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Abstract

H1 optimization is central in robust control.
When controllers are implemented by computers,
sampled-data control systems arise. Designing
H1-optimal controllers in purely continuous
time or in purely discrete time is standard
in robust control; in this entry, we discuss
the process of sampled-data optimization,
namely, designing digital controllers based on
a continuous-time H1 performance measure.
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Introduction

Robust control deals mainly with controller de-
sign against uncertainties in system modeling
and disturbances. The central tool used is H1
optimization.

In continuous time, consider the standard
setup in Fig. 1, where G is the generalized plant
and K is the controller; G has two inputs (w,
the exogenous input, and u, the control input)
and two outputs (z, the output to be controlled,
and y, the measured output); K processes y to
generate u. The H1-optimal control problem
is to design K to stabilize G and minimize the
H1 norm of the closed-loop system in Fig. 1
from w to z, denoted Tzw. When both G and K
are continuous-time, linear time-invariant (LTI),
the H1 norm, kTzwk, relates to the frequency
response matrix bT zw.j!/ as follows:

kTzwk D sup
!

N�
h

bT zw.j!/
i

;

where N� indicates the maximum singular value.
This H1-optimal control problem in the LTI
case is solvable by many techniques, e.g., Riccati
equations and linear matrix inequalities – see
robust control textbooks by Zhou et al. (1996) and
Dullerud and Paganini (2000).

Sampled-Data Control

When controllers are implemented by digital
computers, periodic samplers and zero-order
holds are used to model analog-to-digital and
digital-to-analog conversion. Replacing K in
Fig. 1 by sampler S (with period h), discrete-
time controller Kd , and zero-order hold H

(synchronized with S ), we obtain a sampled-data
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Sampled-Data H-Infinity Optimization, Fig. 1
Standard control setup in continuous time

Sampled-Data H-Infinity Optimization, Fig. 2
Sampled-data control setup

control system shown in Fig. 2; here, S converts
y into a discrete-time sequence  ; Kd , a real-
time algorithm in the computer, inputs  and
computes another sequence � , which is converted
by H into u.

There are in general three approaches to de-
sign a digital controllerKd : design a continuous-
time controller K and then implement digitally
via approximation, discretize the plant and then
designKd in discrete time, and finally, designKd

directly based on continuous-time performance
specifications (Chen and Francis 1995). The last
approach is followed in the H1 optimization
framework.

Sampled-DataH1 Discretization

The sampled-data H1 control problem is to de-
sign Kd directly to stabilize G in Fig. 2 and
minimize kTzwk. Notice that even if G is LTI in
continuous time and Kd is LTI in discrete time,
the closed-loop system Tzw is no longer LTI, due
to the presence of S and H in the control loop;

Sampled-Data H-Infinity Optimization, Fig. 3 The
equivalent discrete-time system

in this case, the H1 norm is interpreted as the
L2-induced norm:

kTzwk D supfkzk2 W kwk2 D 1gI

here, k � k2 represents the L2 norm on signals.
The sampled-data H1 control problem has

been shown to be equivalent to a purely discrete-
time H1 control problem (Kabamba and Hara
1993; Bamieh and Pearson 1992; Toivonen
1992); the process is known as sampled-data
H1 discretization: for � > 0, construct an LTI
discrete-time system Geq;d connected to Kd as
in Fig. 3; the two systems, Tzw in Fig. 2 and
T�! W ! 7! � in Fig. 3, are equivalent in that
kTzwk < � if kT�!k < � , where the latter norm is
`2-induced, and since T�! is LTI in discrete time,
it equals the H1 norm of the corresponding
transfer function bT �!.z/. Thus, pure discrete-
time techniques are immediately applicable.

There are several ways to present this dis-
cretization. However, the computation is quite
involved and hence is not given here; interested
readers can find details in the papers by Kabamba
and Hara (1993), Bamieh and Pearson (1992),
and Toivonen (1992), or the book by Chen and
Francis (1995). Note that the H1 discretization
process is not quite exact in the sense that Geq;d
depends on � (Chen and Francis 1995).

Summary and Future Directions

In sampled-data H1 optimization, the key idea
is to address the hybrid nature of the problem,
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considering intersample behavior in formulation;
the main tool is the so-called continuous lifting
(Yamamoto 1994; Bamieh and Pearson 1992),
making use of periodicity of sampled-data
systems.

The ideas and tools developed in sampled-
data control theory are still being used in emerg-
ing areas such as hybrid systems and networked
control systems. For example, in event-triggered
control systems, information exchange and con-
trol updating are not time driven but are done
by certain event-triggering schemes, resulting in
necessarily nonlinear and time-varying closed-
loop dynamics; the analysis and synthesis issues
in such systems are still challenging.

Cross-References

�H-Infinity Control
�LMI Approach to Robust Control
�Optimal Sampled-Data Control
�Optimization Based Robust Control

Recommended Reading

The continuous-time H1 control problem and
its solutions are discussed extensively in several
textbooks, e.g., Zhou et al. (1996) and Dullerud
and Paganini (2000). The discrete-time H1 con-
trol problem was solved via the approach of Ric-
cati equations in Iglesias and Glover (1991). The
sampled-data H1 control problem was solved si-
multaneously with different methods in Kabamba
and Hara (1993), Bamieh and Pearson (1992),
and Toivonen (1992); details of the solution dis-
cussed here can be found in the book by Chen and
Francis (1995).
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Abstract

For digital devices to interact with the physical
world, an interface is needed that transforms the
signals from analog to digital and vice versa.
Ideal samplers and zero-order hold devices are
incorporated to derive discrete-time models of
continuous-time systems. State variable descrip-
tions and transfer functions are used.
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Introduction

Sampled-data systems are discrete-time models
of continuous-time processes useful in the digital
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control of continuous-time systems. A digital
controller cannot communicate directly with a
continuous system and an interface is needed.

Consider a continuous-time system having
u.t/ as its input and y.t/ as its output.
A/D Converter: The continuous-time signal
y.t/ is converted into a discrete-time signal
f Ny.k/g, k � 0; k 2 Z, which is a sequence
of values f Ny.0/; Ny.1/; � � � g determined by the
relation

Ny.k/ D y.tk/: (1)

This is the ideal A/D (analog to digital) con-
verter that samples y.t/ at times t0; t1; t2 � � �
producing the sequence fy.t0/; y.t1/; � � � g also
denoted as fy.tk/g.

D/A Converter: The D/A (digital to analog)
converter receives as its input a sequence
fNu.k/g, k D 0; 1; 2; � � � and outputs a
(piecewise) continuous-time signal u.t/
determined by

u.t/ D Nu.k/; tk � t < tkC1; k D 0; 1; 2; � � � :
(2)

That is, this D/A converter keeps the value of
u.t/ constant at the last value of the sequence
entered, until a new value comes in. Such
a device is called a zero-order hold (ZOH)
device.

Higher-Order Hold

The ZOH device described above implements a
particular procedure of data reconstruction or
extrapolation. The general problem is as follows:

Given a sequence of real numbers f Nf .k/g,
k D k0; k0 C 1; � � � derive f .t/, t � t0 so that

f .tk/ D Nf .k/; k D k0; k0 C 1; � � �

Clearly, there is a lot of flexibility in assigning
values to f .t/ in between the samples Nf .k/; in
other words there is a lot of flexibility in assigning
the intersample behavior in f .t/.

A way to approach the problem is to start by
writing a power series expansion of f .t/ for t ,
tk � t < tkC1, namely,

f .t/ Df .tk/C f .1/.tk/.t � tk/C f .2/.tk/

2Š

.t � tk/
2 C � � �

where f .n/.tk/ D d.n/f .t/

dtn
jtDtk , that is, the nth

order derivative of f .t/ evaluated at t D tk
(assuming that the derivatives exist).

Now if the function f .t/ is approximated in
the interval tk � t < tkC1 by the constant value
f .tk/ taken to be equal to Nf .k/, then

f .t/ D f .tk/ .D Nf .k//; tk � t < tkC1

which is exactly the relation implemented by a
ZOH. Note that here the zero-order derivative
of the power series is used which leads to an
approximation by a constant which is a zero-
degree polynomial.

It is clear that more than the first term in the
power series can be taken to approximate f .t/.
If, for example, the first two terms are taken, then

f .t/ D f .tk/C f .1/.tk/.t � tk/

D f .tk/C f .tk/ � f .tk�1/
tk � tk�1

.t � tk/

D Nf .k/C
Nf .k/� Nf .k � 1/
tk � tk�1

.t � tk/

for tk � t < tkC1, where an approximation for
the derivative f .1/.t/ has been used. The approx-
imation between tk and tkC1 is a ramp with slope
determined by f .tk/ D Nf .k/ and the previous
value f .tk�1/ D Nf .k � 1/. Here the first-order
derivative of the power series is used which leads
to an approximation by a first-degree polynomial.
A device that implements such approximation is
called a first-order hold (FOH). Similarly, we can
define a second-order hold. Note that the formula
of the above FOH is derived if we decide to use
a first-degree polynomial to approximate f .t/ on
tk � t < tkC1 and then enforce f .tk/ D Nf .k/
and f .tk�1/ D Nf .k�1/. This approach is known
as polynomial interpolation.

Obtaining a continuous (or piecewise contin-
uous) function from given discrete values may
be seen as a continualization procedure. Contrast
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this with the discretization procedure introduced
by sampling earlier in this section.

u–(k ) y–(k )u (t ) y(t )
D /A A /D

x = Ax + Bu
y = Cx + Du

The continuous-time system with input u.t/
and output y.t/ together with the interface A/D
and D/A converters can be seen as a system that
receives a sequence of values fNu.k/g as its input
and produces a sequence of output values f Ny.k/g.
A digital controller can receive the system output
f Ny.k/g as input and produce a fNu.k/g.

Quantization: The sampled output Ny.k/ 2 R

and it can take on an infinite number of values. In
a digital device, however, a variable can take on
only a finite number of values – this is because of
the finite wordlength that is of the finite number
of bits in the registers. So for f Ny.k/g to be used by
a digital controller, an additional step is needed,
that is, Ny.k/ needs to be quantized. Under quan-
tization, for example, values 2:315; 2:308; 2:3
with a 0:1 quantization step are all represented
as 2:3. Quantization is an approximation and for
short wordlengths, fewer number of levels, may
lead to significant errors. Here we do not consider
quantization.

Discrete-Time Models

Let a linear, continuous-time, time-invariant sys-
tem be described by

Px.t/ D Ax.t/C Bu.t/;

y.t/ D Cx.t/CDu.t/:
(3)

If we consider some initial time tk , its state
response for t � tk is

x.t/ D eA.t�tk/x.tk/C
Z t

tk

eA.t��/Bu.�/d�: (4)

In view of (2), in a ZOH the input u.t/will remain
constant and equal to u.tk/ (D Nu.k/) for a time
period tkC1 � tk . So

x.t/ D eA.t�tk / Nx.k/C
�Z t

tk

eA.t��/Bd�
�

Nu.k/;
(5)

where Nx.k/ D x.tk/, Nu.k/ D u.tk/. For t D tkC1,
(5) becomes

Nx.k C 1/ D NA.k/ Nx.k/C NB.k/Nu.k/ (6)

where NA.k/ , eA.tkC1�tk / and NB.k/ ,
R tkC1

tk
eA.tkC1��/Bd� .

Consider now the output y.t/ and assume that
it is sampled at times t 0k that do not necessarily
coincide with the instants tk at which the input
is adjusted (tk � t 0k < tkC1). Then if Ny.k/ ,
y.t 0k/,

Ny.k/ D NC.k/ Nx.k/C ND.k/Nu.k/; (7)

where

NC.k/ D CeA.t
0

k�tk /

ND.k/ D C

"

Z t 0k

tk

eA.t
0

k��/d�
#

B CD:

In the case when all k D 0; 1; 2; � � � , t 0k D tk
and tkC1 � tk D T a constant period, called the
sampling period. Then the sampled-data system
is given by

Nx.k C 1/ D NA Nx.k/C NB Nu.k/
Ny.k/ D NC Nx.k/C ND Nu.k/ (8)

where

NA D eAT ; NB D
�Z T

0

eA�d�

�

B;

NC D C; ND D D:

The intersample behavior of the continuous sys-
tem can be determined using (5).

Example 1 Let the continuous-time system be
given by (3) where

A D
�

0 1

0 0

�

; B D
�

0

1

�

; C D Œ1 0�;D D 0;
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and let T denote the sampling period. The trans-
fer function of the continuous-time system is
OH.s/ D C.sI � A/�1B D 1=s2, the double

integrator. The discrete-time state-space repre-
sentation of the system, which represents the
continuous-time system preceded by a zero-order
hold (D/A converter) and followed by a sampler
[an (ideal) A/D converter], both sampling syn-
chronously at a rate of 1/T, is given by Nx.kC1/ D
NA Nx.k/C NB Nu.k/, Ny.k/ D NCx.k/, where

NA D eAT D
1
X

jD1
.T j =j Š/Aj D

�

1 0

0 1

�

C

�

0 1

0 0

�

T D
�

1 T

0 1

�

;

NB D
�Z T

0

eA�d�

�

B

D
�Z T

0

�

1 �

0 1

�

d�

��

0

1

�

D
�

T T 2=2

0 T

� �

0

1

�

D
�

T 2=2

T

�

;

NC D C D Œ1 0�:

The transfer function (relating Ny to Nu ) is given by

OH.z/ D NC.zI � NA/�1 NB

D Œ1 0�

�

z � 1 �T
0 z � 1

��1 �
T 2=2

T

�

D Œ1 0�

�

1=.z � 1/ T=.z � 1/2

0 1=.z � 1/
�

�

T 2=2

T

�

D T 2

2

.z C 1/

.z � 1/2 :

If we focus on single-input, single-output sys-
tems and consider ideal sampler A/D and ZOH
D/A, then given the transfer function G.s/ of
the continuous system, there is a direct formula
to determine the transfer function of its discrete
approximationH.z/, namely,

H.z/ D .1 � z�1/ZfG.s/=sg: (9)

Here ZfG.s/=sg means that first the inverse
Laplace transform of G.s/=s is taken to obtain
f .t/ , ŒL�1.G.s/=s/�. The function f .t/ is then
sampled to obtain f .kT /, k D 0; 1; 2; � � � and the
z-transform of f .kT / is evaluated. To illustrate,
in the above example G.s/ D 1

s2
; G.s/=s D 1

s3
,

and f .t/ D L�1. 1
s3
/ D 1

2
t2; t � 0. Then

H.z/ D .1 � z�1/Zf1
2
.kT /2g

D .1 � z�1/
T 2

2
Zfk2g

D T 2

2

z C 1

.z � 1/3

as before.

Summary

Sampled-data systems arise in the digital con-
trol of systems and include both continuous and
discrete-time dynamics. Discrete-time approxi-
mations of continuous-time systems using ideal
samplers and ZOH devices were derived using
state variable descriptions. Extensions include
quantization and lead to hybrid dynamical sys-
tems which include both continuous and discrete
variable dynamics.

A variation of the approach described in this
entry of deriving sampled-data systems uses the
discrete-time delta operator. This approach has
the advantage that as the sampling period T !
0, the discrete-time model reverts to the orig-
inal continuous-time model, which is not the
case with the more common approach described
above.

Cross-References

�Linear Systems: Continuous-Time, Time-In-
variant State Variable Descriptions

�Linear Systems: Discrete-Time, Time-Invariant
State Variable Descriptions

http://dx.doi.org/10.1007/978-1-4471-5058-9_186
http://dx.doi.org/10.1007/978-1-4471-5058-9_187


Satellite Control 1261

S

Recommended Reading

State variable and transfer function descriptions
are covered in a variety of textbooks including
Antsaklis and Michel (2006), Kailath (1980),
Chen (1984), and DeCarlo (1989). For addi-
tional material on sampled-data systems, refer to
Aström and Wittenmark (1990), Franklin et al.
(1998), Jury (1958), and Ragazzini and Franklin
(1958).
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Abstract

Spacecraft control systems are described for
single and distributed space systems. The attitude
dynamics is formulated including flexible and
sloshing phenomena, followed by a description

of attitude sensors and actuators. H1 and robust
controls are formulated as signal-based two
degree-of-freedom control architectures. The
equations are given for the relative motion
dynamics between spacecraft on elliptical orbits
with the generic Yamanaka-Ankersen state
transition matrix. Formulations are provided for
rendezvous and docking scenarios and formation
flying control, maneuvers, avionics, and laser
metrology systems together with the onboard
autonomy needs.

Keywords

Flexible modes; Formation flying; Fractionated
spacecraft; H1 control; Multivariable systems;
Relative dynamics; Rendezvous and docking;
Robust control; Sloshing; Spacecraft attitude
control; Spacecraft position control

Introduction

This entry explains the control needs of space-
craft after they have been separated from the
launch vehicle and injected onto their initial orbit.

Actuators and sensors are explained followed
by the control objectives. The state-of-the-
art control techniques and architectures are
addressed.

Spacecraft are classically well-known physi-
cal systems that can be described by first princi-
ples. The advantage is fairly precise plant models
and uncertainty characterization of physical pa-
rameters. This is well suited for a model-based
control design approach.

Mission Types

From a control point of view, space missions can
be split into two main categories according to
which physical states need to be controlled:
Attitude Control: This is needed by any space-

craft irrespective of the mission objectives.
Such missions are typically low earth orbit
(LEO) missions for astronomy, observations,
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and, in higher orbits, constellations for navi-
gation and communication. Further, there are
interplanetary and planetary exploration sci-
ence missions. The pointing requirements vary
from a few degrees to milli-arc seconds.

Relative Position Control: Within distributed
space systems, this is relevant for rendezvous
and docking (RVD) and formation flying
(FF) missions. It leads to a 6 degree-of-
freedom (DOF) control problem as the
relative attitude is also needed. The former is
mostly for missions to space station logistics
infrastructures and the latter for scientific
missions. Relative position can also be
required during the final stages of controlled
planetary landings. Another category is
missions with ultrahigh control performance
requirements, where the spacecraft platform
and the science instrument need to be
considered as one coupled system.

Attitude Control

Fundamentally the three attitude angles � and
angular rates ! need to be controlled to a certain
reference. See Fig. 1 for definition.

The general rigid body dynamics expressed
in a rotating frame(�), which is mostly the case
when orbiting a central body, can be expressed as

N D d�.I!�/
dt

C ! � I!� (1)

where I is the constant inertia matrix, ! is the
inertial angular velocity, and N is the torque
acting on the spacecraft (Wie 1998).

The kinematics can be described by one of the
12 sets of Euler angles (can have singularities) or
the hypercomplex quaternion vector (no singular-
ities) (Hughes 1986).

The dynamics and kinematics equations need
to be linearized and are in the general form of a
coupled 12th order system. It is the fundamental
model for the rigid body spacecraft control de-
sign.

Most modern spacecraft have large flexible
appendices in the form of solar panels and large
antennae reflectors. Fuel sloshing is a similar
lightly damped oscillatory phenomena, which
often needs to be taken into consideration.
The incorporation of dynamic elements such
as flexible panels, antennae, and sloshing fuel
can be modeled by Eqs. (2) and (3) provided the
overall rotation rate ! and linear accelerations Rx
are not too large.

MT

� Rx
P!
�

D
�

F
N

�

� L R� (2)

R�k C 2�k	k P�k C	2
k�k D � 1

mk

LT

� Rx
P!
�

(3)

Satellite Control, Fig. 1
Spacecraft body (black)
and reference (red) frames.
The frames coincide for
� D 0



Satellite Control 1263

S

where

MT : rigid body mass/inertia matrix
Rx; P! : linear and angular acceleration
F;N : forces and torques on the spacecraft
�k : the kth flexible state
�k : the kth flexible damping factor
	k : the kth flexible eigen frequency
mk : the kth modal mass (normalized to 1)
L : participation matrix of the kth mode

For attitude only the second row of Eq. (2) is
needed, but translation is included here for the
sake of completeness and later use.

The sensors utilized are typically gyroscopes
for measuring the inertial angular rate, sun sen-
sors to measure orientation at low accuracy, and
star trackers for high-precision angular attitude
measurements. All of those sensors are linear
in their normal operational range and it suffices
to use bias noise models for synthesis. Gyros
do need a drift estimation and compensation to
function properly over longer time. All sensors
utilize redundancy for providing measurements
around all three axes as well as providing fault
tolerance. Some scientific observatory spacecraft
use their telescopes for attitude measurements in
order to obtain the required precision beyond the
capability of star trackers.

The actuators producing pure torques are
magnetic torquers, reaction wheels, and control
momentum gyros. The last can produce large
torques used for rapid slew maneuvers with
little power. The last two types have nonlinear
issues around low to zero speed due to friction
issues. They accumulate angular momentum
from asymmetric disturbances. This leads to a
need for thrusters for angular momentum off-
loading. Thrusters are also used to control the
attitude directly on many spacecraft. They are
mostly of on-off type, though continuous ones
exist, and will need to be pulse width modulated
(PWM) to obtain quasi-linear behavior. The
nonlinear on-off nature needs to be taken into
account for the control closed loop analysis. It
is done by use of the negative inverse describing
function (Ogata 1970) for stability analysis and
nonlinear modeling for verification simulations in
the time domain. For larger numbers of thrusters,
an optimization-based selection algorithm is
applied to the controller output.

Before using the plant model in Eq. (2) for a
flexible spacecraft, a simpler multivariable model
of a rigid spacecraft is used as in Eq. (4):

Px D
�

0 Bk
0 Ad

�

x C
�

0
Bd

�

N (4)

where x D Œ
x; 
y; 
z; !x; !y; !z�
T, Bk is identity,

Bd D I�1, and Ad is the general Jacobian for
the dynamics having a real right half-plane (RHP)
pole. See Ankersen (2011). The model describes
the angular deviation from some reference frame,
whose orientation can be arbitrary. It uses the
Euler (3; 2; 1) rotation in the kinematics.

The state of the art of attitude control is today
mostly based on H1 type of robust controllers
with synthesis performed in the frequency
domain. Requirements are often specified in
the time domain, but formal methods exist to
transform them into frequency domain weighting
functions (ESA Handbook 2011) enhancing both
synthesis and analysis. System uncertainties can
be formulated as structured linear fractional
transformations (LFT) with a general control
configuration as illustrated in Fig. 2.

Commonly the H1 controller K is designed,
and the lower loop in Fig. 2 is closed via a lower
LFT such that N D Fl.P;K/ and robust stability
(RS) and robust performance (RP) analysis is
performed on the N;� system (Skogestad and
Postlethwaite 1996).

P

K

Δ

zw

uΔ yΔ

u v

Satellite Control, Fig. 2 Robust control formulation,
where � is the structured uncertainty, K is the controller,
P the partitioned formulation of the plant with weights,
and w and z are exogenous inputs and outputs, respec-
tively
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On high performance pointing spacecraft, ac-
tive vibration suppression of, e.g., cryocoolers
is needed. The implementation of control design
and recursive system identification can achieve
significantly better attenuation compared to clas-
sical passive isolation techniques.

Lately optimization-based codesign of struc-
tures and control has been performed success-
fully. A joint performance function is formu-
lated (mass, stiffness, pointing, fuel, etc.) and an
optimization is performed (differential evolution
algorithm) iterating on control design and finite
element models (FEM). A �-synthesis controller
is synthesized, the pointing performance is ful-
filled, and 15–20 % mass saving is obtained on
the flexible structures. The entire process is fully
automated (Falcoz et al. 2013).

Relative Position Control

For all distributed space systems, relative dy-
namics is important. Rendezvous and formation
flying missions need tracking or maintenance of
the desired relative separation, orientation, and
position between or among the spacecraft. This
is common and independent of the mission type
and will be described in general terms ahead of
the specific RVD and FF missions.

The general relative position dynamics
between centers of mass (COMs) is in Eq. (5),
where it is observed that the in-plane motion
(x, z) is decoupled from the out-of-plane
motion (y).

Rx � !2x � 2!Pz � P!z C k!
3
2 x D 1

mc

Fx

Ry C k!
3
2 y D 1

mc

Fy (5)

Rz � !2z C 2! Px C P!x � 2k!
3
2 z D 1

mc

Fz

where ! D !.t/ is the orbital angular rate, mc is
the chaser mass, Fxyz is the force on the chaser,
and k is a constant determined by the orbit and
is valid for any Keplerian orbit with eccentricity
" < 1.

The Yamanaka-Ankersen equations (Ya-
manaka and Ankersen 2002) provide the

generalized homogeneous solution in the form
of the transition matrix ˆ, where the solution can
be written as

x.t/ D ƒ�1.�/ˆ.�/ˆ�1
0 .�0/ƒ.�0/x.t0/ (6)

where � is the orbital true anomaly and ƒ are
transformation matrices to and from the time
domain. The elements of ˆ in Eq. (6) are detailed
in (Ankersen 2011), where relevant particular so-
lutions are also to be found. Equation (6) reduces
to the well-known Clohessy-Wiltshire equations
for circular orbits (" D 0) (Clohessy and Wilt-
shire 1960). Equation (6) is used for feedfor-
ward control and trajectory propagation in the
guidance function. During the final approach (see
Fig. 3), a model accounting for the docking port-
to-port relative position and the couplings from
the relative attitude to the position is utilized and
formulated in Eqs. (7) and (8) (Ankersen 2011):

Px D
�

Ap 0
0 Ac

�

x C
�

Bp 0
0 Bc

�

u (7)

y D

2

6

6

4

I 0 Bdc1 0
0 I 0 Bdc2
0 0 I 0
0 0 0 I

3

7

7

5

x (8)

where x D Œxp; Pxp;�c; !c�
T, y D Œxpp; Pxpp;�c;

!c �
T, index p refers to COM positions, index c to

chaser attitude, index pp to port-to-port position,
and Bdc1 ;Bdc2 are the coupling matrices of the
docking port.

A relative motion scenario for a typical RVD
mission looks like in Fig. 4. During the final
approach (<300 m range), the chaser relative
attitude and relative position are controlled.
During the other phases, the chaser attitude
is Earth pointing and the relative position is
controlled at the station-keeping (SK) points,
s0; � � � ; s4 in Fig. 4. The trajectories are typically
open loop feedforward controlled (often with
midcourse corrections).

The avionics sensors for the attitude control
part are generally similar to those described
earlier under attitude control in connection
with Fig. 1. Active laser CCD type of sensors
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Satellite Control, Fig. 3
Definition of
COM-to-COM and
port-to-port positions, s
and spp , respectively,
between two spacecraft

R−bar

S0S1

S2

S3

S3aS4

Pre−Homing

AE

Fly around

Closing

Homing

V−bar

Satellite Control, Fig. 4 This figure shows the phases of typical relative motion approach. The shaded area is a keep-
out zone (KOZ) defined for safety reasons. V-bar is the x-axis and R-bar is the z-axis

is used to measure the relative position (range
and line-of-sight (LOS) angles) and at short
range (<50 m) the relative attitude. They
require a target pattern to provide precise
measurements at short range. Accelerometers
are used, particularly for pulsed maneuvers.
The next generation of RVD GNC systems, test
flown, will utilize Lidar, infrared cameras, and
visual cameras in combination with advanced
image processing providing RVD capabilities
with both cooperative and passive target
spacecraft.

The actuators are mostly thrusters arranged to
achieve controllability for all the 6DOF maneu-
vers needed. Based upon the controller output,
the active thrusters are selected by means of some

type of fuel optimization algorithm. The selected
thrusters are then pulse width modulated (PWM)
within the sampling time.

The controllers are frequently of multivariable
H1 type. They are similar to what is described
in connection with Fig. 2. Flexible modes and
in particular sloshing need to be taken into ac-
count using Eq. (2). Sloshing pendulum mod-
els are used during boost maneuvers and spring
mass damper models during other modes. The
couplings between relative attitude and relative
position in Eq. (8) can be analytically decoupled
setting the matrix C to identity and premultiply-
ing with a decoupling matrix Vd , such that

VdC D I , Vd D C�1 (9)



1266 Satellite Control

K2

K1

G
r e u y

d

+
-

+
+

+
+

Satellite Control, Fig. 5
Principal structure of the 2
degree-of-freedom
controller

and by the inversion theorem for partitioned ma-
trices the upper right partition just changes sign.
The designed controller then needs to be premul-
tiplied by V�1

d , which facilitates a simpler control
design maintaining the 6DOF performance after
2 times 3DOF synthesis.

A 2 degree-of-freedom control architecture as
in Fig. 5 is beneficial since much of the perfor-
mance is achieved by controller K1. The structure
of the synthesis formulation is a signal-based
model-reference configuration for the H1 con-
trol rather than the more classical mixed sensitiv-
ity type. It has proven to have higher robustness
and performance for this type of applications.
As an example, consider a controller that has to
follow a sawtooth motion of the docking port
of the International Space Station (ISS) with an
amplitude of 0:4m and reversal times of 8 s. The
signal-based model-reference controller manages
to track such a motion with errors less than
0:01m compared to the best operational perfor-
mance of 0:08m.

Formation flying usually includes more than
two spacecraft with the need to be controlled
relative to each other. The objective of FF is to
form an instrument in space, not possible with
fixed structures, like a synthetic aperture or an
interferometer of large size.

The performance needs are high and require
innovative high-precision (<1m) metrology
sensors. They are based on divergent laser beams
for the coarse part to be able to transit from
lower to higher accuracy. The fine metrology
uses a laser beam and internal interferometers
to reach the m domain. Actuators are in the
range of N thrust, which can be achieved
with either cold gas or electrical propulsion
thrusters.

The maneuvers realized by entire formations
are rotation, resizing, and slew while maintaining
the formation in most cases (Alfriend et al. 2010).

Formation flying missions with the highest
performance requirements have optical payloads,
which need to have internal control loops at com-
ponent level. To reach the performance required
for applications such as optical interferometry,
the formation and payload must be considered
as one system. The synthesis of a multivariable
controller then handles all the cross couplings in
the system needed to reach performance. Beyond
flexible modes, such systems might also have a
need for active vibration damping for systems
using cryocoolers.

The GNC architecture is often centralized for
nominal science operational modes. For the for-
mation deployment and contingency situations, a
decentralized control architecture is needed. This
leads to a dual architecture GNC system in gen-
eral for formation flying systems. The onboard
autonomy needs to be fairly high in order to cope
with the contingencies in the formation without
ground intervention.

Finally there is an emerging concept of
fractionated spacecraft. There, a formation
consists of a large number of small simple
vehicles maneuvering relative to each other fully
autonomously based upon the nearest neighbor
knowledge and not necessarily information about
the entire formation (Cornford 2012).

Summary and Future Directions

The control of spacecraft has been described for
pure attitude control needs and for spacecraft per-
forming relative proximity maneuvers like ren-
dezvous and formation flying. The focus has been
on sensors, actuators, dynamics, and the robust
control methods applied today.

The further development direction of the field
is expected to be increased on board autonomy
with replanning capabilities and fault-tolerant
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GNC designs. Model predictive control (MPC)
will enter in particular on the guidance functions.
More integrated GNC system-level designs, of
multidisciplinary nature, are expected.

Cross-References

� Fault-Tolerant Control
�H-Infinity Control
�Model-Predictive Control in Practice
�Nominal Model-Predictive Control

Bibliography

Alfriend K, Vadali S, Gurfil P, How J, Breger L
(2010) Spacecraft formation flying. Elsevier, Amster-
dam/Boston/London

Ankersen F (2011) Guidance, navigation, control and
relative dynamics for spacecraft proximity maneuvers.
Aalborg University, Denmark. ISBN:978-87-92328-
72-4

Bryson A (1999) Control of spacecraft and aircraft.
Princeton University Press, Princeton

Clohessy W, Wiltshire R (1960) Terminal guidance sys-
tem for satellite rendezvous. J Aerosp Sci 27(9):
653–658

Cornford S (2012) Evaluating a fractionated spacecraft
system: a business case tool for DARPA’s F6 program.
In: Aerospace conference, Big Sky. IEEE, Big Sky,
MT, pp 1–20

D’Errico M (2012) Distributed space missions for earth
system monitoring. Springer, New York

ESA Handbook (2011) ESA pointing error engineering
handbook. European Space Agency. http://peet.estec.
esa.int

Falcoz A, Watt M, Yu M, Kron A, Menon P, Bates
D, Ankersen F, Massotti L (2013) Integrated control
and structure design framework for spacecraft applied
to BIOMASS satellite. In: 19th IFAC conference on
automatic control in aerospace, Würzburg, Germany,
2–6 Sept 2013

Fehse W (2003) Automated rendezvous and docking
of spacecraft. Cambridge University Press, Cam-
bridge/New York

Hughes P (1986) Spacecraft attitude dynamics. Wiley,
New York

Kaplan M (1976) Modern spacecraft dynamics & control.
Wiley, New York

Ogata K (1970) Modern control engineering. Prentice-
Hall, Englewood Cliffs

Sidi M (2000) Spacecraft dynamics and control: a prac-
tical engineering approach. Cambridge University
Press, Cambridge

Skogestad S, Postlethwaite I (1996) Multivariable feed-
back control. Wiley, Chichester/New York

Wertz J (1980) Spacecraft attitude determination and con-
trol. Kluwer, Dordrecht

Wie B (1998) Space vehicle dynamics and control. Amer-
ican Institute of Aeronautics and Astronautics, Reston

Yamanaka K, Ankersen F (2002) New state transfer matrix
for relative motion on an arbitrary elliptical orbit.
J Guid Control Dyn 25(1):60–66

Scheduling of Batch Plants
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Abstract

For manufacturers operating batch plants, pro-
duction scheduling is a critical and challeng-
ing problem. A thorough understanding of the
problem and the variety of solutions approaches
is needed to achieve a successful application.
This entry will present a brief overview of batch
operations and the state of the art of batch plant
scheduling for nonexperts in the field.

Keywords

Dispatching rules; Optimization; Process
networks; Production sequencing; Product wheel

Introduction

Batch plants, manufacturing operations com-
posed of unit operations that operate in batch
mode, are the primary manufacturing operations
for the production of high margin products
such as pharmaceuticals, specialty chemicals,
and advanced materials. The scheduling of the
sequence of operations over time has a significant
impact on the overall performance of a batch
plant (White 1989). The economic importance of
batch plants, and the importance of scheduling
for batch plants, has spawned a large body of
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research on the topic and a variety of commercial
offerings.

The Nature of Batch Plants

In batch operations, the material transformation
takes place in stages and the operation of each
stage occurs over a specified time while the
material remains in a particular unit operation
performing that stage of production. (A familiar
batch operation is baking a cake. Ingredients and
their amounts, specified by a recipe, are com-
bined and then subjected to a constant tempera-
ture over specified period of time to produce a
cake.) A batch plant may have parallel units for
some stages. Other stages may be operated in a
continuous flow mode with a storage unit feeding
the stage and another storage unit receiving the
stage output. The path through the unit operations
may be product dependent. Batch plants have
highly diverse operational characteristics.

There are two broad categories of batch pro-
cesses: (1) sequential where a batch moves from
one stage to another without losing its identity
and (2) networked where batches can be com-
bined or split to feed downstream units (Mendez
et al. 2006). Sequential processes can be further
classified as single stage, multi-stage, or multi-
purpose.

The nature of a batch process and the different
process structures can be explored by referring
to the process depicted in Fig. 1 (Chu et al.
2013). As drawn, this batch plant operates as
a multi-stage sequential process where a batch
starts in raw material preparation stage (selected

raw materials are loaded and then blended for a
specified time), moves to the reaction stage with
two parallel units (prepared raw materials plus
additives react at a constant temperature for a
specified period of time), moves to the finish-
ing stage (intermediate product is subjected to a
vacuum for a specified period of time to remove
volatile by-products), and finally is processed in
the drumming stage (finished product is packaged
in drums). If finished product storage tanks were
placed between finishing and drumming to allow
the drumming stage to be scheduled indepen-
dently of the first three stages, then the drum-
ming operation would represent a single stage
sequential process. If we further assume that for
some finished products Reactor 1 produces a
batch of precursor for Reactor 2 and that some
products produced in the reactors bypass the
finishing stage and go directly to drumming, then
the underlying plant would be a multi-purpose
sequential process. Finally, if intermediate stor-
age tanks exist for storing multiple batches of
the precursors produced by Reactor 1 and the
contents of the tanks are drawn off to produce
multiple, subsequent batches in both reactors then
the underlying plant is a networked process.

Besides the general structure of a batch
plant, the specific processing requirements,
resources needs, and process constraints have
significant impact on the complexity of the
scheduling problem. One important aspect
is limited resources that are shared between
different operations. The availability and capacity
of shared resources place a severe constraint on
the timing of competing operations. Another
significant factor is intermediate storage between

Scheduling of Batch Plants, Fig. 1 Example batch plant (Solid lines represent material flows from limited inventory.
Dashed lines represent material flow from unlimited inventory)
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stages and the inventory policies that are
enforced. Like shared resources, intermediate
storage places hard constraints on the timing
of upstream and downstream stages, especially
when no storage is available. A third important
constraint on scheduling is product transition
policies that dictate what operations need to
be performed to move from one product to
another in a given stage. Such operations,
sometimes called setups, might involve cleaning,
or producing buffer batches to isolate the
chemistry of one product from another. These
operations involve costs and subtract from the
productive use of the equipment so they have
significant impact on the sequencing of products
through the plant.

Production Scheduling of Batch
Plants

Production scheduling in a batch plant involves
three fundamental decisions: (1) determining the
size of each batch in each stage, (2) assigning

a batch to a processing unit in each stage, and
(3) determining the sequence and timing of pro-
cessing on each unit. These decisions are well
illustrated by a graphical planning board or Gantt
chart as shown in Fig. 2 (Chu et al. 2013). Per-
sonnel charged with creating and managing pro-
duction schedules often rely on such a graphical
tool to construct, analyze and report the schedule.
Generally production schedules are determined
using the information listed in Table 1.

The scope of the scheduling decisions is de-
fined by the level of process detail considered
in the scheduling problem. This idea can be
examined by referring to Figs. 1 and 2. Such a
Gantt chart could apply to a batch plant with four
stages of production: raw material preparation,
reaction, finishing, and drumming, with two par-
allel reactors in the reaction stage. If dedicated
finished product storage exists with large enough
capacity to cover the process lead time then one
schedule could be confined to the first three stages
of production and a different schedule applied to
the drumming stage. The scope of the scheduling
problem could be further reduced if raw material
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Scheduling of Batch Plants, Fig. 2 Gantt chart of a production schedule

Scheduling of Batch Plants, Table 1 Information generally used to construct a production schedule

Scheduling information Examples

Detailed production recipes Batch times, processing rates, unit ratios, sequence dependencies

Equipment data Capacities, availabilities, product suitability

Facility information Shared resource availability and capacities, storage capacities

Production costs Raw materials, utilities, setups, cleanings, manpower

Production targets Inventory replenishments, customer orders with due dates

Current process status Current inventories, operations in progress, schedule items fixed in future time
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preparation only takes place just in time to load a
reactor rather than execute as soon as possible. In
this situation, the time for raw material prepara-
tion could be added to the reactor batch time and
the schedule would involve only the reactors and
the finishing system with the raw material unit
or units schedule implied by the reactor sched-
ule. At a higher level still, the first three stages
of production could be considered a production
train and scheduling could then be reduced to
planning campaigns of batches for each product
over time with the detailed synchronization of
the individual stages left to operations personnel.
Obviously with each level of abstraction some
efficiency in the schedule is lost and subsequently
the opportunity to increase throughput of the
plant.

In most batch plants a person with a title such
as “production scheduler” is charged with the
scheduling decisions. In general, the production
scheduler is responsible for delivering a produc-
tion schedule that meets customer orders on time
and maintains finished product inventory while
dealing with rush orders, late deliveries, equip-
ment breakdowns and other contingencies. Gen-
erally schedulers develop and publish a schedule
to manufacturing on a regular basis (e.g., every
2 days, once a week, etc.) and then monitor
ongoing circumstances (e.g., actual production
vs. plan, new demand, etc.) to determine if minor
adjustments to the schedule are needed or if a
complete new schedule needs to be published.
The construction of a schedule can be an iter-
ative process involving negotiations with manu-
facturing, supply chain, sales, maintenance and
logistics. The tools available to the production
scheduler can have a significant impact on the
quality of schedules they produce.

It is evident from the description above that
production scheduling of batch plants is really
carried out as an exercise in rescheduling in
response to disturbances identified through feed-
back from the process and market. Under these
circumstances production scheduling serves as
a form of high level feedback control of the
process. In this regard the manipulated variables
are the production amounts for each product and
the controlled variables are the inventory levels

and customer service levels for each product.
A scheduling problem can be converted to a
state-space formulation and compared to model
predictive control (Subramanian et al. 2012).

Solution Approaches

The solution approaches applied to scheduling
batch plants cover a wide spectrum of sophis-
tication. A very simple form is nothing more
than a sequence of batches maintained on a white
board in the plant control room. A level above
this would be the use of custom spreadsheets for
arranging batches chronologically and computing
finished product inventory. Another step up is the
use of a manually manipulated Gantt chart as
illustrated in Fig. 2, possibly pre-populated by an
automated planning application that determines
the volume to be produced across the units of
production while leaving the detailed sequencing
and timing decisions to the production scheduler.
The highest level of sophistication involves an
automatically generated schedule with the appli-
cation retrieving all the necessary data from the
appropriate business databases and plant control
system.

Regardless of the level of sophistication, all
solution approaches rely on two fundamental
components for developing a schedule. One is the
modeling paradigm used to represent the physical
system in a more abstract way. The primary
components are: material balances in terms of
batches or units of measure (e.g., pounds), and
timing information as either precedence-based
describing the order of operations or time grid-
based describing the instant at which any opera-
tion takes place. Time can either be described by
a continuous representation or divided into dis-
crete increments. Within these two aspects of the
modeling framework, significant freedom exists
to describe the scheduling problem. The second
fundamental component is the solution method
used to generate the schedule. Each method has
its strengths; therefore solutions combining meth-
ods are also used. The essential problem is to
produce the information needed to draw the Gantt
chart in Fig. 2 given the information in Table 1.
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Product Wheel
While the primary objective of production
scheduling is to meet customer orders while
managing finished product inventory, other
operational issues need to be managed, such as
minimizing product transition costs, minimizing
variability in manufacturing operations, keeping
the scheduling process simple, and balancing
the tradeoff between production lead times,
inventory, and transition losses. The product
wheel is a practical approach widely used in
industry to address these competing issues. A
product wheel is a regular repeating sequence
of products made on a specific unit operation or
an entire production process. A product wheel
is typically depicted as a pie chart as shown
in Fig. 3. Segments of the pie, called spokes
of the wheel, represent a production campaign
of a particular product. The size of the spoke
represents the length of the campaign relative to
the overall duration, or cycle time, of the wheel.

A product wheel has specific design parame-
ters to address various operations objectives. The
sequences is fixed and optimized for minimum
transition costs. The overall cycle time is fixed
and optimized to balance lead time and inventory
costs. The campaign size or spokes for each
product are sized to match average demand for
each product. The fixed pattern of the product
wheel provides manufacturing with a predictable
operational rhythm and the production scheduler
with a very structured decision framework. Refer
to King and King (2013) for a complete treatment
of product wheels.

In practice, the duration of a campaign for a
given product will vary from cycle to cycle as it

A

B

C

D

E
F

Scheduling of Batch Plants, Fig. 3 Product wheel

will be sized to replenish any inventory consumed
in the previous cycle. Low volume products may
not be made on every cycle, although they will
have a fixed location in the sequence. This same
approach applies to make-to-order products that
are not inventoried but produced to fill specific
orders. Thus, in some cases a product wheel may
be composed of several different but repeating
cycles.

Dispatching Rules Used in Discrete
Manufacturing
Batch processes are closely related to discrete
manufacturing. Batches processed on a unit are
analogous to jobs processed on a machine. Much
of the literature on machine scheduling has fo-
cused on the analysis of the specifics encountered
in general classes of problems such as single
machines, parallel machines, flow shops and job
shops, and developing constructive scheduling
rules where a schedule is built up by adding one
job at a time (Blackstone et al. 1982). Under cer-
tain circumstances these rules used for machine
scheduling can be applied to scheduling batch
plants. This allows one to take advantage of a
great body of literature, and at times, very simple
scheduling rules that have proven optimality or
worst case performance limits.

Consider again the batch process referred to in
Fig. 1 which has two parallel reactors. The two
reactors can be modeled as a single stage process
and scheduled like parallel machines using the
simple shortest processing time first (SPT) rule if
the following circumstances hold: (1) raw mate-
rial preparation can be included in the batch time
of reactors, (2) significant storage exists between
the reactors and finishing to essentially isolate
the two stages, (3) product specific batch times
are identical for both reactors, (4) the number
of batches of each product is given (perhaps the
result of an inventory policy for make to stock
products), and (5) the objective is to minimize
the total completion time for all batches. The SPT
rule is simply to select, whenever a reactor is free,
the batch with the shortest processing time from
those yet to be processed. This can be proven
to produce an optimal schedule for the given
conditions.
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Another simple dispatching rule to mention is
the earliest due date first (EDD) rule. This rule
is designed for single stage processes without
parallel units where each batch has an associated
due date. The rule simply orders the batches in
increasing order of their due dates to minimize
the maximum lateness of all orders.

The conditions needed for the SPT rule or
the EDD rule to produce an optimal schedule
can be quite restrictive when considering batch
processes, however these rules and others found
in the machine scheduling literature (Baker and
Trietsch 2009) can still produce a good initial
schedule even in cases where optimality condi-
tions are not satisfied. Once generated, the sched-
ule can be improved by manual manipulation of
the Gantt chart or the application of improvement
heuristics.

Improvement Heuristics
Improvement heuristics try to improve the current
schedule by searching for alternative solutions
either in the neighborhood of the current schedule
or by broadly exploring the solution space. The
behavior of these algorithms is determined by
tuning parameters that balance the use of the two
search techniques and the underlying algorithm
that performs the search. Improvement heuristics
generally have the following basic procedure:
Step 1: Initialize – determine a starting schedule
Step 2: Generate alternatives – build modifica-

tions to the current schedule
Step 3: Check for improvements in modified

schedule – if no improvement is found return
to Step 2 otherwise proceed to Step 4

Step 4: Check for termination – terminate the al-
gorithm if the number of iterations is exceeded
or minimal improvement is obtained.

Many improvement heuristics are inspired by
processes found in nature. Two of the more pop-
ular heuristics are simulated annealing which
mimics the crystal formation during the cooling
process of dense matter (Ryu et al. 2001) and
genetic algorithms that mimic the evolution of a
species over time (Löhl et al. 1988). A key aspect
of improvement heuristics is the representation
of the schedule in context of the algorithm used.
For problems with complicated constraints this
becomes a challenge. Nevertheless, when tuned

properly and used where they fit the problem,
improvement heuristics can produce very good
schedules quickly.

Tree SearchMethods
The scheduling solutions considered so far have
taken a relatively simple view of a batch process
as a single stage process or a flow shop. In
situations where a batch plant involves shared
resources, complicated transition rules or is a
process network, tree search methods are better
suited because they can deal with a large number
of degrees of freedom and many types of con-
straints. Tree search methods rely on representing
alternative schedules as the final nodes in a tree
where intermediate nodes represent partial solu-
tions of the schedule. To be practical, these meth-
ods must be able to effectively search through the
tree while pruning non promising branches (see
Fig. 4). Three of the most popular techniques are
mathematical programming, constraint program-
ming, and beam search.

Mathematical programming solution tech-
niques for scheduling generally convert the
problem to a mixed integer linear programming
(MILP) formulation where branching at nodes of
the tree represent alternative values of the integer
or binary variables. The tree is searched by a
branch-and-bound algorithm which eliminates a
node and the branch that emanates from it if the
lower bound of the objective function represented
by the terminal nodes of the branch is larger than
the current best schedule. The MILP formulation
can be stated generically as

min z D cx C fy

s:t: Ax C By � b

x 2 <nC; y 2 f0; 1gp

where c, f; b are vector of constants,A andB are
matrices of constants, and the solution is defined

Scheduling of Batch Plants, Fig. 4 Trimming the solu-
tion tree
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by the vector variables x and y. A key feature of
using mathematical programming is to represent
the relationships implied in Table 1 and Fig. 1 in
terms of algebraic descriptions. The advantage of
this approach is that a proven optimal solution
exists for a problem stated this way. This provides
the means to assess the quality of the solution
and the impact of implementing the solution. The
drawback of this approach is that since binary
variables are used to represent the assignment of
a batch to a processing unit, and the sequence
and timing of processing on each unit, their num-
ber grows rapidly with the number of units and
the length of the scheduling horizon. However,
the performance of modern computing hardware
and commercial solvers for MILP problems has
allowed industrial size problems to be tackled.

A large variety of modeling paradigms have
been developed to produce a MILP solution
(Floudas and Lin 2004; Mendez et al. 2006).
They address both sequential and networked
processes using continuous time or discrete
time representations. For sequential processes,
time slot approaches have been developed. For
networked processes, the resource task network
and the state task network have been investigated
by many researchers and have been used in
industrial applications.

Constraint programming (CP) formulates a
problem by writing constraints; but unlike the
MILP method, the CP method stresses the feasi-
bility of solutions rather than optimality. Another
important difference is that constraints in the CP
method do not have to be formulated as algebraic
relationships but can be a more general form, thus
making it easier in CP to represent complicated
constraints. CP processes the constraints sequen-
tially to reduce the space of possible solutions. At
each node in the tree, CP processes one constraint
after another, reducing the search space at each
constraint. Being much newer than mathemati-
cal programming, constraint programming has a
smaller body of literature to review but excellent
performance has been reported in the literature
(Baptiste et al. 2001).

In the beam search method, the branch-and-
bound algorithm is modified to only evaluate the
most promising nodes at any given level of the
search tree (Ow and Morton 1988). The number

of nodes evaluated is called the beam width and it
is a key tuning parameter of the method. Another
important element of the method is the technique
used to retain nodes for complete evaluation. The
technique must balance speed versus thorough
evaluation to keep the method practical without
discarding promising nodes. The beam search
method applied to scheduling has been investi-
gated by many authors (Sabuncuoglu and Bayiz
1999).

Simulation
The simulation approach to scheduling batch
plants relies on representing the plant and the
relationships inferred by Table 1 in a computer
program whose algorithms recreate the behavior
of the plant when executed. Generally, the sim-
ulators used for batch operations apply discrete
event simulation (DES) where entities that have
attributes like size, due date, priority, etc. are
operated on by activities for a specified duration.
Fundamental to DES are the use of queues to hold
entities until conditions in the simulation allow
them to proceed to their next activity. Time in a
DES does not proceed in a continuous manner but
rather advances when activities occur. Simulation
has the advantage of being able to describe pro-
cesses and operating policies of arbitrary com-
plexity and model variability in the process oper-
ation. Simulators can be used to evaluate manu-
ally created schedules or can be combined with
optimization and heuristics to produce schedules
by simulation-based optimization (Pegden 2011).

An alternative to DES for batch scheduling
is the use of multi-agent simulators which are
composed of semiautonomous agents assigned
to represent the operation of the process and the
associated decision making. Each agent has a
local goal and communicates with other agents to
accomplish it. Like DES, multi-agent simulators
are capable of describing very complicated
processes. A production schedule can be built
through negotiations between agents (Chu et al.
2013).

Selecting a Solution Approach
The selection of the approach for a given batch
plant should be value-based, balancing improved
revenue with long term cost of ownership by
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considering such factors as the technical compe-
tency of the production scheduler, the expected
capacity utilization of the plant, the operational
complexity of the plant, and the cost to main-
tain the scheduling application. The key is to
obtain the least complicated solution by reducing
the scheduling problem to the highest level of
abstraction and by using the simplest solution
method that provides an effective schedule. See
Harjunkoski et al. (2013) and Pinedo (2008) for a
survey of methods and recommendations for their
practical application.

Summary and Future Directions

While there are a great variety of solution
methods for scheduling, there are still promising
research areas to be investigated. The recent
introduction of sophisticated, object oriented
process control systems with ties to enterprise
management systems sets the stage for the
development of automatic, real time scheduling.
It is here that the principles of feedback control
can be applied to batch plant scheduling. Pursuit
of this goal will require continued development
of fast, adaptive scheduling methods, real time
assessment techniques of schedule performance,
and tight integration of scheduling with the
process control.
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Singular trajectories arise in optimal control as
singularities of the end-point mapping. Their im-
portance has long been recognized, at first in the
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Lagrange problem in the calculus of variations
where they are lifted into abnormal extremals.
Singular trajectories are candidates as minimizers
for the time-optimal control problem, and they
are parameterized by the maximum principle via
a pseudo-Hamiltonian function. Moreover, be-
sides their importance in optimal control theory,
these trajectories play an important role in the
classification of systems for the action of the
feedback group.

Keywords

Abnormal extremals; End-point mapping;
Martinet flat case in sub-Riemannian geometry;
Pseudo-Hamiltonian

Introduction

The concept of singular trajectories in optimal
control corresponds to abnormal extrema in op-
timization. Suppose that a point x� 2 X ' R

n

is a point of extremum for a smooth function
L W R

n ! R under the equality constraints
F.x/ D 0 where F W X ! Y is a smooth
mapping into Y ' R

p, p < n. The Lagrange
multiplier rule (Agrachev et al. 1997) asserts the
existence of nonzero pairs .�0; ��/ of Lagrange
multipliers such that �0L0.x�/C ��F 0.x�/ D 0.
The normality condition is given by �0 ¤ 0, and
the abnormal case corresponds to the situation
when the rank of F 0.x�/ is strictly less than p.

Abnormal extremals have played an impor-
tant role in the standard calculus of variations
(Bliss 1946). Indeed, consider a classical La-
grange problem:

dx

dt
.t/ D F.x.t/; u.t//; min

u.:/

Z T

0

L.x.t/; u.t//dt

x.0/ D x0; x.T / D x1;

where x.t/ 2 X ' R
n, u.t/ 2 R

m, F and L
are smooth. Using an infinite dimensional frame-
work, the Lagrange multiplier rule still holds and
an abnormal extremum corresponds to a singular-
ity of the set of constraints.

Definition

Consider a system of Rn: dx
dt
.t/ D F.x.t/; u.t//

where F is a smooth mapping from R
n � R

m

into R
n. Fix x0 2 R

n and T > 0. The end-
point mapping is the mapping Ex0;T W u.:/ 2
U ! x.T; x0; u/ where U � L1Œ0; T � is the set
of admissible controls such that the correspond-
ing trajectory x.:; x0; u/ is defined on Œ0; T �. A
control u.:/ and its corresponding trajectory are
called singular on Œ0; T � if u.:/ 2 U is such
that the Fréchet derivativeE 0x0;T of the end-point
mapping is not of full rank n at u.:/.

Fréchet Derivative and Linearized
System

Given a reference trajectory x.:/, t 2 Œ0; T �,
associated to u.:/ with x.0/ D x0, and solution
of dx

dt
.t/ D F.x.t/; u.t//, the system

Pıx.t/ D A.t/ıx.t/C B.t/ıu.t/

with

A.t/ D @F

@x
.x.t/; u.t//; B.t/ D @F

@u
.x.t/; u.t//

is called the linearized system along the control-
trajectory pair .u.:/; x.://.

Let M.t/ be the fundamental matrix, t 2
Œ0; T � solution of

PM.t/ D A.t/M.t/; M.0/ D In:

Integrating the linearized system with ıx.0/ D 0,
one gets the following proposition.

Proposition 1 The Fréchet derivative ofEx0;T at
u.:/ is given by

E 0x0;T
u .v/ D M.T /

Z T

0

M�1.t/B.t/v.t/dt:



1276 Singular Trajectories in Optimal Control

Computation of the Singular
Trajectories and Pontryagin
Maximum Principle

According to the previous computations, a con-
trol u.:/ with corresponding trajectory x.:/ is
singular on Œ0; T � if the Fréchet derivative E 0x0;T
is not of full rank at u.:/. This is equivalent to
the condition that the linearized system is not
controllable (Lee and Markus 1967).

Such a condition is difficult to verify directly
since the linearized system is time-depending and
the computation is associated to the Maximum
Principle (Pontryagin et al. 1962).

Let p� be a nonzero vector such that p�
is orthogonal to Im.E 0x0;T / and let p.t/ D
p�M.T /M�1.t/; then p.:/ is solution of the
adjoint system

Pp.t/ D �p.t/@F
@u
.x.t/; u.t//

and satisfies almost everywhere the equality

p.t/
@F

@u
.x.t/; u.t// D 0:

Introduce the pseudo-Hamiltonian H.x; p; u/ D
hp;F.x; u/i, where h:; :i is the Euclidean inner
product, one gets the following characterization.

Proposition 2 If .x; u/ is a singular control-
trajectory pair on Œ0; T �, then there exists a
nonzero adjoint vector p.:/ defined on Œ0; T �

such that .x; p; u/ is solution a.e. of the following
equations:

dx

dt
D @H

@p
.x; p; u/;

dp

dt
D �@H

@x
.x; p; u/

@H

@u
.x; p; u/ D 0:

Application to the Lagrange Problem

Consider the problem

dx

dt
.t/ D F.x.t/; u.t//;min

Z T

0

L.x.t/; u.t//dt

with x.0/ D x0, x.T / D x1.

Introduce the cost-extended pseudo-Hamilton-
ian: QH.x; p; u/ D hp;F.x; u/i C p0L.x; u/; it
follows that the maximum principle is equivalent
to the Lagrange multiplier rule presented in the
introduction:

d Qx
dt

D @ QH
@ Qp . Qx; Qp; u/; d Qp

dt
D �@

QH
@ Qx . Qx; Qp; u/

@ QH
@u
. Qx; Qp; u/ D 0

where Qx D .x; x0/ is the extended state variable
solution of dx

dt
D F.x; u/; dx

0

dt
D L.x; u/ and

Qp D .p; p0/ is the extended adjoint vector. One
has the condition h Qp; QE 0x0;T

u .v/i D 0where QEx0;T

is the cost-extended end-point mapping.

The Role of Singular Extremals in
Optimal Control

While the traditional treatment in optimization
of singular extremals is to consider them as a
pathology, in modern optimal control, they play
an important role which is illustrated by two
examples from geometric optimal control.

Singular Trajectories in Quantum Control
Up to a normalization (Lapert et al. 2010), the
time minimization saturation problem is to steer
in minimum time the magnetization vector M D
.x; y; z/ from the north pole of the Bloch Ball
N D .0; 0; 1/ to its center O D .0; 0; 0/. The
evolution of the system is described by the Bloch
equation in nuclear magnetic resonance (Levitt
2008)

dx

dt
D �� x C u2z

dy

dt
D �� � u1z

d z

dt
D �.1� z/C u1y � u2x

where .�; �/ are proportional to the inverse of
the relaxation times and u D .u1; u2/ is the
control radio frequency-magnetic field bounded
according to juj � M . Due to the z-symmetry of
revolution, one can restrict the problem to the 2D
single-input case
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dy

dt
D ��y � uz;

d z

dt
D �.1� z/C uy

that can be written as dq

dt
D F.q/C uG.q/.

According to the maximum principle, the
time-optimal solutions are the concatenations
of regular extremals for which u.t/ D
M signhp.t/; G.q.t//i and singular arcs where
hp.t/; G.q.t//i D 0, 8t , and p.t/ is solution of
the adjoint system. Differentiating with respect
of time and using the Lie bracket notation
ŒX; Y �.q/ D @X

@q
.q/Y.q/ � @Y

@q
.q/X.q/, we get

hp; ŒG; F �.q/i D 0;

hp; ŒŒG; F �;G�.q/i C uhp; ŒŒG; F �; F �.q/i D 0:

This leads to two singular arcs:
• The vertical line y D 0, corresponding to the

z-axis of revolution
• The horizontal line z D �

2.��� /
The interesting physical case is when 2� >

3� where the vertical singular line is such that
�1 < �

2.��� / < 0. In this case, the time minimum
solution is represented on Fig. 1. On Fig. 2 we
draw the experimental solution in the deoxy-
genated blood case, compared with the standard
inversion recovery sequence.

σ M

+M

−M

σ −M

B

A σsh

σsv

P

Σ1

Σ2 Σ3
Σ4

Singular Trajectories in Optimal Control, Fig. 1 The
computed optimal solution is the following concatenation:
bang arc � 0

M with the horizontal singular arc �sh followed
by a bang arc P and finally the singular vertical arc �sv

Abnormal Extremals in SR Geometry
Sub-Riemannian geometry was introduced by
R.W. Brockett as a generalization of Riemannian
geometry (Brockett 1982; Montgomery 2002)
with many applications in control (for instance, in
motion planning (Bellaiche et al. 1998; Gauthier
and Zakalyukin 2006) and quantum control).
Its formulation in the framework of control
theory is

Pq.t/ D
m
X

iD1
ui .t/Fi .q.t//; min

u.:/

Z T

0

.

m
X

iD1
u2i .t/dt/

where q 2 U open set in R
n, m < n and

F1; � � � ; Fm are smooth vector fields which forms
an orthonormal basis of the distribution they
generate.

According to the maximum principle, normal
extremals are solutions of the Hamiltonian vector
field Hn, Hn D 1

2
.
Pm

iD1 Hi .q; p/
2/, Hi D

hp;Fi.q/i for i D 1; � � �m. Again abnormal
extremals can be computed by differentiating the
constraintHi D 0 along the extremals. Their first
occurrence takes place in the so-called Martinet
flat case: n D 3;m D 2, F1; F2 are given by

F1 D @

@x
C y2

2

@

@z
; F2 D @

@y

where q D .x; y; z/ 2 U neighborhood of
the origin, and the metric is given by ds2 D
dx2Cdy2. The singular trajectories are contained
in the Martinet plane M W y D 0 and are
the lines z D z0. An easy computation shows
that they are optimal for the problem. We rep-
resent below the role of the singular trajectories
when computing the sphere of small radius, from
the origin, intersected with the Martinet plane
(Fig. 3).

Summary and Future Directions

Singular trajectories play an important role
in many optimal control problem such as in
quantum control and cancer therapy (Schättler
and Ledzewicz 2012). They have to be carefully
analyzed in any applications; in particular in
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Singular Trajectories in
Optimal Control, Fig. 2
Experimental result. Usual
inversion sequence in
green, optimal computed
sequence in blue

Singular Trajectories in Optimal Control, Fig. 3
Projection of the SR sphere on the xz-plane. The singular
line is x D t and the picture shows the pinching of the SR
sphere in the singular direction

Boscain and Piccoli (2006) the authors provide
for single-input systems in two dimensions a
classification of optimal synthesis with singular
arcs.

Additionally, from a theoretical point of view,
singular trajectories can be used to compute feed-
back invariants for nonlinear systems (Bonnard
and Chyba 2003). In relation, a purely mathemat-

ical problem is the classification of distributions
describing the nonholonomic constraints in sub-
Riemannian geometry (Montgomery 2002).

Cross-References

�Differential Geometric Methods in Nonlinear
Control

�Feedback Stabilization of Nonlinear Systems
�Optimal Control and Pontryagin’s Maximum

Principle
�Robustness Issues in Quantum Control
�Sub-Riemannian Optimization

Bibliography

Agrachev A, Sarychev AV (1998) On abnormal extremals
for lagrange variational problems. J Math Syst Estim
Control 8(1):87–118

Agrachev A, Bonnard B, Chyba M, Kupka I (1997)
Sub-Riemannian sphere in Martinet flat case. ESAIM
Control Optim Calc Var 2:377–448

Bellaiche A, Jean F, Risler JJ (1998) Geometry of non-
holonomic systems. In: Laumond JP (ed) Robot mo-
tion planning and control. Lecture notes in control
and information sciences, vol 229. Springer, London,
pp 55–91

http://dx.doi.org/10.1007/978-1-4471-5058-9_80
http://dx.doi.org/10.1007/978-1-4471-5058-9_85
http://dx.doi.org/10.1007/978-1-4471-5058-9_200
http://dx.doi.org/10.1007/978-1-4471-5058-9_132
http://dx.doi.org/10.1007/978-1-4471-5058-9_48


Small Signal Stability in Electric Power Systems 1279

S

Bliss G (1946) Lectures on the calculus of variations.
University of Chicago Press, Chicago

Bloch A (2003) Nonholonomic mechanics and control. In-
terdisciplinary applied mathematics, vol 24. Springer,
New York

Bonnard B, Chyba M (2003) Singular trajectories and
their role in control theory. Mathématiques & appli-
cations, vol 40. Springer, Berlin

Bonnard B, Cots O, Glaser S, Lapert M, Sugny D, Zhang
Y (2012) Geometric optimal control of the contrast
imaging problem in nuclear magnetic resonance. IEEE
Trans Autom Control 57(8):1957–1969

Boscain U, Piccoli B (2004) Optimal syntheses for control
systems on 2-D manifolds. Mathématiques & applica-
tions, vol 43. Springer, Berlin

Brockett RW, (1982) Control theory and singular Rieman-
nian geometry. New directions in applied mathematics.
Springer, New York/Berlin, pp 11–27

Gauthier JP, Zakalyukin V (2006) On the motion planning
problem, complexity, entropy, and nonholonomic in-
terpolation. J Dyn Control Syst 12(3):371–404

Lapert M, Zhang Y, Braun M, Glaser SJ, Sugny D (2010)
Singular extremals for the time-optimal control of dis-
sipative spin 1/2 particles. Phys Rev Lett 104:083001

Lapert M, Zhang Y, Janich M, Glaser SJ, Sugny D (2012)
Exploring the physical limits of saturation contrast in
magnetic resonance imaging. Nat Sci Rep 2:589

Lee EB, Markus L (1967) Foundations of optimal control
theory. Wiley, New York/London/ Sydney

Levitt MH (2008) Spin dynamics: basics of nuclear mag-
netic resonance, 2nd edn. Wiley, Chichester/Hoboken

Montgomery R (2002) A tour of subriemannian geome-
tries, their geodesics and applications. Mathematical
surveys and monographs, vol 91. American Mathemat-
ical Society, Providence

Schättler H, Ledzewicz U (2012) Geometric optimal con-
trol: theory, methods and examples. Interdisciplinary
applied mathematics, vol 38. Springer, New York

Pontryagin LS, Boltyanskii VG, Gamkrelidze RV,
Mishchenko EF (1962) The mathematical theory of
optimal processes (Translated from the Russian by
Trirogoff KN; edited by Neustadt LW). Wiley Inter-
science, New York/London

Small Signal Stability in Electric
Power Systems
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Abstract

Small signal rotor angle stability analysis in
power systems is associated with insufficient
damping of oscillations under small disturbances.

Rotor angle oscillations due to insufficient
damping have been observed in many power
systems around the world. This entry overviews
the predominant approach to examine small
signal rotor angle stability in large power systems
using eigenvalue analysis.

Keywords

Eigenvalues; Eigenvectors; Low-frequency oscil-
lations; Mode shape; Oscillatory modes; Partici-
pation factors; Small signal rotor angle stability

Small Signal Rotor Angle Stability
in Power Systems

As power system interconnections grew in num-
ber and size, automatic controls such as voltage
regulators played critical roles in enhancing reli-
ability by increasing the synchronizing capability
between the interconnected systems. As technol-
ogy evolved the capabilities of voltage regula-
tors to provide synchronizing torque following
disturbances were significantly enhanced. It was,
however, observed that voltage regulators tended
to reduce damping torque, as a result of which the
system was susceptible to rotor angle oscillatory
instability. An excellent exposition of the mech-
anism and the underlying analysis is provided in
the textbooks (Anderson and Fouad 2003; Sauer
and Pai 1998; Kundur 1993), and a number of
practical aspects of the analysis are detailed in
Eigenanalysis and Frequency Domain Methods
for System Dynamic Performance (1989) and
Rogers (2000). Two types of rotor angle oscil-
lations are commonly observed. Low-frequency
oscillations involving synchronous machines in
different operating areas are commonly referred
to as inter-area oscillations. These oscillations
are typically in the 0.1–2 Hz frequency range.
Oscillations between local machines or a group
of machines at a power plant are referred to as
plant mode oscillations. These oscillations are
typically above the 2 Hz frequency range. The
modes associated with rotor angle oscillations are
also termed inertial modes of oscillation. Other
modes of oscillations associated with the various
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controls also exist. With the integration of signifi-
cant new wind and photovoltaic generation which
are interconnected to the grid using converters,
new modes of oscillation involving the converter
controls and conventional synchronous generator
states are being observed.

The basis for small signal rotor angle stability
analysis is that the disturbances considered are
small enough to justify the use of linear analysis
to examine stability (Kundur et al. 2004). As a re-
sult, Lyapunov’s first method Vidyasagar (1993)
provides the analytical underpinning to analyze
small signal stability. Eigenvalue analysis is the
predominant approach to analyze small signal
rotor angle stability in power systems. Commer-
cial software packages that utilize sophisticated
algorithms to analyze large-scale power systems
with the ability to handle detailed models of
power system components exist.

