
O

Observer-Based Control

H.L. Trentelman1 and Panos J. Antsaklis2
1Johann Bernoulli Institute for Mathematics and
Computer Science, University of Groningen,
Groningen, AV, The Netherlands
2Department of Electrical Engineering,
University of Notre Dame, Notre Dame,
IN, USA

Abstract

An observer-based controller is a dynamic
feedback controller with a two-stage structure.
First, the controller generates an estimate of the
state variable of the system to be controlled,
using the measured output and known input
of the system. This estimate is generated by a
state observer for the system. Next, the state
estimate is treated as if it were equal to the exact
state of the system, and it is used by a static
state feedback controller. Dynamic feedback
controllers with this two-stage structure appear
in various control synthesis problems for linear
systems. In this entry, we explain observer-based
control in the context of internal stabilization by
dynamic measurement feedback.
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Introduction

In this entry, we explain the notion of observer-
based feedback control. Given a to-be-controlled
system in input-state-output form, together with
a control objective, the problem is to design a
feedback controller such that the closed-loop
system meets the objective. In the case when
all state variables of the system are available
for control, the design problem is considered
to be simpler, and often the controller can be
chosen to be a static state feedback control law.
In the more general case where the controller
has access only to a linear function of the
state variables, the problem is more involved
and requires the design of a dynamic feedback
control law. The key idea of observer-based
feedback control is the following. As a first
step, one determines a state observer for the
system, i.e., a system that estimates the state of
the system based on the measured outputs and
inputs of the system. Next, the state estimate
is treated as if it were exactly equal to the
actual state of the system and is used by a
static state feedback controller. In this way, a
dynamic feedback controller is obtained that is
composed of a (dynamic) state observer and a
static feedback part.
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Dynamic Output Feedback Control

Consider the controlled and observed system †:

Px.t/ D Ax.t/C Bu.t/C Ed.t/;

y.t/ D Cx.t/;

z.t/ D Hx.t/;

(1)

with x.t/ 2 X D R
n the state, u.t/ 2 R

m

the control input, and y.t/ 2 R
p the mea-

sured output. The signal d.t/ may represent a
disturbance input or a desired reference signal,
while the signal z.t/ is a controlled output signal.
A; B; C; E , and H are maps (or matrices).
In general, a linear controller for this system is
a finite-dimensional linear time-invariant system
� represented by

Pw.t/ D Kw.t/C Ly.t/;

u.t/ D Mw.t/CNy.t/:
(2)

The state space of the controller is assumed to be
W D R

q for some positive integer q. K;L;M ,
and N are assumed to be linear maps (or matri-
ces). The controller (2) takes the observations y
as its input and generates the control function u as
its output. The closed-loop system resulting from
the interconnection of † and � is described by
the equations

� Px.t/
Pw.t/

�
D
 
ACBNC BM

LC K

!�
x.t/

w.t/

�
C
�
E

0

�
d.t/;

z.t/ D�
H 0

� �x.t/
z.t/

�
:

(3)

The control action of interconnecting the con-
troller � with the system (1) is called dynamic
feedback. The state space of the closed-loop sys-
tem (3) is called the extended state space and is
equal to the Cartesian productX �W D R

nCq . In
general, a feedback control problem amounts to
finding linear mapsK;L;M , andN such that the
closed-loop system (3) satisfies the control design
specifications.

Observer-Based Controllers

Given the system (1) and a control objective,
the problem thus arises on how to determine the
maps K;L;M , and N so that the closed-loop
systems meet the objective. As an example, take
the special case when E in (1) is equal to zero
(i.e., the system has no external disturbances or
reference signals) and that we wish the closed-
loop system (3) to be internally stable, i.e., we
want to find the maps K;L;M , and N so that
the eigenvalues �i of the system map of (3) are in
the open left half-plane, i.e., satisfy Re.�i / < 0

for all i . If we had access to the entire state
variable x (instead of only to the linear function
y D Cx), then this problem would be simpler:
assuming that the system is stabilizable (The
system Px D Ax C Bu is called stabilizable if
there exists a map F such that A C BF has all
its eigenvalues in the open left half-plane), find
a map F such that the eigenvalues of A C BF

are in the open left half-plane; then take the static
state feedback controller u D Fx as the control
law. That is, we would choose the state space
dimension of the controller � equal to 0 and the
mapsK ,L, andM to be void, and we would take
N D F .

In general, however, we only have access to a
given linear function y D Cx of x, determined
by the output map C . The key idea of observer-
based control is the following:
Use the theory of observer design to find an
observer for the state x of the system (1), i.e.,
an observer that generates an estimate � of the
system state x based on the measured output
y and the control input u. Next, apply a static
feedback u D F � mimicking the (not permissible)
control law u D Fx.

This idea leads to a dynamic feedback con-
troller (2) of a very particular structure: the con-
troller is the combination of a state observer
(with a certain state space dimension) and a static
control law acting on the state estimate. This two-
stage structure, separating estimation and control,
is often called the separation principle. We will
work out this idea in more detail for the case
when E D 0 (no external disturbances or ref-
erence signals) and the aim is to obtain internal
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stability of the system. Before doing this, we first
explain the most important material on observers
that is needed in the sequel.

State Observers

If the state is not available for measurement, one
can try to reconstruct it using a system, called
observer, that takes the control input and the
measured output of the original system as inputs
and yields an output that is an estimate of the
state of the original system. Again in case that
in the system (1) we have E D 0, i.e., there are
no disturbance signals. This is illustrated in the
following picture:

Σ
Ω

u y

The quantity � is supposed to be an estimate,
in some sense, of the state, and w is the state
variable of the observer. In general, the observer,
denoted by �, has equations of the form

Pw.t/ D Pw.t/CQu.t/CRy.t/;

�.t/ D Sw.t/:
(4)

It turns out that particular choices for P;Q;R,
and S , specifically P D A�GC (where the map
G has to be determined), Q D B , R D G, and
S D I , lead to

P�.t/ D .A�GC/�.t/C Bu.t/CGy.t/: (5)

Introducing the estimation error e W D � � x and
interconnecting the system (1) with (5), we find
that the error e satisfies the differential equation

Pe.t/ D .A �GC/e.t/: (6)

Hence all possible errors converge to 0 as t tends
to infinity if and only if A � GC is a stability
matrix, i.e., has all its eigenvalues in the open left
half-plane. In that case, we call (5) a stable state
observer. Thus, a stable state observer exists if
and only if G can be found such that A � GC is
a stability matrix. The problem of finding such a
G is dual to the problem of finding a matrix F
to a pair .A;B/ such that A C BF is a stability
matrix.

Definition 1 The pair .C;A/ is called detectable
if there exists a matrix G such that A � GC is a
stability matrix, i.e., has all its eigenvalues in the
open left half-plane.

Theorem 1 Given system†, the following state-
ments are equivalentW
1. † has a stable state observer.
2. .C;A/ is detectable.

