is applicable to
the “reformulated” reference model.

Certainty Equivalence Design

For more general cases with a high relative de-
gree, another design approach based on “certainty
equivalence” (CE) principle is preferred, due to
the simplicity in its design as well as its robust-
ness properties in the presence of modeling er-
rors. This approach treats the design of the adap-
tive law as a parameter estimation problem, with
the estimated parameters being the controller
parameter vector 6. Using the specific linear
formulation of the control law and assuming
that 6F satisfies the model matching condition,
one can show that the ideal controller parameter
satisfies the following parametric equation:
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z=0"w,
with
M(s)w;
2= M(s)up, wp = %Eg‘y’f
Yp

This parametric model allows one to derive adap-
tive laws to estimate the unknown controller
parameter 6 using standard parameter identifi-
cation techniques, such as the gradient and least
squares algorithms. The corresponding MRAC is
then implemented in the CE sense where the un-
known parameters are replaced by their estimated
value. It should be noted that a CE design does
not guarantee closed-loop stability of the result-
ing adaptive system, and additional analysis has
been carried out to establish closed-loop stability.

MIT Rule

Besides the Lyapunov-SPR and CE approaches
mentioned earlier, the direct MRAC problem can
also be approached using the so-called MIT rule,
an early form of MRAC developed in the 1950s—
1960s in the Instrumentation Laboratory at MIT
for flight control. The designer defines a cost
function, e.g., a quadratic function of tracking
error, and then adjusts parameters in the direction
of steepest descent. The negative gradient of the
cost function is usually calculated through the
sensitivity derivative approach. The formulation
is quite flexible, as different forms of MIT rule
can be derived by changing the cost function
following the same procedure and reusing the
same sensitivity functions. Despite its effective-
ness in some practical applications, MRAC sys-
tems designed with MIT rule have had stability
and robustness issues.

Indirect MRAC

While most of the MRAC systems are
designed as direct adaptive systems, indirect
MRAC systems can also be developed which
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explicitly estimate the plant parameter 6, as
an intermediate step. The adaptive law for an
indirect MRAC includes two basic components:
one for estimating the plant parameters and
another for calculating the controller parameters
based on the estimated plant parameters. This
approach would be preferred if the plant transfer
function is partially known, in which case
the identification of the remaining unknown
parameters represents a less complex problem.
For example, if the plant has no zeros, the indirect
scheme estimates n + 1 parameters, while the
direct scheme has to estimate 2n parameters.
Indirect MRAC is a CE-based design. As such,
the design is intuitive but the design process does
not guarantee closed-loop stability, and separate
analysis has to be carried out to establish stability.
Except for systems with a low number of zeros,
the “feasibility” problem could also complicate
the matter, in the sense that the MRC problem
may not have a solution for the estimated plant
at some time instants even though the solution
exists for the real plant. This problem is unique
to the indirect design, and several mitigating
solutions have been found at the expense of more
complicated adaptation or control algorithms.

Stability, Robustness, and Parameter
Convergence

Stability for MRAC often refers to the properties
that all signals are bounded and tracking error
converges to zero asymptotically. Robustness for
adaptive systems implies that signal boundedness
and tracking error convergence (to a small residue
set) will be preserved in the presence of small
perturbations such as disturbances, un-modeled
dynamics, and time-varying parameters. For dif-
ferent MRAC schemes, different approaches are
used to establish their properties.

For the Lyapunov-SPR-based MRAC systems,
stability is established in the design process
where the adaptive law is derived to enforce
a Lyapunov stability condition. For CE-based
designs, establishing stability for the closed-
loop MRAC system is a nontrivial exercise
for both direct and indirect schemes. Using
properly normalized adaptive laws for parameter



Model Reference Adaptive Control

estimation, however, stability can be proved
for direct and indirect MRAC schemes. For
MRAC systems designed with the MIT rule, local
stability can be established under more restrictive
conditions, such as when the parameters are close
to the ideal ones.

It should be noted that the adaptive control
algorithm in the original form has been
shown to have robustness issues, and extensive
publications in the 1980s and 1990s were
devoted to robust adaptive control in attempts
to mitigate the problem. Many modifications
have been proposed and shown to be effective
in “robustifying” the MRAC; interested readers
are referred to the article on » Robust Adaptive
Control for more details.

Parameter convergence is not an intrinsic
requirement for MRAC, as tracking error
convergence can be achieved without parameter
convergence. It has been shown, however,
that parameter convergence could enhance
robustness, particularly for indirect schemes.
As in the case for parameter identification, a
persistent excitation (PE) condition needs to
be imposed on the regression signal to assure
parameter convergence in MRAC. In general,
PE is accomplished by properly choosing the
reference input r. It can be established for most
MRAC approaches that parameter convergence is
achieved if, in addition to conditions required for
stability, the reference input r is sufficiently rich
of order 2n, 7 is bounded, and there is no pole-
zero cancelation in the plant transfer function. A
signal is called to be sufficiently rich of order m
if it contains at least m /2 distinct frequencies.

Summary and Future Directions

MRAC incorporates a reference model to capture
the desired closed-loop responses and designs
the control law and adaptation algorithm to force
the output of the plant to follow the output of
the reference model. Several different design
approaches are available. Stability, robustness,
and parameter convergence have been established
for different MRAC designs with appropriate
assumptions.

733

MRAC had been a very active and fruitful
research topic from the 1960s to 1990s, and it
formed important foundations for modern adap-
tive control theory. It also found many successful
applications ranging from chemical process con-
trols to automobile engine controls. More recent
efforts have been mostly devoted to integrating it
with other design approaches to treat nonstandard
MRAC problems for nonlinear and complex dy-
namic systems.

Cross-References

Adaptive Control of Linear Time-Invariant
Systems

Adaptive Control, Overview

History of Adaptive Control

Robust Adaptive Control

Recommended Reading

MRAC has been well covered in several text-
books and research monographs. Astrom and
Wittenmark (1994) presented different MRAC
schemes in a tutorial fashion. Narendra and An-
naswamy (1989) focused on stability of determin-
istic MRAC systems. Ioannou and Sun (1996)
covered the detailed derivation and analysis of
different MRAC schemes and provided a unified
treatment for their stability and robustness analy-
sis. MRAC systems for discrete-time (Goodwin
and Sin 1984) and for nonlinear (Krstic et al.
1995) processes are also well explored.
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Abstract

In many applications, e.g., in chemical process
control, the purpose of control is to achieve an
optimal performance of the controlled system
despite the presence of significant uncertainties
about its behavior and of external disturbances.
Tracking of set points is often required for lower-
level control loops, but at the system level in
most cases, this is not the primary concern
and may even be counterproductive. In this
entry, the use of dynamic online optimization
on a moving finite horizon to realize optimal
system performance is discussed. By real-
time optimization, a performance-oriented
or economic cost criterion is minimized or
maximized over a finite horizon while the usual
control specifications enter as constraints but
not as set points. This approach integrates the
computation of optimal set-point trajectories and
of the regulation to these trajectories.

Keywords

Model-predictive control (MPC); Integrated op-
timization and control; Real-time optimization
(RTO); Performance optimizing control; Process
control

Introduction

From a systems point of view, the purpose of
automatic feedback control (and that of manual
control as well) in many cases is not primarily to
keep the controlled variables at their set points as
well as possible or to track dynamic set-point
changes but to operate the system such that
its performance is optimized in the presence
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of disturbances und uncertainties, exploiting the
information gained in real time from the available
measurements. This holds generally for the
higher control layers in the process industries but
similarly for many other applications. Suppose
that, for example, the availability of cooling
water at a lower temperature than assumed as
a worst case during plant design enables plant
operation at a higher throughput. In this case,
what sense does it make to enforce the nominal
operating point by tight feedback control? For
a combustion engine, the goal is to achieve the
desired torque with minimum consumption of
fuel. For a cooling system, the goal is to keep
the temperature of the goods or of a room within
certain bounds with minimum consumption of
energy, possibly weighted against the wear of the
equipment. To regulate some variables to their
set points may help to achieve these goals but it
is not the real performance target for the overall
system. Feedback control loops therefore usually
are part of control hierarchies that establish
good performance of the overall system and the
meeting of constraints on its operation.

There are four main approaches to the integra-
tion of feedback control with system performance
optimization:

— Choice of regulated variables such that, im-
plicitly via the regulation of these variables to
their set points, the performance of the overall
system is close to optimal (see the chapter on

Control Structure Selection).

— Tracking of necessary conditions of optimality
where variables which determine the optimal
operating policy are kept at or close to their
constraints. This is a widespread approach
especially in chemical batch processes where,
e.g., the feeding of reactants is such that the
maximum cooling power available is used
(Finkler et al. 2014); see also the chapter
on » Control and Optimization of Batch Pro-
cesses).

In these two approaches, the choice of the opti-
mal set points or constraints to be tracked is done
off-line, and they are then implemented by the
feedback layer of the process control hierarchy
(see the chapter on » Control Hierarchy of Large
Processing Plants: An Overview).
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— Combination of a regulatory (tracking) feed-
back control with an optimization of the set
points or system trajectories (called real-time
optimization in the process industries) (see
the chapter on » Real-Time Optimization of
Industrial Processes).

— Reformulation of model-predictive control
such that the control target is not the tracking
of references but the optimization of the
system performance over a finite horizon,
taking constraints of system variables or
inputs into account directly within the
online optimization. Here, the optimization
is performed with a dynamic model, in
contrast to the steady-state optimization in
real-time optimization or in the choice of self-
optimizing control structures.

The first three approaches are currently state
of the art in the process industries. Tracking of
necessary conditions of optimality is usually de-
signed based on process insight rather than based
upon a rigorous analysis, and the same holds
for the selection of regulatory control structures.
The last one is the most challenging approach in
terms of the required models and algorithms and
computing power, and its theoretical foundations
are still under development. But on the other
hand, it also has the highest potential in terms
of the resulting performance of the controlled
system, and it is structurally simple and easier to
tune because the natural performance specifica-
tion does not have to be translated into controller
tunings, weights, etc. Therefore, the idea of direct
model-based performance optimizing control has
found much attention in process control in recent
years.

The four approaches above are discussed in
more detail below. We also provide some histor-
ical notes and outline some areas of continuing
research.

Performance Optimization
by Regulation to Fixed Set Points

Morari et al. (1980) stated that the objective in
the synthesis of a control structure is “to trans-
late the economic objectives into process control
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objectives.” A subgoal in this “translation” is to
select the regulatory control structure of a process
such that steady-state optimality of process oper-
ations is realized to the maximum extent possible
by driving the selected controlled variables to
suitably chosen set points. A control structure
with this property was termed ‘“self-optimizing
control” by Skogestad (2000). It should adjust
the manipulated variables by keeping a function
of the measured variables constant such that the
process is operated at the economically optimal
steady state in the presence of disturbances. From
a system point of view, a control structure that
yields nice transient responses and tight control
of the selected variables may be of little use or
even counterproductive if keeping the regulated
variables at their set points does not improve
the performance of the system. Ideally, in the
steady state, a similar performance is obtained as
it would be realized by optimizing the stationary
values of the operational degrees of freedom of
the system for known disturbances d and a per-
fect model. By regulating the controlled variables
to their set points at the steady state in the pres-
ence of disturbances, a mapping u = f(Vset, d)
is implicitly realized which should be an approx-
imation of the performance optimizing inputs
uopt(d). The choice of the self-optimizing control
structure takes only the steady-state performance
into account, not the dynamic reaction of the
controlled plant. An extension of the approach to
include also the dynamic behavior can be found
in Pham and Engell (2011).

Tracking of Necessary Conditions
of Optimality

Very often, the optimal operation of a system in
a certain phase of its evolution or under certain
conditions is defined by some variables being
at their constraints. If these variables are known
and the conditions can be monitored, a switching
control structure can be built that keeps the (pos-
sibly changing) set of critical variables at their
constraints despite inaccuracies of the model,
external disturbances, etc. In fact it turns out that
such control schemes can, in the case of varying
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parameters and in the presence of disturbances,
perform as good as sophisticated model-based
optimization schemes (Finkler et al. 2013).

Performance Optimization
by Steady-State Optimization
and Regulation

A well-established approach to create a link be-
tween regulatory control and the optimization of
the performance of a system is to compute the
set points of the controllers by an optimization
layer. In process operations, this layer is called
real-time optimization (RTO) (see, e.g., Marlin
and Hrymak (1997) and the references therein).
An RTO system is a model-based, upper-level
control system that is operated in closed loop and
provides set points to the lower-level control sys-
tems in order to maintain the process operation
as close as possible to the economic optimum.
It usually comprises an estimation of the plant
state and plant parameters from the measured
data and an economic or otherwise performance-
related optimization of the operating point using
a detailed nonlinear steady-state model.

As the RTO system employs a stationary pro-
cess model and the optimization is only per-
formed if the plant is approximately in a steady
state, the time between successive RTO steps
must be large enough for the plant to reach a new
steady state after the last commanded move. This
structure is based upon a separation of concerns
and of time-scales between the RTO system and
the process control system. The RTO system
optimizes the system economics on a medium
timescale (shifts to days), while the control sys-
tem provides tracking and disturbance rejection
on shorter timescales from seconds to hours.

Model-Based Performance Optimizing Control

As an approximation to real-time optimization
with a nonlinear rigorous plant model, in many
MPC implementations nowadays, an optimiza-
tion of the steady-state values based on the linear
model that is used in the MPC controller is imple-
mented. Then the gain matrix of the model must
be estimated carefully to obtain good results.

Performance Optimizing Control

Model-predictive control has become the stan-
dard solution for demanding control problems in
the process industries (Qin and Badgwell 2003)
and increasingly is used also in other domains.
The core idea is to employ a model to predict the
effect of the future manipulated variables on the
future controlled variables over a finite horizon
and to use optimization to determine sequences
of inputs which minimize a cost function over the
so-called prediction horizon. In the unconstrained
case with linear plant model and a quadratic
cost function, the optimal control moves can
be computed by a closed-form solution. When
constraints on inputs, outputs, and possibly also
state variables are present, for a quadratic cost
function and linear plant model, the optimization
problem becomes a quadratic program (QP) that
has to be solved in real time.

When the system dynamics are nonlinear
and linear models are only sufficiently accurate
within narrow operation bands, as is the case
in many chemical processes, nonlinear model
predictive control which is based on nonlinear
models of the process dynamics provides
superior performance and therefore has met
increasing interest both in theory and in practice.
The classical formulation of nonlinear model-
predictive tracking control (TC) is

muin ére (¥, u)

N [P R (M
$rc = 3 (Z Vi (Vnrer (kK —=i) = yu (k 4+1))?) + 3 (Z o j Auj (k + j))

n=1 \i=l1

I=1 \j=I1
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Here f and g represent the plant model in the
form of a system of differential-algebraic Equa-
tions and h is the output function. P is the
length of the prediction horizon and M is the
length of the control horizon, and y;,--- , yn are
the predicted control outputs, u;,--- ,ug are the
control inputs. o and y represent the weights on
the control inputs and the control outputs, respec-
tively. yrr refers to the set point or the desired
output trajectory, and j(i) are the corrected model
predictions. N is number of the controlled out-
puts, and R is the number of the control inputs.
Compensation for plant-model mismatch and un-
measured disturbances is usually done using the
bias correction equations:

d (k) = y™* (k) — y (k).

yk+i)y=yk+i)+d k), i =k,...,k+P.

The idea of direct performance optimizing con-
trol (POC) is to replace this formulation by a
performance-related objective function:

muin ¢roc (y.u)

R (M
proc = Y ( lal,jAu[z(k +j))

=1 \j=

\
- (_zzlﬁfw(k +z‘)) .

Here  (k + i) represents the value of the per-
formance cost criterion at the time step [k + i].
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The optimization of the future control moves is
subject to the same constraints as before. In ad-
dition, instead of reference tracking, constraints
are formulated for all outputs that are critical for
the operation of the system or its performance,
e.g., product quality specifications or limitations
of the equipment. In contrast to reference track-
ing, these constraints usually are one-sided (in-
equalities) or define operation bands. By this
formulation, e.g., the production revenues can be
maximized online over a finite horizon, consid-
ering constraints on product purities and waste
stream impurities. Feedback enters into the com-
putation by the initialization of the model with
a new initial state that is estimated from the
available measurements of system variables and
by the bias correction. Thus, direct performance
optimizing control realizes an online optimiza-
tion of all operational degrees of freedom in a
feedback structure without tracking of a priori
fixed set points or reference trajectories. The reg-
ularization term that penalizes control moves is
added to the purely economic objective function
to obtain smoother solutions.

This approach has several advantages over a
combined steady-state optimization/ linear MPC
scheme:
¢ Immediate reaction to disturbances, no wait-

ing for the plant to reach a steady state is

required.

* “Overregulation” is avoided — no variables are
forced to fixed set points and all degrees of
freedom can be used to improve the (eco-
nomic) performance of the plant.

* Performance goals and process constraints do
not have to be mapped to a control cost that
defines a compromise between different goals.
In this way, the formulation of the optimiza-
tion problem and the tuning are facilitated
compared to achieving good performance by
tuning of the weights of a tracking formula-
tion.

* More constraints than available manipulated
variables can be handled as well as more
manipulated variables than variables that have
to be regulated.

* No inconsistency arises from the use of differ-
ent models on different layers.

* The overall scheme is structurally simple.
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Similar to any NMPC controller that is designed
for reference tracking, a successful implementa-
tion will require careful engineering such that as
many uncertainties as possible are compensated
by simple feedback controllers and only the key
dynamic variables are handled by the optimizing
controller based on a rigorous model of the essen-
tial dynamics and of the stationary relations of the
plant without too much detail.

History and Examples

The idea of economic or performance optimizing
control originated from the process control com-
munity. The first papers on directly integrating
economic considerations into model-predictive
control Zanin et al. (2000) proposed to achieve
a better economic performance by adding an eco-
nomic term to a classical tracking performance
criterion and applied this to the control of a flu-
idized bed catalytic cracker. Helbig et al. (2000)
discussed different ways to integrate optimization
and feedback control including direct dynamic
optimization for the example of a semi-batch
reactor. Toumi and Engell (2004) and Erdem
et al. (2004) demonstrated online performance
optimizing control schemes for simulated mov-
ing bed (SMB) chromatographic separations in
lab scale. SMB processes are periodic processes
and constitute prototypical examples where ad-
ditional degrees of freedom can be used to si-
multaneously optimize system performance and
to meet product specifications. Bartusiak (2005)
reported already industrial applications of care-
fully engineered performance optimizing NMPC
controllers.

Direct performance optimizing control
was suggested as a promising general new
control paradigm for the process industries by
Rolandi and Romagnoli (2005), Engell (2006,
2007), Rawlings and Amrit (2009), and others.
Meanwhile it has been demonstrated in many
simulation studies that direct optimization of
a performance criterion can lead to superior
economic performance compared to classical
tracking (N)MPC, e.g., Ochoa et al. (2010) for a
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bioethanol process and Idris and Engell (2012)
for a reactive distillation column.

Further Issues

Modeling and Robustness

In a direct performance optimizing control ap-
proach, sufficiently accurate dynamic nonlinear
process models are needed. While in the pro-
cess industries, nonlinear steady-state models are
nowadays available for many processes because
they are built and used extensively in the pro-
cess design phase, there is still a considerable
additional effort required to formulate, imple-
ment, and validate nonlinear dynamic process
models. The effort for rigorous or semi-rigorous
modeling usually dominates the cost of an ad-
vanced control project. The alternative approach
to use black-box or gray-box models as pro-
posed frequently in nonlinear model-predictive
control may be effective for regulatory control
where the model only has to capture the es-
sential dynamic features of the plant near an
operating point, but it seems to be less suitable
for optimizing control where the optimal plant
performance is aimed at and hence the best sta-
tionary values of the inputs and of the controlled
variables have to be computed by the controller.
As increasingly so-called operator training sim-
ulators are built in parallel to the construction
of a plant and are continuously used and up-
dated after the commissioning phase, it seems
attractive to use the models contained in the
simulators also for online optimization. However,
the model formulations often are not suitable for
this purpose.

Model inaccuracies always have to be taken
into account. They not only lead to suboptimal
performance but also can cause that the con-
straints even on measured variables cannot be met
in the future because of an insufficient back-off
from the constraints. A new approach to deal with
uncertainties about model parameters and future
influences on the process is multistage scenario-
based optimization with recourse. Here the model
uncertainties are represented by a set of scenarios
of parameter variations and the future availability
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of additional information is taken into account.
It has been demonstrated that this is an effective
tool to handle model uncertainties and to auto-
matically generate the necessary back-off without
being overly conservative (Lucia et al. 2013).

State Estimation

For the computation of economically optimal
process trajectories based upon a rigorous non-
linear process model, the state variables of the
system at the beginning of the prediction horizon
must be known. As not all states will be measured
in a practical application, state estimation is a
key ingredient of a performance optimizing con-
troller. Extended Kalman filters are the standard
solution used in the process industries, if the
nonlinearities are significant, unscented Kalman
filters or particle filters may be used. A novel
approach is to formulate the state estimation
problem also as an optimization problem on a
moving horizon (Rao et al. 2003). The estima-
tion of some important varying unknown model
parameters can be included in this formulation.
As accurate state estimation is at least as critical
for the performance of the closed-loop system
as the exact tuning of the optimizing controller,
more attention should be paid to the investigation
of the performance of state estimation schemes
in realistic situations with non-negligible model-
plant mismatch.

Stability

Optimization of a cost function over a finite hori-
zon in general neither assures optimality of the
complete trajectory beyond this horizon nor sta-
bility of the closed-loop system. Closed-loop sta-
bility has been addressed extensively in the the-
oretical research in nonlinear model-predictive
control. Stability can be assured by a proper
choice of the stage cost within the prediction
horizon and the addition of a cost on the ter-
minal state and the restriction of the terminal
state to a suitable set. In performance optimizing
MPC, there is no a priori known steady state
to which the trajectory should converge, and the
economic cost function may not satisfy the usual
conditions for closed-loop stability, e.g., because
it only involves some of the inputs. In recent
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years, important results on closed-loop stabil-
ity guaranteeing formulations have nonetheless
been obtained, involving terminal constraints or
a quasi-infinite horizon (Angeli et al. 2012; Diehl
et al. 2011; Griine 2013).

Reliability and Transparency

Nowadays quite large nonlinear dynamic opti-
mization problems can be solved in real time,
not only for slow processes as they are found in
the chemical industry but also in mechatronics
and automotive control. So this issue does no
longer prohibit the application of a performance
optimizing control scheme to complex systems.
A practically very important limiting issue how-
ever is that of reliability and transparency. It is
difficult to guarantee that a nonlinear optimizer
will provide a solution which at least satisfies
the constraints and gives a reasonable perfor-
mance for all possible input data. While for an
RTO scheme an inspection of the commanded
set points by the operators usually will be fea-
sible, this is less likely to be realistic in a dy-
namic situation. Hence, automatic result filters
are necessary as well as a backup scheme that
stabilizes the process in the case where the result
of the optimization is not considered safe. In
the process industries, the operators will con-
tinue to supervise the operation of the plant in
the foreseeable future, so a control scheme that
includes performance optimizing control must be
structured into modules, the outputs of which can
still be understood by the operators so that they
build up trust in the optimization. Good operator
interfaces that display the predicted moves and
the predicted reaction of the plant and enable
comparisons with the operators’ intuitive strate-
gies are believed to be essential for practical
success.

Effort vs. Performance

The gain in performance by a more sophisticated
control scheme always has to be traded against
the increase in cost due to the complexity of
the control scheme — a complex scheme will
not only cause cost for its implementation, but
it will need more maintenance by better qual-
ified people than a simple one. If a carefully
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chosen standard regulatory control layer leads
to a close-to-optimal operation, there is no need
for optimizing control. If the disturbances that
affect profitability and cannot be handled well
by the regulatory layer (in terms of economic
performance) are slow, the combination of reg-
ulatory control and RTO is sufficient. In a more
dynamic situation or for complex nonlinear mul-
tivariable plants, the idea of direct performance
optimizing control should be explored and im-
plemented if significant gains can be realized in
simulations.
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Abstract

This entry describes how models can be formed
from the basic principles of physics and the other
fields of science. Use can be made of similarities
between different domains which leads to the
concepts of bond graphs and, more abstractly, to
port-controlled Hamiltonian systems. The class
of models is naturally extended to differential
algebraic equation (DAE) models. The concepts
described here form a natural basis for parameter
identification in gray box models.
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Introduction

The approach to the modeling of dynamic
systems depends on how much is known about
the system. When the internal mechanisms are
known, it is natural to model them using known
relationships from physics, chemistry, biology,
etc. Often the result is a model of the following
form:

dx

e f(x7u;0)v

i y = h(x,u;0)

ey
where u is the input, y is the output, and the
state x contains internal physical variables, while
6 contains parameters. Typically all of these
are vectors. The model is known as a state
space model. In many cases some elements in
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6 are unknown and have to be determined using
parameter estimation. When used in connection
with system identification, these models are
sometimes referred to as gray box models (in
contrast to black box models) to indicate that
some degree of physical knowledge is assumed.
In » System Identification: An Overview, various
connections between physical models and
parameter estimation are discussed.

Overview of Physical Modeling

Since modeling covers such a wide variety of
physical systems, there are no universal system-
atic principles. However, a few concepts have
wide application. One of them is the preserva-
tion of certain quantities like energy, leading to
balance equations. A simple example is given by
the heating of a body. If W is the energy stored
as heat, P; an external power input, and P, the
heat loss to the environment per time unit, energy
balance gives

dw
— =P - P 2
77 1 2 (2)

To get a complete model, one needs also con-
stitutive relations, i.e., relations between relevant
physical variables. For instance, one might know
that the stored energy is proportional to the tem-
perature T, W = CT and that the energy loss is
from black body radiation, P, = k T*. The model

is then qT
C— =P —kT* 3
77 1 (3)
The model is now an ordinary differential equa-
tion with state variable 7', input variable P; and

parameters C and k.

Physical Analogies and General
Structures

Physical Analogies

Physicists and engineers have noted that mod-
eling in different areas of physics often gives
very similar models. The term ‘“‘analogies” is
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Modeling of Dynamic Systems from First Principles,
Fig. 1 Electric circuit

often used in modeling to describe this fact. Here
we will show some analogies between electrical
and mechanical phenomena. Consider the electric
circuit given in Fig. 1. An ideal voltage source is
connected in series with an inductor, a resistor,
and a capacitor. Using u# and v to denote the
voltages over the voltage source and capacitor,
respectively, and i to denote the current, a math-
ematical model is

d
Cd—l;=i
i 4)
L— 4+ Ri+v=u
dt

The first equation uses the definition of capaci-
tance and the second one uses Kirchhoff’s voltage
law. Compare this to the mechanical system of
Fig.2 where an external force F is applied to
a mass m that is also connected to a damper b
and a spring with spring constant k. If S is the
elongation force of the spring and w the velocity
of the mass, a system model is

ds
a =
)

d
m—w+bw+S=F
dt

Here the first equation uses the definition of
spring constant and the second one uses New-
ton’s 2nd law. The models are seen to be the
same with the following correspondences be-
tween time-varying quantities

u<F, i<w v<eS (6)
and between parameters
C<1/k, L<+>m, R<Db @)
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Fig. 2 Mechanical system

Note that the products (voltage) x (current) and
(force) x (velocity) give the power.

Bond Graphs

The bond graph is a tool to do systematic model-
ing based on the analogies of the previous section.
The basic element is the bond

€

&

formed by a half arrow showing the direction of
positive energy flow. Two variables are associated
with the bond, the effort variable e and the flow
variable f. The product e¢f of these variables
gives the power. In the electric domain e is
voltage and f is current. For mechanical systems
e is force, while f is velocity. Bond graph theory
has three basic components to describe storage
and dissipation of energy. The relations

de af

o =) po=e yf=e B

are known as C, I, and R elements, respectively.
Input signals are modeled by elements called
effort sources S, or flow sources S , respectively.
A bond graph describes the energy flow between
these elements. When the energy flow is split, it
can either be at s junctions where the flows are
equal and the efforts are added or at a p junction
where efforts are equal and flows are additive.
The model (5), for instance, can be described
by the bond graph in Fig.3. The graph shows
how the energy from the external force is split
into the acceleration of the mass, the elongation
of the spring, and dissipation into the damper. The
splitting of the energy flow is accomplished by an
s element, meaning that the velocity is the same
for all elements but that the forces are added:
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Fig. 3 Bond graph for mechanical or electric system

F=N+S+T 9)

Here T and N denote the forces associated with
the damper and the mass, respectively. From (8)
it follows that

d
m =N, bw=T

ds
k2= =
" dt

T (10)
Together (9) and (10) give the same model as (5).
Using the correspondences (6), (7) it is seen that
the same bond graph can also represent the elec-
tric circuit (4). An overview of bond graph mod-
eling is given in Rosenberg and Karnopp (1983).
A general overview of modeling, including bond
graphs and the connection with identification, can
be found in Ljung and Glad (1994b).

Port-Controlled Hamiltonian Systems

Many physical processes can be modeled as
Hamiltonian systems. This means that there are
state variables x, a scalar function H, and a skew
symmetric matrix M so that the system dynamics

18

dx

— = MVHQ) (11)

The function H is called the Hamiltonian of the
system. To be useful in a control context, this
model class has to be extended to handle inputs
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and dissipation phenomena. To give an example
the mechanical system used above is considered
again.

Introduce x; as the length of the spring so that

dx;/dt = w. If Hj is the energy stored in the
spring, then the following relations hold:
kx* OH
HiG)= =1 20 gy =5 (12)
2 8x1

Introducing x, for the momentum and H, as the
kinetic energy, one has dx,/dt = N and

x% aHz -1
_2m , T—— =m Xp=Ww

H; (x2) = oy

(13)

Let H = H; + H, be the total energy. Then the
following relation holds:

d_x_ 01| (00 d0H /0x, +OF
dt \|-10 0b oH /0x; 1

(14)
This model is a special case of

ax _ oy R)VH(x) + Bu

7 (15)

where M is a skew symmetric and R a nonnega-
tive definite matrix, respectively. The model type
is called a port-controlled Hamiltonian system
with dissipation. Without external input (B =
0) and dissipation (R = 0), it reduces to an
ordinary Hamiltonian system of the form (11).
For systems generated by simple bond graphs, it
can be shown that the junction structure gives the
skew symmetric M, while the R elements give
the matrix R. The storage of energy in / and C
elements is reflected in H . The reader is directed
to Duindam et al. (2009) for a description of the
port Hamiltonian approach to modeling.

Component-Based Models and
Modeling Languages

Since engineering systems are usually assembled
from components, it is natural to treat their math-
ematical models in the same way. This is the idea
behind block-oriented models where the output
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of one model is connected to the input of another
one:

uj Y1 =W Y2

A nice feature of this block connection is that
the state space description is preserved. Suppose
the individual models are of the form (1)

i=12
(16)

dx;
d—i = fi(x. ),

yi = hi(xi, u;),
Then the connection u, = y; immediately gives
the state space model

i[xl}:[ Silxr, u) }
dt [ x fle bl u)) |7 (17

y2 = ha(x2, hi(x1, uy))

with input u;, output y,, and state (xi; Xx2).
This fact is the basis of block-oriented mod-
eling and simulation tools like the MATLAB-
based Simulink. Unfortunately the preservation
of the state space structure does not extend to
more general connections of systems. Consider,
for instance, two pieces of rotating machinery
described by

da)i
Ji—— = —bjw; + M;,

=12
di !