The power system representation is described
by a set of nonlinear differential algebraic equa-
tions shown in (1)

Px D f .x; z/
0 D g .x; z/

(1)

where x is the state vector and z is a vector of
algebraic variables. Small signal stability analysis
involves the linearization of (1) around a system
operating point which is typically determined by
conducting a power flow analysis:

�

� Px
0

�

D
�

J1 J2
J3 J4

� �

�x

�z

�

(2)

The power system state matrix can be obtained
by eliminating the vector of algebraic variables
�z in (2)

� Px D �

J1 � J2J
�1
4 J3

�

�x D A�x (3)

where A represents the system state matrix.
Based on Lyapunov’s first method, the eigen-
values of A characterize the small signal
stability behavior of the nonlinear system in
a neighborhood of the operating point around
which the system is linearized. The eigenvectors
corresponding to the eigenvalues also provide

significant qualitative information. For each
eigenvalue �i , there exists a vector ui known
as the right eigenvector of A which satisfies the
equation

Aui D �iui (4)

There also exists a row vector vi known as the left
eigenvector of A which satisfies

viA D �ivi (5)

For a system which has distinct eigenvalues, the
right and left eigenvectors form an orthogonal set
governed by

viuj D kij
where
kij ¤ 0 i D j

kij D 0 i ¤ j

(6)

One set (either right or left) of eigenvectors are
usually scaled to unity and the other set obtained
by solving (6) with kij D 1. The right eigen-
vectors can be assembled together as columns
of a square matrix U , and the corresponding
left eigenvectors can be assembled as rows of a
matrix V ; then

V D U�1 (7)

and
VAU D ƒ (8)

where ƒ is a diagonal matrix with the distinct
eigenvalues as the diagonal entries. The relation-
ship in (8) is a similarity transformation and in
the case of distinct eigenvalues provides a path-
way to obtain solutions to the linear system of
equations (3). Applying the following similarity
transformation to (3)

�x D U z ! �xi .t/ D
n
X

jD1
uij zj e

�j t (9)

U Pz D AU z (10)

Pz D U�1AU z D VAU z D ƒz (11)

Pzi .t/ D �i zi ) zi .t/ D zi .0/ e
�i t (12)

zi .0/ D vTi �x .0/ (13)



Small Signal Stability in Electric Power Systems 1281

S

zi .t/ D vTi �x .0/ e
�i t (14)

From (9) and (14), it can be observed that the
right eigenvector describes how each mode of the
system is distributed throughout the state vector
(and is referred to as the mode shape), and the
left eigenvector in conjunction with the initial
conditions of the system state vector determines
the magnitude of the mode. The right eigenvector
or the mode shape has been often used to iden-
tify dynamic patterns in small signal dynamics.
One problem with the mode shape is that it is
dependent on the units and scaling of the state
variables as a result of which it is difficult to com-
pare the magnitudes of entries that are disparate
and correspond to states that impact the dynam-
ics differently. This resulted in the development
of the participation factors (Pérez-Arriaga et al.
1982) which are dimensionless and independent
of the choice of units. The participation factor is
expressed as

pik D vikuik (15)

The magnitude of the participation factor mea-
sures the relative participation of the i th state
variable in the kth mode and vice versa.

Small Signal Stability Analysis Tools
for Large Power Systems

Efficient software tools exist that facilitate the
application of the methods in section “Small
Signal Rotor Angle Stability in Power Systems”
to large power systems (Powertech 2012; Martins
1989). These tools incorporate detailed models of
power system components and also leverage the
sparsity in power systems. The building of the A
matrix is a complex task for large power systems
with a multitude of dynamic components. The ap-
proach in Powertech (2012) utilizes a technique
where state space equations are developed for
each dynamic component in the system using a
solved power flow solution and the dynamic data
description for a given system. These state space
equations are then coupled based on the system
topology, and the system A matrix is derived as
in (3). Reference Martins (1989) takes advan-

tage of the sparsity of the Jacobian matrix in
(2) and develops efficient algorithms to determine
the eigenvalues and eigenvectors. The software
tools also provide the flexibility of a number
of different options with regard to eigenvalue
computations:
1. Calculation of a specific eigenvalue at a spec-

ified frequency or with a specified damping
ratio

2. Simultaneous calculation of a group of
relevant eigenvalues in a specified frequency
range or in specified damping ratio range

In addition to the features described above, com-
mercial software packages also provide features
to evaluate:
1. Frequency response plots
2. Participation factors
3. Transfer functions, residues, controllability,

and observability factors
4. Linear time response to step changes
5. Eigenvalue sensitivities to changes in speci-

fied parameters

Applications of Small Signal Stability
Analysis in Power Systems

Small signal stability analysis tools are used for
a range of applications in power systems. These
applications include:
Analysis of local stability problems – These types
of stability problems are primarily associated
with the tuning of control associated with the
synchronous generator, converter interconnected
renewable resources, and HVDC link current
control. In certain cases analysis of local stability
problems could also involve design of supple-
mentary controllers which enhance the stability
region. Since the stability problem pertains to a
local portion of the power system, there is signif-
icant flexibility in modeling the system. In many
instances local stability problems facilitate the
use of a simple representation of a power system
which could include the particular machine or
a local group of machines in question together
with a highly equivalenced representation of the
rest of the system. In cases where controls other
than generator controls influence stability, e.g.,
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static VAr compensators or HVDC links, the
system representation would need to be extended
to include portions of the system where these
devices are located. Typical small signal stability
problems that are analyzed include:
1. Power system stabilizer design
2. Automatic voltage regulator tuning
3. Governor tuning
4. DC link current control
5. Small signal stability analysis for subsyn-

chronous resonance
6. Load modeling effects on small signal stability
References Eigenanalysis and Frequency Domain
Methods for System Dynamic Performance
(1989) and Rogers (2000) provide comprehensive
examples of the analysis conducted for each of
the problems listed above.
Analysis of global stability problems – These
types of stability problems are associated with
controls that impact generators located in differ-
ent areas of the power systems. The analysis of
these inter-area problems requires a more system-
atic approach and involves representation of the
power system in greater detail. The problems that
are analyzed under this category include:
1. Power system stabilizer design
2. HVDC link modulation
3. Static VAr compensator controls
References Eigenanalysis and Frequency Domain
Methods for System Dynamic Performance
(1989) and Rogers (2000) again provide details of
the analysis conducted for each of the problems
listed under this category.
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Abstract

Many biological behaviors require that biochemi-
cal species be distributed spatially throughout the
cell or across a number of cells. To explain these
situations accurately requires a spatial description
of the underlying network. At the continuum
level, this is usually done using reaction-diffusion
equations. Here we demonstrate how this class of
models arises. We also show how the framework
is used in two popular models proposed to explain
spatial patterns during development.
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Introduction

Cells are complex environments consisting of
spatially segregated entities, including the nu-
cleus and various other organelles. Even within
these compartments, the concentrations of vari-
ous biochemical species are not homogeneous,
but can vary significantly. The proper localization
of proteins and other biochemical species to their
respective sites is important for proper cell func-
tion. This can be because the spatial distribution
of signaling molecules itself confers information,
such as when a cell needs to respond to a spatially
graded cue to guide its motion (Iglesias and De-
vreotes 2008) or growth pattern (Lander 2013).
Alternatively, information that is obtained in one
part of the cell must be transmitted to another part
of the cell, as when receptor-ligand binding at the
cell surface leads to transcriptional responses in
the nucleus. Frequently, describing the action of
a biological network accurately requires not only
that one account for the chemical interactions
between the different components but that the
spatial distribution of the signaling molecules
also be considered.

Accounting for Spatial Distribution
in Models

Mathematical models of biological networks usu-
ally assume that reactions take place in well-
stirred vessels in which the concentrations of
the interacting species are spatially homogeneous
and hence need not be accounted for explicitly.
These systems also assume that the volume is
constant. When the spatial location of molecules
in cells is important, the concentration of species
changes in both time and space.

Compartmental Models
One way to account for spatial distribution of
signaling components is through compartmental
models. As the name suggests, in these models
the cell is divided into different regions that are
segregated by membranes. Within each compart-
ment, the concentration of the network species

is assumed to be spatially homogeneous. The
membranes in these models can be assumed to be
either permeable or impermeable. In permeable
membranes, information passes through small
openings, such as ion channels or nuclear pores,
which allow molecules to move from one side
of the membrane to the other. With imperme-
able membranes, information must be transduced
by transmembrane signaling elements, such as
cell-surface receptors, that bind to a signaling
molecule in one side of the membrane and release
a secondary effector on the other side. Note that
in this case, the membrane itself acts as a third
compartment.

Compartmental models offer simplicity, since
the reactions that happen in a single region obey
the same reaction kinetics usually assumed in
spatially homogeneous models. Even when the
reactions involve more than one compartment,
as in ligand-receptor binding, this can still be
described by the usual reaction dynamics. Care
must be taken, however, to account properly for
the different effects on the respective concentra-
tions as molecules move from one compartment
to another. In models of spatially homogeneous
systems, there is little practical difference be-
tween writing the ordinary-differential equations
in terms of molecule numbers or concentrations,
since the two are proportional to each other ac-
cording to the volume, which is constant. In
a compartmental model, if the molecule moves
from one compartment to another, there is con-
servation of molecule numbers, but not concen-
trations. For example, if a species is found in
two compartments with volumes V1 and V2 and
transfer rates k12 and k21 s�1, then the differential
equations describing transport between compart-
ments can be expressed in terms of numbers (n1
and n2) as follows:

dn1
dt

D �k12n1 C k21n2

dn2
dt

D Ck12n1 � k21n2:

Dividing by the respective volumes (C1 D n1=V1
and C2 D n2=V2), we obtain equations for the
concentrations
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dC1
dt

D �k12C1 C k21.
V2
V1
/C2

dC2
dt

D Ck12. V1V2 /C1 � k21C2:

In the former case, the two equations add to zero,
indicating that n1.t/ C n2.t/ D constant. In the
latter, if V1 ¤ V2, then C1.t/C C2.t/ varies over
time as molecules move from one compartment
to the other.

Diffusion and Advection
If the distribution of molecules inside any sin-
gle compartment is spatially heterogeneous, then
models must account for this spatial distribu-
tion. At the continuum level, this is done using
reaction-diffusion equations. The basic assump-
tion is a conservation principle expressed as a
continuity equation:

@�

@t
C rj D f;

which relates the changes in the density (�) of a
conserved quantity (in our case, the concentration
of a species: � D C ) to the flux j and any net
production f . In biological networks, the latter
represents the net effect of all the reactions that
affect the concentration of the species includ-
ing binding, unbinding, production, degradation,
post-translational modifications, etc.

In biological models, the flux term usually
comes from one of two sources: diffusion or
advection. According to Fick’s law, diffusive flux
is proportional to the negative gradient of the con-
centration of the species as particles move from
regions of high concentration to regions of low
concentration. The coefficient of proportionality
is the diffusion coefficient,D:

jdiff D �DrC:

Fick’s law describes thermally driven Brownian
motion of molecules at the continuum level. If
the species is embedded in a moving field, then
the flux is proportional to the velocity of the
underlying fluid. In this case, we have advective
flow:

jadv D vC:

In biological systems, advection can arise
because of the movement of the cytoplasm,
but it can also represent directed transport of
molecules, such as the movement of cargo along
filaments by processive motors. In general,
molecules exhibit both diffusive and advective
motion: j D jdiff C jadv, leading to

@C

@t
C r.�DrC C vC / D f;

which, under the assumption that the diffusion
coefficient and the transport velocity are inde-
pendent of spatial location, leads to the reaction-
diffusion-advection equation:

@C

@t
D Dr2C � vrC C f:

Being a second-order partial differential, the
solution requires an initial condition and two
boundary conditions. Common choices for
the latter include periodic (e.g., in models of
closed boundaries) or no-flux (to describe the
impermeability of membranes) assumptions.

Measuring Diffusion Coefficients
Invariably, solving the reaction-diffusion equa-
tion requires knowledge of the diffusion coeffi-
cient of the molecule. Experimentally, this can be
done in a number of ways. In fluorescence recov-
ery after photobleaching (FRAP), a laser is used
to photobleach normally fluorescent molecules
in a specific area of the cell. As these “dark”
molecules are replaced by fluorescent molecules
from non-bleached areas, the fluorescent inten-
sity of the bleached area recovers. Higher dif-
fusion leads to faster recovery. The time to half
recovery, �1=2, can be used to estimate D. If
recovery occurs by lateral diffusion, then

D D r20 �

4�1=2

where r0 is the 1=e2 radius of the Gaussian profile
laser beam and � is a parameter that depends on
the extent of photobleaching, which ranges from
1 to 1.2 (Chen et al. 2006).
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These days, it is increasingly common to mea-
sure lateral diffusion coefficients by observing
the trajectory of single molecules. A molecule
with diffusion coefficient D undergoing Brow-
nian motion in a two-dimensional environment
is expected to have mean-square displacement
(MSD) equal to

hr2i D 4Dt:

Thus, the coefficient D can be obtained by mea-
suring how the MSD changes as a function of the
time interval t . This method can also show if the
molecule is undergoing advection in which case

hr2i D 4Dt C v2t2:

This super-diffusive behavior can be seen in the
concave nature of the plot of hr2i against t . This
plot will also reveal barriers to diffusion. For
example, if the molecule is confined to move in
a circular region of radius a, then, as t increases,
hr2i cannot exceed a2.

Both these methods work best for molecules
diffusing on a membrane. For molecules dif-
fusing in the cytoplasm, the three-dimensional
imaging required is considerably more difficult,
particularly since the diffusion of particles in the
cytoplasm (D 	 1–10m2 s�1) is usually orders
of magnitude greater than for membrane-bound
proteins (D 	 0:01–0:1 m2 s�1). In this case,
an analytical expression can be used to estimate
the diffusion coefficient. The diffusion coefficient
of a spherical particle of radius r moving in a low
Reynolds number liquid with viscosity � is given
by the Stokes-Einstein equation:

D D kBT

6��r
:

The exact viscosity of the cell is unknown, but es-
timates that � is approximately five times that of
water lead to diffusion coefficients of cytoplasmic
proteins that match those measured using FRAP.

Diffusion-Limited Reaction Rates
Even in compartments that are considered well
stirred, the diffusion of molecules is necessary for

reactions to take place. In particular, before two
molecules can react, they must come together. To
see how diffusion influences this, suppose that
spherical molecules of speciesA andB with radii
rA and rB , respectively, come together to form a
complexAB at a rate kd . This rate represents the
likelihood that molecules of A and B collide at
random and hence will depend on the diffusion
properties of the two species. The molecules in
this complex can dissociate at rate k0

d or can
be converted to species C at rate kr . Thus, the
overall reaction involves two steps:

AC B
kd�*)�
k0

d

AB

AB
kr�! C:

Assuming that the system is at quasi-steady-state,
that is, the concentration of AB is constant, the
effective rate of production C is given by

keff D kdkr

k0
d C kr

:

There are two regions of operation. If k0
d 
 kr ,

then keff � kr.kd=k
0
d /. In this case production

is said to be reaction limited. If k0
d � kr , then

keff � kd and production is diffusion limited. In
this case, it is possible to find kd as a function of
the species’ diffusion coefficients.

Assume that species A is stationary, in which
case the effective diffusion is the sum of the two
diffusion coefficients: D D DA CDB . The con-
centration of species B depends on the distance
away from molecules of A. Because we assume
that the reaction rate is fast, at the point of contact
(r? D rACrB ) the concentration is zero since any
molecules of AB are quickly converted to C . At
the other extreme, as r ! 1, the concentration
approaches the bulk concentrationB0. According
to Fick’s law, this concentration gradient causes a
flux density given by j D �D.@B=@r/. The total
flux into a sphere of radius r is then

J D 4�r2j D �4�Dr2 @B
@r
;
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which, at steady state, is constant. Solving this
equation for B.r/ using the two boundary equa-
tions leads to a flux

J D �4�DB0r?;

from which we have that

kd D 4�Dr?:

A typical value for kd , using the Einstein-Stokes
formula, is

4�

�

2 � kBT

6��.r?=2/

�

r? D 8kBT

3�

� 103 m�1 s�1:

Spatial Patterns

The effect of spatial heterogeneities has been of
long interest to developmental biologists, who
study how spatial patterns arise. Two distinct
models have been proposed to explain how this
patterning can arise. Here we introduce these
models and discuss their relative merits. Though
usually seen as competing models, there is recent
evidence suggesting that both models may play
complementary roles during development (Reth
et al. 2012).

Morphogen Gradients
A morphogen is a diffusible molecule that is
produced or secreted at one end of an organism.
Diffusion away from the localized source forms
a concentration gradient along the spatial dimen-
sion. Morphogens are used to control gene ex-
pression of cells lying along this spatial domain.
Thus, a morphogen gradient gives rise to spatially
dependent expression profiles that can account
for spatial developmental patterns (Rogers and
Schier 2011).

The mathematics behind the formation of a
morphogen gradient are relatively straightfor-
ward. The concentration of the morphogen is
denoted by C.x; t/. There is a constant flux (j0)
at one end (x D 0) of a finite one-dimensional

domain of length L, but the morphogen cannot
exit at the other end. The species diffuses inside
the domain and also decays at a rate proportional
to its concentration (f D �kC ). Thus, the
concentration is governed by the reaction-
diffusion equation:

@C

@t
D D

@2C

@x2
� kC;

with boundary conditions:D@C
@x

D �j0 at x D 0,
and D@C

@x
D 0 at x D L. We focus on the steady

state:
d2 NC
dx2

D k

D
NC ;

so that the initial condition is not important. In
this case, the distribution of the species is given
by

NC.x/ D �j0

D

cosh.ŒL � x�=�/

sinh.L=�/
:

Thus, the shape of the gradient is roughly ex-
ponential with parameter � D p

D=k, known
as the dispersion, which specifies the average
distance that molecules diffuse into the domain
before they are degraded or inactivated. Equally
important in determining the gradient, however,
is the spatial dimension (L) relative to the dis-
persion, ˆ D L=�, a ratio known as the Thiele
modulus. If ˆ � 1, then the concentration will
be approximately homogeneous. Alternatively,
ˆ 
 1 leads to a sharp transition close to the
boundary where there is flux and a relatively flat
concentration thereafter.

Though morphogen gradients are commonly
used to describe signaling during development,
where the gradient can extend across a number
of cells, the mathematics described above are
equally suitable for describing concentration gra-
dients of intracellular proteins. In this case, the
dimension of the cell has a significant effect on
the shape of the gradient (Meyers et al. 2006).

As discussed above, morphogen gradients are
established in an open-loop mode. As such, the
actual concentration experienced at a point down-
stream of the source of the morphogen will vary
depending on a number of parameters, includ-
ing the flux j0 and the rate of degradation k.
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Moreover, because the concentration of the mor-
phogen decreases as the distance from the source
grows, the relative stochastic fluctuations will
increase. How to manage this uncertainty is an
active area of research (Rogers and Schier 2011;
Lander 2013).

Diffusion-Driven Instabilities
In 1952, Alan Turing proposed a model of how
patterns could arise in biological systems (Turing
1952). His interest was in explaining how an
embryo, initially spherical, could give rise to a
highly asymmetric organism. He posited that the
breaking of symmetry could be a result of the
change in the stability of the homogeneous state
of the network which would amplify small fluc-
tuations inherent in the initial symmetry. Turing
sought to explain how these instabilities could
arise using only reaction-diffusion systems.

To illustrate how diffusion-driven instabilities
can arise, we work with a single two-species
linear reaction network:

@

@t

�

C1
C2

�

D A

�

C1
C2

�

C @2

@x2
D

�

C1
C2

�

where A D Œ a11 a12a21 a22 � specifies the reaction terms
and the diagonal matrix D D �

D1 0
0 D2

	

the diffu-
sion coefficients.

We assume that, in the absence of diffusion,
the system is stable, so that det.A/ > 0 and
trace.A/ < 0. When considering diffusion in
a one-dimensional environment of length L, we
must consider the spatial modes, which are of
the form exp.iqx/. In this case, stability of the
system requires that trace.A � q2D/ < 0 and
det.A � q2D/ > 0. The former is always true,
since trace.A � q2D/ D trace.A/ � q2.D1 C
D2/ < trace.A/ < 0. However, the condition on
the determinant can fail since

det.A� q2D/ D D1D2q
4 � q2.a22D1 C a11D2/

C det.A/: (1)

Since det.A/ > 0, diffusion-driven instabilities
can only occur if the term a22D1 C a11D2 > 0,
by which it follows that at least one of a11 or a22

must be positive. Since traceA < 0, it follows
that the diagonal terms must have opposite sign.
Usually, it is assumed that a11 > 0 and that a22 <
0. Since det.A/ > 0, it follows that a12 and a21
must also have opposite sign.

These requirements in the sign pattern
of the two molecules lead to one of two
classes of systems. In the first class, known
as activator/inhibitor systems, the activator
(assume species 1) is autocatalytic (a11 > 0)
and also stimulates the inhibitor (a21 > 0), which
negatively regulates the activator (a12 < 0). In
the other class, known as substrate-depletion
systems, a product (species 1) is autocatalytic
(a11 > 0), but in its production consumes
(a21 < 0) the substrate (species 2) whose
presence is needed for formation of the product
(a12 > 0). Note that both systems involve an
autocatalytic positive feedback loop (a11 > 0), as
well as a negative feedback loop involving both
species (a12a21 < 0).

The stability condition also imposes a nec-
essary condition on the dispersion of the two
species, (�i D p

Di=jaii j), since

a22D1 C a11D2 > 0 H) ��21 C �22 > 0

Thus, the species providing the negative feed-
back (inhibitor or substrate) must have higher
dispersion (�2 > �1). This requirement is usually
referred to as local activation and long-range
inhibition.

These conditions are necessary, but not suffi-
cient. They ensure that the parabola defined by
Eq. 1 has real roots. However, when diffusion
takes place in finite domains, the parameter q can
only take discrete values q D 2�n=L for integers
n. Thus, for a spatial mode to be unstable, it must
be that det.A � q2D/ < 0 at specific values of q
corresponding to integers n. If the dimension of
the domain is changing, as would be expected in
a growing domain, the parameter q2 will decrease
over time suggesting that higher modes may lose
stability. Thus, the nature of the pattern may
evolve over time.

Over the years, Turing’s framework has been
a popular model among theoretical biologists
and has been used to explain countless patterns
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seen in biological systems. It has not had the
same level of acceptance among biologists, likely
because of the difficulty of mapping a complex
biological system involving numerous interacting
species into the simple nature of the theoretical
model (Kondo and Miura 2010).

Summary and Future Directions

Spatial aspects of biochemical signaling are
increasingly playing a role in the study of cellular
signaling systems. Part of this interest is the
desire to explain spatial patterns seen in sub-
cellular localizations observed through live cell
imaging using fluorescently tagged proteins. The
ever-increasing computational power available
for simulations is also facilitating this progress.
Specially built spatial simulation software, such
as the Virtual Cell, is freely available and
tailor-made for biological simulations enabling
simulation of spatially varying reaction networks
in cells of varying size and shape (Cowan et al.
2012).

Of course, cell shapes are not static, but evolve
in large part due to the effect of the underlying
biochemical system. This requires simulation
environments that solve reaction-diffusion
systems in changing morphologies. This has
received considerable interest in modeling cell
motility (Holmes and Edelstein-Keshet 2013).

Another aspect of spatial models that is only
now being addressed is the role of mechanics in
driving spatially dependent models. For example,
it has recently been shown that the interaction be-
tween biochemistry and biomechanics can itself
drive Turing-like instabilities (Goehring and Grill
2013).

Finally, we note that our discussion of spa-
tially heterogeneous signaling has been based
on continuum models. As with spatially invari-
ant systems, this approach is only valid if the
number of molecules is sufficiently large that the
stochastic nature of the chemical reactions can be
ignored. In fact, spatial heterogeneities may lead
to localized spots requiring a stochastic approach,
even though the molecule numbers are such that
a continuum approach would be acceptable if the

cell were spatially homogeneous. The analysis
of stochastic interactions in these systems is still
much in its infancy and is likely to be an increas-
ingly important area of research (Mahmutovic
et al. 2012).
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Abstract

For more than half a century, spectral factoriza-
tion is encountered in various fields of science
and engineering. It is a useful tool in robust
and optimal control and filtering and many other
areas. It is also a nice control-theoretical concept
closely related to Riccati equation. As a quadratic
equation in polynomials, it is a challenging alge-
braic task.
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Polynomial Spectral Factorization

As a mathematical tool, the spectral factoriza-
tion was invented by Wiener in 1940s to find
a frequency domain solution of optimal filtering
problems. Since then, this technique has turned
up numberless applications in system, network
and communication theory, robust and optimal
control, filtration, prediction and state reconstruc-
tion. Spectral factorization of scalar polynomials
is naturally encountered in the area of single-
input single-output systems.

In the context of continuous-time problems,
real polynomials in a single complex variable s
are typically used. For such a polynomial p.s/,
its adjoint p�.s/ is defined by

p�.s/ D p.�s/; (1)

which results in flipping all roots across the imag-
inary axis. If the polynomial is symmetric, then
p�.s/ D p.s/ and its roots are symmetrically
placed about the imaginary axis.

The symmetric spectral factorization problem
is now formulated as follows: Given a symmetric
polynomial b.s/,

b�.s/ D b.s/; (2)

that is also positive on the imaginary axis

b.i!/ > 0 for all real !; (3)

find a real polynomial x.s/, which satisfies

x.s/x�.s/ D b.s/ (4)

as well as

x.s/ ¤ 0; Res � 0: (5)

Such an x.s/ is then called a spectral factor of
b.s/. By (5), the spectral factor is a stable poly-
nomial in the continuous-time (Hurwitz) sense.

Obviously, (4) is a quadratic equation in poly-
nomials and its stable solution is the desired
spectral factor.

Example 1 Given

b.s/ D 4C s4 D .1C j C s/ .1 � j C s/

.1C j � s/ .1 � j � s/ ;

(4) results in the spectral factor

x.s/ D 2C 2sC s2 D .1C j C s/ .1 � j C s/ :

When the right-hand side polynomial b.s/

has some imaginary-axis roots, the problem
formulated strictly as above becomes unsolvable
since (3) does not hold and hence (5) cannot be
fulfilled. A more relaxed formulation may then
find its use requiring only b.i!/ � 0 instead
of (3) and x.s/ ¤ 0 only for Res > 0 instead
of (5). Clearly, the imaginary-axis roots of b.s/
must then appear in x.s/ and x�.s/ as well.
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In the realm of discrete-time problems, one
usually encounters two-sided polynomials, which
are polynomial-like objects (In fact, one can stay
with standard one-sided polynomials (either in
nonnegative or in nonpositive powers only), if
every adjoint p�.z/ is multiplied by proper power
of z to create a one-sided polynomial Np.z/ D
p�.z/zn.) with positive and/or negative powers
of a complex variable z, such as, for example,
p.z/ D z�1 C 1 C 2z. Here, the adjoint p�.z/
stands simply for

p�.z/ D p.z�1/ (6)

and the operation results in flipping all roots
across the unit circle. If the two-sided polynomial
is symmetric, then p�.z/ D p.z/ and its roots are
symmetrically placed about the unit circle.

In its discrete-time version, the spectral fac-
torization problem is stated as follows: Given a
symmetric two-sided polynomial b.z/ that meets
the conditions of symmetry

b�.z/ D b.z/ (7)

and positiveness (here on the unit circle)

b.ei!/ > 0 real !; �� < ! � �; (8)

find a real polynomialx.z/ in nonnegative powers
of z to satisfy

x.z/x�.z/ D b.z/ (9)

and
x.z/ ¤ 0; jzj � 1: (10)

By (10), the spectral factor is a stable polynomial
in the discrete-time (Schur) sense.

Example 2 For

b.z/ D 2z�2 C 6z�1 C 9C 6z C 2z2

D 2z�2.z C 0:5C 0:5j /.z C 0:5 � 0:5j /
.z C 1C j /.z C 1 � j /

D 4.z C 0:5C 0:5j /.z C 0:5 � 0:5j /
� .z�1 C 0:5C 0:5j /

.z�1 C 0:5 � 0:5j /

(9) yields

x.z/ D1C 2z C 2z2 D 2.z C 0:5C 0:5j /

.z C 0:5 � 0:5j /

as the desired spectral factor.

When the right-hand side b.z/ possesses some
roots on the unit circle, this problem turns out
to be unsolvable as (8) fails. If necessary, a
less restrictive formulation can then be applied
replacing (8) by b.ei!/ � 0 and with x.z/ ¤ 0

only for jzj > 1 instead of (10). Clearly, the unit-
circle roots of b.z/ must then appear both in x.z/
and x�.z/.

When formulated as above, the spectral fac-
torization problem is always solvable and its
solution is unique up to the change of sign (if x is
a solution, so is �x and no other solutions exist).

Polynomial Matrix Spectral
Factorization

Matrix version of the problem has been encoun-
tered since 1960s. In the world of continuous-
time problems, real polynomial matrices in a
single complex variable s are used. For such a
real polynomial matrix P.s/, its adjoint P �.s/ is
defined as

P �.s/ D PT .�s/: (11)

A polynomial matrix P.s/ is symmetric or, more
precisely, para-Hermitian, if P �.s/ D P.s/.
Needless to say, only square polynomial matrices
can be symmetric.

The matrix spectral factorization problem is
defined as follows: Given a symmetric polyno-
mial matrix B.s/,

B�.s/ D B.s/; (12)

that is also positive definite on the imaginary axis

B.i!/ > 0 for all real !; (13)

find a square real polynomial matrixX.s/, which
satisfies

X.s/X�.s/ D B.s/ (14)
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and has no zeros in the closed right half plain
Re s � 0. Such an X.s/ is then called a left
spectral factor ofB.s/. A right spectral factor
Y.s/ is defined similarly by replacing (14) with

Y �.s/Y.s/ D B.s/: (15)

Example 3 For a symmetric matrix

B.s/ D
�

2 � s2 �2 � s

�2C s 4 � s2

�

;

we have

X.s/ D
�

1:4C s �0:2
�1:2 1:6C s

�

as a left spectral factor and

Y.s/ D
�

1C s 0

�1 2C s

�

as a right one.

As in the scalar case, less restrictive definitions
are sometimes used where the given right-hand
side matrix B.s/ is only nonnegative definite on
the imaginary axis and so the spectral factor is
free of zeros in the open right half plain Re s > 0
only.

In the kingdom of discrete-time, two-sided
real polynomial matrices P.z/ are used having
in general entries with both positive and negative
powers of the complex variable z. For such a
matrix, its adjoint P �.z/ is defined by

P �.z/ D PT .z�1/: (16)

Clearly, if P.z/ has only nonnegative powers of z,
then P �.z/ has only nonpositive powers of z and
vice versa. A square two-sided polynomial matrix
P.z/ is (para-Hermitian) symmetric if P �.z/ D
P.z/.

Here is the discrete-time version of matrix
spectral factorization problem. Given a two-sided
polynomial matrix B.z/ that is symmetric

B�.z/ D B.z/ (17)

and positively definite on the unit circle

B.ei!/ > 0 real !; �� < ! � �; (18)

find a real polynomial matrixX.z/ in nonnegative
powers of z such that

X.z/X�.z/ D B.z/ (19)

and has no zeros on and outside of the unit circle.
Such an X.z/ is then called a left spectral factor
ofB.z/. A right (The right and the left spectral
factor are sometimes called the factor and the
cofactor, respectively, but the terminology is not
set at all.) spectral factor Y(z) is defined similarly
by replacing (19) with

Y �.z/Y.z/ D B.z/ (20)

Example 4 A symmetric two-sided polynomial
matrix

B.z/ D
��2z�1 C 5 � 2z 2z�1 � 1

�1C 2z 2z�1 C 6C 2z

�

has a left spectral factor

X.z/ Š
��1:1C 1:9z 0:55

�0:8z 0:95C 2:1z

�

and a right spectral factor

Y.z/ D
�

2z � 1 1

0 1C 2z

�

:

As before, less restrictive formulations are some-
times encountered where the given symmetric
B.z/ is only nonnegatively definite on the unit
circle and so the spectral factor must have no
zeros only outside of the unit circle.

When formulated as above, the matrix spectral
factorization problem is always solvable. The
spectral factors are unique up to an orthogonal
matrix multiple. That is, if X and X 0 are two left
spectral factors of B, then

X 0 D UX (21)
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whereU is a constant orthogonal matrix UUT D
I , while if Y and Y 0 are two right spectral factors
of B , then

Y 0 D Y V (22)

where V is a constant orthogonal matrix
V T V D I .

J -Spectral Factorization

In robust control, game theory and several other
fields, the symmetric right-hand side in the ma-
trix spectral factorization may have a general
signature. With such a right-hand side, standard
(positive or nonnegative definite) factorization
becomes impossible. Here, a similar yet different
J -spectral factorization takes its role.

In the context of continuous-time problems,
the J-spectral factorization problem is formulated
as follows. Given a symmetric polynomial matrix
B.s/,

B�.s/ D B.s/; (23)

find a square real polynomial matrix X.s/, which
satisfies

X.s/JX�.s/ D B.s/; (24)

where X.s/ has no zeros in the open right half
plain Re s > 0 and J is a signature matrix of the
form

J D
2

4

I1 0 0

0 �I2 0
0 0 0

3

5 (25)

with I1 and I2 unit matrices of not necessarily
the same dimensions. The bottom right block
of zeros is often missing, yet it is considered
here for generality. Such an X.s/ is called a
left J-spectral factor ofB.s/. A right J-spectral
factor is defined by

Y �.s/J Y.s/ D B.s/ (26)

instead of (24). For discrete-time problems, the
J -spectral factorization is defined analogously.

The J-spectral factorization problem is quite
general having standard (either positive or
nonnegative) spectral factorization as a particular
case. No necessary and sufficient existence

conditions appear to be known for J -spectral
factorization. A sufficient condition by Jakubovič
(1970) states that the problem is solvable if the
multiplicity of the zeros on the imaginary axis
of each of the invariant polynomials of the
right-hand side matrix is even. In particular,
this condition is satisfied whenever det B.s/
has no zeros on the imaginary axis. In turn,
the condition is violated if any of the invariant
factors is not factorable by itself. An example of
a nonfactorizable polynomial is 1 + s2.

The J -spectral factors are unique up to a J -
orthogonal matrix multiple. That is, if X and X 0
are two left J -spectral factors of B , then

X 0 D UX; (27)

where U is a J -orthogonal matrix UJU T D J ,
while if Y and Y 0 are two right J -spectral factors
of B , then

Y 0 D Y V; (28)

where V is a J -orthogonal matrix V T JV D J .

Example 5 For

B.s/ D
�

0 1 � s
1C s 2 � s2

�

the signature matrix reads

J D
�

1 0

0 �1
�

and the right J -spectral factor is

Y.s/ D

2

6

6

4

1C s
3 � s2

2

1C s
1 � s2

2

3

7

7

5

Nonsymmetric Spectral Factorization

Spectral factorization can also be non-symmetric.
For a scalar polynomial p (either in s or in z), this
means to factor it directly as

p D pCp� (29)
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where pC is a stable factor of p (having all its
roots either in the open left half plane or inside
of the unit disc, depending on the variable type)
while p� is the “remaining” that is unstable fac-
tor. Eventual roots of p at the stability boundary
either associate to pC or to p�, depending on the
application problem at hand.

For a matrix polynomial P , the non-
symmetric factorization is naturally twofold:
Either

P D PCP� (30)

or
P D P�PC: (31)

For scalar polynomials, symmetric and non-
symmetric spectral factors are closely related.
Given p and having computed a symmetric factor
x for pp� as in (4) or (9) to get

x�x D p�p (32)

Then

pC D gcd .p; x/ and p� D gcd
�

p; x�� (33)

where gcd stands for a greatest common divisor.
In reverse,

x D pC .p�/� and x� D p� �pC�� : (34)

Unfortunately, no such relations exist for the
matrix case.

Example 6 For example,

p.s/ D 1 � s2

factorizes into

pC.s/ D 1C s; p�.s/ D 1 � s

while for

P.s/ D
�

1C s 0

1C s2 1 � s

�

we have

P�.s/ D
�

1 1

s 1

�

; PC.s/ D
�

s �1
1 1

�

:

Algorithms and Software

Spectral factorization is a crucial step in the
solution of various control, estimation, filtration,
and other problems. It is no wonder that a va-
riety of methods has been developed over the
years for the computation of spectral factors. The
most popular ones are briefly mentioned here.
For details on particular algorithms, the reader is
referred to the papers recommended for further
reading.

Factor Extraction Method
If all roots of the right-hand side polynomial
are known, the factorization becomes trivial. Just
write the right-hand side as a product of first and
second order factors and then collect the stable
ones to create the stable factor. If the roots are
not known, one can first enumerate them and
then proceed as above. Somewhat surprisingly, a
similar procedure can be used for the matrix case.
To every zero, a proper matrix factor must be
extracted. For further details, see Callier (1985)
or Henrion and Sebek (2000).

Bauer’s Algorithm
This procedure is an iterative scheme with linear
rate of convergence. It relies on equivalence be-
tween the polynomial spectral factorization and
the Cholesky factorization of a related infinite-
dimensional Toeplitz matrix. For further details,
see Youla and Kazanjian (1978).

Newton-Raphson Iterations
An iterative algorithm with quadratic conver-
gence rate based on consecutive solutions of sym-
metric linear polynomial Diophantine equations.
It is inspired by the classical Newton’s method for
finding a root of a function. To learn more, read
Davis (1963), Ježek and Kučera (1985), Vostrý
(1975).

Factorization via Riccati Equation
In state-space solution of various problems, an al-
gebraic Riccati equation plays the role of spectral
factorization. It is therefore not surprising that the
spectral factor itself can directly be calculated by
solution of a Riccati equation. For further info,
see e.g. Šebek (1992).
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FFT Algorithm
This is the most efficient and accurate procedure
for factorization of scalar polynomials with very
high degrees (in orders of hundreds or thou-
sands). Such polynomials appear in some special
problems of signal processing in advanced audio
applications involving inversions of dynamics of
loudspeakers or room acoustics. The algorithm
is based on the fact that logarithm of a product
(such as the spectral factorization equation) turns
into a sum of logarithms of particular entries. For
details, see Hromčík and Šebek (2007)

All the procedures above are either directly
programmed or can be easily composed from
the functions of Polynomial Toolbox for Matlab,
which is a third-party Matlab toolbox for polyno-
mials, polynomial matrices and their applications
in systems, signals, and control. For more details
on the toolbox, visit www.polyx.com.

Consequences and Comments

Polynomial and polynomial matrix spectral fac-
torization is an important step when frequency
domain (polynomial) methods are used for op-
timal and robust control, filtering, estimation, or
prediction. Numerous particular examples can be
found throughout this Encyclopedia as well as
in the textbooks and papers recommended for
further reading below.

Spectral factorization of rational functions and
matrices is an equally important topic but it is
omitted here due to lack of space. Inquiring
readers are referred to the papers Oara and Varga
(2000) and Zhong (2005).

Cross-References

�Basic Numerical Methods and Software for
Computer Aided Control Systems Design

�Classical Frequency-Domain Design Methods
�Computer-Aided Control Systems Design: In-

troduction and Historical Overview
�Control Applications in Audio Reproduction
�Discrete Optimal Control
�Extended Kalman Filters
� Frequency-Response and Frequency-Domain

Models

�H-Infinity Control
�H2 Optimal Control
�Kalman Filters
�Optimal Control via Factorization and Model

Matching
�Optimal Sampled-Data Control
�Polynomial/Algebraic Design Methods
�Quantitative Feedback Theory
�Robust Synthesis and Robustness Analysis

Techniques and Tools

Recommended Reading

Nice tutorial books on polynomials and polyno-
mial matrices in control theory and design are
Kučera (1979), Callier and Desoer (1982), and
Kailath (1980)

The concept of spectral factorization was intro-
duced by Wiener (1949), for further informa-
tion see later original papers Wilson (1972)
or Kwakernaak and Šebek (1994) as well as
survey papers Kwakernaak (1991), Sayed and
Kailath (2001) or Kučera (2007).

Nice applications of spectral factorization in con-
trol problems can be found e.g. in Green et al.
(1990), Henrion et al. (2003) or Zhou and
Doyle (1998). For its use of in other engi-
neering problems see e.g. Sternad and Ahlén
(1993).
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Henrion D, Šebek M, Kučera V (2003) Positive polyno-
mials and robust stabilization with fixed-order con-
trollers. IEEE Trans Autom Control 48:1178–1186
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Stability and Performance
of Complex SystemsAffected
by Parametric Uncertainty

Boris Polyak and Pavel Shcherbakov
Institute of Control Science, Moscow, Russia

Abstract

Uncertainty is an inherent feature of all real-
life complex systems. It can be described in

different forms; we focus on the parametric de-
scription. The simplest results on stability of lin-
ear systems under parametric uncertainty are the
Kharitonov theorem, edge theorem, and graphical
tests. More advanced results include sufficient
conditions for robust stability with matrix un-
certainty, LMI tools, and randomized methods.
Similar approaches are used for robust control
synthesis, where performance issues are crucial.

Keywords

Edge theorem; Kharitonov theorem; Linear
systems; Matrix; Parametric uncertainty and
robustness; Quadratic stability; Randomized
methods; Robust and optimal design; Robust
stability; Tsypkin–Polyak plot

Introduction

Mathematical models for systems and control are
often unsatisfactory due to the incompleteness
of the parameter data. For instance, the ideas
of off-line optimal control can only be applied
to real systems if all the parameters, exogenous
perturbations, state equations, etc. are known pre-
cisely. Moreover, feedback control also requires
a detailed information which is not available in
most cases. For example, to drive a car with four-
wheel control, the controller should be aware of
the total weight, location of the center of gravity,
weather conditions, and highway properties as
well as many other data which may not be known.
In that respect, even such a relatively simple real-
life system can be considered a complex one; in
such circumstances, control under uncertainty is
a highly important issue.

The focus in this article is on the parametric
uncertainty; other types of uncertainty can be
treated in more general models of robustness.
This topic became particularly popular in the
control community in the mid- to late 1980s
of the previous century; at large, the results of
this activity have been summarized in the mono-
graphs (Ackermann 1993; Barmish 1994; Bhat-
tacharyya et al. 1995).
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We start with problems of stability of polyno-
mials with uncertain parameters and present the
simplest robust stability results for this case to-
gether with the most important machinery. Next,
we consider stability analysis for the matrix un-
certainty; most of the results are just sufficient
conditions. We present some useful tools for the
analysis, such as the LMI technique and random-
ized methods. Robust control under parametric
uncertainty is the next step; we briefly discuss
several problem formulations for this case.

Stability of Linear Systems Subject to
Parametric Uncertainty

Consider the closed-loop linear, time invariant
continuous time state space system

Px D Ax; x.0/ D x0; (1)

where x.t/ 2 R
n is the state vector, x0 is an

arbitrary finite initial condition, and A 2 R
n�n

is the state matrix. The system is stable (i.e., no
matter what x0 is, the solutions tend to zero as
t ! 1) if and only if all eigenvalues �i of the
matrix A have negative real parts:

Re�i < 0; i D 1; : : : ; n; (2)

in which case, A is said to be a Hurwitz matrix.
If it is known precisely, checking condition (2) is
immediate. For instance, one might compute the
characteristic polynomial

p.s/ D det.sI �A/ D a0 C a1s C � � � C
an�1sn�1 C sn (3)

of A (here, I is the identity matrix) and use any
of the stability tests (e.g., the Routh algorithm,
Routh–Hurwitz test, and graphical tests such as
the Mikhailov plot or Hermite–Biehler theorem),
see Gantmacher (2000). Alternatively, the eigen-
values can be directly computed using the cur-
rently available software, such as MATLAB.

However, things get complicated if the knowl-
edge of the matrix A is incomplete; for instance,

it can depend on the (real) parameters q D
.q1; : : : ; qm/ which take arbitrary values within
the given intervals:

A D A.q/; q
i

� qi � qi ; i D 1; : : : ; m:

(4)

In that case, we arrive at the robust stability
problem; i.e., the goal is to check if condition (2)
holds for all matrices in the family (4).

The two main components of any robust sta-
bility setup are the feasible set Q � R

`, in which
the uncertain parameters are allowed to take their
values (usually a ball in some norm; e.g., the
box as in (4)), and the uncertainty structure,
which defines the functional dependence of the
coefficients on the uncertain parameters. Of the
most interest are the affine and multiaffine depen-
dence; typically, more general situations are hard
to handle.

Simple Solutions
In some cases, the robust stability problem ad-
mits a simple solution. Perhaps the most strik-
ing example is the so-called Kharitonov theo-
rem (Kharitonov 1978); also see Barmish (1994),
where this seminal result is referred to as a spark
because of its transparency and elegance.

Namely, consider the interval polynomial
family

P D fp.s/ D q0 C q1s C � � � C qns
n;

q
i

� qi � qi ; i D 0; : : : ; ng; (5)

where the coefficients qi are allowed to take
values in the respective intervals independently
of each other and distinguish the following four
elements in this family:

p1.s/ D a0 C q
1
s C q2s

2 C q3s
3 C : : :

p2.s/ D q
0

C q1s C q2s
2 C q

3
s3 C : : :

p3.s/ D q0 C q1s C q
2
s2 C q

3
s3 C : : :

p4.s/ D q0 C q
1
s C q

2
s2 C q3s

3 C : : :

By the Kharitonov theorem, the interval fam-
ily (5) is robustly stable (i.e., all polynomials
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in (5) are Hurwitz having all roots with negative
real parts) if and only if the four Kharitonov
polynomials, p1; p2; p3; and p4, are Hurwitz.

A simple and transparent proof of this
result can be obtained using the value set
concept (Zadeh and Desoer 1963) and the zero
exclusion principle (Frazer and Duncan 1929),
the two general tools which are in the basis of
many results in the area of robust stability. We
illustrate these concepts via robust stability of
polynomials.

Given the uncertain polynomial family

P.s;Q/ D fp.s; q/; q 2 Qg;

the set

V.!/ D fp.j!; q/W ! � 0; q 2 Qg

is referred to as the value set, which is, by
definition, the set on the complex plane obtained
by fixing the argument s to be j! for a certain
value of ! and letting the uncertain parameter
vector q sweep the feasible domain.

The zero exclusion principle states that, un-
der certain regularity requirements, the uncertain
polynomial family is robustly stable if and only
if it contains a stable element and the following
condition holds:

0 … V.!/ 8 ! � 0: (6)

To use this machinery, one has to be able
to compute efficiently the value set and check
condition (6). For the interval family (5), the
value set can be shown to be the rectangle with
coaxial edges and the vertices being the values of
the four Kharitonov polynomials; see Fig. 1.

Being an extremely propelling result, the
Kharitonov theorem is not free of drawbacks.
First of all, it is not capable of determining
the maximal lengths of the uncertainty intervals
that retain the robust stability. This relates to an
important notion of robust stability margin; for
simplicity, we define this quantity for the case
of the interval family (5). Namely, introduce the
nominal polynomial p0.s/ with coefficients

q0i D .qi C q
i
/=2;

Stability and Performance of Complex Systems
Affected by Parametric Uncertainty, Fig. 1 The
Kharitonov rectangular value set

and the scaling factors

˛i D .qi � q
i
/=2

for the deviations of the coefficients. Then the
robust stability margin rmax is defined as follows:

rmax D supfr W p.s; q/ (5) is stable 8 qi W
jqi � q0i j � r˛i ; i D 1; : : : ; ng: (7)

Anther drawback of the Kharitonov result is
its inapplicability to the discrete-time case (Schur
stability of polynomials).

A more flexible graphical test for robust stabil-
ity uses the so-called Tsypkin–Polyak plot (Tsyp-
kin and Polyak 1991), which is defined as the
parametric curve on the complex plane:

z.!/ D x.!/Cjy.!/; j D p�1I 0 � ! < 1;

where

x.!/ D q00 � q02!
2 C : : :

˛0 C ˛2!2 C : : :
;

y.!/ D q01 � q03!2 C : : :

˛1 C ˛3!2 C : : :
: (8)

Then, by the Tsypkin–Polyak criterion, the poly-
nomial family (5) is robustly stable if and only
if the following conditions hold: (i) q00 > ˛0,
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Stability and Performance of Complex Systems
Affected by Parametric Uncertainty, Fig. 2 The
Tsypkin–Polyak plot

q0n > ˛n, and (ii) as ! changes zero to infinity,
the curve z.!/ goes consecutively through n

quadrants in the counterclockwise direction and
does not intersect the unit square with the vertices
.˙1;˙j /.

Unlike the Kharitonov theorem, with this test,
the robust stability margin of family (5) can be
determined as the size of the maximal square
inscribed in the curve z.!/; see Fig. 2. More-
over, with minor modifications, this test applies
to dependent uncertainty structures where the
coefficient vector q D .q0; : : : ; qn/

> is confined
to a ball in `p-norm, not to a box as in (5).

On top of that, the Tsypkin–Polyak plot can be
built for discrete-time systems which do not ad-
mit any counterparts of the Kharitonov theorem.

It is fair to say that interval polynomial fami-
lies is an idealization, since the coefficients of the
characteristic polynomial can hardly be thought
of as the physical parameters of the real-world
system. As a step towards more realistic formu-
lations, consider the affine polynomial family of
the form

p.s/ D p0.s/C
m
X

iD1
qipi .s/; jqi j � 1;

i D 1; : : : ; m; (9)

where pi are the given polynomials and the qi s
are the uncertain parameters (clearly, they can

be scaled to take values in the segment Œ�1; 1�).
The famous edge theorem (Bartlett et al. 1988)
claims that checking the robust stability of such a
family is equivalent to checking the edges of the
uncertainty box, i.e., the points q 2 R

m with all
but one components being fixed to ˙1, while the
“free” coordinate varies in Œ�1; 1�.

Complex Solutions
Obviously, the affine model (9) covers just a
small part of problems with parametric uncer-
tainty. Closed-form solutions cannot be obtained
in the general case; however, many important
classes of systems can be analyzed efficiently.

Thus, in the engineering practice, block dia-
gram description of systems is often more conve-
nient than differential equations of the form (1).
The blocks are associated with typical elements
such as amplifiers, integrators, lag elements, and
oscillators, which are connected in a certain cir-
cuit. In this case, transfer functions are the most
adequate tool for dealing with such systems. For
instance, the transfer function of the lag element
is given by

W.s/ D 1=.T s C 1/;

where the scalar T is the time constant of the
element. In terms of differential equations, this
means that the input u.t/ of a block and its
output x.t/ satisfy the equation T Px C x D u.

Assume now we have a set of m cascade
connected elements with uncertain time constants

T i � Ti � T i ; i D 1; : : : ; m; (10)

with known lower and upper bounds. The char-
acteristic polynomial of such a connection em-
braced by the feedback with gain k is known to
have the form

p.s/ D k C .1C T1s/ � � � .1C Tms/: (11)

Hence, the robust stability problem reduces
to checking if all polynomials (11) with
constraints (10) are Hurwitz. Note that the
coefficients of such a polynomial depend
multilinearly on the uncertain parameters Ti
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(cf. linear dependence in (9)), making the
problem much more complicated.

The solution of the problem above was ob-
tained in Kiselev et al. (1997) for many impor-
tant special cases; the closely related problem of
finding the “critical gain” (the maximal value of k
retaining the robust stability) was also addressed.

Using the similar technique, closed-form
solutions can be obtained for a number of
similar problems such as robust sector stability,
robust stability of distributed systems, robust
D-decomposition, to name just a few.

Difficult Problems: Possible Approaches
In spite of the apparent progress obtained in the
area of parametric robustness, the list of unsolved
problems is still quite large. Moreover, some of
the formulations were shown to be NP-hard, mak-
ing it hard to believe that any efficient solution
methods will ever be found.

One of such fundamental problems is robust
stability of the interval matrix. Specifically, as-
sume that the entries aij of the matrix A in (1)
are interval numbers

aij � aij � aij ; i; j D 1; : : : ; nI

the problem is to check if the interval matrix
is robustly stable, i.e., if the eigenvalues of all
matrices in this family have negative real parts.
Numerous attempts to prove a Kharitonov-like
theorem for matrices have failed, and the results
by Nemirovskii (1994) on NP-hardness showed
that these generalizations are not possible. It was
also shown that the edge theorem for matrix
families is not valid. The other NP-hard problems
in robustness include the analysis of systems with
interval delays, parallel connection of uncertain
blocks, problem (11)–(10) with nested segments
ŒT i ; T i �, and others.

However, a change in the statement of the
problem often allows for simple and elegant so-
lutions. We mention three fruitful reformulations.

In the first approach, the uncertain parameters
are assumed to have random rather than determin-
istic nature; for instance, they are assumed to be
uniformly distributed over the respective intervals
of uncertainty. We next specify an acceptable

tolerance ", say " D 0:01, and check if the
resulting random family of polynomials is stable
with probability no less than .1 � "/; see Tempo
et al. (2013) for a comprehensive exposition of
such a randomized approach to robustness.

In many of the NP-hard robustness problems,
such a reformulation often leads to exact or ap-
proximate solutions. Moreover, the randomized
approach has several attractive properties even
in the situations where the deterministic solution
is available. Indeed, the deterministic statements
of robustness problems are minimax; hence, the
answer is dictated by the “worst” element in
the family, whereas these critical values of the
uncertain parameters are rather unlikely to occur.
Therefore, by neglecting a small risk of viola-
tion of the stability, the admissible domains of
variation of the parameters may be considerably
extended. This effect is known as the proba-
bilistic enhancement of robustness margins; it
is particularly tangible for the large number of
the parameters. Another attractive property of the
randomized approach is its low computational
complexity which only slowly grows with in-
crease of the number of uncertain parameters.

To illustrate, let us turn back to problem (11)–
(10) and use the value set approach. In the con-
sidered problem, this set can be efficiently built.

Assume now that the parameters Ti are inde-
pendent random variables uniformly distributed
over the respective segments (10) and consider
the random variable

� D �.!/ D log.p.j!/�k/ D
m
X

iD1
log.1Cj!Ti /:

(12)
The right-hand side of the last relation is the
sum of independent complex-valued random
variables; for m large, its behavior obeys the
central limit theorem, so that the probability
that � belongs to the respective confident
ellipse E D E.!/ is close to unity. In other
words, we have

p.j!/ � k C eE :D G.!/;

and the set G.!/ is referred to as a probabilistic
predictor of the value set V.!/; it is the shifted
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set of points of the form ez; z 2 E � C. The
predictor G.!/ constitutes a small portion of the
deterministic value set V.!/, yielding the proba-
bilistic enhancement of the robustness margin.

Note also that the computation of E and eE is
nearly trivial and, in contrast to the construction
of the true value set V , the complexity does not
grow with increase of m.

The second approach to solving “hard” prob-
lems in robust stability relates to the notion of su-
perstability (Polyak and Shcherbakov 2002). The
matrix A of system (1) (and the system itself) is
said to be superstable, if its entries aij ; i; j D
1; : : : ; n, satisfy the relations

aii < 0; min
i
.�aii �

X

j¤i
jaij j/ D � > 0:

The following estimate holds for the solutions
of the superstable system (1):

kx.t/k1 � kx.0/k1e��t ;

i.e., it is stable, and the (nonsmooth) function
kxk1 is a Lyapunov function for the system.
Since the condition of superstability is formu-
lated in terms of linear inequalities on the entries
ofA, checking robust superstability of affine (and
in particular, interval) matrix families is immedi-
ate. Similar situation holds for so-called positive
systems.

The third approach to robustness analysis re-
lates to quadratic stability (Leitmann 1979; Boyd
et al. 1994). Namely, a family of systems is said
to be robustly quadratically stable if it possesses
a common quadratic Lyapunov function V.x/ D
x>Px with positive definite matrix P . In other
words, an uncertain family of matrices A.q/, q 2
Q has to satisfy the following set of the matrix
Lyapunov-type inequalities:

A.q/P C PA.q/>  0; q 2 Q; P � 0;

(13)

where the symbols ;� stand for the sign-
definiteness of a matrix.

The inequality above is referred to as a linear
matrix inequality (LMI), (Boyd et al. 1994); there
exist both efficient numerical methods for solving

such inequalities (interior point methods) and
various software, e.g., MATLAB. This approach
can be directly applied at least in the following
two cases: (i) the set Q contains a finite number
of points and (ii) Q is a polyhedron and the
dependence A.q/ is affine. In the general setup
or in the high-dimensional problems, randomized
methods can be employed.

Finding the quadratic robust stability margin
(by analogy with the stability margin, this is the
maximum span of the feasible set Q that allows
for the existence of the common Lyapunov func-
tion) in this problem is also possible; it reduces
to the minimization of a linear function over the
solutions of a similar LMI.

Note that the approaches based on superstabil-
ity and quadratic stability provide only sufficient
conditions for robustness.

Robust Control

So far, of our primary interest was in assessing
the robust stability of a closed-loop system with
synthesized linear feedback. A more important
problem is to design a controller that makes the
closed-loop system robustly stable and guaran-
tees certain robust performance of the system.

Robust Stabilization
Let the linear system

Px D A.q/x C Bu

depend on the vector q 2 Q of uncertain param-
eters. In the simplest form, the problem of robust
stabilization consists in finding the linear static
state feedback

u D Kx

that guarantees the robust stability of the closed-
loop system. Alternatively, static or dynamic
output robustly stabilizing controllers can be
considered in the situations where only the linear
output y D Cx of the system is available, but not
the complete state vector x.

If the number of controller parameters to be
tuned is small (which is the case for PI or PID
controllers), then the design can be accomplished
using the D-decomposition technique.
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In the general formulation, the problem of
robust design is complicated; it can, however,
be addressed with the use of randomized
methods (Tempo et al. 2013). Other plausible
approaches include superstability and quadratic
stability; respectively, the problem reduces
to solving linear programs or linear matrix
inequalities in the coefficients of the controller.

Robust Performance
Needless to say, the robust stabilization problem
is not the only one in the area of optimal con-
trol. As a rule, a certain cost function is always
involved (say, integral quadratic), and its desired
value should be guaranteed for all admissible
values of the uncertain parameters. Moreover,
robust stability is a necessary condition for such
a guaranteed estimate to exist. This sort of prob-
lems can often be cast in the form of LMIs which
must be satisfied for all admissible values of
the parameters. Such robust LMIs can be solved
either directly or using various randomized tech-
niques presented in Tempo et al. (2013).

Conclusions

In spite of the considerable progress attained in
the parametric robustness of complex systems,
this topic is still a vivid and active research
area. To date, randomization, superstability, and
quadratic stability present the most efficient and
diverse tools for the analysis and design of sys-
tems affected by parametric uncertainty.
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definitions of asymptotic stability, basin of at-
traction, and uniform asymptotic stability for a
compact set. It points out mild assumptions un-
der which different characterizations of asymp-
totic stability are equivalent, as well as when an
asymptotically stable compact set exists. It also
summarizes necessary and sufficient conditions
for asymptotic stability in terms of Lyapunov
functions.

Keywords

Asymptotic stability; Basin of attraction; Hybrid
system; Lyapunov function

Introduction

A hybrid dynamical system combines continuous
change and instantaneous change. Instantaneous
change is the only type of change available for
variables like counters, switches, and logic vari-
ables. Instantaneous change may also be a good
approximation of what occurs to velocities in
mechanical systems at the time of an impact with
a wall, floor, or some other rigid body. At other
times, velocities evolve continuously. Continu-
ous change is also natural for position variables,
continuous timers, and voltages and currents. For
mathematical convenience, it is typical in the
analysis of hybrid dynamical systems to embed
all of these variables into a Euclidean space,
with the understanding that many points in the
state space will never be reached. For example, a
logic variable that naturally takes values in the set
foff; ong is typically embedded in the real number
line where its two distinct values are associated
with two distinct numbers, the only numbers that
this variable will visit during its evolution.

A finite-dimensional dynamical system that
exhibits continuous change exclusively is typi-
cally modeled by an ordinary differential equa-
tion, or sometimes a more flexible differential
inclusion. A system that exhibits purely instan-
taneous change is typically modeled by a dif-
ference equation or inclusion. Consequently, a
hybrid dynamical system combines a differential
equation or inclusion with a difference equation

or inclusion. A big part of the modeling effort for
hybrid systems is directed at determining which
type of evolution should be allowed at each point
in the state space. To this end, subsets of the state
space are specified where each type of behavior
is allowed, like in the description of the heating
system given above.

Though the behavior of a hybrid dynamical
system can be quite complex and nonconven-
tional, it is still reasonable to ask the same sta-
bility questions for them that might be asked
about classical differential or difference equa-
tions. Moreover, the same stability analysis tools
that are used for classical systems are also quite
useful for hybrid dynamical systems. The empha-
sis of this entry is on basic stability theory for hy-
brid dynamical systems, focusing on definitions
and tools that also apply to classical systems.

Mathematical Modeling

SystemData
A hybrid dynamical system with state x belong-
ing to a Euclidean space R

n combines a differ-
ential equation or inclusion, written formally as
Px D f .x/ or Px 2 F.x/, with a difference
equation or inclusion xC D g.x/ or xC 2 G.x/,
where Px indicates the time derivative and xC
indicates the value after an instantaneous change.
The mapping f or F is called the flow map, while
the mapping g or G is called the jump map. A
complete model also specifies where in the state
space continuous evolution is allowed and where
instantaneous change is allowed. The set where
continuous evolution is allowed is called the flow
set and is denoted C , whereas the set where in-
stantaneous change is allowed is called the jump
set and is denoted D. The overall model, using
inclusions for generality, is written formally as

x 2 C Px 2 F.x/ (1a)

x 2 D xC 2 G.x/: (1b)

Solutions
It is natural for solutions of (1) to be functions of
two different types of time: a variable t that keeps
track of the amount of ordinary time that has
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elapsed and a variable j that counts the number
of jumps. There is a special structure to the types
of domains that are allowed. A compact hybrid
time domain is a set E � R�0 � Z�0, that
is, a subset of the product of the nonnegative
real numbers and the nonnegative integers, of the
form

E D
J
[

iD0
.Œti ; tiC1� � fig/

for some J 2 Z�0 and some sequence of non-
decreasing times 0 D t0 � t1 � � � � � tJC1.
It is possible for several of these times to be the
same, which would correspond to more than one
jump at the given time. A hybrid time domain
is a set E � R�0 � Z�0 such that for each
.T; J / 2 E , the set E \ .Œ0; T � � f0; : : : ; J g/
is a compact hybrid time domain. In contrast to
a compact hybrid time domain, a hybrid time
domain may have an infinite number of intervals,
or it may have a finite number of intervals with
the last one being unbounded or of the form
ŒtJ ; tJC1/; that is, it may be open on the right. A
hybrid arc is a function x, defined on a hybrid
time domain, such that t 7! x.t; j / is locally
absolutely continuous for each j ; in particular,
t 7! x.t; j / is differentiable for almost every
t where it is defined, and this mapping is the
integral of its derivative. The notation “dom x”
denotes the domain of x. Finally, a hybrid arc is a
solution of (1) if the following two properties are
satisfied:
1. For " > 0, .s; j /; .s C "; j / 2 dom x implies

that x.t; j / 2 C and Px.t; j / 2 F.x.t; j // for
almost all t 2 Œs; s C "�.

2. .t; j /; .t; j C 1/ 2 dom x implies that
x.t; j / 2 D and x.t; j C 1/ 2 G.x.t; j //.

For a hybrid system with no flow dynamics, each
solution has a time domain of the form f0g �
f0; : : : ; J g for some J 2 Z�0 or f0g � Z�0.
For a hybrid system with no jump dynamics,
each solution has a time domain of the form
Œ0;1/�f0g, Œ0; T ��f0g, or Œ0; T /�f0g for some
T � 0. No assumptions are made in this entry to
guarantee existence of nontrivial solutions since
stability theory does not hinge on existence of so-
lutions; rather, it simply makes statements about
the behavior of solutions when they exist. To

ensure robustness of various stability properties,
the following basic regularity assumptions are
usually imposed.

Assumption 1 The data .C; F;D;G/ satisfy the
following conditions:
1. The sets C and D are closed.
2. The set-valued mapping F is outer semi-

continuous, locally bounded, and F.x/ is
nonempty and convex for each x 2 C .

3. The set-valued mapping G is outer semi-
continuous, locally bounded, and G.x/ is
nonempty for each x 2 D.

To elaborate further, a set-valued mapping, like
F , is said to be outer semicontinuous if for each
convergent sequence f.xi ; yi /g1

iD0 that satisfies
yi 2 F.xi / for all i 2 Z�0, its limit, denoted
.x; y/, satisfies y 2 F.x/. It is said to be locally
bounded if for each bounded set K1 � R

n

there exists a bounded set K2 � R
n such that,

for every x 2 K1, every y 2 F.x/ belongs
to K2; the latter condition is sometimes written
F.K1/ � K2. If C is closed, f is a function
f W C ! R

n that is continuous, and F is a set-
valued mapping that has the single value f .x/ for
each x 2 C and is empty for x … C , then F is
outer semicontinuous, locally bounded, and F.x/
is nonempty and convex for each x 2 C .

Stability Theory

Definitions and Relationships
Given a dynamical system, predicting or control-
ling the system’s long-term behavior is of pri-
mary importance. A system’s long-term behavior
may be more complicated than just converging to
an equilibrium point. This fact motivates studying
stability of and convergence to a set of points.
For simplicity, this entry focuses on stability of
sets that are compact, that is, they are closed
and bounded. A variety of stability concepts are
defined below. Each of these concepts applies
to continuous-time or discrete-time systems as
readily as to hybrid systems.

A compact set A � R
n is said to be Lyapunov

stable for (1) if for each " > 0 there exists ı > 0

such that for every solution of (1), x.0; 0/ 2
AC ıB implies x.t; j / 2 AC "B for all .t; j / 2
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dom x, where A C ıB indicates the set of points
whose distance to the set A is less than or equal
to ı. In order for a compact set to be Lyapunov
stable for (1), it must be forward invariant for
(1), that is, each solution of (1) with x.0; 0/ 2 A
satisfies x.t; j / 2 A for all .t; j / 2 dom x.
However, forward invariance does not necessarily
imply Lyapunov stability.

For a compact set A � R
n, its basin of

attraction for (1), denoted BA, is the set of points
from which each solution to (1) is bounded and
each solution to (1) having an unbounded time
domain converges to A, the latter being written
mathematically as limtCj!1 jx.t; j /jA D 0

where jx.t; j /jA denotes the distance of x.t; j /
to the set A. Each point that does not belong to
C [D belongs to BA since there are no solutions
from such points. A compact set A is said to be
attractive for (1) if its basin of attraction contains
a neighborhood of itself, that is, there exists " > 0
such that AC "B � BA. A compact set A is said
to be globally attractive if BA D R

n.
A compact set is said to be asymptotically

stable for (1) if it is Lyapunov stable and attrac-
tive for (1). A compact set is said to be globally
asymptotically stable for (1) if it asymptotically
stable for (1) and BA D R

n. It is useful to know
that the basin of attraction for an asymptotically
stable set is always open.

Theorem 1 Under Assumption 1, if a compact
set is asymptotically stable for (1), then its basin
of attraction is an open set.

A compact set A � R
n is said to be uniformly

attractive for (1) if it is attractive for (1) and for
each compact set K � BA and each ı > 0

there exists T > 0 such that for every solution
x of (1), x.0; 0/ 2 K and t C j � T imply
x.t; j / 2 A C ıB. A compact set is said to
be uniformly globally attractive for (1) if it is
globally attractive and uniformly attractive for
(1). Uniform attractivity goes beyond attractivity
by asking that the amount of time it takes each
solution to get close to A is uniformly bounded
over initial conditions in compact subsets of the
basin of attraction.

A compact set A � R
n is said to be Lagrange

stable relative to an open set O � A for (1) if for
each compact set K1 � O there exists a compact

set K2 � O such that for every solution of (1),
x.0; 0/ 2 K1 implies x.t; j / 2 K2 for all .t; j / 2
dom x. In Lagrange stability for the case O D
R
n, a bound on the initial conditions is given and

a bound on the ensuing solutions must be found;
this is in contrast to Lyapunov stability where a
bound on the solutions is given and a bound on
the initial conditions must be found.

A compact set is said to be uniformly asymp-
totically stable for (1) if it is Lyapunov stable,
attractive, Lagrange stable relative to its basin
of attraction, and uniformly attractive for (1).
A compact set is said to be uniformly glob-
ally asymptotically stable for (1) if it is uni-
formly asymptotically stable for (1) and BA D
R
n. There is no difference between asymptotic

stability and uniform asymptotic stability under
Assumption 1.

Theorem 2 Under Assumption 1, a compact set
is uniformly asymptotically stable for (1) if and
only if it is locally asymptotically stable for (1).

As noted earlier, forward invariance does not
imply Lyapunov stability. However, when cou-
pled with uniform attractivity, Lyapunov stability
ensues.

Theorem 3 Under Assumption 1, a compact set
is uniformly asymptotically stable for (1) if and
only if it is forward invariant and uniformly
attractive for (1).

Asymptotic stability can be converted to
global asymptotic stability by shrinking the
flow and jump sets to be compact subsets of the
basin of attraction. However, global asymptotic
stability of a compact set A for x 2 C; Px D f .x/

for each compact set C does not necessarily
imply global asymptotic stability of A for
Px D f .x/.

In some situations it is easier to assert the
existence of a compact asymptotically stable set
than it is to find one explicitly. In this direction,
given a set X � R

n, consider the set of points
z with the property that there exist a sequence
of solutions fxi g1

iD0 to (1) with initial conditions
in X and a sequence of times f.ti ; ji /g1

iD0 with
.ti ; ji / 2 dom xi for each i 2 Z�0 such that
z D limi!1 xi .ti ; ji /. This set of points is called
the !-limit set of X for (1) and is denoted	.X/.
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Theorem 4 Let Assumption 1 hold. For the sys-
tem (1), if X is compact and 	.X/ is nonempty
and contained in the interior of X (i.e., there
exists " > 0 such that 	.X/ C "B � X ),
then the set 	.X/ is compact and uniformly
asymptotically stable with basin of attraction
containingX and equal to the basin of attraction
for X .

Robustness
A given model .C; F;D;G/ may have some
mismatch with a physical process that it aims
to describe. One way to capture some of this
mismatch is to consider the behavior of solutions
to a system with inflated data .Cı; Fı;Dı;Gı/,
ı � 0, defined as follows:

Cı WD fx 2 R
n W .x C ıB/\ C ¤ ¿g (2a)

Fı.x/ WD coF..x C ıB/ \ C/C ıB (2b)

Dı WD fx 2 R
n W .x C ıB/\D ¤ ¿g (2c)

Gı WD G..x C ıB/ \D/C ıB: (2d)

The notation x C ıB indicates a closed ball
of radius ı centered at the point x. Evaluating
a set-valued mapping at a set of points means
to collect all vectors that belong to the set-
valued mapping at any point in the set that
serves as the argument of the set-valued
mapping. The notation “coF..x C ıB/ \ C/”
indicates the closed, convex hull of the set
ff 2 R

n W f 2 F.z/; z 2 .x C ıB/\ C g. Note
that .C0; F0;D0;G0/ D .C; F;D;G/. More
generally, the components of .C; F;D;G/ are
contained in .Cı; Fı;Dı;Gı/. The inflation
data in (2) satisfy the regularity properties of
Assumption 1 when .C; F;D;G/ do.