The equation for � can be rewritten using an
artificial output � D C� as P� D A� C Bu C
G.y � �/. The interpretation of this is as follows.
If � is the exact state, then � D y, and hence �
obeys exactly the same differential equation as x.
Otherwise, the equation for � has to be corrected
by a term determined by the output error y � �.
Consequently, the state observer consists of an
exact replica †dup of the original system with an
extra input channel for incorporating the output
error and an extra output, the state of the observer,
which serves as the desired estimate for the state
of the original system. The following diagram
depicts the situation:

u Σ
y

−
+ G Σdup

C
h
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Observer-Based Stabilization

We now work out the ideas put forward in the
previous sections for the special case of stabi-
lization by dynamic measurement feedback, i.e.,
to find a controller (2) such that the closed-
loop system (3) is internally stable; equivalently,
the system mapping of (3) is a stability matrix.
Again, we restrict ourselves to the case when
E D 0.

We assume that we know how to stabilize by
state feedback and how to build a state observer.
If we have a plant of which we do not have the
state available for measurement, we use a state
observer to obtain an estimate of the state, and
we apply the state feedback to this estimate rather
than to the true state. This is illustrated by the
following picture:

Σ
Ω

u y

F

Again, consider the system† given by (1) and
let the observer � be given by (5) . Combining
this with u D F � yields

Px.t/ D Ax.t/CBF �;

P�.t/ D .A�GC C BF /�.t/CGCx.t/:
(7)

Introducing again e W D � � x, we obtain, in
accordance with the previous section,

Px.t/ D .AC BF /x.t/CBFe.t/;

Pe.t/ D .A �GC/e.t/:

That is, the equation Pxe D Aexe with

xe W D
�
x

e

�
; Ae W D

�
ACBF BF

0 A�GC

�
:

Assume that † is stabilizable and detectable.
Then F and G can be found such that A C BF

and A � GC are stability matrices. Since the
set of eigenvalues of Ae is the union of those
of A C BF and A � GC , it follows that Ae
is a stability matrix. Consequently, the system
Pxe D Aexe is asymptotically stable; equivalently,
every solution xe D .x; e/ converges to 0 as t
tends to infinity. Of course, if .x; �/ is a solution
of (7), then � D xCe, with xe D .x; e/ a solution
of Pxe D Aexe . Hence .x; �/ also converges to 0
as t goes to infinity. Thus we have proved the “if”
part of the following theorem:

Theorem 2 There exists an internally stabilizing
dynamic feedback controller for † if and only if
† is stabilizable and detectable. A controller is
given by

P�.t/ D .A�GC/�.t/C Bu.t/CGy.t/;

u.t/ D F �.t/;
(8)

where F is any map such that A C BF is a
stability matrix and G is any map such that
A�GC is a stability matrix.

The controller (8) is an observer-based dynamic
feedback controller, since it is composed of a
state observer and a static feedback part.

Summary and Future Directions

We have given an introduction to observer-based
feedback controllers and have explained that such
controllers are dynamic feedback controllers that
can be represented as the composition of a state
observer for the system, together with a static
control law mimicking a (not permitted) static
state feedback control law. We have given a
detailed description of this principle for the case
that the system to be controlled has no external
disturbances or reference signals and the control
objective is internal stability of the system. More
intricate versions of the principle of observer-
based feedback control appear in control design
problems for linear systems with external distur-
bances and reference signals and with different,
more sophisticated, control objectives. Examples
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of these are the regulator problem, the problem
of disturbance decoupling with internal stability,
the H2 optimal control problem, and the H1
suboptimal control problem.
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Abstract

Observers are objects delivering estimation of
variables which cannot be directly measured.
The access to such hidden variables is made
possible by combining modeling and measure-
ments. But this is bringing face to face real world
and its abstraction with, as a result, the need
for dealing with uncertainties and approxima-
tions leading to difficulties in implementation and
convergence.

Keywords
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Introduction

Observers are answers to the question of
estimating, from observed/measured/empirical
variables, denoted y, and delivered by sensors
equipping a real-world system, some “theoreti-
cal” variables, called hidden variables in this text,
denoted z, which are involved in a mathematical
model related to this system. The measured
variables make what is called the a posteriori
information on the hidden variables, whereas the
model is part of the a priori information. Because
a model cannot fit exactly a system, introduction
of uncertainties is mandatory.

Typically this model describing the link be-
tween hidden and measured variables is made of
three components:
• A dynamic model describes the dynam-

ics/evolution ( Px denotes the time deriva-
tive dx

dt
):

Px.t/Df .x.t/;t;ıs.t//resp. xkC1Dfk
�
xk; ı

s
k

�
;

(1)

where t , in the continuous case, or k, in the
discrete case, is an evolution parameter, called
time in this text; x is a state, assumed finite
dimensional in this text; and ıs represents
the uncertainties in the state dynamics. Any
possible known inputs are represented here by
the time dependence of f .

• A sensor model relates state and measured
variables:

y.t/Dh �x.t/; t; ım.t/�resp.yk Dhk
�
xk; ı

m
k

�
(2)

with ım representing the uncertainties in the
measurements.

• A model which relates state and hidden vari-
ables:

z.t/D h�
x; t; ıh.t/

�
resp. zk D h

k

�
xk; ı

h
k

�
(3)

where again ıh represents the uncertainties in
the hidden variables.

In a deterministic setting, the a priori information
on the uncertainties .ıs; ım; ıh/ may be that the
values of ıs , ım, and ıh are unknown but belong
to known sets�s ,�m, and�h. Namely, we have:

http://dx.doi.org/10.1007/978-1-4471-5058-9_196
http://dx.doi.org/10.1007/978-1-4471-5058-9_197


936 Observers for Nonlinear Systems

ıs.t/2�s.t/; ım.t/2 �m.t/; ıh.t/2 �h.t/ ;

respectively, ısk 2 �s
k ; ı

m
k 2 �m

k ; ı
h
k 2 �h

k :
(4)

In a stochastic setting and more specifically in a
Bayesian approach, it may be that ıs , ım, and ıh

are unknown realizations of stochastic processes
for which we know the probability distributions.

Similarly we may also know a priori that we
have:

x.t/ 2 X .t/; z.t/ 2 Z.t/
respectively, xk 2 Xk; zk 2 Zk

(5)

where the sets X and Z are known or we may
have a priori probability distribution for x and z.

In this context, the a priori information is the
data of the functions f , h, and

h

, of the sets
�s , �m, and�h or the corresponding probability
distribution and so may be also of the sets X
and Z or the corresponding a priori probability
distribution.

In the next section, we state the observation
problem and give the solutions which are direct
consequences of the deterministic and stochastic
setting given above. This will allow us to see
that an observer is actually a dynamical system
with the measurements as inputs and the estimate
as output. But approximations in the implemen-
tation of these solutions, not knowing how to
initialize, may lead to convergence problems even
when the uncertainties disappear. The second part
of this text is devoted to this convergence topic.

To ease the presentation, we deal only with
the discrete time case in section “Set Valued
and Conditional Probability Valued Observers”
and the continuous time case in sections “An
Optimization Approach” and “Convergent
Observers.”