(18)
where w; is the angular velocity, M; the external
torque, J; the moment of inertia, and b; the damp-
ing coefficient. Suppose the pieces are joined
together so that they rotate with the same angular
velocity. The mathematical model would then be

dcol

le = —bjw; + M;
dw
Jy % = by + My (19)
t
w] = Wy
M, =-M,

This is no longer a state space model of the
form (1), but a mixture of dynamic and static
relationships, usually referred to as a differential
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algebraic equation (DAE). The difference from
the connection of blocks in block diagrams is
that now the connection is not between an input
and an output. Instead there are the equations
w; = wy and M| = —M, that destroy the state
space structure. There exist modeling languages
like Modelica (Fritzson 2000; Tiller 2001) or
SimMechanics in MATLAB (MathWorks 2002)
that accept this more general type of model. It
is then possible to form model libraries of basic
components that can be interconnected in very
general ways to form models of complex systems.
However, this more general structure poses some
challenges when it comes to analysis and simula-
tion that are described in the next section.

Differential Algebraic Equations
(DAE)

This model (19) is a special case of the general
differential algebraic equation
F(dz/dt, z,u) = 0 (20)
A good description of both theory and numerical
properties of such equations is given in Kunkel
and Mehrmann (2006). In many cases it is possi-
ble to split the variables and equations in such a
way that the following structure is achieved:
F(dzi/dt, z1, 2, u) = 0, Fa(zi, 22, u) =0
21

If z» can be solved from the second equation
and substituted into the first one, and if dz;/dt
can then be solved from the first equation, the
problem is reduced to an ordinary differential
equation in z;. Often, however, the situation is
not as simple as that. For the example (19) an
addition of the first two equations gives

dw
(J1 + Jz)d—tl =—(b1 +b)wr (22)

which is a standard first-order system description.
Note, however, that in order to arrive at this result,
the relation w; = w, has to be differentiated. This
DAE thus includes an implicit differentiation.
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In the general case one can investigate how many
times (20) has to be differentiated in order to get
an explicit expression for dz/dt. This number is
called the (differentiation) index. Both theoretical
analysis and practical experience show that the
numerical difficulties encountered when solving
a DAE increase with increasing index; see, e.g.,
the classical reference Brenan et al. (1987). It
turns out that mechanical systems in particu-
lar give high-index models when constructed by
joining components, and this has been an obstacle
to the use of DAE models. For linear DAE models
the role of the index can be seen more easily. A
linear model is given by

dz

E
dt

+ Fz=Gu (23)

where the matrix E is singular (if E is invertible,
multiplication with E~! from the left gives an
ordinary differential equation). The system can
be transformed by multiplying with P from the
left and changing variables with z = Qw(P, Q
nonsingular matrices). The transformed model is
now

d
PEQd—v: + PFQw=PGu  (24)

If AE + F is nonsingular for some value of the
scalar A, then it can be shown that there is a
choice of P and Q such that (24) takes the form

10 dWl/dl —A0 wr | _ B,
Lo Lmpac Lo T o] = 1)
(25)

where N is a nilpotent matrix, i.e., N k = 0 for
some positive integer k. The smallest such k turns
out to be the index of the DAE. The transformed
model (25) thus contains an ordinary differential

equation:
dw1
— =4 B
a1 wi + Biu
Using the nilpotency of N, the equation for w,

can be rewritten:

(26)

d*¥ 1y
dtk_l
(27)

du

Wy = BzM—NBz di

+- + (=N)""'B,
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This expression shows that an index k > 1
implies differentiation of the input (unless N B;
happens to be zero). This in turn implies potential
difficulties, e.g., if u is a measured signal.

Identification of DAE Models

The extended use of DAE models in modern
modeling tools also means that there is a need
to use these models in system identification. To
fully use system identification theory, one needs
a stochastic model of disturbances. The inclusion
of such disturbances leads to a class of models de-
scribed as stochastic differential algebraic equa-
tions. The treatment of such models leads to some
interesting problems. In the previous section it
was seen that DAE models often contain implicit
differentiations of external signals. If a DAE
model is to be well posed, this differentiation
must not affect signals modeled as white noise.
In Gerdin et al. (2007), conditions are given that
guarantee that stochastic DAEs are well posed.
There it is also described how a maximum like-
lihood estimate can be made for DAE models,
laying the basis for parameter estimation.

Differential Algebra
For the case where models consist of polynomial
equations, it is possible to manipulate them in
a very systematic way. The model (20) is then
generalized to
F(d"z/dt",...,dz/dt,z) =0  (28)
where z is now a vector containing an arbitrary
mix of inputs, outputs, and internal variables.
There is then a theory based on Ritt (1950) that al-
lows the transformation of (28) to a standard form
where the properties of the system can be easily
determined. The process is similar to the use of
Grobner bases but also includes the possibility of
differentiating equations. Of particular interest to
identification is the possibility of determining the
identifiability of parameters with these tools. The
model is then of the form

F(d™y/dt™, ... dy/dt, y, d"z/dt",
...,dz/dt, 7;0) =0

(29)
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where y contains measured signals, z contains
unmeasured variables, and 6 is a vector of pa-
rameters to be identified, while F is a vector of
polynomials in these variables. It was shown in
Ljung and Glad (1994a) that there is an algorithm
giving for each parameter 6; a polynomial:
gk dmy/de™, ... dy/dt, y; 6) =0 (30)
This relation can be regarded as a polynomial
in 0, where all coefficients are expressed in
measured quantities. The local or global identifi-
ability will then be determined by the number of
solutions. If 6y is unidentifiable, then no equation
of the form (30) will exist, and this fact will also
be demonstrated by the output of the algorithm.

Summary and Future Directions

There is no general method to derive models from
first principles. However, modeling techniques
based on bond graphs or port-controlled Hamilto-
nian systems offer a systematic approach for large
model classes. Modeling languages like Modelica
make the practical work with modeling much
easier. A fundamental problem that comes up is
that models are not necessarily in state space form
but are so called differential algebraic equation
(DAE) models. Much of the future work is ex-
pected to deal with the handling of DAE models
and in the development of modeling languages.

Cross-References

Nonlinear System Identification: An Overview
of Common Approaches
System Identification: An Overview

Recommended Reading

A classical book on physical modeling is Rosen-
berg and Karnopp (1983) with emphasis on bond
graph techniques. The physical modeling and
identification perspectives are tied together in
Ljung and Glad (1994b). A good reference for

Modeling, Analysis, and Control with Petri Nets

Hamiltonian techniques is Duindam et al. (2009).
The Modelica modeling language is treated in
Tiller (2001) and Fritzson (2000). The former
emphasizes the physical modeling point of view;
the latter also gives details of the language itself.
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Abstract

Petri net is a generic term used to designate a
broad family of related formalisms for discrete
event views of (dynamic) Systems (DES), all
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sharing some basic relevant features, such as
minimality in the number of primitives, local-
ity of the states and actions (with consequences
for model construction), or temporal realism.
The global state of a system is obtained by the
juxtaposition of the different local states. We
should initially distinguish between autonomous
formalisms and those extended by interpretation.
Models in the latter group are obtained by re-
stricting the underlying autonomous behaviors
by means of constraints that can be related to
different kinds of external events, in particular to
time. This article first describes place/transition
nets (PT-nets), by default simply called Petri nets
(PNs). Other formalisms are then mentioned. As
a system theory modeling paradigm for concur-
rent DES, Petri nets are used in a wide variety of
application fields.

Keywords

Condition/event nets (CE-nets); Continuous Petri
nets (CPNs); Diagrams; Fluidization; Grafcet;
Hybrid Petri nets (HPNs); Marking Petri nets;
Place/transition nets (PT-nets); High-level Petri
nets (HLPN5)

Introduction

Petri nets (PNs) are able to model concurrent
and distributed DES (» Models for Discrete
Event Systems: An Overview). They constitute
a powerful family of formalisms with different
expressive purposes and power. They may be
applied to inter alia, modeling, logical analysis,
performance evaluation, parametric optimization,
dynamic control (minimum makespan, super-
visory control, or other kinds), diagnosis, and
implementation issues (eventually fault tolerant).
Hybrid and continuous PNs are particularly
useful when some parts of the system are highly
populated. Being multidisciplinary, formalisms
belonging to the Petri nets paradigm may cover
several phases of the life cycle of complex DES.

A Petri net can be represented as a bipartite
directed graph provided with arcs inscriptions;
alternatively, this structure can be represented in
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algebraic form using some matrices. As in the
case of differential equations, an initial condition
or state should be defined in order to represent
a dynamic system. This is done by means of an
initial distributed state. The English translation of
the Carl Adam Petri’s seminal work, presented in
1962, is Petri (1966).

Untimed Place/Transition Net
Systems

A place/transition net (PT-net) can be viewed as

N = (P, T, Pre, Post), where:

* P and T are disjoint and finite nonempty sets
of places and transitions, respectively.

e Pre and Post are |P| x |T| sized, natural-
valued (zero included), incidence matrices.
The net is said to be ordinary if Pre and Post
are valued on {0, 1}. Weighted arcs permit
the abstract modeling of bulk services and
arrivals.

A PT-net is a structure. The Pre (Post) function

defines the connections from places to transitions

(transitions to places). Those two functions can

alternatively be defined as weighted flow relations

(nets as graphs). Thus, PT-nets can be represented

as bipartite directed graphs with places (p, using

circles) and transitions (¢, using bars or rectan-

gles) as nodes: N' = (P, T, F, W), where F C

(P x T) U (T x P) is the flow relation (set of

directed arcs, with dom(F)Urange(F) = PUT),

and W : F — N7 assigns a natural weight to
each arc.

The net structure represents the static part
of the DES model. Furthermore, a “distributed
state” is defined over the set of places, known
as the marking. This is “numerically quantified”
(not in an arbitrary alphabet, as in automata),
associating natural values to the local state
variables, the places. If a place p has a value
v(m(p) = wv), it is said to have v tokens
(frequently depicted in graphic terms with v
black dots or just the number inside the place).
The places are “state variables,” while the
markings are their “values”; the global state
is defined through the concatenation of local
states. The net structure, provided with an initial
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Fig. 1 Most basic PN constructions: The logical OR
is present around places, in choices (or branches) and
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attributions (or meets); the logical AND is formed around

transitions, in joins (or waits or rendezvous) and forks (or
splits)

Py

Modeling, Analysis, and Control with Petri Nets, Fig. 2 Only transitions » and ¢ are initially enabled. The results

of firing b or ¢ are shown subsequently

marking, to be denoted as (N, my), is a Petri net

system, or marked Petri net.

The last two basic PN constructions in Fig. 1
(join and fork) do not appear in finite-state ma-
chines; moreover, the arcs may be valued with
natural numbers. The dynamic behavior of the net
system (trajectories with changes in the marking)
is produced by the firing of transitions, some
“local operations” which follows very simple
rules.

Markings in net systems evolve according to
the following firing (or occurrence) rules (see,
Fig.2):

* A transition is said to be enabled at a given
marking if each input place has at least as
many tokens as the weight of the arc joining
them.

* The firing or occurrence of an enabled tran-
sition is an instantaneous operation that re-
moves from (adds to) each input (output) place
a number of tokens equal to the weight of
the arc joining the place (transition) to the
transition (place).

The precondition of a transition can be seen as the

resources required for the transition to be fired.

The weight of the arc from a place to a transition

represents the number of resources to be con-

sumed. The post-condition defines the number

resources produced by the firing of the transition.

This is made explicit by the weights of the arcs

from the transition to the places. Three important

observations should be taken into account:

* The underlying logic in the firing of a tran-
sition is non-monotonic! It is a consump-
tion/production logic.

* Enabled transitions are never forced to fire:
This is a form of non-determinism.

* An occurrence sequence is a sequence of fired
transitions ¢ = f...l. In the evolution
from my, the reached marking m can be easily
computed as:

m=my+C-o, (1)

where C = Post — Pre is the token flow matrix

(incidence matrix if N is self-loop free) and

o the firing count vector corresponding to o .

Thus m and o are vectors of natural numbers.

The previous equation is the state-transition
equation (frequently known as the fundamental
or, simply, state equation). Nevertheless, two im-
portant remarks should be made:
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» It represents a necessary but not sufficient
condition for reachability; the problem is that
the existence of a o does not guarantee that a
corresponding sequence o is firable from m;
thus, certain solutions — called spurious (Silva
et al. 1998) — are not reachable. This implies
that — except in certain net system subclasses —
only semi-decision algorithms can usually be
derived.

¢ All variables are natural numbers, which im-
ply computational complexity.

It should be pointed out that in finite-state ma-
chines, the state is a single variable taking values
in a symbolic unstructured set, while in PT-net
systems, it is structured as a vector of nonnegative
integers. This allows analysis techniques that do
not require the enumeration of the state space.

At a structural level, observe that the negation
is missing in Fig. 1; its inclusion leads to the so-
called inhibitor arcs, an extension in expressive
power. In its most basic form, if the place at
the origin of an inhibitor arc is marked, it “in-
hibits” the enabling of the target transition. PT-
net systems can model infinite-state systems, but
not Turing machines. PT-net systems provided
with inhibitor arcs (or priorities on the firing of
transitions) can do it.

With this conceptually simple formalism, it
is not difficult to express basic synchronization
schemas (Fig. 3). All the illustrated examples use
joins. When weights are allowed in the arcs,
another kind of synchronization appears: Sev-
eral copies of the same resource are needed (or
produced) in a single operation. Being able to
express concurrency and synchronization, when
viewing the system at a higher level, it is possible
to build cooperation and competition relation-
ships.

Analysis and Control of Untimed
PT Models

The behavior of a concurrent (eventually dis-
tributed) system is frequently difficult to under-
stand and control. Thus, misunderstandings and
mistakes are frequent during the design cycle. A
way of cutting down the cost and duration of the
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design process is to express in a formalized way
properties that the system should enjoy and to use
formal proof techniques. Errors can be eventually
detected close to the moment they are introduced,
reducing their propagation to subsequent stages.
The goal in verification is to ensure that a given
system is correct with respect to its specification
(perhaps expressed in temporal-logic terms) or to
a certain set of predetermined properties.

Among the most basic qualitative properties of
“net systems” are the following: (1) reachability
of a marking from a given one; (2) boundedness,
characterizing finiteness of the state space; (3)
liveness, related to potential fireability of all tran-
sitions starting on an arbitrary reachable marking
(deadlock-freeness is a weaker condition in which
only global infinite fireability of the net system
model is guaranteed, even if some transitions
no longer fire); (4) reversibility, characterizing
recoverability of the initial marking from any
reachable one; and (5) mutual exclusion of two
places, dealing with the impossibility of reaching
markings in which both places are simultane-
ously marked.

All the above are behavioral properties, which
depend on the net system (N, mg). In practice,
sometimes problems with a net model are rooted
in the net structure; thus, the study of the struc-
tural counterpart of certain behavioral proper-
ties may be of interest. For example, a “net”
is structurally bounded if it is bounded for any
initial marking; a “net” is structurally live if an
initial marking exists that make the net system
live (otherwise stated, it reflect non-liveness for
arbitrary initial markings, a pathology of the net).

Basic techniques to analyze net systems in-
clude: (1) enumeration, in its most basic form
based on the construction of a reachability graph
(a sequentialized view of the behavior). If the net
system is not bounded, losing some information,
a finite coverability graph can be constructed; (2)
transformation, based on an iterative rewriting
process in which a net system enjoys a certain
property if and only if a transformed (“sim-
pler” to analyze) one also does. If the new sys-
tem is easier to analyze, and the transformation
is computationally cheap, the process may be
extremely interesting; (3) structural, based on
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Modeling, Analysis, and Control with Petri Nets,
Fig. 3 Basic synchronization schemes: (/) Join or ren-
dezvous, RV; (2) Semaphore, S; (3) Mutual exclusion
semaphore (mutex), R, representing a shared resource;
(4) Symmetric RV built with two semaphores; (5) Asym-
metric RV built with two semaphores (master/slave);
(6) Fork-join (or par-begin/par-end); (7) Non-recursive
subprogram (places i and j cannot be simultaneously

graph properties, or in mathematical program-
ming techniques rooted on the state equation;
(4) simulation, particularly interesting for gaining
certain confidence about the absence of certain
pathological behaviors. Analysis strategies com-
bining all these kinds of techniques are extremely
useful in practice.

Reachability techniques provide sequentialized
views for a particular initial marking. Moreover
they suffer from the so-called state explosion
problem. The reduction of this computational
issue leads to techniques such as stubborn

set methods (smaller, equally informative
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marked — must be in mutex — to remember the returning
point; for simplicity, it is assumed that the subprogram is
single input/single output); (8) Guard (a self-loop from a
place through a transition); its role is like a traffic light:
If at least one token is present at the place, it allows the
evolution, but it is not consumed. Synchronizations can
also be modeled by the weights associated to the arcs
going to transitions

reachability graphs), also to non-sequentialized
views such as those based on unfoldings.
Transformation techniques are extremely useful,
but not complete (i.e., not all net systems can
be reduced in a practical way). In most cases,
structural techniques only provide necessary or
sufficient conditions (e.g., a sufficient condition
for deadlock-freeness, a necessary condition for
reversibility, etc.), but not a full characterization.
As already pointed out, a limitation of methods
based on the state equation for analyzing net
systems is the existence of non reachable
solutions (the so-called spurious solutions). In
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this context, three kinds of related notions that
must be differentiated are the following: (1)
some natural vectors (left and right annullers
of the token flow matrix, C: P-semiflows and
T-semiflows), (2) some invariant laws (token
conservation and repetitive behaviors), and
(3) some peculiar subnets (conservative and
consistent components, generated by the subsets
of nodes in the P- and T-semiflows, respectively).

More than analysis, control leads to synthesis
problems. The idea is fo enforce the given system
in order to fulfill a specification (e.g., to enforce
certain mutual exclusion properties). Technically
speaking, the idea is to “add” some elements in
order to constrain the behavior in such a way that
a correct execution is obtained. Questions related
to control, observation, diagnosis, or identifica-
tion are all areas of ongoing research.

With respect to classical control theory, there
are two main differences: Models are DES and
untimed (autonomous, fully nondeterministic,
eventually labeling the transitions in order to
be able to consider the PNs languages). Let us
remark that for control purposes, the transitions
should be partitioned into controllable (when
enabled, you can either force or block the
firing) and uncontrollable (if enabled, the firing
is nondeterministic). A natural approach to
synthesize a control is to start modeling the plant
dynamics (by means of a PN, P) and adopting a
specification for the desired closed-loop system
(S). The goal is to compute a controller (L)
such that S equals the parallel-composition of
P and L; in other words, controllers (called
“supervisors”) are designed to ensure that only
behaviors consistent with the specification may
occur. The previous equality is not always
possible, and the goal is usually relaxed to
minimally limit the behavior within the specified
legality (i.e., to compute maximally permissive
controllers). For an approach in the framework
of finite-state machines and regular languages,
see » Supervisory Control of Discrete-Event
Systems. The synthesis in the framework of
Petri nets and having goals as enforcing some
generalized mutual exclusions constraints in
markings or avoiding deadlocks, for example,
can be efficiently approached by means of the
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so named structure theory, based on the direct
exploitation of the structure of the net model
(using graph or mathematical programming
theories and algorithms, where the initial marking
is a parameter).

Similarly, transitions (or places) can be parti-
tioned into observable and unobservable. Many
observability problems may be of interest; for ex-
ample, observing the firing of a subset of transi-
tions to compute the subset of markings in which
the system may be. Related to observability, di-
agnosis is the process of detecting a failure (any
deviation of a system from its intended behavior)
and identifying the cause of the abnormality. Di-
agnosability, like observability or controllability,
is a logical criterion. If a model is diagnosable
with respect to a certain subset of possible faults
(i.e., it is possible to detect the occurrence of
those faults in finite time), a diagnoser can be
constructed (see section “Diagnosis and Diagnos-
ability Analysis of Petri Nets” in » Diagnosis of
Discrete Event Systems). Identification of DES
is also a question that has required attention in
recent years. In general, the starting point is a
behavioral observation, the goal being to con-
struct a PN model that generates the observed
behavior, either from examples/counterexamples
of its language or from the structure of a reach-
ability graph. So the results are derived models,
not human-made models (i.e., not made by de-
signers).

The Petri Nets Modeling Paradigm

Along the life cycle of DES, designers may deal
with basic modeling, analysis, and synthesis from
different perspectives together with implemen-
tation and operation issues. Thus, the designer
may be interested in expressing the basic struc-
ture, understanding untimed possible behaviors,
checking logic properties on the model when
provided with some timing (e.g., in order to
guarantee if a certain reaction is possible before
3 ms; something relevant in real-time systems),
computing some performance indices on timed
models (related to the throughputin the firing of a
given transition, or to the length of a waiting line,
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expressed as the number of tokens in a place),
computing a schedule or control that optimizes
a certain objective function, decomposing the
model in order to prepare an efficient imple-
mentation, efficiently determining redundancies
in order to increase the degree of fault tolerance,
etc. For these different tasks, different formalisms
may be used. Nevertheless, it seems desirable
to have a family of related formalisms rather
than a collection of “unrelated” or weakly related
formalisms. The expected advantages would in-
clude coherence among models usable in dif-
ferent phases, economy in the transformations
and synergy in the development of models and
theories.

Other Untimed PN Formalisms: Levels of
Expressive Power

PT-net systems are more powerful than condi-
tion/event (CE) systems, roughly speaking the
basic seminal formalism of Carl Adam Petri in
which places can be marked only with zero or
one token (Boolean marking). CE-systems can
model only finite-state systems. As already said,
“extensions” of the expressive power of untimed
PT-net systems to the level of Turing machines
are obtained by adding inhibitor arcs or priorities
to the firing of transitions.

An important idea is adding the notion of
individuals to tokens (e.g., from anonymous
to labeled or colored tokens). Information in
tokens allows the objects to be named (they
are no longer indistinguishable) and dynamic
associations to be created. Moving from PT-
nets to so-called high-level PNs (HLPNs) is
something like “moving from assembler to
high-level programming languages,” or, at
the computational level, like “moving from
pure numerical to a symbolic level.” There
are many proposals in this respect, the more
important being predicate/transition nets and
colored PNs. Sometimes, this type of abstraction
has the same theoretical expressiveness as
PT-net systems (e.g., colored PNs if the
number of colors is finite); in other words,
high-level views may lead to more compact
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and structured models, while keeping the
same theoretical expressive power of PT-
nets (i.e., we can speak of ‘“abbreviations,”
not of “extensions”). In other cases, object-
oriented concepts from computer programming
are included in certain HLPNs. The analysis
techniques of HLPNs can be approached
with techniques based on enumeration, trans-
formation, or structural considerations and
simulation, generalizing those developed for PT-
net systems.

Extending Net Systems with External

Events and Time: Nonautonomous
Formalisms

When dealing with net systems that interact with
some specific environment, the marking evolu-
tion rule must be slightly modified. This can
be done in an enormous number of ways, con-
sidering external events and logical conditions
as inputs to the net model, in particular some
depending on time. The same interpretation given
to a graph in order to define a finite-state diagram
can be used to define a marking diagram, a for-
malism in which the key point is to recognize that
the state is now numerical (for PT-net systems)
and distributed. For example, drawing a parallel
with Moore automata, the transitions should be
labeled with logical conditions and events, while
unconditional actions are associated to the places.
If a place is marked, the associated actions are
emitted.

Even if only time-based interpretations are
considered, there are a large number of successful
proposals for formalisms. For example, it should
be specified if time is associated to the firing of
transitions (T-timing may be atomic or in three
phases), to the residence of tokens in places (P-
timed), to the arcs of the net, as tags to the
tokens, etc. Moreover, even for T-timed models,
there are many ways of defining the timing: time
intervals, stochastic or possibilistic forms, and
the deterministic case as a particular one. If the
firing of transitions follows exponential pdfs, and
the conflict resolution follows the race policy
(i.e., fire in conflicts the first that ends the task,
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not a preselection policy), the underlying Markov
chain described is isomorphic to the reachability
graph (due to the Markovian “memoryless” prop-
erty). Moreover, the addition of immediate transi-
tions (whose firing is instantaneous) enriches the
practical modeling possibilities, eventually com-
plicating the analysis techniques. Timed models
are used to compute minimum and maximum
time delays (when time intervals are provided,
in real-time problems) or performance figures
(throughput, utilization rate of resources, average
number of tokens — clients — in services, etc.). For
performance evaluation, there is an array of tech-
niques to compute bounds, approximated values,
or exact values, sometimes generalizing those
that are used in certain queueing network classes
of models. Simulation techniques are frequently
very helpful in practice to produce an educated
guess about the expected performance.

Time constraints on Petri nets may change
logical properties of models (e.g., mutual exclu-
sion constraints, deadlock-freeness, etc.), calling
for new analysis techniques. For example, certain
timings on transitions can transform a live system
into a non-live one (if to the net system in Fig. 2
are associated deterministic times to transitions
and a race policy with the time associated to tran-
sition ¢ smaller than that of transition a, transition
b cannot be fired, after firing transition d; thus it
is non-live, while the untimed model was live).
By the addition of some time constraints, the
transformation of a non-live model into a live one
is also possible. So additional analysis techniques
need to be considered, redefining the state, now
depending also on time, more than just on the
marking.

Finally, as in any DES, the optimal control
of timed Petri net models (scheduling, sequenc-
ing, etc.) may be approached by techniques as
dynamic programming or perturbation analysis
(presented in the context of queueing networks
and Markov chains, see » Perturbation Analysis
of Discrete Event Systems). In practice, those
problems are frequently approached by means
of some partially heuristic strategies. About the
diagnosis of timed Petri nets, see » Diagnosis of
Discrete Event Systems. Of course, all these tasks
can be done with HLPNS.
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Fluid and Hybrid PN Models

Different ideas may lead to different kinds of
hybrid PNs. One is to fluidize (here to relax the
natural numbers of discrete markings into the
nonnegative reals) the firing of transitions that are
“most time” enabled. Then the relaxed model has
discrete and continuous transitions, thus also dis-
crete and continuous places. If all transitions are
fluidized, the PN system is said to be fluid or con-
tinuous, even if technically it is a hybrid one. In
this approach, the main goal is to try to overcome
the state explosion problem inherent to enumer-
ation techniques. Proceeding in that way, some
computationally NP-hard problems may become
much easier to solve, eventually in polynomial
time. In other words, fluidization is an abstraction
that tries to make tractable certain real-scale DES
problems (» Discrete Event Systems and Hybrid
Systems, Connections Between).

When transitions are timed with the so-called
infinite server semantics, the PN system can be
observed as a time differentiable piecewise affine
system. Thus, even if the relaxation “simplifies”
computations, it should be taken into account that
continuous PNs with infinite server semantics
are able to simulate Turing machines. From a
different perspective, the steady-state throughput
of a given transition may be non-monotonic with
respect to the firing rates or the initial marking
(e.g., if faster or more machines are used, the un-
controlled system may be slower); moreover, due
to the important expressive power, discontinuities
may even appear with respect to continuous de-
sign parameters as firing rates, for example.

An alternative way to define hybrid Petri nets
is a generalization of hybrid automata: The net
system is a DES, but sets of differential equations
are associated to the marking of places. If a
place is marked, the corresponding differential
equations contribute to define its evolution.

Summary and Future Directions

Petri nets designate a broad family of related
DES formalisms (a modeling paradigm) each
one specifically tailored to approach certain
problems. Conceptual simplicity coexists with
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powerful modeling, analysis, and synthesis
capabilities. From a control theory perspective,
much work remains to be done for both untimed
and timed formalisms (remember, there are many
different ways of timing), particularly when
dealing with optimal control of timed models.
In engineering practice, approaches to the latter
class of problems frequently use heuristic strate-
gies. From a broader perspective, future research
directions include improvements required to
deal with controllability and the design of
controllers, with observability and the design
of observers, with diagnosability and the design
of diagnosers, and with identification. This work
is not limited to the strict DES framework, but
also applies to analogous problems relating to
relaxations into hybrid or fluid approximations
(particularly useful when high populations are
considered). The distributed nature of system is
more and more frequent and is introducing new
constraints, a subject requiring serious attention.
In all cases, different from firing languages
approaches, the so named structure theory of
Petri nets should gain more interest.
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Recommended Reading

Topics related to PNs are considered in well
over a hundred thousand papers and reports.
The first generation of books concerning this
field is Brauer (1980), immediately followed by
Starke (1980), Peterson (1981), Brams (1983),
Reisig (1985), and Silva (1985). The fact that
they are written in English, French, German, and
Spanish is proof of the rapid dissemination of this
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knowledge. Most of these books deal essentially
with PT-net systems. Complementary surveys
are Murata (1989), Silva (1993), and David and
Alla (1994), the latter also considering some
continuous and hybrid models. Concerning high-
level PNs, Jensen and Rozenberg (1991) is a se-
lection of papers covering the main developments
during the 1980s. Jensen and Kristensen (2009)
focuses on state space methods and simulation
where elements of timed models are taken into
account, but performance evaluation of stochastic
systems is not covered. Approaching the present
day, relevant works written with complementary
perspectives include inter alia, Girault and Valk
(2003), Diaz (2009), David and Alla (2010),
and Seatzu et al. (2013). The consideration of
time in nets with an emphasis on performance
and performability evaluation is addressed in
monographs such as Ajmone Marsan et al.
(1995), Bause and Kritzinger (1996), Balbo
and Silva (1998), and Haas (2002), while timed
models under different fuzzy interpretations are
the subject of Cardoso and Camargo (1999).
Structure-based approaches to controlling PN
models is the main subject in Iordache and
Antsaklis (2006) or Chen and Li (2013). Different
kinds of hybrid PN models are studied in Di
Febbraro et al. (2001), Villani et al. (2007), and
David and Alla (2010), while a broad perspective
about modeling, analysis, and control of contin-
uous (untimed and timed) PNs is provided by
Silva et al. (2011).

DiCesare et al. (1993) and Desrochers and Al-
Jaar (1995) are devoted to the applications of
PNs to manufacturing systems. A comprehensive
updated introduction to business process systems
and PNs can be found in van der Aalst and
Stahl (2011). Special volumes dealing with other
monographic topics are, for example, Billington
et al. (1999), Agha et al. (2001), and Cortadella
et al. (2002). An application domain for Petri
nets emerging over the last two decades is sys-
tems biology, a model-based approach devoted to
the analysis of biological systems (Koch et al.
2011; Wingender 2011). Furthermore, it should
be pointed out that Petri nets have also been em-
ployed in many other application domains (e.g.,
from logistics to musical systems).
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For an overall perspective of the field over the
five decades that have elapsed since the publica-
tion of Carl Adam Petri’s PhD thesis, including

historical, epistemological, and technical aspects,
see Silva (2013).
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Abstract

This entry provides a brief description of model
predictive control (MPC) technology and how it
is used in practice. The emphasis here is on re-
fining and chemical plant applications where the
technology has achieved its greatest acceptance.
After a short description of what MPC is and
how it fits into the hierarchy of control functions,
the basic algorithm is presented as a sequence of
three optimization problems. The steps required
for a successful application are then outlined,
followed by a summary and outline of likely
future directions for MPC technology.

Keywords

Computer control; Mathematical programming;
Predictive control

Introduction

Model predictive control (MPC) refers to a class
of computer control algorithms that utilize an
explicit mathematical model to predict future
process behavior. At each control interval, in the
most general case, an MPC algorithm solves a
sequence of three nonlinear programs to answer
the following essential questions: where is the
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process heading (state estimation), where should
the process go (steady-state target optimization),
and what is the best sequence of control (input)
adjustments to send it to the right place (dynamic
optimization). The first control (input) adjust-
ment is implemented and then the entire cal-
culation sequence is repeated at the subsequent
control cycles.