Proposition 1 If the data .C; F;D;G/ satisfy
Assumption 1 then, for each ı > 0, the inflated
data .Cı; Fı;Dı;Gı/ satisfy Assumption 1.

From the point of view of asymptotic stability,
the behavior of solutions to .Cı; Fı;Dı;Gı/ for
ı > 0 small is not too different from those of
.C; F;D;G/.

Theorem 1 Under Assumption 1, if A is asymp-
totically stable with basin of attractionBA for the
hybrid system with data .C; F;D;G/, then for

each " > 0 and each compact set K satisfying
K � BA, there exist ı > 0 and a compact set
Aı � A C "B that is asymptotically stable with
K � BAı

for .Cı; Fı;Dı;Gı/.

The robustness result of Theorem 1 has sev-
eral consequences beyond the observations in the
preceding examples. One of the consequences is
the following reduction principle.

Theorem 2 Under Assumption 1, if A1 is
asymptotically stable with basin of attraction
BA1 for the hybrid system with data .C; F;D;G/
and the compact set A2 � A1 is globally
asymptotically stable for the hybrid system with
data .C \ A1; F; C \ A2; G/, then the compact
set A2 is asymptotically stable with basin of
attraction BA1 for the hybrid system with data
.C; F;D;G/.

Lyapunov Functions
Arguably the most common method for establish-
ing asymptotic stability is known as Lyapunov’s
method and uses a Lyapunov function. A function
V W Rn ! R�0 is a Lyapunov function candidate
for (1) if it is continuously differentiable on an
open neighborhood of the flow set C , it is defined
for all x 2 C [D[G.D/ (dom V denotes the set
of points where it is defined), and it is continuous
on its domain. Some of these conditions can be
relaxed but are imposed in this entry to keep the
discussion simple. Given a compact set A and an
open set O satisfying A � O � R

n, a Lyapunov
function candidate for (1) is called a Lyapunov
function for .A; O/ if:
(L1) For x 2 .C [D [ G.D// \O , V.x/ D 0

if and only if x 2 A.
(L2) For each x 2 C \ O and f 2 F.x/,

hrV.x/; f i � 0.
(L3) For each x 2 D\O and g 2 G.x/, V.g/�

V.x/ � 0.
A Lyapunov function for .A; O/ is called a
proper Lyapunov function for .A; O/ if, in
addition,
(L4) limi!1 V.xi / D 1 when the sequence

fxi g1
iD0, satisfying xi 2 .C [D[G.D//\

O for all i 2 Z�0, is unbounded or ap-
proaches the boundary of O .

The next result does not use Assumption 1,
though the rest of the results in this entry do.
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Theorem 3 Let A � O � R
n with A compact

and O open. If there exists a Lyapunov function
for .A; O/, then A is Lyapunov stable for (1).
If there exists a proper Lyapunov function for
.A; O/ then A is also Lagrange stable with
respect to O for (1).

We can also conclude asymptotic stability
from a Lyapunov function when it is known
that there are no complete solutions along which
the Lyapunov function is equal to a positive
constant.

Theorem 4 Let A � O � R
n with A compact

and O open. Under Assumption 1, if there exists
a Lyapunov function for .A; O/ and there is no
solution x of (1) starting in OnA that has an un-
bounded time domain and satisfies V.x.t; j // D
V.x.0; 0// for all .t; j / 2 dom x, then A is
uniformly asymptotically stable for (1). If the
Lyapunov function is a proper Lyapunov function
for .A; O/, then the basin of attraction for A
containsO .

The simplest way to rule out solutions
that keep a Lyapunov function equal to a
positive constant is by finding a (proper) strict
Lyapunov function for .A; O/, which is a
(proper) Lyapunov function for .A; O/ that also
satisfies:
(L20) For each x 2 .C \O/nA and f 2 F.x/,

hrV.x/; f i < 0.
(L30) For each x 2 .D \ O/nA and g 2 G.x/,

V.g/ � V.x/ < 0.

Theorem 5 Let A � O � R
n with A compact

and O open. Under Assumption 1, if there ex-
ists a strict Lyapunov function for .A; O/, then
A is uniformly asymptotically stable for (1). If
there exists a proper strict Lyapunov function
for .A; O/, then A is uniformly asymptotically
stable for (1) with basin of attraction contain-
ing O .

While a strict Lyapunov function can be dif-
ficult to find, and this fact has motivated other
more sophisticated stability analysis tools that
have appeared in the literature, it is reassuring to
know that whenever A is compact and asymptot-
ically stable, there exists a proper strict Lyapunov
function for .A;BA/.

Theorem 6 Under Assumption 1, if the com-
pact set A is asymptotically stable for (1), then
there exists a proper strict Lyapunov function
for .A;BA/. More specifically, for each � > 0

there exists a smooth function V with dom V D
BA that V.x/ D 0 if and only if x 2 A,
limi!1 V.xi / D 1 when the sequence fxi g1

iD0,
satisfying xi 2 BA for all i 2 Z�0, is un-
bounded or tends to the boundary of BA, and
such that:
1. For all x 2 C \ BA and f 2 F.x/ ,

hrV.x/; f i � ��V.x/.
2. For all x 2 D \ BA and g 2 G.x/,
V.g/ � exp.��/V.x/.

Summary and Future Directions

Under Assumption 1, stability theory for hybrid
dynamical systems is very similar to stability
theory for differential equations or difference
equations with continuous right-hand sides. In
particular, Lyapunov functions are a very com-
mon analysis tool for hybrid dynamical systems,
though a Lyapunov function can be difficult to
find in the same way that they are challenging to
find for classical systems. With stability theory
for hybrid dynamical systems firmly in place,
future research is expected to exploit this theory
more fully for the development of control algo-
rithms with new capabilities.
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Abstract

The notion of stability allows to study the qualita-
tive behavior of dynamical systems. In particular
it allows to study the behavior of trajectories
close to an equilibrium point or to a motion.

The notion of stability that we discuss has been
introduced in 1882 by the Russian mathematician
A.M. Lyapunov, in his doctoral thesis; hence,
it is often referred to as Lyapunov stability. In
this entry we discuss and characterize Lyapunov
stability for linear systems.

Keywords

Eigenvalues; Equilibrium points; Linear systems;
Motions; Stability

Introduction

Consider a linear, time-invariant, finite-
dimensional system, i.e., a system described by
equations of the form

�x D Ax C Bu;

y D Cx CDu;
(1)

with x.t/ 2 IRn, u.t/ 2 IRm, y.t/ 2 IRp and
A 2 IRn�n, B 2 IRn�m, C 2 IRp�n, and D 2
IRp�m constant matrices. In Eq. (1) �x.t/ stands
for Px.t/ if the system is continuous-time and for
x.t C 1/ if the system is discrete-time. Since the
system is time-invariant, it is assumed, without
loss of generality, that all signals are defined for
t � 0, that is, if the system is continuous-time,
then t 2 IRC, i.e., the set of non-negative real
numbers, whereas if the system is discrete-time,
then t 2 ZC, i.e., the set of non-negative integers.
For ease of notation, the argument “t” is dropped
whenever this does not cause confusion, and we
use the notation t � 0 to denote either IRC or
ZC. Finally, we use either x.t; x.0/; u/ or x.t/
to denote the solution of the first of equations (1)
at a given time t � 0, with the initial condition
x.0/ and the input signal u. The former is used
when it is important to keep track of the initial
state and external input u, whereas the latter is
used whenever there is not such a need.

Definition 1 (Equilibrium) Consider the
system (1). Assume the input u is constant, i.e.,
u.t/ D u0 for all t � 0 and for some constant
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u0. A state xe is an equilibrium of the system
associated to the input u0 if xe D x.t; xe; u0/; for
all t � 0.

Proposition 1 (Equilibria of linear systems)
Consider the system (1) and assume u.t/ D u0,
for all t , where u0 is a constant vector. Then the
following hold.
• If u0 D 0 then the origin is an equilibrium.
• For continuous-time systems, if A is invertible,

for any u0 there is a unique equilibrium xe D
�A�1Bu0. If A is not invertible, the system
has either infinitely many equilibria or it has
no equilibria.

• For discrete-time systems, if I�A is invertible,
for any u0 there is a unique equilibrium xe D
.I � A/�1Bu0. If I � A is not invertible, the
system has either infinitely many equilibria or
it has no equilibria.

Proposition 2 Consider the continuous-time,
time-invariant, linear system

Px D Ax C Bu;

y D Cx CDu;

and the initial condition x.0/ D x0. Then, for all
t � 0,

x.t/ D eAtx0 C
Z t

0

eA.t��/Bu.�/d� (2)

and

y.t/ D CeAtx0C
Z t

0

CeA.t��/Bu.�/d�CDu.t/:

(3)

Proposition 3 Consider the discrete-time, time-
invariant, linear system (to simplify the notation
we use xC.t/ to denote x.t C 1/ and we drop the
argument t)

xC D Ax C Bu;

y D Cx CDu;

and the initial condition x.0/ D x0. Then, for all
t � 0,

x.t/ D Atx0 C
t�1
X

iD0
At�1�iBu.i/ (4)

and

y.t/ D CAtx0 C
t�1
X

iD0
CAt�1�iBu.i/CDu.t/:

(5)

Definitions

In this section we provide some notions and defi-
nitions which are applicable to general dynamical
systems.

Definition 2 (Lyapunov stability) Consider the
system (1) with u.t/ D u0, for all t � 0 and
for some constant u0. Let xe be an equilibrium
point. The equilibrium is stable (in the sense of
Lyapunov) if for every � > 0 there exists a
ı D ı.�/ > 0 such that kx.0/ � xek < ı implies
kx.t/�xek < �; for all t � 0, where the notation
k � k denotes the Euclidean norm in R

n:

In stability theory the quantity x.0/ � xe is
called initial perturbation, and x.t/ is called per-
turbed evolution. Therefore, the definition of sta-
bility can be interpreted as follows. An equi-
librium point xe is stable if however we select
a tolerable deviation �, there exists a (possibly
small) neighborhood of the equilibrium xe such
that all initial conditions in this neighborhood
yield trajectories which are within the tolerable
deviation.

The property of stability dictates a condition
on the evolution of the system for all t � 0. Note,
however, that in the definition of stability, we
have not requested that the perturbed evolution
converge asymptotically, that is, for t ! 1, to
xe . This convergence property is very important
in applications, as it allows to characterize the
situation in which not only the perturbed evolu-
tion remains close to the unperturbed evolution,
but it also converges to the initial (unperturbed)
evolution. To capture this property we introduce
a new definition.
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Definition 3 (Asymptotic stability) Consider
the system (1) with u.t/ D u0, for all t � 0 and
for some constant u0. Let xe be an equilibrium
point. The equilibrium is asymptotically stable
if it is stable and if there exists a constant
ıa > 0 such that kx.0/ � xek < ıa implies
lim
t!1 kx.t/ � xek D 0:

In summary, an equilibrium point is asymp-
totically stable if it is stable, and whenever the
initial perturbation is inside a certain neighbor-
hood of xe , the perturbed evolution converges,
asymptotically, to the equilibrium point, which is
thus said to be attractive. From a physical point
of view, this means that all sufficiently small
initial perturbations give rise to effects which can
be a priori bounded (stability) and which vanish
asymptotically (attractivity).

It is important to highlight that, in general,
attractivity does not imply stability: it is possible
to have an equilibrium of a system which is not
stable (i.e., it is unstable), yet for all initial per-
turbations, the perturbed evolution converges to
the equilibrium. This however is not the case for
linear systems, as discussed in section “Stability
of Linear Systems”. We conclude the section with
two simple examples illustrating the notions that
have been introduced.

Example 1 Consider the discrete-time system
xC D �x; with x.t/ 2 IR. This system has a
unique equilibrium at xe D 0. Note that for any
initial condition x0 2 IR, one has

x2t�1 D �x0; x2t D x0;

for all t � 1 and integer. This implies that the
equilibrium is stable, but not attractive.

Example 2 Consider the continuous-time system

Px1 D !x2; Px2 D �!x1;

with ! a positive constant. The system has a
unique equilibrium at xe D 0. This equilib-
rium is stable, but not attractive. To see this
note that, along the trajectories of the system,
x1 Px1 C x2 Px2 D 0; and this implies that, along
the trajectories of the system, x21.t/ C x22.t/ is

constant, i.e., x21.t/ C x22.t/ D x21.0/ C x22.0/:

Therefore, the state of the system remains on
the circle centered at the origin and with radius
q

x21.0/C x22.0/, for all t � 0: the condition for
stability holds with ı.�/ D �.

Definition 4 (Global asymptotic stability)
Consider the system (1) with u.t/ D u0, for
all t � 0 and for some constant u0. Let xe be
an equilibrium point. The equilibrium is globally
asymptotically stable if it is stable and if, for all
x.0/, lim

t!1 kx.t/ � xek D 0:

The property of (global) asymptotic stability
can be strengthened imposing conditions on the
convergence speed of kx.t/ � xek.

Definition 5 (Exponential stability) Consider
the system (1) with u.t/ D u0, for all t � 0 and
for some constant u0. Let xe be an equilibrium
point. The equilibrium is exponentially stable if
there exists � > 0, in the case of continuous-time
systems, and 0 < � < 1 in the case of discrete-
time systems, such that for all � > 0, there exists
a ı D ı.�/ > 0 such that kx.0/�xek < ı implies
kx.t/ � xek < �e��t ; in the case of continuous-
time systems, and kx.t/ � xek < ��t ; in the case
of discrete-time systems, for all t � 0.

Definition 6 (Stability of motion) Consider the
system (1). Let

M D f.t; x.t// 2 T � IRng;

with x.t/ D x.t; x0; u/, for given x0 and u,
and T D IRC, in the case of continuous-time
systems, and T D ZC, in the case of discrete-
time systems, be a motion. The motion is stable
if for every � > 0 there exists a ı D ı.�/ > 0

such that kx.0/� x0k < ı implies

kx.t; x.0/; u/ � x.t; x0; u/k < �; (6)

for all t � 0.

The notion of stability of a motion is sub-
stantially the same as the notion of stability of
an equilibrium. The important issue is that the
time-parametrization is important, i.e., a motion
is stable if, for small initial perturbations, the
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perturbed evolution is close, for any fixed t �
0, to the non-perturbed evolution. This does not
mean that if the perturbed and unperturbed trajec-
tories are close, then the motion is stable: in fact
the trajectories may be close but may be followed
with different timing, which means that for some
t � 0 condition (6) may be violated.

Stability of Linear Systems

The notion of stability relies on the knowledge
of the trajectories of the system. As a result,
even if this notion is very elegant and useful
in applications, it is in general hard to assess
stability of an equilibrium or of a motion. There
are, however, classes of systems for which it
is possible to give stability conditions without
relying upon the knowledge of the trajectories.
Linear systems belong to one such class. In this
section we study the stability properties of linear
systems, and we show that, because of the linear
structure, it is possible to assess the properties
of stability and attractivity in a simple way. To
begin with, we recall some properties of linear
systems.

Proposition 4 Consider a linear, time-invariant
system. (Asymptotic) stability of one motion im-
plies (asymptotic) stability of all motions. In
particular, (asymptotic) stability of any motion
implies and is implied by (asymptotic) stability of
the equilibrium xe D 0.

The above statement, together with the result
in Proposition 1, implies the following important
properties.

Proposition 5 If the origin of a linear system
is asymptotically stable, then, necessarily, the
origin is the only equilibrium of the system for
u D 0. Moreover, asymptotic stability of the zero
equilibrium is always global. Finally, asymptotic
stability implies exponential stability.

The above discussion shows that the stability
properties of a motion (e.g., an equilibrium) of a
linear system are inherited by all motions of the
system. Moreover, for linear systems, local prop-
erties are always global properties. This means

that, with some abuse of terminology, we can
refer the stability properties to the linear system,
for example, we say that a linear system is stable
to mean that all its motions are stable. Stability
properties of a linear, time-invariant system are
therefore properties of the free evolution of its
state: for this class of systems, it is possible to
obtain simple stability tests.

Proposition 6 A linear, time-invariant system is
stable if and only if keAtk � k, for continuous-
time systems, or kAtk � k, for discrete-time
systems, for all t � 0 and for some k > 0. It is
asymptotically stable if and only if lim

t!1 eAt D 0,

for continuous-time systems, or lim
t!1At D 0, for

discrete-time systems. To state the next result we
need to define the geometric multiplicity of an
eigenvalue. To this end we recall a few facts. Con-
sider a matrixA 2 IRn�n and a polynomialp.�/.
The polynomial p.�/ is a zeroing polynomial for
A if p.A/ D 0. Note that, by Cayley-Hamilton
Theorem, the characteristic polynomial of A is
a zeroing polynomial for A. Among all zeroing
polynomials there is a unique monic polynomial
pM.�/ with smallest degree. This polynomial is
called the minimal polynomial of A. Note that
the minimal polynomial of A is a divisor of the
characteristic polynomial of A. If A has r � n

distinct eigenvalues �1, . . . , �r , then

pM.�/ D .� � �1/m1.� � �2/m2 � � � .� � �r/
mr ;

where the number mi denotes, by definition, the
geometric multiplicity of �i , for i D 1; � � � ; r .
This means that the geometric multiplicity of �i
equals the multiplicity of �i as a root of pM.�/.
Recall, finally, that the multiplicity of �i as a
root of the characteristic polynomial is called
algebraic multiplicity.

Proposition 7 The equilibrium xe D 0 of a
linear, time-invariant system is stable if and only
if the following conditions hold.
• In the case of continuous-time systems, the

eigenvalues of A with geometric multiplicity
equal to one have non-positive real part, and
the eigenvalues of A with geometric multiplic-
ity larger than one have negative real part.
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• In the case of discrete-time systems, the eigen-
values of A with geometric multiplicity equal
to one have modulo not larger than one, and
the eigenvalues ofA with geometric multiplic-
ity larger than one have modulo smaller than
one.

Proof Let �1, �2, � � � , �r , with r � 1, be the
distinct eigenvalues of A, i.e., the distinct roots
of the characteristic polynomial of A. Then

eAt D
r
X

iD1

mi
X

kD1
Rik

tk�1

.k � 1/Še
�i t ;

for some matricesRik , wheremi is the geometric
multiplicity of the eigenvalue �i . This matrix
is bounded if and only if the conditions in the
statement hold. Similarly,

At D
r
X

iD1

mi
X

kD1
Rik

tk�1

.k � 1/Š�
t�kC1
i ;

for some matrices Rik, and this is bounded if and
only if the conditions in the statement hold. G

Proposition 8 The equilibrium xe D 0 of a
linear, time-invariant system is asymptotically
stable if and only if the following conditions
hold.
• In the case of continuous-time systems, the

eigenvalues of A have negative real part.
• In the case of discrete-time systems, the eigen-

values of A have modulo smaller than one.

Proof The proof is similar to the one of the
previous proposition, once it is noted that, for
the considered class of systems and as stated in
Proposition 6, asymptotic stability implies and is
implied by boundedness and convergence of eAt

or At . G

Remark 11.1 For linear, time-varying systems,
i.e., systems described by equations of the form

�x D A.t/x C B.t/u;

y D C.t/x CD.t/u;

it is possible to provide stability conditions in
the spirit of the boundedness and convergence
conditions in Proposition 6. These require the
definition of a matrix, the so-called monodromy
matrix, which describes the free evolution of the
state of the system. It is, however, not possible
to provide conditions in terms of eigenvalues
of the matrix A.t/ similar to the conditions in
Propositions 7 and 8.

We conclude this discussion with an alterna-
tive characterization of asymptotic stability in
terms of linear matrix inequalities.

Proposition 9 The equilibrium xe D 0 of a
linear, time-invariant system is asymptotically
stable if and only if the following conditions
hold.
• In the case of continuous-time systems, there

exists a symmetric positive definite matrix
P D P 0 such that A0P C PA < 0:

• In the case of discrete-time systems, there ex-
ists a symmetric positive definite matrix P D
P 0 such that A0PA � P < 0:

To complete our discussion we stress that
stability properties are invariant with respect to
changes in coordinates in the state space.

Corollary 1 Consider a linear, time-invariant
system and assume it is (asymptotically)
stable. Then any representation obtained by
means of a change of coordinates of the form
x.t/ D L Ox.t/, with L constant and invertible, is
(asymptotically) stable.

Proof The proof is based on the observation
that the change of coordinates transforms the
matrix A into QA D L�1AL and that the matrices
A and QA are similar, that is, they have the same
characteristic and minimal polynomials. G

Summary and Future Directions

The property of Lyapunov stability is instrumen-
tal to characterize the qualitative behavior of
dynamical systems. For linear, time-invariant sys-
tems, this property can be studied on the basis of
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the location, and multiplicity, of the eigenvalues
of the matrix A. The property of Lyapunov sta-
bility can be studied for more general classes of
systems, including nonlinear systems, distributed
parameter systems, and hybrid systems, to which
the basic definitions given in this article apply.
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State Estimation for Batch Processes

Wolfgang Mauntz
Fakultät Bio- und Chemieingenieurwesen,
Technische Universität Dortmund, Dortmund,
Germany

Abstract

The information about certain safety or quality
parameters during a batch process is valuable
for a variety of reasons. In case a direct mea-
surement is too expensive, too slow or nonex-
isting, a state estimator estimating the desired
quantities based on a model and various other
measurements may be a good alternative. The
most prominent method is calorimetry, where the
heat of reaction is measured. This entry gives an
overview of different alternatives that support a
safe and successful batch operation.

Keywords

Calorimetry; Observer; Soft sensor; State
estimator

Introduction

Continuous processes are used to produce a prod-
uct at a constant rate. They are designed to
operate at constant conditions, i.e., the state of
the process (conversion, temperatures, pressures,
concentrations, etc.) does not vary. In contrast,
(semi-)batch processes execute a recipe which
means that they are typically operated within a
wide range of states. The state of the (semi-
batch) process should constantly be monitored.
This information is useful for several purposes:
• Process safety: abnormal process states such

as the accumulation of hazardous substances
or reactive materials may lead to dangerous
situations such as runaway reactions. The ear-
lier an abnormal state is detected, the better
it can be corrected, and the higher is the
probability that loss can be avoided.

http://dx.doi.org/10.1007/978-1-4471-5058-9_85
http://dx.doi.org/10.1007/978-1-4471-5058-9_186
http://dx.doi.org/10.1007/978-1-4471-5058-9_190
http://dx.doi.org/10.1007/978-1-4471-5058-9_187
http://dx.doi.org/10.1007/978-1-4471-5058-9_191
http://dx.doi.org/10.1007/978-1-4471-5058-9_77
http://dx.doi.org/10.1007/978-1-4471-5058-9_266
http://dx.doi.org/10.1007/978-1-4471-5058-9_263
http://dx.doi.org/10.1007/978-1-4471-5058-9_260
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• Quality: if the batch is not operated along
the standard trajectory, off-spec product may
result which in turn results in extra effort
and/or second-grade product if this is discov-
ered in time and in a customer complaint if not
discovered before delivery.

• Profit: the better the state is known, the less
conservative the underlying control scheme
needs to be and the more the process can
be pushed to its limits. This may lead to
a higher throughput, less by-products, or
less energy consumption. Advanced control
schemes which are typically applied for this
purpose require knowledge of the state of the
process.
The literature offers a wide range of ways

to monitor a batch process. In some processes,
the observation of simple measurements like
temperatures, pressures, and the time that a
process step takes for execution is sufficient
to guarantee for safe standard product in
minimum time. Examples include some melt-
polymerizations.

However, as soon as the process is more com-
plex, more information than just temperatures
and pressures is required to monitor the process
to meet the goals mentioned above. It may be
sufficient to measure other easy to measure prop-
erties like conductivities, flow rates, pH values,
sound velocities, attenuations, etc. However, in
many cases these measurements do not give the
complete state of the system. Properties like com-
plex gas phase compositions cannot be measured
this way. This might require the installation of
more sophisticated measurements as, e.g., NIR
spectroscopy, online gas chromatography, Raman
spectroscopy, or ion mobility spectroscopy. These
measurements require significant effort in terms
of installation cost and maintenance. In other
situations, no online measurement may be avail-
able at all. These cases include the measurement
of the distribution of the molecular weight in a
polymer melt.

In these cases, where direct online measure-
ments are either too expensive or not available at
all, several methods are available to obtain infor-
mation on the status of the batch (�Estimation,
Survey on).

• Statistical Methods
Experiences from historical batches are used
in a statistical way to predict whether a batch
runs normally. This can, e.g., be accomplished
by defining a golden batch and a correspond-
ing corridor around these trajectories. More
sophisticated methods use principal compo-
nent analysis (PCA) or partial least squares
(PLS) to get a hint at abnormal situations.
These methods are even capable of pointing
at the origin of a possible problem. They are
restricted to problem detection and typically
cannot be used for control purposes.

• Model-Based State Estimation
The state of the system (temperatures,
pressures, concentrations, etc.) is estimated
online which allows for problem detection
as well as control applications. This method
will be described in more detail in the next
chapter.

General reviews of state estimation techniques
can be found in Besancon (2007), Schei (2008),
and a review of industrial applications is, e.g.,
given in Fortuna et al. (2007).

Model-Based State Estimation

The basic idea of a state estimator (which is
frequently also called observer or soft sensor) is
to run a mathematical model of the process in par-
allel to the process itself, to compare the available
measurements to the values which are predicted
by the model, and to correct the estimated state by
a suitable function of the observed error, usually
an additive correction term that depends on the
error. For a state estimator to converge to the
true state, the considered system needs to be
observable. For details, see �Controllability and
Observability. The scheme of a state estimator
is sketched in Fig. 1. The real system processes
the input u to give the system state x which
is affected by the system noise �. The mea-
surements y are perturbed by the measurement
noise '. The model predicts a system state Ox
and a measurement Oy. The difference between the
measured value y and predicted value Oy is then
fed back to correct the estimated state.

http://dx.doi.org/10.1007/978-1-4471-5058-9_60
http://dx.doi.org/10.1007/978-1-4471-5058-9_192
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State Estimation for
Batch Processes, Fig. 1
Principle of a state
estimator

For linear systems, the most commonly used
state estimators are the Luenberger observer and
the Kalman filter (�Kalman Filters). Both mul-
tiply the prediction error .y � Oy/ by a weighting
matrix K to update the estimated state Ox:

POx D AOx C Bu C K.y � Oy/

The two techniques use different approaches for
determining the matrix K:
Luenberger Observer The basic assumption is

that the deviation e.t/ between x and Ox is due
to wrong initial values Ox0. K is computed by
choosing the desired speed of convergence of
the error

Pe.t/ D Px.t/ � POx.t/
D .A � KC/ e.t/

to zero. This is done by placing the eigenval-
ues of the matrix .A � KC/ in the left half
plane.

Kalman Filter The basic assumption is that the
error e.t/ is caused by white noise in the
system � as well as in the measurement '.
The idea is to minimize the expectation of the
quadratic error

min
Ox

E
�

.Ox.t/ � x.t//T .Ox.t/ � x.t//
�

:

K is computed from the noise covariance ma-
trices and the system dynamics and varies with
time.

The tuning of the state estimators is not trivial.
The larger the absolute value of the eigenvalues
in the Luenberger approach, the faster the error
will converge to zero but the more prone the state
estimator will be to measurement noise. A similar
trade-off exists for the Kalman filter where the
covariance matrices of the noise terms � and '

and the covariance of the initial state �0 need to
be defined.

For nonlinear systems, a variety of
approaches is available. The most frequently used
estimators are based on using the nonlinear model
for the prediction of the state and linearizations
of the system dynamics are used to update the
matrix K. The extended Kalman filter (EKF)
(�Extended Kalman Filters) and the extended
Luenberger observer (ELO) are representatives
of this class of approaches. The EKF is most
widely used. Extensions are the constrained EKF
and the unscented EKF.

As examples are known where the EKF fails
due the nonlinearity of the system, methods based
on ideas other than the linearization of system
dynamics have been developed. These methods
include the moving horizon estimator (MHE)
(�Moving Horizon Estimation) and the parti-
cle filter. Because of the increasing capabilities
of modern computers and significant improve-
ments in dynamic optimization algorithms, the
MHE is a very promising alternative. The idea
of the method is to minimize the sum of the
squared errors of the system noise �l , the mea-
surement noise 'l , and the error of the initial state
�k�N which are weighted by weighing matrices
Pk;Q and R over a predefined horizon of past
sampling steps k �N; : : : ; k

http://dx.doi.org/10.1007/978-1-4471-5058-9_61
http://dx.doi.org/10.1007/978-1-4471-5058-9_62
http://dx.doi.org/10.1007/978-1-4471-5058-9_4
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min
�i ;'j

�Tk�NP�1
k �k�N C

k�1
X

lDk�NC1
�Tl Q�1�l

C
k
X

lDk�NC1
'Tl R�1'l

s:t: the system model and the measurement
equations are satisfied and further
inequality constraints
(e.g., physical limits of variables) hold.

The possibility to define constraints on the es-
timated states, e.g., that concentrations must be
nonnegative, is an important advantage of the
MHE approach. If the horizon is reduced to one
single measurement, the constrained extended
Kalman filter results which combines the sim-
plicity of the EKF with the possibility to include
constraints on the estimated states. Efficient im-
plementations of the MHE have led to the method
being capable of estimating the state of rather
large systems in real time (Diehl et al. 2006;
Küpper and Engell 2007).

Calorimetry

Temperature measurements are probably the
cheapest available measurements in chemical
processes, and most plants are typically
well equipped with temperature sensors. To
exploit temperature measurements, e.g., for
the observation of exothermic or endothermic
reactions, heat balances are set up and solved
for the heat of reaction which then enables
the computation of the reaction rate. This is
typically referred to as calorimetry. Reviews
are given, e.g., in Hergeth (2006), McKenna
et al. (2000), and Landau (1996). For ajacketed

reactor, the heat balance around a semi-batch
reactor typically reads (see also Fig. 2)

CP;R
dTR

dt
D PQR C kA.TJ � TR/

C
X

i

PmF;i cp;F i .TF;i � TR/; (1)

where PQR represents the heat of reaction, kA
the overall heat transfer coefficient between the
reactor content and the jacket, TR the reactor
temperature, TJ the jacket temperature, TF the
feed temperature, CP;R the overall heat capacity
of the reactor, and the last term on the right side
is the enthalpy added by the feed to the reactor. If
kA is known, PQR can directly be computed as all
other quantities in Eq. (1) are known or measured.
This is referred to as heat flow calorimetry.

In industrial practice, kA usually is not known
and varies over time due to changes of the filling
level, changes of the viscosity of the reaction
mixture, and fouling. Then other heat balances
and measurements can be added to enable a direct
computation or estimation of kA. Typically, the
jacket heat balance is chosen

CP;J
dTJ

dt
D kA.TR � TJ /C kAjack.Tenv � TJ /

C PmJ cp;J .TJ;in � TJ /: (2)

If necessary, also other phenomena like direct
heat losses from the reactor content to the envi-
ronment or the influence of the reactor lid can
be taken into account by adding additional terms
or additional heat balances. This method is called
heat balance calorimetry.

In order to compute PQR and kA from Eqs. (1)
and (2), two different approaches can be used:
1. Equations (1) and (2) are solved to give

(3a)

ckA D CP;J
dTJ
dt

� kAjack.Tenv � TJ / � PmJ cp;J .TJ;in � TJ /

TR � TJ

OPQR D CP;R
dTR

dt
� kA.TJ � TR/�

X

i

PmF;i cp;F i .TF;i � TR/: (3b)
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State Estimation for
Batch Processes, Fig. 2
The reactor and its jacket
as considered for
calorimetry

In this approach, the derivatives need to be
computed from the measurements which in-
troduces noise in the evaluation and requires
a filtering either of the derivatives or of the
estimates.

2. Equations (1) and (2) are implemented in
a nonlinear state estimator. To estimate the
unknown quantities ckA and OPQR by this ap-
proach, additional assumptions about their dy-
namics must be made. A common approach is
to add the so-called dummy derivatives

d OPQR

dt
D 0

d ckA

dt
D 0;

The tuning of calorimetric estimation schemes
has been discussed in the literature, but for
each case, tests in simulation runs using
recorded batch data should be performed.
Experimental results of the application of the

direct solution equations (3) and an EKF for the
estimation of PQR and kA are shown in Fig. 3. A
laboratory-scale 10 l metal reactor was filled with
water. Cold water was injected into the reactor
to simulate the feed of reactants. The reactor is

equipped with a heating rod by which different
values of PQR could be simulated. Figure 3a
shows the measured temperatures and the feed
stream; Fig. 3b shows the estimates. The dotted
line displays the measured power uptake, the
thin, black line represents the estimates from the
evaluation of Eqs. (3), and the gray line shows the
results obtained with an EKF. The EKF was tuned
slightly more aggressively than the PT1-filter that

was used to filter the values of OPQR and ckA that
were obtained from Eqs. (3).

It can be seen that the quality of both eval-
uation methods is comparable. A difference in
performance can be seen in the estimation of kA
at the points in time where TR � TJ . This is due
to the denominator in Eq. (3b) which becomes
� 0. At this point, kA is unobservable. The EKF
estimates of kA are more smooth. This does not
have an impact on the estimation of PQR because
the heat transfer from the jacket to the reactor is
zero at this point. This behavior is of importance
if ckA is used in other algorithms, e.g., for control
purposes.

A practical problem is the determination of the
parameters of the system model. Especially the
heat capacity of the reactor CP;R is difficult to
determine as it is not clear how much impact the
reactor material has. Also the heat capacities of
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EKF. (a) Measured data. (b) Estimates from inverted equations (3) and EKF as well as measured OPQR

intermediate products and mixtures with the raw
materials and final products may not be known.
That is why typically CP;R is considered a “free”
parameter which is used to fit the estimates to
measured data. If the adjustment of the available
parameters is not sufficient to yield a satisfactory
performance of the estimator, further extensions
can be considered:
• If pressurized vessels are considered, the wall

thickness may be considerable, and the heat
accumulation may influence the results. In this
case, the extension of the set of equations by
an equation for the heat transfer through the
wall may be considered (Saenz de Buruaga
et al. 1997).

• If large-scale vessels are considered, the
cooling fluid in the jacket may not be perfectly
mixed, and a temperature gradient will be
present. In many cases, cooling coils are
welded on the outside surface of the reactor.
In this case, the equation for the perfectly
mixed jacket (Eq. (2)) should be replaced by
a model for a plug flow reactor (Krämer and
Gesthuisen 2005).

• For large industrial reactors, the perfect
mixing assumption of the reactor contents
does not necessarily hold true. Especially if
polymerization reactions are considered, the
reactor content may become rather viscous.
A straightforward method to cope with this
problem is a detailed computational fluid
dynamics (CFD) simulation. However, due

to the numerical complexity, this appears
infeasible for online applications. A practical
alternative is the placement of several temper-
ature sensors and using a weighted average
over their readings. A different approach is
the usage of a multi-zonal model, the idea of
which resembles the idea of a CFD model;
however the number of zones (elements) is
much smaller (Bezzo et al. 2004).
Heat balance calorimetry becomes inaccurate

if the mass flow through the jacket is so large that
the temperature difference between the cooling
stream entering the jacket and leaving the jacket
.TJ;in � TJ / is in the order of magnitude of
the measurement error. This mode of operation
is typically used in laboratory-scale reactors to
avoid temperature gradients in the jacket. To
estimate the states in such setups, a technique
called temperature oscillation calorimetry (TOC)
can be used. The idea is to add a small but
well-measurable sinusoidal signal to the typically
constant set point of the reactor temperature TR
(see Fig. 4 for an example). The reaction of the
jacket temperature to the oscillating reactor tem-
perature can be used to compute kA, e.g., by es-
timating its amplitude ıTJ (Tietze et al. 1996) or
by adding an additional equation which describes
the second derivative of the reactor temperature
d2TR
dt2

to the set of heat balances (Mauntz et al.
2007).

Calorimetry estimates the total heat of the
reactions in the reactor. It can be used to estimate



1318 State Estimation for Batch Processes

0 10.000 25.000
40

60

90

T
 [°

C
]

time [s]

a b
TR

TJ

(A)

2.4 2.5

x 104

46

50

54

time [s]

δ TJ

δ TR

State Estimation for Batch Processes, Fig. 4 Example experiment where TOC is applied. (a) Complete example.
(b) Zoom of rectangle (A)

the overall chemical conversion of a process.
Due to its integral character, the heat of reaction
of parallel and consecutive reactions cannot be
estimated separately (Hergeth 2006). However,
if models of the chemical kinetics are known
and reliable, it is possible to couple this kinetic
model with calorimetry and to observe the com-
plete state of the reaction based on calorimet-
ric estimates. This solution may however not
be robust as slight errors in the kinetic model
may lead to significant errors in the estimates
of all concentrations. In order to build a more
robust state estimator, additional measurements
should be installed and integrated into the state
estimator. For example, for reactions including
a phase change from the gas phase to the liquid
phase, a pressure measurement may be suitable.
For some polymerization reactions, sound veloc-
ity and sound attenuation measurements can be
valuable (Brandt et al. 2012). The additional mea-
surement can be incorporated into the observation
scheme by augmenting the measurement model
g (see Fig. 1) by the corresponding measurement
equation.

Summary

In this contribution, different methods that can
be used to determine the states of (semi-)batch
reactions have been described. State estimation
is useful to reconcile measurement errors and
whenever direct online measurements are either
too expensive or not available at all.

Linear state estimation is a mature topic.
However as chemical batch reactors in most cases
have nonlinear dynamics, nonlinear methods
should be applied. Extensions of linear state
estimators based on linearizations of the system
(e.g., the EKF) are the most widely used
nonlinear state estimators. However examples are
known where these estimators fail. Thus, other
approaches, e.g., based on online optimization
(MHE), have been developed. They deliver
promising results in terms of observation quality
and computational speed even for large-scale
systems.

The most widespread application of state
estimation techniques in batch processes is
calorimetry which is suitable for significantly
exothermic or endothermic reactions. The
heat balances around the reactor contents
and the jacket are set up and solved. The
estimated heat of reaction is used to estimate the
chemical conversion of the process. The method
makes use of commonly installed temperature
measurements in the reactor. Extensions to
include other measurements have been discussed.
Problems that typically occur in laboratory-
scale reactors can be overcome with the help
of temperature oscillation calorimetry.

Cross-References

�Control and Optimization of Batch Processes
�Controllability and Observability
�Estimation, Survey on
�Extended Kalman Filters

http://dx.doi.org/10.1007/978-1-4471-5058-9_251
http://dx.doi.org/10.1007/978-1-4471-5058-9_192
http://dx.doi.org/10.1007/978-1-4471-5058-9_60
http://dx.doi.org/10.1007/978-1-4471-5058-9_62


Statistical Process Control in Manufacturing 1319

S

�Kalman Filters
�Moving Horizon Estimation
�Observers in Linear Systems Theory

Bibliography

Besancon G (2007) Nonlinear observers and applications.
Springer, Berlin/New York

Bezzo F, Macchietto S, Pantelides CC (2004) A general
methodology for hybrid multizonal/CFD models, part
I. Theoretical framework AND part II. Automatic
zoning. Comput Chem Eng 28:501–525

Brandt H, Sühling D, Engell S (2012) Monitoring emul-
sion polymerization processes by means of ultra-sound
velocity measurements. In: AIChE annual meeting,
Pittsburgh, Oct 28–Nov 2

Diehl M, Kühl P, Bock HG, Schlöder JP, Mahn B,
Kallrath J (2006) Combined nonlinear MPC and
MHE for a copolymerization process. In: 16th Eu-
ropean symposium on computer aided process engi-
neering, Garmisch-Patenkirchen, Germany, July 10–
13, pp 1527–1532

Fortuna L, Graziani S, Rizzo A, Xibilia MG (2007)
Soft sensors for monitoring and control of industrial
processes. Springer, London

Hergeth WD (2006) On-line monitoring of chemical reac-
tions. Ullmann’s encyclopedia of industrial chemistry.
7th online edn. Wiley-VCH, Weinheim

Küpper A, Engell S (2007) Optimizing control of the
hashimoto smb process: Experimental application. In:
8th international IFAC symposium on dynamics and
control of process control, Cancun, 6–8 June 2007

Krämer S, Gesthuisen R (2005) Simultaneous estimation
of the heat of reaction and the heat transfer coefficient
by calorimetry: estimation problems due to model
simplification and high jacket flow rates – theoretical
development. Chem Eng Sci 60:4233–4248

Landau RN (1996) Expanding the role of reaction
calorimetry. Thermochim Acta 289:101–126

Mauntz W, Diehl M, Engell S (2007) Moving horizon
estimation and optimal excitation in temperature os-
cillation calorimetry. In: DYCOPS, Cancun, 6–8 June
2007

McKenna TF, Othman S, Févotte G, Santos AM, Ham-
mouri H (2000) An integrated approach to polymer
reaction engineering: a review of calorimetry and state
estimation. Polym React Eng 8(1):1–38

Saenz de Buruaga I, Armitage PD, Leiza JR, Asua JM
(1997) Nonlinear control for maximum production
rate of latexes of well-defined polymer composition.
Ind Eng Chem Res 36:4243–4254

Schei TS (2008) On-line estimation for process con-
trol and optimization applications. J Process Control
18:821–828

Tietze A, Lüdke I, Reichert K-H (1996) Temperature
oscillation calorimetry in stirred tank reactors. Chem
Eng Sci 51(11):3131–3137

Statistical Process Control
in Manufacturing

O. Arda Vanli1 and Enrique Del Castillo2
1Department of Industrial and Manufacturing
Engineering, High Performance Materials
Institute Florida A&M University and Florida
State University, Tallahassee, FL, USA
2Department of Industrial and Manufacturing
Engineering, The Pennsylvania State University,
University Park, PA, USA

Abstract

Statistical process control has been successfully
utilized for process monitoring and variation re-
duction in manufacturing applications. This entry
aims to review some of the important moni-
toring methods. Topics discussed include: She-
whart’s model, NX and R control charts, EWMA
and CUSUM charts for monitoring small pro-
cess shifts, process monitoring for autocorrelated
data, and integration of statistical and engineering
(or automatic) control techniques. The goal is
to provide readers from control theory, mechan-
ical engineering, and electrical engineering an
expository overview of the key topics in statistical
process control.

Keywords

CUSUM; EWMA; Feedback control; Shewhart
control chart; Time-series analysis

Introduction

Variation control is an important goal in manufac-
turing. The main set of tools for variation control
used in discrete-part manufacturing industries up
to the 1960s was developed by W. Shewhart in the
1920s and is known today as statistical process
control, or SPC (Shewhart 1939). Shewhart’s
SPC model assumes that the process varies about
a fixed mean and that consecutive observations
from a process are independent, as follows:
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Yt D �0 C �t (1)

in which �0 is the in-control process mean and �t
is iid (independent identically distributed) white

noise �
iid	 N.0; �2/. The Shewhart model can be

used in distinguishing assignable cause variation
from common cause variation. For example, a
mean change from �0 to �1 D �0Cı (where ı is
the unknown magnitude of change) or a variance
increase from �20 to �21 at an unknown point in
time can be detected as assignable causes.

The objective of this entry is to highlight some
of the important references in the SPC literature
and to discuss similarities and joint applications
SPC has with automatic process control. The
literature on statistical process control and appli-
cations to engineering problems is vast; therefore,
no effort is made for an exhaustive review. More
complete reviews of the literature on statistical
process control and adjustment methods can be
found in texts including Montgomery (2013),
Ryan (2011), and Del Castillo (2002).

Shewhart Control Charts

Shewhart’s NX and R control charts are used
to distinguish between common cause and
assignable causes of variation (Shewhart 1939)
by monitoring, respectively, the process mean
and process variance. “Common cause” variation
is the natural variability of the process due to
uncontrollable factors in the environment that
is not avoidable without substantial changes

to the process. “Assignable cause” variation
is due to unwanted disturbances or upsets to
the process that can be detected and removed
to produce acceptable quality products. When
only common cause variation exists, the process
is said to be operating “in statistical control.”
Assignable causes of variation include operator
changes, machine calibration errors or raw
material variation between suppliers.

Another concept that is closely related to the
Shewhart’s model is process capability. Process
capability indices are used to assess whether the
process is operating in a satisfactory manner with
respect to the engineering specifications. It is
crucial to attain a stable process (eliminating all
problematic causes) before undertaking such a
capability analysis because only when the sam-
ples come from a stable probability distribution
can the future behavior of the process be pre-
dicted “within probability limits determined by
the common cause system” (Box and Kramer
1992).

Figure 1 illustrates the two main phases,
referred to as Phase I and Phase II, in con-
structing Shewhart charts (Sullivan 2002), using
semiconductor lithography process data given
in Montgomery (2013). It is desired to establish
a statistical control of the width of the resist
using NX and R charts. Twenty-five preliminary
subgroups, each of size five wafers, were taken
at one-hour intervals and the resist width is
measured. In Phase I, “retrospective analysis,”
the historical data from the process is analyzed
to bring an initially out-of-control process into

ba

Statistical Process Control in Manufacturing, Fig. 1 Shewhart NX and R charts from (a) Phase I analysis and
(b) Phase II analysis
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statistical control. Subgroups y1; : : : ; yn of size
n are taken, and subgroup average Ny is used
to monitor process mean �0, and the subgroup
range is used to monitor standard deviation of
the process mean � NY D �=

p
n. The upper and

lower control limits are found for the NX chart
as fUCL;LCLg D �0 ˙ L� NY where L is a
constant representing the width of the control
limits. Commonly chosen three-sigma limits
(i.e., L D 3) provide a probability p D 0:0027

that a single point falls outside the limits when
process is in control (“false alarm probability”).
Points that fall outside the control limits are
investigated, and if an assignable cause was
identified, then this point is omitted and control
limits are recalculated. This is repeated until no
further points plot outside the limits. In Phase
II these charts are used to detect shifts in the
process mean and variability.

The NX and R charts from Phase I data in
Fig. 1a indicate statistical control; hence the com-
puted control limits can be used for Phase II
monitoring. Twenty additional subgroups (also of
size 5) are taken in Phase II while the control
charts are in use. The Phase II charts shown in
Fig. 1b indicate that process variability is stable
but the process mean has shifted at subgroup 18.
The general trend in the NX chart indicates that
process mean probably has shifted earlier around
subgroup 13.

EWMA, CUSUM, and Changepoint
Estimation

Shewhart charts can detect large magnitude pro-
cess upsets reasonably well; however, they are
relatively slow to detect small shifts. In order
to reduce the reaction time for smaller shifts, a
set of “runs” rules (e.g., two out of three runs
beyond 2� limits or four out of five runs beyond
1� limits) has been proposed Western Electric
(1956). A more systematic method is to accu-
mulate information over successive observations
using CUSUM and EWMA statistics rather than
basing the detection on a single sample. In the
cumulative sum (CUSUM) chart, a running total
Pt

iD1. NYt � �0/ is plotted against subgroup num-
ber t , and a shift from the in-control mean �0 is

signaled by an upward or downward linear trend
in the plot. A two-sided CUSUM is defined as
Woodall and Adams (1993):

Sṫ D maxf˙Zt � k C Sṫ�1; 0g for t D 1; 2; : : :

(2)

where SC
t and S�

t are the one-sided upper and
lower cusums, respectively, Zt D . NYt � �0/=� NY
is the standardized subgroup average, k D j�1 �
�0j=.2�/ is the reference value, and �1 is the
level of process mean to be detected. An out-of-
control signal is given at the first t for which St >
h where h is a suitably chosen threshold, usually
selected based on the desired average number of
samples to signal an alarm, also called the aver-
age run length (ARL). The recommended value
for the threshold h is 4 or 5 (corresponding to
four or five times the process standard deviation
�), and the value for the reference k is almost
always taken as 0.5 (corresponding to shift size
j�1 � �0j D �) (Montgomery 2013).

Another chart that accumulates deviations
over several samples is the exponentially
weighted moving average (EWMA) which is
based on the statistic (Lucas and Saccucci 1990)

Zt D � NYt C .1 � �/Zt�1 (3)

where 0 < � < 1 is a smoothing constant.
Smaller � provides large smoothing (similar
to a large subgroup size n in the Shewhart
charts). The starting value is the in-control
mean Z0 D �0. It can be shown that Zt
is a weighted average of all previous sample
means, where the weights decrease geometrically
with the age of the subgroup mean. The
EWMA statistic is plotted against the control
limits �0 ˙ L� NY

p

.�=.2� �//Œ1 � .1 � �/2t �.
Shewhart charts that are effective for large shifts
are more useful for Phase I, and CUSUM or
EWMA charts that are effective for small shifts
are more appropriate for Phase II.

We illustrate in Fig. 2 how to monitor with
CUSUM and EWMA charts with the lithography
data. The in-control process mean and standard
deviation �0 and � are found from the Phase
I data. CUSUM upper and lower statistics Sṫ
computed with Phase II data are plotted in Fig. 2a
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Statistical Process Control in Manufacturing, Fig. 2 Phase II charts for lithography data (a) CUSUM chart and
(b) EWMA chart

(reference value k D 0:5 and threshold h D 4

are used.). The upper cusum statistic SC
t crosses

the upper control limit indicating an upward shift
at subgroup 15. The EWMA statistic applied
with � D 0:2 on Phase II data, shown Fig. 2b,
crosses the upper control limit at subgroup 16.
Both charts have improved the reaction times of
the Shewhart chart.

When a control chart signals an assignable
cause, it does not indicate when the process
change actually occurred. Estimating the instant
of the change, or changepoint estimation, is es-
pecially useful in Phase I analysis where little
is known about the process, and it is important
to identify and remove the out-of-control sam-
ples from consideration (Hawkins et al. 2003;
Basseville and Nikiforov 1993; Pignatiello and
Samuel 2001). The process is modeled as

Yi 	 N.�1; �
2/ for i D 1; 2; : : : ; �

Yi 	 N.�2; �
2/ for i D � C 1; : : : ; n (4)

where � is the unknown changepoint, at which the
in-control mean �1 is assumed to shift to a new
value �2 assuming �1; � are known but �2 is un-
known. A generalized likelihood ratio (GLR) test
statistic �t D Pt

iD1 logf2.yi /=f1.yi / is used
to test the hypothesis of a changepoint against
the null hypothesis that there is no change. As-
suming normality f .y/ D 1=

p
2�� expŒ�.y �

�/2=.2�2/� is the probability density function of
the quality characteristic. The changepoint model

is equivalent to the CUSUM chart when all pa-
rameters �1; �2 and � are known a priori. For
the lithography Phase II data in Fig. 1b, it can be
shown that the changepoint can be estimated as
subgroup 13.

SPC on Controlled and
Autocorrelated Processes

It is well known that automatic control perfor-
mance relies heavily on the accuracy of the pro-
cess models. An active field of research in recent
years is the monitoring of controlled systems
using SPC charts (Box and Kramer 1992) in
order to reduce the effect of model accuracy.
Shewhart charts can be used to monitor the output
of a feedback-controlled process; however, as the
controller effectively corrects the shift, only a
short window of opportunity is provided to detect
the shift (Vander Wiel et al. 1992). Tsung and
Tsui (2008) showed that monitoring the control
actions gives better run-length performance than
monitoring the output for small- and medium-
size shifts, and monitoring the output gives better
performance for large shifts. In monitoring con-
trolled processes, measurements taken at short
intervals with positive autocorrelation usually in-
flate the rate of false alarms (Harris and Ross
1991). Widening the control limits and monitor-
ing the residuals of a time-series model fitted
to the observations are some of the strategies
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Statistical Process Control in Manufacturing, Fig. 3 (a) Shewhart chart for autocorrelated process. (b) Shewhart
chart for residuals
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Statistical Process Control in Manufacturing, Fig. 4 (a) Shewhart chart for controlled process Yt . (b) Shewhart
chart for input Xt

employed to reduce the number of false alarms
(Alwan and Roberts 1988).

To illustrate the effects of autocorrelation, we
consider simulated data from an autoregressive
moving average ARMA(1,1) time-series distur-
bance process Dt D 0:8Dt�1 C �t � 0:3�t�1
(Box et al. 1994) defined with the white noise

process �t
iid	 N.0; 12/ (with in-control mean

�0 D 0 and variance �2D D 1:694). Figure 3a
shows a realization of the process monitored with
a Shewhart chart (control limits at�0˙3�D). Due
to autocorrelation, false alarms are signaled at
samples 81–83. Figure 3b shows the control chart
monitoring of the residuals of an ARMA(1,1)
model. Residuals (standard normal with mean 0
and variance 1) are not autocorrelated, so the
Shewhart chart for residuals does not signal any
false alarms.

We illustrate monitoring of controlled pro-
cesses with simulated data from a transfer func-
tion model Yt D 2Xt�1 C Dt where Xt are the
adjustments made on the process. A proportional
integral control ruleXt D �0:1Yt�0:15Pt

iD1 Yi
is employed, and the disturbance Dt is assumed
to follow the ARMA model considered earlier.
As an assignable cause, the disturbance mean has
shifted at sample 100 by a magnitude of 3�D .
Figure 4 shows the Shewhart charts monitoring
the output Yt and the input Xt . The effect of
assignable cause (at sample 100) on the output
is quickly removed by the controller; however,
a sustained shift remains in the control input.
The control chart for the input Fig. 4b signals the
first alarm at sample 101 (much quicker) than the
control chart for the output Fig. 4a which signals
at sample 110.
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Summary and Future Directions

In this entry we reviewed some of the commonly
used statistical process monitoring methods for
manufacturing systems. Due to space limitations,
only several important topics including Phase I
and Phase II monitoring with Shewhart, EWMA,
and CUSUM charts were discussed, highlight-
ing main applications with numerical examples.
Other current research areas include multivariate
methods for monitoring processes with multiple
quality characteristics taking advantage of rela-
tionships among them (Lowry and Montgomery
1992), profile monitoring for processes that gen-
erate functional data (Woodall et al. 2004), multi-
stage monitoring for processes with multiple pro-
cessing steps and variation transmission (Tsung
et al. 2008), and run-to-run EWMA control for
semiconductor manufacturing processes that re-
quire handling of multiple types of products,
operators, and machine tools (Butler and Stefani
1994).

Cross-References

�Controller Performance Monitoring
�Multiscale Multivariate Statistical Process

Control
�Run-to-Run Control in Semiconductor Manu-

facturing
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Abstract

Stochastic adaptive control denotes the control
of partially known stochastic control systems.
The stochastic control systems can be described
by discrete- or continuous-time Markov chains
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or Markov processes, linear and nonlinear
difference equations, and linear and nonlinear
stochastic differential equations. The solution of
a stochastic adaptive control problem typically
requires the identification of the partially known
stochastic system and the simultaneous control of
the partially known system using the information
from the concurrent identification scheme. Two
desirable goals for the solution of a stochastic
adaptive control problem are called self-tuning
and self-optimality. Self-tuning denotes the
convergence of the family of adaptive controls
indexed by time to the optimal control for the true
system. Self-optimizing denotes the convergence
of the long-run average costs to the optimal long-
run average cost for the true system. Typically
to achieve the self-optimality, it is important
that the family of parameter estimators from the
identification scheme be strongly consistent, that
is, this family converges (almost surely) to the
true parameter values. Thus, with self-optimality,
asymptotically a partially known system can be
controlled as well as the corresponding known
system.

Keywords

Bayesian estimation; Brownian motion; Markov
processes; Self-tuning regulators

Motivation and Background

In almost every formulation of a stochastic con-
trol problem from a physical system, the physical
system is incompletely known so the stochastic
system model is only partially known. This lack
of knowledge can often be described by some
unknown parameters for a mathematical model,
and the noise inputs for the model can describe
unmodeled dynamics or perturbations to the sys-
tem. The lack of knowledge of some parameters
of the model can be modeled either by random
variables with known prior distributions or as
fixed unknown values. The former description
requires Bayesian estimation, and the latter de-
scription requires parameter estimation such as
least squares or maximum likelihood.

Stochastic adaptive control arose as a natural
evolution from the results in stochastic control,
and in particular it developed for some well-
known control problems. The optimal control
of Markov chains had been developed for some
time, so it was natural to investigate the adaptive
control of Markov chains. Mandl (1973) was
probably the first to consider this adaptive control
problem in generality. His conditions for strong
consistency of a family of estimators were fairly
restrictive. Borkar and Varaiya (1982) simpli-
fied the conditions for the estimation part of the
problem by only requiring convergence of the
estimators of the parameters so that the resulting
transition probabilities of the Markov chain are
identical to the transition probabilities for the true
optimal solution.

A second major direction for stochastic
adaptive control is described by ARMAX
(autoregressive-moving average with exogenous
inputs) models. These are discrete-time models
that can be described in terms of polynomials
in a time shift operator. A closely related and
often equivalent model is multidimensional linear
difference equations in a state-space form. Since
the solution of the infinite time horizon stochastic
control problem was available in the late 1950s, it
was natural to consider the adaptive control prob-
lem. Methods such as least squares, weighted
least squares, maximum likelihood, and stochas-
tic approximation were used for parameter identi-
fication and a certainty equivalence adaptive con-
trol for the system, that is, using the current esti-
mate of the parameters as the true parameters to
verify self-optimality. An important development
in stochastic adaptive control is a result called
the self-tuning regulator where the convergence
of estimators of unknown parameters implied the
convergence of the output tracking error (Astrom
and Wittenmark 1973; Goodwin et al. 1981; Guo
1995, 1996; Guo and Chen 1991; Kumar 1990).

A number of monographs treat various aspects
of stochastic adaptive control problems, e.g.,
Astrom and Wittenmark (1989), Chen and Guo
(1991), Kumar and Varaiya (1986), and Ljung
and Soderstrom (1983). An extensive survey
article on the early years of stochastic adaptive
control is given by Kumar (1985).
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Structures and Approaches

Various requirements can be made for the adap-
tive control of a stochastic system. It can only
be required that the family of adaptive controls is
stabilizing the unknown system or that the family
of adaptive controls converges to the optimal
control for the true system or that the family of
adaptive controls has a long-run average cost that
is equal to the optimal average cost for the true
system. The identification part of the adaptive
control problem can be Bayesian estimation (Ku-
mar 1990) if the parameters are assumed to be
random variables or parameter estimation (Bercu
1995; Lai and Wei 1982) if the parameters are
assumed to be unknown constants. The identifi-
cation scheme may also incorporate information
about the running cost.

For linear systems with white noise inputs, it is
well known to use least squares (or equivalently
maximum likelihood) estimation to estimate pa-
rameters. However, for stochastic adaptive con-
trol problems, the sufficient conditions for the
family of estimators to be strongly consistent are
fairly restrictive (e.g., Lai and Wei 1982), and in
fact the family of estimators may not even con-
verge in general. A weighted least squares esti-
mation scheme can guarantee convergence of the
family of estimators (Bercu 1995) and can often
be strongly consistent (Guo 1996). Some other
estimation methods are stochastic approximation
(Guo and Chen 1991) and an ordinary differential
equation approach (Ljung and Soderstrom 1983).
For discrete-time nonlinear systems, a family of
strongly consistent estimators may not converge
sufficiently rapidly even to stabilize the nonlinear
system (Guo 1997).

The study of stochastic adaptive control of
continuous-time linear stochastic systems with
long-run average quadratic costs developed
somewhat after the corresponding discrete-time
study (e.g., Duncan and Pasik-Duncan 1990). A
solution with basically the natural assumptions
from the solution of the known system problem
using a weighted least squares identification
scheme is given in Duncan et al. (1999).

Another family of stochastic adaptive control
problems is described by linear stochastic

equations in an infinite dimensional Hilbert
space. These models can describe stochastic
partial differential equations and stochastic
hereditary differential equations. Some linear-
quadratic-Gaussian control problems have been
solved, and these solutions have been used to
solve some corresponding stochastic adaptive
control problems (e.g., Duncan et al. 1994a).

Optimal control methods such as Hamilton-
Jacobi-Bellman equations and a stochastic maxi-
mum principle have been used to solve stochastic
control problems described by nonlinear stochas-
tic differential equations (Fleming and Rishel
1975). Thus, it was natural to consider stochas-
tic adaptive control problems for these systems.
The results are more limited than the results
for linear stochastic systems (e.g., Duncan et al.
1994b).

Other stochastic adaptive control problems
have recently emerged that are modeled by
multi-agents, such as mean field stochastic
adaptive control problems (e.g., Nourian et al.
2012).

ADetailed Example: Adaptive
Linear-Quadratic-Gaussian Control

This example is a model that is the most well
known continuous-time stochastic adaptive con-
trol problem. Likewise for a known continuous-
time system, this stochastic control problem is
the most basic and well known. The controlled
system is described by the following stochastic
differential equation:

dX.t/ D AX.t/dt C BU.t/dt C CdW.t/

X.0/ D X0

where X.t/ 2 Rn; U.t/ 2 Rm, and .W.t/; t � 0/

is an Rp-valued standard Brownian motion and
.A;B; C / are appropriate linear transformations.
X.t/ is the state of the system at time t and U.t/
is the control at time t . It is assumed thatA;B;C
are unknown linear transformations. The cost
functional, J.�/, is a long-run average (ergodic)
quadratic cost functional that is given by
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J.U / D lim supT!1
1

T

Z T

0

< QX.t/; X.t/ >

C < RU.t/; U.t/ > dt

where R > 0 and Q � 0 are symmetric linear
transformations and < �; � > is the canonical
inner product in the appropriate Euclidean space.
The standard assumptions for the control of the
known system are made also for the adaptive
control problem, that is, the pair .A;B/ is con-
trollable and .A;Q

1
2 / is observable. An optimal

control for the known system is

U 0.t/ D �R�1BT SX.t/

where S is the unique positive, symmetric solu-
tion of the following algebraic Riccati equation:

AT S C SA� SBR�1BT S CQ D 0

The optimal cost is

J.U 0/ D t r.C T SC /

The unknown quantity CTC can be identified
given .X.t/; t 2 Œa; b�/ for a < b arbitrary from
the quadratic variation of Brownian motion, so
the identification of C is not considered here.
Since it is assumed that the pair .A;B/ is un-
known, the system equation is rewritten in the
following form:

dX.t/ D 
T '.t/dt C CdW.t/

where 
T D ŒA B� and 'T .t/ D ŒXT .t/ U T .t/�.
A family of continuous-time weighted least
squares recursive estimators .
.t/; t � 0/ of

 is given by the following stochastic equation:

d
.t/ D a.t/P.t/'.t/ŒdXT .t/ � 'T .t/
.t/dt�

dP.t/ D �a.t/P.t/'.t/'T .t/P.t/dt

where .a.t/; t � 0/ is a suitable family of
positive stochastic weights (Duncan et al.
1999). A family of estimates . O
.t/; t � 0/ is
obtained from .
.t/; t � 0/ and is expressed
as O
.t/ D ŒA.t/ B.t/� (Duncan et al. 1999).

A process .S.t/; t � 0/ is obtained using
.A.t/; B.t// by solving the following stochastic
algebraic Riccati equation for each t � 0:

AT .t/S.t/C S.t/A.t/

� S.t/B.t/R�1BT .t/S.t/CQ D 0

A certainty equivalence method is used to de-
termine the control, that is, it is assumed that
the pair .A.t/; B.t// is the correct pair for the
true system, so a certainty equivalence adaptive
control U.t/ is given by

U.t/ D R�1BT S.t/X.t/

It can be shown (Duncan et al. 1999) that the
family of estimators ..A.t/; B.t//; t � 0/ is
strongly consistent and that the family of adaptive
controls given by the previous equality is self-
optimizing, that is, the long-run average cost
J.U / D J.U 0/ D t r.C T SC / where S is the
solution of the algebraic Riccati equation for the
true system.

Future Directions

A number of important directions for stochastic
adaptive control are easily identified. Only three
of them are described briefly here. The adaptive
control of the partially observed linear-quadratic-
Gaussian control problem (Fleming and Rishel
1975) is a major problem to be solved using the
same assumptions of controllability and observ-
ability as for the known system. This problem
is a generalization of the example given above
where the output (linear transformation) of the
system is observed with additive noise and the
family of controls is restricted to depend only on
these observations. Another major direction is to
modify the detailed example above by replacing
the Brownian motion in the stochastic equation
for the state by an arbitrary fractional Brown-
ian motion or by an arbitrary square-integrable
stochastic process with continuous sample paths.
For this latter problem it is necessary to use
recent results for optimal controls for the true
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system and to have strongly consistent families of
estimators. A third major direction is the adaptive
control of nonlinear stochastic systems.

Cross-References
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� System Identification: An Overview

Acknowledgments Research supported by NSF grant
DMS 1108884, AFOSR grant FA9550-12-1-0384, and
ARO grant W911NF-10-1-0248.

Bibliography

Astrom KJ, Wittenmark B (1973) On self-tuning regula-
tors. Automatica 9:185–199

Astrom KJ, Wittenmark B (1989) Adaptive control.
Addison-Wesley, Reading

Bercu B (1995) Weighted estimation and tracking for
ARMAX models. SIAM J Control Optim 33:89–106

Borkar V, Varaiya P (1982) Identification and adaptive
control of Markov chains. SIAM J Control Optim
20:470–489

Chen HF, Guo L (1991) Identification and stochastic
adaptive control. Birkhauser, Boston

Duncan TE, Pasik-Duncan B (1990) Adaptive control of
continuous time linear systems. Math Control Signals
Syst 3:43–60

Duncan TE, Maslowski B, Pasik-Duncan B (1994a) Adap-
tive boundary and point control of linear stochastic
distributed parameter systems. SIAM J Control Optim
32:648–672

Duncan TE, Pasik-Duncan B, Stettner L (1994b) Almost
self-optimizing strategies for the adaptive control of
diffusion processes. J Optim Theory Appl 81:470–507

Duncan TE, Guo L, Pasik-Duncan B (1999) Adaptive
continuous-time linear quadratic Gaussian control.
IEEE Trans Autom Control 44:1653–1662

Fleming WH, Rishel RW (1975) Deterministic and
stochastic optimal control. Springer, New York

Goodwin G, Ramadge P, Caines PE (1981) Discrete time
stochastic adaptive control. SIAM J Control Optim
19:820–853

Guo L (1995) Convergence and logarithm laws of self-
tuning regulators. Automatica 31:435–450

Guo L (1996) Self-convergence of weighted least squares
with applications. IEEE Trans Autom Control 41:79–
89

Guo L (1997) On critical stability of discrete time adap-
tive nonlinear control. IEEE Trans Autom Control
42:1488–1499

Guo L, Chen HF (1991) The Astrom-Wittenmark self-
tuning regulator revisited and ELS based adaptive
trackers. IEEE Trans Autom Control 36:802–812

Kumar PR (1985) A survey of some results in stochastic
adaptive control. SIAM J Control Optim 23:329–380

Kumar PR (1990) Convergence of adaptive control
schemes with least squares estimates. IEEE Trans
Autom Control 35:416–424

Kumar PR, Varaiya P (1986) Stochastic systems, estima-
tion, identification and adaptive control. Prentice-Hall,
Englewood Cliffs

Lai TL, Wei CZ (1982) Least square estimation is stochas-
tic regression models with applications to identifica-
tion and control of dynamic systems. Ann Stat 10:154–
166

Ljung L, Soderstrom T (1983) Theory and practice of
recursive identification. MIT, Cambridge

Mandl P (1973) On the adaptive control of finite state
Markov processes. Z Wahr Verw Geb 27:263–276

Nourian M, Caines PE, Malhame RP (2012) Mean field
LQG control in leader-follower stochastic multi-agent
systems: likelihood ratio based adaptation. IEEE Trans
Autom Control 57:2801–2816

Stochastic Description
of Biochemical Networks

João P. Hespanha1 and Mustafa Khammash2
1Center for Control, Dynamical Systems and
Computation, University of California, Santa
Barbara, CA, USA
2Department of Biosystems Science and
Engineering, Swiss Federal Institute of
Technology at Zurich (ETHZ), Basel,
Switzerland

Abstract

Conventional deterministic chemical kinetics of-
ten breaks down in the small volume of a living
cell where cellular species (e.g., genes, mRNAs,
etc.) exist in discrete, low copy numbers and
react through reaction channels whose timing
and order is random. In such an environment,
a stochastic chemical kinetics framework that
models species abundances as discrete random
variables is more suitable. The resulting models
consist of continue-time discrete-state Markov
chains. Here we describe how such models can
be formulated and numerically simulated, and we
present some of the key analysis techniques for
studying such reactions.
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Introduction

The time evolution of a spatially homogeneous
mixture of chemically reacting molecules is often
modeled using a stochastic formulation, which
takes into account the inherent randomness of
thermal molecular motion. This formulation is
important when modeling complex reactions in-
side living cells, where small populations of key
reactants can set the stage for significant stochas-
tic effects. In this entry, we review the basic
stochastic model of chemical reactions and dis-
cuss the most common techniques used to simu-
late and analyze this model.