Observation Problem and Its
Solutions

The Observation Problem
Let Xıs .x; t; s/, respectively Xıs

l .x; k/, denote a
solution of (1) at time s, respectively l , going
through x at time t , respectively k, and under the
action of ıs .

Observation problem At each time t , respectively
k, given the function s 2�t � T; t� 7! y.s/,
respectively the sequence l 2 fk �K; : : : ; kg 7!
yl , find an estimation Oz.t/, respectively Ozk , of z.t/,
respectively, zk , satisfying

Oz.t/D h� Ox.t/; t; ıh.t/� resp. Ozk D h

k

� Oxk; ıhk
�
:

where Ox.t/, respectively Oxk , is to be found as a
solution of

Ox.t/ 2 X .t/ ;

y.s/Dh�Xıs. Ox.t/; t; s/; s; ım.s/� 8s 2�t�T; t�;

respectively

Oxk 2 Xk ;

yl Dhl
�
X
ıs

l . Oxk; k/; ıml
�

8l 2 fk �K; : : : ; kg

and where the time functions ıs , ım, and ıh must
agree with the a priori (deterministic/stochastic)
information or minimized in some way.

In this statement T , respectivelyK , quantifies
the time window length or memory length during
which we record the measurement. The accu-
mulation with time of measurements, together
with the model equations (1)–(3) and the as-
sumptions on .ıs; ım; ıh/, gives a redundancy of
data compared with the number of unknowns that
the hidden variables are. This is why it may be
possible to solve this observation problem.

To simplify the following presentation, we
restrict our attention on the case where the hidden
variables are actually the full model state, i.e.,

z D h

.x/ D x :

When z differs from x, observers are called
functional observers.

Set-Valued and Conditional
Probability-Valued Observers
Conceptually the answer to this problem is easy
at least when the memory increases with time
( PT .t/ D 1 resp. KkC1 D Kk C 1) leading to an
infinite non-fading memory. It consists in starting
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from all what the a priori information makes
possible and to eliminate what is not consistent
with the a posteriori information. In the set-
valued observer setting, in the discrete time case,
this gives the following observer. To ease its read-
ing, we underline the data given by the a priori
information. It requires the introduction of two
sets �k and �kjk�1 which are updated at each time
k when a new measurement yk is made available.
�k is the set which xk is guaranteed to belong to at
time k, knowing all the measurements up to time
k, and �kjk�1 is the same but with measurements
known up to time k � 1.
Set-valued observer:

Initialization: �0DX0
At each time k: pre-

diction (flowing)
�kjk�1Dfk�1.�k�1;�s

k�1/

restriction
(consistency)

�k D ˚
x 2 ��kjk�1

T
Xk
� W

yk 2 hk.x;�m
k /
o

estimation Oxk 2 �k

A key feature here is that this observer has a state
�k – a set – and is a dynamical system in the form:

�kC1 D 'k.�k; yk/; Oxk 2 �k

with y as input and Ox as output which is not
single valued. Important also, the initial condition
of the state � is given by the a priori information.

In the stochastic setting, following the
Bayesian paradigm, the observer has the same
structure but with the state �k being a conditional
probability. See Jazwinski (2007, Theorem 6.4)
or Candy (2009, Table 2.1). In that setting too the
observer is not a single state; it is the (a posteriori)
conditional probability of the random variable xk
given the a priori information and the sequence
of measurements l 2 fk �K; : : : ; kg 7! yl .
Comments
Implementation: For the time being, except for

very specific cases (Kalman filter, . . . ), the set-
valued and the conditional probability-valued
observers remain conceptual since we do not
know how to manipulate numerically sets
and probability laws. Their implementation
requires approximations. For instance, see

Milanese et al. (1996) and Witsenhausen
(1966) for the set case and Arulampalam
et al. (2002), Bucy and Joseph (1987),
Candy (2009), and Jazwinski (2007) for the
conditional probability case.

Need of finite or infinite but fading memory:
In these observers, model states x which are
consistent with the a priori information but
do not agree with the a posteriori information
are eliminated (set intersection or probability
product). But once a point is eliminated, this is
forever. As a consequence if there is, at some
time, a misfit between a priori and a posteriori
information, it is mistakenly propagated in
future times. A way to round this problem
is to keep the information memory finite or
infinite but fading. In particular, with fixed
length memory, consistent points which were
disregarded due to measurements which are
no more in the memory are reintroduced. This
says also that observers should not be sensitive
to their initial condition.

Not single-valued estimate. The observers intro-
duced above realize a lossless data compres-
sion with extracting and preserving all what
concerns the hidden variables in the redun-
dant data given by a priori and a posteriori
information. But this “lossless compression”
answer is not single valued (set valued or
conditional probability valued) as a result of
taking uncertainties into account. Actually, to
get a single-valued answer, the observation
problem must be complemented by making
precise for what the estimation is made. For
instance, we may want to select the most likely
or the average or more generally some cost-
minimizing estimate Ox among all the possible
ones given by �. In this way we obtain an
observer giving a single-valued estimate:

�kC1 D 'k.�k; yk/; Oxk D 	k.�k/

respectively

P�.t/D'.�.t/; y.t/; t/; Ox.t/D	.�.t/; t/
(6)

But then, in general, we lose information, and
in particular we have no idea on the confidence
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level this estimate has. Also, since the function
	 , at least, encodes for what the estimate Ox is
used, for different uses, different functions 	
may be needed.

An Optimization Approach
A shortcut to obtain directly an observer giving
a single-valued estimate is to design it by trading
off among a priori and a posteriori information
(see Cox 1964, pages 7–10; Alamir 2007). For
example, in the continuous time case, we can
select the estimate Ox.t/ among the minimizers (in
x) of

C.fs 7! ıs.s/g; x; t/ D
Z t

�1
C
�
ıs.s/; y.s/;

Xıs .x; t; s/; s
�
ds

where Xıs .x; t; s/ is still the notation for a so-
lution to (1) and fs 7! ıs.s/g, representing the
unmodelled effect on the dynamics, is among the
arguments for the minimization. The infinitesimal
cost C is chosen to take nonnegative values
and be such that C.0; h.x; s/; x; s/ is zero. For
instance, it can be

C.ıs; y; x; s/ D kısk2x C dy.y; h.x; s//
2

where k:kx is a norm at the point x and dy
is a distance in the measurement space. In the
same spirit, instead of optimization, a minimax
approach can be followed. See, for instance, Bert-
sekas and Rhodes (1971), Başar and Bernhard
(1995, Chapter 7), and Willems (2004).

With x fixed, the minimization of C is an
infinite horizon optimal control problem in
reverse time. Solving on line this problem is
extremely difficult and again approximations
are needed. We do not go on with this
approach, but we remark that, under extra
assumptions, the observer we obtain following
this approach can also be implemented in
the form of a dynamical system (6) but with
the specificity that the estimate Ox is part
of the observer state � and its dynamics
are a copy of the undisturbed model with a
correction term which is zero when the estimated

state reproduces the measurement. Namely,
we get

POx.t/Df . Ox.t/; t; 0/CE
�
f
 7!y.
/g; Ox.t/;y.t/; t

�

where E is zero when h. Ox.t/; t/ D y.t/. But, as
opposed to what we saw in the previous section,
the initial condition for the part Ox of the observer
state is unknown. Hence, we encounter again
the need for the observer to forget its initial
condition.