MPC technology arose first in the context of
petroleum refinery and power plant control prob-
lems (Cutler and Ramaker 1979; Richalet et al.
1978). Specific needs that drove the development
of MPC technology include the requirement for
economic optimization and strict enforcement
of safety and equipment constraints. Promising
early results led to a wave of successful industrial
applications, sparking the development of several
commercial offerings (Qin and Badgwell 2003)
and generating intense interest from the academic
community (Mayne et al. 2000). Today MPC
technology permeates the refining and chemical
industries and has gained increasing acceptance
in a wide variety of areas including chemicals,
automotive, aerospace, and food processing ap-
plications. The total number of MPC applications
worldwide was estimated in 2003 to be 4,500
(Qin and Badgwell 2003).

MPC Control Hierarchy

In a modern chemical plant or refinery, MPC
is part of a multilevel hierarchy, as illustrated
in Fig.1. Moving from the top level to the
bottom, the control functions execute at a
higher frequency but cover a smaller geographic
scope. At the bottom level, referred to as
Level 0, proportional-integral-derivative (PID)
controllers execute several times a second within
distributed control system (DCS) hardware.
These controllers adjust individual valves to
maintain desired flows, pressures, levels, and
temperatures.

At Level 1, MPC runs once a minute
to perform dynamic constraint control for
an individual processing unit, such as crude
distillation unit or a fluid catalytic cracker (Gary
et al. 2007). It typically utilizes a linear dynamic
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Model-Predictive Control in Practice, Fig. 1 Hierarchy of control functions in a refinery/chemical plant

model identified directly from process step-test
data. The MPC has the job of holding the unit
at the best economic operating point in the
face of dynamic disturbances and operational
constraints.

At Level 2, a real-time optimizer (RTO) runs
hourly to calculate optimal steady-state targets
for a collection of processing units. It uses a
rigorous first-principles steady-state model to cal-
culate targets for key operating variables such
as unit temperatures and feed rates. These are
typically passed down to several MPCs for im-
plementation.

At Level 3, planning and scheduling func-
tions are carried out daily to optimize economics
for an entire chemical plant or refinery. Simple
steady-state models are typically used at this
level, with some nonlinear but mostly linear con-
nections between model inputs and outputs. Key
operating targets and economic data are typ-
ically passed to several RTO applications for
implementation.

Note that a different mathematical model of
the process is used at each level of the hierarchy.
These models must be reconciled in some man-
ner with current plant operation and with each
other in order for the overall system to function

properly.

MPC Algorithms

MPC algorithms function in much the same way
that an experienced human operator would ap-
proach a control problem. Figure 2 illustrates the
flow of information for a typical MPC imple-
mentation. At each control interval, the algorithm
compares the current model output prediction
yp to the measured output y,, and passes the
prediction error e and control (input) u to a
state estimator, which estimates the dynamic state
x. The most commonly used methods for state
estimation can be viewed as special cases of
an optimization-based formulation called mov-
ing horizon estimation (MHE) (Rawlings and
Mayne 2009). The state estimate X, which in-
cludes an estimate of the process disturbances
d, is then passed to a steady-state optimizer to
determine the best operating point for the unit.
The steady-state optimizer must also consider
operator-entered output and control (input) tar-
gets y; and u,. The steady-state state and control
(input) targets x; and u, are then passed, along
with the state estimate X, to a dynamic optimizer
to compute the best trajectory of future control
(input) adjustments. The first computed control
(input) adjustment is then implemented and the
entire calculation sequence is repeated at the
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next control interval. The various commercial
MPC algorithms differ in such details as the
mathematical form of the dynamic model and
the specific formulations of the state estimation,
steady-state optimization, and dynamic optimiza-
tion problems (Qin and Badgwell 2003).

In the general case, the MPC algorithm must
solve the three optimization problems outlined
above at each control interval. For the case of
linear models and reasonable tuning parameters,
these problems take the form of a convex
quadratic program (QP) with a constant, positive-
definite Hessian. As such, they can be solved
relatively easily using standard optimization
codes. For the case of a linear state-space model,
the structure can be exploited even further to
develop a specialized solution algorithm using an
interior point method (Rao et al. 1998).

For the case of nonlinear models, these
problems take the form of a nonlinear program
(NLP) for which the solution domain is no longer
convex, greatly complicating the numerical
solution. A typical strategy is to iterate on
a linearized version of the problem until
convergence (Bielger 2010).

Implementation

The combined experience of thousands of MPC

applications in the process industries has led to

a near consensus on the steps required for a

successful implementation:

» Justification — make the economic case for the
application.

* Pre-test — design the control and test sensors
and actuators.

» Step-test — generate process response data.

* Modeling — develop model from process re-
sponse data.

* Configuration — configure the software and
test preliminary tuning by simulation.

* Commissioning — turn on and test the con-
troller.

* Post-audit — measure and certify economic
performance.

* Sustainment — monitor and maintain the appli-
cation.

The most expensive of these steps, both in
terms of engineering time and lost production, is
the generation of process response data through
the step test. This is accomplished, in principle,
by making significant adjustments to each vari-
able that will be adjusted by the MPC while
operating open loop to prevent compensating
control action. This will necessarily cause abnor-
mal movement in key operating variables, which
may lead to lower throughput and off-spec prod-
ucts. Significant progress has been made in re-
cent years to minimize these difficulties through
the use of approximate closed-loop step testing
(Darby and Nikolaou 2012).

Once the application has been commis-
sioned, it is critical to set up an aggressive
monitoring and sustainment program. MPC
application benefits can fall off quickly
due to changes in the process operation
and as new personnel interact with it. New
constraint variables may need to be added
and key sections of the model may need
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to be updated as time goes on. The math-
ematical problem of MPC monitoring re-
mains a topic of current academic research
(Zagrobelny et al. 2012).

Note that the implementation steps outlined
above must be carried out by a carefully selected
project team that typically includes, in addition
to the MPC expert, an engineer with detailed
knowledge of the process and an operator with
significant relevant experience.

Summary and Future Directions

Model predictive control is now a mature tech-
nology in the process industries. A representative
MPC algorithm in this domain includes a state
estimator, a steady-state optimizer, and a dynamic
optimizer, running once a minute. A successful
MPC application usually starts with a careful
economic justification, includes significant par-
ticipation from process engineers and operators,
and is maintained with an aggressive sustainment
program. Many thousands of such applications
are currently operating around the world, gen-
erating billions of dollars per year in economic
benefits.

Likely future directions for MPC prac-
tice include increasing use of nonlinear
models, improved state estimation through
unmeasured disturbance modeling (Pannocchia
and Rawlings 2003), and development of
more efficient numerical solution methods
(Zavala and Biegler 2009).

Cross-References

Distributed Model Predictive Control

Nominal Model-Predictive Control
Optimization Algorithms for Model Predictive
Control

Tracking Model Predictive Control

Recommended Reading

The first descriptions of MPC technology appear
in papers by Richalet et al. (1978) and Cutler
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and Ramaker (1979). A detailed summary of the
history of MPC technology development, as well
as a survey of commercial offerings through 2003
can be found in the review article by Qin and
Badgwell (2003). Darby and Nikolaou present a
more recent summary of MPC practice (Darby
and Nikolaou 2012). Textbook descriptions of
MPC theory and design, suitable for classroom
use, include Rawlings and Mayne (2009) and
Maciejowski (2002). The book by Ljung (1999)
provides a good summary of methods for identi-
fying dynamic models from test data. Theoretical
properties of MPC are analyzed in a highly cited
paper by Mayne and coworkers (2000). Guide-
lines for designing disturbance models so as to
achieve offset-free control can be found in Pan-
nocchia and Rawlings (2003). Numerical solution
strategies for the nonlinear programs found in
MPC are discussed in the book by Biegler (2010).
An efficient interior-point method for solving the
linear MPC dynamic optimization is described
in Rao et al. (1998). A promising algorithm for
solving the nonlinear MPC dynamic optimiza-
tion is outlined in Zavala and Biegler (2009).
A data-based method for tuning Kalman Filters,
which are often used for MPC state estimation,
is described in Odelson et al. (2006). A new
method for monitoring the performance of MPC
is summarized in Zagrobelny et al. (2012). A
readable summary of refining operations can be
found in Gary et al. (2007).
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Abstract

This article provides an introduction to discrete
event systems (DES) as a class of dynamic
systems with  characteristics  significantly
distinguishing them from traditional time-driven
systems. It also overviews the main modeling
frameworks used to formally describe the
operation of DES and to study problems related
to their control and optimization.
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Introduction

Discrete event systems (DES) form an important
class of dynamic systems. The term was intro-
duced in the early 1980s to describe a DES in
terms of its most critical feature: the fact that
its behavior is governed by discrete events which
occur asynchronously over time and which are
solely responsible for generating state transitions.
In between event occurrences, the state of a DES
is unaffected. Examples of such behavior abound
in technological environments, including com-
puter and communication networks, manufac-
turing systems, transportation systems, logistics,
and so forth. The operation of a DES is largely
regulated by rules which are often unstructured
and frequently human-made, as in initiating or
terminating activities and scheduling the use of
resources through controlled events (e.g., turning
equipment “on”). On the other hand, their op-
eration is also subject to uncontrolled randomly
occurring events (e.g., a spontaneous equipment
failure) which may or may not be observable
through sensors. It is worth pointing out that the
term “discrete event dynamic system” (DEDS) is
also commonly used to emphasize the importance
of the dynamical behavior of such systems (Cas-

sandras and Lafortune 2008; Ho 1991).

There are two aspects of a DES that define its
behavior:

1. The variables involved are both continuous
and discrete, sometimes purely symbolic, i.e.,
nonnumeric (e.g., describing the state of a
traffic light as “red” or “green”). This renders
traditional mathematical models based on dif-
ferential (or difference) equations inadequate
and related methods based on calculus of lim-
ited use.

2. Because of the asynchronous nature of events
that cause state transitions in a DES, it is
neither natural nor efficient to use time as a
synchronizing element driving its dynamics.
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It is for this reason that DES are often referred
to as event driven, to contrast them to clas-
sical time-driven systems based on the laws
of physics; in the latter, as time evolves state,
variables such as position, velocity, tempera-
ture, voltage, etc., also continuously evolve. In
order to capture event-driven state dynamics,
however, different mathematical models are
necessary.

In addition, uncertainties are inherent in
the technological environments where DES are
encountered. Therefore, associated mathematical
models and methods for analysis and control
must incorporate such uncertainties. Finally,
complexity is also inherent in DES of practical
interest, usually manifesting itself in the form of
combinatorially explosive state spaces. Although
purely analytical methods for DES design,
analysis, and control are limited, they have
still enabled reliable approximations of their
dynamic behavior and the derivation of useful
structural properties and provable performance
guarantees. Much of the progress made in this
field, however, has relied on new paradigms
characterized by a combination of mathematical
techniques, computer-based tools, and effective
processing of experimental data.

Event-driven and time-driven system com-
ponents are often viewed as coexisting and
interacting and are referred to as hybrid systems
(separately considered in the Encyclopedia,
including the article » Discrete Event Systems
and Hybrid Systems, Connections Between).
Arguably, most contemporary technological
systems are combinations of time-driven
components (typically, the physical parts of a
system) and event-driven components (usually,
the computer-based controllers that collect data
from and issue commands to the physical parts).

Event-Driven vs. Time-Driven
Systems

In order to explain the difference between time-
driven and event-driven behavior, we begin
with the concept of “event.” An event should
be thought of as occurring instantaneously and
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causing transitions from one system state value
to another. It may be identified with an action
(e.g., pressing a button), a spontaneous natural
occurrence (e.g., a random equipment failure), or
the result of conditions met by the system state
(e.g., the fluid level in a tank exceeds a given
value). For the purpose of developing a model
for DES, we will use the symbol e to denote an
event. Since a system is generally affected by
different types of events, we assume that we can
define a discrete event set E with e € E.

In a classical system model, the “clock™ is
what drives a typical state trajectory: with every
“clock tick” (which may be thought of as an
“event”), the state is expected to change, since
continuous state variables continuously change
with time. This leads to the term time driven.
In the case of time-driven systems described by
continuous variables, the field of systems and
control has based much of its success on the use
of well-known differential-equation-based mod-
els, such as

X(1) = f(x(@). u(®),1),  x(t0) =% (1)
y(@) = g(x(), (). 1), 2)

where (1) is a (vector) state equation with initial
conditions specified and (2) is a (vector) output
equation. As is common in system theory, x(¢)
denotes the state of the system, y(¢) is the output,
and u(?) represents the input, often associated
with controllable variables used to manipulate
the state so as to attain a desired output. Com-
mon physical quantities such as position, veloc-
ity, temperature, pressure, flow, etc., define state
variables in (1). The state generally changes as
time changes, and, as a result, the time variable 7
(or some integer k = 0, 1,2, ... in discrete time)
is a natural independent variable for modeling
such systems.

In contrast, in a DES, time no longer serves
the purpose of driving such a system and may
no longer be an appropriate independent variable.
Instead, at least some of the state variables are
discrete, and their values change only at certain
points in time through instantaneous transitions
which we associate with “events.” If a clock
is used, consider two possibilities: (i) At every
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clock tick, an event e is selected from the event
set E (if no event takes place, we use a “null
event” as a member of E such that it causes no
state change), and (ii) at various time instants (not
necessarily known in advance or coinciding with
clock ticks), some event ¢ “announces” that it
is occurring. Observe that in (i) state transitions
are synchronized by the clock which is solely
responsible for any possible state transition. In
(i1), every event e € E defines a distinct process
through which the time instants when e occurs
are determined. State transitions are the result of
combining these asynchronous concurrent event
processes. Moreover, these processes need not
be independent of each other. The distinction
between (i) and (ii) gives rise to the terms time-
driven and event-driven systems, respectively.
Comparing state trajectories of time-driven
and event-driven systems is useful in understand-
ing the differences between the two and setting
the stage for DES modeling frameworks. Thus, in
Fig. 1, we observe the following: (i) For the time-
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Fig. 1 Comparison of time-driven and event-driven state
trajectories
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driven system shown, the state space X is the set
of real numbers R, and x(¢) can take any value
from this set. The function x(z) is the solution
of a differential equation of the general form
xX(@) = f(x(t),u(t),t), where u(t) is the input.
(ii) For the event-driven system, the state space is
some discrete set X = {s1, 52, 53, S4}. The sample
path can only jump from one state to another
whenever an event occurs. Note that an event
may take place, but not cause a state transition,
as in the case of e4. There is no immediately
obvious analog to x(¢) = f(x(t),u(t),t),i.e.,no
mechanism to specify how events might interact
over time or how their time of occurrence might
be determined. Thus, a large part of the early
developments in the DES field has been devoted
to the specification of an appropriate mathemati-
cal model containing the same expressive power
as (1)-(2) (Baccelli et al. 1992; Cassandras and
Lafortune 2008; Glasserman and Yao 1994).

We should point out that a time-driven
system with continuous state variables, usually
modeled through (1)-(2), may be abstracted
as a DES through some form of discretization
in time and quantization in the state space.
We should also point out that discrete event
systems should not be confused with discrete
time systems. The class of discrete time systems
contains both time-driven and event-driven
systems.

Timed and Untimed Models
of Discrete Event Systems

Returning to Fig. 1, instead of constructing the
piecewise constant function x(¢) as shown, it is
convenient to simply write the timed sequence of
events {(e1,11), (e2,12), (€3.13), (€4, 14), (e5,15)}
which contains the same information as the
state trajectory. Assuming that the initial state
of the system (s in this case) is known and that
the system is “deterministic” in the sense that
the next state after the occurrence of an event is
unique, we can recover the state of the system
at any point in time and reconstruct the DES
state trajectory. The set of all possible timed
sequences of events that a given system can ever
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execute is called the timed language model of
the system. The word “language” comes from
the fact that we can think of the event E as an
“alphabet” and of (finite) sequences of events as
“words” (Hopcroft and Ullman 1979). We can
further refine such a model by adding statistical
information regarding the set of state trajectories
(sample paths) of the system. Let us assume that
probability distribution functions are available
about the “lifetime” of each event type e € E,
that is, the elapsed time between successive
occurrences of this particular e. A stochastic
timed language is a timed language together with
associated probability distribution functions for
the events.

Stochastic timed language modeling is the
most detailed in the sense that it contains event
information in the form of event occurrences and
their orderings, information about the exact times
at which the events occur (not only their relative
ordering), and statistical information about suc-
cessive occurrences of events. If we delete the
timing information from a timed language, we
obtain an untimed language, or simply language,
which is the set of all possible orderings of
events that could happen in the given system.
For example, the untimed sequence correspond-
ing to the timed sequence of events in Fig. 1 is
{e1, ez, e3,e4, €5},

Untimed and timed languages represent
different levels of abstraction at which DES
are modeled and studied. The choice of the
appropriate level of abstraction clearly depends
on the objectives of the analysis. In many
instances, we are interested in the “logical
behavior” of the system, that is, in ensuring that
all the event sequences it can generate satisfy
a given set of specifications, e.g., maintaining
a precise ordering of events. In this context,
the actual timing of events is not required,
and it is sufficient to model only the untimed
behavior of the system. Supervisory control
that is discussed in the article » Supervisory
Control of Discrete-Event Systems is the term
established for describing the systematic means
(i.e., enabling or disabling events which are
controllable) by which the logical behavior
of a DES is regulated to achieve a given
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specification (Cassandras and Lafortune 2008;
Moody and Antsaklis 1998; Ramadge and
Wonham 1987).

On the other hand, we may be interested in
event timing in order to answer questions such
as the following: “How much time does the sys-
tem spend at a particular state?” or “Can this
sequence of events be completed by a partic-
ular deadline?” More generally, event timing
is important in assessing the performance of a
DES often measured through quantities such as
throughput or response time. In these instances,
we need to consider the timed language model
of the system. Since DES frequently operate in a
stochastic setting, an additional level of complex-
ity is introduced, necessitating the development
of probabilistic models and related analytical
methodologies for design and performance anal-
ysis based on stochastic timed language models.
Sample path analysis and perturbation analysis,
discussed in the entry » Perturbation Analysis
of Discrete Event Systems, refer to the study of
sample paths of DES, focusing on the extrac-
tion of information for the purpose of efficiently
estimating performance sensitivities of the sys-
tem and, ultimately, achieving online control and
optimization (Cassandras and Lafortune 2008;
Glasserman 1991; Ho and Cao 1991; Ho and
Cassandras 1983).

These different levels of abstraction are com-
plementary, as they address different issues about
the behavior of a DES. Although the language-
based approach to DES modeling is attractive,
it is by itself not convenient to address verifica-
tion, controller synthesis, or performance issues.
This motivates the development of discrete event
modeling formalisms which represent languages
in a manner that highlights structural information
about the system behavior and can be used to
address analysis and controller synthesis issues.
Next, we provide an overview of three major
modeling formalisms which are used by most
(but not all) system and control theoretic method-
ologies pertaining to DES. Additional modeling
formalisms encountered in the computer science
literature include process algebras (Baeten and
Weijland 1990) and communicating sequential
processes (Hoare 1985).
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Automata

A deterministic automaton, denoted by G, is a
six-tuple

G = (X,g,f;F,XO,Xm),

where X is the set of states, £ is the finite set of
events associated with the transitions in G, and
f X x& — X is the transition function;,
specifically, f(x,e) = y means that there is
a transition labeled by event e from state x to
state y and, in general, f is a partial function
on its domain. I' : X — 2¢ is the active event
function (or feasible event function); I"(x) is the
set of all events e for which f(x,e) is defined
and it is called the active event set (or feasible
event set) of G at x. Finally, xo is the initial
state and A,, C X is the set of marked states.
The terms state machine and generator (which
explains the notation G) are also used to describe
the above object. Moreover, if X is a finite set, we
call G a deterministic finite-state automaton. A
nondeterministic automaton is defined by means
of a relation over X x & x X or, equivalently, a
function from X’ x & to 2.

The automaton G operates as follows. It starts
in the initial state x,, and upon the occurrence of
anevent e € I'(xp) C &, it makes a transition to
state f(xp,e) € X. This process then continues
based on the transitions for which f is defined.
Note that an event may occur without changing
the state, i.e., f(x,e) = x. Itis also possible that
two distinct events occur at a given state causing
the exact same transition, i.e., for a,b € £,
f(x,a) = f(x,b) = y. What is interesting
about the latter fact is that we may not be able
to distinguish between events a and b by simply
observing a transition from state x to state y.

For the sake of convenience, f is always
extended from domain X x £ to domain X X
E*, where £* is the set of all finite strings
of elements of &£, including the empty string
(denoted by ¢); the * operation is called the
Kleene closure. This is accomplished in the fol-
lowing recursive manner: f(x,¢) := x and
f(x,se) = f(f(x,s),e) for s € &* and
e € &. The (untimed) language generated by
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G and denoted by £(G) is the set of all strings
in £* for which the extended function f is
defined. The automaton model above is one in-
stance of what is referred to as a generalized
semi-Markov scheme (GSMYS) in the literature of
stochastic processes. A GSMS is viewed as the
basis for extending automata to incorporate an
event timing structure as well as nondeterministic
state transition mechanisms, ultimately leading
to stochastic timed automata, discussed in the
sequel.

Let us allow for generally countable sets X’
and E and leave out of the definition any con-
sideration for marked states. Thus, we begin with
an automaton model (X, &, f, T, xo). We extend
the modeling setting to timed automata by in-
corporating a ‘“clock structure” associated with
the event set £ which now becomes the input
from which a specific event sequence can be
deduced. The clock structure (or timing structure)
associated with an event set £isaset V = {v; :
i € &} of clock (or lifetime) sequences

Vi:{Uin,vi’z,...},l.E 5, Vik € R+,k =1,2,...

Timed Automaton. A timed automaton is de-
fined as a six-tuple

(Xv 57 _fv Fv X0, V)v

where V. = {v; : i € &} is a clock structure
and (X, &, [, T, xo) is an automaton. The automa-
ton generates a state sequence x’ = f(x,e’)
driven by an event sequence {ej, e, ...} gener-
ated through

/ — . ) 3
e argig}lg){yz} 3)

with the clock values y;, i € &£, defined by
, | yi—y*ifi #e andi e T'(x) . ,
Yi= vin+1 ifi = e ori ¢ I'(x) tel(x)
4)

where the interevent time y* is defined as
* — . 3 5
y ig}lg){yz} (5)
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and the event scores N;, i € &, are defined by

_Ni+1ifi=eori ¢ T'(x)

/ . /
Ni = N; otherwise i e I(x).
(6)
In addition, initial conditions are y; = v;; and

N; = 1forall i € I'(x). If i ¢ ['(xp), then y;
is undefined and N; = 0.

A simple interpretation of this elaborate def-
inition is as follows. Given that the system is at
some state x, the next event e’ is the one with
the smallest clock value among all feasible events
i € T'(x). The corresponding clock value, y*,
is the interevent time between the occurrence of
e and ¢’, and it provides the amount by which
the time, 7, moves forward: ¢’ = ¢ + y*. Clock
values for all events that remain active in state x’
are decremented by y*, except for the triggering
event ¢’ and all newly activated events, which are
assigned a new lifetime v; n,+1. Event scores are
incremented whenever a new lifetime is assigned
to them. It is important to note that the “system
clock” ¢ is fully controlled by the occurrence of
events, which cause it to move forward; if no
event occurs, the system remains at the last state
observed.

Comparing x’ = f(x,e’) to the state equa-
tion (1) for time-driven systems, we see that
the former can be viewed as the event-driven
analog of the latter. However, the simplicity of
x" = f(x,e’) is deceptive: unless an event se-
quence is given, determining the friggering event
¢’ which is required to obtain the next state x’
involves the combination of (3)—(6). Therefore,
the analog of (1) as a “canonical” state equation
for a DES requires all Egs. (3)—(6). Observe that
this timed automaton generates a timed language,
thus extending the untimed language generated
by the original automaton G.

In the definition above, the clock structure V
is assumed to be fully specified in a deterministic
sense and so are state transitions dictated by
x" = f(x,€’). The sequences {v;}, i € &, can
be extended to be specified only as stochastic
sequences through distribution functions denoted
by F;,i € £. Thus, the stochastic clock structure
(or stochastic timing structure) associated with
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an event set £ is a set of distribution functions
F = {F, : i € &} characterizing the stochastic
clock sequences

Wiy =V, Vip,...}, i €€,
VikeRY k=1,2,...

It is usually assumed that each clock sequence
consists of random variables which are inde-
pendent and identically distributed (iid) and that
all clock sequences are mutually independent.
Thus, each {V; ;} is completely characterized by
a distribution function F;(¢) = P[V; < t]. There
are, however, several ways in which a clock struc-
ture can be extended to include situations where
elements of a sequence {V;} are correlated or
two clock sequences are interdependent. As for
state transitions which may be nondeterministic
in nature, such behavior is modeled through state
transition probabilities as explained next.

Stochastic Timed Automaton. We can extend
the definition of a timed automaton by viewing
the state, event, and all event scores and clock
values as random variables denoted respectively
by capital letters X, E, N;, and Y;, i € £. Thus,
a stochastic timed automaton is a six-tuple

(X,&, T, p, po, F),

where X is a countable state space; £ is a count-
able event set; I'(x) is the active event set (or fea-
sible event set); p(x’; x,e’) is a state transition
probability defined for all x,x’ € X, ¢’ € £ and
such that p(x’; x,e’) = 0 forall ¢’ ¢ I'(x); po is
the probability mass function P[Xy = x], x € X,
of the initial state Xo; and F is a stochastic clock
structure. The automaton generates a stochastic
state sequence {Xo, X1, ...} through a transition
mechanism (based on observations X = x, E/ =
e'):

X' = x’ with probability p(x’; x,e’)  (7)
and it is driven by a stochastic event sequence

{E\, E,, ...} generated exactly as in (3)—(6) with
random variables E, Y;, and N;, i € &, instead
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of deterministic quantities and with {V;x} ~
F; (~ denotes “with distribution”). In addition,
initial conditions are X¢ ~ po(x), Y; = V1, and
N; = 1if i € I'(Xp). If i ¢ I'(Xop), then ¥; is
undefined and N; = 0.

It is conceivable for two events to occur at
the same time, in which case we need a priority
scheme to overcome a possible ambiguity in the
selection of the triggering event in (3). In prac-
tice, it is common to expect that every F; in
the clock structure is absolutely continuous over
[0,00) (so that its density function exists) and
has a finite mean. This implies that two events
can occur at exactly the same time only with
probability 0.

A stochastic process {X(¢)} with state space
X which is generated by a stochastic timed au-
tomaton (X,&,T, p, po, F) is referred to as a
generalized semi-Markov process (GSMP). This
process is used as the basis of much of the sample
path analysis methods for DES (see Cassandras
and Lafortune 2008; Glasserman 1991; Ho and
Cao 1991).

Petri Nets

An alternative modeling formalism for DES is
provided by Petri nets, originating in the work
of C. A. Petri in the early 1960s. Like an au-
tomaton, a Petri net (Peterson 1981) is a device
that manipulates events according to certain rules.
One of its features is the inclusion of explicit
conditions under which an event can be enabled.
The Petri net modeling framework is the subject
of the article » Modeling, Analysis, and Control
with Petri Nets. Thus, we limit ourselves here to
a brief introduction. First, we define a Petri net
graph, also called the Petri net structure. Then,
we adjoin to this graph an initial state, a set of
marked states, and a transition labeling function,
resulting in the complete Petri net model, its
associated dynamics, and the languages that it
generates and marks.

Petri Net Graph. A Petri net is a directed
bipartite graph with two types of nodes, places
and transitions, and arcs connecting them. Events
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are associated with transition nodes. In order
for a transition to occur, several conditions may
have to be satisfied. Information related to these
conditions is contained in place nodes. Some
such places are viewed as the “input” to a tran-
sition; they are associated with the conditions
required for this transition to occur. Other places
are viewed as the output of a transition; they
are associated with conditions that are affected
by the occurrence of this transition. A Petri net
graph is formally defined as a weighted directed
bipartite graph (P, T, A, w) where P is the finite
set of places (one type of node in the graph), T
is the finite set of transitions (the other type of
node in the graph), A € (P x T) U (T x P)
is the set of arcs with directions from places to
transitions and from transitions to places in the
graph, and w : A — {1,2,3,...} is the weight
function on the arcs. Let P = {p1, p2,..., Pn}»
and T = {t,ts,...,ty}. It is convenient to
use /(;) to represent the set of input places to
transition ¢;. Similarly, O(z;) represents the set
of output places from transition f;. Thus, we have
I(t;) = {pi € P :(pi.tj) € A} and O(t;) =
{pi € P (1. pi) € A}.

Petri Net Dynamics. Tokens are assigned to
places in a Petri net graph in order to indi-
cate the fact that the condition described by that
place is satisfied. The way in which tokens are
assigned to a Petri net graph defines a mark-
ing. Formally, a marking x of a Petri net graph
(P, T, A,w) is a function x P - N =
{0,1,2,...}. Marking x defines row vector x =
[x(p1), x(p2),...,x(py)], where n is the number
of places in the Petri net. The ith entry of this
vector indicates the (nonnegative integer) number
of tokens in place p;, x(p;) € N. In Petri
net graphs, a token is indicated by a dark dot
positioned in the appropriate place. The state of
a Petri net is defined to be its marking vector
x. The state transition mechanism of a Petri net
is captured by the structure of its graph and by
“moving” tokens from one place to another. A
transition f; € T in a Petri net is said to be
enabled if

x(pi) = w(pi,t;) forall p; € I(z;). (8)
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In words, transition #; in the Petri net is enabled
when the number of tokens in p; is at least as
large as the weight of the arc connecting p; to
t;, for all places p; that are input to transition
t;. When a transition is enabled, it can occur or
fire. The state transition function of a Petri net is
defined through the change in the state of the Petri
net due to the firing of an enabled transition. The
state transition function, f : N x T — N", of
Petri net (P, T, A,w, x) is defined for transition
t; € T if and only if (8) holds. Then, we set
x' = f(x,t;) where

x'(pi) = x(pi) —w(pi.tj)) +w(t;. pi).
)

i=1,...,n.

An “enabled transition” is therefore equivalent to
a “feasible event” in an automaton. But whereas
in automata the state transition function enumer-
ates all feasible state transitions, here the state
transition function is based on the structure of
the Petri net. Thus, the next state defined by (9)
explicitly depends on the input and output places
of a transition and on the weights of the arcs con-
necting these places to the transition. According
t0 (9),if p; is an input place of #;, it loses as many
tokens as the weight of the arc from p; to ¢;; if it
is an output place of 7;, it gains as many tokens as
the weight of the arc from ¢; to p;. Clearly, it is
possible that p; is both an input and output place
of t je

In general, it is entirely possible that, after
several transition firings, the resulting state is
x = [0,...,0] or that the number of tokens in
one or more places grows arbitrarily large after
an arbitrarily large number of transition firings.
The latter phenomenon is a key difference with
automata, where finite-state automata have only a
finite number of states, by definition. In contrast,
a finite Petri net graph may result in a Petri net
with an unbounded number of states. It should
be noted that a finite-state automaton can always
be represented as a Petri net; on the other hand,
not all Petri nets can be represented as finite-state
automata.