Stochastic Models of Chemical
Reactions

We start by considering a set of N molecular
species (reactants) S1; : : : ;SN that are confined
to a fixed volume˝ . These species react through
M possible reactions R1; : : : ; RM . In this for-
mulation of chemical kinetics, we shall assume
that the system is in thermal equilibrium and is
well mixed. Thus, the reacting molecules move
due to their thermal energy. The population of
the different reactants is described by a random
process X.t/ D .X1.t/ : : : XN .t//

T , where Xi.t/
is a random variable that models the abundance
(in terms of the number of copies) of molecules of
species Si in the system at time t . For the allow-
able reactions, we shall only consider elementary
reactions. These could either be monomolecular,
Si ! products, or bimolecular, Si C Sj !
products. Upon the firing of reactionRk , a transi-
tion occurs from some state X D xi right before
the reaction fires to some other state X D xi C
sk , which reflects the change in the population
immediately after the reaction has fired. sk is
referred to as the stoichiometric vector. The set

Stochastic Description of Biochemical
Networks, Table 1 Propensity functions for elementary
reactions. The constants c, c0, and c00 are related to k,
k0, and k00, the reaction rate constants from deterministic
mass-action kinetics. Indeed it can be shown that c D k,
c0 D k0=˝, and c00 D 2k00=˝

Reaction type Propensity function

Si ! Products cxi

Si C Sj ! Products .i ¤ j / c0xixj

Si C Si ! Products c00xi .xi � 1/=2

of allowable M reactions defines the so-called
stoichiometry matrix:

S D �

s1 � � � sM
	

:

To each reaction Rk , we associate a propensity
function, wk.x/ that describes the rate of that re-
action. More precisely, wk.x/h is the probability
that, given the system is in state x at time t ,
Rk fires once in the time interval Œt; t C h/. The
propensity functions for elementary reactions is
given in Table 1.

Limiting to the Deterministic Regime

There is an important connection between the
stochastic process X.t/, as represented by the
continuous-time discrete-state Markov chain de-
scribed above, and the solution of a related de-
terministic reaction rate equations obtained from
mass-action kinetics. To see this, let ˚.t/ D
Œ˚1.t/; : : : ; ˚N .t/�

T be the vector concentrations
of species S1; : : : ; SN . According to mass-action
kinetics, ˚.�/ satisfies the ordinary differential
equation:

P̊ D Sf .˚.t//; ˚.0/ D ˚0:

In order to compare the ˚.t/ withX.t/, which
represents molecular counts, we divide X.t/ by
the reaction volume to get X˝.t/ D X.t/=˝ . It
turns out that X˝.t/ limits to ˚.t/: According to
Kurtz (Ethier and Kurtz 1986), for every t � 0:

lim
˝!1 sup

s�t
ˇ

ˇX˝.s/ � ˚.s/
ˇ

ˇ D 0; almost surely:
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Hence, over any finite time interval, the
stochastic model converges to the deterministic
mass-action one in the thermodynamic limit.
Note that this is only a large volume limit result.
In practice, for a fixed volume, a stochastic
description may differ considerably from the
deterministic description.

Stochastic Simulations

Gillespie’s stochastic simulation algorithm (SSA)
constructs sample paths for the random process
X.t/ D .X1.t/ : : : :XN .t//

T that are consistent
with the stochastic model described above (Gille-
spie 1976). It consists of the following basic
steps:
1. Initialize the state X.0/ and set t D 0.
2. Draw a random number � 2 .0;1/ with

exponential distribution and mean equal to
1=
P

k wk.X.t//.
3. Draw a random number k 2 f1; 2; : : : ;M g

such that the probability of k D i 2
f1; 2; : : : ;M g is proportional to wi .X.t//.

4. Set X.t C �/ D X.t/C sk and t D t C � .
5. Repeat from (2) until t reaches the desired

simulation time.
By running this algorithm multiple times with
independent random draws, one can estimate the
distribution and statistical moments of the ran-
dom process X.t/.

The Chemical Master Equation (CME)

The chemical master equation (CME), also
known as the forward Kolmogorov equation,
describes the time evolution of the probability
that the system is in a given state x. The CME
can be derived based on the Markov property of
chemical reactions. Suppose the system is in state
x at time t . Within an error of order O.h2/, the
following statements apply:
• The probability that an Rk reaction fires ex-

actly once in the time interval Œt; tCh/ is given
by wk.x/h.

• The probability that no reactions fire in
the time interval Œt; t C h/ is given by
1 �P

k wk.x/dx.

• The probability that more than one reaction
fires in the time interval Œt; t C h/ is zero.
Let P.x; t/, denote the probability that the

system is in state x at time t . We can express
P.x; t C h/ as follows:

P.x; t C h/ D P.x; t/

 

1 �
X

k

wk.x/h

!

C
X

k

P.x � sk; t/wk.x � sk/hC O.h2/:

The first term on the right-hand side is the prob-
ability that the system is already in state x at
time t , and no reactions occur in the next h. In
the second term on the right-hand side, the kth
term in the summation is the probability that the
system at time t is an Rk reaction away from
being at state x and that an Rk reaction takes
place in the next h.

Moving P.x; t/ to the left-hand side, dividing
by h, and taking the limit as h goes to zero yields
the chemical master equation (CME):

dP.x; t/

dt
D PM

kD1



wk.x � sk/P.x � sk; t/

�wk.x/P.x; t/
�

: (1)

The CME defines a linear dynamical system in
the probabilities of the different states (each state
is defined by a specific number of molecules of
each of the species). However, there are generally
an infinite number of states, and the resulting
infinite linear system is not directly solvable.
One approach to overcome this difficulty is to
approximate the solution of the CME by truncat-
ing the states. A particular truncation procedure
that gives error bounds is called the finite-state
projection (FSP) (Munsky and Khammash 2006).
The key idea behind the FSP approach is to keep
those states that support the bulk of the proba-
bility distribution while projecting the remaining
infinite states onto a single “absorbing” state.
See Fig. 1.

The left panel in the figure shows the infi-
nite states of a system with two species. The
arrows indicate transitions among states caused
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Stochastic Description of Biochemical Networks, Fig. 1 The finite-state projection

by allowable chemical reactions. The underlying
stochastic process is a continuous-time discrete-
state Markov process. The right panel shows the
projected (finite-state) system for a specific pro-
jection region (box). The projection is obtained
as follows: transitions within the retained sates
are kept, while transitions that emanate from
these states and end at states outside the box
are channeled to a single new absorbing state.
Transitions into the box are deleted. The resulting
projected system is a finite-state Markov process.
The probability of each of its finite states can be
computed exactly. It can be shown that the trun-
cation, as defined here, gives a lower bound for
the probability for the original full system. The
FSP algorithm provides a way for constructing
an approximation of the CME that satisfies any
prespecified accuracy requirement.

Moment Dynamics

While the probability distribution P.x; t/ pro-
vides great detail on the state x at time t , often
statistical moments of the molecule copy num-
bers already provide important information about
their variability, which motivates the construction

of mathematical models for the evolution of such
models over time.

Given a vector of integers m WD .m1;m2; : : : ;

mn/, we use the notation �.m/ to denote the
following uncentered moment of X :

�.m/ WD EŒXm1
1 X

m2
2 � � �Xmn

n �:

Such moment is said to be of order
P

i mi . With
N species, there are exactly N first-order mo-
ments eŒXi �, 8i 2 f1; 2; : : : ; N g, which are just
the means; N.N � 1/=2 second-order moments
eŒX2

i �, 8i and eŒXiXj �, 8i ¤ j , which can
be used to compute variances and covariance;
N.N � 1/.N � 2/=6 third-order moments; and
so on.

Using the CME (1), one can show that

d�.m/

dt
D E

h
X

k

wk.X/



.X1 C s1;k/
m1.X2 � s2;k/

m2

� � � .XN � sN;k/
mN � X

m1
1 X

m2
2 � � �XmN

N

�i

;

and, because the propensity functions are all
polynomials on x (cf. Table 1), the expected
value in the right-hand side can actually be writ-
ten as a linear combination of other uncentered
moments of X . This means that if we construct a



1332 Stochastic Description of Biochemical Networks

vector � containing all the uncentered moments
of x up to some order k, the evolution of � is
determined by a differential equation of the form

d�

dt
D A�C B N�; � 2 R

K; N� 2 R
NK (2)

whereA andB are appropriately defined matrices
and N� is a vector containing moments of order
larger than k. The equation (2) is exact, and we
call it the (exact) k-order moment dynamics, and
the integer k is called the order of truncation.
Note that the dimensionK of (2) is always larger
than k since there are many moments of each
order. In fact, in general,K is of order nk .

When all chemical reactions have only one
reactant, the term B N� does not appear in (2),
and we say that the exact moment dynamics
are closed. However, when at least one chemical
reaction has two or more reactants, then the term
B N� appears, and we say that the moment dynam-
ics are open since (2) depends on the moments
in N�, which are not part of the state �. When
all chemical reactions are elementary (i.e., with
at most two reactants), then all moments in N� are
exactly of order k C 1.

Moment closure is a procedure by which one
approximates the exact (but open) moment dy-
namics (2) by an approximate (but now closed)
equation of the form

P� D A� C B'.�/; � 2 R
K (3)

where '.�/ is a column vector that approximates
the moments in N�. The function '.�/ is called the
moment closure function, and (3) is called the ap-
proximate kth-order moment dynamics. The goal
of any moment closure method is to construct
'.�/ so that the solution � to (3) is close to the
solution � to (2).

There are three main approaches to construct
the moment closure function '.�/:
1. Matching-based methods directly attempt to

match the solutions to (2) and (3) (e.g., Singh
and Hespanha 2011).

2. Distribution-based methods construct '.�/ by
making reasonable assumptions on the statis-

tical distribution of the molecule counts vector
x (e.g., Gomez-Uribe and Verghese 2007).

3. Large volume methods construct '.�/ by as-
suming that reactions take place on a large
volume (e.g., Van Kampen 2001).

It is important to emphasize that this classifi-
cation is about methods to construct moment
closure. It turns out that sometimes different
methods lead to the same moment closure
function '.�/.

Conclusion and Outlook

We have introduced complementary approaches
to study the evolution of biochemical networks
that exhibit important stochastic effects.

Stochastic simulations permit the construction
of sample paths for the molecule counts, which
can be averaged to study the ensemble behavior
of the system. This type of approach scales well
with the number of molecular species, but can be
computationally very intensive when the number
of reactions is very large. This challenge has
led to the development of approximate stochastic
simulation algorithms that attempt to simulate
multiple reactions in the same simulation step
(e.g., Rathinam et al. 2003).

Solving the CME provides the most detailed
and accurate approach to characterize the ensem-
ble properties of the molecular counts, but for
most biochemical systems such solution cannot
be found in closed form, and numerical methods
scale exponentially with the number of species.
This challenge has led to the development of
algorithms that compute approximate solutions
to the CME, e.g., by aggregating states with
low probability, while keeping track of the error
(e.g., Munsky and Khammash 2006).

Moment dynamics is attractive in that the
number of kth-order moments only scales poly-
nomially with the number of chemical species,
but one only obtains closed dynamics for very
simple biochemical networks. This limitation has
led to the development of moment closure tech-
niques to approximate the open moment dynam-
ics by a closed system of ordinary differential
equations.
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Abstract

This article is concerned with one of the tra-
ditional approaches for stochastic control prob-
lems: Stochastic dynamic programming. Brief
descriptions of stochastic dynamic programming
methods and related terminology are provided.
Two asset-selling examples are presented to il-
lustrate the basic ideas. A list of topics and
references are also provided for further reading.
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Introduction

The term dynamic programming was introduced
by Richard Bellman in the 1940s. It refers to a
method for solving dynamic optimization prob-
lems by breaking them down into smaller and
simpler subproblems.

To solve a given problem, one often needs
to solve each part of the problem (subproblems)
and then put together their solutions to obtain an
overall solution. Some of these subproblems are
of the same type. The idea behind the dynamic
programming approach is to solve each subprob-
lem only once in order to reduce the overall
computation.

The cornerstone of dynamic programming
(DP) is the so-called principle of optimality
which is described by Bellman in his 1957 book
(Bellman 1957):

Principle of Optimality: An optimal policy has
the property that whatever the initial state and
initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state
resulting from the first decision.

This principle of optimality gives rise to DP
(or optimality) equations, which are referred to as
Bellman equations in discrete-time optimization
problems or Hamilton-Jacobi-Bellman (HJB)
equations in continuous-time ones. Such
equations provide a necessary condition for
optimality in terms of the value of the underlying
decision problem. By and large, an optimal
control policy in most cases can be obtained by
solving the associated Bellman (HJB) equation.
In view of this, dynamic programming is a
powerful tool for a broad range of control and
decision-making problems. When the underlying
system is driven by certain type of random

http://dx.doi.org/10.1007/978-1-4471-5058-9_87
http://dx.doi.org/10.1007/978-1-4471-5058-9_93
http://dx.doi.org/10.1007/978-1-4471-5058-9_89
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disturbance, the corresponding DP approach is
referred to as stochastic dynamic programming.

Terminology

The following concepts are often used in stochas-
tic dynamic programming.

An objective function describes the objective
of a given optimization problem (e.g., maximiz-
ing profits, minimizing cost, etc.) in terms of the
states of the underlying system, decision (control)
variables, and possible random disturbance.

State variables represent the information
about the current system under consideration. For
example, in a manufacturing system, one needs
to know the current product inventory in order to
decide how much to produce at the moment. In
this case, the inventory level would be one of the
state variables.

The variables chosen at any time are called the
decision or control variables. For instance, the
rate of production over time in the manufacturing
system is a control variable. Typically, control
variables are functions of state variables. They
affect the future states of the system and the
objective function.

In stochastic control problems, the system is
also affected by random events (noise). Such
noise is referred to system disturbance. The
noise is often not available a priori. Only their
probabilistic distributions are known.

The goal of the optimization problem is to
choose control variables over time so as to either
maximize or minimize the corresponding objec-
tive function. For example, in order to maximize
the overall profits, a manufacturing firm has to
decide how much to produce over time so as to
maximize the revenue by meeting the product
demand and minimize the costs associated with
inventory. The best possible value of the objective
is called value function, which is given in terms
of the state variables.

In the next two sections, we give two examples
to illustrate how stochastic DP methods are used
in discrete and continuous time.

An Asset-Selling Example
(Discrete Time)

Consider a person wants to sell an asset (e.g.,
a car or a house). She is offered an amount
of money every period (say, a day). Let
v0; v1; : : : ; vN�1 denote the amount of these
random offers. Assume they are independent and
identically distributed. At the end of each period,
the person has to decide whether to accept the
offer or reject it. If she accepts the offer, she can
put the money in a bank account and receive a
fixed interest rate r > 0; if she rejects the offer,
she waits till the next period. Rejected offers
cannot be recycled. In addition, she has to sell
her asset by the end of the N th period and accept
the last offer vN�1 if all previous offers have been
rejected. The goal is to decide when to accept an
offer to maximize the overall return at the N th
period.

In this example, for each k, vk is the random
disturbance. The control variables uk take values
in fsell; holdg. The state variables xk are given by
the equations

x0 D 0I xkC1 D
(

sold if uk D sell

vk otherwise:

Let

hN .xN / D
(

xN if xN 6D sold;

0 otherwise:

hk.xk; uk; vk/ D

8

ˆ

<

ˆ

:

.1C r/N�kxk if xk 6D sold
and uk D sell

0 otherwise:
for k D 0; 1; : : : ; N � 1:

Then, the payoff function is given by

Efvkg

 

hN .xN /C
N�1
X

kD0
hk.xk; uk; vk/

!

:

Here, Efvkg represents the expected value over
fvkg. The corresponding value functions Vk.xk/
satisfy the following Bellman equations:
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VN .xN / D
�

xN if xN 6D sold;
0 otherwise:

Vk.xk/ D
�

max
�

.1C r/N�kxk; EVkC1.vk/
�

if xk 6D sold
0 otherwise:

for k D 0; 1; : : : ; N � 1:

The optimal selling rule can be given as (assum-
ing xk 6D sold) (see Bertsekas 1987):

accept the offer

vk�1 D xk if .1C r/N�kxk � EVkC1.vk/;

reject the offer

vk�1 D xk if .1C r/N�kxk < EVkC1.vk/:

Given the distribution for vk , one can compute
Vk backwards and solve the Bellman equations,
which in turn leads to the above optimal selling
rule.

Note that such backward iteration only works
with finite horizon dynamic programming. When
working with an infinite horizon (discounted or
long-run average) payoff function, often used
methods are value iteration (successive approxi-
mation) and policy iteration. The idea is to con-
struct a sequence of functions recursively so that
they converge pointwise to the value function.
For description of these iteration methods, their
convergence properties, and error bound analysis,
we refer the reader to Bertsekas (1987).

Next, we consider a continuous-time asset-
selling problem.

An Asset-Selling Example
(Continuous Time)

Suppose a person wants to sell her asset. The
price xt at time t 2 Œ0;1/ of her asset is given
by a stochastic differential equation

dxt

xt
D �dt C �dwt ;

where � and � are known constants and wt is
the standard Brownian motion representing the
disturbance. Suppose the transaction cost is K
and the discount rate r . She has to decide when to
sell her asset to maximize an expected return. In
this example, the state variable is price xt , control
variable is a function of selling time � , and the
payoff function is given by

J.x; �/ D Ee�r� .x� �K/:

Let V.x/ denote the value function, i.e., V.x/ D
sup� J.x; �/. Then the associate HJB equation is
given by

min
n

rV .x/ � x�
dV.x/

dx
� x2�2

2

d2V .x/

dx2
;

V .x/ �K
o

D 0: (1)

Let

x� D Kˇ

ˇ � 1
;

where

ˇ D 1

�2

0

@

�2

2
� �C

s

�

� � �2

2

�2

C 2r�2

1

A :

Then the optimal selling rule can be given as (see
Øksendal 2007):

�

sell if xt � x�;
hold if xt < x�:

In general, to solve an optimal control problem
via the DP approach, one first needs to solve the
associate Bellman (HJB) equations. Then, these
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solutions can be used to come up with an optimal
control policy. For example, in the above case,
given the value function V.x/, one should hold if

rV .x/ � x�dV.x/
dx

� x2�2

2

d2V .x/

dx2
D 0

and sell when V.x/�K D 0. The threshold level
x� is the exact dividing point between the first
part equals zero and the second part vanishes.
In addition, one can also provide a theoretical
justification in terms of a verification theorem to
show that the solution obtained this way is indeed
optimal (see Fleming and Rishel (1975), Fleming
and Soner (2006), or Yong and Zhou (1999)).

HJB Equation Characterization and
Computational Methods

In continuous-time optimal control problem, one
major difficulty that arises in solving the asso-
ciated HJB equations (e.g., (1)) is the charac-
terization of the solutions. In most cases, there
is no guarantee that the derivatives or partial
derivatives exist. In this connection, the concept
of viscosity solutions developed by Crandall and
Lions in the 1980s can often be used to char-
acterize the solutions and their uniqueness. We
refer the reader to Fleming and Soner (2006) for
related literature and applications. In addition, we
would like to point out that closed-form solutions
are rare in stochastic control theory and difficult
to obtain in most cases. In many applications,
one needs to resort to computational methods.
One typical way to solve an HJB equation is
the finite difference methods. An alternative is
Kushner’s Markov chain approximation methods;
see Kushner and Dupuis (1992).

Summary and Future Directions

In this article, we have briefly stated stochastic
DP methods, showed how they work in two
simple examples, and discussed related issues.
One serious limitation of the DP approach is
the so-called curse of dimensionality. In other

words, the DP does not work for problems with
high dimensionality. Various efforts have been
devoted to search for approximate solutions.
One approach developed in recent years is the
multi-time-scale approach. The idea is to classify
random events according to the frequency of
their occurrence. Frequent occurring events are
grouped together and treated as a single “state”
to achieve the reduction of dimensionality. We
refer the reader to Yin and Zhang (2005, 2013)
for related literature and theoretical development.
Finally, we would like to mention that stochastic
DP has been used in many applications in eco-
nomics, engineering, management science, and
finance. Some applications can be found in Sethi
and Thompson (2000). Additional references are
also provided at the end for further reading.
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Abstract

A stochastic game was introduced by Lloyd
Shapley in the early 1950s. It is a dynamic
game with probabilistic transitions played by
one or more players. The game is played in a
sequence of stages. At the beginning of each
stage, the game is in a certain state. The players
select actions, and each player receives a payoff
that depends on the current state and the chosen
actions. The game then moves to a new random
state whose distribution depends on the previous
state and the actions chosen by the players. The
procedure is repeated at the new state, and the
play continues for a finite or infinite number of
stages. The total payoff to a player is often taken
to be the discounted sum of the stage payoffs

or the limit inferior of the averages of the stage
payoffs.

A learning problem arises when the agent does
not know the reward function or the state transi-
tion probabilities. If an agent directly learns about
its optimal policy without knowing either the
reward function or the state transition function,
such an approach is called model-free reinforce-
ment learning. Q-learning is an example of such
a model.
Q-learning has been extended to a noncooper-

ative multi-agent context, using the framework of
general-sum stochastic games. A learning agent
maintainsQ-functions over joint actions and per-
forms updates based on assuming Nash equilib-
rium behavior over the current Q-values. The
challenge is convergence of the learning protocol.

Keywords

Asynchronous dynamic programming; Dynamic
programming; Equilibrium; Markov decision
process; Q-learning; Reinforcement learning;
Repeated game

Introduction

A Stochastic Game
Definition 1 (Stochastic games) A stochastic
game is a dynamic game with probabilistic
transitions played by one or more players. The
game is played in a sequence of stages. At the
beginning of each stage, the game is in a certain
state. The players select actions, and each player
receives a payoff that depends on the current state
and the chosen actions. The game then moves to
a new random state whose distribution depends
on the previous state and the actions chosen by
the players. The process is repeated at the new
state, and the play continues for a finite or infinite
number of stages.

The total payoff to a player can be defined in
various ways. It depends on the payoffs at each
stage and strategies chosen by players. The aim
of the players is to control their total payoffs in
the game by appropriate actions.
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The notion of a stochastic game was
introduced by Lloyd Shapley (1953) in the
early 1950s. Stochastic games generalize both
Markov decision processes (see also MDP) and
repeated games. A repeated game is equivalent
to a stochastic game with a single state. The
stochastic game is played in discrete time with
past history as common knowledge for all the
players. An individual strategy for a player is a
map which associates with each given history
a probability distribution on the set of actions
available to the players. The players’ actions at
stage n determines the players’ payoffs at this
stage and the state s 2 S at stage nC 1.

Learning
Learning is acquiring new, or modifying and re-
inforcing existing, knowledge, behaviors, skills,
values, or preferences, and may involve synthe-
sizing different types of information. The ability
to learn is possessed by humans, animals, and
some machines which will be later called agents.
In the context of this entry, learning refers to
a particular class of stochastic game theoretical
models.

Definition 2 (Learning in stochastic games) A
learning problem arises when an agent does not
know the reward function or the state transition
probabilities. If the agent directly learns about its
optimal policy without knowing either the reward
function or the state transition function, such
an approach is called model-free reinforcement
learning. Q-learning is an example of such a
model.

Learning models constitute a branch of larger
literature. Players follow a form of behavioral
rule, such as imitation, regret minimization, or re-
inforcement. Learning models are most appropri-
ate in settings where players have a good under-
standing of their strategic environment and where
the stakes are high enough to make forecasting
and optimization worthwhile. The known ap-
proaches are formulated as minimax-Q (Littman
1994), Nash-Q (Hu and Wellman 1998), tinker-
ing with learning rates (“Win or Learn Fast”-
WoLF, Bowling and Veloso 2001) and multiple
timescale Q-learning (Leslie and Collins 2005).

Model of Stochastic Game

Let us assume that the environment is modeled
by the probability space .	;F ;P/. An N -person
stochastic game is described by the objects
.N;S; Xk; Ak; rk; q/ with the interpretation
that:
1. N is a set of players, withjNj D N 2 N.
2. S is the set of states of the game, and it is

finite.
3.

�!
X D X1 � X2 � : : : � XN is the state of
actions, where Xk is a nonempty, finite space
of actions for player k.

4. Ak’s are correspondences from S into
nonempty subsets of Xk . For each s 2 S,
Ak .s/ represents the set of actions available
to player k in state s. For s 2 S, denote�!
A.s/ D A1.s/ � A2.s/ � : : : � AN .s/.

5. rk W S � �!
X ! < is a payoff function for

player k.

6. q is a transition probability from S� �!
X to S,

called the law of motion among states. If s is
a state at a certain stage of the game and the

players select �!x 2 �!
A.s/, then q




� js; �!x
�

is

the probability distribution of the next state of
the game.

The stochastic game generates two processes:
1. f�ngTnD1 with values in S

2. f˛ngTnD1 with values in
�!
X

Strategies

Let H D S1 � �!
X 1 � S2 � � � � be the space of

all infinite histories of the game and Hn D S1 ��!
X1�S2��!

X 2�� � �Sn the histories up to stage n.

Definition 3 A player’s strategy � D f˛ngTnD1
consists of random maps ˛n W 	 � Hn ! X .
In other words, the strategy associates with each
given history a probability distribution dependent
on the set of actions available to the player. If
˛n is dependent on the history only, it is called
deterministic.

The mathematical description of the strategies
can be made as follows:
1. For player i 2 N, a deterministic strategy

specifies a choice of actions for the player at
every stage of every possible history.
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2. A mixed strategy is a probability distribution
over deterministic strategies.

3. Restricted classes of strategies:
1. A behavioral strategy – a mixed strategy

in which the mixing takes place at each
history independently.

2. A Markov strategy – a behavioral strategy
such that for each time t , the distribution
over actions depends only on the current
state, but the distribution may be different
at time t than at time t 0 ¤ t .

3. A stationary strategy – a Markov strategy in
which the distribution over actions depends
only on the current state (not on the time t).

The Total Payoff Types
For any profile of strategies � D .�1; : : : ; �N / of
the players and every initial state s1 D s 2 S, a
probability measure P�

s and a stochastic process
f�n; ˛ng are defined on H in a canonical way,
where the random variables �n and ˛n describe
the state and the actions chosen by the players,
respectively, on the nth stage of the game. Let us
define E�

s the expectation operator with respect
to the probability measure P�

s . For each profile
of strategies � D .�1; : : : ; �N / and every initial
state s 2 S, the following are considered:
1. The expectedT-stage payoff to player k, for

any finite horizon T , defined as

ˆTk .�/.s/ D E�
s

 

T
X

nD1
rk.�n; ˛n/

!

2. The ˇ-discounted expected payoff to player k,
where ˇ 2 .0; 1/ is called the discount factor,
defined as

ˆ
ˇ

k .�/.s/ D E�
s

 1
X

nD1
ˇn�1rk.�n; ˛n/

!

3. The average payoff per unit time for player k
defined as

ˆk.�/.s/ D lim sup
T

1

T
ˆTk .�/.s/

Equilibria
Let �� D �

��
1 ; : : : ; �

�
N

� 2 … be a fixed profile
of the players’ strategies. For any strategy �k 2
…k of player k, we write

�

���k; �k
�

to denote the
strategy profile obtained from�� by replacing��

k

with �k .

Definition 4 (A Nash equilibrium) A strategy
profile �� D �

��
1 ; : : : ; �

�
N

� 2 … is called a
Nash equilibrium (in …) for the average payoff
stochastic game if no unilateral deviations from it
are profitable, that is, for each s 2 S ,

ˆk.�
�/.s/ � ˆk.�

��k; �k/.s/

for every player k and any strategy �k .

Definition 5 (An "-Nash equilibrium) A
strategy profile �� D �

��
1 ; : : : ; �

�
N

�

is called
an "-(Nash) equilibrium of the average payoff
stochastic game if for every k 2 N, we have

ˆk.�
�/.s/ � ˆk.�

��k; �k/.s/ � �;

for the given " > 0 and all �k .

Nash equilibria and "-Nash equilibria are anal-
ogously defined for the T -stage stochastic games,
ˇ-discounted stochastic games, and the average
payoff per unit time stochastic games.

Construction of an Equilibrium
For stochastic games with a finite state space
and finite action spaces, the existence of a sta-
tionary equilibrium has been shown (cf. Herings
and Peeters 2004). The stationary strategies at
time t do not depend on the entire history of
the game up to that time. This allows reduction
of the problem of finding discounted stationary
equilibria in a general n-person stochastic game
to that of finding a global minimum in a non-
linear program with linear constraints. Solving
this nonlinear program is equivalent to solving
a certain nonlinear system for which it is known
that the objective value in the global minimum
is zero (cf. Filar et al. 1991). However, as is
noted by Breton (1991), the convergence of an
optimization algorithm to the global optimum is
not guaranteed.
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The solution of the finite horizon finite
stochastic game can be construct by dynamic
programming (see, e.g., Nowak and Szajowski
1998; Tijms 2012). For discounted games, the
solution construction is based on an equivalence
(the two-person case is presented here for
simplicity):
1.
�

��
1 ; �

�
2

�

is an equilibrium point in the
discounted stochastic game with equilibrium

payoffs



ˆ
ˇ
1


�!� �
�

; ˆ
ˇ
2


�!� �
��

.

2. For each s 2 S, the pair
�

��
1 .s/; �

�
2 .s/

�

constitutes an equilibrium point in the static
bimatrix game (B1.s/,B2.s//with equilibrium

payoffs



ˆ
ˇ
1




s;�!� �
�

; ˆ
ˇ
2




s;�!� �
��

, where

for players k D 1; 2, and pure actions
(a1; a2/ 2 A1.s/�A2.s/, an admissible action
space at state s, the elements of Bk.s/ related
to (a1; a2/

bk.s; a1; a2/ WD .1� ˇ/rk.s; a1; a2/

CˇE.a1;a2/
s ˆ

ˇ

k


�!� �
� (1)

An algorithm for recursive computation of
stationary equilibria in stochastic games can
be derived from (1). It starts with bimatrix
games with ˇ D 0, and then a careful
equilibrium selection process guarantees its
convergence under mild assumptions on the
model (see, e.g., Herings and Peeters 2004).

A Brief History of the Research on
Stochastic Games
The notion of a stochastic game was introduced
by Shapley (1953) in the early 1950s. It is a
dynamic game with probabilistic transitions
played by one or more players. The game is
played in a sequence of stages. At the beginning
of each stage, the game is in a certain state. The
players select actions, and each player receives
a payoff that depends on the current state and
the chosen actions. The game then moves to a
new random state whose distribution depends on
the previous state and the actions chosen by the
players. The process is repeated at the new state,
and the play continues for a finite or an infinite
number of stages. The total payoff to a player is
often taken to be the discounted sum of the stage

payoffs or the limit inferior of the averages of the
stage payoffs.

The theory of nonzero-sum stochastic games
with the average payoffs per unit time for the
players started with the papers by Rogers (1969)
and Sobel (1971). They considered finite state
spaces only and assumed that the transition prob-
ability matrices induced by any stationary strate-
gies of the players are irreducible. Until now, only
special classes of nonzero-sum average payoff
stochastic games have been shown to possess
Nash equilibria (or "-equilibria). A review of
various cases and results for generalization to
infinite state spaces can be found in the survey
paper by Nowak and Szajowski (1998).

Learning in Stochastic Game

The problem of an agent learning to act in an
unknown world is both challenging and interest-
ing. Reinforcement learning has been successful
at finding optimal control policies for a sin-
gle agent operating in a stationary environment,
specifically a Markov decision process. Learning
to act in multi-agent systems offers additional
challenges (see the following surveys: Shoham
and Leyton-Brown 2009, Chap. 7; Weiß and Sen
1996; Buşoniu et al. 2010). We provide here, an
overview of a general idea of learning for single
and multi-agent systems:
1. Goals of single-agent reinforcement learning

are to determine the optimal value and a con-
trol policy which maximizes the payoff. The
model of such a system can be built based on
the framework of Markov decision processes
with discounted payoff. Suppose the policy is
stationary and defined by a function h W S !
X . Such a policy defines what action should
be taken in each state: ˛n.�/ WD h.�/. There are
various ways to learn the optimal policy. The
most straightforward way is based on the Q-

values: Qh.s; a/ D
1
P

jD0
ˇ
jr
jC1. The greedy ac-

tion is a D arg max
a02A.s/

Qh.s; a0/ (see the article

on Q-learning in Reinforcement learning).
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2. Multi-agent reinforcement learning can be
employed to solve a single task, or an agent
may be required to perform a task in an
environment with other agents, either human,
robot, or software ones. In either case, from an
agent’s perspective, the world is not stationary.
In particular, the behavior of the other agents
may change as they also learn to better
perform their tasks. This type of a multi-agent
nonstationary world creates a difficult problem
for learning to act in these environments. Such
a nonstationary scenario can be viewed as a
game with multiple players. In game theory, in
the study of such problems, there is generally
an underlying assumption that the players
have similar adaptation and learning abilities.
Therefore, the actions of each agent affect
the task achievement of the other agents. It
allows to build the value of the game and an
equilibrium strategy profile in following steps.
Stochastic games can be seen as an exten-

sion of the single-agent Markov decision process
framework to include multiple agents whose ac-
tions all impact the resulting rewards and the next
state. They can also be viewed as an extension
of the framework of matrix games. Such a view
emphasizes the difficulty of finding the optimal
behavior in stochastic games since the optimal
behavior of any one agent depends on the be-
havior of other agents. A comprehensive study of
the multi-agent learning techniques for stochas-
tic games does not yet exist. For the interested
reader, there are monographs by Fudenberg and
Levine (1998) and Shoham and Leyton-Brown
(2009) and the special issue of the journal Ar-
tificial Intelligence (Vohra and Wellman 2007),
which could be consulted.

Despite its interesting properties, Q-learning
is a very slow method that requires a long period
of training for learning an acceptable policy. In
practice, to reduce the problem, there are par-
allel computing implementation models of Q-
learning.

Summary and Future Directions

Details concerning solution concepts for stochas-
tic games can be found in Filar and Vrieze (1997).

The refinements of the Nash equilibrium con-
cept have been known in the economic dynamic
games (see Myerson 1978). The Nash equilib-
rium concept may be extended gradually when
the rules of the game are interpreted in a broader
sense, so as to allow preplay or even intraplay
communication. A well-known extension of the
Nash equilibrium is Aumann’s correlated equi-
librium (see Aumann 1987), which depends only
on the normal form of the game. Two other
solution concepts for multistage games have been
proposed by Forges (1986): the extensive form
correlated equilibrium, where the players can
observe private exogenous signals at every stage,
and the communication equilibrium, where the
players are furthermore allowed to transmit in-
puts to an appropriate device at every stage. An
application of the notion of correlated equilibria
for stochastic games can be found in Nowak and
Szajowski (1998).

In economics, in the context of economic
growth problems, Ramsey (1928) has introduced
an overtaking optimality and independently (Ru-
binstein 1979) for repeated games. The crite-
rion has been investigated for some stochastic
games by Carlson and Haurie (1995) and Nowak
(2008), and others. The existence of overtaking
optimal strategies is a subtle issue, and there
are counterexamples showing that one has to be
careful with making statements on overtaking
optimality.

Regarding a stochastic game and learning,
let us mention that the first idea can be found
in the papers by Brown (1951) and Robinson
(1951). Some convergence results for a fictitious
play have been given by Shoham and Leyton-
Brown (2009) in Theorem 7.2.5. An important
example showing non-convergence was given by
Shapley (1964). In multi-person stochastic games
and learning, convergence to equilibria is a ba-
sic stability requirement (see, e.g., Greenwald
and Hall 2003; Hu and Wellman 2003). This
means that the agents’ strategies should eventu-
ally converge to a coordinated equilibrium. Nash
equilibrium is most frequently used, but their
usefulness is suspected. For instance, in Shoham
and Leyton-Brown (2009), there is an argument
that the link between stage-wise convergence to
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Nash equilibria and the performance in stochastic
games is unclear.
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In this short article, we briefly review some
major historical studies and recent progress
on continuous-time stochastic linear-quadratic
(SLQ) control and related mean-variance (MV)
hedging.
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Introduction

A stochastic linear-quadratic (SLQ) control
problem is the optimal control of a linear
stochastic dynamic equation subject to an
expected quadratic cost functional of the system
state and control. As shown in Athans (1971), it is
a typical case of optimal stochastic control both in
theory and application. Due to the linearity of the
system dynamics and the quadratic feature of the
cost functions, the optimal control law is usually
synthesized into a feedback (also called closed)
form of the optimal state, and the corresponding
proportional coefficients are specified by the
associated Riccati equation. In what follows, we
restrict our exposition within the continuous-
time SLQ problem, and further, mainly for the
finite-horizon case.

The initial study on the continuous-time SLQ
problem seems to be due to Florentin (1961).
However, his linear stochastic control system is
assumed to be Gaussian. That is, the system noise
is additive and has neither multiplication with the
state nor with the control. Such a case is usually

termed as the linear-quadratic Gaussian (LQG)
problem, and in the case of complete observation,
the optimal feedback law remains to be invariant
when the white noise vanishes. The continuous-
time partially observable case was first discussed
by Potter (1964) and a more general formulation
was later given by Wonham (1968a). It is proved
that the optimal control can be obtained by the
following two separate steps: (1) generate the
conditional mean estimate of the current state
using a Kalman filter and (2) optimally feed back
as if the conditional mean state estimate was the
true state of the system. This result is referred
to as the certainty equivalence principle or the
strict separation theorem. Different assumptions
were discussed by Tse (1971) for the separation
of control and state estimation.

Wonham (1967, 1968b, 1970) investigated
the SLQ problem in a fairly general systematic
framework. In the first two papers, his stochastic
system is able to admit a state-dependent
noise. Finally, Wonham (1970) considered the
following very general (admitting both state-
and control-dependent noise) linear stochastic
differential system driven by a d -dimensional
Brownian motionW D .W 1;W 2; � � � ;W d /:

Xt D x C
Z t

0

.AsXs C Bsus/ dt

C
Z t

0

d
X

iD1
.C i

s Xs CDi
sus/ dW

i
s ; t 2 Œ0; T �I

and the following cost functional:

J.u/ D EhMXT ;XT i

CE

Z T

0

ŒhQtXt ;Xt i C hNtut ; uti� dt:

Here, T > 0;Xt 2 Rn is the state at time t ,
and ut 2 Rm is the control at time t: Assume
that all the coefficients A;BIC i ;Di ; i D
1; 2; : : : ; d IQ;N are piecewisely continuous
matrix-valued (of suitable dimensions) functions
of time, and M;Qt are nonnegative matrices and
Nt is uniformly positive. Wonham (1970) gave
the following Riccati equation:



1344 Stochastic Linear-Quadratic Control

(

� PKt D A�
t Kt CKtAt C C i�

t KtC
i
t � �t .Kt /.Nt CDi�

t KtD
i
t /�t .Kt/; t 2 Œ0; T /I

KT D M:
(1)

Here, the asterisk stands for transpose, the re-
peated superscripts imply summation from 1 to
d , and the function � is defined by

�t .K/ WD �.NtCDi
t KD

i
t /

�1.KBtCC i�
t KD

i
t /

�

for time t 2 Œ0; T � and any K 2 S nC WD
fall nonnegative n � n matricesg. This Riccati
equation is a nonlinear ordinary differential
equation (ODE). Since the nonlinear term
�t .K/.Nt C Di�

t KD
i
t /�t .K/ in the right-hand

side is not uniformly Lipschitz in K in general,
the standard existence and uniqueness theorem of
ODEs does not directly tell whether this Riccati
equation has a unique continuous solution in
S nC. To solve this issue, Wonham (1970) used
Bellman’s principle of quasilinearization and
constructed the following sequence of successive
linear approximating matrix-valued ODEs.

Define for .t;K; Q�/ 2 Œ0; T � �Rn�n � Rm�n,

Ft .K; Q�/ WD ŒAt C Bt Q���K CKŒAt C Bt Q��
CŒC i

t CDi
t

Q���KŒC i
t CDi

t
Q��

CQt C Q��Nt Q�: (2)

For K 2 S nC, the matrix Ft .K; Q�/ �
Ft .K; �t .K// is nonnegative, that is,

Ft .K; Q�/ � Ft .K; �t.K//; 8 Q� 2 Rm�n: (3)

Riccati equation (1) can then be written into the
following form:

� � PKt D Ft .Kt ; �t .Kt //; t 2 Œ0; T /I
KT D M:

(4)

The iterating linear approximations are therefore
structured as follows: Set K0 � M and for l D
1; 2; : : : ;

� � PKl
t D Ft .K

l
t ; �t .K

l�1
t //; t 2 Œ0; T /I

Kl
T D M:

(5)

Using the above minimal property (3) of
Ft .K; �/ at �t .K/, Wonham showed that the
unique nonnegative solution Kl of ODE (5)
is monotonically decreasing in the sequential
number l D 1; 2; : : : : Using the method
of monotone convergence, the sequence of
solutions fKlg is shown to converge to some
K 2 S nC, which turns out to solve Riccati
equation (1).

The Case of Random Coefficients
and Backward Stochastic Riccati
Equation

Bismut (1976, 1978) are the first studies on
the SLQ problem with random coefficients.
Let fFt ; t 2 Œ0; T �g be the completed
natural filtration of W . When the coefficients
A;BIC i ;Di ; i D 1; 2; : : : ; d IQ;N and M

may be random, with A;BIC i ;Di ; i D
1; 2; : : : ; d IQ;N being Ft -adapted and essen-
tially bounded and M being FT -measurable
and essentially bounded, Bismut (1976, 1978)
used the stochastic maximum principle for
optimal control and derived the following Riccati
equation:

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�dKt D ŒA�
t Kt CKtAt C C i�

t KtC
i
t C C i�

t L
i
t C LitC

i
t

�‰t.Kt ; Lt /.Nt CDi�
t KtD

i
t /‰t .Kt ; Lt /� dt � Li dW i

t ; t 2 Œ0; T /I

KT D M

(6)
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where the function ‰t for t 2 Œ0; T � is defined as
follows:

‰t.K;L/ WD �.Nt CDi
t KD

i
t /

�1.KBt C C i�
t KD

i
t C LiDi

t /
�;8 K 2 S nC;8L

WD .L1; � � � ; Ld / 2 .Rn�n/d :

Peng (1992b) used his stochastic Hamilton-
Jacobi-Bellman equation to the SLQ problem
and also derived the above equation. They both
established the existence and uniqueness of an
adapted solution of backward stochastic Riccati
equation (6) when the function ‰t.K;L/ does
not contain L. However, Bismut used the fixed-
point method, and Peng (1992b) used Bellman’s
principle of quasilinearization and the method
of monotone convergence. Neither methodology
works for the general case of quadratic growth
in the second unknown variable L in the drift
of the stochastic equation. Bismut (1976, 1978)
and Peng (1999) stated the general case as an
open problem. By considering the stochastic
equation for the inverse of Kt , Kohlmann and
Tang (2003a) solved some particular cases where
the function ‰t.K;L/ can depend on L. Tang
(2003) finally solved the general case, using the
method of stochastic flows.

In the general case, the optimal feedback co-
efficient ‰t.Kt ; Lt / at time t depends on Lt in a
linear manner, which is in general not essentially
bounded with respect to .t; !/. Kohlmann and
Tang (2003b) observed that the stochastic integral
process

R �
0
Lit dW

i
t is a BMO-martingale.

Indefinite SLQ Problem

Chen (1985) contains a theory of singular
(the control weighting matrix vanishing in the
quadratic cost functional) LQG control, which
is a particular type of indefinite SLQ problems.
In the deterministic linear-quadratic (LQ) control
theory, the well posedness (i.e., the value function
is finite on Œ0; T � � Rn) of the problem suggests
that the control weighting matrix N in the
quadratic cost functional be positive definite. In
the stochastic case, when Nt is slightly negative,

the SLQ may still be well posed if the control
could also increase the intensity of the system
noise. Peng (1992a) used an indefinite but well-
posed SLQ problem to illustrate his new second-
order stochastic maximum principle. Chen et al.
(1998) gave a deeper study on this feature of
the SLQ problem. Yong and Zhou (1999) gave a
systematic account of the progress around in the
indefinite SLQ problem.

Mean-Variance Hedging

In the theory of finance, Duffie and Richardson
(1991) introduced the SLQ control model to
hedge a contingent claim in an incomplete
market. Schweizer (1992) developed a first
framework for MV hedging, and then it was
extended to a very general setting in Gouriéroux
et al. (1998). Before 2000, the martingale
method was used to solve the MV hedging
problem. Kohlmann and Zhou (2000) began
to use the standard SLQ theory to derive the
optimal hedging strategy for a general contingent
claim in a financial market of deterministic
coefficients, and such a SLQ methodology was
subsequently extended to very general settings
for financial markets by Kohlmann and Tang
(2002, 2003b), Bobrovnytska and Schweizer
(2004), and Jeanblanc et al. (2012). See more
detailed surveys on the literature by Pham (2000),
Schweizer (2010), and Jeanblanc et al. (2012).

Summary and Future Directions

In comparison to the continuous-time determin-
istic LQ theory, the continuous-time SLQ theory
has the following two striking features: An indef-
inite SLQ problem may be well posed, and the
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optimal feedback coefficient may be unbounded
due to its linear dependence on the martingale
part L of the stochastic solution of the Ric-
cati equation. Due to the second feature, the
convergence of the sequence of successive ap-
proximations constructed via Bellman’s quasi-
linearization still remains to be solved in the
general case. This problem partially motivates
Delbaen and Tang (2010) to study the regularity
of unbounded stochastic differential equations
and also may help to explain the necessity of rich
studies on mean-variance hedging and closed-
ness of stochastic integrals with respect to semi-
martingales (as in Delbaen et al. 1994, 1997) in
various general settings.

Cross-References

� Stochastic Maximum Principle

Recommended Reading

The theory of SLQ control in various contexts
is available in textbooks, monographs, or papers.
Anderson and Moore (1971, 1989), Bensoussan
(1992), and Chen (1985) include good accounts
of the LQG control theory. Wonham (1970) in-
cludes a full introduction to the SLQ problem
with deterministic piecewise continuous-time co-
efficients. Bismut (1978) gives a systematic and
readable French introduction to SLQ problem
with random coefficients. Yong and Zhou (1999)
include an extensive discussion on the well-posed
indefinite SLQ problem. Tang (2003) gives a
complete solution of a general backward stochas-
tic Riccati equation.
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Stochastic Maximum Principle

Ying Hu
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Abstract

The stochastic maximum principle (SMP) gives
some necessary conditions for optimality for
a stochastic optimal control problem. We give
a summary of well-known results concern-
ing stochastic maximum principle in finite-
dimensional state space as well as some recent
developments in infinite-dimensional state space.

Keywords

Adjoint process; Backward stochastic differential
equations; Brownian motion; Hilbert-Schmidt
operators

Introduction

The problem of finding sufficient conditions for
optimality for a stochastic optimal control prob-
lem with finite-dimensional state equation had
been well studied since the pioneering work of
Bismut (1976, 1978). In particular, Bismut in-
troduced linear backward stochastic differential
equations (BSDEs) which have become an active
domain of research since the seminal paper of
Pardoux and Peng in 1990 concerning (nonlinear)
BSDEs in Pardoux and Peng (1990).

The first results on SMP concerned only the
stochastic systems where the control domain is
convex or the diffusion coefficient does not con-
tain control variable. In this case, only the first-
order expansion is needed. This kind of SMP
was developed by Bismut (1976, 1978), Kushner
(1972), and Haussmann (1986). It is important to
note that (Bismut 1978) introduced linear BSDE
to represent the first-order adjoint process.

Peng made a breakthrough by establishing the
SMP for the general stochastic optimal control
problem where the control domain need not to be
convex and the diffusion coefficient can contain
the control variable. He solved this general case
by introducing the second-order expansion and
second-order BSDE. We refer to the book Yong
and Zhou (1999) for the account of the theory
of SMP in finite-dimensional spaces and describe
Peng’s SMP in the next section.

Despite the fact that the problem has been
solved in complete generality more than 20 years
ago, the infinite-dimensional case still has impor-
tant open issues both on the side of the generality
of the abstract model and on the side of its
applicability to systems modeled by stochastic
partial differential equations (SPDEs). The last
section is devoted to the recent development of
SMP in infinite-dimensional space.
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Statement of SMP

Formulation of Problem
Let .	;F ;P/ be a complete probability space,
on which anm-dimensional Brownian motionW
is given. Let fFtgt�0 be the natural completed
filtration of W .

We consider the following stochastic
controlled system:

dx.t/ D b.x.t/; u.t//dt C �.x.t/; u.t//dW.t/;

x.0/ D x0; (1)

with the cost functional

J.u.�// D E

�Z T

0

f .x.t/; u.t//dt C h.x.T //



:

(2)

In the above, b; �; f; h are given functions with
appropriate dimensions. .U; d/ is a separable
metric space.

We define

U D fu W Œ0; T � �	
! U j u is fFt gt�0 � adapted g: (3)

The optimal problem is: Minimize J.u.�//
over U .

Any Nu 2 U satisfying

J.Nu/ D inf
u2U J.u/ (4)

is called an optimal control. The corresponding
Nx and . Nx; Nu/ is called an optimal state

process/trajectory and optimal pair, respec-
tively.

In this section, we assume the following stan-
dard hypothesis:

Hypothesis 1 1. The functions b W R
n � U 7!

R
n, � D .�1; � � � ; �m/ W R

n � U 7! R
n�m,

f W R
n � U 7! R and h W R

n 7! R are
measurable functions.

2. For ' D b; �j ; j D 1; � � � ; m; f , the func-
tions x 7! '.x; u/ and x 7! h.x/ are C2,
denoted 'x and 'xx (respectively, hx and hxx),
which are also continuous functions of .x; u/.

3. There exists a constantK > 0 such that

j'xj C j'xxj C jhxj C jhxxj � K;

and

j'j C jhj � K.1C jxj C juj/:

Adjoint Equations
Let us first introduce the following backward
stochastic differential equations (BSDEs).

dp.t/ D �fbx. Nx.t/; Nu.t//T p.t/ (5)

C
m
X

jD1
�jx . Nx.t/; Nu.t//T qj .t/

�fx. Nx.t/; Nu.t//gdt C q.t/dW.t/;

p.T / D �hx. Nx.T //:

The solution .p; q/ to the above BSDE (first-
order BSDE) is called the first-order adjoint
process.

dP.t/ D �fbx. Nx.t/; Nu.t//T P.t/C P.t/bx. Nx.t/; Nu.t//C
m
X

jD1
�jx . Nx.t/; Nu.t//T P.t/�jx . Nx.t/; Nu.t//

C
m
X

jD1
f�jx . Nx.t/; Nu.t//TQj .t/CQj .t/�

j
x . Nx.t/; Nu.t//g

CHxx. Nx.t/; Nu.t/; p.t/; q.t//gdt C
m
X

jD1
Qj .t/dW

j .t/; (6)

P.T / D �hxx. Nx.T //;
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where the HamiltonianH is defined by

H.x; u; p; q/ D hp; b.x; u/i
C trŒqT �.x; u/� � f .x; u/: (7)

The solution .P;Q/ to the above BSDE (second-
order BSDE) is called the second-order adjoint
process.

Stochastic Maximum Principle
Let us now state the stochastic maximum
principle.

Theorem 1 Let . Nx; Nu/ be an optimal pair of
problem. Then there exist a unique couple .p; q/
satisfying (5) and a unique couple .P;Q/ satis-
fying (6), and the following maximum condition
holds:

H. Nx.t/; Nu.t/; p.t/; q.t// �H. Nx.t/; u; p.t/; q.t//

�1
2

tr.f�. Nx.t/; Nu.t// � �. Nx.t/; u/gT P.t/f�. Nx.t/; Nu.t// � �. Nx.t/; u/g/ � 0: (8)

SMP in Infinite-Dimensional Space

The problem of finding sufficient conditions
for optimality for a stochastic optimal control
problem with infinite-dimensional state equation,
along the lines of the Pontryagin maximum
principle, was already addressed in the early
1980s in the pioneering paper (Bensoussan
1983).

Whereas the Pontryagin maximum principle
for infinite-dimensional stochastic control prob-
lems is a well-known result as far as the con-
trol domain is convex (or the diffusion does not
depend on the control; see Bensoussan 1983;
Hu and Peng 1990), for the general case (that
is when the control domain need not be convex
and the diffusion coefficient can contain a control
variable), existing results are limited to abstract
evolution equations under assumptions that are
not satisfied by the large majority of concrete
SPDEs.

The technical obstruction is related to the fact
that (as it was pointed out in Peng 1990) if the
control domain is not convex, the optimal control
has to be perturbed by the so-called spike varia-
tion. Then if the control enters the diffusion, the
irregularity in time of the Brownian trajectories
imposes to take into account a second variation
process. Thus, the stochastic maximum principle
has to involve an adjoint process for the second
variation. In the finite-dimensional case, such
a process can be characterized as the solution

of a matrix-valued backward stochastic differ-
ential equation (BSDE), while in the infinite-
dimensional case, the process naturally lives in a
non-Hilbertian space of operators and its charac-
terization is much more difficult. Moreover, the
applicability of the abstract results to concrete
controlled SPDEs is another delicate step due to
the specific difficulties that they involve such as
the lack of regularity of Nemytskii-type coeffi-
cients in Lp spaces.

Concerning results on the infinite-dimensional
stochastic Pontryagin maximum principle, as we
already mentioned, in Bensoussan (1983) and Hu
and Peng (1990), the case of diffusion indepen-
dent on the control is treated (with the difference
that in Hu and Peng (1990) a complete charac-
terization of the adjoint to the first variation as
the unique mild solution to a suitable BSDE is
achieved).

The paper Tang and Li (1994) is the first one
in which the general case is addressed with, in
addition, a general class of noises possibly with
jumps. The adjoint process of the second vari-
ation .Pt /t2Œ0;T � is characterized as the solution
of a BSDE in the (Hilbertian) space of Hilbert-
Schmidt operators. This forces to assume a very
strong regularity on the abstract state equation
and control functional that prevents application
of the results in Tang and Li (1994) to SPDEs.

Then in the papers by Fuhrman et al. (2012,
2013), the state equation is formulated, only in a
semiabstract way in order, on one side, to cope
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with all the difficulties carried by the concrete
nonlinearities and, on the other, to take advantage
of the regularizing properties of the leading ellip-
tic operator.

Recently in Lü and Zhang (2012), Pt was
characterized as “transposition solution” of
a backward stochastic evolution equation in
L.L2.O//. Coefficients are required to be twice
Fréchet differentiable as operators in L2.O/.
Finally, even more recently in a couple of
preprints (Du and Meng (2012, 2013)), the
processPt is characterized in a similar way as it is
in Fuhrman et al. (2012, 2013). Roughly speaking
it is characterized as a suitable stochastic bilinear
form. As it is the case in Lü and Zhang (2012), in
Du and Meng (2012, 2013) as well, the regularity
assumptions on the coefficients are too restrictive
to apply directly the results in Lü and Zhang
(2012), Du and Meng (2012, 2013) to controlled
SPDEs.
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�Backward Stochastic Differential Equations
and Related Control Problems

�Numerical Methods for Continuous-Time
Stochastic Control Problems

� Stochastic Adaptive Control
� Stochastic Linear-Quadratic Control
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Abstract

Model predictive control (MPC) is a control
strategy that has been used successfully in
numerous and diverse application areas. The
aim of the present entry is to discuss how
the basic ideas of MPC can be extended to
problems involving random model uncertainty
with known probability distribution. We discuss
cost indices, constraints, closed-loop properties,
and implementation issues.
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Introduction

Stochastic model predictive control (SMPC)
refers to a family of numerical optimization
strategies for controlling stochastic systems
subject to constraints on the states and inputs
of the controlled system. In this approach,
future performance is quantified using a cost
function evaluated along predicted state and input
trajectories. This leads to a stochastic optimal
control problem, which is solved numerically to
determine an optimal open-loop control sequence
or alternatively a sequence of feedback control
laws. In MPC, only the first element of this
optimal sequence is applied to the controlled
system, and the optimal control problem is
solved again at the next sampling instant on the
basis of updated information on the system state.
The numerical nature of the approach makes it
applicable to systems with nonlinear dynamics
and constraints on states and inputs, while
the repeated computation of optimal predicted
trajectories introduces feedback to compensate
for the effects of uncertainty in the model.

Robust MPC (RMPC) tackles problems with
hard state and input constraints, which are to
be satisfied for all realizations of model uncer-
tainty. However, RMPC is too conservative in
many applications and stochastic MPC (SMPC)
provides less conservative solutions by handling
a wider class of constraints which are to be
satisfied in mean or with a specified probability.
This is achieved by taking explicit account of the
probability distribution of the stochastic model
uncertainty in the optimization of predicted per-
formance. Constraints limit performance and an
advantage of MPC is that it allows systems to
operate close to constraint boundaries. Stochas-
tic MPC is similarly advantageous when model
uncertainty is stochastic with known probability
distribution and the constraints are probabilistic
in nature.

Applications of SMPC have been reported in
diverse fields, including finance and portfolio
management, risk management, sustainable
development policy assessment, chemical
and process industries, electricity generation
and distribution, building climate control,

andtelecommunications network traffic control.
This entry aims to summarize the theoretical
framework underlying SMPC algorithms.

Stochastic MPC

Consider a system with discrete time model

xC D f .x; u;w/ (1)

z D g.x; u; v/ (2)

where x 2 R
nx and u 2 R

nu are the system
state and control input and xC is the succes-
sor state (i.e., if xi is the state at time i , then
xC D xiC1 is the state at time i C 1). Inputs
w 2 R

nw and v 2 R
nv are exogenous distur-

bances with unknown current and future values
but known probability distributions, and z 2 R

nz

is a vector of output variables that are subject to
constraints.

The optimal control problem that is solved on-
line at each time step in SMPC is defined in terms
of a performance index JN .x; Ou; Ow/ evaluated
over a future horizon of N time steps. Typically
in SMPC JN .x; Ou; Ow/ is a quadratic function of
the following form (in which kxk2Q D xTQx)

JN .x; Ou; Ow/ D
N�1
X

iD0
.k Oxik2Q C kOuik2R/C Vf . OxN /

(3)

for positive definite matrices Q and R, and a
terminal cost Vf .x/ defined as discussed in sec-
tion “Stability and Convergence.” Here Ou WD
fOu0; : : : ; OuN�1g is a postulated sequence of con-
trol inputs and Ox.x; Ou; Ow/ WD f Ox0; : : : ; OxN g is the
corresponding sequence of states such that Oxi is
the solution of (1) at time i with initial state
Ox0 D x, for a given sequence of disturbance
inputs Ow WD f Ow0; : : : ; OwN�1g. Since Ow is a ran-
dom sequence, JN .x; Ou; Ow/ is a random variable,
and the optimal control problem is therefore for-
mulated as the minimization of a cost VN .x; Ou/
derived from JN .x; Ou; Ow/ under specific assump-
tions on Ow. Common definitions of VN .x; Ou/ are
as follows.
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(a) Expected value cost:

VN .x; Ou/ WD Ex.J.x; Ou; Ow//
where Ex.�/ denotes the conditional expecta-
tion of a random variable .�/ given the model
state x.

(b) Worst-case cost, assuming Owi 2 W for all
i with probability 1, for some compact set
W � R

nw :

VN .x; Ou/ WD max
Ow2WN

J.x; Ou; Ow/:

(c) Nominal cost, assuming Owi is equal to some
nominal value, e.g., if Owi D 0 for all i , then

VN .x; Ou/ WD J.x; Ou; 0/;

where 0 D f0; : : : ; 0g.
The minimization of VN .x; Ou/ is performed

subject to constraints on the sequence of outputs
Ozi WD g. Oxi ; Oui ; Ovi /, i � 0. These constraints
may be formulated in various ways, summa-
rized as follows, where for simplicity we assume
nz D 1.
(A) Expected value constraints: for all i ,

Ex.Ozi / � 1:

(B) Probabilistic constraints pointwise in time:

Prx.Ozi � 1/ � p;

for all i and for a given probability p.
(C) Probabilistic constraints over a future hori-

zon:

Prx.Ozi � 1; i D 0; 1; : : : ; N / � p

for a given probability p.
In (B) and (C), Prx.A/ represents the conditional
probability of an event A that depends on the
sequence Ox.x; Ou; Ow/, given that the initial model
state is Ox0 D x; for example the probabil-
ity Prx.Ozi � 1/ depends on the distribution of
f Ow0; : : : ; Owi�1; Ovi g.

The important special case of state constraints
can also be handled by (A)–(C) through
appropriate choice of the function g.x; u; v/. For
example the constraint Prx.h.x/ � 1/ � p,
for a given function h W R

n ! R, can be
expressed in the form (B) with z D g.x; u; v/ WD
h.f .x; u;w// and v WD w in (2).

In common with other receding horizon con-
trol strategies, SMPC is implemented via the fol-
lowing algorithm. At each discrete time step:
(i) Minimize the cost index VN .x; Ou/ over Ou

subject to the constraints on Ozi , i � 0, given
the current system state x.

(ii) Apply the control input u D Ou�
0 .x/ to the sys-

tem, where Ou�.x/ D fOu�
0 .x/; : : : ; Ou�

N�1.x/g
is the minimizing sequence given x.

If the system dynamics (1) are unstable, then
performing the optimization in step (i) directly
over future control sequences can result in a small
set of feasible states x. To avoid this difficulty
the elements of the control sequence Ou are usu-
ally expressed in the form Oui D uT . Oxi / C si ,
where uT .x/ is a locally stabilizing feedback law,
and fs0; : : : ; sN�1g are optimization variables in
step (i).

Constraints and Recursive Feasibility

The constraints in (B) and (C) include hard con-
straints (p D 1) as a special case, but in general
the conditions (A)–(C) represent soft constraints
that are not required to hold for all realizations
of model uncertainty. However, these constraints
can only be satisfied if the state belongs to a
subset of state space, and the requirement (com-
mon in MPC) that the optimization in step (i)
of the SMPC algorithm should remain feasible
if it is initially feasible therefore implies ad-
ditional constraints. For example, the condition
Prx.Oz0 � 1/ � p can be satisfied only if x be-
longs to the set for which there exists Ou0 such
that Prx.g.x; Ou0; Ov0/ � 1/ � p. Hence, soft con-
straints implicitly impose hard constraints on the
model state.

SMPC algorithms typically handle the condi-
tions relating to feasibility of constraint sets in
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one of two ways. Either the SMPC optimization
is allowed to become infeasible (often with penal-
ties on constraint violations included in the cost
index), or conditions ensuring robust feasibility
of the SMPC optimization at all future times
are imposed as extra constraints in the SMPC
optimization.

The first of these approaches has been used
in the context of constraints (C) imposed over
a horizon, for which conditions ensuring future
feasibility are generally harder to characterize in
terms of algebraic conditions on the model state
than (A) or (B). A disadvantage of this approach
is that the closed-loop system may not satisfy the
required soft constraints, even if these constraints
are feasible when applied to system trajectories
predicted at initial time.

The second approach treats conditions for fea-
sibility as hard constraints and hence requires a
guarantee of recursive feasibility, namely, that the
SMPC optimization must remain feasible for the
closed-loop system if it is feasible initially. This
can be achieved by requiring, similarly to RMPC,
that the conditions for feasibility of the SMPC
optimization problem should be satisfied for all
realizations of the sequence Ow. For example, for
given Ox0 D x, there exists Ou satisfying that the
conditions of (B) if

Pr Oxi .g. Oxi ; Oui ; Ovi / � 1/ � p; i D 0; 1; : : : (4a)

Oxi 2 X 8f Ow0; : : : ; Owi�1g 2 W i ; i D 1; 2; : : :

(4b)

where X is the set

X D fx W 9u such that Prx.g.x; u; v/ � 1/ � pg:

Furthermore, an SMPC optimization that
includes the constraints of (4) must remain
feasible at subsequent times (since (4) ensures
the existence of OuC such that each element of
Ox.f .x; Ou0; Ow0/; OuC; OwC/ lies in X for all Ow0 2 W
and all OwC 2 WN ).

Satisfaction of (4) at each time step i on the
infinite horizon i � N can be ensured through
a finite number of constraints by introducing
constraints on the N -step-ahead state OxN . This

approach uses a fixed feedback law, uT .x/, to
define a postulated input sequence after the initial
N -step horizon via Oui D uT . Oxi / for all i � N .
The constraints of (4) are necessarily satisfied for
all i � N if a constraint

OxN 2 XT
is imposed, where XT is robustly positively in-
variant with probability 1 under uT .x/, i.e.

f .x; uT .x/;w/ 2 XT ; 8x 2 XT ; 8w 2 W ;

(5)

and furthermore the constraint Prx.z � 1/ � p is
satisfied at each point in XT under uT .x/, i.e.,

Prx.g.x; uT .x/; v/ � 1/ � p; 8x 2 XT :

Although the recursively feasible constraints
(4) account robustly for the future realizations
of the unknown parameter w in (1), the key
difference between SMPC and RMPC is that
the conditions in (4) depend on the probability
distribution of the parameter v in (2). It also
follows from the necessity of hard constraints
for feasibility that the distribution of w must in
general have finite support in order that feasibility
can be guaranteed recursively. On the other hand
the support of v in the definition of z may be
unbounded (an important exception being the
case of state constraints in which v D w).

Stability and Convergence

This section outlines the stability properties of
SMPC strategies based on cost indices (a)–(c) of
section “Stochastic MPC” and related variants.
We use V �

N .x/ D VN .x; Ou�.x// to denote the
optimal value of the SMPC cost index, and XT
denotes a subset of state space satisfying the
robust invariance condition (5). We also denote
the solution at time i of the system (1) with
initial state x0 D x and under a given feedback
control law u D �.x/ and disturbance sequence
w D fw0;w1; : : :g as xi .x; �;w/.

The expected value cost index in (a) results in
mean-square stability of the closed-loop system
provided the terminal term Vf .x/ in (3) satisfies
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ExVf .f .x; uT .x/;w/ � Vf .x/ � kxk2Q
� kuT .x/k2R

for all x in the terminal set XT . The optimal cost
is then a stochastic Lyapunov function satisfying

ExV
�
N .f .x; Ou�

0 .x/;w// � V �
N .x/ � kxk2Q

� kOu�
0 .x/k2R:

For positive definite Q this implies the closed-
loop system under the SMPC law is mean-square
stable, so that xi .x; Ou�

0 ;w/ ! 0 as i ! 1 with
probability 1 for any feasible initial condition x.
For the case of systems (1) subject to additive
disturbances, the modified cost

VN .x; Ou/ WD Ex

"

N�1
X

iD0
.k Oxik2Q C kOuik2R � lss/

C Vf . OxN /
#

where lss WD limi!1 Ex.kxi .x; uT ;w/k2Q C
kuik2R/ under ui D uT .xi / results in the asymp-
totic bound

lim
n!1

1

n

n�1
X

iD0
Ex.kxi .x; Ou�

0 ;w/k2Q C kuik2R/ � lss

along the closed-loop trajectories of (1) under the
SMPC law ui D Ou�

0 .xi /, for any feasible initial
condition x.

For the worst-case cost (b), if Vf .x/ is de-
signed as a control Lyapunov function for (1),
with

Vf .f .x; uT .x/;w/ � Vf .x/�kxk2Q �kuT .x/k2R

for all w 2 W and all x 2 XT , then V �
N .x/ is a

Lyapunov function satisfying

V �
N .f .x; Ou�

0 .x/;w/ � V �
N .x/�kxk2Q�kOu�

0 .x/k2R

for all w 2 W , implying x D 0 is an asymptot-
ically stable equilibrium of (1) under the SMPC
law u D Ou�

0 .x/. Clearly the system model (1) can-
not be subject to unknown additive disturbances
in this case. However, for the case in which the
system (1) is subject to additive disturbances,
a variant of this approach uses a modified cost
which is equal to zero inside some set of states,
leading to asymptotic stability of this set rather
than an equilibrium point. Also in the context
of additive disturbances, an alternative approach
uses an H1-type cost,

VN .x; Ou/ WD max
Ow2WN

"

N�1
X

iD0
.k Oxik2Q C kOuik2R�

�2k Owik2/C Vf . OxN /
�

for which the closed-loop trajectories of (1) under
the associated SMPC law ui D Ou�

0 .xi / satisfy

1
X

iD0
.kxi .x; Ou�

0 ;w/k2Q C kuik2R/ � �2

1
X

iD0
kwik2 C V �

N .x0/

provided Vf .f .x; uT .x/;w// � Vf .x/ �
.kxk2Q CkuT .x/k2R ��2kwk2/ for all w 2 W and
x 2 XT .

Algorithms employing the nominal cost (c)
typically rely on the existence of a feedback law
uT .x/ such that the system (1) satisfies, in the
absence of constraints and under ui D uT .xi /,
an input-to-state stability (ISS) condition of the
form

1
X

iD0
.kxi .x; uT ;w/k2QCkuik2R/��2

1
X

iD0
kwik2Cˇ

(6)

for some � and ˇ > 0. If Vf .x/ satisfies

Vf .f .x; uT .x/; 0// � Vf .x/ � .kxk2Q
C kuT .x/k2R/
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for all x 2 XT , then the closed-loop system
under SMPC with the nominal cost (c) satisfies
an ISS condition with the same gain � as the
unconstrained case (6) but a different constant ˇ.

Implementation Issues

In general stochastic MPC algorithms require
more computation than their robust counterparts
because of the need to determine the probability
distributions of future states. An important ex-
ception is the case of linear dynamics and purely
additive disturbances, for which the model (1)–
(2) becomes

xC D Ax C Bu C w (7)

z D Cx CDu C v (8)

where A;B;C;D are known matrices. In this
case the expected value constraints (A) and prob-
abilistic constraints (B), as well as hard con-
straints that ensure future feasibility of the SMPC
optimization in each case, can be invoked non-
conservatively through tightened constraints on
the expectations of future states. Furthermore, the
required degree of tightening can be computed
off-line using numerical integration of proba-
bility distributions or using random sampling
techniques, and the online computational load is
similar to MPC with no model uncertainty.