Convergent Observers

We have mentioned that often an observer can be
implemented as a dynamical system, but without
knowing necessarily how to initialize it. Also
approximation is involved both in its design and
its implementation. So, at least when it gives a
single-valued estimate, we are facing the problem
of convergence of this estimate to the “true”
value, at least when there is no uncertainties. We
concentrate now our attention on the study of this
convergence, but, to simplify, in the continuous
time case only.

Let the model and observer dynamics be

Px.t/ D f .x.t/; t/; y.t/ D h.x.t/; t/ (7)

P� D '.�.t/; y.t/; t/; Ox.t/ D 	.�.t/; y.t/; t/

(8)

with the observer state � of finite dimension
m. We denote by .X.x; t; s/;„..x; �/; t; s// a
solution of (7)–(8).

Since we are dealing with convergence, the
focus is on what is going on when the time
becomes very large and in particular on the set
� of model states which are accumulation points
of some solution. Specifically we are interested in
the stability properties of the set

Z.t/ D
n
.x; �/ W x 2 �& x D 	.�; h.x; t/; t/

o

which is contained in the zero estimation error set
associated with the given model-observer pair.

Definition 1 (convergent observer) We say the
observer (8) is convergent if for each t , there
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exists a set Za.t/ � Z.t/, such that on the
domain of existence of the solution, a distance
between the point .X.x; t; s/;„..x; �/; t; s// and
the set Za.s/ is upperbounded by a real function
s 7! ˇcx;�;t .s/, may be dependent on .x; �; t/, with
nonnegative values, strictly decreasing and going
to zero as s goes to infinity.

Necessary Conditions for Observer
Convergence

No Restriction on 	
It is possible to prove that if the observer is
convergent, then,
Necessity of detectability: When h and 	 are

uniformly continuous in x and �, respectively,
the estimate Ox does converge to the model state
x. In this case, two solutions of the model (7)
which produce the same measurement must
converge to each other. This is an asymptotic
distinguishability property called detectability.
If we are interested not only in the asymptotic
behavior but also in the transient (as for output
feedback), a property stronger than detectabil-
ity is needed. In particular instantaneous dis-
tinguishability (see section “Observers Based
on Instantaneous Distinguishability”) is neces-
sary if we want to be able to impose the decay
rate of the function ˇcx;�;t .

Necessity of m � n � p: For each t , there exists
a subset Xa.t/ of �, supposed to collect the
model states which can be asymptotically esti-
mated and such that we can associate, to each
of its point x, a set 	i .x; t/ allowing us to
redefine the set Za.t/ as

Za.t/D
˚
.x; �/ W x 2 Xa.t/& � 2 	i .x; t/� :

This implies that for each t and each x in
Xa.t/, there is a point � satisfying

x D 	.�; h.x; t/; t/ : (9)

This is a surjectivity property of the function
	 but of a special kind since h.x; t/ is an
argument of 	 . We say that, for each t , the
function 	 is surjective to Xa.t/ given h. In
a “generic” situation this property requires

the dimension m of the observer state � to
be larger or equal to the dimension n of the
model state x minus the dimension p of the
measurement y.

	 Is Injective Given h
We consider now the case where the observer
has been designed with a function 	 which is
injective given h, namely, we have the following
implication, when x is in Xa.t/,
h
	.�1; h.x; t/; t/ D 	.�2; h.x; t/; t/

& �1 2 	i .x; t/
i

H) �1 D �2 :

In a “generic” situation, this property, together
with the surjectivity given h, implies that the
dimension m of the observer state � should be
between n � p and n.

If a convergent observer has such a function
	 , then .x; t/ 7! 	i .x; t/, which is (of course) a
(single valued) function, admits a Lie derivative

.Lf 	
i .x; t/ D limdt!0

	i .X.x;t;tCdt/;tCdt/�	i.x;t/
dt

/

Lf 	
i satisfying

Lf 	
i .x; t/D'.	i .x; t/; h.x; t/; t/ 8x 2 Xa.t/

(10)

This says (very approximatively) that ' is nothing
but the image of the vector field f , under the
change of coordinates .x; t/ 7! .	 i .x; t/; t/ but
again all this given h. As partly obtained in the
optimization approach, the observer dynamics are
then a copy of the model dynamics with maybe a
correction term which is zero when the estimated
state reproduce the measurement.

If moreover the functions h and 	 are uni-
formly continuous in x and �, respectively, then,
given �1 and �2 a distance between„..x; �1/; t; s/
and „..x; �2/; t; s/ goes to zero as s goes to
infinity. This property is related to what was
called extreme stability (see Yoshizawa 1966) in
the 1950s and 1960s and is called incremental
stability today (see Angeli 2002). It holds when,
with denoting by „y.�; t; s/ the solution at time
s of the observer dynamics :
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P�.t/ D '.�.t/; y.t/; t/

going through � at time t and under the action
of y, the flow � 7! „y.�; t; s/ is a strict con-
traction (see Jouffroy (2005) for a bibliography
on contraction) for each s > t or, at least, if a
distance between any two solutions „y.�1; t; s/

and„y.�2; t; s/, with the same input y, converges
to 0.

Sufficient Conditions
Knowing now how a convergent observer should
look like, we move to a quick description of some
such observers.

Observers Based on Contraction
Since the flow generated by the observer should
be a contraction, we may start its design by
picking the function ' as

P�.t/ D '.�.t/; y.t/; t/ D A�.t/ C B.y.t/; t/

where A, not related to f , is a matrix whose
eigenvalues have strictly negative real part. Under
weak restriction, there exists a function 	i satis-
fying (10), namely,

Lf 	
i .x; t/ D A	i .x; t/ C B.h.x; t/; t/ :

(11)

To obtain a convergent observer, it is then suf-
ficient that there exists a (uniformly continuous)
function 	 satisfying

x D 	.	 i .x; t/; h.x; t/; t/

For this to be possible, the function 	i should
be injective given h. This injectivity holds when
the observer state has dimension m � 2.nC 1/,
the model is distinguishable, and provided the
eigenvalues of A have a sufficiently negative
real part and are not in a set of zero Lebesgue
measure.

Unfortunately, we are facing again a possible
difficulty in the implementation since an expres-
sion for a function 	i satisfying (11) is needed
and the function 	 W .�; y; t/ 7! Ox.t/ is known
implicitly only as

� D 	i . Ox.t/; t/ :

See Andrieu and Praly (2006), Luenberger
(1964), and Shoshitaishvili (1990).