Similar to timed automata, we can define
timed Petri nets by introducing a clock structure,
except that now a clock sequence v; is associated
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with a transition #;. A positive real number,
vk, assigned to f; has the following meaning:
when transition ¢; is enabled for the kth time,
it does not fire immediately, but incurs a firing
delay given by v, x; during this delay, tokens are
kept in the input places of ;. Not all transitions
are required to have firing delays. Thus, we
partition 7" into subsets Ty and 7Tp, such that
T = To U Tp. Ty is the set of transitions always
incurring zero firing delay, and Tp is the set
of transitions that generally incur some firing
delay. The latter are called timed transitions. The
clock structure (or timing structure) associated
with a set of timed transitions 7p < T of a
marked Petri net (P,T,A,w,x) is a set V =
{v; : t; € Tp} of clock (or lifetime) sequences
vj = {vjyl,Uj.z,...}, 1 € Tp, Vik € R+,
k = 1,2,... A timed Petri net is a six-tuple
(P, T,A,w,x,V), where (P,T,A,w,x) is a
marked Petri net and V. = {v; : t; € Tp}is
a clock structure. It is worth mentioning that
this general structure allows for a variety of
behaviors in a timed Petri net, including the
possibility of multiple transitions being enabled
at the same time or an enabled transition being
preempted by the firing of another, depending
on the values of the associated firing delays.
The need to analyze and control such behavior
in DES has motivated the development of a
considerable body of analysis techniques for
Petri net models which have been proven to be
particularly suitable for this purpose (Moody and
Antsaklis 1998; Peterson 1981).

Dioid Algebras

Another modeling framework is based on devel-
oping an algebra using two operations: min{a, b}
(or max{a, b}) for any real numbers a and b and
addition (a + b). The motivation comes from
the observation that the operations “min” and
“+” are the only ones required to develop the
timed automaton model. Similarly, the operations
“max” and “+” are the only ones used in de-
veloping the timed Petri net models described
above. The operations are formally named addi-
tion and multiplication and denoted by @ and ®
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respectively. However, their actual meaning (in
terms of regular algebra) is different. For any two
real numbers a and b, we define

Addition : a ® b =max{a,b} (10)

Multiplication : a®b=a-+b. (11

This dioid algebra is also called a (max, +)
algebra (Baccelli et al. 1992; Cuninghame-Green
1979). If we consider a standard linear discrete
time system, its state equation is of the form

x(k + 1) = Ax(k) + Bu(k),

which involves (regular) multiplication (x) and
addition (+). It turns out that we can use a
(max, +) algebra with DES, replacing the (4, x)
algebra of conventional time-driven systems, and
come up with a representation similar to the one
above, thus paralleling to a considerable extent
the analysis of classical time-driven linear sys-
tems. We should emphasize, however, that this
particular representation is only possible for a
subset of DES. Moreover, while conceptually
this offers an attractive way to capture the event
timing dynamics in a DES, from a computa-
tional standpoint, one still has to confront the
complexity of performing the “max” operation
when numerical information is ultimately needed
to analyze the system or to design controllers for
its proper operation.

Control and Optimization of Discrete
Event Systems

The various control and optimization methodolo-
gies developed to date for DES depend on the
modeling level appropriate for the problem of
interest.

Logical Behavior. Issues such as ordering
events according to some specification or
ensuring the reachability of a particular state are
normally addressed through the use of automata
and Petri nets (Chen and Lafortune 1991; Moody
and Antsaklis 1998; Ramadge and Wonham
1987). Supervisory control theory provides
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a systematic framework for formulating and
solving problems of this type; a comprehensive
coverage can be found in Cassandras and
Lafortune (2008). Logical behavior issues are
also encountered in the diagnosis of partially
observed DES, a topic covered in the article
Diagnosis of Discrete Event Systems.

Event Timing. When timing issues are intro-
duced, timed automata and timed Petri nets are
invoked for modeling purposes. Supervisory con-
trol in this case becomes significantly more com-
plicated. An important class of problems, how-
ever, does not involve the ordering of individual
events, but rather the requirement that selected
events occur within a given “time window” or
with some desired periodic characteristics. Mod-
els based on the algebraic structure of timed Petri
nets or the (max, +) algebra provide convenient
settings for formulating and solving such prob-
lems (Baccelli et al. 1992; Glasserman and Yao
1994).

Performance Analysis. As in classical control
theory, one can define a performance (or cost)
function as a means for quantifying system
behavior. This approach is particularly crucial
in the study of stochastic DES. Because of
the complexity of DES dynamics, analytical
expressions for such performance metrics in
terms of controllable variables are seldom
available. This has motivated the use of
simulation and, more generally, the study
of DES sample paths; these have proven to
contain a surprising wealth of information for
control purposes. The theory of perturbation
analysis presented in the article » Perturbation
Analysis of Discrete Event Systems has provided
a systematic way of estimating performance
sensitivities with respect to system parameters
(Cassandras and Lafortune 2008; Cassandras and
Panayiotou 1999; Glasserman 1991; Ho and Cao
1991).

Discrete Event Simulation. Because of the
aforementioned complexity of DES dynamics,
simulation becomes an essential part of DES
performance analysis (Law and Kelton 1991).
Discrete event simulation can be defined as a
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systematic way of generating sample paths of
a DES by means of a timed automaton or its
stochastic counterpart. The same process can be
carried out using a Petri net model or one based
on the dioid algebra setting.

Optimization. Optimization problems can be
formulated in the context of both untimed and
timed models of DES. Moreover, such problems
can be formulated in both a deterministic and a
stochastic setting. In the latter case, the ability
to efficiently estimate performance sensitivities
with respect to controllable system parameters
provides a powerful tool for stochastic gradient-
based optimization (when one can define
derivatives) (Vdzquez-Abad et al. 1998).

A treatment of all such problems from an
application-oriented standpoint, along with fur-
ther details on the use of the modeling frame-
works discussed in this entry, can be found in the
article » Applications of Discrete-Event Systems.
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Abstract

Mathematical models arising in biology might
sometime exhibit the remarkable feature of
preserving ordering of their solutions with
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respect to initial data: in words, the “more” of
x (the state variable) at time O, the more of it
at all subsequent times. Similar monotonicity
properties are possibly exhibited also with
respect to input levels. When this is the case,
important features of the system’s dynamics can
be inferred on the basis of purely qualitative
or relatively basic quantitative knowledge of
the system’s characteristics. We will discuss
how monotonicity-related tools can be used
to analyze and design biological systems
with prescribed dynamical behaviors such
as global stability, multistability, or periodic
oscillations.

Keywords

Feedback interconnections; Monotone dynamics;
Monotonicity checks

Introduction

Ordinary differential equations of a scalar
unknown, under suitable assumptions for unicity
of solutions, trivially enjoy the property that any
pair of ordered initial conditions (according to
the standard < order defined for real numbers)
gives rise to ordered solutions at all positive times
(as well as negative, though this is less relevant
for the developments that follow). Monotone
systems are a special but significant class of
dynamical models, possibly evolving in high-
dimensional or even infinite-dimensional state
spaces, that are nevertheless characterized by
a similar property holding with respect to a
suitably defined notion of partial order. They
became the focus of considerable interest in
mathematics after a series of seminal papers
by Hirsch (1985, 1988) provided the basic
definitions as well as deep results showing
how generic convergence properties of their
solutions are expected under suitable technical
assumptions. Shortly before that Smale (1976),
Smale’s construction had already highlighted
how specific solutions could instead exhibit
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arbitrary behavior (including periodic or chaotic).
Further results along these lines provide insight
into which set of extra assumptions allow one
to strengthen generic convergence to global
convergence, including, for instance, existence of
positive first integrals (Banaji and Angeli 2010;
Mierczynski 1987), tridiagonal structure (Smillie
1984), or positive translation invariance (Angeli
and Sontag 2008a).

While these tools were initially developed
having in mind applications arising in ecology,
epidemiology, chemistry, or economy, it was due
to the increased importance of mathematical
modeling in molecular biology and the
subsequent rapid development of systems biology
as an emerging independent field of investigation
that they became particularly relevant to biology.
The paper Angeli and Sontag (2003) first
introduced the notion of control monotone
systems, including input and output variables,
that is of interest if one is looking at systems
arising from interconnection of monotone
modules. Small-gain theorems and related
conditions were defined to study both positive
(Angeli and Sontag 2004b) and negative (Angeli
and Sontag 2003) feedback interconnections by
relating their asymptotic behavior to properties
of the discrete iterations of a suitable map,
called the steady-state characteristic of the
system.

In particular, convergence of this map is re-
lated to convergent solutions for the original con-
tinuous time system; on the other hand, specific
negative feedback interconnections can instead
give rise to oscillations as a result of Hopf bi-
furcations as in Angeli and Sontag (2008b) or
to relaxation oscillators as highlighted in Gedeon
and Sontag (2007).

A parallel line of investigation, originated in
the work of Volpert et al. (1994), exploited the
specific features of models arising in biochem-
istry by focusing on structural conditions for
monotonicity of chemical reaction networks (An-
geli et al. 2010; Banaji 2009). Monotonicity is
only one of the possible tools adopted in the
study of dynamics for such class of models in
the related field of chemical reaction networks
theory.
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Mathematical Preliminaries

To illustrate the main tools of monotone dynam-
ics, we consider the following systems defined
on partially ordered input, state, and output
spaces. Namely, along with the sets U, X,Y
(which denote input, state, and output space,
respectively), we consider corresponding partial
orders >y, >y, >y. A typical way of defining
a partial order on a set S embedded in some
Euclidean space E, S C E, is to first identify
a cone K of positive vectors which belong to
E. A cone in this context is any closed convex
set which is preserved under multiplication times
nonnegative scalars and such that K N—K = {0}.
Accordingly we may denote s; >g s, whenever
s1 — sy € K. A typical choice of K in the case
of finite-dimensional £ = R” is the positive
orthant, (K = [0, +00)"), in which case > can be
interpreted as componentwise inequalities. More
general orthants are also very useful in several
applications as well as more exotic cones, smooth
or polyhedral, according to the specific model
considered. When dealing with input signals, we
let ¢/ denote the set of locally essentially bounded
and measurable functions of time. In particular,
we inherit a partial order on I/ from the partial
order on U according to the following definition:
() zy wa(’) & w(t) =y u2(t) Vi €R.
When obvious from the context, we do not
emphasize the space to which variables belong
and simply write >. Strict order notions are also
of interest and especially relevant for some of
the deepest implications of the theory. We let
s1 > s, denote s > s and s; # s,. While for
partial orders induced by positivity cones, we let
s1 > s, denote 51 — 5, € int(K).

A dynamical system is for us a continuous
map ¢ : R x X — X which fulfills the property,
¢(0,x) = x forall x € X and ¢(t;, p(t1, x)) =
@(t; + 12, x) for all ¢1,1, € R. Sometimes, when
solutions are not globally defined (for instance, if
the system is defined through a set of nonlinear
differential equations), it is enough to restrict the
definitions that follow to the domain of existence
of solutions.
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Definition 1 A monotone system ¢ is one that
fulfills the following:

Vxi,xo€ X1 x1 = x o(t, x1) = o(t, x2)

Vi>0. (1)

A system ¢ is strongly monotone when the fol-
lowing holds:

Vxi,xo € X : X1 > X (P(t,xl) > <P(t,x2)

Vi>0. 2)

A control system is characterized by two con-
tinuous mappings: ¢ : R x X x U/ — X and the
readoutmaph : X xU — Y.

Definition 2 A control system is monotone if

Yui,uy €U :u >uy, Vxi,xeX:ix|>x,

Vi>0 ot xi,u) = ot x2,u2) (3)
and

Yui,uy €U :up > uy, VXxi,%€X:x1> Xz,

h(xi,ur) = h(xa,uz).  (4)

Notice that for any ordered state and input pairs
X1, X2, Uj,up, the signals y; and y, defined
as yi(t) = hp(t, x1,u1),u1(t)), »() =
h(p(t, x2,uz), uy(t)) also fulfill, thanks to the
Definition 2, y1(z) >y y.(t) (forallz > 0).

A system which is monotone with respect to
the positive orthant is called cooperative. If a
system is cooperative after reverting the direction
of time, it is called competitive. Checking if
a mathematical model specified by differential
equations is monotone with respect to the partial
order induced by some cone K is not too diffi-
cult. In particular, monotonicity, in its most basic
formulation (1), simply amounts to a check of
positive invariance of the set I' := {(x;,x3) €
X2 : x; = x»} for a system formed by two copies
of ¢ in parallel. This can be assessed without
explicit knowledge of solutions, for instance, by
using the notion of tangent cones and Nagumo’s
theorem (Angeli and Sontag 2003). Sufficient
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conditions also exist to assess strong monotonic-
ity, for instance, in the case of orthant cones.
Finding whether there exists an order (as induced,
for instance, by a suitable cone K) which can
make a system monotone is instead a harder task
which normally entails a good deal of insight in
the systems dynamics.

It is worth mentioning that for the special case
of linear systems, monotonicity is just equiva-
lent to invariance of the cone K, as incremental
properties (referred to pairs of solutions) are just
equivalent to their non-incremental counterparts
(referred to the O solution). In this respect, a
substantial amount of theory exists starting from
classical works such as the Perron-Frobenius the-
ory on positive and cone-preserving maps; this is,
however, outside the scope of this entry, and the
interested reader may refer to Farina and Rinaldi
(2000) for a recent book on the subject.

Monotone Dynamics

We divide this section in three parts; first we sum-
marize the main tools for checking monotonicity
with respect to orthant cones, then we recall some
of the main consequences of monotonicity for the
long-term behavior of solutions and, finally, we
study interconnections of monotone systems.

Checking Monotonicity

Orthant cones and the partial orders they induce

play a major role in biology applications. In fact,

for systems described by equations
X = f(x) &)

with X C R" openand f : X — R" of class C',

the following characterization holds:

Proposition 1 The system ¢ induced by the set
of differential equations (5) is cooperative if and
only if the Jacobian % is a Metzler matrix for all
xeX.

We recall that M is Metzler if m;; > 0 foralli #
j.Let A = diag[A,...,A,] with A; € {—1,1}
and assume that the orthant O = A0, +00)".
It is straightforward to see that x; >p x, <
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AXx; > Axp, where > denotes the partial order
induced by the positive orthant, while > de-
notes the order induced by O. This means that
we may check monotonicity with respect to O
by performing a simple change of coordinates
z = Ax. As acorollary:

Proposition 2 The system ¢ induced by the set
of differential equations (5) is monotone with
respect to > if and only ifA%A is a Metzler
matrix for all x € X.

Notice that conditions of Propositions 1 and 2
can be expressed in terms of sign constraints on
off-diagonal entries of the Jacobian; in biological
terms a sign constraint in an off-diagonal entry
amounts to asking that a particular species (mean-
ing chemical compound or otherwise) consis-
tently exhibit throughout the considered model’s
state space either an excitatory or inhibitory effect
on some other species of interest. Qualitative
diagrams showing effects of species on each other
are commonly used by biologists to understand
the working principles of biomolecular networks.

Remarkably, Proposition 2 has also an in-
teresting graph theoretical interpretation if one

thinks of sign (%) as the adjacency matrix of a

graph with nodes x; ... Xx, corresponding to the
state variables of the system.

Proposition 3 The system ¢ induced by the set
of differential equations (5) is monotone with
respect to > if and only if the directed graph
of adjacency matrix sign (%) (neglecting diag-
onal entries) has undirected loops with an even
number of negative edges.

This means in particular that % must be sign
symmetric (no predator-prey-type interactions)
and in addition that a similar parity property has
to hold on undirected loops of arbitrary length.
Sufficient conditions for strong monotonicity are
also known, for instance, in terms of irreducibil-
ity of the Jacobian matrix (Kamke’s condition;
see Hirsch and Smith 2003).

Asymptotic Dynamics
As previously mentioned, several important im-
plications of monotonicity are with respect to
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asymptotic dynamics. Let £ denote the set of
equilibria of ¢. The following result is due to
Hirsch (1985).

Theorem 1 Let ¢ be a strongly monotone sys-
tem with bounded solutions. There exists a zero
measure set Q such that each solution starting in
X\ Q converges toward £.

Global convergence results can be achieved for
important classes of monotone dynamics. For
instance, when increasing conservation laws are
present (see Banaji and Angeli 2010):

Theorem 2 Let X C K C R”" be any two proper
cones. Let ¢ on X be strongly monotone with
respect to the partial order induced by K and
preserving a K-increasing first integral. Then
every bounded solution converges.

Dually to first integrals, positive translation in-
variance of the dynamics also provide grounds
for global convergence (see Angeli and Sontag
2008a):

Theorem 3 Ifa system is strongly monotone and
Sulfills o(t, xo+hv) = @(t, xo)+hv forallh € R
and some v > 0, then all solutions with bounded

projections in v converge.

The class of tridiagonal cooperative systems has
also been investigated as a significant remarkable
class of global convergent dynamics; see Smillie
(1984). These arise from differential equations
X = f(x) when df; /0x; = Oforall |i — j| > L.

Finally it is worth emphasizing how signif-
icant for biological systems, often subject to
phenomena evolving at different timescales, are
also results on singular perturbations (Gedeon
and Sontag 2007; Wang and Sontag 2008).

Interconnected Monotone Systems

Results on interconnected monotone SISO sys-
tems are surveyed in Angeli and Sontag (2004a).
The main tool used in this context is the notion of
input-state and input—output steady-state charac-
teristic.

Definition 3 A control system admits a well-
defined input-state characteristic if for all
constant inputs u there exists a unique globally
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asymptotically stable equilibrium k, (%) and
the map k,(u) is continuous. If moreover the
equilibrium is hyperbolic, then k, is called a
non-degenerate characteristic. The input—output
characteristic is defined as k, (1) = h(ky(u)).

Let ¢ be system with a well-defined input—output
characteristic k,; we may define the iteration

up+1 = ky (ur). (6)

It is clear that fixed points of (6) correspond to
input values (and therefore to equilibria through
the characteristic map k,) of the closed-loop
system derived by considering the unity feedback
interconnection © = y. What is remarkable for
monotone systems is that both in the case of
positive and negative feedback and in a precise
sense, stability properties of the fixed points of
the discrete iteration (6) are matched by stability
properties of the corresponding associated solu-
tions of the original continuous time system. See
Angeli and Sontag (2004b) for the case of posi-
tive feedback interconnections and Angeli et al.
(2004) for applications of such results to synthe-
sis and detection of multistability in molecular
biology.

Multistability, in particular, is an important
dynamical feature of specific cellular systems and
can be achieved, with good degree of robustness
with respect to different types of uncertainties, by
means of positive feedback interconnections of
monotone subsystems. The typical input—output
characteristic k, giving rise to such behavior is,
in the SISO case, that of a sigmoidal function
intersecting in 3 points the diagonal u = y. Two
of the fixed points, namely, u; and u3 (see Fig. 1),
are asymptotically stable for (6), and the cor-
responding equilibria of the original continuous
time monotone system are also asymptotically
stable with a basin of attraction which covers
almost all initial conditions. The fixed-point u,
is unstable and the corresponding equilibrium is
also such (under suitable technical assumption
on the non-degeneracy of the I-O characteristic).
Extensions of similar criteria to the MIMO case
are presented in Enciso and Sontag (2005).
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Monotone Systems in Biology, Fig. 1 Fixed points of
a sigmoidal input—output characteristic

Negative feedback normally destroys mono-
tonicity. As a result, the likelihood of complex
dynamical behavior is highly increased. Never-
theless, input—output characteristics still can pro-
vide useful insight in the system’s dynamics at
least in the case of low feedback gain or, for
high feedback gains, in the presence of suffi-
ciently large delays. For instance, unity negative
feedback interconnection of a SISO monotone
system may give rise to a unique and globally
asymptotically stable fixed point of (6), thanks
to the decreasingness of the input—output char-
acteristic and as shown in Fig.2. Under such
circumstances a small-gain result applies and
global asymptotic stability of the corresponding
equilibrium is guaranteed regardless of arbitrary
input delays in the systems. See Angeli and
Sontag (2003) for the simplest small-gain theo-
rem developed in the context of SISO negative
feedback interconnections of monotone systems
and Enciso and Sontag (2006) for generalizations
to systems with multiple inputs as well as delays.
A generalization of small-gain results to the case
of MIMO systems which are neither in a positive
nor negative feedback configuration is presented
in Angeli and Sontag (2011).

Monotone Systems in Biology, Fig. 2 Fixed point of a
decreasing input—output characteristic

When the iteration (6) has an unstable fixed
point, for instance, it converges to a period-
2 solution, one may expect insurgence of
oscillations around the equilibrium through a
Hopf bifurcation provided sufficiently large
delays in the input channels are allowed. This
situation is analyzed in Angeli and Sontag
(2008b) and illustrated through the study of the
classical Golbeter’s model for the Drosophila’s
circadian rhythm.

Summary and Future Directions

Verifying that a control system preserves some
ordering of initial conditions provides impor-
tant and far-reaching implications for its dynam-
ics. Insurgence of specific behaviors can often
be inferred on the basis of purely qualitative
knowledge (as in the case of Hirsch’s generic
convergence theorem) as well as additional basic
quantitative knowledge as in the case of positive
and negative feedback interconnections of mono-
tone systems. For the above reasons, applications
in molecular biology of monotone system’s the-
ory are gradually emerging: for instance, in the
study of MAPK cascades or circadian oscilla-
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tions, as well as in Chemical Reaction Networks

Theory. Generally speaking, while monotonicity

as a whole cannot be expected in large networks,

experimental data shows that the number of neg-
ative feedback loops in biological regulatory net-
works is significantly lower than in a random
signed graph of comparable size Maayan et al.

(2008).

Analyzing the properties of monotone dynam-
ics may potentially lead to better understanding
of the key regulatory mechanisms of complex
networks as well as the development of bottom-
up approaches for the identification of meaning-
ful submodules in biological networks. Poten-
tial research directions may include both novel
computational tools and specific applications to
systems biology, for instance:

* Algorithms for detection of monotonicity with
respect to exotic orders (such as arbitrary
polytopic cones or even state-dependent
cones)

* Application of monotonicity-based ideas to
control synthesis (see, for instance, Aswani
and Tomlin (2009) where the special class of
piecewise affine systems is considered)

Cross-References

Deterministic Description of Biochemical Net-
works

Spatial Description of Biochemical Networks
Stochastic ~ Description of  Biochemical
Networks

Recommended Reading

For readers interested in the mathematical details
of monotone systems theory we recommend the
following:

Smith H (1995) Monotone dynamical systems:
an introduction to the theory of competitive
and cooperative systems. Mathematical sur-
veys and monographs, vol 41. AMS, Provi-
dence

A more recent technical survey of aspects related
to asymptotic dynamics of monotone systems is
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Hirsch MW, Smith H (2005) Monotone
dynamical systems (Chapter 4). In: Canada A,
Drabek P, Fonda A (eds) Handbook of
differential equations ordinary differential
equations, vol 2. Elsevier
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Abstract

The fundamental idea behind symbolic control
is to mitigate the complexity of a dynamic sys-
tem by limiting the set of available controls to
a typically finite collection of symbols. Each
symbol represents a control law that may be
either open or closed loop. With these symbols,
a simpler description of the motion of the system
can be created, thereby easing the challenges
of analysis and control design. In this entry,
we provide a high-level description of symbolic
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control; discuss briefly its history, connections,
and applications; and provide a few insights into
where the field is going.

Keywords

Abstraction; Complex systems; Formal methods

Introduction

Systems and control theory is powerful paradigm
for analyzing, understanding, and controlling dy-
namic systems. Traditional tools in the field for
developing and analyzing control laws, however,
face significant challenges when one needs to
deal with the complexity that arises in many
practical, real-world settings such as the control
of autonomous, mobile systems operating in un-
certain and changing physical environments. This
is particularly true when the tasks to be achieved
are not easily framed in terms of motion to a point
in the state space. One of the primary goals of
symbolic control is to mitigate this complexity
by abstracting some combination of the system
dynamics, the space of control inputs, and the
physical environment to a simpler, typically fi-
nite, model.

This fundamental idea, namely, that of ab-
stracting away the complexity of the underlying
dynamics and environment, is in fact a quite
natural one. Consider, for example, how you
give instructions to another person wanting to
go to a point of interest. It would be absurd
to provide details at the level of their actua-
tors, namely, with commands to their individual
muscles (or to carry the example to an even
more absurd extreme, to the dynamic components
that make up those muscles). Rather, very high-
level commands are given, such as “follow the
road,” “turn right,” and so on. Each of these
provides a description of what to do with the
understanding that the person can carry out those
commands in their own fashion. Similarly, the en-
vironment itself is abstracted, and only elements
meaningful to the task at hand are described.
Thus, continuing the example above, rather than
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providing metric information or a detailed map,
the instructions may use environmental features
to determine when particular actions should be
terminated and the next begun, such as “follow
the road until the second intersection, then turn
right.”

Underlying the idea of symbolic control is
the notion that rich behaviors can result from
simple actions. This premise was used in many
early robots and can be traced back at least to
the ideas of Norbert Wiener on cybernetics (see
Arkin 1998). It is at the heart of the behavior-
based approach to robotics (Brooks 1986). Sim-
ilar ideas can also be seen in the development
of a high-level language (G-codes) for Computer
Numerically Controlled (CNC) machines. The
key technical ideas in the more general setting
of symbolic control for dynamic systems can be
traced back to Brockett (1988) which introduced
ideas of formalizing a modular approach to pro-
gramming motion control devices through the
development of a Motion Description Language
(MDL).

The goal of the present work is to introduce the
interested reader to the general ideas of symbolic
control as well as to some of its application
areas and research directions. While it is not a
survey paper, a few select references are provided
throughout to point the reader in hopefully fruit-
ful directions into the literature.

Models and Approaches

There are at least two related but distinct ap-
proaches to symbolic control. Both begin with a
mathematical description of the system, typically
given as an ordinary differential equation of the
form

X=fxut), y=hx1 1)
where x is a vector describing the state of the
system, y is the output of the sensors of the
system, and u is the control input.

Under the first approach to symbolic control,
the focus is on reducing the complexity of the
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space of possible control signals by limiting the
system to a typically finite collection of control
symbols. Each of these symbols represents a
control law that may be open loop or may utilize
output feedback. For example, follow the road
could be a feedback control law that uses sensor
measurements to determine the position relative
to the road and then applies steering commands
so that the system stays on the road while simul-
taneously maintaining a constant speed. There
are, of course, many ways to accomplish the
specifics of this task, and the details will depend
on the particular system. Thus, an autonomous
four-wheeled vehicle equipped with a laser range
finder, an autonomous motorcycle equipped with
ultrasonic sensors, or an autonomous aerial vehi-
cle with a camera would each carry out the com-
mand in their own way, and each would have very
different trajectories. They would all, however,
satisfy the notion of follow the road. Description
of the behavior of the system can then be given in
terms of the abstract symbols rather than in terms
of the details of the trajectories.

Typically each of these symbols describes an
action that at least conceptually is simple. In
order to generate rich motions to carry out com-
plex tasks, the system is switched between the
available symbols. Switching conditions are of-
ten referred to as interrupts. Interrupts may be
purely time-based (e.g., apply a given symbol
for T seconds) or may be expressed in terms
of symbols representing certain environmental
conditions. These may be simple function of
the measurements (e.g., interrupt when an in-
tersection is detected) or may represent more
complicated scenarios with history and dynamics
(e.g., interrupt after the second intersection is
detected). Just as the input symbols abstract away
the details of the control space and of the mo-
tion of the system, the interrupt symbols abstract
away the details of the environment. For example,
intersection has a clear high-level meaning but
a very different sensor “signature” for particular
systems.

As a simple illustrative example, consider a
collection of control symbols designed for mov-
ing along a system of roads, {follow road, turn
right, turn left}, and a collection of interrupt



778

Motion Description Languages and Symbolic Con-
trol, Fig. 1 Simple example of symbolic control with a
focus on abstracting the inputs. Two systems, a snakelike
robot and an autonomous car, are given a high-level plan
in terms of symbols for navigating a right-hand turn.

symbols for triggering changes in such a setting,
{in intersection, clear of intersection}. Suppose
there are two vehicles that can each interpret
these symbols, an autonomous car and a snake-
like robot, as illustrated in Fig. 1. It is reasonable
to assume that the control symbols each describe
relatively complex dynamics that allow, for ex-
ample, for obstacle avoidance while carrying out
the action. Figure 1 illustrates a possible situation
where the two systems carry out the plan defined
by the symbolic sequence:

(Follow the road UNTIL in intersection)
(Turn right UNTIL clear of intersection)

The intent of this plan is for the system to nav-
igate a right-hand turn. As shown in the figure,
the actual trajectories followed by the systems
can be markedly different due in part to sys-
tem dynamics (the snakelike robot undulates,
while the car does not) as well as to different
sensor responses (when the car goes through,
there is a parked vehicle that it must navigate
around, while the snakelike robot found a clear
path during its execution). Despite these dif-
ferences, both systems achieve the goal of the
plan.

The collection of control and interrupt
symbols can be thought of as a language for
describing and specifying motion and are used

Motion Description Languages and Symbolic Control

i

The systems each interpret the same symbols in their
own ways, leading to different trajectories due both to
differences in dynamics and also to different sensors cues
as caused, for example, by the parked vehicle encountered
by the car in this scenario

to write programs that can be compiled into
an executable for a specific system. Different
rules for doing this can be established that
define different languages, analogous to different
high-level programming languages such as
C++, Java, or Python. Further details can
be found in, for example, Manikonda et al.
(1998).

Under the second approach, the focus is on
representing the dynamics and state space (or
environment) of the system in an abstract, sym-
bolic way. The fundamental idea is to lump all
the states in a region into a single abstract el-
ement and to then represent the entire system
with a finite number of these elements. Control
laws are then defined that steer all the states
in one element into some state in a different
region. The symbolic control system is then the
finite set of elements representing regions to-
gether with the finite set of controllers for moving
between them. It can be thought of essentially
as a graph (or more accurately as a transition
system) in which the nodes represent regions in
the state space and the edges represent achiev-
able transitions between them. The goal of this
abstraction step is for the two representations to
be equivalent (or at least approximately equiv-
alent) in that any motion that can be achieved
in one can be achieved in the other (in an ap-
propriate sense). Planning and analysis can then
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Symbollc model
and planning

Abstractlon

Motion Description Languages and Symbolic Con-
trol, Fig. 2 Simple example of symbolic control with a
focus on abstracting the system dynamics and environ-
ment. The initial environment (left image) is segmented
into different regions and simple controllers developed
for moving from region to region. The image shows two
possible controllers: one that actuates the robot through
a tight slither pattern to move forward by one region and

be done on the (simpler) symbolic model. Fur-
ther details on such schemes can be found in,
for example, Tabuada (2006) and Bicchi et al.
(2000).

As an illustrative example, consider as before
a snakelike robot moving through a right-hand
turn. In a simplified view of this second approach
to symbolic control, one begins by dividing the
environment up into regions and then defining
controllers to steer the robot from region to region
as illustrated in the left image in Fig.2. This
yields the symbolic model shown in the center
of Fig. 2. A plan is then developed on this model
to move from the initial position to the final
position. This planning step can take into account
restrictions on the motion and subgoals of the
task. Here, for example, one may want the robot
to stay to the right of the double yellow line that is
in its lane of traffic. The plan R, — R4y — R¢ —
Ry — Ry — Rjo is one sequence that drives
the system around the turn while satisfying the
lane requirement. Each transition in the sequence
corresponds to a control law. The plan is then
executed by applying the sequence of control
laws, resulting in the actual trajectory shown in
the right image in Fig. 2.