The case in which the matrices A;B;C;D in
the model (7)–(8) depend on unknown stochastic
parameters is more difficult because the predicted
states then involve products of random variables.
An effective approach to this problem uses a
sequence of sets (known as a tube) to recursively
bound the sequence of predicted states via one
step-ahead set inclusion conditions. By using
polytopic bounding sets that are defined as the
intersection of a fixed number of half-spaces,
the complexity of these tubes can be controlled
by the designer, albeit at the expense of con-
servative inclusion conditions. Furthermore, an
application of Farkas’ Lemma allows these sets

to be computed online through linear conditions
on optimization variables.

Random sampling techniques developed
for general stochastic programming problems
provide effective means of handling the soft
constraints arising in SMPC. These techniques
use finite sets of discrete samples to represent
the probability distributions of model states and
parameters. Furthermore bounds are available
on the number of samples that are needed
in order to meet specified confidence levels
on the satisfaction of constraints. Probabilistic
and expected value constraints can be imposed
using random sampling, and this approach has
also been applied to the case of probabilistic
constraints over a horizon (C) through a scenario-
based optimization approach.

Summary and Future Directions

This entry describes how the ideas of MPC and
RMPC can be extended to the case of stochas-
tic model uncertainty. Crucial in this develop-
ment is the assumption that the uncertainty has
bounded support, which allows the assertion of
recursive feasibility of the SMPC optimization
problem. For simplicity of presentation we have
considered the case of full-state feedback. How-
ever, stochastic MPC can also be applied to the
output feedback case using a state estimator if
the probability distributions of measurement and
estimation noise are known.

An area of future development is optimization
over sequences of feedback policies. Although
an observer at initial time cannot know the
future realizations of random uncertainty,
information on Oxi will be available to the
controller i -steps ahead, and, as mentioned in
section “Stochastic MPC” in the context of
feasible initial condition sets, Oui must therefore
depend on Oxi . In general the optimal control
decision is of the form Oui D �i . Oxi /where�i.�/ is
a feedback policy. This implies optimization over
arbitrary feedback policies, which is generally
considered to be intractable since the required
online computation grows exponentially with the
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horizon N . However, approximate approaches to
this problem have been suggested which optimize
over restricted classes of feedback laws, and
further developments in this respect are expected
in the future.

Cross-References

�Distributed Model Predictive Control
�Economic Model Predictive Control
�Nominal Model-Predictive Control
�Robust Model-Predictive Control
�Tracking Model Predictive Control

Recommended Reading

A historical perspective on SMPC is provided
by Åström and Wittenmark (1973), Charnes
and Cooper (1963), and Schwarm and Nikolaou
(1999). A treatment of constraints stated in terms
of expected values can be found, for example, in
Primbs and Sung (2009). Probabilistic constraints
and the conditions for recursive feasibility can
be found in Kouvaritakis et al. (2010) for the
additive case, whereas the general case of multi-
plicative and additive uncertainty is described in
Evans et al. (2012), which uses random sampling
techniques. Random sampling techniques were
developed for random convex programming
(Calafiore and Campi 2005) and were used in
a scenario-based approach to predictive control
in Calafiore and Fagiano (2013). An output
feedback SMPC strategy incorporating state
estimation is described in Cannon et al. (2012).

The use of the expectation of a quadratic cost
and associated mean-square stability results are
discussed in Lee and Cooley (1998). Robust sta-
bility results for MPC based on worst-case costs
are given by Lee and Yu (1997) and Mayne et al.
(2005). Input-to-state stability of MPC based on
a nominal cost is discussed in Marruedo et al.
(2002).

Descriptions of SMPC based on closed-loop
optimization can be found in Lee and Yu (1997)
and Stoorvogel et al. (2007). These algorithms
are computationally intensive and approximate

solutions can be found by restricting the class of
closed-loop predictions as discussed, for exam-
ple, in van Hessem and Bosgra (2002) and Primbs
and Sung (2009).
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Abstract

This article covers stock trading from a feedback
control point of view. To this end, the mechanics
and practical considerations associated with the
use of feedback-based algorithms are explained
for both real-world trading and scenarios involv-
ing numerical simulation.
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Introduction

Stock trading involves the purchase and sale
of shares of ownership in public companies by
an individual or entity such as a pension fund,
mutual fund, hedge fund, or endowment. These
shares are typically traded in markets, such as the
New York Stock Exchange and the NASDAQ,
with the trader’s goal generally being to increase
wealth. The words feedback control in the title of
this article broadly refer to the use of information
such as prices, profits and losses which becomes
available to the trader over time and is used to
make purchase and sales decisions according
to some set of rules. That is, the size of the
stock position being held varies with time. The
mapping from information to the investment
level is called the feedback law and is typically
described with a closed-loop configuration and

classical algorithms which come from the body
of research called control theory; e.g., see Astrom
and Murray (2008).

For simplicity, in this article, we restrict atten-
tion to trading a single stock while noting that the
concepts described herein are readily modified
to address the multi-stock case, i.e., a portfolio.
To our knowledge, the basic idea of viewing
portfolios in a control-theoretic setting goes back
to Merton (1969) where optimal control concepts
are explicitly used; see also Samuelson (1969)
where a less general formulation is considered.
Whereas the theoretical foundations in their work
rely on idealized assumptions such as “friction-
less markets” and “continuous trading,” the main
objective in this article is to describe the practical
considerations and complexities which arise in
real-world stock trading via feedback control and
associated simulations. That is, the exposition
to follow includes no significant idealizing as-
sumptions and emphasizes implementation issues
and constraints which are encountered by the
practitioner; i.e., the purpose of this article is to
describe trading mechanics in a feedback context.
Hence, when we define a trading strategy in the
sequel, we include no significant discussion of
performance metrics related to risk and return;
the reader is referred to the book by Luenberger
(1998) for coverage of these topics.

Feedback Versus Open-Loop Control

We first elaborate on the definitions above by
pointing out the distinction between trading a
stock via feedback control and its alternative,
“open-loop control.” This is done via simple ex-
amples: Suppose an investor buys $1;000 of stock
at time t D 0 with the a priori plan to make no
changes in this position until some prespecified
future time t D T . Then, this buy-and-hold trad-
ing strategy falls within the realm of open-loop
control. If instead this same investor adds $1;000
to the position every month, then this type of
dollar-cost averaging strategy would still fall into
the open-loop category. That is, in both scenarios,
no information is being used to modify the stock
position over time. Finally, suppose this same
investor makes a $1;000 purchase only at the end
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of those months over which the account value
has decreased. Then this type of buy-low investor
is now using a simple feedback control strategy
because gain-loss information is being used to
modify the stock position over time. The ability
of feedback to cope with the uncertainty of future
price movements is an important advantage of its
use in trading.

Closed-Loop Feedback Configuration

To describe stock trading via feedback control in
a more formal manner, the first step involves the
creation of a closed-loop feedback configuration
involving the trader and the broker; see Fig. 1. In
the figure, the feedback controller resides inside
the block labeled “trader.” There is a wide diver-
sity of possible algorithms which the trader can
use to modify the investment level over time. In
some cases, a fixed model for future stock prices
is central to the trading algorithm. Oftentimes, no
stock price model is used at all, and trading sig-
nals are generated based on “price patterns.” This
falls under the umbrella “technical analysis” in
its purest form; e.g., see the books by Kirkpatrick
and Dahlquist (2007) and Lo and Hasanhodzic
(2010) for further details. In any event, regardless
of the trading method used, the time-varying
control signal is the investment level I.t/.

Discrete Time and Short Selling

Since this article aims to describe real-world
stock-trading mechanics as opposed to theoretical

results, we work in discrete time. That is, the
initial investment at time t D 0 is denoted
by I0 D I.0/, and assuming trade updates can
be performed every �t units of time, I.t/ is
replaced by I.k/

:D I.k�t/. We also allow for
the possibility that I.k/ < 0. In this case, the
trader is called a short seller and the following
is meant: Shares valued at I.k/ are borrowed
from the broker and immediately sold in the
market in the hope that the price will decline.
If such a decline occurs, the short seller can
“cover” the position and realize a profit by buying
back the stock and returning the borrowed shares
to the broker. Alternatively, if the stock price
increases, the short seller can continue to hold
the position with a “paper loss” or buy back the
borrowed stock at a loss. For the more classical
case when I.k/ > 0, the trade is said to be
long. Finally, to conclude this section, analogous
to what was done for the investment, we use the
notation p.k/; g.k/, and V.k/ to represent the
stock price, trading gains or losses, and account
value at time t D k�t .

First Ingredient: Price Data

A trading system, be it a simulation or real-
money implementation, involves sequential price
data p.k/. This can be obtained either in real time
or can be historical stock market data. As far as
historical data is concerned, there are various rec-
ognized sources that provide end-of-day “closing
prices,” adjusted for splits and dividends. These
can be downloaded for free from Yahoo! Finance.
Another possibility, available from the Wharton

Stock Trading via
Feedback Control, Fig. 1
Feedback loop involving
trader and broker
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Research Data Services for a subscription fee, is
the comprehensive database of historical prices at
time scales from monthly to tick by tick.

It is also possible to conduct stock-trading
simulations using synthetic data. For example,
one of the most common ways that synthetic
prices are generated is via a geometric Brownian
motion process. That is, a process drift � and
a volatility � > 0, say on an annualized basis,
are provided to the simulator, and prices are
generated sequentially in time via a recursion
such as the Euler scheme with iterates

p.k C 1/ D



1C ��t C ��.k/
p
�t
�

p.k/

where �t is measured in years and �.k/ is a
zero-mean normally distributed random variable
with unit standard deviation. A code used for
simulation of stock trading should also include a
check that p.k/ � 0. The reader is referred to
the textbook by Oksendal (1998) for a detailed
description of this celebrated stochastic price
model.

Second Ingredient: The Feedback Law

The second ingredient for trading is the
previously mentioned mapping taking the
information available to the trader to the amount
invested I.k/. This feedback law is the “heart” of
the controller and allows it to adapt to uncertain
and changing market conditions. Perhaps the
simplest example of a stock-trading feedback law
is obtained using a classical linear time-invariant
controller. In this case, the trader modulates the
level of investment I.k/ in proportion to the
cumulative gains or losses from trading according
to the formula

I.k/ D I0 CKg.k/:

This is an example of technical analysis with no
stock price model being used; see Fig. 2.

Using the feedback law above, the trader ini-
tially invests I.0/ D I0 in the stock and then
begins to monitor the cumulative gain or loss
g.k/ associated with this investment. One begins

with states g.0/ D 0 and I.0/ and subsequently
changes I.k/ if the position begins to either make
or lose money depending on the movement of the
stock. The constant of proportionality K above,
the so-called feedback gain, is used to scale
the investment level. When I0 and K are posi-
tive, I.k/ is initially positive and the trade is long.
Alternatively, when I0 and K are negative, I.k/
is initially negative; hence, the trader is a short
seller. This type of classical linear feedback is an
example of a strategy which falls within the well-
known class of “trend followers.”

As a second example, we consider a long trade
with I0;K > 0 and investor who wishes to limit
the trade to some level Imax > I0. In this case,
the feedback loop includes a nonlinear saturation
block, see Fig. 3, and the update equation for
investment is

I.k/ D minfI0 CKg.k/; Imaxg:
A short-trade version of the above can similarly
be defined and there are also variations of this
scheme, involving the notion of “reset,” which
assures that excessive time is not spent in the
saturation regime when the stock price is falling
after a long period of increase or decrease.

In the formula above and in the sequel, for
simplicity, we allow I.k/ to represent a fractional
number of shares. In practice, this type of frac-
tional holding is only allowed in some restricted
situations such as reinvestment of dividends or
dollar allocations to buy shares of a mutual fund.
However, in cases where a significant number
of shares are being bought or sold, the use of
fractional shares is a good approximation which
can be used for all practical purposes. Finally,
to conclude this section, we mention a subtlety
which is easily overlooked in a simulation: If the
intention of the trader is to be “long,” then I.k/ <
0 should be ruled out by including the condition
I.k/ D maxfI.k/; 0g as part of the control logic.

Order-FillingMechanics

At time t D k�t , the trader specifies the de-
sired investment update to the broker who is
responsible for providing a “fill” via interaction
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Stock Trading via Feedback Control, Fig. 2 Stock trading via linear feedback

Stock Trading via Feedback Control, Fig. 3 Feedback loop with saturation

with the stock exchange. The way this step is
carried out depends on a number of factors: If
the stock being purchased is not heavily traded,
there may be “liquidity” issues which manifest
themselves as “bid-ask spread.” In general, there
will always exist an ask price and a bid price for
any stock in the market. To see how a liquidity
issue can arise, imagine a trader who wishes to
purchase 100 shares at the ask price of $100
per share. If there are only 75 shares available
at $100, the trader will need to pay more for the
second portion of the purchase. For example, if
there are 500 shares available with an ask price
of $102 and transaction costs charged by the
broker are 5 cents per share, the following will
occur: The trader will obtain 100 shares with
two “partial fills” and end up with an average
acquisition cost of $100.55. This type of bid-ask
gap scenario may arise for a large trader such as
a hedge fund. For example, if millions of shares
are being purchased at time t D k�t , the price

of the final shares acquired may be significantly
higher than the initial shares.

In the case when a stock trades with large daily
volume, if large “market movers” such as hedge
funds are not transacting, it can often be assumed
in simulations that the trader is a price taker. That
is, one assumes bid-ask spread is zero and trading
is said to be “highly liquid.” The final point to
mention is that there are different order types
which can be specified by the trader. The three
most common order types are called market,
limit, and stop.

The bottom line on order filling is as follows:
When stock trading is carried out or simulated,
all of the complications above can be handled via
appropriate interpretation of the stock price p.k/
at time t D k�t . This is accomplished as
follows: When a trade is executed, be it with mul-
tiple transactions or as a special order type, we
take p.k/ to be the average weighted price. For
example, to illustrate for a long trade involving
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two transactions, suppose a trader arrives at in-
vestment level I.k/ via two trades: the first is in-
vestment Ia.k/ to purchase shares at price pa.k/
and the second is an investment Ib.k/ to purchase
shares at price pb.k/. Then, the average cost to
acquire these shares is readily calculated to be

p.k/ D pa.k/pb.k/

pa.k/Ib.k/C pb.k/Ia.k/
�I.k/:

where �I.k/ is the amount of the stock transac-
tion at time t D k�t . This quantity is given by

�I.k/ D I.k/� .1C �.k � 1//I.k � 1/

where

�.k � 1/
:D p.k/ � p.k � 1/

p.k � 1/

is the percentage change in the stock price
from k � 1 to k. Subsequently, transactions at
later times t > k�t can be carried out as if all
shares were acquired at price p.k/.

When this multiple-transaction issue arises in
real trading, it may not be possible to predict in
advance what price p.k/will result. For example,
in the 100-share scenario above, the outcome
depended on the bid-ask queue. Notice that this
did not present a problem as far as gain-loss
accounting is concerned; i.e., the average price
per share $100.55 was readily calculated. How-
ever, when it comes to simulation, a model for
“share acquisition” would need to be assumed.
For example, for the case of geometric Brownian
motion described earlier, a common model is
that the trader is a price taker and that liquidity
is sufficiently high so that an order involving
investment �I.k/ is filled at the sample-path
price p.k/; i.e., no averaging over multiple trans-
actions is required.

Gain-Loss Accounting

A broker generally provides frequent updates on
gains and losses g.k/ attributable to stock price
changes. That is,

g.k C 1/ D g.k/C �.k/I.k/� T .k/

where T .k/ is the so-called transaction costs,
most of which consist of the broker’s commis-
sion. These costs are charged for each trade and
are much lower nowadays versus decades ago.
For example, using a discount broker, one can
easily obtain commission rates of less than $5 per
trade, even when a large number of shares are be-
ing transacted. Modulo the transaction costs, the
equation above simply states that the change in
the cumulative gain or loss �g.k/ over a time in-
crement �t is equal to the investment I.k/ mul-
tiplied by the return on the stock �p.k/=p.k/.

Interest Accumulation andMargin
Charges

In many brokerage accounts, it is possible to bor-
row funds or shares from the broker to purchase
or short sell a stock. This is referred to as trading
on margin and the broker will charge an interest
rate on the borrowed funds known as the margin
rate. While in practice there is a limit on how
much money can be borrowed, it can be quite
large; e.g., hedge funds can easily obtain access
to many multiples of their account value. Another
possibility is that the trader is not fully invested
and the account contains “idle cash” on which
interest, paid by the broker, accrues.

To cover both the interest and margin accrual,
we work with the account cash, surplus or short-
fall, to determine whether interest is accrued or
margin charges need to be paid. For a long trade
with I.k/ > 0 for the period �t , we work with
the broker interest rate, often called the risk-free
return, rf > 0, or the broker margin rate m to
obtain the interest accrual

A.k/ D rf maxfV.k/� I.k/; 0g
CmminfV.k/ � I.k/; 0g:

For the case of a short trade with I.k/ < 0,
the formula above will only hold for traders with
very large accounts who have sufficient leverage
with the broker so as to be allowed to capitalize
on the proceeds of a short sale. For the typical
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small- to medium-size trading account, the short-
sale proceeds are generally “held aside” and the
account is “marked to market” on a daily basis.
As a result, the A.k/ equation above needs to be
revised to account for “cash in reserve” and turns
out to provide smaller interest rate accruals to the
trader.

Finally, the broker’s report generally includes
the entire value of the account V.k/. This number
is made up of the stock positions, either idle or
borrowed cash and “dividends”D.k/ which may
be paid periodically to the trader by the company
whose shares are being held. Thus, the broker
performs the calculation

V.k C 1/ D V.0/C g.k/C A.k/CD.k/

and a trader can typically see these updates in real
time.

Collateral Requirements and
Margin Calls

When formulating the simulation model for trad-
ing, it is important to take account of the fact
that the size of the trader’s investment I.k/ is
limited by the collateral requirements of the bro-
ker. For example, when a long stock position
falls dramatically, a trader on margin may find
that I.k/ exceeds the account value V.k/ by too
large an amount to meet the broker’s collateral
requirements. In this case, new transactions are
“stopped” and a so-called in guates results; i.e.,
to avoid forced liquidation of positions to bring
the account back into compliance, the trader
must deposit new assets or cash into the account
within a short prespecified time period. In simu-
lations, for a brokerage account with total market
value V.k/, a constraint of the sort

jI.k/j � �V.k/

can be imposed with � D 2 being rather typical.

Simulation Example

We provide a simulation example illustrating the
use of control in stock trading and its ability to
adapt to the inherent uncertainty in stock price

movements. Figure 4 shows the daily closing
prices from January 1, 2008 to June 1, 2012
of Google (GOOG), traded on the NASDAQ
stock exchange. The figure also includes the 50-
day simple moving average pav.k/ which will
be used with a control law whose investment
level depends on sign changes in p.k/ � pav.k/;
see Brock et al. (1992) where moving average
crossing strategies are studied. There is no trading
during the first 50 days while the moving average
is being initialized. Subsequently, the trading be-
gins at the first instant k D k� when the moving
average has been crossed. For k � k�, the control
law for the investment level is given by

I.k/ D I0signfp.k/� pav.k/g

where I0 D $20;000 is used in the simulation. To
make the example more interesting, we assume
initial account value V.0/ D $10;000. Hence,
the issue of margin is immediately in play. In
the simulation, we use risk-free rate rf D 0:015

corresponding to 1:5% per annum and a margin
rate m D 0:03 corresponding to 3% per annum.
It is assumed that interest may be obtained on
the proceeds of short sales at the risk-free rate.
Google does not pay a dividend, so no adjustment
of closing prices is required. A transaction cost of
$3 per trade is charged. This charge occurs every
day of trading because the position is adjusted
daily to target I.k/ D ˙$20; 000. We assume the
broker imposes a collateral constraint of jI.k/j �
2V.k/ to limit I.k/ when sufficient funds are
not available. Furthermore, we assume that it is
possible to hold a fractional number of shares and
that a “market-on-close” order each day is filled
at the closing price. Finally, Fig. 4 also shows the
evolution of the account value V.k/ over time.

Summary and Future Directions

This article concentrated entirely on trading me-
chanics and simulation using strategies based
on control-theoretic considerations. In a future
version of the encyclopedia, it would be desirable
to include a “companion” article which covers
the topic of performance metrics. That is, once
trading or simulation is complete, it is natural to
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Stock Trading via Feedback Control, Fig. 4 Feedback trading of Google

ask whether the algorithm used was successful or
not. To this end, there is a large body of literature
covering measures for risk and return which are
important for performance strategy evaluation
purposes. One highlight of this literature is the
paper by Artzner et al. (1999) on coherent risk
measures, a topic pursued in current research.
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Recommended Reading

In addition to the basic references cited in the
previous sections, there is a growing body of
literature on stock trading and financial markets
with a control-theoretic flavor. In contrast to this
article, the focal point in this literature is largely
performance-related issues rather than the “nuts
and bolts” of stock-trading mechanics which are
described here. For the uninitiated reader, one
starting reference for an overview of the liter-
ature would be the tutorial paper by Barmish
et al. (2013). To provide a capsule summary,
it is convenient to subdivide the literature into
two categories: The first category, called model-
based approaches, involves an underlying param-
eterized model structure which may or may not
be completely specified. The second category of
papers, called model-free approaches, falls under
the previously mentioned umbrella of technical
analysis. That is, the stock price is viewed as an
external input with no predictive model for its
evolution. In addition, no parameter estimation is
involved and feedback trade signals are generated
based on some observed “patterns” of prices or
trading gains. Thus, this line of research high-
lights the ability of feedback to cope with the
uncertainty of an unmodelled price process.
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Nash Equilibrium

Abstract

This chapter introduces strategic form games,
which provide a framework for the analysis of
strategic interactions in multi-agent environ-
ments. We present the main solution concept
in strategic form games, Nash equilibrium, and
provide tools for its systematic study. We present
fundamental results for existence and uniqueness
of Nash equilibria and discuss their efficiency
properties. We conclude with current research
directions in this area.

Keywords

Efficiency; Existence; Nash equilibrium; Strate-
gic form games; Uniqueness

Introduction

Many problems in communication, decision, and
technological networks as well as in social and
economic situations depend on human choices,
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which are made in anticipation of the behavior
of the others in the system. Examples include
how to map your drive over a road network,
how to use the communication medium, and how
to choose strategies for resource use and more
conventional economic, financial, and social de-
cisions such as which products to buy, which
technologies to invest in, or who to trust. The
defining feature of all of these interactions is
the dependence of an agent’s objective (payoff,
utility, or survival) on others’ actions. Game the-
ory focuses on formal analysis of such strategic
interactions. Here, we will review strategic form
games, which focus on static game-theoretic in-
teractions and present the relevant solution con-
cept.

Strategic FormGames

A strategic form game is a model for a static game
in which all players act simultaneously without
knowledge of other players’ actions.

Definition 1 (Strategic Form Game) A strate-
gic form game is a triplet
hI; .Si /i2I ; .ui /i2Ii where:
1. I is a finite set of players, I D f1; : : : ; I g.
2. Si is a nonempty set of available actions for

player i .
3. ui W S ! R is the utility (payoff) function of

player i where S D Q

i2I Si .

We will use the terms action and (pure) strat-
egy interchangeably. (We will later use the term
“mixed strategy” to refer to randomizations over
actions.) We denote by si 2 Si an action for
player i , and by s�i D Œsj �j¤i a vector of actions
for all players except i . We refer to the tuple
.si ; s�i / 2 S as an action (strategy) profile or out-
come. We also denote by S�i D Q

j¤i Sj the set
of actions (strategies) of all players except i . Our
convention throughout will be that each player i
is interested in action profiles that “maximize” his
utility function ui .

The next two examples illustrate strategic
form games with finite and infinite strategy sets.

Example 1 (Finite Strategy Sets) We consider a
two-player game with finite strategy sets. Such a

game can be represented in matrix form, where
the rows correspond to the actions of player 1 and
columns represent the actions of player 2. The
cell indexed by row x and column y contains a
pair .a; b/, where a is the payoff to player 1 and
b is the payoff to player 2, i.e., a D u1.x; y/ and
b D u2.x; y/. This class of games is sometimes
referred to as bimatrix games. For example, con-
sider the following game of “Matching Pennies.”

HEADS TAILS

HEADS �1; 1 1;�1
TAILS 1;�1 �1; 1

Matching Pennies

This game represents “pure conflict” in the
sense that one player’s utility is the negative of
the utility of the other player, i.e., the sum of
the utilities for both players at each outcome is
“zero.” This class of games is referred to as zero-
sum games (or constant-sum games) and has been
studied extensively in the game theory literature
(Basar and Olsder 1995).

Example 2 (Infinite Strategy Sets) We next
present a game with infinite strategy sets. We
consider a simple network game where two
players send data or information flows over a
communication network represented by a single
link. Each player i derives a value for sending si
units of flow over the link given by

vi .si / D
(

ai si � s2i
2

if si � ai ;
a2i
2

if si � ai ;

where ai 2 Œ0; 1� is a player-specific scalar. Each
player also incurs a per-flow delay or latency cost,
due to congestion on the link, represented by the
function l.s/ D s, where s is the total flow on the
link, i.e., s D s1 C s2 (see Fig. 1). The resulting
interactions can be represented by the strategic
form game hI; .Si /; .ui /i, which consists of:
1. A set of two players, I D 1; 2

2. A strategy set Si D Œ0; 1� for each player i ,
where si 2 Si represents the amount of flow
player i sends over the link

3. A utility function ui for each player i given
by value derived from sending si units of flow
minus the total latency cost, i.e.,
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Strategic Form Games and Nash Equilibrium, Fig. 1
A network game with two players

ui .s1; s2/ D vi .si /� si l.s1 C s2/:

Nash Equilibrium

We next introduce the fundamental solution con-
cept for strategic form games, Nash equilibrium.
A Nash equilibrium captures a steady state of
the play in a strategic form game such that each
player acts optimally given their “correct” con-
jectures about the behavior of the other players.

Definition 2 (Nash Equilibrium) A (pure strat-
egy) Nash equilibrium of a strategic form game
hI; .Si /; .ui /i2Ii is a strategy profile s� 2 S such
that for all i 2 I, we have

ui .s
�
i ; s

��i / � ui .si ; s
��i / for all si 2 Si :

Hence, a Nash equilibrium is a strategy profile
s� such that no player i can profit by unilaterally
deviating from his strategy s�

i , assuming every
other player j follows his strategy s�

j . The def-
inition of a Nash equilibrium can be restated in
terms of best-response correspondences.

Definition 3 (Nash Equilibrium – Restated)
Let hI; .Si /; .ui /i2Ii be a strategic form game.
For any s�i 2 S�i , consider the best-response
correspondence of player i , Bi .s�i /, given by

Bi.s�i / D fsi 2 Si j ui .si ; s�i / � ui .s
0
i ; s�i /

for all s0
i 2 Si g:

We say that an action profile s� is a Nash
equilibrium if

s�
i 2 Bi.s��i / for all i 2 I:

Thus, if we define the best-response corre-
spondence B.s/ D ŒBi .s�i /�i2I , the set of Nash
equilibria is given by the set of fixed points of
B.s/. Below, we give two examples of games
with pure strategy Nash equilibria.

Example 3 (Battle of the Sexes) Consider a two-
player game with the following payoff structure:

BALLET SOCCER

BALLET 2; 1 0; 0

SOCCER 0; 0 1; 2

Battle of the Sexes

This game, referred to as the Battle of the
Sexes game, represents a scenario in which the
two players wish to coordinate their actions but
have different preferences over their actions.
This game has two pure strategy Nash equilibria,
i.e., the strategy profiles (BALLET, BALLET) and
(SOCCER, SOCCER).

Example 4 Recall the network game given in
Example 2. To simplify the computations, let us
assume without loss of generality that a1 � a2 �
a1
3

. It can be seen that the best-response functions
(single-valued in this case) of the players are
given by

Bi .s�i / D max
n

0;
ai � s�i

3

o

for i D 1; 2:

The unique pure strategy Nash equilibrium of this
game is the fixed point of these functions given by

.s�
1 ; s

�
2 / D

�

3a1 � a2

8
;
3a2 � a1

8

�

:

Mixed Strategy Nash Equilibrium
Consider the two-player “penalty kick” game
between a penalty taker and a goalkeeper that
has the same payoff structure as the matching
pennies:

LEFT RIGHT

LEFT 1;�1 �1; 1
RIGHT �1; 1 1;�1

Penalty kick game
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This game does not have a pure strategy Nash
equilibrium. It can be verified that if the penalty
taker (column player) commits to a pure strategy,
e.g., chooses LEFT, then the best response of
the goalkeeper (row player) would be to choose
the same side leading to a payoff of �1 for the
penalty taker. In fact, the penalty taker would be
better off following a strategy which randomizes
between LEFT and RIGHT, ensuring that the goal-
keeper cannot perfectly match his action. This
is the idea of “randomized” or mixed strategies
which we will discuss next.

We first introduce some notation. Let ˙i de-
note the set of probability measures over the pure
strategy (action) set Si . We use �i 2 ˙i to denote
the mixed strategy of player i . When Si is a
finite set, a mixed strategy is a finite-dimensional
probability vector, i.e., a vector whose elements
denote the probability with which a particular
action will be played. For example, if Si has two
elements, the set of mixed strategies ˙i is the
one-dimensional probability simplex, i.e., ˙i D
f.x1; x2/ j xi � 0; x1 C x2 D 1g. We use
� 2 ˙ D Q

i2I ˙i to denote a mixed strategy
profile. Note that this implicitly assumes that
players randomize independently. We similarly
denote ��i 2 ˙�i D Q

j¤i ˙j .
Following von Neumann-Morgenstern

expected utility theory, we extend the payoff
functions ui from S to ˙ by

ui .�/ D
Z

S

ui .s/d�.s/;

i.e., the payoff of a mixed strategy � is given by
the expected value of pure strategy payoffs under
the distribution � .

We are now ready to define the mixed strategy
Nash equilibrium.

Definition 4 (Mixed Strategy Nash Equilib-
rium) A mixed strategy profile �� is a mixed
strategy Nash equilibrium if for each player i ,

ui .�
�
i ; �

��i / � ui .�i ; �
��i / for all �i 2 ˙i :

Note that since ui .�i ; ���i / D R

Si
ui .si ; ���i /

d�i .si /, it is sufficient to check only pure strategy

“deviations” when determining whether a given
profile is a Nash equilibrium. This leads to the
following characterization of a mixed strategy
Nash equilibrium.

Proposition 1 A mixed strategy profile �� is a
mixed strategy Nash equilibrium if and only if for
each player i ,

ui .�
�
i ; �

��i / � ui .si ; �
��i / for all si 2 Si :

We also have the following useful character-
ization of a mixed strategy Nash equilibrium in
finite strategy set games.

Proposition 2 Let G D hI; .Si /i2I ; .ui /i2Ii be
a strategic form game with finite strategy sets.
Then, �� 2 ˙ is a Nash equilibrium if and only if
for each player i 2 I, every pure strategy in the
support of ��

i is a best response to ���i .

Proof Let �� be a mixed strategy Nash equi-
librium, and let E�

i D ui .��
i ; �

��i / denote the
expected utility for player i . By Proposition 1, we
have

E�
i � ui .si ; �

��i / for all si 2 Si :

We first show that E�
i D ui .si ; ���i / for all si in

the support of ��
i (combined with the preceding

relation, this proves one implication). Assume to
arrive at a contradiction that this is not the case,
i.e., there exists an action s0

i in the support of ��
i

such that ui .s0
i ; �

��i / < E�
i . Since ui .si ; ���i / �

E�
i for all si 2 Si , this implies that

X

si2Si
��
i .si /ui .si ; �

��i / < E�
i ;

which is a contradiction. The proof of the other
implication is similar and is therefore omitted.

It follows from this characterization that every
action in the support of any player’s equilib-
rium mixed strategy yields the same payoff. This
characterization extends to games with infinite
strategy sets: �� 2 ˙ is a Nash equilibrium if and
only if for each player i 2 I, given ���i , no action
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in Si yields a payoff that exceeds his equilibrium
payoff, and the set of actions that yields a payoff
less than his equilibrium payoff has ��

i -measure
zero.

Example 5 Let us return to the Battle of the
Sexes game.

BALLET SOCCER

BALLET 2; 1 0; 0

SOCCER 0; 0 1; 2

Battle of the Sexes

Recall that this game has 2 pure strategy Nash
equilibria. Using the characterization result in
Proposition 2, we show that it has a unique
mixed strategy Nash equilibrium (which is not a
pure strategy Nash equilibrium). First, by using
Proposition 2 (and inspecting the payoffs), it
can be seen that there are no Nash equilibria
where only one of the players randomizes over
its actions. Now, assume instead that player 1
chooses the action BALLET with probability p 2
.0; 1/ and SOCCER with probability 1 � p and
that player 2 chooses BALLET with probability
q 2 .0; 1/ and SOCCER with probability 1 � q.
Using Proposition 2 on player 1’s payoffs, we
have the following relation:

2 � q C 0 � .1 � q/ D 0 � q C 1 � .1 � q/:

Similarly, we have

1 � p C 0 � .1 � p/ D 0 � p C 2 � .1 � p/:

We conclude that the only possible mixed strat-
egy Nash equilibrium is given by q D 1

3
and

p D 2
3
.

Existence of Nash Equilibrium

The first question that one contemplates in ana-
lyzing a strategic form game is whether it has a
pure or mixed strategy Nash equilibrium. While
it may be possible to explicitly construct a Nash
equilibrium (using either computational means or
characterization results), this may be a tedious
task in the case of both large finite strategy
set games or infinite strategy set games with

complicated utility functions. One is therefore of-
ten interested in establishing existence of an equi-
librium, using conditions on the utility functions
and constraint sets, before trying to understand
its properties. In the sequel, we present results
on existence of an equilibrium for games with
finite and infinite strategy sets. The proofs of
such existence results typically use fixed point
arguments on the best-response correspondences
of the players. They are omitted here and can be
found in graduate-level game theory text books
(see Fudenberg and Tirole 1991 and Myerson
1991).

Finite Strategy Set Games
We have seen that while the matching pennies
game (and the penalty kick game with the same
payoff structure) does not have a pure strategy
Nash equilibrium, it has a mixed strategy Nash
equilibrium. The next theorem, states that this
existence result extends to all finite strategy set
games.

Theorem 1 (Nash) Every strategic form game
with finite strategy sets has a mixed strategy Nash
equilibrium.

Infinite Strategy Set Games
A stronger result on existence of a pure strategy
Nash equilibrium can be established in infinite
strategy set games under some topological con-
ditions on the utility functions and constraint
sets (see Debreu 1952, Fan 1952, and Glicksberg
1952).

Theorem 2 (Debreu, Fan, Glicksberg) Con-
sider a strategic form game hI; .Si /i2I ; .ui /i2Ii
with infinite strategy sets such that for each
i 2 I:
1. Si is convex and compact.
2. ui .si ; s�i / is continuous in s�i .
3. ui .si ; s�i / is continuous and quasiconcave in
si . (LetX be a convex set. A function f W X !
R is quasiconcave if every upper level set of
the function, i.e., fx 2 X j f .x/ � ˛g for
every scalar ˛, is a convex set (see Bertsekas
et al. 2003).)

The game has a pure strategy Nash equilibrium.
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Note that Theorem 1 is a special case of this
result. For games with finite strategy sets, mixed
strategy sets are simplices and hence are convex
and compact, and utilities are linear in (mixed)
strategies; hence, they are concave functions of
(mixed) strategies (and continuous functions of
mixed strategy profiles).

The next example shows that quasiconcavity
cannot be dispensed with in the previous exis-
tence result.

Example 6 Consider the game where two players
pick a location s1; s2 2 R

2 on the circle. The
payoffs are

u1.s1; s2/ D �u2.s1; s2/ D d.s1; s2/;

where d.s1; s2/ denotes the Euclidean distance
between s1ands2 2 R

2. It can be verified that
this game does not have a pure strategy Nash
equilibrium. However, the strategy profile where
both players mix uniformly on the circle is a
mixed strategy Nash equilibrium.

Without quasiconcavity, one can establish the
following existence result (see Glicksberg 1952).

Theorem 3 (Glicksberg) Consider a strategic
form game hI; .Si /i2I ; .ui /i2Ii, where the Si
are nonempty compact metric spaces and the
ui W S ! R are continuous functions. The game
has a mixed strategy Nash equilibrium.

Uniqueness of Nash Equilibrium

Another important question that arises in the
analysis of strategic form games is whether the
Nash equilibrium is unique. This is important for
the predictive power of Nash equilibrium since
with multiple equilibria, the outcome of the game
cannot be uniquely pinned down. The following
result by Rosen provides sufficient conditions
for uniqueness of an equilibrium in games with
infinite strategy sets (see Rosen 1965). (Except
for games that are strictly dominant solvable,
there are no general uniqueness results for finite
strategic form games.)

We first introduce some notation to state this
result. Given a scalar-valued function f W Rn !
R, we use the notation rf .x/ to denote the
gradient vector of f at point x, i.e.,

rf .x/ D
�

@f .x/

@x1
; : : : ;

@f .x/

@xn

�T

:

Given a scalar-valued function F W QI
iD1Rmi !

R, we use the notation riF .x/ to denote the
gradient vector of F with respect to xi at point
x, i.e.,

riF .x/ D
�

@F.x/

@x1i
; : : : ;

@F.x/

@x
mi
i

�T

:

We use the notation rF.x/ to denote

rF.x/ D Œr1F1.x/; : : : ;rI FI .x/�
T : (1)

We assume that the strategy set Si of each
player i is given by

Si D fxi 2 R
mi j hi .xi / � 0g; (2)

where hi W R
mi 7! R is a concave function.

(Since hi is concave, it follows that the set Si is
a convex set.) The next definition introduces the
key condition used in establishing the uniqueness
of a pure strategy Nash equilibrium.

Definition 5 We say that the utility functions
.u1; : : : ; uI / are diagonally strictly concave for
x 2 S , if for every x�; Nx 2 S , we have

. Nx � x�/Tru.x�/C .x� � Nx/Tru. Nx/ > 0:

We can now state the result on uniqueness of
pure strategy Nash equilibrium in strategic form
games.

Theorem 4 (Rosen) Consider a strategic form
game hI; .Si /; .ui /i. For all i 2 I, assume that
the strategy sets Si are given by Eq. (2), where
hi is a concave function, and there exists some
Qxi 2 R

mi such that hi . Qxi / > 0. Assume also that
the utility functions .u1; : : : ; uI / are diagonally
strictly concave for x 2 S . Then, the game has
a unique pure strategy Nash equilibrium.
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We next provide a tractable sufficient con-
dition for the utility functions to be diagonally
strictly concave. Let U.x/ denote the Jacobian of
ru.x/ [see Eq. (1)]. Specifically, if the xi are all
1-dimensional, then U.x/ is given by

U.x/ D

0

B

B

B

@

@2u1.x/
@x21

@2u1.x/
@x1@x2

� � �
@2u2.x/
@x2@x1

: : :

:::

1

C

C

C

A

:

Proposition 3 (Rosen) For all i 2 I, assume
that the strategy sets Si are given by Eq. (2),
where hi is a concave function. Assume that the
symmetric matrix .U.x/ C UT .x// is negative
definite for all x 2 S , i.e., for all x 2 S , we
have

yT .U.x/C UT .x//y < 0; 8 y ¤ 0:

Then, the payoff functions .u1; : : : ; uI / are diag-
onally strictly concave for x 2 S .

Rosen’s sufficient conditions for uniqueness
are quite strong. Recent work has extended such
uniqueness results to hold under weaker condi-
tions using differential topology tools. The main
idea is to provide sufficient conditions so that
the indices of all stationary points can be shown
to be positive, which from a generalization of
the Poincare-Hopf theorem (Simsek et al. 2007,
2008) implies that there exists a unique equilib-
rium (see Simsek et al. 2005 for applications of
this methodology to several network games).

Efficiency of Nash Equilibria

Because the Nash equilibrium corresponds to the
fixed point of the best-response correspondences
of the players, there is no presumption that it is
efficient or maximizes any well-defined weighted
sum of utility functions of the players. This fact
is clearly illustrated by the well-known Prisoner’s
Dilemma game. For some a > 0; b > 0, and
c > 0 with a > b, the payoff matrix is given by:

DON’T CONFESS CONFESS

DON’T CONFESS a; a b � c; aC c

CONFESS aC c; b � c b; b

Prisoner’s Dilemma

This game, generally used for capturing the
dilemma of cooperation among selfish agents,
has a unique (pure strategy) Nash equilibrium.
(In fact each player has a dominant strategy, see
Fudenberg and Tirole 1991, which is (CONFESS,
CONFESS)). This clearly illustrates two aspects
of the inefficiencies that arise in Nash equilib-
ria. First, the unique Nash equilibrium is Pareto
inferior meaning that if both players cooperated
and chose DON’T CONFESS, they would both
obtain the higher payoff of a. Second, the extent
of inefficiency can be arbitrarily large based on
the values of a and b. We can capture this by the
efficiency loss (or Price of Anarchy as known in
the literature) defined as

Efficiency LossD inf
parameters

P

i ui .equilibrium/
P

i ui .social optimum/
;

where the social optimum is the strategy profile
that maximizes the sum of utility functions. In the
preceding example, this is clearly

inf
a;b

b

a
D 0;

showing that efficiency loss can be arbitrarily
large. In problems that have more structure, the
efficiency loss can be bounded away from zero. A
well-known example is by Pigou, which showed
that in a network routing game where the conges-
tion penalty can be described by linear latency
functions (see Example 2), the efficiency loss
is 3/4 (Pigou 1920). Roughgarden and Tardos
in an important contribution (Roughgarden and
Tardos 2000) showed that this is a lower bound
for such routing games over all possible network
topologies.

Summary and Future Directions

This article has provided an introduction to the
basics of strategic form games. After defining
the concept of Nash equilibrium, which is the
basis of much of recent game theory, we have



Strategic Form Games and Nash Equilibrium 1371

S

presented fundamental results on its existence
and uniqueness. We also briefly discussed issues
of efficiency of Nash equilibria.

Though game theory is a mature field, there
are still several important areas for inquiry. The
first is a more systematic analysis and catego-
rization of classes of games by their equilibrium
and efficiency properties. Recent work by Can-
dogan et al. (2010, 2011, 2013) provides tools
for systematically analyzing equivalence classes
of games that may be useful for such an investi-
gation. The second area that is very much active
concerns computational issues, which we have
not considered here. Recent literature showed
that computation of Nash equilibria in finite strat-
egy set games is potentially hard and focused
on developing algorithms for computing approx-
imate Nash equilibria (see Daskalakis et al. 2006
and Lipton et al. 2003). Ongoing research in
this area focuses on infinite strategy set games
and exploits special structure to develop algo-
rithms for computing (exact and approximate)
Nash equilibria (Parrilo 2006; Stein et al. 2008).
A third area is to develop a better application
of tools of strategic form games and understand
the resulting efficiency losses in networks and
large-scale systems. Work in this area uses game-
theoretic models to investigate resource alloca-
tion, pricing, and investment problems in net-
works (Johari and Tsitsiklis 2004; Acemoglu and
Ozdaglar 2007; Acemoglu et al. 2009; Njoroge
et al. 2013). A fourth area of research is to
develop and apply alternative solution concepts
for strategic form games. While some of the
research in game theory has focused on subsets of
Nash Equilibria (see Fudenberg and Tirole 1991),
from a computational point of view, the set of
correlated equilibria, which is a superset of the
set of Nash Equilibria, is also attractive since it
can be represented as the optimal solution set
of a linear program. Correlated equilibrium can
be implemented using a correlation scheme (a
trusted party) or cryptographic tools as shown
in Izmalkov et al. (2007). Recent work investi-
gates alternative solution concepts for symmetric
games intermediate between Nash and correlated
equilibria (Stein et al. 2013), which can be imple-
mented using specific correlation schemes.
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Abstract

Stream of variation (SoV) theory is a unified,
model-based method for modeling, analyzing,
and controlling variation in multistage manufac-
turing systems. A SoV model represents variation
and its propagation in a multistage system using
the recursive structure of state space models; such
models can be derived from physical knowledge
and/or estimated empirically using system opera-
tional data. Immediately, the SoV model enables
integrated design and optimization for product
and process tolerancing, allocation of distributed

sensors in production lines, and evaluation of
multistage system designs. With the help of these
functions, the SoV method fulfills the objectives
of system monitoring, diagnosis, and control and,
ultimately, reduces a system’s variation during
its operation. The SoV method can be further
extended to model the interactions among prod-
uct quality and tooling reliability, known as the
quality and reliability chain effects, which is the
crucial element in carrying out quality-ensured
maintenance, as well as system reliability evalu-
ation and optimization. The SoV theory has been
successfully implemented in assembly, machin-
ing, and semiconductor manufacturing processes.
More research and development are needed to
extend the SoV theory to manufacturing systems
with complex configurations.

Keywords

Data fusion; Engineering-driven statistics; Mul-
tistage manufacturing system; Quality improve-
ment; Variation reduction

Introduction

A multistage system refers to a system consisting
of multiple units, stations, or operations to finish a
final product or a service. Multistage systems are
ubiquitous in modern manufacturing processes
and service systems. In most cases, the final
product or service quality of a multistage system
is determined by complex interactions among
multiple stages – the quality characteristics of
one stage are not only influenced by the local
variations at that stage but also by the variations
propagated from upstream stages. Multistage sys-
tems present significant challenges for quality
engineering research and system improvement.

The stream of variation (SoV) theory has been
developed to understand and represent the com-
plex production stream and data stream involved
in the modeling and analysis of variation and
its propagation in a multistage manufacturing
system (Fig. 1).
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Stream of Variations Analysis, Fig. 1 Variation propagation in a multistage manufacturing process (MMP) and
notations in SoV modeling (Reproduced from Shi 2006)

Stream of VariationModel

The foundation of the SoV theory is a mathe-
matical model that links the key product quality
characteristics with key process control charac-
teristics (e.g., fixture error, machine error, etc.) in
a multistage system. This model has a state space
representation that describes the deviation and its
propagation in an N -stage process (as shown in
Fig. 1) and takes the form of

xk D Ak�1xk�1 C Bkuk C wk; k D 1; 2; : : :; N;

(1)

yk D Ckxk C vk; fkg � f1; 2; : : :; N g; (2)

where k is the stage index, xk is the state vector
representing the key quality characteristics of
the product (or intermediate work piece) after
stage k, uk is the control vector representing
the tooling deviations (e.g., no fault occurs if
all tooling deviations are within their tolerances;
fault occurs when excessive tooling deviations
are beyond their tolerances; active adjustments
of tooling deviations can be done to achieve
error compensation objectives) at stage k, and yk
is the measurement vector representing product
quality measurements at stage k. Vectors wk and
vk represent modeling error and sensing error,
respectively. The coefficient matrices Ak;Bk , and
Ck are determined by product and process de-
sign information: Ak represents the impact of
the deviation transition from stage k�1 to stage
k, Bk represents the impact of the local tooling
deviation on the product quality at stage k, and
Ck is the measurement matrix, which can be

obtained from the defined quality features of the
product at stage k.

If we repeat the modeling efforts for each stage
from k D 1 to N , we will get the deviation
and its propagation throughout the multistage
manufacturing systems. By taking variances on
both sides of (1) and (2) and by assuming inde-
pendence among certain variables, we will obtain
the variation and its propagation model for the
multistage manufacturing system.

The SoV models (1) and (2) can be obtained
from product and process design information
and/or from the system operational data. In Shi
(2006), two basic modeling methods, a physics-
driven method and a data-driven method, were
investigated. In the physics-driven modeling, the
kinematic relationships between key control char-
acteristics (KCC) and key product characteristics
(KPC) are identified through a detailed physi-
cal analysis of the product and manufacturing
process. A set of carefully defined coordinate
systems are defined to represent the whole sys-
tem, including the quality features in the part
coordinates, part orientation to fixture/machine
coordinates, and tooling to fixture/machine co-
ordinates. Based on these coordinate systems,
SoV models (1) and (2) are obtained using the
state space model framework. In the data-driven
modeling approach, system operational data are
measured for those selected KPC and KCC vari-
ables. System identification and estimation meth-
ods are adopted to construct the SoV model.
In some cases, data mining and clustering tech-
niques are used to identify inherent relation-
ships of the system in pre-processing. The SoV
model may have different formulations, such as
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the state space model, input-output model, and
piecewise linear regression tree model. In most
cases, engineering-driven statistical analysis is
commonly used in the data analysis and modeling
efforts.

With models (1) and (2), variation reduction
can be achieved in both design and manufactur-
ing phases by using mathematical optimization
to make optimal decisions. However, significant
challenges exist in both the model development
for specific processes and model utilization to
realize the benefits of the analytical capability
of this model. These challenges are addressed
in the SoV methodological research (Shi 2006).
In more detail, the SoV methodology addresses
the following important questions for variation
reduction in a multistage manufacturing process.

SoV-Enabled Monitoring and
Diagnosis

In multistage manufacturing systems, it is chal-
lenging to systematically find the root causes of
a severe variability in terms of isolating both the
manufacturing station and the underlying cause
in that station. During continuous production, ex-
cessive product variation may occur at any stage
of a multistage manufacturing system due to
worn tooling, tooling breakage, and/or abnormal
incoming part variation. The SoV theory presents
systematic approaches for root cause identifica-
tion. In this approach, a new concept of “sta-
tistical methods driven by engineering models”
is proposed to integrate the product and process
design knowledge with the on-line statistics. By
solving the difference equation of models (1) and
(2) and with some mathematical simplifications,
the SoV model can be transformed into an input-
output format as

y D � � u C ©; (3)

where y is an n � 1 vector of product
quality measurements, � is an n � p con-
stant system matrix determined by prod-
uct/process designs, u is a p � 1 random vector
representing the process faults, and © is an n � 1

random vector representing measurement noises,
un-modeled faults, and high-order nonlinear
terms. During production, the product quality
features (y) are measured, and the data are used
to conduct statistical analysis based on the model
(1) to identify root causes. Two basic methods are
developed for root cause diagnosis: (i) variation
pattern matching: In this method, all potential
variation patterns can be obtained from the matrix
� resulting from the off-line system design.
During the system operation, observed variation
patterns can be obtained from the covariance
matrix of y. A pattern matching can be performed
to identify the root causes. (ii) estimation-based
diagnosis: With the SoV model and availability
of on-line measurement of quality feature (y), the
deviation value of u can be estimated on-line. A
hypothesis testing of u and its variance reveals
the significant changes that occurred to u, corre-
sponding to the root causes of the system. Various
estimators and their performances are evaluated
in the diagnosis study (Chapter 11 of Shi 2006).

SoV-Enabled Sensor Allocation and
Diagnosability

The issue of diagnosability refers to the problem
of whether the product measurements contain
sufficient information for the diagnosis of critical
process faults, i.e., if root causes of process faults
can be diagnosed. The diagnosability analysis
is investigated based on model (3) that links
potential process faults (u) and product quality
measurements (y). In the SoV theory, a set of
criteria is developed to evaluate the mean di-
agnosability and variance diagnosability for a
system. Similar to observability in control theory,
diagnosability is determined by the Ak , Bk , and
Ck matrices (k D 1; : : :;N) in the SoV models
(1) and (2) (or the � matrix in model (3)). In some
cases, only a subset of variables (vs. specific root
cause variables) can be identified as potential root
causes of the process faults, which are referred to
as minimum diagnosable classes.

One emphasis in the SoV-enabled diagnos-
ability study is to promote the concept of the
“process-oriented measurement” strategy. In
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current industrial practice, most of the existing
measurement strategies focus on the product
coherence inspection (i.e., product-oriented
measurements), which is effective for detecting
product imperfection, but may not be effective
to identify the root causes of product quality
failures. The SoV theory proposes a “process-
oriented measurement” concept with a distributed
sensing strategy. In this strategy, selected key
control characteristics, as well as selected key
product characteristics, will be measured in the
selected stages for both detecting product defects
and identifying their root causes.

SoV-Enabled Design and
Optimization

Variation analysis and design evaluations are con-
ducted in the product and process design stage to
identify critical components, features, and manu-
facturing operations. With the SoV model defined
in (3) and certain assumptions, we can represent
the KPC-to-KCC relationship as

Q†y D
N
X

kD1
�k†uk�

T
k ; (4)

where Q†y is the variance-covariance matrix
of product quality features resulting from the
variance-covariance matrix .†uk / of tooling
errors. Based on (3) and (4), the following four
tasks can be performed: (i) tolerance analysis
by allocating the tooling tolerance .uk/ and
then predicting the final product tolerance
.yN /; (ii) tolerance synthesis by fixing the final
product tolerance (yN ) and then assigning the
tolerance for individual tooling components
(uk) with certain cost objectives minimized; (iii)
sensitivity study by identifying the critical tooling
components (uk) that have significant impacts on
the final production variation through evaluation
of the defined sensitivity indices; and (iv) process
planning by optimizing parameters in Ak and Bk
matrices to minimize the final product variation.

One unique feature of SoV-enabled design and
optimization is to provide a unified method for

simultaneous optimization of product and process
tooling tolerance, as well as process planning.
This is because the SoV models (1) and (2)
represent the product quality features (xk and yk),
tooling features (uk), and the process planning
formation (Ak and Bk) within one mathematical
model. As a result, a math-based optimization
is feasible to achieve the best quality through
process-oriented tolerance synthesis for product
and process, as well as optimized process plan-
ning.

SoV-Enabled Process Control and
Quality Compensation

The SoV model provides the opportunity to apply
active control for dimensional variation reduction
in a multistage manufacturing system. The ba-
sic idea is to implement a system-level control
strategy during production to minimize the end-
of-line product variance, which is propagated
from upstream manufacturing stages. An optimal
control scheme was devised to use the state space
structure of the SoV model by treating the control
as a stochastic discrete-time predictive control
problem. The optimization index for determining
the optimal control action is formulated as

J�

k D min
uk
Jk D min

uk
E
h

OyT
N jk

QN OyN jk C uTk Rkuk
i

;

s.t. C L
k;c � uk;c � CU

k;c ; k D 1; : : : ; N; c D 1; : : : ; nu;k :

(5)

where OyN jk denotes the product quality at the
final stage N that is predicted at stage k and
nu;k is the dimension of the control action uk .
The constraints [CLk;c; CUk;c] define the upper and
lower actuator limits that can be applied on each
part/substage. QN 2 Rm�m is a positive semi-
definite matrix, and Rk 2 Rn�n is a positive
definite matrix.

This optimization index takes the form
of the widely accepted cost function of a
linear-quadratic regulator under the predictive
control framework and thus satisfies the
common requirements in control theory. Various
research topics have been investigated under
this framework, including the feed-forward
control for multistage process, cautious control
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considering model uncertainties, and actuator
layout optimization in control system designs.

SoV-Enabled Product Quality and
Reliability ChainModeling and
Analysis

There is a complex, intricate relationship between
product quality and tooling reliability in a mul-
tistage manufacturing system. A degraded (or
failed) production tool leads to a large variability
in product quality and/or an excessive number of
defects; on the other hand, excessive variability of
product quality features accelerates the degrada-
tion and failure rates of production tooling at the
station thereafter. For a multistage manufacturing
system, these interactions are more complex as
variations propagate from one stage to the next
stage. Thus, a “chain effect” between the product
quality (Q) and tooling reliability (R) can be
observed and thus noted as the “QR chain” effect.
Modeling of the QR chain is an integrated effort
of the SoV model and the semi-Markov process
model. The QR chain model plays an essential
role in system reliability modeling and mainte-
nance decisions and has led to new concepts of
quality-ensured maintenance strategy, and toler-
ance synthesis considering tool degradation and
system down time.

Summary and Future Directions

The concept of stream of variation for multistage
systems can be applied to a very broad range
of systems, although the existing work mostly
focuses on the quality control of multistage dis-
crete manufacturing processes. A comprehensive
discussion on the stream of variation theory for
a multistage manufacturing system is summa-
rized in a monograph (Shi 2006). In addition,
Shi and Zhou (2009) provides a survey of emerg-
ing methodologies for tackling various issues in
multistage systems including modeling, analysis,
monitoring, diagnosis, control, inspection, and
design optimization.

The success of the multistage system frame-
work in manufacturing processes will certainly
stimulate the application of this framework to
other systems. For example, monitoring and di-
agnosis of the abnormalities in throughput, cycle
time, and lead time of a multistage production
system are very promising application areas un-
der the multistage system framework. The supply
chain and logistics management, which involve
multiple suppliers/venders in an interconnected
fashion, can be treated as another multistage
system with network structures. Most service
systems such as health-care clinics, hospitals, and
transportation systems are inherently multistage
as well. It will be interesting to expand the stream
of variation theory to these broadly defined mul-
tistage systems for their quality control, variation
reduction, and other system-level performance
improvement.

Cross-References

�Fault Detection and Diagnosis
�Multiscale Multivariate Statistical Process

Control
�Statistical Process Control in Manufacturing

Recommended Reading

The monograph (Shi 2006) provides detailed re-
sults of the stream of variation theory discussed
in this entry. In addition, the first five chapters
of Shi (2006) provide views of basic statistical
and system analysis tools needed for the SoV
research and development. Some recent develop-
ments related to the SoV theory and applications
are summarized in a review paper (Shi and Zhou
2009).
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Abstract

This entry presents the most commonly used
formulations of robust stability and robust H1
performance for linear systems with highly
structured, linear, time-invariant uncertainty.
The structured singular value function (�) is
specifically defined for this purpose, involving
a problem-specific set, called the uncertainty
set. With the uncertainty set chosen, � is a real-
valued function defined on complex matrices
of a fixed dimension. A few key properties
are easily derived from the definition and
then applied to solve the robustness analysis
problem. Computation of �, which is required
to implement the analysis tests, is difficult, so
computable and refinable upper and lower bounds
are derived.

Keywords

Robustness analysis; Robust control; Structured
uncertainty

Notation, Definition, and Properties

R and C are the real and complex numbers;
CC D f� 2 C W Re.�/ � 0g; Cn is the set of
n� 1 vectors and Cn�m the set of n�m matrices

Gary Balas: deceased.

with elements in C. N�.�/ refers to the maxi-
mum singular value of a matrix; for A 2 Cn�n,
� .A/ is the spectral radius (largest, in magnitude,
eigenvalue of A), and �R .A/ is the real spectral
radius (largest, in magnitude, real, eigenvalue of
A); R is the ring of proper rational functions,
S D fg 2 R W g has no poles in CCg; S��� de-
notes matrices with elements in S, where the
exact dimensions are unspecified, but clear from
context; finally, no notational distinction is made
between a linear system, its transfer function,
and/or its frequency response function.

Let R;S , and F be nonnegative integers
and r1; : : : ; rR, s1; : : : ; sS , and f1; : : : ; fF
be positive integers. Define sets �R WD
fdiag Œı1Ir1 ; � � � ; ıRIrR � W ıi 2 Rg,

�C WD fdiag Œı1Is1 ; � � � ; ıSIsS ;�1; � � � ; �F �

W ıi 2 C; �k 2 Cfk�fk�

and their diagonal augmentation, � WD
fdiag Œ�R;�C � W �R 2 �R; �C 2 �Cg � Cn�n:
The set � is called the block structure. The
block structure can be generalized to handle
nonsquare blocks in �C at the expense of
additional notation. If R D 0, then � is called a
complex block structure. If S D F D 0, then �

is called a real block structure. For M 2 Cn�n,
��.M/ is defined as

��.M/ WD 1

minf N�.�/ W�2 �; det.I �M�/ D 0g

unless no � 2 � makes I � M� singular, in
which case ��.M/ WD 0, (Doyle 1982; Safonov
1982). The function ��.�/ W Cn�n ! R is upper
semicontinuous. Following Fan et al. (1991), the
constraint set in the definition can be written as
f N�.�/ W 9w; z 2 Cn;w D M z; z D �w;w 6D 0ng,
so that without loss of generality, at the minimum,
the elements �1; : : : ; �F each have rank equal
to 1. For specific block structures, simplifications
occur: if R D S D 0 and F D 1, then
��.M/ D N�.M/; if R D F D 0 and S D 1,
then ��.M/ D � .M/; and if S D F D 0

and R D 1, then ��.M/ D �R .M/. In general
�R .M/ � ��.M/ � N�.M/. Associated with
� define B� WD f� 2 � W N� .�/ � 1g. Since
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I � M� is singular if and only if M� has an
eigenvalue exactly equal to 1, it follows that
��.M/ D max�2B�

�R .M�/. If � is a complex
block structure, then �R .�/ can be replaced with
� .�/, and in that case ��.�/ W Cn�n ! R is
continuous.

A common application is to quantify the
effect (in structured singular value terms) that
an uncertain matrix � has on the expression
FL .M;�/ WD M11 CM12� .I �M22�/

�1 M21,
a linear fractional transformation (LFT) of �
by M . This is conceptually straightforward
(informally called the main loop theorem)
using the Schur formula for determinants.
Specifically, let �1 � Cn1�n1 , �2 � Cn2�n2
be block structures � and � C.n1Cn2/�.n1Cn2/
be their block-diagonal augmentation. For
M 2 C.n1Cn2/�.n1Cn2/, ��.M/ < 1 if and only if
��2.M22/ < 1 and

max
�22B�2

��1
.FL .M;�2// < 1:

Finally (Packard and Pandey 1993) if �1 is
a block structure, and �2 is a complex block
structure, and M satisfies ��1

.M11/ < ��.M/,
then ��.�/ is continuous on an open ball around
M . Loosely speaking, “if there are any complex
blocks, and M is such that they matter, then �
is continuous at M .” This means that at points
of discontinuity, only �R 2 �R need to be
nonzero. For any polynomial p W Cn ! C,
there is a minimum-norm root (using k�k1 on
Cn) whose components all have equal modulus
(Doyle 1982). Defining

Q� WD fdiag Œ�R;�C � W N� .�R/�1;��
C�C D I g

and employing this result (Young and Doyle
1997) derives that ��.M/ D maxQ2Q�

�R .MQ/.
This gives a generalized maximum-modulus-like
theorem for LFTs (Packard and Pandey 1993).
Revisiting the setup for the main loop theorem,
assume further that �2 is a complex block struc-
ture. If ��2.M22/ < 1, then

max
�22B�2

��1.FL .M;�2// D max
Q22Q�2

��1.FL .M;Q2// :

This leads to specialized results per Boyd and
Desoer (1985), Packard and Pandey (1993), and
Tits and Fan (1995) for stable transfer function
matrices. For any block structure � � Cn�n and
M 2 Sn�n, then

max

�

sup
!2R

��.M.j!// ; ��.M.1//



D max

(

sup
s2CC

��.M.s// ; ��.M.1//

)

:

Robustness of Stability
and Performance

There are several uncertain system formulations
that all result in the same �-analysis test to assess
the robustness of stability and/or performance
(Wall et al. 1982; Foo and Postlethwaite 1988).
In this article, we present the simplest and most
common interpretation. Consider an interconnec-
tion of known systems, fGi gMiD1, and unknown
systems f�kgNkD1, as described by

2

4

q1
e

q2

3

5 D H

2

4

z1
d

z2

3

5

where z1 D diag ŒG1; : : : ; GM � .q1 C w1/,
z2 D diag Œ�1; : : : ; �N � .q2 C w2/, and H 2
R.n1CneCn2/�.p1CndCp2/ (naturally partitioned
as a block 3-by-3 array). This is depicted in
Fig. 1. Each Gi and �k is assumed to be a finite-
dimensional, time-invariant linear system, with
proper transfer function, and a stabilizable and
detectable internal state-space description.

The interconnection is well posed if for any
initial conditions and any (say) piecewise con-
tinuous inputs w1, w2, and d , there exist unique
solutions to the interconnection equations. By
manipulating the state-space or transfer function
descriptions of a well-posed interconnection, a
state-space model or proper transfer function de-
scription for the map from .d;w/ to .e; z/ can be
derived. A well-posed interconnection is stable
if the resultant state-space model is internally
stable – the eigenvalues of its “A” matrix are in
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Structured Singular Value and Applications: Ana-
lyzing the Effect of Linear Time-Invariant Uncer-
tainty in Linear Systems, Fig. 1 Interconnection of
G1; : : : ; GM ; �1; : : : ; �N

the open, left-half plane. Given some restrictions
on the values of the elements of � , robustness
analysis poses the question: is the interconnec-
tion well posed and stable for all possible values
of �? And if so, then is the k�k1 gain from
d -to-e � 1 for all possible values of �? The
goal of the analysis is to confirm “yes” or supply
a particular � which proves that the answer is
“no” (by rendering the interconnection ill-posed,
unstable, or with d -to-e gain>1). Standard linear
systems theory gives that the interconnection is
well posed if and only if

det

�

I �
�

H11 H13

H31 H33

� �

G.1/ 0

0 �.1/

��

6D 0;

and that the interconnection is stable if and only
if the transfer function matrix T w;z, mapping
Œw1I w2� to Œz1I z2�, is an element of S���.

The assumptions on each�k are of three kinds:
(i) �k is a stable linear system, known only to
satisfy k�kk1 < 1; (ii) �k is a stable linear
system of the form �kI , where the scalar linear
system �k is known to satisfy k�kk1 < 1; (iii)
�k is a constant gain, of the form �kI , where
the scalar �k 2 R is known to satisfy �1 <

�k < 1. Note the similarity between this and the
block structure � (via �R and �C) introduced
earlier. After rearrangement, this block-diagonal
augmentation of uncertain systems is a norm-
bounded (by 1) element of the set

� WD fdiag Œ�R; �U � W �R 2 �R; �U 2 S���;

�U .s0/ 2 �C 8s0 2 CCg :

Since 0 is a possible value of � , two necessary
conditions (denoted c.1 and c.2, respectively)
for robust well-posedness and stability are at
� D 0, specifically det .I �G.1/H11/ 6D 0 and
V WD G.s/.I � H11G.s//

�1 2 S���. Assuming
det .I �G.1/H11/ 6D 0 (i.e., c.1), the Schur
formula for block determinants reduces the well-
posedness condition to

det
�

I � �.1/
�

H33 CH31.I �G.1/H11/
�1

G.1/H13�/ 6D 0:

Define M WD H33 C H31G.I �H11G/
�1H13 2

S���, and X WD I � �M . Then

T w;z D
�

V C VH13X
�1�H31V VH13X

�1�
X�1�H31V X�1�

�

Assuming c.2, namely, V 2 S���, then X�1 2
S��� implies that T w;z 2 S��� – moreover
T w;z 2 S��� implies that X�1 D I C T

w;z
22 M 2

S���. Finally, since both M and � are stable,
it follows that X�1 2 S��� if and only if
det .I �M.s0/�.s0// 6D 0 8s0 2 CC: The
maximum-modulus property gives the robustness
theorem. With the definition ofM and conditions
c.1 and c.2, the uncertain system is robustly stable
and well posed if and only if

max

�

sup
!2R

��.M.j!// ; ��.M.1//



� 1:

Indeed, if the condition holds, then by maximum-
modulus theorem and the definition of �, it fol-
lows that det.I � M.s/�.s// 6D 0 for all s 2
CC as well as s D 1, since �.s/ 2 � and
N� .�.s// < 1. This gives well-posedness and
stability for all such � , as desired (an alternate
proof, using the Nyquist criterion is also com-
mon). Conversely, if the condition is violated,
then at some frequency (0, nonzero, or 1), � is
larger than 1, as evidenced by a (constant matrix)
� 2 � � Cn�n, N� .�/ < 1, which causes sin-
gularity. If the frequency is nonzero (and finite),
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the interpolation lemmas in the appendix enable
replacing the complex blocks with stable, real-
rational entries. Otherwise (0 or 1), the matrix
is such that � is continuous, and hence a finite,
nonzero frequency also has � > 1, or only the
real blocks are necessary to cause singularity. In
all cases, � 2 � with k�k1 < 1 exists to cause
ill-posedness or instability (Tits and Fan 1995).

Robustness of performance, measured as
�

�T e;d
�

�1, can be addressed, using the main loop
theorem, and an additional complex full block
(recall N� .�/ D ��.�/ when F D 1; S D R D 0).
Define

MP W D
�

H22 H23

H32 H33

�

C
�

H21

H31

�

G.I �H11G/
�1 �H12 H13

	

and �P WD fdiag Œ�P ;�� W �P 2 Cnd�ne ;
� 2 �g. With conditions c.1 and c.2, the
uncertain system is robustly stable and well posed
and satisfies

�

�T e;d
�

�1 � 1 if and only if

max

�

sup
!2R

��P.MP .j!// ; ��P.MP .1//



� 1:

Computations

The robust stability and robust performance the-
orems require computing � on the frequency re-
sponse function M.j!/. Computing � is known
to be a computationally difficult problem (Toker
and Ozbay 1998), so exact computational meth-
ods are generally not pursued. Reliable algo-
rithms have been developed which yield upper
and lower bounds, which are often sufficiently
close for many engineering problems.

Lower Bounds
Recall that ��.M/ D max�2B�

�R .M�/ D
maxQ2Q�

�R .MQ/. Practically speaking, these
maximizations yield lower bounds for ��.M/,
since the global maximum may not be attained.
In addition to gradient-based ascent methods, the
optimality conditions for Q 2 Q� to be a local
maximum of the function �R .M�/ on the set

B� can be derived (Young and Doyle 1997). A
solution approach, similar to a Jacobi iteration,
leads to an iteration that resembles combinations
of the familiar power methods for spectral radius
and maximum singular value. If the iteration con-
verges (which is not guaranteed), a lower bound
for ��.M/ (along with a corresponding � 2 �)
is produced. Studies with matrices constructed
to have ��.M/ D 1 suggest that the iteration
is very reliable for complex block structures,
though usually quite poor for purely real block
structures. There are several, more computation-
ally demanding algorithms available for purely
real block structures (de Gaston and Safonov
1988; Sideris and Sanchez Pena 1989). For the
common situation, with both real and complex
blocks, where continuity is assured, the power
algorithm generally has adequate performance.