Observers Based on Instantaneous
Distinguishability
Instantaneous distinguishability means that we
can distinguish as quickly as we want two model
states by looking at the paths of the measurements
they generate. A sufficient condition to have this
property can be obtained by looking at the Taylor
expansion in s of h.X.x; t; s/; s/. Indeed, we
have:

h.X.x; t; s/; s/ D
m�1X
iD0

hi .x; t/
.s � t/i
i Š

Co �.s � t/m�1�

where hi is a function obtained recursively as

h0.x; t/ D h.x; t/

hiC1.x; t/ D P
2hi .x; t/ D @hi

@x
.x; t/f .x; t/

C @hi
@t
.x; t/:

If there exists an integer m such that, in some
uniform way with respect to t , the function

x 7! Hm.x; t/ D .h0.x; t/ ; : : : ; hm�1.x; t//

is injective, then we do have instantaneous distin-
guishability. We say the system is differentially
observable of order m when this injectivity prop-
erty holds. When a system has such a property,
the model state space has a very specific struc-
ture as discussed in Isidori (1995, Section 1.9).
It means that we can reconstruct x from the
knowledge of y and itsm�1 first time derivatives,
i.e., there exists a functionˆ such that we have:

x D ˆ.Hm.x; t/; t/ :

This way, we are left with estimating the deriva-
tives of y. This can be done as follows. With the
notation �i D hi�1.x; t/, we obtain:
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P�.t/ D F �CG hm
�
ˆ.�.t/; t/ ; t

�

where

F � D .�2 ; : : : ; �m ; 0/ ; GD.0 ; : : : ; 0 ; 1/ :

When the last term on the right hand side is
Lipschitz, we can find a convergent observer in
the form:

P�.t/ D F �.t/CG hm . Ox.t/; t /CK.y.t/� �1.t//;

Ox.t/ D 	 .�.t/; t / ;

with � being actually an estimation of � and
where K is a constant matrix and 	 is a modified
version of ˆ keeping the estimated state in its a
priori given set X .t/.

This is the high-gain observer paradigm.
See Gauthier and Kupka (2001) and Tornambe
(1988). The implementation difficulty is in
the function Ô , not to mention sensitivity to
measurement uncertainty.

Observers with 	 Bijective Given h

Case Where � Is the Identity Function A con-
vergent observer whose function 	 is the identity
has the following form:

P� D f .�; t/

C E
�f
 7! y.
/g; �.t/; y.t/; t� ; Ox.t/ D �.t/:

(12)

The only piece remaining to be designed is the
correction term E . It has to ensure convergence
and may be also other properties like symmetry
preserving (see Bonnabel et al. 2008).

For this design, a first step is to exhibit some
specific properties of the vector field f by writing
it in some appropriate coordinates. For example,
there may exist coordinates such that the
expression of f takes the form f.x.t/; h.x; t/; t/

and the corresponding observer (12) is such
that there exists a positive definite matrix P

for which the function s 7! .X.x; t; d / �
OX..x; Ox/; t; s//0P.X.x; t; d / � OX..x; Ox/; t; s//

is strictly decaying (if not zero). A necessary
condition for this to be possible is that f is

monotonic tangentially to the level sets of the
function h, i.e., for all .x; y; v; t/ satisfying
y D h.x; t/ and @h

@x
.x; t/v D 0, we have:

vT P
@f

@x
.x; y; t/ v � 0: (13)

This is another way of expressing a detectability
condition. This expression is coordinate depen-
dent, hence the importance of choosing the coor-
dinates properly.

When this condition is strict and uniform in t ,
it is sufficient to get a locally convergent observer
and even a nonlocal one when h is linear in x, i.e.,
h.x; t/ D H.t/x, again a coordinate-dependent
condition. In this latter case the observer takes the
form

P�.t/ D f.�.t/; y.t/; t/ C `.�.t// P�1H.t/T

Œy.t/ �H.t/�.t/�;
Ox.t/ D �.t/;

where ` is a real function to be chosen with suf-
ficiently large values. If (13) is strict and uniform
and holds for all v, the correction term is not
needed.

There are many other results of this type,
exploiting one or the other specificity of the
dependence on x of the function f – monotonicity,
convexity, . . . . See Fan and Arcak (2003), Krener
and Isidori (1983), Respondek et al. (2004), San-
felice and Praly (2012), . . .

Case Where .x; t/ 7! .�i .x; t/; h.x; t/; t/ Is
a Diffeomorphism At each time t we know
already that the model state x we want to es-
timate satisfy y.t/ D h.x; t/. So, as remarked
in Luenberger (1964), when .h.x; t/; t/ can be
used as part of coordinates for .x; t/, we need
to estimate the remaining part only. This can be
done if we find a function 	i , whose values are
n�p dimensional, such that .x; t/ 7! .y; �; t/ D
.h.x; t/; 	 i .x; t/; t/ is a diffeomorphism and the
flow � 7! �y.�; t; s/ generated by

P�.t/ D @	i

@x
.x.t/; t/f .x.t/; t/ C @	i

@t
.x.t/; t/;

D '.�.t/; y.t/; t/
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is a strict contraction for all s > t . Indeed in this
case the observer dynamics can be chosen as

P�.t/ D '.�.t/; y.t/; t/

and the estimate Ox.t/ is obtained as solution of

	i . Ox.t/; t/ D �.t/; h. Ox.t/; t/ D y.t/:

This is the reduced-order observer paradigm.
See, for instance, Besançon (2000, Proposi-
tion 3.2), Carnevale et al. (2008), and Luenberger
(1964, Theorem 4).

Cross-References

�Differential Geometric Methods in Nonlinear
Control

�Observers in Linear Systems Theory
�Regulation and Tracking of Nonlinear Systems
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Abstract

Observers are dynamical systems which process
the input and output signals of a given dynamical
system and deliver an online estimate of the
internal state of the given system which asymp-
totically converges to the exact value of the state.
For linear, finite-dimensional, time-invariant sys-
tems, observers can be designed provided a weak
observability property, known as detectability,
holds.

Keywords

Linear systems; Observers; Reduced order
observer; State estimation

Introduction

Consider a linear, finite-dimensional, time-
invariant system described by equations of the
form


x D Ax C Bu;

y D Cx CDu;
(1)

with x.t/ 2 R
n, u.t/ 2 R

m, y.t/ 2 R
p and A,

B , C , and D matrices of appropriate dimensions
and with constant entries, and the problem of
estimating its state from measurements of the
input and output signals. In Eq. (1) 
x.t/ stands
for Px.t/, if the system is continuous-time, and
for x.t C 1/, if the system is discrete-time. In
addition, if the system is continuous-time, then
t 2 R

C, i.e., the set of nonnegative real numbers,
whereas if the system is discrete-time, then t 2
ZC, i.e., the set of nonnegative integers.

We are interested in determining an online
estimate xe.t/ 2 R

n, i.e., the estimate at time t
has to be a function of the available information
(input and output) at the same time instant. This
implies that the estimate is generated by means of
a device (known as filter) processing the current
input and output of the system and generating a
state estimate. The filter may be instantaneous,
i.e., the estimate is generated instantaneously by
processing the available information. In this case
we have a static filter. Alternatively, the state es-
timate can be generated processing the available
information through a dynamical device. In this
case we have a dynamic filter.