T EEES [
tard {
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Execution of plan

one that twists the robot to face the cell to the left before
slithering across and then reorienting. The combination of
regions and actions yields a symbolic abstraction (center
image) that allows for planning to achieve specific goals,
such as moving through the right-hand turn. Executing
this plan leads to a physical trajectory of the system (right
image)

Applications and Connections

The fundamental idea behind symbolic control,
namely, mitigating complexity by abstracting a
system, its environment, and even the tasks to be
accomplished into a simpler but (approximately)
equivalent model, is a natural and a powerful one.
It has clear connections to both hybrid systems
(Brockett 1993; Egerstedt 2002) and to quantized
control (Bicchi et al. 2006), and the tools from
those fields are often useful in describing and
analyzing systems with symbolic representations
of the control and of the dynamics. Symbolic
control is not, however, strictly a subcategory of
either field, and it provides a unique set of tools
for the control and analysis of dynamic systems.

Brockett’s original MDL was intended to
serve as a tool for describing and planning
robot motion. Inspired in part by this, languages
for motion continue to be developed. Some
of these extend and provide a more formal
basis for motion programming (Manikonda
et al. 1998) and interconnection of dynamic
systems into a single whole (Murray et al.
1992), while some are designed for specialized
dynamics or applications such as flight vehicles
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(Frazzoli et al. 2005), self-assembly (Klavins
2007), and other areas. In addition to studying
standard systems and control theoretic ideas,
including notions of reachability (Bicchi et al.
2002) and stability (Tarraf et al. 2008), the
framework of symbolic control introduces
interesting questions such as how to understand
the reduction of complexity that can be achieved
for a given collection of symbols (Egerstedt and
Brockett 2003).

While there are many application areas of
symbolic control, the one that is perhaps most
active is that of motion planning for autonomous
mobile robots (Belta et al. 2007). As illustrated
in Figs.1 and 2, symbolic control allows the
planning problem (i.e., the determination of how
to achieve a desired task) to be separated from
the complexities of the dynamics. The approach
has been particularly fertile when coupled with
symbolic descriptions of the tasks to be achieved.
While point-to-point commands are useful, and
can be often thought of as symbols themselves
from which to build more complicated com-
mands, most tasks that one would want mobile
robots to carry out involve combinations of spa-
tial goals (move to a certain location), sequencing
(first do this and then do that) or other tempo-
ral requirements (repeatedly visit a collection of
regions), as well as safety or other restrictions
(avoid obstacles or regions that are dangerous
for the robot to traverse). Such tasks can be
described using a variety of temporal logics.
These are, essentially, logic systems that include
rules related to time in addition to the standard
Boolean operators. These tasks can be combined
with a symbolic description of a system and then
automated tools used both to check whether the
system is able to perform the desired task and
to design plans that ensure the system will do
so (Fainekos et al. 2009). To ensure that results
on the abstract, symbolic system are valid on
the original dynamic system, methods exist for
guaranteeing the equivalence of the two mod-
els, in an appropriate sense (Girard and Pappas
2007).

Motion Description Languages and Symbolic Control

Summary and Future Directions

Symbolic control proceeds from the basic goal
of mitigating the complexity of dynamic systems,
especially in real-world scenarios, to yield a sim-
plification of the problems of analysis and control
design. It builds upon results from diverse fields
while also contributing new ideas to those areas,
including hybrid system theory, formal languages
and grammars, and motion planning. There are
many open, interesting questions that are the
subject of ongoing investigations as well as the
genesis of future research.

One particularly fruitful direction is that of
combining symbolic control with stochasticity.
Systems that operate in the real world are subject
to noise with respect both to their inputs (noisy
actuators) and to their outputs (noisy sensors).
Recent work along these lines can be found in the
formal methods approach to motion planning and
in hybrid systems (Abate et al. 2011; Lahijanian
et al. 2012). The fundamental idea is to use
a Markov chain, Markov decision process, or
similar model as the symbolic abstraction and
then, as in all symbolic control, to do the analysis
and planning on this simpler model.

Another interesting direction is to address
questions of optimality with respect to the
symbols and abstractions for a given dynamic
system. Of course, the notion of “optimal” must
be made clear, and there are several reasonable
notions one could define. There is a clear
trade-off between the complexity of individual
symbols, the number of symbols used in the
motion “alphabet,” and the complexity in terms
of, say, average number of symbols required to
code programs that achieve a given set of tasks.
The complexity of a necessary alphabet is also
related to the variety of tasks the system might
need to perform. An autonomous vacuuming
robot is likely to need far fewer symbols in its
library than an autonomous vehicle that must
operate in everyday traffic conditions and respond
to unusual events such as traffic jams. The
question of the “right” set of symbols can also
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be of use in efficient descriptions of motion in
domains such as dance (Baillieul and Ozcimder
2012).

It is intuitively clear that to handle complex
scenarios and environments, a hierarchical ap-
proach is likely needed. Organizing symbols into
progressively higher levels of abstraction should
allow for more efficient reasoning, planning, and
reaction to real-world settings. Such structures
already appear in existing works, such as in
the behavior-based approach of Brooks (1986),
in the extended Motion Description Language
in Manikonda et al. (1998), and in the Spatial
Semantic Hierarchy of Kuipers (2000). Despite
these efforts, there is still a need for a rigorous
approach for analyzing and designing symbolic
hierarchical systems.

The final direction discussed here is that of the
connection of symbolic control to emergent be-
havior in large groups of dynamic agents. There
are a variety of intriguing examples in nature in
which large numbers of agents following sim-
ple rules produce large-scale, coherent behavior,
including in fish schools and termite and ant
colonies (Johnson 2002). How can one predict
the global behavior that will emerge from a large
collection of independent agents following sim-
ple rules (symbols)? How can one design a set of
symbols to produce a desired collective behavior?
While there has been some work in symbolic con-
trol for self-assembling systems (Klavins 2007),
this general topic remains a rich area for research.

Cross-References

Multi-vehicle Routing
Robot Motion Control
Walking Robots
Wheeled Robots

Recommended Reading

Brockett’s original paper Brockett (1988) is a sur-
prisingly short but informational read. More thor-

781

ough descriptions can be found in Manikonda
et al. (1998) and Egerstedt (2002). An excellent
description of symbolic control in robotics, par-
ticularly in the context of temporal logics and
formal methods, can be found in Belta et al.
(2007). There are also several related articles in
a 2011 special issue of the IEEE Robotics and
Automation magazine (Kress-Gazit 2011).
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Abstract

In this chapter we review motion planning al-
gorithms for ships, rigs, and autonomous marine
vehicles. Motion planning includes path and tra-
jectory generation, and it goes from optimized
route planning (off-line long-range path genera-
tion through operating research methods) to re-
active on-line trajectory reference generation, as
given by the guidance system. Crucial to the ma-
rine systems case is the presence of environmen-
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tal external forces (sea state, currents, winds) that
drive the optimized motion generation process.

Keywords

Configuration space; Dynamic programming;
Grid search; Guidance controller; Guidance sys-
tem; Maneuvering; Motion plan; Optimization
algorithms; Path generation; Route planning;
Trajectory generation; World space

Introduction

Marine control systems include primarily ships
and rigs moving on the sea surface, but also
underwater systems, manned (submarines) or un-
manned, and eventually can be extended to any
kind of off-shore moving platform.

A motion plan consists in determining what
motions are appropriate for the marine system to
reach a goal, or a target/final state (LaValle 2006).
Most often, the final state corresponds to a geo-
graphical location or destination, to be reached by
the system while respecting constraints of phys-
ical and/or economical nature. Motion planning
in marine systems hence starts from route plan-
ning, and then it covers desired path generation
and ftrajectory generation. Path generation in-
volves the determination of an ordered sequence
of states that the system has to follow; trajectory
generation requires that the states in a path are
reached at a prescribed time.

Route, path, and trajectory can be generated
off-line or on-line, exploiting the feedback from
the system navigation and/or from external
sources (weather forecast, etc.). In the feedback
case, planning overlaps with the guidance system,
i.e., the continuous computation of the reference
(desired) state to be used as reference input by
the motion control system (Fossen 2011).

Formal Definitions and Settings

Definitions and classifications as in Goerzen et al.
(2010) and Petres et al. (2007) are followed
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throughout the section. The marine systems under
considerations live in a physical space referred
to as the world space (e.g., a submarine lives in
a 3-D Euclidean space). A configuration q is a
vector of variables that define position and orien-
tation of the system in the world space. The set
of all possible configurations is the configuration
space, or C-space. The vector of configuration
and configuration rate of changes is the state
of the system x = [qTqT]T, and the set of
all the possible states is the state space. The
kino-dynamic model associated to the system is
represented by the system state equations. The
regions of C-space free from obstacles are called
C-free.

The path planning problem consists in deter-
mining a curve y: [0,1] — C-free,s — y(s),
with y(0) corresponding to the initial configu-
ration and y(1) corresponding to the goal con-
figuration. Both initial and goal configurations
are in C-free. The trajectory planning problem
consists in determining a curve y and a time
law: t — s(t) s.t. y(s) = y(s(?)). In both
cases, either the path or the trajectory must be
compatible with the system state equations. In
the following, definitions of motion algorithm
properties are given referring to path planning,
but the same definitions can be easily extended
to trajectory planning.

A motion planning algorithm is complete if
it finds a path when one exists, and returns a
proper flag when no path exists. The algorithm is
optimal when it provides the path that minimizes
some cost function J. The (strictly positive) cost
function J is isotropic, when it depends only
on the system configuration (J = J(q)), or
anisotropic, when it depends also on an external
force field f (e.g., sea currents, sea state, weather
perturbations ) (J = J(q.f)). The cost function
J induces a pseudometric in the configuration
space; the distance d between configurations q
and g, through the path y is the “cost-to-go” from

q) to g, along y:
d(q,.9,) = fol I (Vg1g, () . B)ds (D

An optimal motion planning problem is:
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— Static if there is perfect knowledge of the
environment at any time, dynamic otherwise

— Time-invariant when the environment does
not evolve (e.g., coastline that limits the C-
free subspace), time-variant otherwise (e.g.,
other systems — ships, rigs — in navigation)

— Differentially constrained if the system state
equations act as a constraint on the path,
differentially unconstrained otherwise
In practice, optimal motion planning problems

are solved numerically through discretization of

the C-space. Resolution completeness/optimality
of an algorithm implies the achievement of the
solution as the discretization interval tends to

zero. Probabilistic completeness/optimality im-

plies that the probability of finding the solution

tends to 1 as the computation time approaches
infinity. Complexity of the algorithm refers to the
computational time required to find a solution as

a function of the dimension of the problem.

The scale of the motion w.r. to the scale of the
system defines the specific setting of the problem.
In cargo ships route planning from one port call
to the next, the problem is stated first as static,
time-invariant, differentially unconstrained path
planning problem; once a large-scale route is thus
determined, it can be refined on smaller scales,
e.g., smoothing it, to make it compatible with ship
maneuverability. Maneuvering the same cargo
ship in the approaches to a harbor has to be
casted as a dynamic, time-variant, differentially
constrained trajectory planning problem.

Large-Scale, Long-Range Path
Planning

Route determination is a typical long-range path
planning problem for a marine system. The
geographical map is discretized into a grid, and
the optimal path between the approaches of the
starting and destination ports is determined as a
sequence of adjacent grid nodes. The problem
is taken as time-invariant and differentially
unconstrained, at least in the first stages of
the procedure. It is assumed that the ship will
cruise at its own (constant) most economical
speed to optimize bunker consumption, the major
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source of operating costs (Wang and Meng
2012). Navigation constraints (e.g., allowed ship
traffic corridors for the given ship class) are
considered, as well as weather forecasts and
predicted/prevailing currents and winds. The
cost-to-go Eq. (1) is built between adjacent nodes
either in terms of time to travel or in terms of
operating costs, both computed correcting the
nominal speed with the environmental forces.
Optimality is defined in terms of shortest
time/minimum operating cost; the anisotropy
introduced by sea/weather conditions is the
driving element of the optimization, making
the difference with respect to straightforward
shortest route computation. The approach is
iterated, starting with a coarse grid and then
increasing grid resolution in the neighborhood of
the previously found path.

The most widely used optimization approach
for surface ships is dynamic programming
(LaValle 2006); alternatively, since the deter-
mination of the optimal path along the grid nodes
is equivalent to a search over a graph, the A*
algorithm is applied (Delling et al. 2009). As the
discretization grid gets finer, system dynamics are
introduced, accounting for ship maneuverability
and allowing for deviation from the constant
ship speed assumption. Dynamic programming
allows to include system dynamics at any level
of resolution desired; however, when system
dynamics are considered, the problem dimension
grows from 2-D to 3-D (2-D space plus time).

In the case of underwater navigation, path
planning takes place in a 3-D world space, and
the inclusion of system dynamics makes it a
4-D problem; moreover, bathymetry has to be
included as an additional constraint to shape
the C-free subspace. Dynamic programming
may become unfeasible, due to the increase
in dimensionality. Computationally feasible
algorithms for this case include global search
strategies with probabilistic optimality, as genetic
algorithms (Alvarez et al. 2004), or improved
grid-search methods with resolution optimality,
as FM* (Petres et al. 2007).

Environmental force fields are intrinsically dy-
namic fields; moreover, the prediction of such
fields at the moment of route planning may be
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updated as the ship is in transit along the route.
The path planning algorithms can/must be rerun,
over a grid in the neighborhood of the nominal
path, each time new environmental information
becomes available. Kino-dynamic model of the
ship must be included, allowing for deviation
from the established path and ship speed varia-
tion around the nominal most economical speed.
The latter case is particularly important: increas-
ing/decreasing the speed to avoid a weather per-
turbation keeping the same route may indeed
result in a reduced operating cost with respect
to path modifications keeping a constant speed.
This implies that the timing over the path must be
specified. Dynamic programming is well suited
for this transition from path to trajectory gen-
eration, and it is still the most commonly used
approach to trajectory (re)planning in reaction to
environmental predictions update.

When discretizing the world space, the min-
imum grid size should still be large enough to
allow for ship maneuvering between grid nodes.
This is required for safety, to allow evasive ma-
neuvering when other ships are at close ranges,
and for the generation of smooth, dynamics-
compliant trajectories between grid points. This
latter aspect bridges motion planning with guid-
ance.

Trajectory Planning, Maneuvering
Generation, and Guidance Systems

Once a path has been established over a spatial
grid, a continuous reference has to be generated,
linking the nodes over the grid. The generation
of the reference trajectory has to take into ac-
count all the relevant dynamic properties and
constraints of the marine system, so that the
reference motion is feasible. In this scenario, the
path/trajectory nodes are way-points, and the tra-
jectory generation connects the way-points along
the route. The approaches to trajectory generation
can be divided between those that do not compute
explicitly in advance the whole trajectory and
those that do.

Among the approaches that do not need ex-
plicit trajectory computation between way-points,
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a guidance controller (Adapted from Fossen (2011))

the most common is the line-of-sight (LOS)
guidance law (Pettersen and Lefeber 2001). LOS
guidance can be considered a path generation,
more than a trajectory generation, since it does
not impose a time law over the path; it computes
directly the desired ship reference heading
on the basis of the current ship position and
the previous and next way-point positions. A
review of other guidance approaches can be
found in Breivik and Fossen (2008), where
maneuvering along the path and steering around
the way-points are also discussed. From such a
set of different maneuvers, a library of motion
primitives can be built (Greytak and Hover
2010), so that any motion can be specified as
a sequence of primitives. While each primitive
is feasible by construction, an arbitrary sequence
of primitives may not be feasible. An optimized
search algorithm (dynamic programming, A*) is
again needed to determine the optimal feasible
maneuvering sequence.

Path/trajectory planning explicitly computing
the desired motion among two way-points may
include a system dynamic model, or may not.
In the latter case, a sufficiently smooth curve
that connects two way-points is generated, for
instance, as splines or as Dubins paths (LaValle
2006). Curve generation parameters must be set
so that the “sufficiently smooth” part is guaran-
teed. After curve generation, a trim velocity is
imposed over the path (path planning), or a time
law is imposed, e.g., smoothly varying the system
reference velocity with the local curvature radius.

Planners that do use a system dynamic model
are described in Fossen (2011) as part of the
guidance system. In practice, the dynamic model

is used in simulation, with a (simulated) feed-
back controller (guidance controller), the next
way-point as input, and the (simulated) system
position and velocity as output. The simulated
results are feasible maneuvers by construction
and can be given as reference position/velocity to
the physical control system (Fig. 1).

Summary and Future Directions

Motion planning for marine control systems em-
ploys methodological tools that range from oper-
ating research to guidance, navigation, and con-
trol systems. A crucial role in marine applica-
tions is played by the anisotropy induced by the
dynamically changing environmental conditions

(weather, sea state, winds, currents — the external

force fields). The quality of the plan will depend

on the quality of environmental information and
predictions.

While motion planning can be considered a
mature issue for ships, rigs, and even standalone
autonomous vehicles, current and future research
directions will likely focus on the following
items:

— Coordinated motion planning and obstacle
avoidance for teams of autonomous surface
and underwater vehicles (Aguiar and Pascoal
2012; Casalino et al. 2009)

— Naval traffic regulation compliant maneuver-
ing in restricted spaces and collision evasion
maneuvering (Tam and Bucknall 2010)

— Underwater intervention robotics (Antonelli
2006; Sanz et al. 2010)
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Cross-References

Control of Networks of Underwater Vehicles
Mathematical Models of Marine Vehicle-Ma-
nipulator Systems

Mathematical Models of Ships and Underwater
Vehicles

Underactuated Marine Control Systems

Recommended Reading

Motion planning is extensively treated in LaValle
(2006), while the essential reference on marine
control systems is the book by Fossen (2011).
Goerzen et al. (2010) reviews motion planning
algorithms in terms of computational properties.
The book Antonelli (2006) includes the treatment
of planning and control in intervention robots.
The papers Breivik and Fossen (2008) and Tam
et al. (2009) provide a survey of both termi-
nology and guidance design for both open and
close space maneuvering. In particular, Tam et al.
(2009) links motion planning to navigation rules.
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Abstract

Motion planning refers to the design of an open-
loop or feedforward control to realize prescribed
desired paths for the system states or outputs. For
distributed-parameter systems described by par-
tial differential equations (PDEs), this requires to
take into account the spatial-temporal system dy-
namics. Here, flatness-based techniques provide
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a systematic inversion-based motion planning ap-
proach, which is based on the parametrization of
any system variable by means of a flat or basic
output. With this, the motion planning problem
can be solved rather intuitively as is illustrated for
linear and semilinear PDEs.

Keywords

Basic output; Flatness; Formal integration; For-
mal power series; Trajectory assignment; Trajec-
tory planning; Transition path

Introduction

Motion planning or trajectory planning refers to
the design of an open-loop control to realize
prescribed desired temporal or spatial-temporal
paths for the system states or outputs. Examples
include smart structures with embedded actua-
tors and sensors such as adaptive optics in tele-
scopes, adaptive wings or smart skins, thermal
and reheating processes in steel industry, and
deep drawing, start-up, shutdown, or transitions
between operating points in chemical engineer-
ing, as well as multi-agent deployment and for-
mation control (see, e.g., the overview in Meurer
2013).

For the solution of the motion planning and
tracking control problem for finite-dimensional
linear and nonlinear systems, differential flat-
ness as introduced in Fliess et al. (1995) has
evolved into a well-established inversion-based
technique. Differential flatness implies that any
system variable can be parametrized in terms of
a flat or a so-called basic output and its time
derivatives up to a problem-dependent order. As
a result, the assignment of a suitable desired
trajectory for the flat output directly yields the
respective state and input trajectories to realize
the prescribed motion. Flatness can be adapted to
systems governed by partial differential equations
(PDEs). For this, different techniques have been
developed utilizing operational calculus or spec-
tral theory for linear PDEs, (formal) power series
for linear PDEs, and PDEs involving polynomial
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nonlinearities as well as formal integration for
semilinear PDEs using a generalized Cauchy-
Kowalevski approach. To illustrate the principle
ideas and the evolving research results starting
with Fliess et al. (1997), subsequently different
techniques are introduced based on selected ex-
ample problems. For this, the exposition is pri-
marily restricted to parabolic PDEs with a brief
discussion of motion planning for hyperbolic
PDEs before concluding with possible future re-
search directions.

Linear PDEs

In the following, a scalar linear diffusion-reaction
equation is considered in the state variable x (z, t)
with boundary control u(t) governed by

ix(z,t) = afx(z, t) +rx(zt) (1a)
0,x(0,1) =0, x(1,¢) = u(?) (1b)
x(z,0) = 0. (1c)

This PDE describes a wide variety of thermal and
fluid systems including heat conduction and tubu-
lar reactors. Herein, r € R refer to the reaction
coefficient and the initial state is without loss of
generality assumed zero. In order to solve the
motion planning problem for (1), a feedforward
control ¢t +— u*(t) is determined to realize a
finite-time transition between the initial state and
a final stationary state x7.(z) to be imposed for
t>T.

Formal Power Series
By making use of the formal power series expan-
sion of the state variable

¥ > 2) = ;xn(r)% @)

the evaluation of (1) results in the 2nd-order
recursion

n>2 (3a)

(3b)

fn(t) = ar-’%n—Z(Z) - rxn—Z(Z)s

x1(t) = 0.
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In order to be able to solve (3) for X,(¢), it

is hence required to impose Xo(t) = X(0,¢).
Denoting y(¢) = x(0, t) or respectively
Xo(t) = y(1) (o)

implies

Yo (1) = (0, = r)" 0 y(@),  Xons1(1) = 0. (4

Hence, any series coefficient in (2) can be differ-
entially parametrized by means of y(¢). Taking
into account the inhomogeneous boundary con-
dition in (1b), i.e.,

X (1)

X2on (t )
u(t) = x(1,1) _,;J Z @)
yields that y(t) = x(0,7) can be considered as a
flat or basic output. In particular, by prescribing
a suitable trajectory ¢ +— y*(t) € C*°(R) for
y(t), the evaluation of (5) yields the feedforward
control u*(¢) which is required to realize the
spatial-temporal path x*(z,¢) obtained from the
substitution of y*(¢) into (2) with coefficients
parametrized by (4). This, however, relies on the
uniform convergence of (2) in view of (4) with at
least a unit radius of convergence in z. For this,
the notion of a Gevrey class function is needed
(Rodino 1993).

Definition 1 (Gevrey class) The function y(¢)
is in Gp4(A), the Gevrey class of order « in
A C R, if y(t) € C*®(A) and for every closed
subset A’ of A there exists a D > 0 such that
sup,e |8 y(1)] < D™ (n))”.

The set Gp 4(A) forms a linear vector space and
a ring with respect to the arithmetic product of
functions which is closed under the standard rules
of differentiation. Gevrey class functions of order
o < 1 are entire and are analyticif o« = 1.

Theorem 1 Ler y(t) € Gpo(R) for « < 2,
then the formal power series (2) with coefficients
(4) converges uniformly with infinite radius of
convergence.
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The proof of this result can be, e.g., found in
Laroche et al. (2000) and Lynch and Rudolph
(2002) and relies on the analysis of the recursion
(3) taking into account the assumptions on the
function y(z).

Trajectory Assignment

To apply these results for the solution of the
motion planning problem to achieve finite-time
transitions between stationary profiles, it is cru-
cial to properly assign the desired trajectory y*(t)
for the basic output y(z). For this, observe that
stationary profiles x°(z) = x°(z;y*) are due
to the flatness property (Classically stationary
solutions are to be defined in terms of stationary
input values x*(1) = u®.) governed by

0= 02x*(z) + rx*(2)
0.x°(0) =0, x%(0) =y".

(6a)
(6b)

Hence, assigning different y* results in different
stationary profiles x*(z; y*). The connection be-
tween an initial stationary profile xj(z; yj) and a
final stationary profile x7.(z; ¥}) is achieved by
assigning y*(¢) such that

yi(T) = yr
o' y*(T) =0,

y*(0) = .
97 y*(0) =0, n>1.
This implies that y*(¢) has to be locally nonan-
alytic at ¢+ € {0, T} and in view of the previous
discussion has thus to be a Gevrey class function
of order & € (1, 2). For specific problems differ-
ent functions have been suggested fulfilling these
properties. In the following, the ansatz

Y = yo + O —y0)@ry () (Ta)
is used with
0, £<0
O, (1) = % te(0.T) (7b)
1, t>T

for hr,(t) = exp(—[t/T(1—¢t/T)]77)ift €
(0,T) and A7, (t) = O else. It can be shown that
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PDEs, Fig. 1 Simulated
spatial-temporal transition
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(7b) is a Gevrey class function of ordera = 1 +
1/y (Fliess et al. 1997). Alternative functions are
presented, e.g., in Rudolph (2003).

Simulation Example

In order to illustrate the results of the motion
planning procedure described above, let r = —1
in (1). The differential parametrization (4) of the
series coefficients is evaluated for the desired
trajectory y*(¢) defined in (7) for yj = 0 and
vy = 1 with the transition time 7 = 1 and
the parameter y = 2. With this, the finite-
time transition between the zero initial stationary
profile x; (z) = 0 and the final stationary profile
x7(2) = x3.(z) = y§ cosh(z) is realized along the
trajectory x(0,7) = y*(¢). The corresponding

feedforward control and spatial-temporal transi-
tion path are shown in Fig. 1.

Extensions and Generalizations

The previous considerations constitute a first
systematic approach to solve motion planning
problems of systems governed by PDEs. The
underlying techniques can be, however, further
generalized to address coupled systems of
PDEs, certain classes of nonlinear PDEs (see
also section “Semilinear PDEs”), or in-domain
control.

While the application of formal power series
is restricted to boundary control diffusion-con-
vection-reaction systems, the approach can be
combined with so-called resummation techniques
to overcome convergence issues such as slowly
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converging or even divergent series expansions
(Laroche et al. 2000; Meurer and Zeitz 2005).

Flatness-based techniques for motion planning
can be also embedded into an operator theoretic
context using semigroup theory by restricting
the analysis to so-called Riesz spectral operators.
This enables to analyze coupled systems of linear
PDEs with both boundary and in-domain control
in a single and multiple spatial coordinates with
a common framework (Meurer 2011, 2013). In
addition, experimental results for flexible beam
and plate structures with embedded piezoelectric
actuators confirm the applicability of this design
approach and the achievable high tracking ac-
curacy when transiently shaping the deflection
profile (Schrock et al. 2013).

Semilinear PDEs
Flatness can be extended to semilinear PDEs.

This is subsequently illustrated for the diffusion-
reaction system

9,x(z,1) = 32x(z,1) + r(x(z,1)) (8a)
0.x(0,1) =0, x(1,t) = u(r) (8b)
x(z,0) =0 (8¢c)

with boundary input u(¢). Similar to the previous
section, the motion planning problem refers to the
determination of a feedforward control ¢ +> u*(¢)
to realize finite-time transitions starting at the
initial profile xj(z) = x(z,0) = 0 to achieve a
final stationary profile x7 (z) fort > T.

Formal Power Series

If r(x(z,t)) is a polynomial in x(z,f) or an
analytic function, then similar to the previous sec-
tion, formal power series can be applied to solve
the motion planning problem. This, however, re-
lies on the successive evaluation of Cauchy’s
product formula. As an example, consider

r(x(z,1)) = rix(z.1) + rax(z, 1),

then the formal power series ansatz (2) results in
the recursion
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fn(l‘) = a[)%n—Z(t) - rlxn—Z(t)

n—2
hY (”.)fc,- (Ofmy (0, =2
j=o \J
(9a)

£1(t) = 0. (9b)

Similar to the linear setting in the section “Linear
PDEs” above, the recursion can be solved for
X (¢) by imposing Xo(¢) = x(0, t) or respectively

Xo(1) = y(1). (9¢)

As a result, also in this nonlinear setting any
series coefficient can be expressed in terms of
y(t) and its time derivatives. Hence, y(t) =
x(0,1) denotes a basic output for the semilinear
PDE (8). The uniform series convergence can
be analyzed by restricting any trajectory y(¢) to
a certain Gevrey order « while simultaneously
restricting the absolute values of d, r; and r,
(Dunbar et al. 2003; Lynch and Rudolph 2002).
These restrictions can be approached using, e.g.,
resummation techniques to sum slowly converg-
ing or divergent series to a meaningful limit.
The reader is therefore referred to Meurer and
Zeitz (2005) or Meurer and Krstic (2011), with
the latter introducing a PDE-based approach for
formation control of multi-agent systems.

Formal Integration

A generalization of these results has been re-
cently suggested in Schorkhuber et al. (2013) by
making use of an abstract Cauchy-Kowalevski
theorem in Gevrey classes. In order to illustrate
this, solve (8a) for agx(z, t) and formally inte-
grate with respect to z taking into account the
boundary conditions (8b). This yields the implicit
solution

x(z,t) = x4(0,1) ) p[atx(q,l)
o Jo

—r(x(q.1))]dgdp
u(t) = x(1,1),

(10a)
(10b)
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which can be used to develop to a flatness-based

design systematics for motion planning given
semilinear PDEs. For this, introduce

y() = x(0.1), (11)

and rewrite (10b) in terms of the sequence of
functions (x™(z,1))%2, according to

xO@1) =y
< P
x" (1) = xO(z, 1) —1—/ / [B,x(")(q,t)
o Jo

—r(x"(q,1))]dgdp.

(12a)

(12b)

From this, it is obvious that y(¢) denotes a ba-
sic output differentially parametrizing the state
variable x(z,¢) = lim,_ x(")(z,t) and the
boundary input u(t) = x(1,¢) provided that
the limit exists as n — o0o. As is shown in
Schorkhuber et al. (2013) by making use of
scales of Banach spaces in Gevrey classes and
abstract Cauchy-Kowalevski theory, the conver-
gence of the parametrized sequence of functions
(x™(z, 1))52, can be ensured in some compact
subset of the domain z € [0, 1]. Besides its
general setup this approach provides an itera-
tion scheme, which can be directly utilized for
a numerically efficient solution of the motion
planning problem.

Simulation Example
Let the reaction be subsequently described by
r(x(z,t)) = sin(Qrwx(z,1)). (13)
The iterative scheme (12) is evaluated for the
desired trajectory y*(¢) defined in (7) for yj = 0
and y; = 1 with the transition time 7 = 1 and
the parameter y = 1, i.e., the desired trajectory
is of Gevrey order « = 2. The resulting feed-
forward control u*(¢) and the spatial-temporal
transition path resulting from the numerical so-
lution of the PDE are depicted in Fig.2. The
desired finite-time transition between the zero
initial stationary profile x;(z) = 0 and the final
stationary profile x7 (z) = x}.(z) determined by
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0 = 02x*(2) + r(x*(2)) (14a)
0.x°(0) =0, x(0) =y". (14b)

is clearly achieved along the prescribed path
y*(o).

Extensions and Generalizations
Generalizations of the introduced formal integra-
tion approach to solve motion planning problems
for systems of coupled PDEs are, e.g., provided
in Schorkhuber et al. (2013). Moreover, linear
diffusion-convection-reaction systems with spa-
tially and time-varying coefficients defined on
a higher-dimensional parallelepipedon are ad-
dressed in Meurer and Kugi (2009) and Meurer
(2013).

Hyperbolic PDEs

Hyperbolic PDEs exhibiting wavelike dynam-
ics require the development of a design sys-
tematics explicitly taking into account the finite
speed of wave propagation. For linear hyperbolic
PDEs, operational calculus has been success-
fully applied to determine the state and input
parametrizations in terms of the basic output
and its advanced and delayed arguments (Pe-
tit and Rouchon 2001, 2002; Rouchon 2001;
Rudolph and Woittennek 2008; Woittennek and
Rudolph 2003). In addition, the method of char-
acteristics can be utilized to address both linear
and quasi-linear hyperbolic PDEs. Herein, a suit-
able change of coordinates enables to reformulate
the PDE in a normal form, which can be (for-
mally) integrated in terms of a basic output. With
this, also an efficient numerical procedure can
be developed to solve motion planning problems
for hyperbolic PDEs (Woittennek and Mounier
2010).