Upper Bounds
Define G� WD fGD �G� W G�D ���G� 8�2�g,

D� WD fD D D� � 0 W D� D �D 8� 2 �g,
subsets of Cn�n. Elements of D� are of the
form diag

�

Dr1; : : : ;DrR ;Ds1 ; : : : ;DsS ; d1If1 ;

: : : ; dF IfF
	

, and therefore D 2 D� implies that

D
1
2 2 D� too. Likewise,

G� WD fdiag ŒGR; 0� W GR D �G�
R 2 C���;

GR�R D �RGR 8�R 2 �Rg :

A concise derivation (Helmersson 1995) verifies
the upper bound formula (Fan et al. 1991). If
ˇ > 0, G 2 G�; and D 2 D� satisfy M �DM �
ˇ2D C GM C M �G� � 0, then ��.M/ � ˇ.
Indeed, if � 2 � has det.I � M�/ D 0, there
exist nonzero w; z 2 Cn with w D M z; z D �w.
Certainly z�.M �DM�ˇ2DCGMCM �G�/z �
0. Making substitutions gives

0 � w�Dw � ˇ2w���D�w

Cw���Gw C w�G��w

D w�Dw � ˇ2w�D1
2���D1

2

w C w���Gw � w���Gw

D w�D1
2
�

I � ˇ2���
�

D
1
2 w:
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Since D is invertible and w 6D 0n, it must be
that N� .�/ � ˇ�1, as desired. The constraint
M �DM � ˇ2DCGM CM �G� � 0 is a linear
matrix inequality (LMI) in the variablesD andG.
Minimizing ˇ over G 2 G� and D 2 D� subject
to the LMI constraint (using Boyd and El Ghaoui
1993, for instance) yields the best upper bound
that this inequality can produce.

Further Perspectives
The robustness tests involve bounding
��.M.j!// over the entire real axis. A common
approach is to use a dense frequency gridding and
upper/lower bound calculations at each gridded
point. The advantages, simplicity and trivial
parallelization, are offset with disadvantages, in
that the peak value (over R) may not be reflected
accurately by the peak across the finite grid.
In fact, such a grid-based test determines the
smallest � 2 � which can cause a pole to
migrate from the left-half plane into the right-
half plane at exactly one of the frequency grid
points (as opposed to any location). Nevertheless,
with some continuity assurances in place and a
dense grid, this is often adequate knowledge for
most engineering decisions. However, the brute-
force grid approach can be avoided by treating
the frequency-variable (!) as an additional
real parameter (since M.j!/ is an LFT of 1

!
)

(Ferreres et al. 2003). This is a generalization
of the Hamiltonian methods to compute the H1
norm of a linear system without a frequency grid,
coupled with an alternative form of the upper
bound (Young et al. 1995). Moreover, if only the
peak value (upper bound, say) across frequency
is desired, this approach can be fast, as some
calculations rule out large frequency ranges to
not contain the peak.

Improved upper bounds can be derived using
higher-order arguments, changing the LMI con-
straint into a sum-of-squares constraint (which
ultimately is just a larger LMI). Alternatively,
branch-and-bound techniques are especially use-
ful at reducing the conservativeness of the .D;G/
upper bound when there are several real parame-
ters .R > 0/ (Newlin and Young 1997).

Appendix: Interpolation Lemmas

Two interpolation lemmas make the connection
between robustness to constant-gain, complex-
valued uncertainties (�) and stable, finite-
dimensional, time-invariant linear systems
described by ODEs with real coefficients (�).
Lemma 1 is used (block by block and element
by element on the relevant vector directions
within each block) to interpolate complex blocks
causing singularity into real-rational blocks
which cause singularity at a particular frequency.

Lemma 1 Given a positive N! > 0 and a com-
plex number ı, with Imag .ı/ 6D 0, there is
a ˇ > 0 such that by proper choice of sign

˙ jıj s�ˇ
sCˇ

ˇ

ˇ

ˇ

sDj N! D ı:

Lemma 2 Suppose M 2 Cn�n and N! > 0. If
� 2 � satisfies det.In � M�/ D 0, then there
is a � 2 � with k�k1 � N�.�/ and det.In �
M�.j N!// D 0.

Summary and Future Directions

The structured singular value, �, is a linear alge-
bra construct, defined to exactly deal with linear,
time-invariant uncertainty in linear systems. The
main issues are computational, focused on effi-
cient manners to compute reasonably tight upper
and lower bounds at each frequency and, more
specifically, ascertain the peak value across fre-
quency. Alternatives to the worst-case approach
to robustness analysis are gaining favor and may
be applicable in analysis and design situations
where the abstraction of a worst-case view is too
conservative (Calafiore et al. 2000).
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Recommended Reading

A comprehensive list of references, including
theory, computations, and diverse applications
would require many pages. The list below
is minimal and does not do justice to the
many researchers who have made significant
contributions to this subject. In addition to the
cited work, connections to Kharitonov’s theorem
can be found in Chen et al. (1994). Textbooks,
such as Dullerud and Paganini (2000) and Zhou
et al. (1996), include derivations and additional
citations.
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Sub-Riemannian Optimization
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Abstract

Optimization problems arising in the control of
some important types of physical systems lead
naturally to problems in sub-Riemannian opti-
mization. Here we provide context and back-
ground material on the relevant mathematics and
discuss some specific problem areas where these
ideas play a role.
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Introduction

After a start in the early 1970s, over the last two
decades, sub-Riemannian geometry and the re-
lated theory of subelliptic operators have become
popular topics in the control literature. Their
study is sometimes linked to questions involving
the dynamics and control of mechanical systems
with nonholonomic (nonintegrable) constraints
and the use of what has classically been called
quasi-coordinates because both subjects depend
on Lie algebraic techniques. However, here we
limit ourselves to problems in sub-Riemannian
optimization per se, describing how they arise in
various areas of physics and engineering. Most
famously, the second law of thermodynamics, as
recast by Carathéodory in differential geometric
form, provides an example of the reach of sub-
Riemannian geometry into the engineering world.

The statement of control theoretic problems
often begins with a description of the system of
interest in differential equation form:

Px D f .x/C
X

uigi .x/ I x 2 X; u 2 R
m

with X an n-dimensional manifold. In well-
motivated control problems, n is almost always
larger than m; the dimension of the space of
controls is less than the dimension of the state
space. In the case of mechanical systems, the
phrase under actuated is sometimes used to
characterize this, but the situation is ubiquitous.
The analysis is complicated by presence of the
immutable drift term f. When it is desired to use
an optimization principle to find a good choice
for u, one introduces a performance measure,
often of the form

� D
Z t1

0

L.x; u/ dt

and attempts to minimize � subject to whatever
constraints there may be on u and x. If there is
no drift term and if the Lie algebra generated by
fg1; g2; � � � ; gmg defines a distribution that spans
the tangent space ofX at every point, the problem
falls under the purview of sub-Riemannian geom-
etry. In this case, one can describe the situation
as Px D G.x/u with G being an x-dependent
rectangular matrix of rank m everywhere.

This entry is written from a control theory
point of view. The problems discussed here pro-
vided the impetus for some later mathematical
work, often not discussing the motivation. The
purely mathematical work is de-emphasized here,
much as the mathematical work often gives little
or no attention to the control theoretic work that
preceded it.

The Distance Function

A prototype control problem leading to sub Rie-
mannian geometry is that of steering the system
Px1 D u1 Px2 D u2 Px3 D x1u2 � x2u1 from one
state to another while minimizing

� D
Z 1

0

q

u21 C u22 dt

It might seem that this is just a minor change from
a standard shortest path problem in Riemannian
geometry, e.g., it might be thought as a limiting
case of a standard Riemannian geodesic problem
in which the infinitesimal length is given by

.ds/2 D

h

dx1 dx2 dx3

i
2

6

4

1 0 �y
0 1 x

�y x � C x2 C y2

3

7

5

�1

2

6

4

dx1

dx2

dx3

3

7

5

and � is allowed to go to zero. However, because
when � equals zero this matrix is singular, it can-
not be used to define the equations for geodesics.
The most direct attack seems to be to use a
Lagrange multiplier to enforce the condition on
x3, which leads to the minimization of
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� D
Z 1

0

Px21 C Px22 C �.x1 Px2 � x2 Px1/ dt

This yields a set of �-dependent linear equations
for x1 and x2. Solving these shows that the
projections of the minimum length trajectories
onto the .x1; x2/-plane are circular arcs.

In Riemannian geometry, the set of points
which are of distance r from a given point will,
for r sufficiently small, form a co-dimension
one manifold diffeomorphic to a sphere. In this
qualitative sense, Riemannian spaces are locally
isotropic. In sub-Riemannian geometry, the set of
points of distance r > 0 from a distinguished
point x0 does not have such a simple structure.
For example, for the problem just discussed, we
have the approximations

d D
q

x21 C x22 C jx3j=.x21 C x22/

for jx3j � .x21 C x22/

and

d D 2�jx3j �
q

8�.x21 C x22/jx3j

for
q

x21 C x22 � jx3j

That is, for points bounded by paraboloids, defin-
ing a region near the .x1; x2/-plane, the distance
is close to the Riemannian distance, whereas
in a cone containing the x3 axis, the distance
is close to the square root of the Riemannian
distance. These approximations make it clear that
d.x1; x2; x3/ is not differentiable at points on the
x3 axis. There is much more that can be said here.
One interesting topic concerns the number of
trajectories that satisfy the first-order necessary
conditions and join a point to the origin.

More Examples

Consider the kinematic equations of the unicycle.
If .x; y/ are the coordinates of the center of the
wheel and 
 is the heading angle, then these are

Px D cos 
u2 I Py D sin 
u2 I P� D u1

It is of interest to generate a “shortest path” be-
tween two points in .x; y; 
/-space where short-
est is defined as the integral of some function
of x; y; 
; u1; u2. This is typical of the kind of
path planning problems in which nonholonomic
constraints lead to sub-Riemannian problems. A
variety of such problems arise in robotics with
optimal steering programs for cars being one
example.

As an example involving a compact manifold,
let X be the space of 3-by-3 orthogonal matrices
and consider the system described by

Px D
2

4

0 u1 u2
�u1 0 0

�u2 0 0

3

5x

In this case, the manifold X is three dimensional
and the control space is two dimensional. If we
wish to minimize the integral of u2 C v2 subject
to x.0/ D x0 and x.1/ D x1, we have a typical
sub-Riemannian geodesic problem.

If the controls contain random effects, efforts
to analyze the situation lead to related problems
in stochastic process. The most widely studied of
these are described by an Itô equation of the form

dx D f .x/dt C
X

gi .x/dwi

The corresponding equation for the evolution of
the probability density �.t; x/ can be put in the
form

@�

@t
D
X

ai .x/
@

@xi
�.t; x/

C
X

bij .x/
@

@xi

@

@xj
�.t; x/

However, rather than the right-hand side being
a fully elliptic operator, as it would be in a
typical heat equation (e.g., the Laplace-Beltrami
operator), the symmetric matrix B.x/ D bij .x/

is singular. If the gi satisfy the bracket-generating
condition, the density equation is said to be subel-
liptic. The system described by the Itô equation
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dx1
dx2
dx3

3

5 D
2

4

�dt dw1 dw2
�dw1 �dt=2 0

�dw2 0 �dt=2

3

5

2

4

x1
x2
x3

3

5

evolves on the two-sphere and the spectrum of the
subelliptic operator is discrete. The diffusion time
constants, i.e., the eigenvalues of the subelliptic
operator, can be computed explicitly and com-
pared with those of the fully elliptic operator, i.e.,
the standard Laplacian on the spherical shell.

Much has been written on the ways in which
subelliptic diffusion does, and does not, share the
properties of the ordinary diffusion equation.

A Special Structure

A rich, and especially tractable, class of sub-
Riemannian problems come from the following
situation. Suppose that G is a Lie group with Lie
algebra G and that H is a closed subgroup with
Lie algebra H . According to one definition, the
pair H � G is said to define a symmetric space
if the Lie algebra G, viewed as a vector space, is
the direct sum ofH andK with ŒH;K� � K and
ŒK;K� � H . Let x evolve in G as

Px D ux I x 2 G I u 2 K

For the sake of exposition, suppose that G is a
matrix Lie group. We look for paths joining x0
and x1 that are shortest in the sense that

� D
Z 1

0

jjujj dt I

is minimized, where jjujj2 D tr.uT u/ . (This leads
to the same trajectories as those which minimize
the integral of jjujj2.) To find the first-order nec-
essary conditions using the maximum principle,
define a Hamiltonian as h.x; p; u/ D tr.pT ux C
uT u/. Thus, Pp D �uT p and minimizing over u
implies 2u D ��1.xpT / where �1 is the projec-
tion ontoK . The productm D xpT satisfies Pm D
Œm; �1.m/�. Using the structural properties of the
Lie algebra, we see that .d=dt/�0.m/ D 0 and
that .d=dt/�1.m/ D Œ�1.m/;m0�. Working out
the implications, we see that trajectories of the

form x.t/ D eat e.b�a/t with a 2 H and b 2 K

satisfy the first-order optimality conditions.
To illustrate, we consider the generalization of

an earlier example. Let X be the space of n-by-
n orthogonal matrices and consider the system
described by

Px D

2

6

6

6

6

6

4

0 u1 u2 � � � un�1
�u1 0 0 � � � 0

�u2 0 0 � � � 0
:::

:::
::: � � � :::

�un�1 0 0 � � � 0

3

7

7

7

7

7

5

x

Here the role of H is played by the sub-algebra
of the set of real n-by-n skew-symmetric ma-
trices consisting those whose first row and col-
umn vanish and K consists of the subset whose
lower-right .n � 1/-by-.n � 1/ sub-matrix van-
ishes. In this case, the paths satisfying the first-
order necessary conditions take the form x.t/ D
eht e.k�h/tx.0/.

Nonintegrability and Cyclic Processes

Of course nonintegrable stands in opposition to
the word integrable, as it is used in the consider-
ation of integration performed along paths, e.g.,

I D
Z

�

g1.x/dx1 C g2.x/dx2 C � � � C gn.x/dxn

If the path � starts at Nx and ends at Ox, then the
equality of mixed partials @gi =@xj D @gj =@xi
implies that along any two paths with these end
points, the integral has the same value, provided
that one of the paths can be continuously de-
formed into the other with the gi being well
defined along the deformation. In particular, if
� is a closed curve so Nx D Ox, then under these
assumptions, the integral is zero.

On the other hand, there is a large list of
important processes in biology and engineering,
such as those involving the thermodynamic cy-
cles of internal combustions engines or air con-
ditioners, that depend critically on nonintegrable
effects. These include cyclic phenomena such as
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walking and breathing and a widely used mecha-
nisms for efficient voltage conversion in electrical
engineering. Thus, both nature and technology
provide examples of processes in which the pis-
tons, valves, etc. move along a smooth path and at
the end of a cycle return to their initial configura-
tion, while a related integral is not zero. Perhaps,
the best-known path problem of this type is the
Carnot cycle.

Questions about sub-Riemannian optimization
enter here both as the optimization of the path
defining the cycle and in the optimal regulation
of the output of such cyclic processes. In general,
the output can adjust both the amplitude and
frequency of the cycle (volume of air per cycle
and respiration rate), although in some cases one
or the other of these might be fixed. For exam-
ple, cruise control for automobiles regulates the
frequency (rpm) of the engine but cannot adjust
the stroke length of the pistons, whereas speed
control of a running animal ordinarily involves
adjusting both the length of the stride and the
“steps” per minute. The primary considerations
for these control processes are stability and re-
sponse time, with the shape of the cycles being
determined by some measure of efficiency. It
seems that the optimization of such regulatory
processes deserves more attention.

Cross-References

�Learning Theory
�Markov Chains and Ranking Problems in Web

Search
�Modeling, Analysis, and Control with Petri

Nets
�Nonlinear Adaptive Control
�Redundant Robots

Recommended Reading

Material on sub-Riemannian geometry can be
found in the very readable survey (Strichartz
1986) and in more depth in Gromov (1996).
The examples discussed here have mostly come
from the literature Brockett (1973a,b), Baillieul

(1975), and Brockett (1999) and these papers
contain motivational material as well. Symmetric
spaces are discussed in the sub-Riemannian con-
text in Strichartz (1986), but for the optimization
aspect, see Brockett (1999). Reference Brockett
(2003) studies the regulation of sub-Riemannian
cycles.
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Abstract

An overview is given of the class of subspace
techniques (STs) for identifying linear, time-
invariant state-space models from input-output
data. STs do not require a parametrization of the
system matrices and as a consequence do not
suffer from problems related to local minima
that often hamper successful application of
parametric optimization- based identification
methods.
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The overview follows the historic line of de-
velopment. It starts from Kronecker’s result on
the representation of an infinite power series by a
rational function and then addresses, respectively,
the deterministic realization problem, its stochas-
tic variant, and finally the identification of a state-
space model given in innovation form.

The overview summarizes the fundamental
principles of the algorithms to solve the problems
and summarizes the results about the statistical
properties of the estimates as well as the practi-
cal issues like choice of weighting matrices and
the selection of dimension parameters in using
these STs in practice. The overview concludes
with probing some future challenges and makes
suggestions for further reading.

Keywords

Extended observability matrix; Hankel matrix;
Innovation model; State-space model; Singular
value decomposition (SVD)

Introduction

Subspace techniques (STs) for system identifi-
cation address the problem of identifying state-
space models of MIMO dynamical systems. The
roots of ST were laid by the German mathe-
matician Leopold Kronecker (ı1823–�1891). In
Kronecker (1890) Kronecker established that a
power series could be represented by a rational
function when the rank of the Hankel operator
with that power series as its symbol was finite. In
the early 1990s of the twentieth century, new gen-
eralizations of the idea of Kronecker were pre-
sented for identifying linear, time-invariant (LTI)
state-space models from input-output data or out-
put data only. These new generalizations were
formulated from different perspectives, namely,
within the context of canonical variate analysis
(Larimore 1990), within a linear algebra context
(Van Overschee and De Moor 1994; Verhae-
gen 1994), and subspace splitting (Jansson and
Wahlberg 1996). Despite their different origin,
the close relationship between these methods was
quickly established by a unifying theorem that

interpreted these methods as a singular value
decomposition (SVD) of a weighted matrix from
which an estimate of the column space of the
observability matrix or the row space of the state
sequence of the given system or Kalman filter
for observing the state of that system is derived
(Van Overschee and De Moor 1995). This sub-
space calculation is the key feature that leads to
the indication by ST for system identification or
subspace identification methods (SIM).

The STs are attractive complementary tech-
niques to the maximum likelihood or prediction
error framework. They do not require the user to
specify a parametrization of the system matrices
of the state-space model, and the user is not
confronted with the problems due to possible
local minima of a nonlinear parameter optimiza-
tion method that is often necessary in estimating
the parameters of a state-space model via, e.g.,
prediction error methods. Though the statisti-
cal properties such as consistency and efficiency
have been investigated, such as in Bauer and
Ljung (2002), the estimates obtained via ST are
in general not optimal in the statistical minimum
variance sense. However, practical evidence with
the use of ST in a wide variety of problems has
indicated that ST provides accurate estimates.
As such they are often used as an initialization
to the maximum likelihood or prediction error
parametric identification methods.

In this chapter we make a distinction between
output only or stochastic identification problems
and input–output or combined deterministic-
stochastic identification problems. The first
occurs when identifying, e.g., the eigenmodes
of a bridge from ambient acceleration responses
of the bridge. The second occurs when, in
addition to ambient excitations that cannot be
directly measured, controlled excitations through
actuators integrated in the system are used during
the collection of the input–output data.

The outline of this chapter is as follows. In the
next section, we formulate the LTI state-space
model identification problems and outline the
general strategy of ST. The presentation of ST
is given according to the historical development
of ST. It starts with a summary of the solution
to the deterministic realization problem, which
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considers the noise-free “impulse” response
of the system. Subsequently we present the
stochastic realization problem which considers
the output-only identification problem where
the output is assumed to be a filtered zero-
mean, white-noise sequence. The ST solution is
discussed assuming samples of the covariance
function of the output to be given. The
deterministic-stochastic identification problem
is considered in section “Combined Determin-
istic-Stochastic ST.” In this section we first
consider open-loop identification experiments.
For this case, the basic linear regression problem
is formulated that is at the heart of many
ST. Second reference is made to a framework
for analyzing and understanding the statistical
properties of ST, the selection of the order, as
well as to a number of open problems in the un-
derstanding of important choices the user has to
made. Closed-loop identification experiments are
considered in the third part of section “Combined
Deterministic-Stochastic ST,” while the fourth
part makes a brief reference to ST papers that go
beyond the LTI case.

Finally we provide a brief overview on future
research directions and conclude with some rec-
ommended literature for further exploration.

ST in Identification: Problems and
Strategy

The LTI system to be analyzed in this chapter is
given by the following state-space model:

x.k C 1/ D Ax.k/C Bu.k/CKe.k/

y.k/ D Cx.k/CDu.k/C e.k/ (1)

with u.k/ 2 R
m the (measurable) input,

e.k/ a zero-mean, white-noise sequence with
EŒe.k/e.k/T � D R, y.k/ 2 R

` the (measurable)
output, and x.k/ 2 R

n the state vector. This
model is in the so-called innovation form since
the sequence e.k/ is the innovation signal in a
Kalman filtering context.

The historical sequence of ST developments
considers the following open-loop problem for-
mulations. In the deterministic realization prob-
lem, the innovation sequence e.k/ is zero, and the
input u.k/ is an impulse. The stochastic realiza-
tion problem considers the case where the input
u.k/ is zero and the given data is assumed to be
samples of the covariance function of the output.
The combined deterministic-stochastic identifica-
tion problem considers the model (1) for generic
input u.k/.

The general strategy of ST is to formulate an
intermediate step in deriving the parameters of
the system matrices of interest from the given
data; see Fig. 1. This intermediate step makes the
ST different from the parametric model identifi-
cation framework that aims for a direct estimation
of the parameters of the system matrices by (in
general) nonlinear parameter optimization tech-
niques. The intermediate step in ST aims to deter-
mine a matrix from the given data that reveals an
(approximation of an) essential subspace of the
unknown system. This essential subspace can be

Direct (Non−Linear) Parameter Optimization Strategy

State Space
Model
Realization

Intermediate ST strategy

Subspace
Revealing
Matrix

Given Data:
{u(k), y(k)}Nk=1
or {CAj–1B}Nj=1
etc.

Subspace Techniques in System Identification, Fig. 1
Schematic representation of the intermediate step of
ST to derive from the given data (input–output data
fu.k/; y.k/g, Markov parameters fCAj�1Bg, etc.) a sub-
space revealing matrix, from which the subspace of in-
terest is computed via, e.g., singular value decomposition
and that enables the computation of the state-space model

realization by solving a (convex) linear least-squares prob-
lem. The commonly used approach to directly go from
the given data to a state-space realization via in general
nonlinear parameter optimization methods is indicated by
the arrow directly connecting the given data box to the
state-space realization box



Subspace Techniques in System Identification 1389

S

the extended observability matrix of (1) as given
by the matrix Os:

Os D

2

6

6

4

C

CA

� � �
CAs�1

3

7

7

5

for s > n;

or the state sequence of a Kalman filter designed
for (1). Essential for ST is that both the interme-
diate step to reveal the subspace of interest and
the subsequent derivation of the system matrices
from that subspace and the given data are done
via convex optimization methods and/or linear
algebra methods.

Realization Theory: The Progenitor
of ST

The Deterministic Realization Problem
In the 1960s, the cited result of Kronecker in-
spired independently Ho and Kalman, Silverman
and Youla, and Tissi to present an algorithm
to construct a state-space model from a Hankel
matrix of impulse response coefficients (Schutter
2000). This breakthrough gave rise to the field
of realization theory. One key problem in real-
ization theory that paved the way for subspace
identification is the determination of a minimal
realization from a finite number of samples of
the impulse response of a deterministic system,
assumed to have a minimal representation as
in (1) for e.k/ � 0. The samples of the im-
pulse response are called the Markov parame-
ters. The minimal realization sought for is the
LTI model with quadruple of system matrices
ŒAT ; BT ; CT ;D�, withAT 2 R

n�n and nminimal
such that the pair .AT ; CT / is observable, the
pair .AT ; BT / is controllable, and the transfer
function D C CT .zI � AT /

�1BT equals D C
C.zI �A/�1B with z the complex variable of the
z-transform. When A is stable, the latter transfer
function can be written into the matrix power
series:

DCC.zI�A/�1B D DC
1
X

jD1
CAj�1Bz�j (2)

Following the cited result of Kronecker, the solu-
tion to the minimum realization problem is based
on the construction of the (block-)Hankel matrix
Hs;N constructed from the Markov parameters
fCAj�1BgNjD1 as

Hs;N D

2

6

4

CB CAB � � � CAN�sB
:::

: : :
:::

CAs�1B CAsB � � � CAN�1B

3

7

5 (3)

For the deterministic realization problem, the
intermediate ST step simply is the storage of the
impulse response data into a Hankel matrix. The
subsequent step is to derive from this matrix a
subspace from which the system matrices can
be either read-off or computed via linear least
squares. How this is done is outlined next.

When the order n of the minimal realization is
known and the Hankel matrix dimension param-
eters s;N are chosen such that

s > n N � 2n� 1 (4)

the Hankel matrix Hs;N has rank n. A
numerically reliable way to compute that rank
is via the SVD of Hs;N . Under the assumption
that the rank of Hs;N is n, we can denote that
SVD as Un†nV T

n , with †n 2 R
n�n positive

definite and with the columns of the matrices
Un and Vn orthonormal. By the minimality
of (1) (for e.k/ � 0), Hs;N can be factored
as Os

�

B AB � � � AN�sB
	 D OsCN�sC1 or as




Un†
1
2
n

�


†
1
2
n V

T
n

�

, and these factors are related
as

Un†
1
2
n D OsT

�1 D Os;T †
1
2
n V

T
n D T CN�sC1

D CN�sC1;T

for T 2 R
n�n a nonsingular transformation.

Therefore Os;T resp. CN�sC1;T act as the
extended observability resp. controllability
matrix of a similarly equivalent triplet of system
matrices .AT ; BT ; CT /. This correspondence
allows to read-off the system matrices CT and
BT as the first ` rows of the matrix Os;T and
the first m columns of CN�sC1;T resp. Further
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the shift-invariance property of the extended
observability resp. controllability matrices allows
to find the system matrix AT of the minimal
realization. For example, consider the extended
observability matrix Os , then the shift-invariance
property states that:

Os;T .1 W .s�1/`; W/AT D Os;T .`C1 W s`; W/ (5)

where the notation M.u W v; W/ indicates the
submatrix of M from rows u to rows v. The
shift-invariance property delivers a set of linear
equations from which the system matrix AT can
be computed via the solution of a linear least-
squares problem when s > n.

Finding the dimension parameters s .and N/
of the Hankel matrixHs;N is a nontrivial problem
in general. When only the Markov parameters are
given and the knowledge that they stem from a
finite-order state-space model, a possible sequen-
tial strategy is to select s and N equal to the
upperbounds in (4) for presumed orders n and
nC 1, respectively. When the rank of the Hankel
matrices for these two selections of s (and N ) is
identical, the right dimensioning of the Hankel
matrix Hs;N is found. Otherwise the presumed
order is increased by one.

The Stochastic Realization Problem
The output-only identification problem aims at
determining a mathematical model from a mea-
sured multivariate time series fy.k/gNkD1 with
y.k/ 2 R

`. Such a model can be then used for
predicting future values of the (output) data from
past values.

In the vein of the revival of the work of
Kronecker on realizing dynamical systems from
its impulse response, Faure and a number of
contemporaries like Akaike and Aoki made pi-
oneering contributions to extend this methodol-
ogy to stochastic processes (Van Overschee and
De Moor 1993). These extensions are known as
solutions to the stochastic realization problem.

This problem is formulated for y.k/ to be a
Markovian stochastic process. Reusing the nota-
tion in (1) y.k/ is assumed to be generated by
(1) with the input u.k/ � 0. The A matrix in (1)
is again assumed to be stable. The given data in

the early formulations of the stochastic realiza-
tion problem was the samples of the covariance
function

Ry.j / D EŒy.k/y.k � j /T �

These samples define the strictly positive real
spectral density function of y.k/:

ˆy.z/ D
1
X

jD�1
Ry.j /z

�j > 0 (6)

Given the samples of the covariance function
Ry.j /, the stochastic realization problem was to
find an innovation model representation of the
form

Ox.k C 1/ D AT Ox.k/CKT e
0.k/

Qy.k/ D CT Ox.k/C e0.k/ (7)

with e0.k/ a zero-mean, white-noise input with
covariance matrix Re , the pair .AT ; CT / observ-
able, and AT stable, such that the spectral density
functionsˆy.z/ and ˆ Qy.z/ are equal.

The partial similarity between this problem
and the minimal realization problem becomes
clear when expressing the covariance function
samples Ry.j / in terms of the system matrices
in (1)–for u.k/ � 0 as

Ry.j / D CAj�1G for j ¤ 0 (8)

with the matrices G and Ry.0/ derived from the
following covariance expressions:

EŒx.k/x.k/T � D †x W †x
D A†xA

T CKRKT (9)

EŒx.k C 1/y.k/T � D G W G
D A†xC

T CKR (10)

EŒy.k/y.k/T � D Ry.0/ W Ry.0/
D C†xC

T CR (11)

Since the spectral density has a two-sided series
expansion, there is a so-called forward stochastic
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realization problem (considering Ry.j / for
j � 0 only) and a backward version. Here we
only treat the forward one. Drawing the parallel
between the samples of the covariance function
Ry.j /, as given in (6)–(8) and the Markov
parameters in (2), we can use the deterministic
tools from realization theory to find a minimal
realization .AT ; CT ;GT /.

The intermediate ST step in the stochastic
realization problem is the construction of a Han-
kel matrix similar to the matrix Hs;N as in the
deterministic realization problem but now from
the samples of the covariance function Ry.j /

in (8).
With the triplet .AT ; CT ;GT / determined, the

innovation model (7) is classically completed via
the solution of a Riccati equation in the unknown
†x . This Riccati equation results by noting that
R > 0, and therefore, KRKT can be written as
KR.R/�1RTKT . This reduces the expression for
†x in (9) with the help of (10) and (1) as

†x D A†xA
T C .G � A†xC

T /.Ry.0/

�C†xCT /�1.G �A†xCT /T (12)

By replacing the triplet .A; C;G/ with the found
minimal realization .AT ; CT ;GT / in this Riccati
equation, its solution †x;T enables in the end to
define the missing quantities as

Re D Ry.0/� CT†x;T C T
T

KT D .GT �AT†x;T C T
T /R

�1
e (13)

By the positive realness of ˆy.z/ and the similar
equivalence between the triplets .AT ; CT ;GT /
and .A; C;G/, the solution †x;T is positive defi-
nite.

A persistent problem in solving the stochas-
tic realization problem has existed for a long
time when using approximate values of the sam-
ples Ry.j /. This problem is that the estimated
power spectrum based on estimates of the triplet
.AT ; CT ;GT / is no longer positive real.

An approximate solution overcoming the
problem of the loss of positive realness of the

estimated power spectrum was provided in the
vein of the ST developed in the early 1990s as
discussed in the next section.

Combined
Deterministic-Stochastic ST

Identification of LTI MIMO Systems in
Open Loop
Since the golden 1960s and 1970s of the twen-
tieth century, many attempts have been made to
make the insights from deterministic and stochas-
tic realization theory useful for system identifi-
cation. To mention a few, there are attempts to
use the solutions to the deterministic realization
problem with measured or estimated impulse re-
sponse data. One such method is known under the
name of the eigensystem realization algorithm
(ERA) (Juang and Pappa 1985) and has been
used for modal analysis of flexible structures,
like bridges, space structures, etc. Although these
methods tend to work well in practice for these
resonant structures that vibrate (strongly), they
did not work well for other type of systems and an
input different from an impulse. Extensions to the
stochastic realization problem considered the use
of finite sample average estimates of the covari-
ance function as an attempt to make the method
work with finite data length sequences. As in-
dicated in section “The Stochastic Realization
Problem,” these approximations of the covariance
function tended to violate the positive realness
property of the underlying power spectrum.

In the early 1990s of the twentieth century,
new breakthroughs were made working directly
with the input–output data of an assumed LTI sys-
tem without the need to first compute the Markov
parameters or estimating the samples of covari-
ance functions. Pioneers that contributed to these
breakthroughs were Van Overschee and De Moor,
introducing the N4SID approach (Van Overschee
and De Moor 1994); Verhaegen, introducing the
MOESP approach (Verhaegen 1994); and Lari-
more, presenting ST in the framework of canoni-
cal variate analysis (CVA) (Larimore 1990).

These three pioneering contributions consid-
ered the identification of the state-space model
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(1) from the input–output data fu.k/; y.k/gNkD1
recorded in open loop. The pair .A; C / was
assumed to be observable, and the pair .A;KR/
controllable. The innovation noise covariance
matrix R was assumed to be positive definite.

The formulation of the intermediate ST step
from which these three pioneering contributions
can be derived (by weighting the result of Theo-
rem 1) and that is at the heart of many more vari-
ants is summarized in Theorem 1. This theorem
requires two preparations: first the storage of the
input and output sequences into (block-) Hankel
matrices and relating these Hankel matrices via
the model parameters and second to make three
observations about the model (1) when presented
in the prediction form. This form is obtained
by replacing x.k/ by Ox.k/ and e.k/ by y.k/ �
C Ox.k/ �Du.k/ and is given by

Ox.k C 1/ D .A�KC/ Ox.k/
C.B �KD/u.k/CKy.k/

y.k/ D C Ox.k/CDu.k/C e.k/ (14)

To compact the notation we make the following
substitutions: A D .A � KC/ and B D Œ.B �
KD/ K�.

Let the Hankel matrix with the “future” part
fy.k/gNkDpC1 be defined as

Yf D

2

6

6

6

4

y.p C 1/ y.p C 2/ � � � y.N � f C 1/

y.p C 2/
:::

: : :

y.p C f / � � � y.N /

3

7

7

7

5

(15)

for the dimensioning parameters p and f se-
lected such that

p � f > n

In a similar way we define the Hankel matrices
Uf and Ef from the input u.k/ and the inno-
vation e.k/, respectively. Then with the defini-
tion of the (block-)Toeplitz matrix Tu from the
quadruple of system matrices .A;B; C;D/ as

Tu D

2

6

6

6

6

6

4

D 0 � � � 0
CB D 0

CAB CB 0

:: :

CAf�1B CAf�2B � � � D

3

7

7

7

7

7

5

and similarly the definition of the Toeplitz ma-
trix Te from the quadruple of system matrices
.A;K;C; I /, we can relate the data Hankel ma-
trices Yf and Uf as

Yf D Of
� Ox.p C 1/ � � � Ox.N � f C 1/

	

CTuUf C TeEf

D Of OXf C TuUf C TeEf (16)

Based on the prediction form (14), 3, key ob-
servations are made to support the rational of the
intermediate step summarized in Theorem 1:
O1: The standard assumption that the transfer

function from e.k/ to y.k/ is minimum
phase leads to the fact that matrix A is
stable. Therefore, there exists a finite integer
p such that

Ap � 0

O2: The state-pace model of (14) has inputs
u.k/ and y.k/. Grouping both together into

the new vector z.k/ D
�

u.k/
y.k/

�

enables to

express the state Ox.k C p/ as

Ox.kCp/DAp Ox.k/C
p
X

jD1
Aj�1Bz.kCp�j /

for k � 1. With the assumption that
Ap � 0 and the definition of the input-
output data vector sequence Z.k/ D
�

z.k/T � � � z.k C p � 1/T
	T

, we have the
following approximation of the state:

Ox.kCp/ � �Ap�1B � � � B	Z.k/ D LzZ.k/

As such the state sequence OXf in (16) can
be approximated by

LzZpDLz
�

Z.1/Z.2/ � � �Z.N�f �pC1/	 :
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O3: The (approximate) knowledge of the
row space of the state sequence in OXf
makes that the unknown system matrices
.A;B; C;D;K/ appear (approximately)
linearly in the model (14).

The intermediate ST step to retrieve a matrix
with relevant subspaces is summarized in the
following theorem taken from Peternell et al.
(1996).

Theorem 1 (Peternell et al. 1996) Consider the
model (1) with all stochastic processes assumed
to be ergodic and with the input u.k/ to be sta-
tistically uncorrelated from the innovation e.`/
for all k; `. Consider the following least-squares
problem:
� OLu

N
OLz
N

	 D arg min
Lu;Lz

kYf � �

Lu Lz
	

�

Uf
Zp

�

k2F
(17)

with k:k2F denoting the Frobenius norm of a
matrix, then

lim
N!1

OLz
N D Of Lz C OfAp�z

with �z a bounded matrix.

The theorem delivers the matrix OLz
N via the solu-

tion of a convex linear least-squares problem that
has asymptotically (in the number of measure-
ments N ) the extended observability matrix Of

as its column space and that has asymptotically
(in the number of measurements as well as in
the dimension parameter p) the matrix Lz as its
row space. Based on the expression of the state
sequence OXf given in the observation O2 above,
the estimate of the row space of Lz delivers an
estimate of the row space of the state sequence
Xf . The observation O3 then shows that this
intermediate step allows to derive an estimate
of the system matrices ŒA;B; C;D;K� (up to
a similarity transformation) via a linear least-
squares problem.

Towards Understanding the Statistical
Properties
Many ST variants for system identification us-
ing data recorded in open loop have been de-
veloped since the early 1990s of the twentieth

century. These variants mainly differ in the use
of weighting matrices W` and Wr in the product
W`

OLz
NWr prior to computing the subspaces of

interest. The effect on the accuracy and the statis-
tical properties of the estimated model by these
weighting matrices is yet not fully understood
as is that of the dimensioning parameters p and
f in the definition of the data Hankel matrices
Yf ; Uf ;Zp . Only for very specific restrictions
results have been achieved. For example, in Bauer
and Ljung (2002), it has been shown that when
the input u.k/ in (1) is either non-present or zero-
mean white noise, as well as when the system
order n of the underlying system to be known and
letting in addition to the dimension parameter p
and the number of data points N the dimension
parameter f go to infinity, that the weighting
matrices selected to represent the CVA approach
(Larimore 1990) yield an optimal minimum vari-
ance estimate. A framework for analyzing the sta-
tistical properties like consistency and asymptotic
distribution of the estimates determined by the
class of STs that were discovered in the 1990s is
given in Bauer (2005).

The minimum variance property of the esti-
mates by the CVA approach (Larimore 1990) is
theoretically not yet proven for more generic and
practically relevant experimental conditions. For
these cases, the choices of the different weight-
ing matrices, the dimensioning parameters f; p,
as well as selecting the system order are of-
ten diverted to user. Despite this fact, practi-
cal evidence has shown that STs are able to
accurately identify state-space models for LTI
MIMO systems under industrially realistic cir-
cumstances. As such they are by now accepted
and widely used as a common engineering tool
in various areas, such as model-based control,
fault diagnostics, etc. Further they generally pro-
vide excellent initial estimates to the nonlinear
parametric optimization methods in prediction
error or maximum likelihood estimation meth-
ods.

Identification of LTI MIMO Systems in
Closed Loop
The least-squares problem (17) in Theo-
rem 1 leads to biased estimates when using
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input-output data that is recorded in a closed-loop
identification experiment. This is because of
the correlation between the measurable input
and the innovation sequence. A number of
solutions have been developed to overcome
this problem. We refer to the paper van der
Veen et al. (2013) for an overview of a number
of these rescues. A simple and performant
rescue is described here based on the work in
Chiuso (2010). The intermediate ST step in
order to avoid biased estimates is to estimate
a high-order vector autoregressive models
with exogenous inputs, a so-called VARX
model:

min
‚

N�p
X

kD1
ky.k C p/ �‚Z.k/ �Du.k C p/k22

(18)
Using the result on the approximation of the state
vector Ox.k C p/ in observation O2, it can be
shown that the solution O‚ of (18) is an approx-
imation of the parameter vector:

O‚ D
h

3CAp�1B � � � cCB
i

Then using this solution O‚ and O1 above leads
to the following “subspace revealing matrix” (cf.
Fig. 1):

2

6

6

6

6

6

4

3CAp�1B 3CAp�2B � � � 3CAp�f B � � � bCB
0 3CAp�1B 5CAp�f C1B � � � 1CAB
:::

: : :

0 0 � � � 3CAp�1B � � � 3CAf�1B

3

7

7

7

7

7

5

(19)

As in the open-loop case of section “Iden-
tification of LTI MIMO Systems in Open
Loop,” column and row weighting matrices
as well as changing the size of the subspace
revealing matrix (19) can be used to influence
the accuracy of the estimates (Chiuso 2010). The
subspace of interest of this weighted subspace
revealing matrix is its row space that is an
approximation of that of the state sequence
OXf as in (16), now extended to make the size

compatible to the weighted version of (19).
Similarly as in the open-loop case, knowledge of
this subspace turns the estimation of the system
matrices ŒA;B; C;D;K� (up to a similarity
transformation) into a linear least-squares
problem. The statistical asymptotic properties
of this closed-loop ST and the treatment of the
dimensioning parameters have also been studied
in Chiuso (2010). Here, the result is proven that
the asymptotic variance of any system invariant
of the model estimated via the above closed-

loop ST is a nonincreasing function of the
dimensioning parameter f when the input u.k/
to the plant is generated by an LQG controller
with a white-noise reference input.

Beyond LTI Systems
The summarized discrete-time ST methodology
has been extended in various ways. A number of
important extensions including representative
papers are towards continuous-time systems
(van der Veen et al. 2013), using frequency-
domain data (Cauberghe 2006) or for different
classes of nonlinear systems, like block-
oriented Wiener and/or Hammerstein and linear
parameter-varying systems (van Wingerden and
Verhaegen 2009). ST for linear time-varying
systems with changing dimension of the state
vector is treated in Verhaegen and Yu (1995), and
finally we mention the developments to make ST
recursive (van der Veen et al. 2013).
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Summary and Future Directions

Subspace techniques aim at simplifying the
system identification cycle and make it more
user-friendly. Still a number of challenges persist
in improving on this general goal. A critical
one is the “optimal” selection of the weighting
matrices and the dimensioning parameters p and
f of the subspace revealing matrix. Optimality
here can be expressed, e.g., by the minimality
of the variance of the estimates but could
also be viewed more generally in relationship
with the use of the model, e.g., in terms of
the performance of a model-based closed-loop
design. A profound theoretical framework is
necessary to fully automate the selection of the
weighting matrices and dimensioning and order
indices. This would substantially contribute to
fully automated identification procedures for
doing system identification (for linear systems).

A second challenge is to better integrate
ST with robust controller design. This requires
the assessment of the model quality and the
selection of an optimal input. Particular to
the integration of ST to control design is the
striking similarity of data equations used in ST
and model predictive control. The challenge is
to further exploit this similarity to develop data-
driven model predictive control methodologies
that are robust w.r.t. the identified model
uncertainty.

One interesting development in ST is the use
of regularization via the nuclear norm in order to
improve the model order selection with respect
to, e.g., SVD-based ST in Liu and Vandenberghe
(2010).

A final challenge is to extend ST for LTI sys-
tems to other classes of dynamic systems, such as
nonlinear, hybrid, and large-scale systems.

Cross-References

�Linear Systems: Discrete-Time, Time-Invariant
State Variable Descriptions

�Realizations in Linear Systems Theory

�Sampled-Data Systems
�System Identification: An Overview

Recommended Reading

The recommended readings for further study are
the books that appeared on the topic of subspace
identification. In the books Verhaegen and Ver-
dult (2007) and Katayama (2005), the topic of
subspace identification is treated in a wider con-
text for classroom teaching at the MSc level since
more elaborate topics relevant in the understand-
ing of ST are treated, such as key results from
linear algebra, linear least squares, and Kalman
filtering. The book Van Overschee and De Moor
(1996) is focused on subspace identification only
and also emphasizes the success of ST on various
applications. All these books provide access to
numerical implementations for getting hands-on
experience with the methods. The integration of
subspace methods with other identification ap-
proaches is done in the toolbox (Ljung 2007).

There also exist a number of overview arti-
cles. An overview of the early developments of
ST since the 1990s of the twentieth century is
given in Viberg (1995). Here also the link be-
tween ST for identifying dynamical systems and
the signal processing application of direction-of-
arrival problems was clearly made. A more recent
overview article is van der Veen et al. (2013). In
this article also reference is made to the statistical
analysis and closed-loop application of ST.

Many papers have appeared reporting success-
ful application of subspace methods in practical
applications. We refer to the book Van Overschee
and De Moor (1996) and the overview paper
van der Veen et al. (2013).
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Abstract

We introduce background and base model for
supervisory control of discrete-event systems,
followed by discussion of optimal controller
existence, a small example, and summary of
control under partial observations. Control
architecture and symbolic computation are noted
as approaches to manage state space explosion.

Keywords

Asynchronous; Control architectures; Control-
lability; Discrete; Dynamics; Finite automata;
Observability; Optimality; Regular languages;
Symbolic computation

Introduction

Discrete-event (dynamic) systems (DES or
DEDS) constitute a relatively new area of
control science and engineering, which has
taken its place in the mainstream of control
research. Recently, DES have been combined
with continuous systems in an area called hybrid
systems.
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Problems and methods for DES have been
investigated for some time, although not neces-
sarily with a “control” flavor. The parent domains
can be identified as operations research and soft-
ware engineering.

Operations research deals with systems of in-
terconnected stores and servers which operate
on processed items. For instance, manufacturing
systems employ queues, buffers, and bins (which
store workpieces). These are served by machines,
robots, and automatic guided vehicles (AGVs),
which process workpieces. The main problems
are to measure quantitative performance and es-
tablish trade-offs, for instance flow vs. cost, and
to optimize design parameters such as buffer size
and maintenance frequency.

The relevant areas of software engineering
include operating systems control, concurrent
computing, and real-time (embedded or reactive)
systems, with focus on synchronization algo-
rithms that enforce mutual exclusion and resource
sharing in the presence of concurrency, as in the
classical problems of Readers & Writers and
Dining Philosophers. The main objectives are
(i) to guarantee safety (“Nothing bad will ever
happen”), as in mutual exclusion and deadlock
prevention, and (ii) to guarantee liveness
(“Something good will happen eventually”), for
instance, successful computational termination
and eventual access to a desired resource.

DES from a Control Viewpoint

With these domains in mind, we consider DES
from a control viewpoint. In general, control
deals with dynamic systems, defined as entities
consisting of an internal state space, together
with a state-evolution or transition structure, and
equipped (for control purposes) with both an
input mechanism for actuation and an output
channel for observation and feedback. The ob-
jective of control is to bring together information
and dynamics in some purposeful combination:
the interplay between observation and control or
decision-making is fundamental.

In this framework, a DES is a dynamic sys-
tem that is discrete, in time and usually in state

space; is asynchronous or event driven, that is
driven by events or instantaneous happenings in
time (which may or may not include the tick
of a clock); and is nondeterministic, namely,
embodies internal chance or other unmodeled
mechanisms of choice which govern its state
transitions. With a manufacturing system, for
example, the dynamic state might include the
status of machines (idle, working, down, under
maintenance or repair), the contents of queues
and buffers, and the locations and loads of robots
and AGVs, while transitions (discrete events)
occur when queues and buffers are incremented
or decremented, robots load or unload, and ma-
chines start work, finish work, or break down
(the “choice” between finishing work success-
fully and breaking down, being thus nondeter-
ministic). In this example and many others, the
objectives of design and analysis include logi-
cal correctness in the presence of concurrency
and timing constraints, and quantitative perfor-
mance such as rates of production, all of which
depend crucially on feedback control synthesis
and optimization. To this end the models will
tend to be DES or hybrid systems. Nevertheless
one finds the continuing relevance of standard
control-theoretic concepts like feedback, stabil-
ity, controllability, and observability, along with
their roles in large-system architectures embody-
ing hierarchical, decentralized, and distributed
functional organization.

Here we focus on models and problems from
which explicit constraints of timing are absent
and which can be considered in a framework of
finite-state machines and the corresponding reg-
ular languages. While the theory has been gener-
alized to more flexible and technically advanced
settings, our restricted framework is already rich
enough to support numerous applications and re-
mains challenging for large systems of industrial
size.

BaseModel for Control of DES

The formal structure of a DES to be controlled
will resemble the simple “machine” called
MACH shown in Fig. 1. The state set of MACH
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is Q D fI;W;Dg, interpreted as Idle, Working,
or Broken Down. MACH is initialized at state
qo D I , denoted by an entering arrow without
source. The transition structure is displayed in
Fig. 1 as a transition diagram, whose nodes are
the states q 2 Q and edges are the transitions,
each labeled with a symbol � in the alphabet
†, here fw; c; b; rg. If a transition (labeled) �
is an edge from q to q0, then “the event � can
occur at state q.” Transitions (or events) are
interpreted as instantaneous in time, while states
are thought of as locations where MACH is able
to reside for some indeterminate time interval.
The occurrence of w means “MACH enters the
Working state from Idle” and similarly for c; b; r .
These transitions determine the state-transition
function of MACH, denoted by ı W Q�† ! Q.
Thus ı.I;w/ D W , ı.W; b/ D D, and so on.
Notice that ı is a partial function, defined at each
state q 2 Q for only a subset of event (labels)
in †. To denote that ı.q; �/ is defined at state
q 2 Q for the event � 2 †, we write ı.q; �/Š.
The function ı can be extended in a standard way
to ı W Q � †� ! Q, where †� is the set of
all finite strings of elements of †, including the
empty string �. Thus ı.q; �/ WD q and inductively
if q0 WD ı.q; s/Š, then

ı.q; s:�/ WD ı.ı.q; s/; �/ WD ı.q0; �/

whenever ı.q0; �/Š. Graphically the strings s D
�1 : : : �k 2 †� for which ı.q; s/Š are precisely
those for which there exists a path in the transi-
tion diagram starting from q and having succes-
sive edges labeled �1; : : : ; �k .

We call any subset of †� (i.e., any set of
strings of elements from †) a language over

SupervisoryControl ofDiscrete-Event Systems, Fig.1
MACH

† and accordingly speak of sublanguages of a
language over†.

For MACH, the execution of a production cy-
cle, namely the event sequence (or string) w:c, or
a work-breakdown-repair cycle, the string w:b:r:,
can be considered successful, and the correspond-
ing string is said to be marked. States which are
entered by marked strings are marked states and
identified in a transition diagram by an outgoing
arrow with no target. In Fig. 1, the only marked
state happens to be the initial state, which is thus
shown with a double arrow; in general there could
be several marked states, which may or may
not include the initial state. The marked states
comprise a subsetQm � Q, which may be empty
(at one extreme) or equal to Q (at the other).
The case Qm D Q (all states marked) would
imply that every string of events is considered
as significant or successful as any other, while
the case Qm D ; (no state marked, so there are
no successful strings) plays a technical role in
computation.

In general a generator is a tuple G D
.Q;†; ı; qo;Qm/ usually interpreted physically
as for MACH above, but mathematically
consisting merely of the finite-state set Q, finite
alphabet †, marked subset Qm � Q, with initial
state qo 2 Q, and (partial) transition function
ı W Q � † ! Q. Additionally we bring in the
closed behavior L.G/ of G, defined as all the
strings of†� which G can generate starting from
the initial state, in the sense

L.G/ WD fs 2 †� j ı.qo; s/Šg:

Of central importance also is the marked behavior
of G, namely, the sublanguage of L.G/ given by

Lm.G/ WD fs 2 L.G/ j ı.qo; s/ 2 Qmg:

We need several definitions. A string s0 is a
prefix of a string s 2 †�, written s0 � s, if s0
can be extended to s, namely, there exists a string
w in †� such that s0:w D s. The closure of a
language M � †� is the language M consisting
of all prefixes of strings in M :

M WD fs0 2 †� j s0 � s for some s in M g
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A language N over † is (prefix-)closed if it
contains all its prefixes, namely, N D N . In this
notation G is said to be nonblocking if L.G/ D
Lm.G/, namely, any (generated) string inL.G/ is
a prefix of, and so can be extended to, a marked
string of G.

The semantics of G (its mathematical mean-
ing) is simply the pair of languages Lm.G/,
L.G/. In general the latter may be infinite subsets
of†�, while G itself is a finite object, considered
to represent an algorithm for the generation of
its behaviors. Unless G is trivial (has empty state
set), it is always true that � 2 L.G/.

Transition labeling of G is deterministic: at
every q, at most one transition is defined for each
given event � , namely,

ı.q; �/ D q0 & ı.q; �/ D q00 implies q0 D q00:

It is quite acceptable, however, that at distinct
states q and r , both ı.q; �/Š and ı.r; �/Š (where
these evaluations are usually not equal).

To formulate a control problem for G, we
first adjoin a control technology or mechanism
by which G may be actuated to affect its tem-
poral behavior, namely, determine the strings it
is permitted to generate. To this end we assume
that a subset of events †c � †, called the
controllable events, are capable of being enabled
or disabled by an external controller. Think of a
traffic light being turned green or red to allow
or prohibit passage (vehicle transition) through
an intersection. The complementary event subset
†u WD † � †c is uncontrollable; events � 2 †u

cannot be externally disabled but may be consid-
ered permanently enabled. For G D MACH one
might reasonably assume †c D fw; rg, †u D
fc; bg. At a given state q of G, it will be true in
general that ı.q; �/Š both for some (controllable)
events � 2 †c and for some (uncontrollable)
events � 2 †u. Among the � 2 †c , at a given
time, some may be externally enabled and others
disabled. So, G will nondeterministically choose
its next generated event from the subset

f� 2 †u j ı.q; �/Šg [ f� 2 †c j ı.q; �/Š &

� is externally enabledg
(1)

We formalize external enablement by a supervi-
sory control function V W L.G/ ! Pwr.†/,
where Pwr.:/ stands for power set. For s 2
L.G/, the evaluation V.s/ is defined to be the
event subset

V.s/ WD †u [ f� 2 †c j � is externally enabled

following sg (2)

In other words, the set (1) is expressible as

V.s/ \ f� 2 † j s:� 2 L.G/g (3)

namely, the subset of events that, immediately
following the generation of s by G, are either
enabled by default (executable events in †u) or
else by the external controller’s decision (a subset
of executable events in †c).

It is now easy to visualize how the generating
action of G is restricted by the action of V.:/.
Initially (having generated the empty string) G
chooses �1 2 V.�/. Proceeding inductively, after
G has generated s D �1:�2 : : : �k 2 L.G/, s is
fed back to the controller, which evaluates V.s/
according to (2), announcing the result to G,
which then chooses �kC1 in (3), and the process
repeats. Of course the process would terminate
any time the set (3) happened to become empty
(although it need not). In any case, we denote the
subset of L.G/ so determined as L.V=G/, called
the closed behavior of V=G, where the latter
symbol (formally undefined) stands for G under
the supervision of V . It is clear that supervision
is a feedback process (Fig. 2), inasmuch as the
choice of �kC1 in (3) is not, in general, known
in advance, hence must be executed before the
succeeding evaluation V.s:�kC1/ can allow the
generating process to continue. With the closed
behavior of V=G now determined, we define the
marked behavior

Lm.V=G/ WD L.V=G/\Lm.G/ (4)

namely, those marked strings of G that survive
under supervision by V . Thus supervisory control
is nonblocking if L.V=G/ D Lm.V=G/.
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Existence of Controls for DES:
Controllability

Of fundamental interest is the question: what sub-
languages ofL.G/ qualify as a languageL.V=G/
for some choice of supervisory control function
V ? In other words, what is the scope of controlled
behavior(s) for a given G? So far we know that
L.V=G/ is a sublanguage of L.G/, but it is not
usually the case that an arbitrary sublanguage
would qualify. For instance, the empty string
language f�g ¤ L.V=G/ for any V as in (2)
above, in case ı.qo; �/Š for some � in†u, for such
� cannot be disabled.

Assume G is equipped with the technology of
controllable events, hence uncontrollable events
†u � †. We make the basic definition: the
language K � †� is controllable (with respect
to G) provided

For all s 2 K and for all � 2 †u,

whenever s:� 2 L.G/ then s:� 2 K. (5)

Informally, a string s can never exit from
K as the result of the execution by G
of an uncontrollable event: K is invariant
under the uncontrollable flow. In terms of
G D MACH, above, the languages f�g, fwb;wcg
are controllable, but fwg, fw;wcwg are not.
For instance, H WD fw;wcwg has closure
H D f�;w;wc;wcwg, which contains the string
s WD w, but sb D wb can be executed in
MACH, b is uncontrollable, and sb has exited
from H . It is logically trivial from (5) that the
empty language ; (with no strings whatever) is
controllable.

We can now answer the fundamental question
posed above.

Given a nonempty sublanguageK � L.G/;

there exists a supervisory control function V
(6)

such that K D L.V=G/, if and only if

K is controllable.

This result exhibits the L.V=G/ property in a
structured way; furthermore, both the contain-
ment K � L.G/ and the controllability property
(5) (or its absence) can be effectively (algorith-
mically) decided in case K itself is the closed or
marked behavior of some given DES over†.

A key fact easily provable from (5) is that the
family of all controllable languages (with respect
to a fixed G) is algebraically closed under union,
namely,

If K1 and K2 are controllable languages,

then so is K1 [K2: (7)

In fact (7) can be extended to an arbitrary finite or
infinite union of controllable languages.

Given G as above, considered as the plant to
be controlled, suppose a new (regular) language
E is specified, as the maximal set of strings
that we are prepared to tolerate for generation
by G; for instance, E could be considered the
legal language for G (irrespective of what G is
potentially capable of generating, namely,L.G/).
Let us confine attention to the sublanguage of E
that contains only marked strings of G, namely,
E \ Lm.G/. We now bring in the family C.E \
Lm.G// of all controllable sublanguages of E \
Lm.G/ (including the empty language). From
(7) and its infinite extension, there follows the
existence of the controllable language

Ksup WD [fK j K 2 C.E \Lm.G//g (8)

We have Ksup � E \ Lm.G/, and clearly if
K 0 is controllable and K 0 � E \ Lm.G/, then
K 0 � Ksup. Ksup is therefore the supremal
(largest) controllable sublanguage ofE\Lm.G/.
Furthermore, if Ksup is nonempty, then by (6)
there exists a supervisory control V such that
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SupervisoryControl ofDiscrete-Event Systems, Fig.3
Hasse diagram

Ksup D L.V=G/; in this sense V is optimal
(maximally permissive), allowing the generation
by G of the largest possible set of marked strings
that the designer considers legal. We have thus es-
tablished abstractly the existence and uniqueness
of an optimal control for given G and E . This
simple conceptual picture is displayed (Fig. 3)
as a Hasse diagram, in which nodes represent
sublanguages of †� and rising lines (edges) the
relation of sublanguage containment.

In a Hasse diagram it could be that Ksup col-
lapses to the empty language ;. This means that
there is no supervisory control for the problem
considered, either because the specifications are
too severe and the problem is over-constrained
or because the control technology is inadequate
(more events need to be controllable).

Under the finite-state assumption, Ksup is
effectively representable by a DES KSUP, which
may serve as the optimal feedback controller,
as displayed in Fig. 4. Here a string s generated
by G drives KSUP; at each state of KSUP,
the events defined in its transition structure are
exactly those available to G for nondeterministic
execution (in its corresponding state) at the next

synchronization

KSUP G s

SupervisoryControl ofDiscrete-Event Systems, Fig.4
Implementation of V=G

step of the process. In this way the feedback
control process is inductively well defined. The
computational complexity of this design (cf.
(8)) is O.jEj2 � jGj2/ where E is a DES with
Lm.E/ D E and j � j denotes state size. The
controller state size is jKSUPj � jEj � jGj, the
product bound being of typical order.

Supervisory Control Design:
Small Factory

The following example, Small Factory (SF), is an
illustration of supervisor design. As in Fig. 5, SF
consists of two machines MACH1 and MACH2
each similar to MACH above, connected by a
buffer BUF of capacity 2. In case of breakdown
the machines can be repaired by a SERVICE
facility as shown. Transition structures of the
machines and design specifications are also dis-
played in Fig. 5. †c (†u) are odd (even) num-
bered events. When self-looped with all irrelevant
events to form BUFSPEC, the latter specifies
that the machines must be controlled in such a
way that BUF is not overflowed (an attempt by
MACH1 to deposit a workpiece in BUF when
it is full) or subject to underflow (an attempt by
MACH2 to take a workpiece from BUF when it
is empty). In addition, SERVICE must enforce
priority of repair for MACH2: when the latter
is down, repair of MACH1 (if in progress) must
be interrupted and only resumed after MACH2
has been repaired; this logic is expressed by
BRSPEC (appropriately self-looped). To form
the plant model G for the DES to be controlled,
we compute the synchronous product of MACH1
and MACH2. The result, say G = FACT, is a
DES of which the components MACHi are free
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to execute their events independently except for
synchronization on events that are shared (here,
none). Similarly we form the synchronous prod-
uct of BUFSPEC and BRSPEC to obtain the full
specification DES SPEC. We now execute the
optimization step in the Hasse diagram (Fig. 3);
this yields the SF controller KSUP(21,47) with
21 states and 47 transitions. Online synchroniza-
tion of KSUP with FACT will result in genera-
tion of the optimal controlled behavior Ksup by
the feedback loop. Since Ksup � Lm.G/ by (8),
our marking conventions ensure that KSUP is
nonblocking.

In general the languageKsup will include in its
structure not only the constraints required by con-
trol but also the physical constraints enforced by
the plant structure itself (here, FACT). The latter
are thus redundant in the online synchronization
of the plant with the controller KSUP. A more
economical controller is obtained if the plant
constraints are projected out of KSUP to obtain
a reduced controller, say KSIM. Mathematically,
projection amounts to constructing a control con-
gruence or dynamically (and control) consistent
partition on the state set of KSUP and taking
the cells of this partition, abstractly, as the new

states for KSIM. In SF KSUP (21,47) is reduced
to KSIM(5,18), which when synchronized with
FACT yields exactly KSUP but is less than one-
quarter the state size. In practice a state size
reduction factor of ten or more is not uncommon.

Supervisor Architecture and
Computation

As noted earlier, the state size jKSUPj of con-
troller KSUP is on the order of the product
of state sizes of the plant, say jPLANTj, and
specification, say jSPECj. As these in turn are the
synchronous products of individual plant compo-
nents or partial specifications, jKSUPj tends to
increase exponentially with the numbers of plant
components and specifications, the phenomenon
of exponential state space explosion. The result
is that centralized or monolithic controllers such
as KSUP can easily reach astronomical state
sizes in realistic industrial models, thereby be-
coming infeasible in terms of computer storage
for practical design. This issue can be addressed
in two basic ways: by decentralized and hier-
archical architectures, possibly in heterarchical
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combination, and by symbolic DES representa-
tion and computation, where what is stored are
not DES and their controller transition struc-
tures in extensional (explicit) form, but instead
intensional or algorithmic recipes from which the
required state and control variable evaluations are
computed online when actually needed.

Supervisory Control Under Partial
Observations

Hierarchical control is one example of control
under partial observations, a high-level manager
(say) observing not full low-level operation but
rather an abstraction. Partial observation has been
studied mainly for abstractions given by natural
projections. For a DES G over alphabet †, let
†o � † be a subalphabet interpreted as the
events that can be recorded by some external
observer. A mapping P W †� ! †�

o is called
a natural projection if its action is simply to erase
from a string s in †� all the events in s (if
any) that do not belong to †o, while preserving
the order of events in †o. P extends naturally
to a mapping of languages over †. One can
then implement an induced operator on DES, say
Project .G/ D PG, with semantics

Lm.PG/ D PLm.G/; L.PG/ D PL.G/:

While in worst cases jPGj can be exponentially
larger than jGj, such blowup seems to be rare,
and typically jPGj � jGj, namely, P results
in simplification of the model G. By use of P
it is possible to carry over to DES the control-
theoretic concept of observability. Two strings
s; s0 2 †� are look-alikes with respect to P if
Ps D Ps0, namely, are indistinguishable to an
observer (or channel) modeled by P . Thus, given
G and P as above, a sublanguage K � L.G/
is observable if, roughly, look-alike strings in K
have the same one-step extensions in K that are
compatible with membership in L.G/ and also
satisfy a consistency condition with respect to
membership in Lm.G/. For control under ob-
servations through P , one defines a supervisory

control function V W L.G/ ! Pwr.†/ to be
feasible if it assumes the same value on look-alike
strings, in other words respects the observation
constraint enforced by P . It then turns out that
a language K � Lm.G/ can be synthesized in
a feedback loop including G and the feedback
channel P if and only if K is both controllable
and observable.

Although this result is conceptually satisfy-
ing, it is computationally inconvenient because,
by contrast with controllability, the property of
sublanguage observability is not in general closed
under union. A substitute for observability is
sublanguage normality, a stronger property than
observability but one that is indeed closed un-
der union. Since the family of controllable and
normal sublanguages of a given specification lan-
guage is nonempty (the empty language belongs)
and is closed under union, a (unique) supremal
(or optimal) element exists and can be computed;
it therefore solves the problem of supervisory
control under partial observations, albeit under
the normality restriction. The latter has the fea-
ture that the resulting supervisor can only disable
a controllable event if the latter is observable,
i.e., belongs to †o. In some applications this
restriction might preclude the existence of a so-
lution altogether; in others it could be harmless,
or even desirable as a safety property, in that if
the intended disablement of a controllable event
happened to fail, and the event occurred after
all, the fault would necessarily be observable and
thus optimistically remediable in good time.

An intermediate property is known that
is weaker than normality but stronger than
observability, called relative observability. The
family of relatively observable sublanguages of
a given specification language is closed under
union and thus does possess a supremal element,
which in the regular case can be effectively
computed. When combined with controllability,
relative observability yields a solution to the
problem of supervisory control under partial
observations which places no limitation on the
disablement of unobservable controllable events.
Examples show that a nontrivial solution of this
type may exist in cases where the normality
solution is empty.
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Summary and Future Directions

Supervisory control of discrete-event systems,
while relatively new, has reached a first level
of maturity in that it is soundly based in
a standard framework of (especially) finite-
state machines and regular languages. It has
effectively incorporated its own versions of
control-theoretic concepts like stability (in
the sense of nonblocking), controllability,
observability, and optimality (in the sense of
maximal permissiveness). Modular architectures
and, on the computational side, symbolic
approaches enable design of both monolithic
and heterarchical/distributed controllers for DES
models of industrial size. Major challenges
remain, especially to develop criteria by which
competing architectures can be meaningfully
compared and to organize control functionality
in ways that are not only tractable but also
transparent to the human user and designer.
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Abstract

Switching adaptive control is one of the advanced
approaches to adaptive control. By employing an
array of simple candidate controllers, a properly
designed monitoring function and switching law,
this approach is capable to search in real time
for a correct candidate controller to achieve the
given control objective such as stabilization and
set-point regulation. This approach can deal with
large parameter uncertainties and offers good
robustness against unmodelled dynamics. This
article offers a brief introduction to switching
adaptive control, including some historical back-
ground, basic concepts, key design components,
and technical issues.

Keywords

Adaptive control; Hybrid systems; Multiple mod-
els; Supervisory control; Switching logic; Uncer-
tain systems

Introduction

Switching adaptive control, also known as
switched adaptive control or multiple model
adaptive control, refers to an adaptive control
technique which deploys a set of controllers
and a switching law to achieve a given control
objective. The concept of switching adaptive
control is generalized from the traditional gain
scheduling technique (Leith and Leithead 2000).
As in the standard adaptive control setting, the
model for the controlled plant is assumed to
contain uncertain parameters, and the control
objective is to stablize the system and, in many
cases, to deliver certain performance using

http://dx.doi.org/10.1007/978-1-4471-5058-9_59
http://dx.doi.org/10.1007/978-1-4471-5058-9_52
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real-time information in the measured output.
What differentiates switching adaptive control
from gain scheduling is that the uncertain
parameters are not directly measured and the
switching is determined by the system response.
This seemingly minor difference is very impor-
tant because parameter estimation may not be
possible due to the lack of persistent excitation;
moreover, the sensitivity of the measured output
is often suppressed by the feedback control which
makes closed-loop identification of the uncertain
parameters difficult. Compared with classical
adaptive control, switching adaptive control
has better inherent robustness against parameter
uncertainties and unmodelled dynamics.

By early 1980s, the classical adaptive control
theory for linear systems had been well estab-
lished under a set of so-called classical assump-
tions, which include:
• Known order of the plant (or known maximum

order of the plant)
• Known relative degree of the plant
• Minimum phase dynamics
• Known sign of the high-frequency gain (which

is the gain of the plant when the input is high-
frequency sinusodial signal)

At the same time, it was recognized that the
classical adaptive control approach has inherent
robustness problems against even miniature un-
modelled dynamics (Rohrs et al. 1985). While
this generated a wave of research aiming at robus-
tification of the classical adaptive control theory
(see, e.g., Ioannou and Sun 1996), a new line
of research took place aiming at relaxing the
classical assumptions. Nussbaum (1983) paved
the way by showing that knowledge of the sign
of the high-frequency gain can be avoided for a
first order linear system. Morse (1985) developed
a “universal controller” which can adaptively sta-
blize any strictly proper, minimum-phase system
with relative degree not exceeding two. Martens-
son (1985) gave a very surprising result by show-
ing that asymptotic stabilization can be achieved
adaptively by simply assuming that there exists
a finite order stabilizer. But Martensson’s con-
troller is impractical due to the need for exhaus-
tive online search of the stabilizer and subsequent
excessively high overshoots. Switching adaptive

control was then introduced in Fu and Barmish
(1986), aiming at achieving adaptive stabilization
with minimal assumptions and a guarantee of
exponential convergence rate for the state. In
contrast to the work of Martensson, a compact-
ness requirement is made on the set of possible
plants and an upper bound on the order of the
plant is assumed. These assumptions allow a set
of possible plants to be partitioned into a finite
number of subsets, with each stabilizable by a
single controller. A monitoring function and a
switching law are then designed to sequentially
eliminate incorrect candidate controllers until an
appropriate controller is found. Due to the fact
that the number of candidate controllers may be
large, many follow-up works on switching adap-
tive control focused on speeding up the switching
process by eliminating incorrect candidate con-
trollers without trying them (Zhivoglyadov et al.
2000, 2001). These results can also deal with
slowly time-varying parameters and infrequent
parameter jumps.