Assume, for simplicity, that D D 0. This
assumption is without loss of generality. In fact,
if y D Cx C Du and u are measurable, then
also Qy D Cx is measurable. Assume, in addition,
that the filter which generates the online estimate
is linear, finite-dimensional, and time-invariant.
Then we may have the following two configura-
tions:
• Static filter. The state estimate is generated via

the relation

xe D My CN u; (2)

with M and N constant matrices of appropri-
ate dimensions. The resulting interconnected
system is described by the equations


x D Ax CBu;

xe D MCx CN u:
(3)

• Dynamic filter. The state estimate is generated
by the system
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� D F � C Ly CHu;

xe D M� CNy C P u;
(4)

with F , L,H ,M ,N and P constant matrices
of appropriate dimensions. The resulting in-
terconnected system is described by the equa-
tions


x D Ax C Bu;


� D F � C LCx CHu;

xe D M� CNCx C P u:

(5)

In what follows we study in detail the dynamic
filter configuration. This is mainly due to the fact
that this configuration allows us to solve most es-
timation problems for linear systems. Moreover,
while the use of a static filter is very appealing, it
provides a useful alternative only in very specific
situations.

State Observer

A state observer is a filter that allows to estimate,
asymptotically or in finite time, the state of a sys-
tem from measurements of the input and output
signals.

The simplest possible observer can be
constructed considering a copy of the system,
the state of which has to be estimated. This
means that a candidate observer for system (1) is
given by


� D A� C Bu

xe D �:
(6)

To assess the properties of this candidate state
observer, let e D x � xe be the estimation error
and note that 
e D Ae: As a result, if e.0/ D 0,
then e.t/ D 0 for all t and for any input signal
u. However, if e.0/ ¤ 0, then, for any input
signal u, e.t/ is bounded only if the system (1)
is stable and converges to zero only if the system
(1) is asymptotically stable. If these conditions do
not hold, the estimation error is not bounded and
system (6) does not qualify as a state observer
for system (1). The intrinsic limitation of the
observer (6) is that it does not use all the available
information, i.e., it does not use the knowledge of

the output signal y. This observer is therefore an
open-loop observer.

To exploit the knowledge of y, we modify
the observer (6) adding a term which depends
upon the available information on the estimation
error, which is given by ye D Cxe � y: This
modification yields a candidate state observer
described by


� D A� C Bu C Lye;

xe D �:
(7)

To assess the properties of this candidate state
observer, note that e D x � xe is such that


e D .AC LC/e: (8)

The matrix L (known as output injection gain)
can be used to shape the dynamics of the estima-
tion error. In particular, we may selectL to assign
the characteristic polynomialp.s/ ofACLC . To
this end, note that

p.s/ D det.sI � .ACLC// D det.sI � .A0 C C 0L0//:

Hence, there is a matrix L which arbitrarily
assigns the characteristic polynomial of AC LC

if and only if the system


� D A0� C C 0v

is reachable or, equivalently, if and only if the
system (1) is observable.

We summarize the above discussion with two
formal statements.

Proposition 1 Consider system (1) and suppose
the system is observable. Let p.s/ be a monic
polynomial of degree n. Then there is a matrix
L such that the characteristic polynomial of AC
LC is equal to p.s/. Note that for single-output
systems, the matrixL assigning the characteristic
polynomial of AC LC is unique.

Proposition 2 System (1) is observable if and
only if it is possible to arbitrarily assign the
eigenvalues of AC LC .
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Detectability

The main goal of a state observer is to provide an
online estimate of the state of a system. This goal
may be achieved, as discussed in the previous
section, if the system is observable. However,
observability is not necessary to achieve this goal:
in fact the unobservable modes are not modified
by the output injection gain. This implies that
there exists a matrix L such that system (8) is
asymptotically stable if and only if the unob-
servable modes of system (1) have negative real
part, in the case of continuous-time systems, or
have modulo smaller than one, in the case of
discrete-time systems. To capture this situation,
we introduce a new definition.

Definition 1 (Detectability) System (1) is de-
tectable if its unobservable modes have negative
real part, in the case of continuous-time systems,
or have modulo smaller than one, in the case of
discrete-time systems.

Example 1 (Deadbeat observer) Consider a
discrete-time system described by equations of
the form

x.t C 1/ D Ax.t/C Bu.t/;

y.t/ D Cx.t/;

and the problem of designing a state observer,
described by the equation (7), such that, for any
initial condition x.0/ and for any u, e.k/ D
0; for all k � N , and for some N > 0.
A state observer achieving this goal is called a
deadbeat state observer. To achieve this goal, it is
necessary to select L such that .A C LC/N D
0 or, equivalently, such that the matrix A C
LC has all eigenvalues equal to 0. Note that
N � n.

Reduced Order Observer

We have shown that, under the hypotheses of
observability or detectability, it is possible to
design an asymptotic observer of order n for the
system (1). However, this observer is somewhat

oversized, i.e., it gives an estimate for the n

components of the state vector, without making
use of the fact that some of these components can
be directly determined from the output function,
e.g., if y D x1 there is no need to reconstruct
x1. It makes, therefore, sense to design a re-
duced order observer, i.e., a device that esti-
mates only the part of the state vector which is
not directly attainable from the output. To this
end consider the system (1) with D D 0 and
assume that the matrix C has p independent
rows. This is the case if rank C D p, whereas
if rank C < p it is always possible to elimi-
nate redundant rows. Then there exists a matrix
Q such that, possibly after reordering the state
variables,

QC D ŒI C2� :

Let

v D Qy D QCx D x1 C C2x2;

in which x1.t/ 2 R
p and x2.t/ 2 R

n�p denote
the first p and the last n�p components of x.t/.
Observe that the vector v is measurable.

From the definition of v, we conclude that
if v and x2 are known, then x1 can be easily
computed, i.e., there is no need to construct an
observer for x1.

Define now the new coordinates

" Ox1
Ox2

#
D T x D

"
I C2

0 I

#	
x1
x2




and note that, by construction, v D Qy D Ox1: In
the new coordinates, the system, with output v, is
described by equations of the form


 Ox1 D QA11 Ox1 C QA12 Ox2 C QB1u;

 Ox2 D QA21 Ox1 C QA22 Ox2 C QB2u;
v D Ox1:
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To construct an observer for Ox2, consider the
system


� D F � CHv CGu;

with state �, driven by u and v, and with output

w D � C Lv:

The idea is to select the matrices F , H , G, and
L in such a way that w be an estimate for Ox2. Let
w � Ox2 be the observation error. Then


w � 
 Ox2 D F � CHv CGu CL

	
QA11 Ox1 C QA12 Ox2 C QB1u



�
	

QA21 Ox1 C QA22 Ox2 C QB2u



D F � C
�
H C L QA11 � QA12

�
Ox1 C

	
L QA12 � QA22



Ox2 C

	
G C L QB1 � QB2



u: (9)

To have convergence of the estimation error to
zero, regardless of the initial conditions and of
the input signal, we must have


.w � Ox2/ D F.w � Ox2/ (10)

and F must have all eigenvalues with negative
real part, in the case of continuous-time systems,
or with modulo smaller than one, in the case
of discrete-time systems. Comparing Eqs. (9) and
(10), we obtain that the matrices F ,H , G, and L
must be such that