Summary and Future Directions
Motion planning constitutes an important design

step when solving control problems for systems
governed by PDEs. This is particularly due to
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the increasing demands on quality, accuracy, and
efficiency, which require to turn away from the
pure stabilization of an operating point toward
the realization of specific start-up, transition, or
tracking tasks. In view of these aspects, future re-
search directions might deepen and further evolve
the following:

— Semi-analytic design techniques taking into
account suitable approximation schemes for
complex-shaped spatial domains

— Nonlinear PDEs and coupled systems of non-
linear PDEs with boundary and in-domain
control

— Applications arising, e.g., in aeroelasticity,
micromechanical systems, fluid flow, and
fluid-structure interaction.
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Abstract

A basic model due to Sharp which is useful in
the analysis of motorcycle behavior and control
is developed. This model is based on linearization
of a bicycle model introduced by Whipple, but is
augmented with a tire model in which the lateral
tire force depends in a dynamic fashion on tire be-
havior. This model is used to explain some of the
important characteristics of motorcycle behavior.
The significant dynamic modes exhibited by this
model are capsize, weave, and wobble.

Keywords

Bicycle; Capsize; Counter-steering; Motorcycle;
Single-track vehicle; Tire model; Weave; Wobble

Introduction

The bicycle is mankind’s ultimate solution
to the quest for a human-powered vehicle
(Herlihy 2006). The motorcycle just makes riding
more fun. Bicycles, motorcycles, scooters, and
mopeds are all examples of single-track vehicles
and have similar dynamics. The dynamics of a
motorcycle are considerably more complicated
than that of a four-wheel vehicle such as a
car. The first obvious difference in behavior
is stability. An unattended upright stationary
motorcycle is basically an inverted pendulum
and is unstable about its normal upright position,
whereas a car has no stability issues in the
same configuration. Another difference is that a
motorcycle must lean when cornering. Although
a car leans a little due to suspension travel, there
is no necessity for it to lean in cornering. A
perfectly rigid car would not lean. Furthermore,
beyond low speeds, the steering behavior of a
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motorcycle is not intuitive like that of a car.
To turn a car right, the driver simply turns the
steering wheel right; on a motorcycle, the rider
initially turns the handlebars to the left. This is
called counter-steering and is not intuitive.

A Basic Model

To obtain a basic motorcycle model, we start
with four rigid bodies: the rear frame (which
includes a rigidly attached rigid rider), the front
frame (includes handlebars and front forks), the
rear wheel, and the front wheel; see Fig. 1. We
assume that both frames and wheels have a plane
of symmetry which is vertical when the bike is
in its nominal upright configuration. The front
frame can rotate relative to the rear frame about
the steering axis; the steering axis is in the plane
of symmetry of each frame and in the nominal
upright configuration of the bike, the angle it
makes with the vertical is called the rake angle
or caster angle and is denoted by €. The rear
wheel rotates relative to the rear frame about an
axis perpendicular to the rear plane of symmetry
and is symmetrical with respect to this axis. The
same relationship holds between the front wheel
and the front frame. Although each wheel can
be three dimensional, we model the wheels as
terminating in a knife edge at their boundaries
and contact the ground at a single point. Points
Q and P are the points on the ground in contact
with the front and rear wheels, respectively.

Motorcycle Dynamics and Control, Fig. 1 Basic
model
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Each of the above four bodies are described by
their mass, mass center location, and a 3 x 3 in-
ertia matrix. Two other important parameters are
the wheelbase w and the trail c. The wheelbase
is the distance between the contact points of the
two wheels in the nominal configuration, and the
trail is the distance from the front wheel contact
point Q to the intersection S of the steering axis
with the ground. The trail is normally positive,
that is, Q is behind S. The point G locates the
mass center of the complete bike in its nominal
configuration, whereas G4 is the location of the
mass center of the front assembly (front frame
and wheel).

Description of Motion

Considering a right-handed reference frame e =
(é1, €2, €3) with origin O fixed in the ground, the
bike motion can be described by the location of
the rear wheel contact point P relative to O,
the orientation of the rear frame relative to e,
and the orientation of the front frame relative
to the rear frame; see Fig.2. Assuming the bike
is moving along a horizontal plane, the location
of P is usually described by Cartesian coordi-
nates x and y. Let reference frame b be fixed
in the rear frame with 51 and 53 in the plane
of symmetry with Z;I along the nominal P — S

Motorcycle Dynamics and Control, Fig. 2 Description
of motion
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line; see Fig.2. Using this reference frame, the
orientation of the rear frame is described by a
3-1-2 Euler angle sequence which consists of a
yaw rotation by i about the 3-axis followed by
a lean (roll) rotation by ¢ about the 1-axis and
finally by a pitch rotation by 6 about the 2-axis.
The orientation of the front frame relative to the
rear frame can be described by the steer angle §.
Assuming both wheels remain in contact with the
ground, the pitch angle 6 is not independent; it is
uniquely determined by § and ¢. In considering
small perturbations from the upright nominal
configuration, the variation in pitch is usually
ignored. Here we consider it to be zero. Also the
dynamic behavior of the bike is independent of
the coordinates x, y, and . These coordinates
can be obtained by integrating the velocity of P
and V.

The Whipple Bicycle Model

The “simplest” model which captures all the
salient features of a single track vehicle for a
basic understanding of low-speed dynamics and
control is that originally due to Whipple (1899).
We consider the linearized version of this model
which is further expounded on in Meijaard et al.
(2007). The salient feature of this model is that
there is no slip at each wheel. This means that
the velocity of the point on the wheel which
is instantaneously in contact with the ground is
zero; this is illustrated in Fig. 3 for the rear wheel.
No slip implies that there is no sideslip which
means that the velocity of the wheel contact
point (5% in Fig. 3) is parallel to the intersection
of the wheel plane with the ground plane; the
wheel contact point is the point moving along the
ground which is in contact with the wheel.

The rest of this entry is based on linearization
of motorcycle dynamics about an equilibrium
configuration corresponding to the bike traveling
upright in a straight line at constant forward
speed v := v’ the speed of the rear wheel
contact point P. In the linearized system, the
longitudinal dynamics are independent of the
lateral dynamics, and in the absence of driving
or braking forces, the speed v is constant.
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With no sideslip at both wheels, kinematical
considerations (see Fig.4) show that the yaw
rate v/ is determined by §; specifically for small
angles we have the following linearized relation-
ship:

V= vvé + ,uS (1)

where v = ¢./w, cc = cose, and u = cc./wis
the normalized mechanical trail. In Fig. 4, §, =
c.0 is the effective steer angle; it is the angle
between the intersections of the front wheel plane
and the rear frame plane with the ground. Thus
we can completely describe the lateral bike dy-
namics with the roll angle ¢ and the steer angle
8. To obtain the above relationship, first note that,
as a consequence of no sideslip, 17 = vZ;1 and
¢ is perpendicular to f; Taking the dot product
of the expression,

72 =P +(w+c)x'052—c(x'ﬂ+$f)f;,

with fz while noting that 131 . fAz = —sindy and
by - fo = cosd results in

0= —vsinds + (w+c)1/}cos<3f —c(Vr +<§f).
Linearization about § =
result.

The relationship in (1) also holds for four
wheel vehicles. There one can achieve a desired

N

0 yields the desired

=
P

Motorcycle Dynamics and Control, Fig. 3 No slip:

v =0

v, P b BN g

l w+c 2 . f
A W . 1
bz ! f2

Motorcycle Dynamics and Control, Fig. 4 Some kine-
matics
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Motorcycle Dynamics and Control, Fig. 5 Inverted
pendulum with accelerating support point

constant yaw rate /4 by simply letting the steer
angle § = v, /vv. However, as we shall see, a
motorcycle with its steering fixed at a constant
steer angle is unstable. Neglecting gyroscopic
terms, it is simply an inverted pendulum. With its
steering free, a motorcycle can be stable over a
certain speed range and, if unstable, can be easily
stabilized above a very low speed by most people.
Trials riders can stabilize a motorcycle at any
speed including zero.

To help understand the effect of steer angle
on bike behavior, we initially ignore the mass
and inertia of the front assembly along with
gyroscopic effects, and we assume that the 131
axis is a principle axis of inertia of the rear frame
with moment of inertia /,,. Angular momentum
considerations about the 131 axis and linearization
results in

Lix +mha® = mgh¢ + (Nycee)s  (2)
where N, is the normal force (vertical and
upwards) on the front wheel and a? is the lat-
eral acceleration (perpendicular to rear frame) of
point B which is the projection of G onto the
131 axis. By considering a moment balance about
the pitch axis 52 through P, one can obtain that
N; = mgb/w. Notice that, with the steering
fixed at § = 0, Eq. (2) is the equation of motion of
a simple inverted pendulum whose support axis
is accelerating horizontally with acceleration a®.
This is illustrated in Fig. 5.

Basic kinematics reveal that a® = vy + by
and, recalling relationship (1), Eq. (2) now yields
the lean equation:

Motorcycle Dynamics and Control

Ixxg'b' —mghe¢ = —m¢5<§ — c¢5v8 —kgs(v)8
(3)

where mgs = umhb > 0, cps = mh(u+bv) > 0
and ky5(v) = —pumgb + mhvv?. Note that v is a
constant parameter corresponding to the nominal
speed of the rear wheel contact point.

With § = 0, we have a system whose be-
havior is characterized by two real eigenvalues:
+/mgh/I.,. This system is unstable due to
the positive eigenvalue /mgh/Iy. For v suf-
ficiently large, the coefficient kys(v) is positive
and one can readily show that the above system
can be stabilized with positive feedback § =
K¢ provided K > mgh/kys(v). This helps
explain the stabilizing effect of a rider turning
the handlebars in the direction the bike is falling.
Actually, the rider input is a steer torque T;
about the steer axis.

To explain why an uncontrolled motorcycle
can be stable or easily stabilized, one also has
to look at the effect that ¢ has on §; in general,
a lean perturbation results in the front assembly
turning in the same direction, that is, a positive
perturbation of ¢ results in a positive change in §.

The lean equation also explains why a motor-
cycle must lean when cornering above a certain
speed. Suppose the motorcycle is in a right hand
corner of radius R at some constant speed v: in
this scenario, 1// = v/R and, with § constant,
(1) implies that § = v//vv = 1/vR; with §
and ¢ constant, the lean equation now requires
that ¢ = kys(v)8/mgh = kys(v)/mghvR. For
higher speeds, kys(v) ~ mhvv?; hence ¢ =~
v2/gR. Since a® = v?/R, the lean angle ¢
is approximately a®/g. Hence, to corner with a
lateral acceleration a® = v?/R, the motorcycle
must lean at an angle of approximately a?/g.

The lean equation can also help explain
counter-steering; that is, at speeds above a
reasonably low speed, one can initiate a turn by
turning the handlebars in the opposite direction to
which one wants to go; to turn right, one initially
turns the handlebars to the left. See Limebeer and
Sharp (2006) for further discussion.

Taking into account the mass and inertia of
the front assembly, gyroscopic effects and cross
products of inertia of the rear frame, one can
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show (see Meijaard et al. 2007) that the lean
equation (3) still holds with

Mes = (Why; + Tgex
cps = umh + vl + uSt + c.Sr
kps(v) = kogs + kagsv®
kogs = —Sag,
kogs = v(mh + St)

Here I, is the moment of inertia of the total
motorcycle and rider in the nominal configuration
about the 131 axis and I, is the inertia cross
product w.r.t the 131 and 53 axes. The term [ 4¢x
is the front assembly inertia cross product with
respect to the steering axis and the 51 axis; see
Meijaard et al. (2007) for a further description of
this parameter. Also, Sy = umb + m 4u, where
m 4 is the mass of the front assembly (front wheel
and front frame) and u4 is the offset of the mass
center of the front assembly from the steering
axis, that is, the distance of this mass center from
the steering axis; see Fig.1. The terms Srp =
IFyy/I‘F and St = IRyy/rR + IFyy/I‘F are
gyroscopic terms due the rotation of the front
and rear wheels where rr and rg are the radii
of the front and rear wheels, while Ir,, and
Iy, are the moments of inertias of the front and
rear wheels about their axles. It is assumed that
the mass center of each wheel is located at its
geometric center.

By considering an angular momentum balance
about a vertical axis through P, one can obtain
an expression for the lateral force at the front
wheel. Angular momentum considerations about
the steering axis for the front assembly and lin-
earization then yield the steer equation:

m5¢(}5 + m&gg + vC5¢(].§ + UC55<§

4
+kspt + kss(v)8 = T ®

where

m5¢ = m¢,5

mgss = IAee + ZMIAez + ,uzlzz
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kgs = ks
kss(v) = koss + kass v
koss = —SeSag,
kass = v(Sa + seSF)
csg = —(uST + ¢ SF)
css = L (Sa+vIy) 4+ vige

Here, I, is the moment of inertia of the total
motorcycle and the rider in the nominal config-
uration about the 53 axis, [ 4 1s the moment of
inertia of the front assembly about the steering
axis, and [ 4, is the front assembly inertia cross
product with respect to the steering axis and the
vertical axis through P. The lean equation (3)
combined with the steer equation (4) provide an
initial model for motorcycle dynamics. This is
a linear model with the nominal speed v as a
constant parameter and the rider’s steering torque
Ts as an input.

Modes of Whipple Model

At v = 0, the linearized Whipple model (3)-
(4) has two pairs of real eigenvalues: £ p;, £p;
with p» > p; > 0; see Fig.6. The pair +p;
roughly describe inverted pendulum behavior of
the whole bike with fixed steering, while +p,
describe inverted pendulum behavior of the front
assembly with the rear frame fixed upright. As
v increases the real eigenvalues corresponding
to p; and p, meet and from there on form a

CASTOR

-, P, P,
CAPSIZE

-p,

Motorcycle Dynamics and Control, Fig. 6 Variation of
eigenvalues of Whipple model with speed v
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complex conjugate pair of eigenvalues which re-
sult in a single oscillatory mode called the weave
mode. Initially the weave mode is unstable, but
is stable above a certain speed v,,, and for large
speeds, its eigenvalues are roughly a linear func-
tion of v; thus it becomes more damped and its
frequency increases with speed. The eigenvalue
corresponding to — p, remains real and becomes
more negative with speed; this is called the cas-
tor mode, because it roughly corresponds to the
front assembly castoring about the steer axis. The
eigenvalue corresponding to —p; also remains
real but increases, eventually becoming slightly
positive above some speed v, resulting in an un-
stable system; the corresponding mode is called
the capsize mode. Thus the bike is stable in
the autostable speed range (v,,, v.) and unstable
outside this speed range. However, above v, the
unstable capsize mode is easily stabilized by a
rider and usually without conscious effort. This is
because the time constant of the unstable capsize
mode is very small (Astrom et al. 2005).

Sharp71 Model

The Whipple bicycle model is not applicable
at higher speeds. In particular, it does not con-
tain a wobble mode which is common to bi-
cycle and motorcycle behavior at higher speeds
(Sharp 1971). A wobble mode is characterized
mainly by oscillation of the front assembly about
the steering axis and can sometimes be unstable.
Also, in a real motorcycle, the damping and
frequency of the weave mode do not continually
increase with speed; the damping usually starts
to decrease after a certain speed; sometimes this
mode even becomes unstable. At higher speeds,
one must depart from the simple non-slipping
wheel model. In the Whipple model, the lateral
force F on a wheel is simply that force which
is necessary to maintain the non-holonomic con-
straint which requires the velocity of the wheel
contact point to be parallel to the wheel plane,
that is, no sideslip. Actual tires on wheels slip
in the longitudinal and lateral direction, and the
lateral force depends on slip in the lateral direc-
tion, that is, sideslip. This lateral slip is defined
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Motorcycle Dynamics and Control, Fig. 7 Lateral
force, slip angle, and camber angle

by the slip angle o which is the angle between
the contact point velocity and the intersection of
the wheel plane and the ground; see Fig. 7.

The lateral force also depends on the tire
camber angle which is the roll angle of the tire;
motorcycle tires can achieve large camber angles
in cornering; modern MotoGP racing motorcy-
cles can achieve camber angles of nearly 65°.
Thus an initial linear model of a tire lateral force
is given by

F = N(—kqa + ky) (5)

where N is the normal force on the tire, k, > 01is
called the tire cornering stiffness, and k4 > 0
is called the camber stiffness. Modifying the
above Whipple model with the tire force model
results in the appearance of the wobble mode.
Since lateral forces do not instantaneously re-
spond to changes in slip angle and camber, the
dynamic model,

%F+F=Ne@a+@@, 6)

is usually used where o0 > 0 is called the
relaxation length of the tire. This yields more
realistic behavior (Sharp 1971). In this model
the weave mode damping eventually decreases at
higher speeds and the frequency does not con-
tinually increase. The frequency of the wobble
mode is higher than that of the weave mode and
its damping decreases at higher speeds.
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Further Models

To obtain nonlinear models, resort is usually
made to multi-body simulation codes. In recent
years, several researchers have used such codes to
make nonlinear models which take into account
other features such as frame flexibility, rider
models, and aerodynamics; see Cossalter (2006),
Cossalter and Lot (2002), Sharp and Limebeer
(2001), and Sharp et al. (2004). The nonlinear
behavior of the tires is usually modeled with
a version of the Magic formula; see Pacejka
(2006), Sharp et al. (2004), and Cossalter et al.
(2003). Another line of research is to use some
of these models to obtain optimal trajectories for
high performance; see Saccon et al. (2012).

Summary and Future Directions

We have presented a basic linearized model of a
motorcycle or bicycle useful for the understand-
ing and control of these two wheeled vehicles.
It seems that inclusion of further features in the
model and the consideration of full nonlinear
behavior require the use of multibody simulation
software. Future research will consider models
which will include the engine, transmission, and
an active pilot. Autonomous control of these
vehicles will also be considered.
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Synonyms

MHE

Abstract

Moving horizon estimation (MHE) is a state esti-
mation method that is particularly useful for non-
linear or constrained dynamic systems for which
few general methods with established properties
are available. This entry explains the concept of
full information estimation and introduces mov-
ing horizon estimation as a computable approx-
imation of full information. The basic design
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methods for ensuring stability of MHE are pre-
sented. The relationships of full information and
MHE to other state estimation methods such
as Kalman filtering and statistical sampling are
discussed.

Keywords

Full information estimation; Kalman filtering;
Statistical sampling

Introduction

In state estimation, we consider a dynamic sys-
tem from which measurements are available. In
discrete time, the system description is

xF=fw)  y=hx)+v D)
The state of the systems is x € R”, the mea-
surement is y € R”, and the notation x* means
x at the next sample time. A control input u
may be included in the model, but it is con-
sidered a known variable, and its inclusion is
irrelevant to state estimation, so we suppress it in
the model under consideration here. We receive
measurement y from the sensor, but the process
disturbance, w € R¢; measurement disturbance
v € RP; and system initial state, x(0), are
considered unknown variables.

The goal of state estimation is to construct or
estimate the trajectory of x from only the mea-
surements y. Note that for control purposes, we
are usually interested in the estimate of the state
at the current time, 7', rather than the entire tra-
jectory over the time interval [0, T']. In the mov-
ing horizon estimation (MHE) method, we use
optimization to achieve this goal. We have two
sources of error: the state transition is affected
by an unknown process disturbance (or noise),
w, and the measurement process is affected by
another disturbance, v. In the MHE approach, we
formulate the optimization objective to minimize
the size of these errors thus finding a trajectory of
the state that comes close to satisfying the (error-
free) model while still fitting the measurements.

Moving Horizon Estimation

First, we define some notation necessary to
distinguish the system variables from the es-
timator variables. We have already introduced
the system variables (x,w, y,v). In the estima-
tor optimization problem, these have correspond-
ing decision variables, which we denote by the
Greek letters (y,w,n,v). The relationships be-
tween these variables are

F=frw)  y=h(p+v Q2
and they are depicted in Fig.1. Notice that v
measures the gap between the model prediction
n = h(x) and the measurement y. The optimal
decision variables are denoted (X,w, y, 0), and
these optimal decisions are the estimates pro-
vided by the state estimator.

Full Information Estimation

The full information objective function is

T-1

Vr(2(0), @) = £ (x(0)=%0)+ ) _ Li((i), v(i))

i=0
(3)
subject to (2) in which T is the current time, w is
the estimated sequence of process disturbances,
(@(0),...,0(T — 1)), y(i) is the measurement
at time i, and X, is the prior, i.e., available,
value of the initial state. Full information here
means that we use all the data on time interval
[0, T'] to estimate the state (or state trajectory) at
time 7. The stage cost £; (w, v) costs the model
disturbance and the fitting error, the two error
sources that we reconcile in all state estimation
problems.
The full information estimator is then defined
as the solution to

XI(%IL Vr(x(0), ®) “)

The solution to the optimization exists for all
T € I>¢ under mild continuity assumptions and
choice of stage cost. Many choices of (positive,
continuous) stage costs £, (-) and ¢;(-) are possi-
ble, providing a rich class of estimation problems
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Moving Horizon Estimation, Fig. 1 The state, mea-
sured output, and disturbance variables appearing in the
state estimation optimization problem. The state trajectory

that can be tailored to different applications. Be-
cause the system model (1) and cost function (3)
are so general, it is perhaps best to start off by
specializing them to see the connection to some
classic results.

Related Problem: The Kalman Filter

If we specialize to the linear dynamic model
f(x,w) = Ax + Gw, h(x) = Cx, and let x(0),
w, and v be independent, normally distributed
random variables, the classic Kalman filter is
known to be the statistically optimal estimator,
i.e., the Kalman filter produces the state estimate
that maximizes the conditional probability of
x(T) given y(0), ..., y(T). The full information
estimator is equivalent to the Kalman filter given
the linear model assumption and the following
choice quadratic of stage costs

£:(1(0).%0) = (1/2) 2(0) = %o}

(gray circles in lower half) is to be reconstructed given the
measurements (black circles in upper half)

ti(w,v) = (1/2)( lollg-1 + [v[7- )

in which random variable x (0) is assumed to have
mean X and variance Py and random variables w
and v are assumed zero mean with variances Q
and R, respectively. The Kalman filter is also a
recursive solution to the state estimation problem
so that only the current mean X and variance P of
the conditional density are required to be stored,
instead of the entire history of measurements
y(@),i = 0,...,T. This computational effi-
ciency is critical for success in online application
for processes with short time scales requiring fast
processing.

But if we consider nonlinear models, the max-
imization of conditional density is usually an
intractable problem, especially in online appli-
cations. So, MHE becomes a natural alternative
for nonlinear models or if an application calls for
hard constraints to be imposed on the estimated
variables.
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Moving the Horizon

An obvious problem with solving the full infor-
mation optimization problem is that the number
of decision variables grows linearly with time T,
which quickly renders the problem intractable for
continuous processes that have no final time. A
natural alternative to full information is to con-
sider instead a finite moving horizon of the most
recent N measurements. Figure 2 displays this
idea. The initial condition y(0) is now replaced
by the initial state in the horizon, (T — N),
and the decision variable sequence of process
disturbances is now just the last N variables
(w(T — N),...,o(T — 1)). Now, the
big question remaining is what to do about the
neglected, past data. This question is strongly
related to what penalty to use on the initial state in
the horizon y (T — N). If we make this initial state
a free variable, that is equivalent to completely
discounting the past data. If we wish to retain
some of the influence of the past data and keep the
moving horizon estimation problem close to the
full information problem, then we must choose
an appropriate penalty for the initial state. We
discuss this problem next.

w =

Arrival Cost. When time is less than or equal
to the horizon length, T < N, we can simply
do full information estimation. So we assume
throughout that 7 > N.For T > N, we express
the MHE objective function as

A y(T'— N) yl)
.
. . o
e « e
| [ 3 »
b ° haa <
® L
®
(T — N) iy
I |
moving horizon
full information '
I i
0 T-—-N T

Moving Horizon Estimation, Fig. 2 Schematic of the
moving horizon estimation problem

Moving Horizon Estimation

Vr(((T = N),®) = Tr—y (x(T = N))

T—1

+ _Z;

1

Li(w(i), v(i))

N

subject to (2). The MHE problem is defined to be

min  Vr(y(T = N), )

x(T—N),0 (5)
inwhich® = {&o(T —N),...,o(T —1)} and the
hat on V' distinguishes the MHE objective func-
tion from full information. The designer must
now choose this prior weighting I'x (-) fork > N.

To think about how to choose this prior
weighting, it is helpful to first think about solving
the full information problem by breaking it
into two non-overlapping sequences of decision
variables: the decision variables in the time
interval corresponding to the neglected data
(0(0),w(1),...,0(T — N — 1)) and those in
the time interval corresponding to the considered
data in the horizon (w(T — N),...,o(T —1)).If
we optimize over the first sequence of variables
and store the solution as a function of the terminal
state y(T — N), we have defined what is known
as the arrival cost. This is the optimal cost to
arrive at a given state value.

Definition 1 (arrival cost) The (full informa-
tion) arrival cost is defined for k > 1 as

Z(x) = min Vi (x(0), ®) (6)
2(0).@

subject to (2) and y(k; y(0), w) = x.

Notice the terminal constraint that y at time k
ends at value x. Given this arrival cost function,
we can then solve the full information problem by
optimizing over the remaining decision variables.
What we have described is simply the dynamic
programming strategy for optimizing over a sum
of stage costs with a dynamic model (Bertsekas
1995).

We have the following important equivalence.

Lemma 1 (MHE and full information estima-
tion) The MHE problem (5) is equivalent to
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the full information problem (4) for the choice
T'v(:) = Zy () forallk > N and N > 1.

Using dynamic programming to decompose the
full information problem into an MHE prob-
lem with an arrival cost penalty is conceptu-
ally important to understand the structure of the
problem, but it doesn’t yet provide us with an
implementable estimation strategy because we
cannot compute and store the arrival cost when
the model is nonlinear or other constraints are
present in the problem. But if we are not too
worried about the optimality of the estimator and
are mainly interested in other properties, such
as stability of the estimator, we can find simpler
design methods for choosing the weighting Iy (+).
We address this issue next.

Estimator Properties: Stability

An estimator is termed stable if small distur-
bances (w, v) lead to small estimate errors x —
X as time increases. Precise definitions of this
basic idea are available elsewhere (Rawlings and
Ji 2012), but this basic notion is sufficient for
the purposes of this overview. In applications,
properties such as stability and insensitivity to
model errors are usually more important than
optimality. It is possible for a filter to be optimal
and still not stable. In the linear system context,
this cannot happen for “nice” systems. Such nice
systems are classified as detectable. Again, the
precise definition of detectability for the linear
case is available in standard references (Kwaker-
naak and Sivan 1972). Defining detectability for
nonlinear systems is a more delicate affair, but
useful definitions are becoming available for the
nonlinear case as well (Sontag and Wang 1997).
If we lower our sights and do not worry if
MHE is equivalent to full information estimation
and require only that it be a stable estimator, then
the key result is that the prior penalty 't (-) need
only be chosen smaller than the arrival cost as
shown in Fig. 3. See Rawlings and Mayne (2009,
Theorem 4.20) for a precise statement of this
result. Of course this condition includes the flat
arrival cost, which does not penalize the initial
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Moving Horizon Estimation, Fig. 3 Arrival cost Z (x),
underbounding prior weighting I’y (x), and MHE optimal
value Vko; forall x and k > N, Z;(x) > Tp(x) > Vo,
and Z, (% (k)) = Tk (R (k) = 7

state in the horizon at all. So neglecting the past
data completely leads to a stable estimator for
detectable systems. If we want to improve on this
performance, we can increase the prior penalty,
and we are guaranteed to remain stable as long as
we stay below the upper limit set by the arrival
cost.

Related Problem: Statistical Sampling

MHE is based on optimizing an objective func-
tion that bears some relationship to the condi-
tional probability of the state (trajectory) given
the measurements. As discussed in the section
on the Kalman filter, if the system is linear with
normally distributed noise, this relationship can
be made exact, and MHE is therefore an optimal
statistical estimator. But in the nonlinear case,
the objective function is chosen with engineering
judgment and is only a surrogate for the condi-
tional probability. By contrast, sampling methods
such as particle filtering are designed to sam-
ple the conditional density also in the nonlinear
case. The mean and variance of the samples then
provide estimates of the mean and variance of
the conditional density of interest. In the limit
of infinitely many samples, these methods are
exact. The efficiency of the sampling methods
depends strongly on the model and the dimension
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of the state vector n, however. The efficiency of
the sampling strategy is particularly important
for online use of state estimators. Rawlings and
Bakshi (2006) and Rawlings and Mayne (2009,
pp- 329-355) provide some comparisons of par-
ticle filtering with MHE and also describe some
hybrid methods combining MHE and particle
filtering.

Summary and Future Directions

MHE is one of few state estimation methods that
can be applied to nonlinear models for which
properties such as estimator stability can be es-
tablished (Rao et al. 2003; Rawlings and Mayne
2009). The required online solution of an opti-
mization problem is computationally demanding
in some applications but can provide signifi-
cant benefits in estimator accuracy and rate of
convergence (Patwardhan et al. 2012). Current
topics for MHE theoretical research include treat-
ing bounded rather than convergent disturbances
and establishing properties of suboptimal MHE
(Rawlings and Ji 2012). The current main focus
for MHE applied research involves reducing the
online computational complexity to reliably han-
dle challenging large dimensional, nonlinear ap-
plications (Kuhl et al. 2011; Lopez-Negrete and
Biegler 2012; Zavala and Biegler 2009; Zavala
et al. 2008).

Cross-References

Bounds on Estimation
Estimation, Survey on
Extended Kalman Filters
Nonlinear Filters
Particle Filters

Recommended Reading

Moving horizon estimation has by this point
a fairly extensive literature; a recent overview
is provided in Rawlings and Mayne (2009,
pp- 356-357). The following references provide

MPC

either (i) general background required to
understand MHE theory and its relationship to
other methods or (ii) computational methods for
solving the real-time MHE optimization problem
or (iii) challenging nonlinear applications that
demonstrate benefits and probe the current limits
of MHE implementations.
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Abstract

One starting point for the analysis and design
of a control system is the block diagram
representation of a plant. Since it is nontrivial to
convert a physical model of a plant into a block
diagram, this can be performed manually only
for small plant models. Based on research from
the last 35 years, more and more mature tools
are available to achieve this transformation fully
automatically. As a result, multi-domain plants,
for example, systems with electrical, mechanical,
thermal, and fluid parts, can be modeled in a
unified way and can be used directly as input—
output blocks for control system design. An
overview of the basic principles of this approach
is given. This provides also the possibility to use
nonlinear, multi-domain plant models directly in
a controller. Finally, the low-level “Functional
Mockup Interface” standard is sketched to
exchange multi-domain models between many
different modeling and simulation environments.

Keywords

Block diagram; Bond graph; Differential-
algebraic equation (DAE) system; Flow variable;
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FMI for Co-Simulation; FMI for Model
Exchange; Functional Mockup Interface; Inverse
models; Modelica; Object-oriented modeling;
Potential variable; Stream variable; Symbolic
transformation; VHDL-AMS

Introduction

Methods and tools for control system analysis
and design usually require an input—output block
diagram description of the plant to be controlled.
Apart from small systems, it is nontrivial to de-
rive such models from first principles of physics.
Since a long time, methods and tools are available
to construct such models automatically for one
domain, for example, a mechanical model, an
electronic, or a hydraulic circuit. These domain-
specific methods and tools are, however, only
of limited use for the modeling of multi-domain
systems.