Another major breakthrough came from the
works of Morse (1996, 1997) under the term
of supervisory control. His work considers set-
point regulation for uncertain linear systems. A
different compactness requirement is used to al-
low unmodelled dynamics in the system. More
specifically, the given uncertain linear system is
assumed to belong to a union of sub-families of
systems, with each sub-family having a linear
controller capable to achieve set-point regulation.
Suitably defined output-squared estimation errors
are used as monitoring functions and a candi-
date controller is selected whose corresponding
performance signal is the smallest. The major
advantages of this switching law are that the
“correct” controller can usually be quickly iden-
tified without cycling through all possible can-
didate controllers, leading to a good closed-loop
performance.

More recent research on switching adaptive
control focuses on more systematic and alterna-
tive approaches to the design of candidate con-
trollers and switching laws; see, e.g., Anderson
et al. (2000), Hespanha et al. (2001), and Morse
(2004). Generalizations to nonlinear systems are
also found Battistelli et al. (2012).
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Design of Switching Adaptive Control

A switching adaptive controller consists of the
following key ingredients:
• Design of control covering
• Design of monitoring function
• Selection of dwell time
For illustrative purposes, we consider an adaptive
stabilization problem where the system has the
following model:

Px .t/ D Ax .t/C Bu .t/
y .t/ D Cx .t/

with state x .t/ 2 Rn for some 1 � n � nmax and
the measured output y .t/ 2 Rr . The given set
of uncertain plants† consits of triplets (A;B;C )
and we use the notation †.n/ to denote the subset
of † consisting of those plants having order n. It
is assumed that every possible plant .A;B; C / 2
† is a minimal realization (i.e., both controllable
and observable) and that every †.n/ is a compact
set (i.e., it is closed and bounded). The control
objective is to design an adaptive controller to
drive the state to zero asymptotically, i.e., x.t/ !
0 as t ! 1. It is clear that each possible
plant in † admits a linear dynamic stabilizer.
An alternative description of the uncertain plant
is introduced in Morse (1996, 1997) where its
transfer function is a member of a continuously
parameterized set of admissible transfer functions
of the form

† �
[

p2P

˚

�p C • W k•k � "p
�

In the above, P is a compact set in a finite dimen-
sional space, vp is a nominal transfer function
with its coefficients depending continuously on
p, • is the transfer function of some unmodelled
dynamics, k•k represents a shifted H1 norm
(obtained by first shifting the poles of • slightly to
the right and then computing its H1 norm), and
"p is sufficiently small so that each set of plants
˚

#p C • W j•j � "
�

is stabilizable by a single con-
troller for all p 2 P .

Control covering: The purpose is to decompose
the given set of plants into a union of subsets
such that each subsetPi admits a single controller
Ki (called candidate controller) to achieve the
given control objective. This is typically done us-
ing two properties: inherent robustness of linear
controllers and the existence of a finite cover for
any compact set. More specifically, if a candidate
controller renders a desired control objective for a
given plant, then the same objective is maintained
when the plant is perturbed slightly. For example,
Fu and Barmish (1986) uses the fact that if a given
plant is stabilized by a controller then the same
controller stabilizes all the plants with sufficiently
small parameter perturbations. Similarly, Morse
(1996, 1997) uses the fact that the same controller
achieves set-point regulation for a small neigh-
borhood of plants. Combining this property with
the finite covering property yields

† D
N
[

iD1
†i

such that each subset †i admits a single con-
trollerKi .

Monitoring Function: The generation of the
adaptive switching controller is accomplished us-
ing a switching law or switching logic whose
task is to determine, at each time instant, which
candidate controller is to be applied. The core of
the switching law is a monitoring function. Its
very basic role is to be able to detect whether
the applied candidate controller is consistent with
the corresponding plant subset so that wrong
candidate controllers can be eliminated one by
one until an appropriate controller is found. A
major difficulty for switching adaptive control
design is that persistent excitation is not assumed.
Consequently, it is not always possible to detect
the correct plant subset using the measured out-
put. The key idea is to check which plant subsets
are consistent with the generated output.

One simple monitoring function uses a finite-
time L2 norm of the measured output:

V .t; �/ D
Z t

t��
ky .s/k2 ds
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where � is the so-called dwell time. It turns
out that for some properly chosen dwell time, a
correctly applied candidate controller is able to
guarantee some decay property for the monitor-
ing function, i.e., V .t; �/ � e�œ�V .t � �; �/ for
some œ > 0. This property is sufficient to allow
a wrong candidate controller to be eliminated.
However, much smarter monitoring functions can
be designed so that infeasible candidate con-
trollers (those not corresponding to the true plant)
can be eliminated without even being applied.
This can be done using the falsification approach
in parameter estimation where the basic idea
is to eliminate all plant subsets †i inconsistent
with the measured output signal. For example,
consider the following discrete-time model:

y .t/ D �a1y .t � 1/ � a2y .t � 2/
Cb1u .t � 1/C b2u .t � 2/C w .t/

where ai and bi are uncertain parameters and w(t)
is a bounded disturbance, i.e., jw .t/j � • for
some •. For this example, we may eliminate all
the uncertain parameter subsets which violate the
following constraint (Zhivoglyadov et al. 2000):

jy .t/C a1y .t � 1/C a2y .t � 2/

�b1u .t � 1/ � b2u .t � 2/j � •

More generally, one can use the so-called multi-
estimator (Morse 1996, 1997) which involves an
array of estimators, one for each plant subset †i
using its nominal model. The output estimation
error e; .l/ for each such estimator is then used to
construct a monitoring function, e.g.,

Vi .t; �/ D
Z t

t��
e�2œ.t�s/ kei .s/k2 ds

where � is the dwell time as before and œ > 0 is
an exponential weighting parameter used to guar-
antee the decay rate of the monitoring function as
before. Instead of using the monitoring functions
to eliminate infeasible candidate controllers, the
candidate controller corresponding to the least
estimation error, as measured by the least mon-
itoring function, is selected. The main advantage

of the multi-estimator based monitoring functions
is that falsification of candidate controllers is
done implicitly and a “correct” controller can be
quickly reached, leading to good performance.

Dwell Time: The dwell time � as defined above
is a critical component in switching adaptive con-
trol. Serving in the monitoring function, this is the
minimum nonzero amount of time for a candidate
controller to be applied before switching. That
is, this provides a sufficient time lag to build the
monitoring function so that its exponential decay
property is detected when a correct candidate
controller is applied. This will allow detection
of infeasible plant subsets and selection of a
“correct” controller. The use of a dwell time also
avoids arbitrarily fast switching, thus gaurantee-
ing the solvability of the system dynamics.

The dwell time can be selected a priori by
using the fact that if a matrix A is stable, then
there exist some positive values œ and � such that
�

�eAt
�

� � e�œ� for all i > � . This leads to the
desired exponential decaying property

V .t; �/ � e�œ�V .t � �; �/

for the aforementioned monitoring function for
adaptive stabilization.

Alternatively, the dwell time can be chosen
implicitly. Hespanha et al. (2001) suggest a hys-
teresis switching logic method. This method em-
ploys a hysteresis parameter h > 0. Suppose
the candidate controller Kj is applied at time ti ,
thenKj is kept until the next switching time tiC1
which is the minimum t � ti , such that

.1C h/ min
1�k�N Vk .t; t � ti / � Vj .t; t � ti /

Because h > 0, the time difference tlC1 � ti > 0

is lower bounded, which implies the existence of
a dwell time.

Summary and Future Directions

Switching adaptive control is a conceptually sim-
ple control technique capable to deal with large
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parameter uncertainties. The use of simple can-
didate controllers (typically linear) imply good
closed-loop behavior and good robustness against
unmodelled dynamics. Although the discussion
above assumes that the number of plant subsets
is finite, this assumption is not essential; see
Anderson et al. (2000).

Switching adaptive control renders the closed-
loop system a switched system or hybrid system,
for which a wide range of tools are available to
aid the analysis of such a system; see, e.g., Liber-
zon (2003). However, unique features of such
a system arise from the fact that the switching
mechanism is chosen by the designer, rather than
being a part of the given plant. How to best design
the switching mechanism is an interesting issue.

Future works for switching adaptive control
include:
1. How to simplify the design of candidate con-

trollers. Finite covering based design often
yields a large number of plant subsets, hence
a large number of candidate controllers. Since
most of the candidate controllers do not need
to apply (which is the case when falsification
based switching logic is used, for example),
smarter ways are needed for the design of
candidate controllers.

2. Wider applications. Most of the research so far
focuses on stabilization and set-point regula-
tion (which is essentially a stabilization prob-
lem). How to incorporate general performance
criteria is an essential and yet challenging
issue.

3. Better design of monitoring functions and the
corresponding switching logic. Most exist-
ing monitoring functions use a finite-time L2
norm of the output (or regulation error), with
the key feature that some exponential decay
property is guaranteed when the candidate
controller is “correct.” Note that the key pur-
pose of the monitoring function and the corre-
sponding switching logic is to allow fast fal-
sification of infeasible candidate controllers.
Thus, a much wider range of monitoring func-
tions can possibly be used. In particular, how
to incorporate set membership identification
techniques (Milanese and Taragna 2005) may
be of particular interest.
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Abstract

In this entry we review the theory of optimal
synthesis. We describe the steps necessary to
solve an optimal control problem and the suf-
ficient conditions for optimality given by the
theory. We describe some relevant examples that
have important applications in mechanics, in the
theory of hypo-elliptic operators and for the study
of models of geometry of vision. Finally, we
discuss the problem of optimal stabilization and
the difficulties encountered if one tries to give the
solution to the problem in feedback form.

Keywords

Affine control systems; Extremals; Pontryagin
Maximum Principle; Sub-Riemannian geometry;
Time-optimal synthesis

Optimal Control

An optimal control problem with fixed initial and
terminal conditions can be seen as a problem

of calculus of variations under nonholonomic
constraints:

Pq.t/ D f .q.t/; u.t//; (1)

Z T

0

L.q.t/; u.t// dt ! min .T fixed or free/;

(2)
q.0/ D q0; q.T / D q1: (3)

Here we make the following set of assumptions:
(H) q belongs to a finite-dimensional smooth

manifold M of dimension n. As a function of
time q(.) is assumed to be Lipschitz continuous.
The control u(.) is a L1 function taking values
in a set U � R

m. For simplicity, we assume that
the functions f and L, defined on M � R

m, are
smooth.

The dynamics Pq.t/ D f .q.t/; u.t// play the
role of the nonholonomic constraint (nonholo-
nomic means that it is a constraint on the velocity
but not necessarily on the position).

Solving an optimal control problem in general
is a very difficult task. Usually, to attack such a
problem, the steps are the following:
• STEP 0: EXISTENCE. First, one has to guar-

antee the existence of a solution to (1)–(3).
The most important sufficient condition for
the existence of minimizers is the famous
Filippov theorem (see for instance Agrachev
and Sachkov (2004) for a proof) saying the
following: introduce a new variable (the so-
called augmented state) Oq W D .q0; q/ 2
R � M satisfying the following dynamics:

POq .t/ D
� Pq0.t/

Pq.t/
�

D
�

L.q.t/; u.t//
f .q.t/; u.t//

�

DW Of . Oq.t/; u.t// (4)

then if (i) U is compact; (ii) the set of ve-
locities F. Oq/ W D f Of . Oq; u/ j u 2 U g is
convex for every Oq; (iii) for every T > 0 and
Oq0 2 R � M , there exists a compact setK �
R � M such that all solutions of (4) starting
from Oq0 stay in K for t 2 Œ0; T �; then there
exist Lipschitz minimizers. Other theorems
that can be applied in more general functional
classes or under less restrictive hypotheses can
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be found in the literature. See for instance
Bressan and Piccoli (2007), Cesari (1983), and
Vinter (2010).

• STEP 1: FIRST ORDER NECESSARY
CONDITIONS. In optimal control, the first
order necessary conditions for optimality
are given by the celebrated Pontryagin
Maximum Principle (Pontryagin et al. 1961)
(see also Agrachev and Sachkov (2004) for
a more recent viewpoint). The Pontryagin
Maximum Principle (PMP for short) extends
the (Hamiltonian version of the) Euler-
Lagrange equations of calculus of variations
to problems with nonholonomic constraints.
For a discussion about the relation between
variational problems under nonholonomic
constrains and variational principles in
nonholonomic mechanics, see Bloch (2003).

The PMP restricts the set of candidate optimal
trajectories starting from q0 to a family of tra-
jectories, called extremals, parameterized by a
covector p.0/ 2 T �

q0
M . In addition, there are

two kinds of special extremals: (i) the singular
extremals for which the maximization condition
given by the PMP does not permit directly obtain-
ing the control and (ii) the abnormal extremals
which are candidate optimal trajectories for any
cost function. For certain classes of problems,
abnormal extremals and singular trajectories co-
incide.

The set of all trajectories satisfying the PMP
(in general having intersections and not being
all optimal forever) is called an extremal synthe-
sis. The requirement that the trajectories start-
ing from q0 reach the final point q1 (at time
T , fixed or free) is usually not very useful at
this step. This requirement is rather made at
STEP 4.
• STEP 2. HIGHER ORDER CONDITIONS.

Higher order conditions are used to restrict
further the set of candidate optimal trajec-
tories. The most important conditions are
those used to eliminate singular extremals
(which usually are very hard to treat) as the
Goh condition and the generalized Legendre-
Clebsch conditions (see for instance Agrachev
and Sachkov 2004). Other theories that
provide higher order conditions (which apply

also to extremals that are not singular) are for
instance: higher order maximum principles
(Bressan 1985; Krener 1977), generalized
Morse-Maslov index theories (Agrachev
and Sachkov 2004), and envelope theory
(Sussmann 1986, 1989, see also Boscain and
Piccoli 2004, Cap. 1.3.2).

• STEP 3. SELECTION OF THE OPTIMAL
TRAJECTORIES. This step is the most
difficult one. Indeed, one should check that
each extremal of the extremal synthesis
does not intersect another extremal having
a smaller cost at the intersection point. This
comparison should be done not only among
extremals which are close, one to the other,
but among all of them. The problem is indeed
global.
One of the techniques to address this prob-
lem in a very elegant way takes the name of
optimal synthesis theory, and was developed
almost together with the birth of the Pon-
tryagin Maximum Principle. This theory dates
back to the paper of Boltyanskii (1966) and
was further developed by Brunovsky (1980,
1978), Sussmann (1980, 1979), and Piccoli
and Sussmann (2000).

Roughly speaking, the theory of optimal
synthesis permits to conclude that if one has
an extremal synthesis having certain regular-
ity properties, then this extremal synthesis is
indeed an optimal synthesis.

An optimal synthesis is a collection of opti-
mal trajectories starting from q0 and reaching
the various points of the space:

Sq0 D f�q.:/ W Œ0; Tq� ! M j q 2 M; �q is

a trajectory of (1) minimizing the cost
R Tq
0

L.q.t/; u.t/ dt with �.0/ D q0; �.T / D qg

An optimal synthesis should also verify the
following condition: if �q defined on Œ0; T �
and � 0

q defined on Œ0; T 0� (with T 0 2�0; T Œ/
belong to Sq0 and we have q0 D �q.T

0/ then
�q0 D �qjŒ0;T 0�. More details are given in the
next section.

• STEP 4. SELECTION OF THE TRAJEC-
TORY REACHING THE FINAL POINT.
Once an optimal synthesis is computed,
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one selects the optimal trajectory reaching
the desired final point solving the equation
�.T / D q1, in the set of all trajectories
belonging to the optimal synthesis.

Remark 1 Notice that one could require that the
final point is reached at STEP 1. This would
considerably reduce the set of candidate optimal
trajectories already at STEP 1, but would not
permit to apply the powerful (global) theorems of
STEP 3. As a consequence, one would be obliged
to compare by hands all extremals going from q0
to q1.

Sufficient Conditions for Optimality:
The Theory of Optimal Synthesis

There exists a general principle for which every
synthesis formed by extremals is optimal under
very mild regularity conditions. We will illustrate
a classical case of a feedback smooth on a strat-
ification, due to Boltianskii and Brunovsky, see
Boltyanskii (1966) and Brunovsky (1980, 1978).
More general results can be found in Piccoli and
Sussmann (2000). This principle is very strong
and is valid only because the synthesis is a global
object, while given a single trajectory satisfying
PMP, there is no regularity condition which en-
sures optimality.

For simplicity, from now on, we assume that
M D R

n is an Euclidean space and q0 D 0 and
indicate by S a candidate optimal synthesis from
0, the general case follows easily. A set P � M

is said a curvilinear open polytope of dimension
p, if there exists a polytope (i.e., bounded closed
region intersection of a finite number of half-
spaces) P 0 � R

p and a smooth map � W Rp !
R
n, injective with jacobian having maximal rank

at every point, such that �.P 0n@P 0/ D P .
Let	 be an open subset ofM (for the induced

topology) containing the origin in its interior. We
say that S is a Boltyanskii–Brunovsky regular
synthesis, briefly BB synthesis, if the following
holds.

There exists a 6–tuple„ D .P ;P1;P2;
Q

; †; u/
such that

(BB1) P is a collection of curvilinear open poly-
hedra and 	 is disjoint union of elements of
P . If Pj ¤ Pk 2 P and Pk \ Pj ¤ 6 0 then
Pk � @Pj and dim.Pk/ < dim.Pj /. f0g 2 P
and the elements of P are called “cells”.

(BB2) Pnff0gg is the disjoint union of P1 (the
set of “type I cells”) and P2 (the set of “type II
cells”),

(BB3) the feedback u : fq W 9P1 2 P1; q 2
P1g ! U and

Q W P1 ! P are maps, † W
P2 ! P1 is a multifunction, with non empty
values, such that the following properties are
satisfied:
(i) The function u is of class C1 on each cell.

(ii) If P1 2 P1, then f .q; u.q// 2 TqP1 (the
tangent space to P1 at q) for every q 2 P1.
In addition, for each q 2 P1, if we let �q be
the maximally defined solution to the initial
value problem

P� D f .�; u.�//; �.0/ D x ; � 2 P1 ;

(5)

and define tq D sup Dom.�q/, then the
limit �q.tq�/ WD limt

"tq
�q.t/ exists and

belongs to
Q

.P1/.
(iii) If P2 2 P2, then for each q 2 P2 and

P 2 †.P2/ there exists a unique curve
�Pq W Œ0; tPq Œ! 	 such that the restriction

of �Pq to
i

0; tPq

i

is a maximally defined

integral curve of the vector field f .�; u.�//
on P , and �Pq .0/ D q.

(iv) On every cell P1 2 P1, q ! tq is a
continuously differentiable function, and
.t; q/ ! �q.t/, .t; q/ ! uq.t/ WD u.�q.t//
are continuously differentiable maps on the
set

E.P / WD f.t; q/ W q 2 P1; t 2 Œ0; tq�g:

If P2 2 P2 the same holds for every
tPq ; �

P
q ; uPq , with P 2 †.P2/.

(v) For every q 2 	nf0g, the trajectory �q W
Œ0; Tq� ! M;�q 2 S, is obtained by
piecing together the trajectories on every
single cell. Moreover, �q changes cell a
finite number of times.
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Theorem 1 (Sufficiency theorem for BB syn-
thesis) Let S be a BB synthesis on M formed
by extremal trajectories, then S is optimal.

Remark 2 Theorem 1 can be proved also for syn-
thesis on an open subset 	 of M , under suitable
conditions, see Piccoli and Sussmann (2000).

Some Relevant Examples

Even if the sufficient conditions for optimality
given by the theory of optimal synthesis are
very powerful, in general computing explicitly an
optimal synthesis is very hard and the complexity
grows quickly with the dimension of the space.
The main difficulties are:
• The integration of the Hamiltonian equations

given by the PMP (which in general is not
integrable, unless there are many symmetries);

• The characterisation of singular and abnormal
extremals;

• The verification of the hypotheses of the suf-
ficient conditions for optimality given by syn-
thesis theory.
For these reasons, the computation of optimal

synthesis is already challenging in dimension 2,
and few examples have been solved in dimension
3. In higher dimensions, only very symmetric
problems have been completely solved. In the fol-
lowing, we list some of the most relevant optimal
synthesis that have been computed up to now.

Time-Optimal Synthesis for Affine Control
Systems on 2-D Manifolds
Let M be a 2-D manifold and consider the prob-
lem of finding the time-optimal synthesis starting
from a point q0 for a system of the type

Pq D F.q/C uG.q/; juj � 1; F.q0/ D 0

(6)

Here we assume that F and G are Lie-bracket
generating. The condition F.q0/ D 0 guaran-
tees local controllability around q0, for a generic
pair .F;G/. A complete theory for this kind of
systems, was developed in Bressan and Piccoli
(1998), Piccoli (1996), and Boscain and Piccoli
(2004), under generic conditions on the vector

fields F and G. More precisely, in Boscain and
Piccoli (2004) it was provided: (i) an algorithm
building explicitly the time-optimal synthesis; (ii)
a classification of synthesis in terms of graphs;
(iii) a classification of synthesis singularities; (iv)
an analysis of the properties of the minimum time
function.

Here we just recall that optimal trajectories
are a finite concatenation of bang (trajectories
corresponding to constant control C1 or �1) and
singular arcs (for which the control may corre-
spond to something different from C1 or �1).

Under generic conditions, the optimal syn-
thesis provides a stratification of M . In the re-
gions of dimension 2, the control is either C1
or �1. The regions of dimension 1 called Frame
Curves can be: (i) arcs of optimal trajectories
(that may be bang or singular); (ii) switching
curves (i.e., curves made of points in which the
control switches from C1 or �1, or viceversa);
(iii) overlap curves (i.e., curves made of points
where the extremals lose their optimality). The
region of dimension 0 called Frame Points are
points where frame curves intersect. Generically,
they can be of 23 types. See Boscain and Piccoli
(2004, p. 60).

Some Relevant Time-Optimal Synthesis
for 3D Problems
As we saw in the previous section, for minimum
time problems in dimension 2, many results can
be obtained, and in most cases a time-optimal
synthesis can be constructed. The situation is
different for time-optimal problems in dimension
3. Indeed, beside trivial cases, the time-optimal
synthesis was computed in full details for few
examples only. One is the Reed and Shepp’s car,

0

@

Px
Py
P


1

A D u1

0

@

cos 

sin 

0

1

A

C u2

0

@

0

0

1

1

A ; ju1j; ju2j � 1:

(7)
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The time-optimal synthesis for this problem was
computed in Soueres and Laumond (1996). The
extreme complexity of the optimal synthesis ob-
tained for this simple example had the effect that
no other time-optimal synthesis in dimension 3
or larger, with one or two bounded controls, were
computed up to the last 2-years.

Very recently, the interest in time-optimal syn-
thesis for systems of the type

Pq D
m
X

iD1
u1Fi .q/; jui j � 1; .i D 1; : : : ; m/

(8)

where q belongs to a n-dimensional manifold and
2 � m � n, has attracted new attention.

This is indeed a problem of nonstrictly convex
sub-Finsler geometry that appears in the study of
asymptotic cones of nilpotent groups in geomet-
ric group theory (Gromov 1981; Breuillard and
Le Donne 2012).

Sub-Riemannian Geometry
A very important class of optimal control prob-
lems is the one called sub-Riemannian. LetM be
a n-dimensional manifold .n � 2/ and consider
the problem of finding the time-optimal synthesis
starting from a point q0 for the problem

Pq D
m
X

iD1
uiFi .q/;

Z 1

0

v

u

u

t

m
X

iD1
u2i dt ! min;

.2 � m � n/ (9)

Here we assume that the family of vector fields
fFi giD1:::m is Lie-bracket generating. This kind of
optimal-control problems includes Riemannian
geometry and many of its generalizations that
usually take the name of sub-Riemannian geom-
etry (see Bellaiche (1996), Montgomery (2002)
and the pioneering work by Brockett (1982)). The
complete time optimal synthesis was computed in
a few relevant cases:
• The Heisenberg group (Gaveau 1977; Ger-

shkovich and Vershik 1988).
• The local 3-dimensional contact case, under

generic conditions (Agrachev 1996; El-Alaoui
et al. 1996).

• Some relevant left-invariant problem on sim-
ple Lie groups, i.e., SO.3/; SU.2/; Sl.2/, see
Boscain and Rossi (2008).

• The left-invariant problem on the group of
rototranslation SE.2/ that has important ap-
plications in models of geometry of vision
(Boscain et al. 2012; Sachkov 2011; Petitot
2008).

• In dimension bigger than 3, only the quasi-
Heisenberg case (Charlot 2002) and certain
multidimensional generalizations of the
Heisenberg case has been computed (Beals
et al. 1996).

• In dimension 2, problems of type (8) are
called problems of almost-Riemannian geom-
etry. The basic example (the so-called Grushin
case) was studied in Bellaiche (1996) and the
study of the synthesis in the generic case,
permitted to obtain some generalizations of
the Gauss-Bonnet theorem (Agrachev et al.
2008).

Some of the synthesis mentioned above permitted
to obtain important results for the theory of hypo-
elliptic operators (Hormander 1967). Moreover,
they permitted to clarify the relation between
small-time heat kernel asymptotics and the prop-
erties of the value function for the problem (9).
See for instance Barilari et al. (2012) and refer-
ences therein.

Connections with the Stabilization
Problem

Consider now the control system Pq(t) D
f .q(t); u(t)/ ; under the hypothesis (H). Fix
q0 2 M and assume that there exists u0 2 U

such that f (q0; u0) D 0: A stabilization problem
can be stated as follows:
(P): For every Nq 2 M , find a trajectory of

the control system Pq(t) D f .q(t); u(t)/ ;
(under hypothesis (H)) with boundary con-
ditions q(0)= Nq; q.T / D q0. (Here T could
be required to be finite or not, depending on
the problem.)

An elegant way of giving a solution to the prob-
lem (P) is to give a stabilizing feedback, namely
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a function K.q/ such that for every Nq 2 M the
solution of

Pq(t) D f .q(t); K(t)/ (10)

with initial condition q.0/ D Nq steers Nq to q0.
It is well known that in general it is not

possible to give the solution to (P) in feedback
form. Indeed there may be topological constraints
(in the sense of Brockett, see for instance Brock-
ett (1983)) that prevent such a feedback to be
continuous. Hence, in general, one cannot guar-
antee existence and uniqueness of classical or
Caratheodory solutions to the ODE (10). This
problem attracted a lot of attention since the pio-
neering work of Brockett and several approaches
have been proposed: e.g., via generalized con-
cept of solutions, patchy feedback, time varying
feedback etc. (see for instance Clarke et al. 1997;
Ancona and Bressan 1999; Coron 1992).

Sometimes one considers an “optimal control”
variant of the problem (P):

(Po): For every Nq 2 M , find the trajectory of
the control system Pq(t) D f .q(t); u(t)/ ;
(under hypothesis (H)) minimizing the
cost

R T

0 L .q(t); u(t)/ dt (here T can be
fixed or free), with boundary conditions
q.0/ D Nq; q(T )= q0.
The cost can be an additional constraint
given by the problem, or can be added
artificially to have a method and a good
concept of solution to solve problem (P).
Indeed, a way of giving the solution to
problem (Po) (and hence to (P)) is to find
the optimal synthesis starting from q0 for
the problem

(–Po): for every Nq 2 M , solve
8

<

:

Pq D �f .q; u/; u 2 U
R T

0
L.q.t/; u.t// dt ! min
q.0/ D q0; q.T / D Nq;

and then to reverse the time. In other
words if � W Œ0; T � ! M is the solution
of (–Po) steering q0 in Nq, then �.T � t/ is
the solution to (Po) steering Nq in q0. This
type of solution to problem (Po) is called
an “optimal stabilizing synthesis”.

Extracting a Feedback from
an Optimal Synthesis

It is interesting to see what happens if one tries
to extract a feedback from an optimal stabilizing
synthesis.

If each optimal trajectory of the optimal syn-
thesis corresponds to a regular enough control
(e.g., smooth or piecewise) the feedback corre-
sponding to the optimal synthesis can be defined
easily in the following way: if .� (.); u(.)/ defined
in Œ0; T � is a pair trajectory-control of the optimal
synthesis, then K(�.t/) D u.t/ for every t 2
Œ0; T � :

However, as already mentioned, in most of
the situations K.q/ is not continuous. (Notice
that even in the case in which all trajectories of
the optimal synthesis are smooth it may happen
that K.q/ is not continuous.) Hence, in gen-
eral, one cannot guarantee existence and unique-
ness of classical or Caratheodory solutions to the
ODE (10).

One could think of enlarging the concept of
the solution of (10) by using Filippov, Krasowski,
or CLSS (Clarke et al. 1997) solutions (see for
instance Marigo and Piccoli 2002, Piccoli and
Sussmann 2000 and references therein). However
none of these types of solutions are adapted
to give the solution of an optimal stabilization
problem in feedback form. To fix the ideas, let
us consider the case of Filippov solutions. In
Piccoli and Sussmann (2000) the authors build
examples of optimal synthesis for which the cor-
responding feedbacks generate solutions that are
either Filippov but nonoptimal or optimal but not
Filippov. The same can be done with the other
types of solutions mentioned above. Also, it is
possible to build an example showing an optimal
stabilizing synthesis for which the corresponding
feedback generates non optimal trajectories even
in classical sense. This is presented in the next
section.

Hence, at the moment an optimal stabi-
lizing synthesis remains the only possible
concept of solution for an optimal stabilizing
problem.
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u = +1

u = –1

(–1, 0)

Synthesis Theory in
Optimal Control, Fig. 1
An optimal stabilizing
synthesis for which the
corresponding feedback
generates nonoptimal
trajectories

An Example of a Time-Optimal Synthesis
Whose Feedback Generates Nonoptimal
Trajectories
We present an example exhibiting the phe-
nomenon of nonuniqueness of trajectories
for the closed-loop equation arising from the
feedback extracted from an optimal synthesis.
In particular the optimal feedback admits
nonoptimal (classical) solutions. This well
illustrates the importance of using the synthesis
as concept of solution for an optimal stabilization
problem.

Consider the planar system:

Pq D F (q) C uG(q); juj � 1;

where q D .x; y/ and:

F.q/ D
�

1 � y

2
xC1
2

�

; G.q/ D
� � y

2
xC1
2

�

;

and the target is the origin.
The trajectories corresponding to the constant

control equal to �1 are straight horizontal lines
going from left to right, while those correspond-
ing to C1 are circles centered at the point .�1; 1/,
running counterclockwise. The optimal synthesis
is described in Fig. 1. For a proof of optimality
see Piccoli and Sussmann (2000).

Starting from the point .�1; 0/, we have an
infinite number of classical solutions to the dis-
continuous optimal feedback. Indeed at that point
we have F+G =F � G, so given any natural
number n, the trajectory running n times on the
circle centered at .�1; 1/ and then going to the
origin with control �1 is a classical solution
to the discontinuous optimal feeback. However,
only the one corresponding to n D 0 is optimal.

About other concepts of solutions starting
from .�1; 0/, one can prove the following. Kra-
sowski or CLSS include classical solutions (and
hence produce many nonoptimal trajectories).
There is only one Filippov solution, that is the
one that rotates indefinitely on the circle and
never goes to the origin. This trajectory is not a
solution to the stabilization problem since it does
not reach the target.

Cross-References

�Optimal Control and Mechanics
�Sub-Riemannian Optimization
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Abstract

The past decade has seen tremendous advances
in DNA recombination and measurement
techniques. These advances have reached a
point in which de novo creation of biomolecular
circuits that accomplish new functions is now
possible, leading to the birth of a new field called
synthetic biology. Sophisticated functions that
are highly sought in synthetic biology range
from recognizing and killing cancer cells, to
neutralizing radioactive waste, to efficiently
transforming feedstock into fuel, to control the
differentiation of tissue cells. To reach these

objectives, however, there are a number of
open problems that the field has to overcome.
Many of these problems require a system-level
understanding of the dynamical and robustness
properties of interacting systems, and hence, the
field of control and dynamical systems theory
may highly contribute. In this entry, we review
the basic technology employed in synthetic
biology and a number of simple modules and
complex systems created using this technology
and discuss key system-level problems along
with challenging research questions for the field
of control theory.

Keywords

Biomolecular systems; Gene expression; Robust-
ness; Modularity

Introduction to Synthetic Biology

Synthetic biology is an emerging engineering dis-
cipline in which the biochemical and biophysical
principles present in living organisms are used to
engineer new systems (Baker et al. 2006). These
systems will have the ability of accomplishing
a number of remarkable tasks, such as turning
waste into energy sources, neutralizing radioac-
tive waste, detecting environmental pathogens, or
recognizing cancer cells with the aim of targeting
them for deletion. While synthetic biology can be
employed to create new functionalities, it can also
enable the understanding of fundamental design
principles of living systems. In fact, implement-
ing a circuit with a prescribed behavior provides a
powerful means to test hypotheses regarding the
underlying biological mechanisms.

The functions of living organisms are
controlled by biomolecular circuits, in which
proteins and genes interact with each other
through activation and repression interactions
forming complex networks. A common signal
carrier is the concentration of the active form
of a protein, which can be controlled through
a number of mechanisms, including gene
expression regulation and post-translational
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modification. Through the process of gene
expression, proteins are produced by their
corresponding genes, whose production rates
can be activated or repressed by other proteins
(transcription factors). Once the proteins are
produced, they can be activated or inhibited,
by other proteins or smaller molecules, through
post-translation modification processes including
covalent modification, such as phosphorylation,
and allosteric modification (Alon 2007).
We next describe some salient aspects of
gene expression focusing, for simplicity, on
prokaryotic systems.

A gene is a piece of DNA whose expression
rate can often be controlled by a DNA sequence
upstream of the gene itself, called promoter. The
promoter contains the binding regions for the
RNA polymerase, an enzyme that transcribes the
gene into a messenger RNA molecule, which is
then translated into protein by the ribosomes.
The promoter also contains operator sites, which
are binding regions where other proteins, called
transcription factors, can bind. If these proteins
are activators, they will help the RNA polymerase
in binding the promoter to start transcription. By
contrast, if these proteins are repressors, they will
prevent the RNA polymerase from binding the
promoter. These activation and repression inter-
actions are highly nonlinear and often stochastic;
therefore, the most commonly used modeling
frameworks include systems of nonlinear ordi-
nary differential equations, stochastic differen-
tial equations, or the chemical master equation
(Gillespie 1977, 2000).

The basic technique for constructing synthetic
circuits is that of assembling, through the pro-
cess of cloning, DNA sequences with prescribed
combinations of promoters and genes such that
a desired network of activation and repression
interaction is created. For example, if we would
like to create an inverter where protein A re-
presses protein B, we can simply place the gene
of B under the control of a promoter repressed by
protein A. Currently, there is a library of parts that
one can use to assemble a desired circuit this way.
The set of parts includes promoters, gene cod-
ing sequences, terminators, and ribosome binding
sites. Terminators are DNA sequences placed at

the end of a gene to make the RNA polymerase
terminate transcription, while ribosome binding
sites are DNA sequences placed at the beginning
of a gene, which establish the rate at which
ribosomes will bind to the mRNA, determining
the overall translation rate (Endy 2005). An area
of intense research is the expansion of the library
by creating mutations of existing parts or by
assembling new ones.

Once a DNA sequence is created that encodes
the desired circuit, it is inserted in a living cell
either on the chromosome itself or on DNA
plasmids. When the circuit is inserted in the
chromosome, it will be in one copy, while when
it is inserted in DNA plasmids, it will be in
as many copies as the plasmid copy number.
Plasmid copy number can vary from low copy
(5–10 copies), to medium copy (20 copies), to
high copy (about 100 copies). Once in the cell,
the circuit will have the required resources to
function, including RNA polymerase, ribosomes,
amino acids, and ATP (the cell energy currency).
In this sense, the cell can be viewed as a chassis
for the synthetic circuits. The operation of the
circuit can then be observed by monitoring the
concentration of reporters, that is, of proteins that
are easy to detect and quantify. These include
fluorescent proteins, that is, proteins that exhibit
bright fluorescence when exposed to light of a
specific wave length. Examples include the green,
red, blue, and yellow fluorescent proteins. These
fluorescent proteins are mainly employed in two
different ways to measure the amount of a protein
of interest. One can fuse the gene of the fluores-
cent protein with the gene expressing the protein
of interest. Alternatively, one can use the protein
of interest as a transcription factor of the fluo-
rescent protein. In both cases, the concentration
of the fluorescent protein will provide an indirect
measurement of the concentration of the protein
of interest.

It is also possible to apply external inputs to
a circuit to control the activity of transcription
factors. This is accomplished through the use of
inducers, which are small signaling molecules
that can be injected in the cell culture and en-
ter the cell wall. These inducers bind specific
transcription factors and either activate them,
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allowing the transcription factor to bind the pro-
moter operator sites, or inhibit them, reducing the
transcription factor’s ability to bind the promoter
operator sites.

Examples of Synthetic Biology
Modules

A number of modules comprising two or three
genes have been fabricated in the earlier days
of synthetic biology (Atkinson et al. 2003;
Becskei and Serrano 2000; Elowitz and Leibler
2000; Gardner et al. 2000; Stricker et al. 2008).
We can group them into oscillators (Atkinson
et al. 2003; Elowitz and Leibler 2000; Stricker
et al. 2008), mono-stable systems (Becskei and
Serrano 2000), and bistable systems called toggle
switches (Gardner et al. 2000). More recently,
feedforward loops have also been fabricated
(Bleris et al. 2011).

Oscillators. The creation of circuits whose
protein concentrations oscillate periodically in
time has been a major focus. In fact, the abil-
ity of creating an oscillator has the potential of
shedding light into the mechanisms at the basis of
natural clocks, such as circadian rhythms and the
cell cycle. Oscillator designs can be divided into
two types: loop oscillators (Elowitz and Leibler
2000), in which repression/activation interactions
occur in a loop topology, or oscillators based on
the interplay between an autocatalytic loop and
negative feedback (Atkinson et al. 2003; Stricker
et al. 2008) (see Fig. 1).

The design requirements of synthetic circuits
are usually explored through models of varying
detail, starting with the use of low-dimensional
“toy models,” which are composed of a set of
nonlinear ordinary differential equations describ-
ing the rate of change of the circuit’s proteins.
These models allow application of a number of
tools from dynamical systems theory to infer
parameter or structural requirements for a desired
behavior. After toy models are analyzed, larger-
scale mechanistic models are constructed, which
include all the intermediate species taking part in
the biochemical reactions. These models can be

AB
AB

C

A

B A

Negative autoregulation Toggle switch

Activator-repressor clock Repressilator

Synthetic Biology, Fig. 1 Early gene circuits that have
been fabricated in bacteria E. coli: the negatively au-
toregulated gene (Becskei and Serrano 2000), the toggle
switch (Gardner et al. 2000), the activator-repressor clock
(Atkinson et al. 2003), and the repressilator (Elowitz and
Leibler 2000)

either deterministic or stochastic. Simulation is
usually required for the study of these more com-
plicated models, and the Gillespie algorithm is
often employed for stochastic simulations (Gille-
spie 1977).

As an example of a toy model and related
analysis, consider the activator-repressor clock
of Atkinson et al. (2003) shown in Fig. 1. This
oscillator is composed of an activator A activating
itself and a repressor B, which, in turn, represses
the activator A. Both activation and repression
occur through transcription regulation. Denoting
in italics the concentration of species, a toy model
of this clock can be written as

PA D ˇA.A=Ka/
n C ˇ0;A

1C .A=Ka/n C .B=Kb/m
� �AA;

PB D ˇB.A=Ka/
n C ˇ0;B

1C .A=Ka/n
� �BB;

(1)

in which �A and �B represent protein decay (due
to dilution and/or degradation). The functions
.ˇA.A=Ka/

nCˇ0;A/=.1C.A=Ka/
nC .B=Kb/

m/

and .ˇB.A=Ka/
n C ˇ0;B/=.1C .A=Ka/

n/ are
called Hill functions and are the most commonly
used models for transcription regulation (Alon
2007). The first Hill function in system (1)
increases with A and decreases with B , while
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the second one increases with A, as expected
since A is an activator and B is a repressor. The
key mechanism by which this system displays
sustained oscillations is a supercritical Hopf bi-
furcation with bifurcation parameter the relative
timescale of the activator dynamics with respect
to the repressor dynamics (Del Vecchio 2007).
Specifically, as the activator dynamics become
faster than the repressor dynamics, the system
goes through a supercritical Hopf bifurcation and
a stable periodic orbit appears (Fig. 2).

Mono-stable systems. The mono-stable sys-
tem engineered through negative autoregulation
was fabricated with the aim of understanding the
role of negative feedback in attenuating biolog-
ical noise. The results of Becskei and Serrano
(2000) clearly showed that negative autoregula-
tion can reduce intrinsic noise. Furthermore, the
results of Austin et al. (2005) demonstrated that
while low frequency noise is attenuated, noise
at high frequency can be amplified by negative
autoregulation in accordance with Bode’s integral
formula (Åström and Murray 2008).

Bistable systems. The toggle switch of Gard-
ner et al. (2000) was the first bistable system
constructed. It constitutes the simplest circuit
with memory, in which the state of the system
can be switched from one equilibrium (low, high)
to the other (high, low) by external inputs. Once
the system state is switched to one of these
two equilibria, it will stay there unless another
external perturbation is applied.

Feedforward loops. While the early circuits
described so far were fabricated mainly to in-
vestigate design principles for limit cycles and
for robustness, many more circuits after those
have been fabricated with the aim of solving
concrete engineering problems. As an example,
the incoherent feedforward circuit of Bleris et al.
(2011) was fabricated in bacteria E. coli with the
aim of making protein production independent
of DNA plasmid copy number. In fact, DNA
copy number fluctuates stochastically with pos-
sibly large deviations from the nominal value.
As a consequence, the concentration of proteins
expressed from genes residing on a plasmid also
fluctuates stochastically. In order to make protein
concentration independent of an unknown DNA
copy number, one could leverage principles for
disturbance rejection such as integral control.
While an explicit integral control action is partic-
ularly hard to implement through biological parts,
incoherent feedforward loops are easier to imple-
ment and can accomplish the same disturbance
rejection task. In these loops, the disturbance in-
put affects the output through two branches, one
in which the disturbance activates the output and
a longer one in which the disturbance represses
the output (Alon 2007). If these two branches
are appropriately balanced, the steady-state value
of the output will be practically independent
of the disturbance input, leading to disturbance
rejection to constant or slowly changing distur-
bances.
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FromModules to Systems

One approach to creating systems that can ac-
complish sophisticated tasks is to assemble to-
gether simpler modules, such as those described
in the previous section (Purnick and Weiss 2009).
For example, the artificial tissue homeostasis cir-
cuit proposed by Miller et al. (2012) is composed
of several interconnected modules, including an
activator-repressor clock, a toggle switch, a cou-
ple of inverters, and an “and” gate. Control of
tissue homeostasis refers to the ability of regulat-
ing a cell type to a constant level in a multicellu-
lar community. This ability is central in several
diseases such as cancer and diabetes, in which
tissue homeostasis is misregulated. The design
proposed by Miller et al. (2012) illustrates how
a synthetic biological circuit can be modularly
created to accomplish this complicated regulation
function.

Layered logic gates are often necessary in
order to integrate multiple signals. Moon et al.
(2012) have constructed an “and” gate that inte-
grates more than two signals by cascading pairs
of “and” gates. Of course, problems of latency
become more relevant as the number of layers
increases and methods to mitigate these effects
are being developed.

An application that requires the integration
of multiple signals is the cell-type classifier of
Xie et al. (2011). Here, a synthetic gene cir-
cuit is created that integrates sensory informa-
tion from a number of molecular markers to
determine whether a cell is in a specific state,
that is, cancer, and, in such a case, produces a
protein output triggering cell death. The design
of this circuit is based on the composition of
three key modules. Specifically, a double in-
version module senses high levels of a molec-
ular marker, a single inversion module senses
low levels of a molecular marker, and a logical
“and” module finally integrates the outputs of
the other two modules to produce the output
protein.

Finally, biofuels are another high-impact
application of synthetic biology (Peralta-Yahya
et al. 2012). Metabolic engineering has been

employed for a long time in order to engineer
microbes to produce advanced biofuels with
similar properties to petroleum-based fuels. One
challenge in using microbes (or other living
organisms) to convert feedstock into biofuel
is that of overcoming the endogenous cell
regulation to achieve sufficiently high yields
such that advanced biofuels are economically
advantageous. Specifically, engineered pathways
are optimized on the basis of nominal operating
conditions, but these conditions often change
when microbes are in bioreactors. To mitigate
this problem, synthetic gene circuits have
been designed to sense the metabolic status
of the host and regulate key points in the
metabolic pathway to optimize yield (Zhang
et al. 2012).

Main System-Level Challenges
to Design

One major challenge in synthetic biology is the
ability of going from simple modules to larger
sophisticated systems (Purnick and Weiss 2009).
Problems in advancing in this direction can be
divided into two categories: “hardware” problems
and system-level problems. Hardware problems
include issues such as the availability of enough
orthogonal parts to allow scaling up the size
of synthetic circuits. We do not expand on this
here and instead focus on system-level problems.
These include issues such as context dependence
(Cardinale and Arkin 2012), that is, the fact that
modules behave in a poorly predictable way once
interacting together in the cell environment. This
is a major obstacle to creating larger circuits that
behave predictably.

Problems of context dependence can be
further divided into three qualitatively different
types: (a) inter-modular interactions, (b) interac-
tions of synthetic circuits with the cell machinery,
(c) perturbations in the external environment. We
analyze each of them separately.
(a) When modules are connected to each other

to create larger systems, a protein in an
upstream module is used as an “input” to
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a downstream module. This fact creates a
“loading” on the upstream system due to the
fact that the output protein cannot take part
in the upstream module reactions whenever
it is taking part in the downstream module
reactions. As a consequence, the behavior
of the upstream system changes compared
to when the system functions in isolation
(Del Vecchio et al. 2008; Saez-Rodriguez
et al. 2004). These loading effects have
been called retroactivity to extend the notion
of loading and impedance to biomolecular
systems. Accordingly, solutions to mitigate
this problem are being investigated (Franco
et al. 2011; Jayanthi and Del Vecchio 2011;
Mishra et al. 2013).

(b) Ideally, the cell should function as a “chassis”
for synthetic biology circuits. In practice,
this is not the case because the endogenous
circuitry interacts with synthetic circuits
even when parts that are orthogonal to the
endogenous systems are employed. A major
example of this interaction is the depletion
of cellular resources, such as ATP, RNA
polymerase, and ribosomes, which are re-
quired for the operation of synthetic circuits.
This depletion reduces cell fitness, with
deleterious consequences also for synthetic
circuits, a phenomenon called “metabolic
burden” (Bentley et al. 1990). A more subtle
phenomenon than purely reducing cell fitness
is that synthetic circuits compete with each
other for the same resources. This fact creates
implicit and unwanted coupling among
circuits with unpredictable consequences.
Approaches to mitigate these problems are
under investigation. One direction is the
use of orthogonal RNA polymerase and
ribosomes (Wenlin and Chin 2009; Rackham
and Chin 2005). A completely different,
but complementary, direction is that of
establishing implementable design principles
that allow circuits to function robustly
despite fluctuations in the resources they
use.

(c) The external environment where a cell
operates has a number of physical attributes,
which may also be subject to perturba-

tions. These physical attributes include
temperature, acidity, nutrients’ level, etc.
Perturbations in these attributes often lead
to poor cell fitness or to nonstandard growth
conditions, ultimately leading to synthetic
circuits malfunctions.

Summary and Future Directions

The future of synthetic biology highly depends
on the ability of scaling up the complexity of
design to create more sophisticated functions.
While a number of issues, such as the avail-
ability of enough orthogonal parts, can be suc-
cessfully addressed by (nontrivial) fabrication of
new parts, issues such as context dependence
require a system-level dynamic understanding of
circuits and their interactions. Here is where con-
trol and dynamical systems theory could greatly
contribute. Control theory has proven critical to
reason about and engineer robustness in a number
of concrete applications including aerospace and
automotive systems, robotics and intelligent ma-
chines, manufacturing chains, electrical, power,
and information networks. Similarly, control the-
ory could enable the understanding of principles
that ensure robust behavior of synthetic circuits
once interacting with each other in the cell en-
vironment, leading to the ultimate progress of
synthetic biology.

A number of challenges need to be addressed
for the successful application of control and dy-
namical systems theory to synthetic biology. The
behavior of synthetic circuits is highly nonlinear
and, as a consequence, control theoretic tools de-
signed for understanding robustness in linear sys-
tems are not directly applicable. Understanding
how to exploit the rich structure of biomolecular
circuits to quantitatively reason about robustness
to interconnections, competition for shared re-
sources, and fluctuations of temperature and nu-
trients is likely to have a major impact. Even with
this understanding, however, the question of how
to implement robust designs with the currently
available biomolecular mechanisms must be ad-
dressed. Stochasticity is another major problem
since the behavior of synthetic circuits is intrin-
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sically noisy. Unfortunately, the availability of
analytical tools that allow quantification of how
perturbations and uncertainty propagate through
a nonlinear stochastic system is still limited, and
designers often resort to stochastic simulation.
Finally, the values of the salient parameters of
the available parts are poorly known. Physical
attributes such as binding affinities, ribosome
binding site strengths, promoter strengths, etc. are
only known within very coarse bounds. These
bounds are also usually determined based on a
specific organism and in specific growth condi-
tions, which may be different from the ones in
which the circuit is ultimately running. Hence, a
central question is how to design and implement a
system such that the prescribed behavior is robust
to all sources of perturbations described above
within a large range of possible parameter values.

Cross-References

�Deterministic Description of Biochemical Net-
works

� Identification and Control of Cell Populations
�Robustness Analysis of Biological Models
� Stochastic Description of Biochemical
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Abstract

This contribution discusses various aspects im-
portant to software for system identification. Es-
sential functionality for existing practice and the
algorithmic fundamentals this relies on are con-
sidered together with a brief discussion of ad-
ditional commonly useful support tools. Since
software is intimately tied to the hardware that it
runs on, a discussion on this topic follows with an
emphasis on considering how future system iden-
tification software developments might best align
with clear current and future trends in computer
architecture developments.

Keywords

System identification; Computer-aided design;
Parameter estimation; Software

Introduction

Fundamental to the practice of system identi-
fication is the employment of appropriate soft-

ware to compute system estimates and evaluate
their properties. One option is for the user to
code the necessary routines themselves in their
computer language of choice. For simple situ-
ations, such as least-squares estimation with a
linearly parametrized model, this approach is
feasible.

However, it quickly becomes onerous and time
consuming as one moves even slightly beyond
this simple example. In response to this, re-
searchers have developed a number of software
packages designed to accommodate classes of
data formats, model structures, and estimation
methods.

The purpose of this contribution is to profile
the support that available system identification
software provides, the underlying foundations
on which this software depends, and the future
capabilities that may be expected due to trends in
desktop and portable computer capacity.

The material to follow depends on explana-
tions, definitions, and background presented in
�System Identification: An Overview, by Ljung,
which should be read in conjunction with this
contribution.

Essential Functionality

The essence of system identification software
packages is that they implement an identification
method I as defined in � System Identification:
An Overview.

Typically, this involves taking a model struc-
ture specification M.
/ together with N ob-
served data points ZN and translating that to a
cost function VN .
/ for which a minimizer

O
 , arg min

2DM

VN .
/ (1)

is then computed in order to deliver a system
estimate M. O
/.

While the details of these fundamental opera-
tions vary according to the chosen model struc-
ture and method, there are some shared aspects.
To pick a starting point, subspace-based estima-
tion methods (� Subspace Techniques in System

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_107
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Identification) have been one of the most signif-
icant developments in the near history of system
identification, and they fundamentally involve a
first stage of setting up and solving the optimiza-
tion problem

Ǒ D arg min
ˇ

kY �ˆˇk2F ; (2)

where Y;ˆ are data-dependent matrices, ˇ is a

- dependent matrix, and k � kF is the Frobenius
norm, which, for anm�nmatrix A, is defined as

kAkF D
v

u

u

t

m
X

iD1

n
X

jD1
jaij j2: (3)

This is a classic least-squares optimization prob-
lem, which also arises in other system identifi-
cation contexts, particularly when the prediction
Oy.t j 
/ is a linear function of 
 .

As is well known Golub and Loan (1989), the
minimizer Ǒ satisfies the “normal equations”

.ˆTˆ/ Ǒ D ˆT Y; (4)

and if ˆTˆ is invertible, this allows for a closed-
form solution

Ǒ D .ˆTˆ/�1ˆT Y: (5)

While formally correct, no system identification
software packages would compute Ǒ in this man-
ner since it is computationally inefficient and
sensitive to numerical rounding errors.

Drawing on decades of study on this topic
in the numerical computations literature (Golub
and Loan 1989), system identification software
packages rely on the QR factorization

ˆ D QR D ŒQ1 j Q2�

�

R1
0

�

; (6)

where Q is square and satisfies QTQ D I

(the identity matrix) and R contains the upper
triangular square and invertible block R1. This
decomposition of ˆ allows the normal Eq. (4) to
be re-expressed as

R1 Ǒ D QT
1 Y: (7)

Since R1 is upper triangular, the solution Ǒ may
then be found by elementary and numerically
robust backward substitution (Golub and Loan
1989).

The importance of efficient and accurate solu-
tion of normal equations to any system identifi-
cation software is not limited to these subspace
or linearly parametrized cases. For instance, the
very general class of prediction error methods
encompassed by the formulation (1) involves a
cost VN .
/ that depends on the vector

E.
/ , Œ".t1; 
/; � � � ; ".tN ; 
/�T (8)

of differences between the observed data and the
response of a model parametrized by 
 . In the
case of time-domain data, the elements of (8) are
defined by

".t; 
/ , y.t/ � Oy.t j 
/: (9)

In this general situation, it is most commonly
the case that no closed-form solution for the
optimization problem (1) exists.

The strategy then taken by most system
identification software packages is to employ
a gradient-based search for a minimizer. These
methods are motivated by the use of a linear
approximation of E.
/ about a current putative
minimizer 
k according to

E.
/ � E.
k/C J.
k/.
 � 
k/; (10)

where J.
k/ denotes the Jacobian matrix

J.
k/ ,
@E.
/

@


ˇ

ˇ

ˇ

ˇ


D
k
: (11)

In the very common situation where VN .
/ is
a quadratic function of E.
/, this implies the
associated approximation

VN .
/ D TracefET .
/E.
/g
D kEk2F � kE.
k/C J.
k/.
 � 
k/k2F :

(12)

http://dx.doi.org/10.1007/978-1-4471-5058-9_107
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Via this reasoning, computation of an appropriate
“search direction” p D 
 � 
k again involves
the efficient solution of a linear least-squares
problem of the form (2), namely,

p D arg min
p

kE.
k/C J.
k/ pk2F : (13)

More generally, system identification software
packages extend this rationale and solve (1) by
generating a sequence of iterations f
kg, which
are refined according to


kC1 D 
k C �p; (14)

where � is a step length that at each iteration k
may be altered until a cost decrease

VN .
kC1/ < VN .
k/ (15)

is achieved and the search direction p again
involves the solution of normal equations

�

J.
k/
T J.
k/C �I

	

p D �J.
k/T E.
k/:
(16)

The choice � > 0 implies what is called a
Levenberg–Marquardt method, while � D 0

leads to a so-called Gauss–Newton update strat-
egy, and there are further variants such as “trust
region” methods that are typically offered as
options.

Via (16) we see that again system identifi-
cation software comes to fundamentally depend
on underpinning numerical linear algebra, in this
case, again via the QR decomposition.

Another decomposition, the singular value de-
composition (SVD), also has a significant role to
play, particularly with respect to subspace-based
methods where it is essential to the extraction of
an estimated system parametrization O
 from Ǒ
referred to in (2).

In addition to matrix decompositions, other
system identification methods depend on many
other even more fundamental linear algebra tools
such as basic matrix/vector operations, matrix
inversion, and eigen-decomposition. Because of
this dependence, most (Ljung 2012; Kollár et al.
2006; Young and Taylor 2012; Garnier et al.

2012; Ninness et al. 2013) but not all (Hjalmars-
son and Sjöberg 2012) currently available system
identification software packages are built upon
the MathWorks MATLAB (originally short for
“matrix laboratory”) package, which provides an
efficient interface to the widely accepted standard
numerical linear algebra libraries LAPACK and
EISPACK. For example, solving (2) efficiently
and robustly via QR decomposition and back-
substitution of (7) is achieved transparently using
the MATLAB backslash operator with the simple
command: beta = Phi\Y.

Additional Functionality and the
Decision-Making Process

As emphasized in � System Identification: An
Overview, the provision of an estimated model is
typically an iterative process (illustrated diagram-
matically in Fig. 4 of � System Identification: An
Overview) of which just one component is the
implementation of an identification method I to
deliver a system estimate M. O
/.

In addition to this “essential functionality,”
system identification software must also provide
tools and a logistical support for the decision-
making process of assessing M. O
/ and, based on
this, perhaps altering aspects such as the choice
of model structure M, the experiment design X ,
or indeed the identification method I.

To support this, system identification software
packages may offer further capabilities such as:
1. Nonparametric estimation methods that

deliver estimates of linear system frequency
response without involving a parametrized
model structure M.
/ and hence not
involving (1)

2. Data preprocessing tools, such as to remove
trends and to frequency selectively prefilter
data before use

3. Visualization tools to display and compare
the time- and frequency-domain response of
estimated models

4. Model validation tools to determine if esti-
mated models can be falsified by observed
data

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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5. Model accuracy measures that deliver statis-
tical confidence bounds on estimated parame-
ters

6. Additional data processing tools such as
Kalman filtering and smoothing routines
and sequential Monte Carlo (particle filter)
routines that are used to compute VN .
/ but
have many other applications

7. Graphical user interface (GUI) support in
order to aid organization of the various
aspects of data preprocessing, model structure
selection, algorithm selection, estimate
computation, model validation, and model
visualization

8. The employment of symbolic computation
capabilities to aid complex model structure
specification and preprocessing for efficient
numerical implementation (Hjalmarsson and
Sjöberg 2012)

Note that with the exception of this last point (8),
the computations associated with this additional
functionality again depend fundamentally on ef-
ficient numerical linear algebra software.

Computing Platforms

Currently available system identification
software packages are designed for standard
desktop computing environments, and as such

their capabilities are intimately tied to those of
the central processing unit (CPU), memory, and
other architectural features of this hardware.

For instance, the linear algebra underpinnings
just discussed are typically implemented in se-
rially coded form, and hence bus bandwidth,
together with memory and CPU speed, will be
the fundamental factor affecting software perfor-
mance. Taking CPU speed as an example, the
evolution of clock speed for the very commonly
used Intel architecture CPUs is shown as the red
curve in Fig. 1 and, as can be seen, has largely
plateaued over the last decade after two orders of
magnitude growth in the decade preceding it.

As a result, and roughly speaking, system
estimates that took a minute to compute in the
early 1990s took under a second to compute in
the early part of this century, but are essentially
no faster to compute now, a further decade later.

As a result, while system identification
software has continued to grow in sophistication,
in areas that involve high computational burdens,
such as estimation of complex and high-
dimensional model structures, or the imple-
mentation of compute intensive algorithms, the
capability of system identification software has
been hardware limited for some time.

At the same time, as the blue line in Fig. 1
illustrates, Moore’s law continues to hold, and
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Intel Desktop CPU

System Identification
Software, Fig. 1 Trends
in desktop CPU capacity
taking Intel as an example.
Serial throughput speeds
have long plateaued, but
transistor density continues
to grow, which delivers
growing multiple cores
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transistor densities continue to increase. While
this is delivering no greater serial CPU speed, it is
delivering multiple CPU core availability. Future
advances in system identification software capa-
bility will therefore need to exploit the potential
for parallel computation.

Indeed, in current MATLAB, the fundamen-
tal numerical linear algebra routines previously
mentioned such as QR-based solution of normal
equations, eigenvalue, and SVD decompositions
will all automatically execute on multiple compu-
tational threads on multicore-enabled machines.
Expanding this to take advantage of even higher
levels of parallelism is the subject of current
research.

While these developments will deliver perfor-
mance enhancements for existing system iden-
tification methods, they will also open up the
possibility for new tools to be added to system
identification software suites.

For example, in addition to the existing sub-
space, prediction error, and maximum likelihood
methods just mentioned, there is another impor-
tant estimation approach that does not involve the
solution of an optimization problem such as (1)
or (2) and for which there is always a closed-
form expression for the parameter estimate. It is
the conditional mean estimate

O
 D E f
 j Y g ; (17)

which is a Bayesian approach that depends on
the calculation of the posterior density of the
parameters 
 given the data Y according to

p.
 j Y / D p.Y j 
/p.
/
p.Y /

; (18)

where p.
/ is a prior that allows for incorpo-
ration of user knowledge (before observing the
data) and p.Y j 
/ is the usual data likelihood.

Not only does this estimate have an explicit
formulation; it is also the minimum mean square
error estimate in that for any other estimate Ǒ D
f .Y / computed as any other measurable function
f of the data Y , it holds that

E
n

k
 � O
k2
o

� E
n

k
 � Ǒk2
o

: (19)

In this sense, the conditional mean (17) is the
most accurate estimate. Furthermore, quantifi-
cations of estimation accuracy may be directly
obtained via the marginal densities p.
i j Y / of
individual parameter vector values 
i .

Nevertheless, it is currently not widely used.
There are no doubt philosophical reasons for this
stemming from the well-known debate between
frequentist and Bayesian perspectives on infer-
ence (Efron 2013).

Another key reason is that it is difficult to
compute. It requires the evaluation of a multidi-
mensional integral,

E f
 j Y g D
Z Z

� � �
Z


 p.
 j YN / d
1 � � � d
n

(20)
as does the computation of the marginal densities

p.
i j YN / D
Z

� � �
Z

p.
 j YN / d
1

� � � d
i�1d
iC1 � � � d
n: (21)

Evaluating these quantities requires adding fun-
damentally new capability beyond efficient linear
algebra support to system identification software.
It involves adding capability for numerical inte-
gration.

Integration in one dimension is straightfor-
ward. The well-known and used Simpson’s rule
is remarkably efficient in that the relationship
between the computational error and the number
of grid pointsm obeys

Error D O.m�4/ (22)

so that every order of magnitude increase in m
delivers four extra digits of precision. However,
(20) is an n
 D dimf
g dimensional integral, and
m grid points on each of n
 axes imply

M D mn
 (23)

function evaluations. This can blow up quite
quickly, as illustrated in Fig. 2 for the case of
only modest m D 30 grid points and with
respect to the very simple problem of estimating a
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System Identification Software, Fig. 2 Increase in
number of function evaluations M required for Simpson’s
rule integration with m D 30 grid points on each pa-
rameter axis associated with linear output-error models of
increasing order. Note that accounting for both numerator
and denominator parameters, n
 D 2� model order C 1

straightforward linear output-error model of in-
creasing order.

On a serial CPU platform, there is an upper
limit of time available to wait for a result and
hence an upper limit M of function evaluations
that are tolerable. Viewed as a function of this,
the accuracy of simple Simpson’s rule methods is

Error D O.M�4=n
 /; (24)

which is not attractive as model complexity and
hence n
 grows.

A further and vitally important problem is that
it will generally not be clear where to allocate the
m grid points on each axis since the support of the
posterior p.
 j Y / is not readily known. Indeed,
a main point of computing the multidimensional
integrals associated with the marginals (21) is to
determine this support.

A strategy to address these difficulties is based
on the strong law of large numbers (SLLN).
Namely, if random draws xi 	 p.x/ from a den-
sity p.x/ can be obtained, then sample averages
of functions of them converge with probability
one to the ensemble average expectation, which
is an integral:

1

M

M
X

iD1
f .xi /

w:p:1�! E
˚

f .xi /
� D

Z

f .x/p.x/ dx:

(25)
This principle may then be used as a “random-
ized” method to compute an estimate OIM of an
integral I ; viz.,

I D
Z

f .x/p.x/ dx � OIM , 1

M

M
X

iD1
f .xi /:

(26)
Furthermore, if the xi are independent draws,
then

Varf OIM g D 1

M2

M
X

iD1
Varff .xi /g D 1

M
Varff .x/g;

(27)
and hence the absolute error in integral evaluation
is

O.jI � OIM j/ � O.M�1=2/: (28)

The vital point is that as opposed to (24), this
error is independent of the dimension of x and
hence independent of the dimension of the in-
tegral I . Furthermore, the grid points are the
realizations fxi g, which naturally will lie within
the support of the integrand f .x/p.x/ and do not
need to be otherwise designed.

Of course, this depends on a means to draw
samples from an arbitrary density p.�/ of inter-
est, but simple methods such as the Metropolis–
Hastings methods and “slice sampler” exist to
achieve this Mackay (2003).

Importantly too, these randomized methods
are ideally suited to exploiting the growing
availability of desktop multicore computing
platforms. Generating M realizations to form
the integral approximation OIM in (26) may be
achieved in one-tenth the time simply by running
ten independently initialized random number
generators in parallel, each generating one M=10
length realization. The method (26) is thus (in
principal) trivial to parallelize.

Furthermore, much greater parallelization
and hence also speedup may be achieved by
employing the “graphics processing units”
(GPUs) in desktop computers. These GPUs are
inexpensive because they service a high volume
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consumer demand for interactive gaming, which
requires high-speed numerical computation for
3D-projected graphics. As such these GPUs
have evolved to provide hundreds of parallel
processing cores, each clocked in the gigahertz
range.

To give an impression of the computational
capability of GPU-based platforms, the single-
precision giga-FLOPS (floating-point operations
per second) performance history for NVIDIA
brand GPUs and Intel architecture processors
designed for desktop applications is profiled in
Fig. 3.

This shows theoretical performance, assuming
all cores may be fully utilized constantly. In
reality, this is never possible due to communi-
cation and architecture restrictions. For example,
GPU architectures are based on an SIMD (single
instruction, multiple data) design, so at any one
time many cores must execute the identical in-
struction, but may do so on different data. Analy-
sis of these and other aspects relevant for system
identification software implementation requires
detailed study (Lee et al. 2010).

The fact that desktop hardware architectures
have and will continue to offer more but not
faster processing cores may be exploited in sys-
tem identification software beyond this Bayesian
setting. For example, the last decade has seen
great interest in delivering estimation methods for
an increasingly broad range of nonlinear model
structures, a quite general version of which can
be expressed in the nonlinear state–space form

x.t C 1/ 	 p.x.t C 1/ j x.t/; 
/ (29)

y.t/ 	 p.y.t/ j x.t/; 
/: (30)

In principle, there is no reason why this can-
not be straightforwardly addressed by the usual
maximum likelihood approach of forming the
likelihood

p.YN j 
/ D
N
Y

tD1
p.y.t/ j Yt�1; 
/;

Yt D fy.1/; � � � ; y.t/g (31)

and then using this as the cost function VN .
/
in (1) and then proceeding with the usual
gradient-based search. Indeed, there exist explicit
formulae for computing the predictive densities
p.y.t/ j Yt�1; 
/ required in (31). Namely, the
coupled measurement update

p.x.t/ j Yt ; 
/ D p.y.t/ j x.t/; 
/p.x.t/ j Yt�1; 
/
p.y.t/ j Yt�1; 
/

p.y.t/ j Yt�1; 
/ D
Z

p.y.t/ j x.t/; 
/p.x.t/ j Yt�1/ dx.t/

and time update

p.x.t C 1/ j Yt ; 
/ D
Z

p.x.t C 1/ j x.t/; 
/ p.x.t/ j Y.t/; 
/ dx.t/

(32)

equations.
However, again we are faced with the problem

of numerically evaluating multidimensional inte-
grals. The integral dimension this time is that of
the state vector x.t/, which may be less than that
of the parameter vector 
 just discussed, but 2N
of these integrals needs to be evaluated in order to
compute the likelihood (31), and this needs to be
redone for each step of any associated gradient-
based search.

Again, a randomized algorithm approach
based on the SLLN could be considered as a
way forward in system identification software
development. Indeed, sequential Monte Carlo
(SMC) algorithms (aka particle filtering) (Doucet
and Johansen 2011) have been specifically
developed to compute the above integrals
involved in the time and measurement update,
and there has been recent work (Schön et al.
2011; Andrieu et al. 2010) on employing this to
develop software for the estimation of the general
nonlinear model (29) and (30).

The resulting algorithms are computationally
intensive, to the point where implementation on
serial CPU architectures means they are lim-
ited to deployment on nonlinear model structures
of very low state dimension. However, again
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because the SLLN is at the heart of the methods,
and averaging over one long run on a serial ma-
chine is numerically equivalent (but potentially
much faster) to averaging over multiple shorter
runs computed in parallel, there is scope for
future system identification software to employ
these approaches.