L QA12 � QA22 D �F;
H CL QA11 � QA21 D FL;

G C L QB1 � QB2 D 0:

We now show how the previous equations can be
solved and how the stability condition of F can
be enforced. Detectability of the system implies
that the (reduced system) 
 Q� D QA22 Q� with output
Qy D QA12� is detectable. As a result, there exists a
matrix L such that the matrix

F D QA22 �L QA12
has all eigenvalues with negative real part, in the
case of continuous-time systems, or with modulo
smaller than one, in the case of discrete-time
systems. Then the remaining equations are solved
by

H D FL � L QA11 C QA21;
G D �L QB1 C QB2:

Finally, from Ox1 D v and the estimate w of Ox2,
we build an estimate xe of the state x inverting
the transformation T , i.e.,

	
x1e
x2e



D
	
I �C2
0 I


 	
v

w



:

Summary and Future Directions

The problem of estimating the state of a linear
system from input and output measurements can
be solved provided a weak observability condi-
tion holds. The problem addressed in this entry
is the simplest possible estimation problem: the
underlying system is linear and all variables are
exactly measured. Observers for nonlinear sys-
tems and in the presence of signals corrupted by
noise can also be designed exploiting some of
the basic ingredients, such as the notions of error
system and of output injection, discussed in this
entry.
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Recommended Reading

Classical references on observers for linear sys-
tems are given below.
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Optimal Control andMechanics

Anthony Bloch
Department of Mathematics, The University of
Michigan, Ann Arbor, MI, USA

Abstract

There are very natural close connections between
mechanics and optimal control as both involve
variational problems. This is a huge subject and
we just touch on some interesting connections
here. A survey and history may be found in
Sussman and Willems (1997). Other aspects may
be found in Bloch (2003).

Keywords

Nonholonomic integrator; Sub-Riemannian opti-
mal control; Variational problems

Variational Nonholonomic Systems
and Optimal Control

Variational nonholonomic problems (i.e., con-
strained variational problems) are equivalent to
optimal control problems under certain regularity
conditions. This issue was investigated in Bloch
and Crouch (1994), employing the classical re-
sults of Rund (1966) and Bliss (1930), which re-
late classical constrained variational problems to
Hamiltonian flows, although not optimal control
problems. We outline the simplest relationship
and refer to Bloch (2003) for more details.

Let Q be a smooth manifold and TQ

its tangent bundle with coordinates .qi ; Pqi /.
Let L W TQ ! R be a given smooth Lagrangian
and let ˆ W TQ ! R

n�m be a given smooth
function. We consider the classical Lagrange
problem:

minq.�/
Z T

0

L.q; Pq/dt (1)

subject to the fixed endpoint conditions q.0/ D 0,
q.T / D qT and subject to the constraints

ˆ.q; Pq/ D 0:

Consider a modified Lagrangianƒ.q; Pq; �/ D
L.q; Pq/C � �ˆ.q; Pq/ with Euler–Lagrange equa-
tions

d

dt

@ƒ

@ Pq .q; Pq; �/� @ƒ
@q
.q; Pq; �/ D 0; ˆ.q; Pq/ D 0:

(2)

We can rewrite this equation in Hamiltonian
form and show that the resulting equations are
equivalent to the equations of motion given by
the maximum principle for a suitable optimal
control problem. Set p D @ƒ

@ Pq .q; Pq; �/ and con-
sider this equation together with the constraints
ˆ.q; Pq/ D 0. We can solve these two equations
for . Pq; �/ under suitable conditions as discussed
in Bloch (2003). We obtain the standard Hamil-
tonian equations with H.q; p/ D p � �.q; p/ �
L.q; �.q; p//.

We now compare this to the optimal control
problem

http://dx.doi.org/10.1007/978-1-4471-5058-9_199
http://dx.doi.org/10.1007/978-1-4471-5058-9_84
http://dx.doi.org/10.1007/978-1-4471-5058-9_249
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minu.�/
Z T

0

g.q; u/dt (3)

subject to q.0/ D 0, q.T / D qT , Pq D f .q; u/;
where u 2 R

m and f; g are smooth functions.
Then we have the following:

Theorem 1 The Lagrange problem and optimal
control problem generate the same (regular) ex-
tremal trajectories, provided that:
(i) ˆ.q; Pq/ D 0 if and only if there exists a u

such that Pq D f .q; u/.
(ii) L.q; f .q; u// D g.q; u/.

For the proof and more details, see Bloch (2003).

The n-Dimensional Rigid Body

An interesting mechanical example is the n-
dimensional rigid body. See Manakov (1976) and
Ratiu (1980).

One can introduce a related system which we
will call the symmetric representation of the rigid
body; see Bloch et al. (2002).

By definition, the left invariant representa-
tion of the symmetric rigid body system is given
by the first-order equations

PQ D Q�I PP D P� (4)

whereQ;P 2 SO.n/ and where� is regarded as
a function of Q and P via the equations

� WDJ�1.M/ 2 so.n/ and M WDQTP�PTQ:

One can check that differentiating M yields
the classical form of the n-dimensional rigid body
equations. For more on the precise relationship,
see Bloch et al. (2002).

Now we can link the symmetric representation
of the rigid body equations with the theory of
optimal control. This work, developed in Bloch
and Crouch (1996) and more generally in Bloch
et al. (2002), has been further extended to optimal
control problems for the infinitesimal generators
of group actions (so-called Clebsch optimal con-
trol problems) in Gay-Balmaz and Ratiu (2011)
and Bloch et al. (2011, 2013) and even further to

a class of embedded control problems in Bloch
et al. (2011, 2013).

Let T > 0, Q0;QT 2 SO.n/ be given and
fixed. Let the rigid body optimal control problem
be given by

min
U2so.n/

1

4

Z T

0

hU; J.U /idt (5)

subject to the constraint onU that there be a curve
Q.t/ 2 SO.n/ such that

PQ D QU Q.0/ D Q0; Q.T / D QT :

(6)

Proposition 1 The rigid body optimal control
problem has optimal evolution equations (4)
where P is the costate vector given by the
maximum principle.

The optimal controls in this case are given by

U D J�1.QTP � PTQ/: (7)

Kinematic Sub-Riemannian Optimal
Control Problems

Optimal control of underactuated kinematic sys-
tems give rise to very interesting mechanical
systems.

The problem is referred to as sub-Riemannian
in that it gives rise to a geodesic flow with
respect to a singular metric (see the work of
Strichartz (1983, 1987) and Montgomery (2002)
and references therein). This problem has an
interesting history in control theory (see Brock-
ett 1973, 1981; Baillieul 1975). See also Bloch
et al. (1994) and Sussmann (1996) and further
references below.