In the dissertation (Elmqvist 1978), a suitable
approach for multi-domain, object-oriented
modeling has been developed by introducing
a modeling language to define models on
a high level based on first principles. The
resulting DAE (differential-algebraic equation)
systems are transformed with proper algorithms
automatically in a block diagram description
with input and output signals based on ODEs
(ordinary differential equations).

In 1978, the computers were not powerful
enough to apply this method on larger systems.
This changed in the 1990s, and then the tech-
nology has been substantially improved, many
different modeling languages appeared (and also
disappeared), and the technology was introduced
in commercial simulation environments.

In Table 1, an overview of the most important
standards, languages, and tools in the year 2013
for multi-domain modeling is given:

The Modelica language is a standard from
The Modelica Association (Modelica Associa-
tion 2012). The first version was released in
1997. Also a large free library is provided with
about 1,300 model components from many do-
mains. There are several software tools support-
ing this modeling language and the free Modelica
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Multi-domain Modeling and Simulation, Table 1 Multi-domain modeling and simulation environments

Tool name Web (accessed December 2013)
Environments based on the Modelica Standard (https://www.Modelica.org)
CyModelica http://cydesign.com/
Dymola http://www.dymola.com/
JModelica.org http://www.jmodelica.org/
LMS Imagine.Lab AMESim http://www.lmsintl.com/LMS-Imagine-Lab- AMESim
MapleSim http://www.maplesoft.com/products/maplesim
MWorks http://en.tongyuan.cc/
OpenModelica https://openmodelica.org/
SimulationX http://www.itisim.com/simulationx/
Wolfram SystemModeler http://www.wolfram.com/system-modeler/
Environments based on the VHDL-AMS Standard (http://www.eda.ora/twiki/bin/view.cai/P10761)
ANSYS Simplorer http://www.ansys.com/Products
Saber http://www.synopsys.com/Systems/Saber
SMASH http://www.dolphin.fr/medal/products/smash/smashoverview.php
SystemVision http://www.mentor.com/products/sm/systemvision
Virtuoso AMS designer http://www.cadence.com
Environments with vendor-specific multi-domain modeling languages
EcosimPro http://www.ecosimpro.com/
gPROMS http://www.psenterprise.com/gproms
OpenMAST http://www.openmast.org/
Simscape https://www.mathworks.com/products/simscape
Environments based on the Bond Graph Methodology
20-sim http://www.20sim.com/
Standard Library. The examples of this entry are in 1999. It is an extension of the widely used
mostly provided from this standard. VHDL hardware description language. This
The following registered trademarks are refer- language is especially used in the electronics
enced: community.
e There are several vendor-specific modeling
Registered Owner of trademark languages, notably Simscape from Math-
trademark Works as an extension to Simulink, as well
AMESim IMAGINE SA as MAST, the underlying modeling language
ANSYS ANSYS Inc. of Saber (Mantoolh and Vlach 1992). In 2004,
Dymola Dassault Systemes AB MAST was published as OpenMAST under
EcosimPro Empresarios Agrupados A.LE.

an open source license.

lg\figﬁi i;(;c;iztiz; ZIESS Ezterprlse Limited . gond graphs (see, e.g., Karnopp et al. 2012)
Modeli Modelica Associati are a special graphical notation to define
odaelica odelica Association . .
Saber Sabremark Limited partnership multi-domain systems based on energy flow.
SimulationX ITI GmbH It was invented in 1959 by Henry M. Paynter.
Simulink The MathWorks Inc In the section “Modeling Language Princi-
SystemVision Mentor Graphics Corporation ples”, the principles of multi-domain modeling
Virtuoso Cadence Design based on a modeling language are summarized.

In the section “Models for Control Systems”,
it is shown how such models can be used not

« The VHDL-AMS language is a standard from ©only for simulation but also as components in
IEEE (IEEE 1076.1-2007 2007), first released nonlinear control systems. Finally, in the section


https://www.Modelica.org
http://cydesign.com/
http://www.dymola.com/
http://www.jmodelica.org/
http://www.lmsintl.com/LMS-Imagine-Lab-AMESim
http://www.maplesoft.com/products/maplesim
http://en.tongyuan.cc/
https://openmodelica.org/
http://www.itisim.com/simulationx/
http://www.wolfram.com/system-modeler/
http://www.eda.ora/twiki/bin/view.cai/P10761
http://www.ansys.com/Products
http://www.synopsys.com/Systems/Saber
http://www.dolphin.fr/medal/products/smash/smash overview.php
http://www.mentor.com/products/sm/systemvision
http://www.cadence.com
http://www.ecosimpro.com/
http://www.psenterprise.com/gproms
http://www.openmast.org/
https://www.mathworks.com/products/simscape
http://www.20sim.com/

MRAC

“The Functional Mockup Interface”, an overview
about a low-level standard for the exchange of
multi-domain systems is described.

Modeling Language Principles

Schematics: The Graphical View

Modelers nowadays require a simple to use
graphical environment to build up models. With
very few exceptions, multi-domain environments
define models by schematic diagrams. A typical
example is given in Fig.1, showing a simple
direct-current electrical motor in Modelica.

In the lower left part, the electrical circuit
diagram of the DC motor is visible, consisting
mainly of the armature resistance and inductance
of the motor, a voltage source, and component
“emf” to model in an idealized way the electro-
motoric forces in the air gap. On the lower right
part, the motor inertia, a gear box, and a load
inertia are present. In the upper part, the heat
transfer of the resistor losses to the environment
is modeled with lumped elements.

thermalCond

convection
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A component, like a resistor, rotational inertia,
or convective heat transfer, is shown as an icon
in the diagram. On the border of a component,
small rectangular or circular signs are present
representing the “physical ports.” Ports are con-
nected by lines and model the (idealized) physical
or signal interaction between ports of different
components, for example, the flow of electrical
current or heat or the rigid mechanical coupling.

Components are built up hierarchically from
other components. On the lowest level, compo-
nents are described textually with the respec-
tive modeling language (see section “Component
Equations”).

Coupling Components by Ports

The ports define how of a component can interact
with other components. A port contains (a) a def-
inition of the variables that describe the interface
and (b) defines in which way a tool can automat-
ically construct the equations of connections. A
typical scenario is shown in Fig. 2 where the ports
of the three components A, B, C are connected
together at one point P:

fixedTemp

inductor

heatCapacitor

resistor

abejjopjeubis

iSensor

ground

L L
el
I_] ratiof105 [—]
J=0.00025 ST J=100

Multi-domain Modeling and Simulation, Fig. 1 Modelica schematic of DC motor with mechanical load and heat

losses
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When cutting away the connection lines, the
resulting system consists of three decoupled com-
ponents A, B, C and a new component around
P describing the infinitesimally small connection
point. The balance equations and the boundary
conditions of the respective domain must hold at
all these components. When drawing the connec-
tion lines, enough information must be available
in the port definitions so that the tool can con-
struct the equations of the infinitesimally small
connection points automatically.

To summarize, the component developer is
responsible that the balance equations and bound-
ary conditions are fulfilled for every component
(A, B, Cin Fig.2), and the tool is responsible that
the balance equations and boundary conditions
are also fulfilled at the points where the compo-
nents are connected together (P in Fig.2). As a

Multi-domain Modeling and Simulation, Fig. 2
Cutting the connections around the connection point P
results in three decoupled components A, B, C and a new
component around P describing the infinitesimally small
connection point

MRAC

consequence, the balance equations and bound-
ary conditions are fulfilled in the overall model
containing all components and all connections.

In order that a tool can automatically construct
the equations at a connection point, every port
variable needs to be associated to a port variable
type. In Table 2, some port variable types of
Modelica are shown. In this table it is assumed
that uy, us,... Uy, ¥,01,02, ..., U, f1, 2000 Jfus
S1, $2,...,8, are corresponding port variables
from different components that are connected
together at the same point P.

Port variable types “input” and “output” define
the “usual” signal connections in block diagrams.

“Potential variables” and “flow variables” are
used to define standard physical connections. For
example, an electrical port contains the electrical
potential and the electrical current at the port,
and when connecting electrical ports together,
the electrical potentials are identical and the sum
of the electrical currents is zero, according to
Table 2. This corresponds exactly to Kirchhoff’s
voltage and current laws.

“Stream variables” are used to describe the
connection semantics of intensive quantities in
bidirectional fluid flow, such as specific enthalpy
or mass fraction. Here, the idealized balance
equation at a connection point states, for exam-
ple, that the sum of the port enthalpy flow rates is
zero and the port enthalpy flow rate is computed
as the product of the mass flow rate (a flow
variable f;) and the directional specific enthalpy
s;, which is either the (yet unknown) mixing-
specific enthalpy spmix when the flow is from
the connection point to the port or the specific
enthalpy s; in the port when the flow is from
the port to the connection point. More details

Multi-domain Modeling and Simulation, Table 2 Some port variable types in Modelica

Port variable type
Input variables u;, output variable y

Potential variables v;
Flow variables f;

Stream variables s; (with associated flow variables f;)

Connection semantics

uy =uy = ...=u, = y (exactly one output variable can
be connected to n input variables)
Vp =0 = ... = Uy
0=2f
_ aoa s i fi >0
O_Zf;sls i = S; lff; SO

0=> 1)
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Multi-domain Modeling and Simulation, Table 3 Some port definitions from Modelica

Domain

Electrical analog

Elec. multiphase
Electrical quasi-stationary

Magnetic flux tubes
Translational (1-dim. mechanics)
Rotational (1-dim. mechanics)

2-dim. mechanics

3-dim. mechanics

1-dim. heat transfer

1-dim. thermo-fluid pipe flow

and explanations are available from Franke et al.
(2009). In Table 3 some of the port definitions are
shown that are defined in the Modelica Standard
Library.

Component Equations

Implementing a component in a modeling lan-
guage means to (a) define the ports of the com-
ponent and (b) provide the equations describing
the relationships between the port variables. For
example, an electrical capacitor with constant
capacitance C can be defined by the equations in
the right side of Fig. 3.

Such a component has two ports, the pins
“p” and “n,” and the port variables are the elec-
trical currents i,,i, flowing into the respective
ports and the electrical potentials v,, v, at the
ports. The first component equation states that
if the current i, at port “p” is positive, then the
current i, at port “n” is negative (therefore, the

current flowing into “p” is flowing out of “n”).

Port variables

Electrical potential in [V] (pot.)
electrical current in [A] (flow)

Vector of electrical ports

Complex elec. potential (pot.)
complex elec. current (flow)
Magnetic potential in [A] (pot.)
magnetic flux in [Wb] (flow)
Distance in [m] (pot.)

cut-force in [N] (flow)

Absolute angle in [rad] (pot.)
cut-torque in [Nm] (flow)

Position in x-direction in [m] (pot.)
position in y-direction in [m] (pot.)
absolute angle in [rad] (pot.)
cut-force in x-direction in [N] (flow)
cut-force in y-direction in [N] (flow)
cut-torque in z-direc. in [Nm] (flow)
Position vector in [m] (pot.)
transformation matrix in [1] (pot.)
cut-force vector in [N] (flow)
cut-torque vector in [Nm] (flow)
Temperature in [K] (pot.)

heat flow rate in [W] (flow)
Pressure in [Pa] (pot.)

mass flow rate in [kg/s] (flow)

spec. enthalpy in [J/kg] (stream)
mass fractions in [1] (stream)

0=i,+iy
U= v,-v,
du

C—=ip

Multi-domain Modeling and Simulation, Fig. 3
Equations of a capacitor component

Furthermore, the two remaining equations state
that the derivative of the difference of the port
potentials is proportional to the current flowing
into port “p.”

One important question is how many equa-
tions are needed to describe such a component?
For an input—output block, this is simple: all input
variables are known, and for all other variables,
one equation per unknown is needed. Count-
ing equations for physical components, such as
a capacitor, is more involved: the requirement
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that any type of component connections shall

always result in identical numbers of unknowns

and equations of the overall system leads to the
following counting rule (for a proof, see Olsson

et al. 2008):

1. The number of potential and the number of
flow variables in a port must be identical.

2. Input variables and variables that appear dif-
ferentiated are treated as known variables.

3. The number of equations of a component must
be equal to the number of unknowns minus the
number of flow variables.

In the example of the capacitor, there are 5 un-

knowns (i, i, Vp, U, du/dt) and 2 flow variables

(ip,iy). Therefore, 5—2 = 3 equations are needed

to define this component.

Modeling languages are used to provide a tex-
tual description of the ports and of the equations
in a specific syntax. For example, in Modelica
the capacitor from Fig. 3 can be defined as Fig. 4
(keywords of the Modelica language are written
in boldface):

In VHDL-AMS the capacitor model can be
defined as shown in Fig. 5.

One difference between Modelica and VHDL-
AMS is that in Modelica all equations need to be
explicitly given and port variables (such as p.i)
can be directly accessed in the model (Fig. 4). In-

type Voltage = Real (unit="V");
type Current = Real (unit="A");
connector Pin
Voltage v;
flow Current i;
end Pin;

model Capacitor
parameter Real C(unit="F");
Pin p,n;
Voltage u;
equation
0 =p.1i+ n.i;
u = p.v - n.v;
C*der (u) = p.i;

end Capacitor;
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stead, in VHDL-AMS (and some other modeling
languages), port variables cannot be accessed in
a model, and instead via the “quantity .. across
.. through .. to ..” construction, the relationships
between the port variables are implicitly defined
and correspond to the Modelica equations “0 =
pi+ni’and“u =p.v—n.v”

Simulation of Multi-domain Systems
Collecting all the component equations of
a multi-domain system model together with
all connection equations results in a DAE
(differential-algebraic equation) system:
0=fx,x,w,y,u,t) (D)
where ¢ € R is time, x(¢) € R" are vari-
ables appearing differentiated, w(t) € R" are
algebraic variables, y(t) € R"r are outputs,
u(¢) € R™ are inputs, and f € R"™ ¥ are
the DAE equations. Equation (1) can be solved
numerically with an integrator for DAE systems;
see, for example, Brenan et al. (1996). For DAEs
that are linear in their unknowns, a complete
theory for solvability is available based on matrix
pencils (see, e.g., Brenan et al. 1996) and also
reliable software for their analysis (Varga 2000).
Unfortunately, only certain classes of nonlin-
ear DAEs can be directly solved numerically

subtype voltage is real;

subtype current is real;

nature electrical is
voltage across
current through
electrical ref reference;

entity CapacitorInterface IS
generic (C: real);
port (terminal p, n: electrical);
end entity CapacitorInterface;

architecture SimpleCapacitor of
CapacitorInterface is
quantity u across i through p to n;
begin
i == C*u’dot;
end architecture SimpleCapacitor;

Multi-domain Modeling and Simulation, Fig. 4
Modelica model of capacitor component

Multi-domain Modeling and Simulation, Fig. 5
VHDL-AMS model of capacitor component



MRAC

in a reliable way. Domain-specific software,
as, e.g., for mechanical systems, transforms
the underlying DAE into a form that can be
more reliably solved, using domain-specific
knowledge. This is performed by differentiating
certain equations of the DAE analytically and
utilizing special integration methods for the
resulting overdetermined set of differential-
algebraic equations. Multi-domain simulation
software uses the following approaches:

(a) The DAE (1) is directly solved numerically
using an implicit integration method, such
as a linear multistep method. Typically, all
VHDL-AMS simulators use this approach.

(b) The DAE (1) is symbolically transformed in
a form that is equivalent to a set of ODEs
(ordinary differential equations), and then
either explicit or implicit ODE or DAE in-
tegration methods are used to numerically
solve the transformed system. The transfor-
mation is based on the algorithms of Pan-
telides (1988) and of Mattsson and Séderlind
(1993) and might require to analytically dif-
ferentiate equations. Typically, all Modelica-
based simulators, but also EcosimPro, use
this approach.

For many models both approaches can be applied

successfully. There are, however, systems where

approach (a) is successful and fails for (b) or vice
versa.

DAEs (1) derived from modeling languages
usually have a large number of equations but with
only a few unknowns in every equation. In order
to solve DAEs of this kind efficiently, both with
(a) or (b), typically graph theory and/or sparse
matrix methods are utilized. For method (b) the
fundamental algorithms have been developed in
Elmgqvist (1978) and later improved in further
publications. For a recent survey and comparison
of some of the algorithms, see Frenkel et al.
(2012).

Solving the DAE (1) means to solve an ini-
tial value problem. In order that this can be
performed, a consistent set of initial variables
Xo = X(l), X0 = x(&), wo = W (), Yo =
y (to) , up = u () has to be determined first at
the initial time #p. In general, this is a nontrivial
task. For example, often (1) shall start in steady
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state, that is, it is required that X, = 0 and
therefore at the initial time (1) is required to
satisfy

0 =£(0, X0, Wo, Yo, U, f) 2)

Equation (2) is a nonlinear algebraic system of
equations in the unknowns X, Wo, Yo, Ug. These
are n, +n,, +n, equations forn, +n, +n, +n,
unknowns. Therefore, n, further conditions must
be provided (usually some elements of ug and/or
Yo are fixed to desired physical values). Solving
(2) for the unknowns is also called “DC operat-
ing point calculation” or “trimming.” Nonlinear
equation solvers are based on iterative methods
that require usually a sufficiently accurate initial
guess for all unknowns. In a large multi-domain
system model, this is not practical, and therefore,
methods are needed to solve (2) even if generic
guess values in a library are provided that might
be far from the solution of the system at hand.

For analog electronic circuit simulations, a
large body of theory, algorithms, and software is
available to solve (2) based on homotopy meth-
ods. The basic idea is to solve a sequence of non-
linear algebraic equation systems by starting with
an easy to solve simplified system, characterized
by the homotopy parameter A = 0. This system
is continuously “deformed” until the desired one
is reached at A = 1. The solution at iteration i
is used as guess value for iteration i + 1, and at
every iteration, the solution is usually computed
with a Newton-Raphson method.

The simplest such approach is “source step-
ping”: the initial guess values of all electrical
components are set to “zero voltage” and/or “zero
current.” All (voltage and current) sources start
at zero, and their values are gradually increased
until the desired source values are reached. This
method may not converge, typically due to the
severe nonlinearities at switching thresholds in
logical circuits.

There are several, more involved approaches,
called “probability one homotopy” methods. For
these method classes, proofs exist that they con-
verge with probability one (so practically al-
ways). These algorithms can only be applied for
certain classes of DAEs; see, for example, the
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“Variable Stimulus Probability One Homotopy”
from Melville et al. (1993).

Although strong results exist for analog elec-
trical circuit simulators, it is difficult to generalize
them to the large class of multi-domain systems
covered by a modeling language. In Modelica
a “homotopy” operator was introduced into the
language (Sielemann et al. 2011) in order that a
library developer can formulate simple homotopy
methods like the “source stepping” in a com-
ponent library. A generalization of probability
one methods for multi-domain systems was de-
veloped in the dissertation of Sielemann (2012)
and was successfully applied to air distribution
systems described as 1-dim. thermo-fluid pipe
flow.

Models for Control Systems

Models for Analysis

The multi-domain models from section “Mod-
eling Language Principles” can be utilized to
evaluate the properties of a control system by
simulation. Also control systems can be designed
by nonlinear optimization where at every opti-
mization step one or several simulations of a plant
model are executed. Furthermore, modeling en-
vironments usually provide a means to linearize
the nonlinear DAE (1) of the underlying model
around an operating point:

X (1) ~ Xop + AX(1), W(t) = Wop + AW(2),
y() ~ Yop + Ay(t), u(?) ~ U, + Au(t)
(3

resulting in

AXeqd = A AXred + B Au @)
Ay = C AXreqg + D Au

where AX,.q is a vector consisting of elements of
the vector of Ax, the vector Aw is eliminated by
exploiting the algebraic constraints, and A, B, C,
D are constant matrices. Simulation tools provide
linear analysis and synthesis methods on this
linearized system and/or export it for usage in an
environment like Matlab, Maple, Mathematica,
or Python.
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Multi-domain models might also be used
directly in nonlinear Kalman filters, moving
horizon estimators, or nonlinear model predictive
control. For example, the company ABB is using
moving horizon estimation and nonlinear model
predictive control based on Modelica models
to significantly improve the start-up process of
power plants (Franke and Doppelhamer 2006).

Inverse Models

A large body of literature exists about the theory
of nonlinear control systems that are based on
inverse plant models; see, for example, Isidori
(1995). Methods such as feedback linearization,
nonlinear dynamic inversion, or flat systems use
an inverse plant model in the control loop. How-
ever, a major obstacle is how to automatically
utilize an inverse plant model in a controller with-
out being forced to manually set up the equations
in the needed form which is not practical for
larger systems. Modeling languages can solve
this problem as discussed below.

Nonlinear inverse models can be utilized in
various ways in a control system. The simplest
approach, as feed forward controller, is shown in
Fig. 6.

Under the assumption that the models of the
plant and of the inverse plant are completely
identical and start at the same initial state, then
from the construction the control error e is zero
and y=T(s) * y,.r where T is a diagonal matrix
with the transfer functions of the low-pass filters
on the diagonal (so y ~ y,. for reference signals

Yref.rie Minverse plant || Yref,rit
model
YTef | e u y
N oW pass feedback
filters

lant
controller P

Multi-domain Modeling and Simulation, Fig. 6
Controller with inverse plant model in the feed forward
path. The inverse plant model needs usually also
derivatives of y,.r as inputs. These derivatives are
provided by appropriate low-pass filters
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that have a frequency spectrum below the cutoff
frequency of the low-pass filters). Since actually
the assumption is usually not fulfilled, there will
be a nonzero control error e and the feedback
controller has to cope with it. This controller
structure with a nonlinear inverse plant model
has the advantage that the feed forward part is
useful over the complete operating range of the
plant.

Various other structures with nonlinear plant
models are discussed in Looye et al. (2005),
such as compensation controllers, feedback lin-
earization controllers, and nonlinear disturbance
observers.

It turns out that nonlinear inverse plant
models can be generated automatically with
the techniques that have been developed for
modeling languages; see section “Modeling
Language Principles”. In particular, constructing
an inverse model from (1) means that the inputs
u are defined to be outputs, so they are no longer
knowns but unknowns, and outputs y are defined
to be inputs, so they are no longer unknowns
but knowns. The resulting system is still a
DAE and can therefore be handled as any other
DAE.

Therefore, defining an inverse model with a
modeling language just requires exchanging the
definition of input and output signals. In Model-
ica, this can be graphically performed with the
nonstandard input—output block from Fig. 8.

This block has two inputs and two outputs and
described by the equations

ul =u2; yl=y2
From a block diagram point of view this looks
strange. However, from a DAE point of view,
this just states constraints between two input and
two output signals. In Fig. 8, it is shown how this
block can be used to invert a simple second order
system.

The output of the low-pass filter is connected
to the output of the second-order system and
therefore this model computes the input of the
second-order system, from the input of the filter.

A Modelica environment will generate from
this type of definition the inverse model, thereby
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differentiating equations analytically and solving
algebraic variables of the model in a different way
as for a simulation model. The whole transforma-
tion is nontrivial, but it is just the standard method
used by Modelica tools as for any other type of
DAE system.

The question arises whether a solution of the
inverse model exists, is unique, and whether the
model is stable (otherwise, it cannot be applied
in a control system). In general, a nonlinear
inverse model consists of linear and/or nonlinear
algebraic equation systems and of linear and/or
nonlinear differential equations. Therefore, from
a formal point of view, the same theorems as for
a general DAE apply; see, for example, Brenan
et al. (1996). Furthermore, all these equations
need to be solved with a numerical method.
For some classes of systems, it can be shown
that mathematically a unique solution exists and
that the system is stable. However, in general,
one cannot expect that it is possible to provide
such a proof for complex inverse plant models.
Still, inverse plant models have been successfully
utilized by automatic generation from a Modelica
tool, e.g., for robots, satellites, aircrafts, vehicles,
and thermo-fluid systems.

The Functional Mockup Interface

Many different types of simulation environments
are in use. One cannot expect that a generic
approach as sketched in section “Modeling
Language Principles” will replace all these
environments with their rich set of domain-
specific knowledge, analysis, and synthesis
features. Practically, all simulation environments
provide a vendor-specific interface in order
that a user can import components that are not
describable by the simulation environment itself.
Typically, this requires to provide a component
as a set of C or Fortran functions with a particular
calling interface. In the control community,
the most widely used approach of this kind is
the S-Function interface from The MathWorks,
where Simulink is used as integration platform,
and model components from other environments
are imported as S-Functions.
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Multi-domain Modeling
and Simulation, Fig. 7
Modelica
InverseBlockConstraint
block

Multi-domain Modeling

filter
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ul [u2 yl | y2

and Simulation, Fig. 8
Inversion of a second-order
system in Modelica

secondOrder

-

w=0.1

f_cut=10

In 2010 the vendor-independent standard
“Functional Mockup Interface 1.0” was
published (FMI Group 2010). This is a low-
level standard for the exchange of models
between different simulation environments. This
standard allows to exchange only either the model
equations (called “FMI for Model Exchange”) or
the model equations with an embedded solver
(called “FMI for Co-Simulation™). This standard
was quickly adopted by many simulation
environments, and in 2013 there are more than
40 tools that support it (for an actual list of
tools, see https://www.fmi-standard.org/tools).
In particular nearly all Modelica environments
can export Modelica models in this format, and
therefore, Modelica multi-domain models can be
imported in other environments with low effort.

A software component which implements the
FMI is called Functional Mockup Unit (FMU).
An FMU consists of one zip-file with extension
“fmu” containing all necessary components to
utilize the FMU either for Model Exchange, for
Co-Simulation, or for both. The following sum-
mary is an adapted version from Blochwitz et al.
(2012):

1. An XML-file contains the definition of all
exposed variables of the FMU, as well as
other model information. It is then possible to
run the FMU on a target system without this
information, i.e., without unnecessary over-
head. Furthermore, this allows determining all

properties of an FMU from a text file, without
actually loading and running the FMU.

2. A set of C-functions is provided to execute
model equations for the Model Exchange case
and to simulate the equations for the Co-
Simulation case. These C-functions can be
provided either in binary form for different
platforms or in source code. The different
forms can be included in the same model zip-
file.

3. Further data can be included in the FMU zip-
file, especially a model icon (bitmap file),
documentation files, maps and tables needed
by the model, and/or all object libraries or
DLLs that are utilized.

Summary and Future Directions

Multi-domain modeling based on a DAE descrip-
tion and defined with a modeling language is an
established approach, and many tools support it.
This allows to conveniently define plant models
from many domains for the design and evalua-
tion of control systems. Furthermore, nonlinear
inverse plant models can be easily constructed
with the same methodology and can be utilized
in various ways in nonlinear control systems.
Current research focuses on the support of
the complete life cycle: defining requirements
of a system formally on a ‘“high level,”


https://www.fmi-standard.org/tools
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considerably improving testing by checking these
requirements automatically when evaluating a
system design by simulations, and providing
complete tool chains from nonlinear multi-
domain models to embedded systems. The
latter will allow convenient and fast target code
generation of nonlinear controllers, extended and
unscented Kalman filters, optimization-based
controllers, or moving horizon estimators.

Furthermore, the methodology itself is further
improved. For example, in 2012, Modelica was
extended with language elements to define multi-
rate sampled data systems in a precise way, as
well as state machines.
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Abstract

Dynamic processes, both continuous and
batch, are characterised by autocorrelated

measurements which are allied to the effects
of process dynamics and disturbances. The
common multivariate statistical process control
(MSPC) approaches have been to use principal
component analysis (PCA) or projection to latent
structures (PLS) to build a model that captures the
simultaneous correlations amongst the variables,
but that ignores the serial correlation in the
data during normal operations. Under such
conditions it is difficult to perform efficient fault
detection and diagnosis. An alternative approach
to account for the process dynamics in MSPC is
to use multiresolution analysis (MRA) by way
of wavelet decomposition. Here, the individual
measurements are decomposed into different
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scales (or frequencies) and the signals in each
decomposed scale are then used for MSP which
provides an indirect way of handling process
dynamics.

Keywords

Multiresolution analysis; Partial least squares
(PLS); Principal component analysis (PCA);
Projection to latent structures (PLS); Wavelet
transform

Definition

Multiscale  principal component analysis
(MSPCA) and its extension multiscale projection
to latent structures (MSPLS) combine the
abilities of these multivariate tools to de-
correlate the variables by extracting linear
relationships with that of wavelet analysis, to
extract deterministic features and approximately
de-correlate  autocorrelated  measurements.
Multiscale modeling makes use of the wavelet
transform which allows a signal (measurement)
to be viewed in multiple resolutions with each
resolution representing a different frequency.
That is, wavelet transform allows complex
information to be decomposed into basic
components at different positions and scales.

Motivation and Background

One of the drawbacks of the conventional
PCA (or PLS)-based MSPC is that although
the PCA/PLS model captures the correlations
among the variables, it ignores the serial
(auto)correlation in the process variables and
measurements. One way to overcome this issue
is to include time-lagged variables in the PCA
or PLS model. In this way, PCA and PLS will
explicitly model both the correlations among
the variables and the serial correlations in the
individual variables. The impact is an increase in
the number principal components required, but
the multivariate monitoring model will be able
to detect any changes in the serial correlation of
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the variables as well as changes in relationships
among the variables. This article focuses on
multiscale-multiway PCA using batchwise
data unfolding. However, the methodology
can equally be applied to PLS-based process
performance monitoring (MSPC).

In multivariate statistical process control
(MSPC), the multivariate statistical techniques
of principle component analysis (PCA) and
projection to latent structures {Partial Least
Squares} (PLS) together with monitoring metrics
based on Hotelling’s 72 (directly related to
the Mahalanobis distance that monitors the
fit of new observations to the model space)
and the squared prediction error (SPE) or Q
statistic (that monitors the residual space-model
mismatch) are used to simultaneously monitor
the process variables (Kourti and MacGregor
1996; Qin 2003). A recent survey provides an
excellent state-of-the-art review of the methods
and applications of data-driven fault detection
and diagnosis that have been developed over the
last two decades (Qin 2012).

Process measurements typically exhibit multi-
scale behavior as a consequence of representing
the cumulative effect of a number of underlying
process phenomena including process dynamics,
measurement noise, and disturbances. To address
these issues, methodologies are required to ad-
dress (i) the multiscale nature of process data and
(ii) the inability of some existing algorithms to
handle autocorrelation. One approach is through
the use of multiresolution analysis and wavelets
Mallat (1998). Informative discussions and ap-
plication studies related to using multiresolution
analysis and wavelet decompositions to enhance
PCA-based process monitoring and fault detec-
tion have been presented, for example, by Bakshi
(1998), Misra et al. (2002), Aradhye et al. (2003),
Lu et al. (2003), Yoon and MacGregor (2004) and
Reis and Saraiva (2006). Yoon and MacGregor
in their comprehensive MSPCA study discussed
their approach in the context of other multiscale
approaches and illustrated the methodology using
simulated data from a continuous stirred-tank
reactor system. A major contribution of the paper
was to extend fault isolation methods based on
contribution plots to multiscale PCA approaches.
Although some 9 years old, Ganesan et al. (2004)
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provided review of wavelet-based multiscale sta-
tistical process monitoring.

The Approach

Multiresolution analysis (MRA) provides the
theoretical basis for the derivation of a com-
putationally efficient algorithm for the wavelet
transform Mallat (1998). MRA allows the
dynamic aspects of the data in to be taken into
account in MSPC. The individual signals are
decomposed into different scales (frequencies),
and data in each decomposed scale are then used
for MSPC which provides an indirect approach
to handling process dynamics. Multiscale MSPC
(MSPCA) enables the simultaneous extraction
of process correlations across data as well as
accounting for autocorrelation within sensor
data. In this way, it captures correlations among
the process variables made by various events
occurring at different scales.