Examples of Available System
Identification Software

With the features of current and perhaps future
system identification software packages profiled,
it may be useful to make specific mention
of particular system identification software
packages that have been under active develop-
ment for a substantial period of time. These
include the following commercially available
packages:
1. The MathWorks System Identification Tool-

box (Ljung 2012), which is arguably the most
mature and comprehensive system identifica-
tion software available

2. The GAMAX Frequency Domain System Iden-
tification Toolbox (Kollár et al. 2006), which
specializes in estimation of models based on
measurements in the frequency domain

3. The Adaptx software (Larimore 2000) special-
izing in the estimation of state–space models
using subspace-based methods

Noncommercial and freely available system
identification software packages that are relevant
include:
1. The “computer-aided program for time-

series analysis and identification of noisy
systems” (CAPTAIN) toolbox (Young and
Taylor 2012), which provides a platform
supporting the “refined instrumental vari-
able” (RIV) algorithm for linear system
estimation;

2. The “continuous-time system identification”
(CONTSID) toolbox (Garnier et al. 2012),
which specializes in the estimation of
continuous-time models

3. The “interactive software tool for system
identification education” (ITSIE) tool-
box (Guzmán et al. 2012), which has an
emphasis on education and training in system
identification principles

4. The “University of Newcastle identification
toolbox” (UNIT) software (Ninness et al.
2013) that is designed as an open platform
for researchers to evaluate the performance
of new methods relative to established
ones



1432 System Identification Software

Summary and Future Directions

A case can be mounted that at its heart, system
identification is about the design of software and
the understanding of the results provided by it.
Certainly, the field has been built on decades
of deep theoretical contributions, but this has
been very practically focused either on delivering
new algorithms that may be directly implemented
or on better understanding the performance of
existing algorithms.

Efficient numerical linear algebra routines
have traditionally been the foundation of
the resulting proven and effective system
identification methods and software to date, and
these have scaled in effectiveness as desktop
computing clock speeds have scaled.

However, the recent past and the foreseeable
future see CPU speed as static and with an in-
creasing number of available processor cores.
Delivering greater system identification capacity
will require the development of methods whose
software implementations can harness this grow-
ing availability of multiple processor cores.

Cross-References

� Frequency Domain System Identification
�Nonlinear System Identification Using Particle

Filters
� System Identification: An Overview
� System Identification Techniques: Convexifica-

tion, Regularization, and Relaxation

Recommended Reading

For readers wishing to gain a deeper under-
standing of the numerical linear algebra aspects
discussed here, the classic text (Golub and Loan
1989) is recommended. Those wishing further
background on the calculation of multidimen-
sional integrals via randomized algorithms such
as Metropolis–Hastings and slice sampling will
find (Mackay 2003) useful. The particle filtering
methods mentioned here for nonlinear estima-
tion problems are clearly explained in Doucet

and Johansen (2011). Readers interested in fur-
ther detail on numerical computations on GPU-
based platforms supporting these computations
will find (Lee et al. 2010) useful.
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Abstract

System identification has been developed, by
and large, following the classical parametric ap-
proach. In this entry we discuss how regulariza-
tion theory can be employed to tackle the system
identification problem from a nonparametric (or
semi-parametric) point of view. Both regulariza-
tion for smoothness and regularization for sparse-
ness are discussed, as flexible means to face
the bias/variance dilemma and to perform model
selection. These techniques have also advantages
from the computational point of view, leading
sometimes to convex optimization problems.

Keywords

Kernel methods; Nonparametric methods; Opti-
mization; Sparse Bayesian learning; Sparsity

Introduction

System identification is concerned with auto-
matic model building from measured data. Under
this unifying umbrella, this field spans a rather
broad spectrum of topics, considering different
model classes (linear, hybrid, nonlinear, contin-
uous, and discrete time) as well as a variety
of methodologies and algorithms, bringing to-
gether in a nontrivial way concepts from classical
statistics, machine learning, and dynamical sys-
tems.

Even though considerable effort has been de-
voted to specific areas, such as parametric meth-
ods for linear system identification which are by
now well developed (see the introductory article

�System Identification: An Overview), it is fair
to say that modeling still is, by far, the most time-
consuming and costly step in advanced process
control applications. As such, the demand for
fast and reliable automated procedures for system
identification makes this exciting field still a very
active and lively one.

Suffices here to recall that, following
this classic parametric maximum likelihood
(ML)/prediction error (PE) framework, the
candidate models are described using a finite
number of parameters 
 2 R

n. After the model
classes have been specified, the following two
steps have to be undertaken:
(i) Estimate the model complexity On.

(ii) Find the estimator O
 2 R
On minimizing a cost

function J.
/, e.g., the prediction error or
(minus) the log-likelihood.

Both of these steps are critical, yet for different
reasons: step (ii) boils down to an optimization
problem which, in general, is non-convex and as
such it is very hard to guarantee that a global
minimum is achieved. The regularization tech-
niques discussed in this entry sometimes allow
to reformulate the identification problem as a
convex program, thus solving the issue of local
minima.

In addition fixing the system complexity equal
to the “true” one is a rather unrealistic assump-
tion and in practice the complexity n has to be
estimated as per step (i). In practice there is never
a “true” model, certainly not in the model class
considered. The problem of statistical modeling
is first of all an approximation problem; one
seeks for an approximate description of “real-
ity” which is at the same time simple enough
to be learned with the available data and also
accurate enough for the purpose at hand. On this
issue see also the section “Trade-off Between
Bias and Variance” in � System Identification:
An Overview. This has nontrivial implications,
chiefly the facts that classical order selection
criteria are based on asymptotic arguments and
that the statistical properties of estimators O
 after
model selection, called post-model-selection esti-
mators (PMSEs), are in general difficult to study
(Leeb and Pötscher 2005) and may lead to un-
desirable behavior. Experimental evidence shows

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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that this is not only a theoretical problem but also
a practical one (Pillonetto et al. 2011; Chen et al.
2012). On top of this statistical aspect, there is
also a computational one. In fact the model se-
lection step, which includes as special cases also
variable selection and structure selection, may
lead to computationally intractable combinatorial
problems. Two simple examples which reveal the
combinatorial explosion of candidate models are
the following: (a) Variable selection: consider
a high-dimensional time series (MIMO) where
not all inputs/outputs are relevant and one would
like to select k out of m available input signals
where k is not known and needs to be inferred
from data; (see, e.g., Banbura et al. (2010) and
Chiuso and Pillonetto (2012)), and (b) structure
selection: consider all autoregressive models of
maximal lag p with only p0 < p nonzero coeffi-
cients and one would like to estimate how many
(p0) and which coefficients are nonzero. The
same combinatorial problem arises in hybrid sys-
tem identification (e.g., switching ARX models).
Given that enumeration of all possible models
is essentially impossible due the combinatorial
explosion of candidates, selection could be per-
formed using greedy approaches from multivari-
ate statistics, such as stepwise methods (Hocking
1976).

The system identification community, inspired
by work in statistics (Tibshirani 1996; Mackay
1994), machine learning (Rasmussen and
Williams 2006; Tipping 2001; Bach et al.
2004), and signal processing (Donoho 2006;
Wipf et al. 2011), has recently developed and
adapted methods based on regularization to
jointly perform model selection and estimation
in a computationally efficient and statistically
robust manner. Different regularization strategies
have been employed which can be classified
in two main classes: regularization induced
by so-called smoothness priors (aka Tikhonov
regularization; see Kitagawa and Gersh (1984)
and Doan et al. (1984) for early references in the
field of dynamical systems) and regularization
for selection. This latter is usually achieved by
convex relaxation of the `0 quasinorm (such
as `1 norm and variations thereof such as sum
of norms, nuclear norm, etc.) or other non-

convex sparsity-inducing penalties which can be
conveniently derived in a Bayesian framework,
aka sparse Bayesian learning (SBL) (Mackay
1994; Tipping 2001; Wipf et al. 2011).

The purpose of this entry is to guide the
reader through the most interesting and promis-
ing results on this topic as well as areas of
active research; of course this subjective view
only reflects the author’s opinion, and of course
different authors could have offered a different
perspective.

While, as mentioned above, system identifica-
tion studies various classes of models (ranging
from linear to general “nonlinear” models), in
this entry, we shall restrict our attention to spe-
cific ones, namely, linear and hybrid dynamical
systems. The field of nonlinear system identifi-
cation is so vast (a quote sometimes attributed
to S. Ulam has it that the study of nonlinear
systems is a sort of “non-elephant zoology”)
that even though it has largely benefitted from
the use of regularization, it cannot be addressed
within the limited space of this contribution. The
reader is referred to the Encyclopedia chapters
�Nonlinear System Identification: An Overview
of Common Approaches and �Nonlinear System
Identification Using Particle Filters for more de-
tails on nonlinear model identification.

System Identification

Let ut 2 R
m, yt 2 R

p be, respectively, the
measured input and output signals in a dynamical
system; the purpose of system identification is
to find, from a finite collection of input-output
data fut ; yt gt2Œ1;N �, a “good” dynamical model
which describes the phenomenon under observa-
tion. The candidate model will be searched for
within a so-called “model set” denoted by M.
This set can be described in parametric form
(see, e.g., Eq. (3) in �System Identification: An
Overview) or in a nonparametric form. In this en-
try we shall use the symbolMn.
/ for parametric
model classes where the subscript n denotes the
model complexity, i.e., the number of free param-
eters.

http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_106
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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Linear Models
The first part of the entry will address identifica-
tion of linear models, i.e., models described by a
convolution

yt D
1
X

kD1
gt�kuk C

1
X

kD0
ht�kek t 2 Z (1)

where g and h are the so-called impulse re-
sponses of the system and fetgt2Z is a zero-
mean white noise process which under suitable
assumptions is the one-step-ahead prediction er-
ror; a convenient description of the linear system
(1) is given in terms of the transfer functions

G.q/ WD
1
X

kD1
gkq

�k H.q/ WD
1
X

kD0
hkq

�k

The linear model (1) naturally yields an “opti-
mal” (in the mean square sense) output predictor
which shall be denoted later on by Oyt jt�1. As
mentioned above, under suitable assumptions, the
noise et in (1) is the so-called innovation process
et D yt � Oyt jt�1. See also Eq. (8) in � System
Identification: An Overview.

When g and h are described in a parametric
form, we shall use the notation gk.
/, hk.
/, and,
likewise, G.q; 
/, H.q; 
/, and Oyt jt�1.
/.
Example 7 Consider the so-called “output-error”
model, i.e., assume H.q/ D 1. An example
of parametric model class is obtained restricting
G.q; 
/ to be a rational function

G.q; 
/ D K

n
Y

iD1

q � zi
q � pi

where 
 WD ŒK; p1; z1; : : : ; pn; zn� is the parame-
ter vector. Note that the parameter vector 
 may
subjected to constraints 
 2 $, e.g., enforcing
that the system be bounded input, bounded output
(BIBO) stable (jpi j < 1) or that the impulse
response be real (K 2 R and poles pi and zeros
zi appear in complex conjugate pairs).

An example of nonparametric model is ob-
tained, e.g., postulating that gk is a realization
of a Gaussian process (Rasmussen and Williams

2006) with zero mean and a certain covariance
function R.t; s/ D cov.gt ; gs/. For instance, the
choice R.t; s/ D �tıt�s , where j�j < 1 and
ık is the Kronecker symbol, postulates that the
gt and gs are uncorrelated for t ¤ s and that
the variance of gt decays exponentially in t ; this
latter condition ensures that each realization gk ,
k > 0, is BIBO stable with probability one. The
exponential decay of gt guarantees that, to any
practical purpose, it can be considered zero for
t > T for a suitably large T . This allows to
approximate the OE model with a “long” finite
impulse response (FIR) model

G.q/ D
T
X

kD1
gkz�k (2)

where gk , k D 1; : : : ; T , is modeled as a zero-
mean Gaussian vector with covariance †, with
elements Œ†�ts D R.t; s/.

Remark 1 Note that the model (2), which has
been obtained from truncation of a nonparametric
model, could in principle be thought as a para-
metric model in which the parameter vector 

contains all the entries of gk , k D 1; : : : ; T . Yet
the truncation index T may have to be large even
for relatively “simple” impulse responses; for
instance, fgk.
/gk2ZC may be a simple decaying
exponential, gk.
/ D ˛�k , which is described by
two parameters (amplitude and decay rate), yet
if j�j ' 1, the truncation index T needs to be
large (ideally T ! 1) to obtain sensible results
(e.g., with low bias). Therefore, the number of
parameters T .m � p/ may be larger (and in fact
much larger) than the available number of data
points N . Under these conditions, the parameter

 cannot be estimated from any finite data seg-
ment unless further constraints are imposed.

The Role of Regularization in Linear
System Identification

In order to simplify the presentation, we shall
refer to the linear model (1) and assume that
H.q/ D 1, i.e., we consider the so-called linear
output-error (OE) models. The extension to more

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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general model classes can be found in Pillonetto
et al. (2011), Chen et al. (2012), Chiuso and
Pillonetto (2012), and references therein.

The main purpose of regularization is to con-
trol the model complexity in a flexible manner,
moving from families of rigid, finite dimensional
parametric model classes Mn.
/ to flexible, pos-
sibly infinite dimensional, models. To this pur-
pose one starts with a “suitably large” model
class which is constrained through the use of so-
called regularization functionals. To simplify the
presentation, we consider the FIR (2). The esti-
mator O
 is found as the solution of the following
optimization problem

O
 D arg min
2Rn JF .
/C JR.
 I�/ (3)

where JF .
/ is the “fit” term often measured in
terms of average squared prediction errors:

JF .
/ WD 1
N

PN
tD1 kyt � Oyt jt�1.
/k2 (4)

while JR.
 I�/ is a regularization term which
penalizes certain parameter vectors 
 associated
to “unlikely” systems. Equation (3) can be seen
as a way to deal with the bias-variance trade-
off. The regularization term JR.
 I�/may depend
upon some regularization parameters � which
need to be tuned using measured data. In its
simplest instance,

JR.
 I�/ D �JR.
/

where � is a scale factor that controls “how
much” regularization is needed. We now discuss
different forms of regularization JR.
 I�/ which
have been studied in the literature.

Example 8 Let us consider the FIR model in
Eq. (2) and let 
 be a vector containing all the
unknown coefficients of the impulse response
fgkgkD1;:::;T . The linear least squares estimator

O
LS WD arg min

1

N

N
X

tD1
kyt � Oyt jt�1.
/k2 (5)

is ill-posed unless the number of data N is larger
(and in fact much larger) that the number of
parameters T . From the statistical point of view,
the estimator (5) would result for large T in
small bias and large variance. The purpose of
regularization is to render the inverse problem of
finding 
 from the data fyt gtD1;:::;N well posed,
thus better trading bias versus variance. The sim-
plest form of regularization is indeed the so-
called ridge regression or its weighted version
(aka generalized Tikhonov regularization), where
the 2-norm of the vector 
 is weighted w.r.t. a
positive semidefinite matrixQ,

O
Reg WD arg min

1

N

N
X

tD1
kyt � Oyt jt�1.
/k2

C �
>Q
 (6)

which result in so-called regularization for
smoothness; see section “Regularization for
Smoothness.” The choice of the weighting Q

is highly nontrivial in the system identification
context, and the performance of the regularized
estimator O
Reg heavily depends on this.

Remark 2 In order to formalize these ideas for
nonparametric models or, equivalently, when the
parameter 
 is infinite dimensional, one has to
bring in functional analytic tools, such as re-
producing kernel Hilbert spaces (RKHS). This
is rather standard in the literature on ill-posed
inverse problems and has been recently intro-
duced also in the system identification setting
(Pillonetto et al. 2011). We shall not discuss these
issues here because, we believe, the formalism
would render the content less accessible.

Note that this regularization approach admits
a completely equivalent Bayesian formulation
simply setting

p.yj
/ / e�JF .
/ p.
 j�/ / e�JR.
 I�/ (7)

The densities p.yj
/ and p.
 j�/ are, respec-
tively, the likelihood function and the prior, which
in turn may depend on the unknown regulariza-
tion parameters �, aka hyperparameters in this
Bayesian formulation. This is straightforward in
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the finite dimensional setting, while it requires
some care when 
 is infinite dimensional. With
reference to Example 7, and assuming 
 con-
tains the impulse response coefficients gk in (2),
p.
 j�/ is a Gaussian density with zero mean and
covariance † which may be depend upon some
regularization parameters �. From the definitions
(7), it follows that

p.
 jy; �/ / p.yj
/p.
 j�/ (8)

from which point estimators of 
 can be obtained
(e.g., as posterior mean, MAP, etc.). As such, with
some abuse of terminology, we shall indifferently
refer to JR.
 I�/ as the “regularization term” or
the “prior.” The unknown parameter � is used
to introduce some flexibility in the regularization
term JR.
 I�/ or equivalently in the prior p.
 j�/
and is tuned based on measured data as discussed
later on.

The regularization term JR.
 I�/ can be
roughly classified in regularization for smooth-
ness, which attempts to control complexity in a
smooth fashion and regularization for sparseness
which, on top of estimation, also aims at selecting
among a finite (yet possibly very large) number
of candidate model classes.

Regularization for Smoothness
Let us consider a single-input, single-output FIR
model of length T (arbitrarily large) and let

 WD Œg1 g2 : : : gT �

> 2 R
T be the (finite)

impulse response; define also y 2 R
N be the

vector of output observations, ˚ the regressor
matrix with past input samples, and e the vector
with innovations (zero mean, variance �2I ). With
this notation the convolution input-output equa-
tion (1) takes the form

y D ˚
 C e

Following the prescriptions of ridge regression,
a regularized estimator O
 can be found
setting

JR.
 I�/ D 
>K�1.�/
 (9)

where the matrix K.�/, aka kernel, is tailored to
capture specific properties of impulse responses
(exponential decay, BIBO stability, smoothness,
etc.). Early references include Doan et al. (1984)
and Kitagawa and Gersh (1984), while more
recent work can be found in Pillonetto and De
Nicolao (2010), Pillonetto et al. (2011) and Chen
et al. (2012) where several choices of kernels are
discussed.

Example 9 The simplest example of kernel is the
so-called “exponentially decaying” kernel

K.�/ WD �D.�/ D.�/ WD diagf�; : : : ; �T g
(10)

where � WD .�; �/ with 0 < � < 1 and � � 0.

For fixed �, the estimator O
.�/ is the solution
of a quadratic problem and can be written in
closed form (aka ridge regression):

O
.�/ D K.�/˚> �˚K.�/˚> C �2I
��1

y

(11)

Two common strategies adopted to estimate the
parameters � are cross validation (Ljung 1999)
and marginal likelihood maximization. This latter
approach is based on the Bayesian interpretation
given in Eqs. (7) from which one can compute
the so-called “empirical Bayes” estimator O
EB WD
O
. O�ML/ of 
 plugging in (11) the estimator of �
which maximizes the marginal likelihood:

O�ML WD arg max
�

p.�jy/

D arg max
�

Z

p.�; 
 jy/ d
 (12)

The main strength of the marginal likelihood
is that, by integrating the joint posterior over
the unknown hyperparameters 
 , it automatically
accounts for the residual uncertainty in 
 for
fixed �. When both JF and JR are quadratic
costs, which corresponds to assuming that e and

 are independent and Gaussian, the marginal
likelihood in (12) can be computed in closed form
so that
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O�ML WD arg min
�

log.det.†.�///

C y>†�1.�/y

†.�/ WD ˚K.�/˚> C �2I (13)

It is here interesting to observe that O�ML which
solves (12) under certain conditions leads to
K. O�ML/ D 0 (see Example 10), so that the
estimator of 
 in (11) satisfies O
. O�ML/ D 0.
This simple observation is the basis of so-called
sparse Bayesian learning (SBL); we shall return
to this issue in the next section when discussing
regularization for sparsity and selection.

Unfortunately the optimization problem (12)
(or (13)) is not convex and thus subjected to the
issue of local minima. However, both experimen-
tal evidence and some theoretical results support
the use of marginal likelihood maximization for
estimating regularization parameters; see, e.g.,
Rasmussen and Williams (2006) and Aravkin
et al. (2014).

Regularization for Sparsity: Variable
Selection and Order Estimation
The main purpose of regularization for sparseness
is to provide estimators O
 in which subsets or
functions of the estimated parameters are equal
to zero.

Consider the multi-input, multi-output OE
model

yt;j D
m
X

iD1

T
X

kD1
gk;ij ut�k;i C et;i j D 1; : : : ; p

(14)

where yt;j denotes the j th component of yt 2
R
p; let also 
 2 R

T .mCp/ be the vector containing
all the impulse response coefficients gk;ij , j D
1; : : : ; p, i D 1; : : : ; m, and k D 1; : : : ; T . With
reference to Eq. (14), simple examples of sparsity
one may be interested in are:

(i) Single elements of the parameter vector 
 ,
which corresponds to eliminating specific
lags of some variables from the model (14).

(ii) Groups of parameters such as the impulse
response from i th input to the j th output

gk;ij , k D 1; : : : ; T , thereby eliminating the
i th input from the model for the j th output.

(iii) The singular values of the Hankel matrix
H.
/ formed with the impulse response
coefficients gk ; in fact the rank of the
Hankel matrix equals the order (i.e., the
McMillan degree) of the system. (Strictly
speaking any full rank FIR model of length
T has McMillan degree T � p. Yet, we
consider fgkgkD1;:::;T to be the truncation of
some “true” impulse response fgkgkD1;:::;1,
and, as such, the finite Hankel matrix
built with the coefficients gk will have
rank equal to the McMillan degree of
G.q/ D P1

kD1 gkz�k .)
To this purpose one would like to penalize the

number of nonzero terms, let them be entries of

 , groups, singular values, etc. This is measured
by the `0 quasinorm or its variations: group `0
and `0 quasinorm of the Hankel singular values,
i.e., the rank of the Hankel matrix. Unfortunately
if JR is a function of the `0 quasinorm, the
resulting optimization problem is computation-
ally intractable; as such one usually resorts to
relaxations. Three common ones are described
below.

One possibility is to resort to greedy
algorithms such as orthogonal matching pursuit;
generically it is not possible to guarantee
convergence to a global minimum point.

A very popular alternative is to replace the
`0 quasinorm by its convex envelope, i.e., the `1
norm, leading to algorithms known in statistics
as LASSO (Tibshirani 1996) or its group version
Group LASSO (Yuan and Lin 2006):

JR.
 I�/ D �k
k1 (15)

Similarly the convex relaxation of the rank (i.e.,
the `0 quasinorm of the singular values) is the
so-called nuclear norm (aka Ky Fan n-norm or
trace norm), which is the sum of the singular
values kAk� WD tracefpA>Ag where

p� denotes
the matrix square root which is well defined for
positive semidefinite matrices. In order to control
the order (McMillan degree) of a linear system,
which is equal to the rank of the Hankel matrix
H.
/ built with the impulse response described
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by the parameter 
 , it is then possible to use the
regularization term

JR.
 I�/ D �kH.
/k� (16)

thus leading to convex optimization problems
(Fazel et al. 2001). Both (16) and (15) induce
sparse or nearly sparse solutions (in terms of
elements or groups of 
 (15) or in terms of
Hankel singular values (16)), making them at-
tractive for selection. It is interesting to observe
that both `1 and group `1 are special cases of
the nuclear norm if one considers matrices with
fixed eigenspaces. Yet, as well documented in
the statistics literature, both (16) and (15) do not
provide a satisfactory trade-off between sparsity
and shrinking, which is controlled by the regu-
larization parameter �. As � varies one obtains
the so-called regularization path. Increasing �

the solution gets sparser but, unfortunately, it
suffers from shrinking of nonzero parameters. To
overcome these problems, several variations of
LASSO have been developed and studied, such
as adaptive LASSO (Zou 2006), SCAD (Fan
and Li 2001), and so on. We shall now discuss
a Bayesian alternative which, to some extent,
provides a better trade-off between sparsity and
shrinking than the `1 norm.

This Bayesian procedure goes under the name
of sparse Bayesian learning and can be seen
as an extension of the Bayesian procedure for
regularization described in the previous section.
In order to illustrate the method, we consider its
simplest instance. Consider an MIMO system as
in (14) with p D 1 and m D 2, i.e.,

yt D PT
kD1 gk;1ut�k;1 CPT

kD1 gk;2ut�k;2 C et
D �>

t;1g1 C �>
t;2g2 C et

(17)

where gi WD Œg1;i ; : : : ; gt;i �. Let 
 WD Œg>
1 g>

2 �
>

and assume that the gi ’s are independent Gaus-
sian random vectors with zero mean and co-
variances �iK . Letting ˚i WD Œ�1;i ; : : : ; �N;i �

>
and following the formulation in (7) and (8), it
follows that the marginal likelihood estimator of
� takes the form

O�ML WD arg min
�i�0

log.det.†.�///C y>†�1.�/y

†.�/ WD �1˚1K˚
>
1 C �2˚2K˚

>
2 C �2I

(18)

After O�ML has been found, the estimator of 
 is
found in closed form as per Eq. (11). It can be
shown that under certain conditions on the obser-
vation vector y, the estimated hyperparameters
O�ML;i lie at the boundary, i.e., are exactly equal
to zero. If O�ML;i D 0, then, from Eq. (11), also
Ogi D 0; this reveals that in (17) the i th input does
not enter into the model; see also Example 10 for
a simple illustration.

These Bayesian methods for sparsity have
been studied in a general regression framework
in Wipf et al. (2011) under the name of “type-
II” maximum likelihood. Further results can be
found in Aravkin et al. (2014) which suggest
that these Bayesian methods provide a better
trade-off between sparsity and shrinking (i.e.,
are able to provide sparse solution without
inducing excessive shrinkage on the nonzero
parameters).

Remark 3 A more detailed analysis, see, for
instance, Aravkin et al. (2014), shows that
LASSO/GLASSO (i.e., `1 penalties) and SBL
using the “empirical Bayes” approach can be
derived under a common Bayesian framework
starting from the joint posterior p.�; 
 jy/.
While SBL is derived from the maximization
� of the marginal posterior, LASSO/GLASSO
corresponds to maximizing the joint posterior
after a suitable change of variables. For reasons
of space, we refer the interested reader to the
literature for details.

Recent work on the use of sparseness for
variable selection and model order estimation
can be found in Wang et al. (2007), Chiuso and
Pillonetto (2012); and references therein.

Example 10 In order to illustrate how sparse
Bayesian learning leads to sparse solutions, we
consider a very simplified scenario in which the
measurements equation is

yt D 
ut�1 C et
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where et is zero-mean, unit variance Gaussian
and white and ut is a deterministic signal. The
purpose is to estimate the coefficient 
 , which
could be possibly equal to zero. Thus, the esti-
mator should reveal whether ut�1 influences yt
or not.

Following the SBL framework, we model 
 as
a Gaussian random variable, with zero mean and
variance �, independent of et . Therefore, yt is
also Gaussian, zero mean, and variance u2t�1�C1.
Therefore, assuming N data points are available,
the likelihood function for � is given by

L.�/ D
N
Y

iD1

1
q

2�.u2t�1�C 1/

e

�
1

2

N
X

iD1

y2t

u2t�1�C 1

Defining now

O�ML WD arg min
��0

� 2log L.�/

one obtains that

O�ML D max .0; ��/

where �� is the solution of

N
X

tD1

u4t�1�C u2t�1
�

1 � y2t
�

u2t�1�C 1
D 0

which unfortunately doesn’t have a closed form
solution. If however we assume that the input ut
is constant (without loss of generality say that
ut D 1), we obtain that

�� D 1

N

N
X

tD1
y2t � 1

thus

O�ML D max

 

0;
1

N

N
X

tD1
y2t � 1

!

Clearly this is a threshold estimator which sets
to zero O�ML when the sample variance of yt

is smaller than the variance of et , which was
assumed to be equal to 1. Thus, the empirical
Bayes estimator of 
 , as per Eq. (11), is given by

O
 D
O�ML

PN
iD1 u2t�1 O�ML C 1

N
X

iD1
ytut�1

which is clearly equal to zero when O�ML D 0.

Extensions: Regularization for Hybrid
Systems Identification andModel
Segmentation

An interesting extension of linear systems is a
class of so-called hybrid models described by a
relation of the form

yt D Oy
k .t jt � 1/C et
Oy
k .t jt � 1/ D L
k .y

�
t ; u

�
t /


k 2 R
nk k D 1; : : : ; K

(19)

where the predictor Oy
k .t jt � 1/, which is
a linear function L
k .y

�
t ; u

�
t / of the “past”

histories y�
t WD fyt�1; yt�2; : : : :g and u�

t WD
fut�1; ut�2; : : : :g, is parametrized by a parameter
vector 
k 2 R

nk ; there are K different parameter
vectors 
k, k D 1; : : : ; K , whose evolution over
time is determined by a so-called switching
mechanism. The name hybrid hints at the fact
that the model is described continuous-valued (y,
u, and e) and discrete-valued (k) variables.

A well-studied subclass of (19) is composed
by the so-called switching ARX models, where
the predictor takes the special form

Oy
k .t jt � 1/ D �>
t 
k 
k 2 R

nk (20)

The regressor �t is a finite vector containing
inputs us and outputs ys in a finite past window
s 2 Œt � 1; t � T �, plus possibly a constant com-
ponent to model changing “means.” The value
of k 2 Œ1;K� is determined by the switching
mechanism p.�t ; t/ W Rnk � R ! f1; : : : ; Kg.

Two extreme but interesting cases are (i)
p.�t ; t/ D pt , where p.�/ is an exogenous and
not measurable signal, and (ii) p.�t ; t/ D p.�t /,
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where p.�/ is an endogenous unknown measur-
able function of the regression vector �t . In any
case, from the identification point of view, k
at time t is not assumed to be known and, as
such, the identification algorithm has to operate
without knowledge of this switching mechanism.

Identification of systems in the form (20) re-
quires to estimate (a) the number of models K
and the position of the switches between different
models, (b) the “dimension” of each model nk ,
(c) the value of the parameters 
k, and, possibly,
(d) the function p.�t ; t/ which determines the
switching mechanism.

Steps (b) and (c) are essentially as in
section “System Identification” (see also the
introductory paper � System Identification: An
Overview); however, this is complicated by steps
(a) and (d), which in particular require that one is
able to estimate, from data alone, which system
is “active” at each time t .

Step (a), which is also related to the problem
of model segmentation, has been tackled in the
literature; see e.g., Ozay et al. (2012), Ohlsson
and Ljung (2013), and references therein, by
applying suitable penalties on the number of
different models K and/or on the number of
switches. Note that p.�t ; t/ ¤ p.�s; s/ if and
only if 
t ¤ 
s . Based on this simple observation,
one can construct a regularization which counts
either the number of switches, i.e.,

JR.
 I �/ WD �

N
X

tD2
kk
t � 
t�1kk0; (21)

or attempts to approximate the total number of
different models computing

JR.
 I �/ WD �

N
X

t;sD1
w.s; t/kk
t � 
skk0 (22)

for a suitable weighting w.t; s/; see Ohlsson and
Ljung (2013).

As discussed above, these quasinorms lead,
in general, to unfeasible optimization problems
(NP-hard). An exception is the case where one
considers bounded noise, i.e., solves a problem
of the form

min

t

N
X

tD2
k
t � 
t�1k0 s:t: kyt � �>

t 
tk1 < �

(23)

which is shown to be a convex problem; see
Ozay et al. (2012). In general relaxations are
used, typically using the `1/group-`1 penalties,
thus relaxing (21) and (22) to

JR.
 I�/ WD �
PN

tD2 k
t � 
t�1k1
JR.
 I�/ WD �

PN
t;sD1 w.s; t/k
t � 
sk1 (24)

This yields to the convex optimization problems:

min

t

X

t

�

yt � �>
t 
t

�2C�
N
X

tD2
k
t �
t�1k1 (25)

or

min

t

X

t

�

yt � �>
t 
t

�2 C �

N
X

t;sD1
w.s; t/k
t � 
sk1

(26)

Summary and Future Directions

We have presented a bird’s eye overview of reg-
ularization methods in system identification. By
necessity this overview was certainly incomplete
and we encourage the reader to browse through
the recent literature for new developments on
this exciting topic; we hope the references we
have provided are a good starting point. While
regularization is quite an old topic, we believe it is
fair to say that the nontrivial interaction between
regularization and system theoretic concepts pro-
vides a wealth of interesting and challenging
problems. Just to mention a few open questions:
(i) how and why smoothness priors relate to
system order (McMillan degree), (ii) how can
one design kernels which, at the same time, are
descriptive for dynamical systems and lead to
computationally attractive problems suited for
online identification, (iii) how should kernels
for multi-output systems be designed, and (iv)
which are the statistical properties of Bayesian

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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procedures such as SBL and its extensions in
the context of system identification. Last but not
least, while some results are available, nonlinear
system identification still offers significant chal-
lenges.

Cross-References

�Nonlinear System Identification Using Particle
Filters

�Nonlinear System Identification: An Overview
of Common Approaches

� Subspace Techniques in System Identification
� System Identification: An Overview

Recommended Reading

The use of regularization methods for system
identification can be traced back to the 1980s,
see Doan et al. (1984) and Kitagawa and Gersh
(1984); yet it is fair to say that the most signif-
icant developments are rather recent and there-
fore the literature is not established yet. The
reader may consult Fazel et al. (2001), Pillonetto
et al. (2011), Chen et al. (2012), Chiuso and
Pillonetto (2012) and references therein. Clearly
all this work has largely benefitted from cross
fertilization with neighboring areas and, as such,
very relevant work can be found in the fields
of machine learning (Bach et al. 2004; Mackay
1994; Tipping 2001; Rasmussen and Williams
2006), statistics (Hocking 1976; Tibshirani 1996;
Fan and Li 2001; Wang et al. 2007; Yuan and
Lin 2006; Zou 2006), signal processing (Donoho
2006; Wipf et al. 2011) and econometrics (Ban-
bura et al. 2010).
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System Identification: An Overview
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Linköping, Sweden

Abstract

This entry gives an overview of system identifi-
cation. It outlines the basic concepts in the area
and also serves as an umbrella contribution for
the related nine articles on system identifications
in this encyclopedia. The basis is the classical
statistical approach of parametric methods using
maximum likelihood and prediction error meth-
ods. The paper also describes the properties of the
estimated models for large data sets.

Keywords

Asymptotic model properties; Dynamical sys-
tems; Estimation; Mathematica models; Maxi-
mum likelihood; Parameter estimates; Prediction
error method; Regularization

An Introductory Example

System identification is the theory and art of
estimating models of dynamical systems, based
on observed inputs and outputs. Consider as a
concrete example the Swedish aircraft fighter
Gripen; see Fig. 1. From one of the earlier test
flights, some data were recorded as depicted in
Fig. 2.

To design the simulation software and the
autopilot, the aircraft manufacturer, the SAAB
company, needed a mathematical model for the
dynamics of the system. It is a question to de-
scribe how, in this case, the pitch rate is affected
by the three inputs. A fair amount of knowledge
exists about aircraft dynamics, and in industrial
practice, “gray-box” models based on Newton’s
laws of motion and unknown parameters like
aerodynamical derivatives are employed to esti-
mate the flight dynamics. Here, for the purpose
of illustrating basic principles, let us just try a
simple “black-box” difference equation relation.
Denote the output, the pitch rate, at sample num-
ber t by y.t/, and three control inputs at the same
time by uk.t/; k D 1; 2; 3. Then assume that we
can write

y.t/ D � a1y.t � 1/� a2y.t � 2/� a3y.t � 3/
C b1;1u1.t � 1/C b1;2u1.t � 2/
C b2;1u2.t � 1/C b2;2u2.t � 2/

C b3;1u3.t � 1/C b3;2u3.t � 2/ (1)

In this simple relationship, we can adjust the
parameters to fit the observed data as well as
possible by a common least squares fit. We use
only the 90 first data points of the observed
data. That gives certain numerical values of the
9 parameters above:

a1 D �1:15; a2 D 0:50; a3 D �0:35;
b1;1 D �0:54 b1;2 D 0:4; b2;1 D 0:15;

b2;2 D 0:16; b3;1 D 0:16; b3;2 D 0:07 (2)

We may note that this model is unstable – it has
a pole at 1:0026, but that is in order, because the
pitch channel of the real aircraft is unstable at the
velocity and altitude in question.

How can we test if this model is reasonable?
Since we used only half of the observed data
for the estimation, we can test the model on the
whole data record. Since the model is unstable
it is natural to test it by letting it predict future
outputs, say five samples ahead, and compare
with the measured outputs. That is done in
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System Identification:
An Overview, Fig. 1 The
Swedish aircraft Gripen
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System Identification: An Overview, Fig. 2 Data from
an early test flight of Gripen. These data cover 3 s of
flight and are sampled at 60 Hz. (a) The output: pitch rate.

(b) Control input 1: elevator angle. (c) Control input 2:
leading edge flap. (d) Control input 3: canard angle

Fig. 3. We see that the simple model (2) provides
quite reasonable predictions over data it has
not seen before. This could conceivably be
improved if more elaborate model structures

than (1) were tried out. Also, in practice more
advanced techniques would be required to
validate that the estimated model is sufficiently
reliable.
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System Identification: An Overview, Fig. 3 The mea-
sured output (solid line) compared to the 5-step-ahead
prediction one (dashed line)

This simple introductory example points to the
basic flow of system identification and it also
points to the pertinent issues, which will be listed
in the section “The State-of-the-Art Identification
Setup.”

Models and System Identification

The Omnipresent Model
It is clear to everyone in science and engineer-
ing that mathematical models are playing in-
creasingly important roles. Today, model-based
design and optimization is the dominant engi-
neering paradigm to systematic design and main-
tenance of engineering systems. It has proven
very successful and is widely used in basically
all engineering disciplines. Concerning control
applications, the aerospace industry is the earliest
example on a grand-scale of this paradigm. This
industry was very quick to adopt the theory for
model-based optimal control that emerged in the
1960s and is spending great efforts and resources
on developing models. In the process industry,
model predictive control (MPC) has during the
last 25 years become the dominant method to
optimize production on an intermediate level.
MPC uses dynamical models to predict future

process behavior and to optimize the manipulated
variables subject to process constraints.

Increasing demands on performance, ef-
ficiency, safety, and environmental aspects
are pushing engineering systems to become
increasingly complex. Advances in (wireless)
communications systems and microelectronics
are key enablers for this rapid development,
allowing systems to be efficiently interconnected
in networks, reducing costs and size, and paving
the way for new sensors and actuators.

Model-based techniques are also gaining im-
portance outside engineering applications. Let us
just mention systems biology and health care. In
the latter case it is expected that personalized
health systems will become more and more im-
portant in the future.

Common to the examples given above are the
requirements of permeating sensing, actuation,
communication, and computation abilities of the
engineering systems, in many cases in distributed
architectures. It is also clear that these systems
should be able to operate in a reliable way in
an uncertain and temporally and spatially chang-
ing environment. In many applications, cognitive
abilities and abilities to adapt will be important.
With systems being decentralized and typically
containing many actuators, sensors, states, and
nonlinearities, but with limited access to sensor
information, model building that delivers models
of sufficient fidelity becomes very challenging.

System Identification: Data-Driven
Modeling
Construction of models requires access to
observed data. It could be that the model is
developed entirely from information in signals
from the system (“black-box models”) or it
could be that physical/engineering insights are
combined with such information (“gray-box
models”). In any case, verification (validation)
of a model must be done in the light of measured
data. Theories and methodologies for such
model construction have been developed in
many different research communities (to some
extent independently). System identification is
the term used in the control community for
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the area of constructing mathematical models
of dynamical systems from measured input-
output signals. Other communities use other
terms for often very similar techniques. The term
machine learning has become very common
in recent years, e.g., Rasmussen and Williams
(2006).

System identification has a history of more
than 50 years, since the term was coined by
Lotfi Zadeh (1956). It is a mature research field
with numerous publications, textbooks, confer-
ence series, and software packages. It is often
used as an example in the control field of an
area with good interaction between theory and
industrial practice. The backbone of the the-
ory relies upon statistical grounds, with maxi-
mum likelihood methods and asymptotic analy-
sis (in the number of observed data). The goal
of the system identification field is to find a
model of the plant in question as well as of
its disturbances and also to find a characteriza-
tion of the uncertainty bounds of the descrip-
tion.

The State-of-the-Art Identification
Setup

To approach a system identification problem, like
in section “An Introductory Example,” a number
of questions need to be answered, such as
• What model type, e.g., (1) should be used?
• How should the parameters in the model be

adjusted?
• What inputs should be applied to obtain a

good model?
• How do we assess the quality of the model?
• How do we gain confidence in an estimated

model?
There is a very extensive literature on the sub-
ject, with many textbooks, like Ljung (1999),
Söderström and Stoica (1989), and Pintelon and
Schoukens (2012).

System identification is characterized by five
basic concepts:
• X : The experimental conditions under which

the data is generated
• D: The data

M I
M(q̂ )

X
D

V

OK ?
No, try new M Yes!

No, try new X

System Identification: An Overview, Fig. 4 The iden-
tification work loop

• M: The model structure and its parameters 

• I: The identification method by which a pa-

rameter value O
 in the model structure M.
/

is determined based on the data D
• V : The validation process that scrutinizes the

identified model
See Fig. 4. It is typically an iterative process
to navigate to a model that passes through the
validation test (“is not falsified”), involving re-
visions of the necessary choices. For several of
the steps in this loop, helpful support tools have
been developed. It is however not quite possible
or desirable to fully automate the choices, since
subjective perspectives related to the intended use
of the model are very important.

M: Model Structures

A model structure M is a parameterized collec-
tion of models that describe the relations between
the inputs u and outputs y of the system. The pa-
rameters are denoted by 
 so M.
/ is a particular
model. The model set then is

M D fM.
/j
 2 DMg (3)

Many ways exist to collect mathematical
expressions that encompass a model; see, e.g.,
�Modeling of Dynamic Systems from First
Principles, �Nonlinear System Identification:
An Overview of Common Approaches, and

http://dx.doi.org/10.1007/978-1-4471-5058-9_102
http://dx.doi.org/10.1007/978-1-4471-5058-9_104
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�Nonlinear System Identification Using Particle
Filters. The models may be both linear and
nonlinear as well as time invariant and time
varying, and it is useful to have as a common
ground that a model gives a rule to predict
(one-step-ahead) the output at time t , i.e., y.t/
(a p-dimensional column vector), based on
observations of previous input-output data up
to time t � 1 (denoted by Zt�1).

Oy.t j
/ D g.t; 
;Zt�1/ (4)

This covers a broad variety of model descriptions,
sometimes in a somewhat abstract way. The de-
scriptions become much more explicit when we
specialize to linear models.
A note on “inputs” It is important to include
all measurable disturbances that affect y among
the inputs u to the system, even if they cannot
be manipulated as control inputs. In some
cases the system may entirely lack measurable
inputs, so the model (4) then just describes
how future outputs can be predicted from
past ones. Such models are called time series
and correspond to systems that are driven by
unobservable disturbances. Most of the tech-
niques described in this entry apply also to such
models.
A note on disturbances A complete model
involves both a description of the input-output
relations and a description of how various
noise sources affect the measurements. The
noise description is essential to understand both
the quality of the model predictions and the
model uncertainty. Proper control design also
requires a picture of the disturbances in the
system.

Linear Models
For linear time invariant systems, a general model
structure is given by the transfer functionG from
input u to output y and the transfer function H
from a white noise source e to output additive
disturbances (for notational convenience, we spe-
cialize to single-input-single-output systems, but
all expressions are valid in the multivariable case
with simple notational changes):

y.t/ D G.q; 
/u.t/CH.q; 
/e.t/ (5a)

Ee2.t/ D �2I Ee.t/eT .k/ D 0 if k ¤ t

(5b)

(E denotes mathematical expectation.) This
model is in discrete time and q denotes
the shift operator qy.t/ D y.t C 1/. We
assume for simplicity that the sampling
interval is a one-time unit. The expansion
of G.q; 
/ in the inverse (backwards) shift
operator gives the impulse response of the
system:

G.q; 
/u.t/ D
1
X

kD1
gk.
/q

�ku.t/

D
1
X

kD1
gk.
/u.t � k/ (6)

The discrete time Fourier transform (or the z-
transform of the impulse response, evaluated in
z D ei!) gives the frequency response of the
system:

G.ei!; 
/ D
1
X

kD1
gk.
/e

�ik! (7)

The function G describes how an input sinusoid
shifts phase and amplitude when it passes through
the system.

The additive noise term v D He is quite
versatile, and with a suitable choice of H , it can
describe a disturbance with arbitrary spectrum.
To link with the predictor as a unifying model
concept, it is useful to compute the predictor for
(5a) (the conditional mean of y.t/ given past
data), which is

Oy.t j
/ D G.q; 
/u.t/C Œ1 �H�1.q; 
/�

Œy.t/ �G.q; 
/u.t/� (8)

Note that the expansion of H�1 starts with “1,”
so the first term starts with h1q�1 so there is a
delay in y. It is easy to interpret the first term
as a simulation using the input u, adjusted with
a prediction of the additive disturbance v.t/ at

http://dx.doi.org/10.1007/978-1-4471-5058-9_106
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time t , based on past values of v. The predictor
is thus an easy reformulation of the basic transfer
functions G and H . The question now is how to
parameterize these.

Black-Box Models
A black-box model uses no physical insight or
interpretation, but is just a general and flexible
parameterization. It is natural to let G and H be
rational in the shift operator:

G.q; 
/ D B.q/

F.q/
I H.q; 
/ D C.q/

D.q/
(9a)

B.q/ D b1q
�1 C b2q

�2 C : : : bnbq
�nb (9b)

F.q/ D 1C f1q
�1 C : : :C fnf q

�nf (9c)


 D Œb1; b2; : : : ; fnf � (9d)

C andD are like F monic, i.e., start with a “1.”
A very common case is that F D D D

A and C D 1 which gives the ARX model
(autoregressive with exogenous input):

y.t/ D A�1.q/B.q/u.t/C A�1.q/e.t/ or
(10a)

A.q/y.t/ D B.q/u.t/C e.t/ or (10b)

y.t/C a1y.t � 1/C : : :C anay.t � na/

(10c)

D b1u.t � 1/C : : :C bnbu.t � nb/

(10d)

This is the model structure we used in (1) in the
introductory example, but for several inputs.

Other common black-box structures of
this kind are FIR (finite impulse response
model, F D C D D D 1), ARMAX (autore-
gressive moving average with exogenous input,
F D D D A), and BJ (Box-Jenkins, all four
polynomials are different.)

Gray-Box Models
If some physical facts are known about the sys-
tem, it is possible to build that into a gray-box
model. It could, for example, be that for the
airplane in the introduction, the motion equa-
tions are known from Newton’s laws, but certain

parameters are unknown, like the aerodynam-
ical derivatives. Then it is natural to build a
continuous-time state-space model from physical
equations:

Px.t/ D A.
/x.t/C B.
/u.t/

y.t/ D C.
/x.t/CD.
/u.t/C v.t/
(11)

Here 
 are simply some entries of the matrices
A;B;C;D, corresponding to unknown physical
parameters, while the other matrix entries sig-
nify known physical behavior. This model can
be sampled with well-known sampling formulas
(obeying the input inter-sample properties, zero-
order hold, or first-order hold) to give

x.t C 1/ D F.
/x.t/C G.
/u.t/
y.t/ D C.
/x.t/CD.
/u.t/C w.t/

(12)

The model (12) has the transfer function from u
to y

G.q; 
/ D C.
/ŒqI � F.
/��1G.
/CD.
/

(13)

so we have achieved a particular parameterization
of the general linear model (5a).

Continuous-Time Models
The general model description (4) describes how
the predictions evolve in discrete time. But in
many cases, we are interested in continuous-
time (CT) models, like models for physical in-
terpretation and simulation (e.g., electrical cir-
cuit simulators like ADS, Spice, Spectre, and
Microwave Office use continuous-time models).
But CT model estimation is contained in the
described framework, as the linear state-space
model (11) illustrates. More comments on direct
estimation of CT models are given in section “Es-
timating Continuous Time Models.”

Nonlinear Models
A nonlinear model is a relation (4), where the
function g is nonlinear in the input-output data
Z. There is a rich variation in how to specify the
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function g more explicitly. A quite general way
is the nonlinear state-space equation, which is a
counterpart to (12):

x.t C 1/ D f .x.t/; v.t/; 
/

y.t/ D h.x.t/; e.t/; 
/
(14)

where v and e are white noises. This is further
discussed in �Nonlinear System Identification:
An Overview of Common Approaches, where x
is described as a Markov process with v defining
the transitions, and in �Nonlinear System Identi-
fication: An Overview of Common Approaches,
where (14) (v � 0) is related to a continuous-
time gray-box model. The latter article also dis-
cusses several other nonlinear model structures
that can be seen as extensions and modifications
of linear models: nonlinear mappings of past
input-output data corresponding to (10), mixing
static nonlinearities with linear dynamical mod-
els, etc.

I: Identification Methods: Criteria

The goal of identification is to match the model
to the data. Here the basic techniques for such
matching will be discussed.

Time Domain Data
Suppose now we have collected a data record in
the time domain

ZN D fu.1/; y.1/; : : : ; u.N /; y.N /g (15)

Since the model is in essence a predictor, it is
quite natural to evaluate it by how well it predicts
the measured output. So, form the prediction
errors for (4):

".t; 
/ D y.t/ � Oy.t j
/ (16)

The “size” of this error can be measured by some
scalar norm:

`.".t; 
// (17)

and the performance of the predictor over the
whole data record ZN becomes

VN .
/ D
N
X

tD1
`.".t; 
// (18)

A natural parameter estimate is then

O
N D arg min

2DM

VN .
/ (19)

This is the prediction error method (PEM) and is
applicable to general model structures. See, e.g.,
Ljung (1999) or (2002) for more details. See also
�Nonlinear System Identification: An Overview
of Common Approaches.

The PEM approach can be embedded in a
statistical setting to guarantee optimal statistical
properties. The ML methodology below offers a
systematic framework to do so:

AMaximum Likelihood View
If the system innovations e have a probability
density function (pdf) f .x/, then the criterion
function (18) with `.x/ D � logf .x/ will be the
logarithm of the likelihood function. See Lemma
5.1 in Ljung (1999). More specifically, assume
that the system has p outputs and that the innova-
tions are Gaussian with zero mean and covariance
matrix�, so that

y.t/ D Oy.t j
/C e.t/; e.t/ 2 N.0;�/ (20)

for the 
 that generated the data. Then it follows
that the negative logarithm of the likelihood func-
tion for estimating 
 from y is

LN .
/ D 1

2
ŒVN .
/CN log det�CNp log 2��

(21)

where VN .
/ is defined by (18), with

`.".t; 
// D "T .t; 
/��1".t; 
/ (22)

So the maximum likelihood model estimate
(MLE) for known � is obtained by minimizing
VN .
/. If � is not known, it can be included

http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_104
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among the parameters and estimated, (Ljung
1999, page 218), which results in a criterion

DN.
/ D det
N
X

tD1
".t; 
/"T .t; 
/ (23)

to be minimized.

The EM Algorithm
The EM algorithm (Dempster et al. 1977) is
closely related to the ML technique. It is a method
that is especially useful when the ML criterion
is difficult to evaluate from the observed data
but would be easier to find if certain unobserved
latent variables were known. The algorithm alter-
nates between an expectation step estimating the
log likelihood and a maximization step bringing
the parameter estimate closer in each step to
the MLE. Its application to the nonlinear state-
space model (14) is described in �Nonlinear
System Identification: An Overview of Common
Approaches.

Regularization
Solving for the estimate in (19) is a so-called
inverse problem, which means that the solution
may be ill conditioned. To deal with that in (18),
we could add a quadratic norm:

WN.
/ D VN.
/C �.
 � 
�/T R.
 � 
�/ (24)

(� is a scaling, R is a positive semidefinite
(psd) matrix, and 
� is a nominal value of the
parameters). The estimate is then found by
minimizing WN.
/. The criterion (24) makes
sense in a classical estimation framework as
an ad hoc modification of the MLE to deal
with possible ill-conditioned minimization
problems. The added quadratic term then
serves as proper (Tikhonov) regularization of
an ill-conditioned inverse problem; see, for
example, Tikhonov and Arsenin (1977). This
criterion is a clear-cut balance between model
fit and a penalty on the model parameter
size. The amount of penalty is governed by �
and R.

Other useful regularization penalties could be
to add an `1 norm of the parameter. Such tech-
niques are further discussed in � System Identifi-
cation Techniques: Convexification, Regulariza-
tion, and Relaxation.

Bayesian View
For a broader perspective it is useful to invoke a
Bayesian view. Then the sought parameter vector

 is itself a random vector with a certain pdf. This
random vector will of course be correlated with
the observations y. If we assume that the prior
distribution of 
 (before y has been observed) is
Gaussian with mean 
� and covariance matrix˘ ,


 2 N.
�; ˘/ (25)

its prior pdf is

P.
/ D 1
p

.2�/p det.˘/
e�.
�
�/T ˘�1.
�
�/=2

(26)

The posterior (after y has been measured) pdf
then is by Bayes rule (Y denoting all measured
y signals)

P.
 jY / D P.
; Y /

P.Y /
D P.Y j
/P.
/

P.Y /
(27)

In the last step P.Y j
/ is the likelihood function
(cf. the negative log likelihood functionLN .
/ in
(21)),P.
/ is the prior pdf (26), and P.Y / is a 
-
independent normalization. Apart from this nor-
malization, and other 
-independent terms, twice
the negative logarithm of (27) equals WN.
/ in
(24) with

�R D ˘�1 (28)

That means that with (28), the regularized
estimate from (24) is the maximum a posteriori
(MAP) estimate. As more and more data become
available, the role of the prior will tend to zero,
so as N ! 1 the MAP Estimate ! MLE.

This Bayesian interpretation of the regularized
estimate also gives a clue to select the regulariza-
tion quantities �;R; 
�.

http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_101
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For black-box models, a reasonable prior
(˘; 
�) may not be available. Then it is possible
to parameterize them with hyperparameters ˛
and then estimate these through the marginal
likelihood:

Ǫ D arg maxP.Y j˛/ (29)

A survey of how such techniques may improve
system identification techniques is given in Pil-
lonetti et al. (2014).

More aspects of the Bayesian view of system
identification are given in � System Identification
Techniques: Convexification, Regularization, and
Relaxation and in �Nonlinear System Identifica-
tion Using Particle Filters.

Frequency Domain Data
Frequency domain data are obtained either from
frequency analysers or by applying the Fourier
transform to measured time domain data. The
data could be in the input-output form

YN .e
i!k /; UN .e

i!k /; k D 1; 2; : : : ;M (30)

YN .z/ D 1p
N

N
X

kD1
y.k/z�k (31)

or being observed samples from the frequency
function

OOGN.ei!k /; k D 1; 2; : : : ;M (32)

e.g., OOGN.ei!/ D YN .e
i!/

UN .ei!/
.ETFE/ (33)

((33) is the empirical transfer function estimate,
ETFE).

Linear Parametric Models
By taking the Fourier transform of (5a), we see
that

Y.ei!/ D G.ei!; 
/U.ei!/ (34)

plus a noise term that has variance

�2jH.ei!; 
/j2 (35)

Simple least squares (LS) curve fitting of (34)
says that we should fit observations with weights
that are inversely proportional to the measure-
ment variance. That gives the weighted LS cri-
terion

VN .
/ D
M
X

kD1
jY.ei!k /

�G.ei!k ; 
/UN .e
i!k /j2=jH.ei!k ; 
/j2

(36)

(the constant �2 does not affect the minimization
of VN ).

It can readily be verified that (36) coincides
with (18), (`."/ D j"j2) by Parseval’s identity in
case M D N and the frequencies !k are selected
as the DFT grid.

Notice that (36) can be written as

VN .
/ D
M
X

kD1

ˇ

ˇ

ˇ

ˇ

YN .e
i!k /

UN .ei!k /
�G.ei!k ; 
/

ˇ

ˇ

ˇ

ˇ

2

�
ˇ

ˇ

ˇ

ˇ

UN .e
i!k /

H.ei!k ; 
/

ˇ

ˇ

ˇ

ˇ

2

(37)

We can see that as a properly weighted curve
fitting of the frequency function to the ETFE (33).

See �Frequency Domain System Identifica-
tion for more details of using frequency domain
data for estimating dynamical systems.

Nonparametric Methods
From frequency domain data, the frequency
response functions G.ei!/;H.ei!/ can also
be estimated directly as functions without
any parametric model. See �Nonparametric
Techniques in System Identification for a detailed
account of this.

IV and SubspaceMethods

Instrumental Variables
The family of identification methods that can
be described as minimizing a specific criterion
function, like (19), covers many theoretically and
practically important techniques. Still, several
methods do not belong to this family. A useful

http://dx.doi.org/10.1007/978-1-4471-5058-9_101
http://dx.doi.org/10.1007/978-1-4471-5058-9_106
http://dx.doi.org/10.1007/978-1-4471-5058-9_108
http://dx.doi.org/10.1007/978-1-4471-5058-9_109
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technique is to characterize a good model, as one
that gives prediction errors that are uncorrelated
with available information:

O
 D sol
2DM

N
X

tD1
".t; 
/�.t; 
/ D 0 (38)

Here, ".t; 
/ is the prediction error (16), and sol
means “solution to.” The sequence f�.t/; t D
1; : : : ; N g is constructed from the observed data,
possibly also dependent on some design variables
that are included in 
 . Typically �.t/ is con-
structed from past inputs, so a good model should
not have prediction errors that are correlated
with past observations. The variables � are called
instrumental variables, and there is an extensive
literature about how to select these. See, e.g.,
Ljung (1999), Section 7.5, Söderström and Stoica
(1983), and Young (2011).

Subspace Methods
A related technique is to estimate black-box state-
space models like (12) (without any internal para-
metric structure) by realizing the states from
data and then estimating the matrices by least
squares method. This gives a powerful family of
methods for state-space model estimation. They
are described in detail in � Subspace Techniques
in System Identification. The major advantage
of subspace methods is that they easily apply to
multiple-input-multiple-output systems and are
non-iterative. A drawback is that the model prop-
erties and their dependence on certain design
variables are not fully known.

Errors-in-Variables (EIV) Techniques
The estimation techniques described so far as-
sume that the input has been measured without
errors. In some cases, it is natural to assume that
both inputs and outputs have measurement errors.
The estimation problem then becomes more diffi-
cult, and some kind of knowledge about the mea-
surement errors is typically required. In Pintelon
and Schoukens (2012), Section 8.2, it is described
how criteria of the type (36) are modified in the
presence of input noise, and Söderström (2007)
can be consulted for a summarizing treatise on

EIV techniques. See also the section “Errors-in-
Variables Framework” in � Frequency Domain
System Identification.

Asymptotic Properties of
the EstimatedModels

An estimated model is useless, unless something
is known about its reliability and error bounds.
Therefore, it is important to analyze the model
properties.

Bias and Variance
The observations, certainly of the output from the
system, are affected by noise and disturbances,
which of course also will influence the esti-
mated model parameters (19). The disturbances
are typically described as stochastic processes,
which makes the estimate O
N a random variable.
This has a certain pdf and often the analysis is
restricted to its mean and variance only. The dif-
ference between the mean and a true description
of the system measures the bias of the model.
If the mean coincides with the true system, the
estimate is said to be unbiased. The total error in
a model thus has two contributions: the bias and
the variance.

Properties of the PEM Estimate (19)
as N ! 1
Except in simple special cases, it is quite difficult
to compute the pdf of the estimate O
N . However,
its asymptotic properties as N ! 1 are easier
to establish. The basic results can be summarized
as follows (E denotes mathematical expectation;
see Ljung (1999), chapters 8 and 9, for a more
complete treatment):
• Limit Model:

O
N ! 
�

D arg min

�

lim
N!1

1

N
VN .
/ � E`.".t; 
//

�

(39)

http://dx.doi.org/10.1007/978-1-4471-5058-9_107
http://dx.doi.org/10.1007/978-1-4471-5058-9_108
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So the estimate will converge to the best
possible model, in the sense that it gives the
smallest average prediction error.

• Asymptotic Covariance Matrix for Scalar
Output Models:
In case the prediction errors e.t/ D ".t; 
�/
for the limit model are approximately white,
the covariance matrix of the parameters is
asymptotically given by:

Cov O
N 	 �.`/

N

�

Cov
d

d

Oy.t j
/

��1
(40)

So the covariance matrix of the parameter
estimate is given by the inverse covariance
matrix of the gradient of the predictor wrt the
parameters. Here (prime denoting derivatives)

�.`/ D EŒ`0.e.t//�2

E`00.e.t/�2
(41)

Note that

�.`/ D �2 D Ee2.t/ if `.e/ D e2=2

If the model structure contains the true system,
it can be shown that this covariance matrix is
the smallest that can be achieved by any unbi-
ased estimate, in case the norm ` is chosen as
the logarithm of the pdf of e. That is, it fulfills
the the Cramér-Rao inequality (Cramér 1946).

These results are valid for quite general model
structures. Now, specialize to linear models (5a)
and assume that the true system is described by

y.t/ D G0.q/u.t/CH0.q/e.t/ (42)

which could be general transfer functions, pos-
sibly much more complicated than the model.
Then

• 
� D arg min



Z �

��
jG.ei!; 
/ �G0.ei!/j2

ˆu.!/

jH.ei!; 
/j2 d! (43)

That is, the frequency function of the limiting
model will approximate the true frequency
function as well as possible in a frequency
norm given by the input spectrum ˆu and the
noise model.

• For a linear black-box model

CovG.ei!; O
N / 	 n

N

ˆv.!/

ˆu.!/
as n;N ! 1

(44)

where n is the model order andˆv is the noise
spectrum �2jH0.e

i!/j2. The variance of the
estimated frequency function at a given fre-
quency is thus, for a high-order model, propor-
tional to the noise-to-signal ratio at that fre-
quency. That is a natural and intuitive result.

Trade-Off Between Bias and Variance
Generally speaking the quality of the model de-
pends on the quality of the measured data and
the flexibility of the chosen model structure (3).
A more flexible model structure typically has
smaller bias, since it is easier to come closer to
the true system. At the same time, it will have
a higher variance: With higher flexibility it is
easier to be fooled by disturbances. So the trade-
off between bias and variance to reach a small
total error is a choice of balanced flexibility of
the model structure.

As the model gets more flexible, the fit to
the estimation data in (19), VN . O
N /, will always
improve. To account for the variance contribu-
tion, it is thus necessary to modify this fit to
assess the total quality of the model. A much used
technique for this is Akaike’s criterion, (AIC)
(Akaike 1974):

O
N D arg min
M;
2DM

2LN .
/C 2dim
 (45)

where LN is the negative log likelihood function.
The minimization also takes place over a family
of model structures with different number of
parameters (dim 
).

For Gaussian innovations e with unknown and
estimated variance, AIC takes the form
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O
N D arg min
M;
2DM

"

log det

"

1

N

N
X

tD1
".t; 
/"T .t; 
/

#

C 2
dim


N

#

(46)

after normalization and omission of model-
independent quantities.

A variant of AIC is to put a higher penalty on
the model complexity:

O
N D arg min Œ2LN .
/C dim
 logN� (47)

This is known as Bayesian information criterion
(BIC) or Rissanen’s minimum description length
(MDL) criterion (Rissanen 1978).

Section “V : Model Validation” contains fur-
ther aspects on the choice of model structure.

X : Experiment Design

Experiment design is the question of choosing
which signal to measure, the sampling rate, and
designing the input.

The theory of experiment design primarily
relies upon analysis of how the asymptotic pa-
rameter covariance matrix (40) depends on the
design variables: so the essence of experiment
design can be symbolized as

min
X

tracefC ŒE .t/ T .t/��1g

where  is the gradient of the prediction wrt the
parameters and the matrix C is used to weight
variables reflecting the intended use of the model.

For linear systems the input design is often
expressed as selecting the spectrum (frequency
contents) of u.

This leads to the following recipe: Let the in-
put’s power be concentrated to frequency regions
where a good model fit is essential and where
disturbances are dominating.

Issues of experiment design are treated in
much more detail in �Experiment Design and
Identification for Control.

The measurement setup, like if band-limited
inputs are used to estimate continuous-time
models and how the experiment equipment is
instrumented with band pass filters (see, e.g.,
Pintelon and Schoukens 2012, Sections 13.2–3),
also belongs to the important experiment design
questions.

V : Model Validation

Model validation is about examining and
scrutinizing an estimated model to check if
it can be used for its purpose. These methods
unavoidably are problem dependent and contain
several subjective elements, and no conclusive
procedure for validation can be given. A
few useful techniques will be listed in this
section. Basically it is a matter of trying to
falsify a model under the conditions it will
be used for and also to gain confidence in
its ability to reproduce new data from the
system.

Falsifying Models: Residual Analysis
An estimated model is never a correct
description of a true system. In that sense,
a model cannot be “validated.” Instead it is
instructive to try and falsify it, i.e., confront
it with facts that may contradict its correct-
ness. A good principle is to look for the
simplest unfalsified model; see, e.g., Popper
(1934).

Residual analysis is the leading technique
for falsifying models: The residuals, or one-
step-ahead prediction errors O".t/ D ".t; O
N / D
y.t/ � Oy.t j O
N / should ideally not contain
any traces of past inputs or past residuals. If
they did, it means that the predictions are not
ideal. So, it is natural to test the correlation
functions

http://dx.doi.org/10.1007/978-1-4471-5058-9_103
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OrO";u.k/ D 1

N

N
X

tD1
O".t C k/u.t/ (48)

OrO".k/ D 1

N

N
X

tD1
O".t C k/O".t/ (49)

and check that they are not larger than
certain thresholds. Here N is the length
of the data record and k typically ranges
over a fraction of the interval Œ�NN�. See,
e.g., Ljung (1999), Section 16.6 for more
details.

Comparing Different Models
When several models have been estimated, it
is a question to choose the “best one.” Then,
models that employ more parameters naturally
show a better fit to the data, and it is necessary to
outweigh that. The model selection criteria AIC
(46) and BIC (47) are examples of how such
decisions can be taken. They can be extended
to regular hypothesis tests where more complex
models are accepted or rejected at various test
levels (Ljung 1999, Sect. 16.4).

Making comparisons in the frequency domain
is a very useful complement for domain experts
who are used to think in terms of natural frequen-
cies, natural damping, etc.

Cross Validation
Cross validation is an important statistical con-
cept that loosely means that the model perfor-
mance is tested on a data set (validation data)
other than the estimation data. There is an ex-
tensive literature on cross validation, e.g., Stone
(1977), and many ways to split up available data
into estimation and validation parts have been
suggested. A simple way, often used in system
identification, is to use one-half of the data to
estimate the model and the other half to evaluate
simulation or prediction fit. Trying out different
model structures (or other decision variables,
like regularization parameters), one then picks
the choice that gives the best performance on
validation data.

Other Topics

Numerical Algorithms and Software
Support
The central numerical task to estimate the model
lies in the innocent-looking “arg min” in (38).
Since the criterion often is non-convex, this
global minimization can be nontrivial. Typically
some iterative numerical optimization method,
like Gauss-Newton, Levenberg-Marquardt, or
trust regions, e.g., Nocedal and Wright (2012),
is employed. The iterations are initiated at a
carefully selected point, for black-box linear
systems often based on ARX or subspace
estimates.

The practical use of system identification
relies upon efficient software support. Many
such packages exist. They are further treated
along with numerical and computational aspects
in � System Identification Software.

Estimating Continuous-Time Models
Most of the techniques described here formally
seem to deal with estimating discrete time
model. However continuous-time (CT) models
are to be preferred in many contexts, and most
of the modeling of physical systems really
concern CT models. A natural approach is to
do physical modeling in continuous time as in
(11) and then do estimation of the CT matrices
via the sampled model (12). All the described
algorithms and results apply to this approach
to CT model estimation. Another approach is
to use band-limited inputs and compute the CT
Fourier transforms of data (that coincide with
the discrete time transforms for band-limited
data) and apply � Frequency Domain System
Identification.

Yet another approach is to directly fit CT
model parameters to discrete time data, using
specially designed filters; see, e.g., Garnier and
Wang (2008).

Recursive Estimation
For certain adaptive and in-line applications, it
may be necessary to continuously compute the
models by recursively updating the estimates.
The techniques for that resemble state-estimation

http://dx.doi.org/10.1007/978-1-4471-5058-9_105
http://dx.doi.org/10.1007/978-1-4471-5058-9_108
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algorithms and are dealt with in a general setting
in �Nonlinear System Identification Using Parti-
cle Filters. See also Ch 11 in Ljung (1999).

Data Management
The collected data often requires particular atten-
tion before it can be used for estimation. Issues
like missing observations, obviously erroneous
values (outliers), slowly varying disturbances,
trends, etc., need attention. In industrial appli-
cations, a practical question is often to select
portions of the data records that contain rele-
vant information for the model building. Such
questions are application dependent and related
to experiment design and also to database man-
agement. Some techniques for preparing data for
identification are mentioned in Ch 14 of Ljung
(1999).

Summary and Future Directions

System identification is a mature and well-
established area in automatic control. The
methods are successfully and routinely applied
in industrial practice, and the understanding
of theoretical issues is mostly excellent. The
standard theory relies very much on basic
statistical concepts and methods.

What is exciting about future development is
what increased computation power may mean
for the area: Can nonlinear models be efficiently
estimated by massive computational efforts? Will
tools inspired by machine learning turn out to
be superior to the conventional approaches?
Can reliable uncertainty regions be computed
for arbitrary noises and without the asymptotic
formulas?

Several of these questions are illuminated in
the articles listed under Cross-References.

Cross-References

There are several articles in this encyclopedia
that deal with aspects of system identification.
They have been coordinated with this overview
and the text has listed how they complement the

issues treated here. For easy reference, here is a
complete list of associated articles:

�Experiment Design and Identification for Con-
trol

�Frequency Domain System Identification
�Modeling of Dynamic Systems from First Prin-

ciples
�Nonlinear System Identification: An Overview

of Common Approaches
�Nonlinear System Identification Using Particle

Filters
�Nonparametric Techniques in System Identifi-

cation
�Subspace Techniques in System

Identification
�System Identification Software
�System Identification Techniques: Convexifica-

tion, Regularization, and Relaxation

Recommended Reading

A text book that covers and extends the material
in this contribution is Ljung (1999). Another text
book in the same spirit is Söderström and Stoica
(1989), while Pintelon and Schoukens (2012)
gives a comprehensive treatment of frequency
domain methods. Recursive methods are treated
in Young (2011).
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