MSPCA calculates the principal components
of wavelet coefficients at each scale and com-
bines these at the relevant wavelet scales. Due
to its multiscale nature, MSPCA is very useful
for the modeling of data containing contribu-
tions from events whose behavior changes over
both time and frequency. Process monitoring by
MSPCA, and process prediction by MSPLS, in-
volves combining those scales where significant
events are detected. Approximate de-correlation
of wavelet coefficients also makes MSPCA ef-
fective for the monitoring of autocorrelated mea-
surements.

The Algorithm

Wavelets are a family of basis functions that
provide a mapping from the time domain to the
time-frequency domain. They can be used to
decompose the signal into different resolutions by
projecting onto the corresponding wavelet basis
functions using multiresolution analysis (MRA).
A wavelet set is constructed from a fundamen-
tal basis function or the mother wavelet by a
process of translation and dilation. The wavelet
set is defined as wavelet analysis which provides
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methodologies for the extraction of the time and
frequency content of a signal. Conventional fre-
quency analysis based on the Fourier transform
consists of decomposing a signal into sine waves
of different frequencies. Wavelet analysis decom-
poses the original signal in a similar manner. The
major difference is that while Fourier analysis
uses sine waves of infinite length, multiresolution
analysis uses waveforms of finite length. The
finite length of the wavelets allows them to de-
scribe local events in both the time and frequency
domain.

The wavelet transform, an extension to the
Fourier transform, projects the original signal
down onto wavelet basis functions, providing a
mapping from the time domain to the timescale
plane. The wavelet functions, which are localized
in the time and frequency domain, are obtained
from a single prototype wavelet, the mother
wavelet, by dilation and translation. The wavelet
set is defined as

Yan(t) = \/%w (t;b)

where ¥ is the mother wavelet function, a the

dilation parameter, and b the translation param-

eters, and the factor —— is used to ensure that
Vlal

each wavelet function has the same energy as the
mother wavelet. The discrete wavelet transform
with dyadic dilation and translation is used in this
overview. A definition of continuous and discrete
wavelet transforms can be found in Daubechies
(1992). In the discrete case, the dilation and
translation parameters are discretized as a = ag'
and b = kboal. If ay = 2 and by = 1, a dyadic
dilation and translation is carried out; however,
ao and by are not restricted to these values. The
discrete wavelet form, which is widely used in
process monitoring and chemical signal analy-
sis, is

Wik (0) = ay’*W(ay”" — kby)

A recursive algorithm for wavelet decompo-
sition and the reconstruction of a discrete signal
of dyadic length is often used Mallat (1998)
and is known as the pyramid algorithm. The
fast discrete wavelet decomposition consists of
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three components, low-pass filters L(n), high-
pass filters H(n), and dyadic decimation. By
passing the input signal through this pair of
filters, the projection of the original signal
onto the scaling and wavelet functions for the
multiresolution analysis is performed. Dyadic
decimation, or down-sampling, removes every
odd member of a sequence, thus halving the
original number of samples. The low-pass filter
resembles a moving average, while the high-pass
filter extracts the detailed information contained
in the signal. The discrete wavelet transform
operates by taking a sequence of values, applying
L(n) and H(n) and then repeating this same
procedure to the approximation coefficients. In
this way, the original signal vector is smoothed
and halved through L, and the vector of
approximation coefficients is again smoothed
and halved through L. Successive application of
the low-pass filter results in the approximation
coefficients, becoming an increasingly smooth
version of the original signal. At the same time
as smoothing the signal, each iteration extracts
the high frequency information in the data.
The repeated application of L, followed by H
is, in effect, a band-pass filter. The result of
applying high-/low-pass filters to a signal is
a set of coefficients describing the details of
the signals D; and a second set describing the
approximations of the signals Ay. The original
signal s can then be represented by

L
xX(0) =) D;(0)+ AL()

=1

where D; and A; are referred to as the jth level
wavelet details and approximation, respectively.

Figure 1 shows schematically the multi-
resolution-based wavelet decomposition.

One of the most popular choices of wavelets
are those of the Daubechies’ family. These
wavelets are compactly supported in the time
domain and have good frequency domain
decay. Moreover, Daubechies’ wavelets (DaubN)
possess a different type of smoothness which
is determined by the vanishing moments N.
This makes it possible to match the wavelet
smoothness to the smoothness of the signals to
be analyzed. The signal can then be decomposed
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orthonormal basis functions:

L N N
X(0) =Y D duiVmk () + ) aneu(t)
k=1

m=1 k=1

where x (¢) represents the process measurements,
dm represents the wavelet or detail signal coeffi-
cient at scale m and location k, and a represent
the scaled signal or scaling function coefficient
of ¢(t) at the coarsest scale L and location
k. The scaling function, or father wavelet, ¢,
captures the low-frequency content of the original
signal that is not captured by wavelets at the
corresponding or finer scales.

The wavelet transformation is applied to
decompose a multivariate signal X into its
approximate, A; to Ar, and detail, D; to Dy,
coefficients for the first to Lth level, respectively.
For more information, see Bakshi (1998), Misra
et al. (2002) and Aradhye et al. (2003). Figure 2
shows a schematic representation of a typical
MSPCA multivariate statistical process control
scheme.

An example of the application of multiway-
multiscale MPCA to a benchmark-fed batch

presented by Alawi and Morris (2007). The
application used a combination of multiblock
statistical modeling approaches together with
multiscale-multiway batch monitoring. Figure 3
shows the multiscale-multiway monitoring
scheme for process monitoring and fault
detection. At every time point, the batch process
variables are decomposed into scales to the
wavelet domain and then reconstructed back
to the time domain. The scales/details and the
approximations are collected into separate ma-
trices (blocks). Multiblock PCA is then applied
to the wavelets details and approximation. Fault
detection based on the T2 and Qj statistics was
used along with contribution plots incorporating
confidence bounds to enhance fault diagnosis.
Figure 4 compares the monitoring statistics
for the multiscale-multiway PCA and conven-
tional multiway PCA for a slowly drifting sen-
sor fault showing the potential for multiscale
MPCA (MSPCA) in being able to detect faster
subtle process and sensor faults than conventional
multiway MSPC. It is noted that sensor drift is
confined to one scale band at low frequency. It has
been observed that multiscale approaches appear
to provide little improvement if a fault effect is
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spread over more than one frequency band or
the fault effect occurs mainly in a scale with
dominant variance. Thus, a monitoring method
that gives the best detection and identification
of faults will depend on the fault characteristics
with multiscale approaches, providing an advan-
tage when the faults localized in frequency or
that appear in scales that normally have small
variance.

Other Applications of Multiscale
MPCA

There have a number of nonlinear extensions. For
example, multiscale PLS approaches have been

developed, e.g., Teppola and Minkkinen (2000)
and Lee et al. (2009). Nonlinear approaches have
also been explored. For example, Lee et al. (2004)
proposed a batch monitoring approach using
multiway kernel principal component analysis,
Shao et al. (1999) proposed a wavelet-based
nonlinear PCA algorithm, Choi et al. (2008)
described a study of a kernel-based MSPCA
algorithm for nonlinear multiscale monitoring,
and most recently Zhang and Ma (2011) com-
pared fault diagnosis of nonlinear processes using
multiscale KPCA and multiscale KPLS. Wavelet
multiscale approaches have also been widely
discussed in spectroscopic data processing (Shao
et al. 2004).
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Abstract

Multi-vehicle routing problems in systems and
control theory are concerned with the design of
control policies to coordinate several vehicles
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moving in a metric space, in order to complete
spatially localized, exogenously generated tasks
in an efficient way. Control policies depend on
several factors, including the definition of the
tasks, of the task generation process, of the vehi-
cle dynamics and constraints, of the information
available to the vehicles, and of the performance
objective. Ensuring the stability of the system,
i.e., the uniform boundedness of the number of
outstanding tasks, is a primary concern. Typical
performance objectives are represented by mea-
sures of quality of service, such as the average
or worst-case time a task spends in the system
before being completed or the percentage of tasks
that are completed before certain deadlines. The
scalability of the control policies to large groups
of vehicles often drives the choice of the informa-
tion structure, requiring distributed computation.

Keywords

Cooperative control; Decentralized control; Dy-
namic routing; Networked robots; Task allocation

Introduction

Multi-vehicle routing problems in systems and
control theory are concerned with the design of
control policies to coordinate several vehicles
moving in a metric space, in order to complete
spatially localized, exogenously generated tasks
in an efficient way. Key features of the prob-
lem are that tasks arrive sequentially over time
and planning algorithms should provide control
policies (in contrast to preplanned routes) that
prescribe how the routes should be updated as a
function of those inputs that change in real time.
This problem is usually referred to as dynamic
vehicle routing (DVR). In DVR problems, ensur-
ing the stability of the system, i.e., the uniform
boundedness of the number of outstanding tasks,
is a primary concern.

Motivation and Background
As a motivating example, consider the following
scenario: a team of unmanned aerial vehicles
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(UAV5) is responsible for investigating possible
threats over a region of interest. As possible
threats are detected, by intelligence, high-altitude
or orbiting platforms, or by ground sensor net-
works, one of the UAVs must visit its location
and investigate the cause of the alarm, in order
to enable an appropriate response if necessary.
Performing this task may require the UAV not
only to fly to the possible threat’s location but
also to spend additional time on site. The objec-
tive is to minimize the average time between the
appearance of a possible threat and the time one
of the UAVs completes the close-range inspection
task. Variations may include priority levels, time
windows during which the inspection task must
be completed, and sensors with limited range.

In order to perform the required mission, the
UAVs (or, more in general, mission control)
need to repeatedly solve three coupled decision-
making problems:

1. Task allocation: which UAV shall pursue
each task? What policy is used to assign tasks
to UAVs? How often should the assignment
be revised?

2. Service scheduling: given the list of tasks to
be pursued, what is the most efficient ordering
of these tasks?

3. Loitering paths: what should UAVs without
pending assignments do?

The optimization process must take into account,

for example, algebraic or differential constraints

(such as obstacle avoidance or bounded cur-

vature, respectively), sensing constraints, com-

munication constraints, and energy constraints.

Furthermore, one might require a decentralized

control architecture.

DVR problems, including the above UAV
routing problem, are generally intractable due
to their multifaceted combinatorial, differential,
and stochastic nature, and consequently solution
approaches have been devised that look either
at heuristic algorithms or at approximation
algorithms with some guarantee on their
performance.

Related Problems
DVR problems represent the dynamic counter-
part of the well-known static vehicle routing
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problem (VRP), whereby (i) a team of n vehicles
is required to service a set of nt “static” tasks in
a metric space, (ii) each task requires a certain
amount of on-site service, (iii) and the goal is to
compute a set of routes that minimizes the cost
of servicing the tasks; see Toth and Vigo (2001)
for a thorough introduction to this problem. The
VRP is static in the sense that vehicle routes
are computed assuming that no new tasks arrive.
The VRP is an important research topic in the
operations research community.

Approaches for Multi-vehicle Routing

Broadly speaking, there are three main
approaches available in the literature to tackle
dynamic vehicle routing problems. The first
approach relies on heuristic algorithms. In the
second approach, called “competitive analysis
approach,” routing policies are designed to
minimize the worst-case ratio between their
performance and the performance of an optimal
off-line algorithm which has a priori knowledge
of the entire input sequence. In the third
approach, the routing problem is embedded
within the framework of queueing theory.
Routing policies are then designed to stabilize
the system in terms of uniform boundedness of
the number of outstanding tasks and to minimize
typical queueing-theoretical cost functions such
as the expected time the tasks remain in the queue.
Since the generation of tasks and motion of the
vehicles is within an Euclidean space, one can
refer to this third approach as “spatial queueing
theory.”

Heuristic Approach

The main aspect of the heuristic approach is that
routing algorithms are evaluated primarily via nu-
merical, statistical and experimental studies, and
formal performance guarantees are not available.
A naive, yet reasonable approach to design a
heuristic algorithm for DVR would be to adapt
classic queueing policies. However, perhaps sur-
prisingly, this adaptation is not at all straightfor-
ward. For example, routing algorithms based on a
first-come-first-served policy, whereby tasks are
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fulfilled in the order in which they arrive, are un-
able to stabilize the system for all stabilizable task
arrival rates, in the sense that with such routing al-
gorithms the average number of tasks grows over
time without bound, even though there exist alter-
native routing algorithms that would maintain the
number of tasks uniformly bounded (Bertsimas
and van Ryzin 1991).

The most widely applied approach is
to combine static routing methods (e.g.,
VRP-like methods, nearest neighbor strategies,
or genetic algorithms) and sequential re-
optimization, where the re-optimization horizon
is chosen heuristically. In particular, greedy
nearest neighbor strategies, whose formal
characterization still represents an open problem,
are known to perform particularly well in some
notable cases (Bertsimas and van Ryzin 1991).
However, the joint selection of a static routing
method and of the re-optimization horizon in
the presence of vehicle and task constraints
(e.g., differential motion constraints, or task
priorities) makes the application of this approach
far from trivial. For example, one can show that
an erroneous selection of the re-optimization
horizon can lead to pathological scenarios where
no task ever receives service (Pavone 2010).
Additionally, performance criteria in dynamic
settings commonly differ from those of the
corresponding static problems. For example, in
a dynamic setting, the time needed to complete
a task may be a more important factor than the
total vehicle travel cost.

Competitive Analysis Approach

The distinctive feature of the competitive analy-
sis approach is the method used to evaluate an
algorithm’s performance, which is called compet-
itive analysis. In competitive analysis, the per-
formance of a (causal) algorithm is compared
to the performance of a corresponding off-line
algorithm (i.e., a non-causal algorithm that has
a priori knowledge of the entire input) in the
worst-case scenario. Specifically, an algorithm is
c-competitive if its cost on any problem instance
is at most ¢ times the cost of an optimal off-line
algorithm:
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COStcausal(I) =c COStoptimal off—line(l)y

for all problem instances /.

In the recent past, several dynamic vehicle
routing problems have been successfully studied
in this framework, under the name of the online
traveling repairman problem (Jaillet and Wagner
2006), and many interesting insights have been
obtained. However, the competitive analysis
approach has some potential disadvantages. First,
competitive analysis is a worst-case analysis;
hence, the results are often overly pessimistic
for normal problem instances, and potential
statistical information about the problem (e.g.,
knowledge of the spatial distribution of future
tasks) is often neglected. Second, the worst-
case analysis usually requires a finite horizon
problem formulation, which precludes the
study of useful properties such as stability.
Third, competitive analysis is used to bound
the performance relative to an optimal off-line
algorithm, which, by being non-causal, does not
belong to the feasible set of routing algorithms
one is optimizing over. Hence, with this approach
one minimizes the “cost of causality” in
the worst-case scenario, but not necessarily
the worst-case cost (which would require
comparison with an optimal causal routing
algorithm). Finally, many important real-world
constraints for DVR, such as time windows,
priorities, differential constraints on vehicle’s
motion, and the requirement of teams to fulfill
a task, have so far proved to be too complex
to be considered in the competitive analysis
framework (Golden et al. 2008, page 206). Some
of these drawbacks have been recently addressed
by Van Hentenryck et al. (2009) where a
combined stochastic and competitive analysis
approach is proposed for a general class of
combinatorial optimization problems and is
analyzed under some technical assumptions.

Spatial Queueing Theory

Spatial queueing theory embeds the dynamic ve-
hicle routing problem within the framework of
queueing theory. Spatial queueing theory consists
of three main steps, namely, development of a
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spatial queueing model, establishment of funda-

mental limitations of performance, and design of

algorithms with performance guarantees. More
specifically, the formulation of a model entails
detailing four main aspects:

1. A model for the dynamic component of the
environment: this is usually achieved by as-
suming that new events are generated (either
adversarially or stochastically) by an exoge-
nous process.

2. A model for targets/tasks: tasks are usually
modeled as points in a physical environment
distributed according to some (possibly un-
known) distribution, might require a certain
level of on-site service time, and can be sub-
ject to a variety of constraints, e.g., time win-
dows, priorities, etc.

3. A model for the vehicles and their motion:
besides their number, one needs to specify
whether the vehicles are subject to alge-
braic (e.g., obstacles) or differential (e.g.,
minimum turning radius) constraints, sensing
constraints, and fuel constraints. Also, the
control could be centralized (i.e., coordinated
by a central station) or decentralized and
subject to communication constraints.

4. Performance criterion: examples include the
minimization of the waiting time before ser-
vice, loss probabilities, expectation-variance
analysis, etc.

Once the model is formulated, one seeks
to characterize fundamental limitations of
performance (in the form of lower bounds for
the best achievable cost); the purpose of this step
is essentially twofold: it allows the quantification
of the degree of optimality of a routing algorithm
and provides structural insights into the problem.
As for the last step, the design of a routing
algorithm usually relies on a careful combination
of static routing methods with sequential re-
optimization. Desirable properties for the static
methods are the following: (i) the static problem
can be solved (at least approximately) in
polynomial time and (ii) the static method is
amenable to a statistical characterization (this is
essential for the computation of performance
bounds). Formal performance guarantees on
a routing algorithm are then obtained by
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quantifying the ratio between an upper bound on
the cost delivered by that algorithm and a lower
bound for the best achievable cost. Such a ratio,
being an estimate of the degree of optimality of
the algorithm, should be close to one and possibly
independent of system parameters. The proposed
algorithms are finally evaluated via numerical,
statistical and experimental studies, including
Monte-Carlo comparisons with alternative
approaches.

An interesting feature of this approach is that
the performance analysis usually yields scaling
laws for the quality of service in terms of model
data, which can be used as useful guidelines
to select system parameters when feasible (e.g.,
number of vehicles).

In order to make the model tractable, the ar-
rival process of tasks is assumed stationary (with
possibly unknown parameters) with statistically
independent arrival times. These assumptions,
however, can be unrealistic in some scenarios, in
which case the competitive analysis approach
may represent a better alternative. From a
technical standpoint, one should note that spatial
queueing models are inherently different from
traditional, nonspatial queueing models. The
main reason is that in spatial queueing models,
the “service time” per task has both a travel
and an on-site component. Although the on-
site service requirements can often be modeled
as “statistically” independent, the travel times
are inherently statistically coupled. Hence, in
contrast to standard queueing models, service
times in spatial queueing models are statistically
dependent, and this deeply affects the solution to
the problem.

Pioneering work in this context is that of Bert-
simas and van Ryzin (1991), who introduced
queueing methods to solve the baseline DVR
problem (a vehicle moves along straight lines and
visits tasks whose time of arrival, location, and
on-site service are stochastic; information about
task location is communicated to the vehicle upon
task arrival). Next section provides an overview
of the application of spatial queueing theory to
such simplified DVR problem, referred to in
the literature as dynamic traveling repairman
problem (DTRP).
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Applying Spatial Queueing Theory
to DVR Problems

Spatial Queueing Theory Workflow for
DTRP

Model

The DTRP, which, incidentally, captures well the
salient features of the UAV scenario outlined
in the Motivation Section, can be modeled as
follows. In a geographical region Q of area A,
a dynamic process generates spatially localized
tasks. The process generating tasks is modeled
as a spatio-temporal Poisson process, i.e., (i) the
time between consecutive generation instants has
an exponential distribution with intensity A >
0 and (ii) upon arrival, the locations of tasks
are independently and uniformly distributed in
Q. The location of the new tasks is assumed
to be immediately available to a team of n ser-
vicing vehicles. The vehicles provide service in
Q, traveling at a speed at most equal to v; the
vehicles are assumed to have unlimited fuel and
task-servicing capabilities. Each task requires an
independent and identically distributed amount of
on-site service with finite mean duration s > 0.
A task is completed when one of the vehicles
moves to its location and performs its on-site
service. The objective is to design a routing policy
that maximizes the quality of service delivered
by the vehicles in terms of the average steady-
state time delay T between the generation of a
task and the time it is completed (in general, in
a dynamic setting, the focus is on the quality
of service as perceived by the “end user,” rather
than, for example, fuel economies achieved by
the vehicles). Other quantities of interest are the
average number nt of tasks waiting to be com-
pleted and the waiting time W of a task before its
location is reached by a vehicle. These quantities,
however, are related accordingto T = W + 5
(by definition) and by Little’s law, stating that
it = AW, for stable queues.

The system is considered stable if the expected
number of waiting tasks is uniformly bounded at
all times, or equivalently, that tasks are removed
from the system at least at the same rate at
which they are generated. In the case at hand,
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the time to complete a task is the sum of the
time to reach its location (which depends on the
routing policy) plus the time spent at that location
in on-site service (which is independent of the
routing policy). Since, by definition, the service
time is no shorter than the on-site service time
5, then a weaker necessary condition for stability
is 0 := As/n < 1; the quantity o measures
the fraction of time the vehicles are performing
on-site service. Remarkably, it turns out that this
is also a sufficient condition for stability, in the
sense that, if this condition is satisfied, one can
find a stabilizing policy. Note that this stability
condition is independent of the size and shape of
Q and of the speed of the vehicles.

Fundamental Limitations of Performance

To derive lower bounds, the main difficulty con-
sists in bounding (possibly in a statistical sense)
the amount of time spent to reach a target lo-
cation. The derivation of these bounds becomes
simpler in asymptotic regimes, i.e., looking at
cases when ¢ — 01 and o — 1=, which are often
called “light-load” and “heavy-load” conditions,
respectively.

Consider first the case in which o — 0T
(light-load regime). A set of n points is called the
n-median of @ if it globally minimizes the ex-
pected distance between a random point sampled
uniformly from Q and the closest point in such
set. In other words, the n-median of Q globally
minimizes the function

Hn(plaPZa---,pn)

Let H, be the global minimum of this function.
Geometric considerations show that H scales
proportionally to \/A/n.

Incidentally, the n-median of Q induces a
Voronoi partition that is called Median Voronoi
Tessellation, whose importance will become clear
in the next section. Recall that the Voronoi di-
agram of Q induced by points (pi,..., p,) is
defined by
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Vi={aeQllla—pil <llg—pjll. ¥j #1,

je{l,...,n}},

where V; is the region associated with the i-th
“generator” point p; (see also » Optimal Deploy-
ment and Spatial Coverage). The distance H,"
certainly provides a lower bound on the expected
distance traveled by a vehicle to reach a task, and
hence one obtains the lower bound

_ Hx
T>—"+5%.
v

This lower bound is tight in light-load conditions
(0 — 071), as it will be seen in the next section.
Consider now the case in which o — 17
(heavy load). Let D be the average travel distance
per task for some routing policy. By using ar-
guments from geometrical probability (indepen-

dent of algorithms), one can show that D >
B2~/ A/ /2nT as 0 — 17, where B is a constant
that will be specified later. As discussed, for
stability, one needs 5 + D /v < n/A. Combining
the stability condition with the bound on the
average travel distance per task, one obtains

5+ WE <2
v2nt ~ A

Since, by Little’s law, nt = AW and T = W +5,
one finally obtains (recall that o = A5/n):

ppA__ 2

FobA A
-2 vznz(l—g)2+

s, (aspo—17).

A salient feature of the above lower bound is
that it scales quadratically with the number of ve-
hicles (as opposed to the square-root scaling law
one has in light-load conditions); note, however,
that congestion effects are not included in this
model. This bound also shows that the quality
of service, which is proportional to 1/(1 — )2,
degrades much faster as the target load increases
than in nonspatial queueing systems (where the
growth rate is proportional to 1/(1 — g)).
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Design of Routing Algorithms

The design of an optimal light-load policy es-
sentially relies on mimicking the proof strategy
employed for the light-load lower bound. Specif-
ically, a routing policy whereby (1) one vehicle
is assigned to each of the n median locations
of Q, (2) new tasks are assigned to the nearest
median location and its corresponding vehicle,
and (3) each vehicle services tasks according to
a first-come-first-served policy is asymptotically
optimal, i.e.,

T—)%+E, (aso — 07).

Note that under this strategy “regions of domi-
nance” are implicitly assigned to vehicles accord-
ing to a Median Voronoi Tessellation.

The heavy-load case is more challenging.
Consider, first, the following single-vehicle
routing policy, based on a partition of Q into
p > 1 subregions {Qi, @, ..., Q,} of equal
area A/ p. Such a partition can be obtained, e.g.,
as sectors centered at the median of Q. Define a
cyclic ordering for the subregion, such that, e.g.,
if the vehicle is in region Q;, the “next” region is
Q;, where j follows i in the cyclic ordering (in
other words, j = (i 4+ 1)mod p).

1. If there are no outstanding tasks, move to
the median of the region Q.

2. Otherwise, visit the “next” subregion;
subregions with no tasks are skipped.
Compute a minimum-length path from
the vehicle’s current position through all
the outstanding tasks in that subregion.
Complete all tasks on this path, ignoring
new tasks generated in the meantime.
Repeat.

The problem of computing the shortest path
through a number of points is related to the well-
known traveling salesman problem (TSP). While
the TSP is a prototypically hard combinatorial
optimization problem, it is well known that the
Euclidean version of the problem can be approx-
imated efficiently (Vazirani 2001). Furthermore,
the length ETSP(n1) of a Euclidean TSP through
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nt points independently and uniformly sampled
in Q is known to satisfy the following property:

lim ETSP(nt)//n1=P>- A, almost surely,
nr—>o0

where B, =& 0.712 is a constant (the same
B> constant that appeared in the previous sec-
tion) (Steele 1990).

It can be shown that, using the above routing
policy, the average system time 7 satisfies

A A
P (asp—17),

where y(1) = B3 and y(p) — f3/2 for large p.
These results critically exploit the statistical char-
acterization of the length of an optimal TSP tour.
Hence, the proposed policy achieves a quality
of service that is arbitrarily close to the optimal
one, in the asymptotic regime of heavy load (and,
indeed, also of light load).

The above single-vehicle routing policies can
be fairly easily lifted to an efficient multi-vehicle
routing policy. The key idea (akin to the one in the
light-load case) is to (1) partition the workspace
into n regions of dominance (with disjoint interi-
ors and whose union is Q), (2) assign one vehicle
to each region, and (3) have each vehicle follow
a single-vehicle routing policy within its own re-
gion. This approach leads to the following multi-
vehicle routing policy for the DTRP problem:

1. Partition @ into n regions of dominance
of equal area and assign one vehicle to
each region.

2. Each vehicle executes a single-vehicle
DTRP policy in its own subregion.

Using as single-vehicle policy the routing pol-
icy described above, the average system time T
in heavy-load satisfies

A A

T < ==
=7 (1= 0)? +

s, (0 —17).

Hence, by comparing this result with the cor-
responding lower bound, one concludes that a
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simple partitioning strategy leads to a multi-
vehicle routing policy whose performance is ar-
bitrarily close to the optimal one in heavy load.

Mode of Implementation

The scalability of the control policies to large
groups of vehicles often requires a distributed
implementation of multi-vehicle routing strate-
gies. For the DTRP, a distributed implementa-
tion can be obtained by devising decentralized
algorithms for environment partitioning. In the
solution proposed in Pavone (2010), power dia-
grams are the key geometric concept to obtain,
in a decentralized fashion, partitions suitable for
both the light-load case (requiring, as seen before,
a Median Voronoi Tessellation) and the heavy-
load case (requiring an equal-area partition). The
power diagram of Q is defined as

Vi ={a € Qlla = pill* = willa = pjI* = w;,

Vj#i, j e{l,...,n}},

where (p;,w;) € Q x R are a set of “power
points” and V; is the subregion associated with
the i-th power point. Note that power diagrams
are a generalization of Voronoi diagrams: when
all weights are equal, the power diagram and the
Voronoi diagram are identical. The basic idea,
then, is to associate to each vehicle i a virtual
power point, which is an artificial (or logical)
variable whose value is locally controlled by the
i-th vehicle. The cell V; becomes the region of
dominance for vehicle i, and each vehicle updates
its own power point according to a decentralized
gradient-descent law with respect to a cover-
age function (» Optimal Deployment and Spatial
Coverage), until the desired partition is achieved.
The reader is referred to Pavone (2010) for more
details.

Extensions and Discussion

By integrating additional ideas from dynamics,
teaming, and distributed algorithms, the spatial
queueing theory approach has been recently ap-
plied to scenarios with complex models for the
tasks such as time constraints, service priori-
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ties, translating tasks, and adversarial generation;
has been extended to address aspects concerning
robotic implementation such as complex vehi-
cle dynamics, limited sensing range, and team
forming; and has even been tailored to integrate
humans in the design space; see Bullo et al.
(2011) and references therein. Despite the sig-
nificant modeling differences, the “workflow” is
essentially the same as in the DTRP: a queueing
model that captures the salient features of the
problem at hand, characterization of the funda-
mental limitations of performance, and design of
algorithms with provable performance bounds.
The last step, as for the DTRP, often involves
lifting a single-vehicle policy to a multi-vehicle
policy through the strategy of environment par-
titioning. Within this context, a number of parti-
tioning schemes and corresponding decentralized
partitioning algorithms relevant to a large variety
of DVR problems are discussed in Pavone et al.
(2009).

This workflow efficiently and transparently
decouples the three decision-making problems
mentioned in the Introduction Section, i.e., “task
allocation,” “service scheduling,” and “loitering
paths.” In fact, task allocation is addressed via
the strategy of environment partitioning, service
scheduling is addressed by applying a single-
vehicle routing policy within the individual
regions of dominance, and the loitering paths
resolve in placing the vehicles at or around
specific points within the dominance regions
(e.g., the median). Note, however, that in some
important cases, e.g., DVR problems where
goods have to be transported from a pickup
location to a delivery location or where vehicles
are differentially constrained and operate in a
“congested” workspace, multi-vehicle policies
that rely on static partitions perform poorly or
are not even feasible (Pavone et al. 2009), and
task allocation and service scheduling need to be
addressed as tightly coupled.

Through spatial queueing theory one is
usually able to characterize the performance
of multi-vehicle routing policies in asymptotic
regimes. To ensure ‘“‘satisfactory” performance
under general operation conditions, a common
strategy is to consider heuristic modifications
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to a baseline asymptotically efficient routing
policy in such a way that, on the one hand,
asymptotic performance is preserved, and, on the
other hand, light- and heavy-load performances
are “smoothly” and efficiently blended in the
intermediate load case. The interested reader
can find more information in Bullo et al.
(2011).

Summary and Future Directions

The three main approaches available to tackle
DVR problems are (i) heuristic algorithms, (ii)
competitive analysis, and (iii) spatial queueing
theory. Broadly speaking, the competitive anal-
ysis approach is well suited when worst-case
guarantees are sought, e.g., because there is not
enough statistical information about the problem
at hand. Spatial queueing theory represents a
powerful alternative in cases where it is possi-
ble to leverage statistical information and one
seeks average-case guarantees. Finally, for some
problems the complexity of the model makes
an analytical treatment very difficult, in which
case the only option is to resort to an heuristic
approach (possibly relying on insights derived
by applying competitive analysis and/or spatial
queueing theory to a simplified version of the
problem).

Future directions include the extension of the
three aforementioned approaches to increasingly
complex problem setups, for example, higher-
fidelity vehicle dynamics and environments
and sophisticated sensing and communication
constraints, novel applications (e.g., search and
rescue missions, map maintenance, and pursuit-
evasion), and inclusion of game-theoretical tools
to address adversarial scenarios. Specifically, for
the spatial queueing theory approach, key future
directions include the problem of addressing
optimality of performance in intermediate
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regimes (current optimality results are only
available either in the light or heavy-load
regimes), online estimation of the statistical
parameters (e.g., spatial distribution of the tasks),
and formulations that take into account second-
order moments and large-deviation probabilities.

Cross-References
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Particle Filters
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