We consider control systems of the form

Px D
mX
iD1

Xiui ; x 2 M; u 2 � � R
m; (8)

where � contains an open subset that contains
the origin,M is a smooth manifold of dimension
n, and each of the vector fields in the collection
F WD fX1; : : : ; Xkg is complete.
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We assume that the system satisfies the acces-
sibility rank condition and is thus controllable,
since there is no drift term. Then we can pose the
optimal control problem

min
u.�/

Z T

0

1

2

mX
iD1

u2i .t/dt (9)

subject to the dynamics (8) and the endpoint
conditions x.0/ D x0 and x.T / D xT . These
problems were studied by Griffiths (1983) from
the constrained variational viewpoint and from
the optimal control viewpoint by Brockett (1981,
1983). In the sub-Riemannian geodesic problem,
abnormal extremals play an important role. See
work by Strichartz (1983), Montgomery (1994,
1995), Sussmann (1996), and Agrachev and
Sarychev (1996).

Example: Optimal Control and a Particle
in a Magnetic Field The control analysis
of the Heisenberg model or nonholonomic
integrator goes back to Brockett (1981) and
Baillieul (1975), while a modern treatment of
the relationship with a particle in a magnetic
field may be found in Montgomery (1993), for
example. A nice treatment of the pure mechanical
aspects of a particle in a magnetic field may be
found in Marsden and Ratiu (1999).

The Heisenberg optimal control equations are
a particular case of planar charged particle mo-
tion in a magnetic field. This may be seen by
considering the slightly more general problem
below.

We now consider the optimal control problem

min
Z
.u2 C v2/dt (10)

subject to the equations

Px D u;

Py D v;

Pz D A1u C A2v; (11)

where A1.x; y/ and A2.x; y/ are smooth func-
tions of x and y. A1 D y and A2 D �x
recover the Heisenberg/nonholonomic integrator
equations. More generally we get the flow of a
particle in a magnetic field – it is not hard to
carry out the optimal control analysis to see this.
Details are in Bloch (2003).
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Optimal Control and Pontryagin’s
MaximumPrinciple

Richard B. Vinter
Imperial College, London, UK

Abstract

Pontryagin’s Maximum Principle is a collection
of conditions that must be satisfied by solutions
of a class of optimization problems involving
dynamic constraints called optimal control prob-
lems. It unifies many classical necessary condi-
tions from the calculus of variations. This article
provides an overview of the Maximum Principle,
including free-time and nonsmooth versions. A
time-optimal control problem is solved as an
example to illustrate its application.

Keywords

Dynamic constraints; Hamiltonian system; Maxi-
mum principle; Nonlinear systems; Optimization

Optimal Control

A widely used framework for studying mini-
mization problems, encountered in the optimal
selection of flight trajectories and other areas
of advanced engineering design and operation
involving dynamic constraints, is to view them as
special cases of the problem:

.P /

8̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

Minimize J.x.:/; u.:// W
D R T

0
L.t; x.t/; u.t//dt C g.x.0/; x.T //

over measurable functions u.:/ W
Œ0; T � ! Rm and

absolutely continuous functions x.:/ W
Œ0; T � ! Rn satisfying

Px.t/ D f .t; x.t/; u.t// a.e.,

u.t/ 2 � a.e.,

.x.0/; x.T // 2 C;
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the data for which comprise a number T > 0,
functionsf W Œ0; T ��Rn�Rm ! Rn,L W Œ0; T ��
Rn � Rm ! R and g W Rn � Rn ! R and sets
C � Rn and � � Rm.

It is assumed that set C has the functional in-
equality and equality constraint set representation

C D f.x0; x1/ 2 Rn W �i .x0; x1/ � 0

for i D 1; 2; : : : ; k1 and
 i .x0; x1/ D 0 for i D 1; 2; : : : ; k2 g;

(1)

in which �i W Rn � Rn ! R, i D 1; : : : ; k1 and
 i W Rn � Rn ! R, i D 1; : : : ; k2 are given
functions.

A control function is a measurable function
u.:/ W Œ0; T � ! Rm satisfying u.t/ 2 � a.e.
t 2 Œ0; T � A state trajectory x.:/ associated
with a control function u.:/ is a solution to the
differential equation Px.t/ D f .t; x.t/; u.t//. A
pair of functions .x.:/; u.:// comprising a control
function u.:/ and an associated state trajectory
x.:/ satisfying the condition .x.0/; x.T // 2
C is a feasible process. A feasible process
. Nx.:/; Nu.:// which achieves the minimum of
J.x.:/; u.:// over all feasible processes is called
a minimizer.

Frequently, the initial state is fixed, i.e., C
takes the form

CDfx0g �C1 for some x02Rn and some C1�Rn:

In this case, (P ) is a minimization problem
over control functions. Allowing freedom in the
choice of initial state introduces a flexibility
into the formulation which is useful in some
applications however.

Optimization problems involving dynamic
constraints (such as, but not exclusively, those
expressed as controlled differential equations)
are known as optimal control problems. Various
frameworks are available for studying such
problems. .P / is of special importance, since
it embraces a wide range of significant dynamic
optimization problems which are beyond the
reach of traditional variational techniques and,
at the same time, it is well suited to the

derivation of general necessary conditions of
optimality.

TheMaximum Principle

The centerpiece of optimal control theory is a
set of conditions that a minimizer . Nx.:/; Nu.://
must satisfy, known as Pontryagin’s Maximum
Principle or, simply, the Maximum Principle. It
came to prominence through a 1961 book, which
appeared in English translation as Pontryagin LS
et al. (1962). It bears the name of L S Pontryagin,
because of his role as leader of the research group
at the Steklov Institute, Moscow, which achieved
this advance. But the first proof is attributed to
Boltyanskii. For given � � 0, define the Hamil-
tonian functionH� W Œ0; T ��Rn�Rn�Rm ! R

0

H�.t; x; p; u/ WD pT f .t; x; u/ � �L.t; x; u/:

Theorem 1 (The Maximum Principle) Let
. Nx.:/; Nu.:// be a minimizer for (P ). Assume that
the following hypotheses are satisfied:

(i) g is continuously differentiable.
(ii) �i , i D 1; : : : ; k1 and i , i D 1; : : : ; k2, are

continuously differentiable.
(iii) With Qf .t; x; u/ D .L.t; x; u/; f .t; x; u//,

Qf .:; :; :/ is continuous, Qf .t; :; u/ is continu-
ously differentiable for each .t; u/, and there
exist � > 0 and k.:/ 2 L1 such that

j Qf .t; x; u/ � Qf .t; x0; u/j � k.t/jx � x0j

for all x; x0 2 Rn such that jx � Nx.t/j � �

and jx0 � Nx.t/j � �, and u 2 �, a.e. t 2
Œ0; T �

(iv) � is a Borel set.
Then, there exist a number � (� D 0 or 1), an
absolutely continuous arc p W Œ0; T � ! Rn,
numbers ˛i � 0 for i D 1; : : : ; k1 and numbers
ˇi for i D 1; : : : ; k2 satisfying

.p.:/; �; f˛i g; fˇi g/ 6D .0; 0; f0; : : : 0g; f0; : : : 0g/

and such that the following conditions are satis-
fied:
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The Adjoint Equation:

� Pp.t/ D @

@x
f T .t; Nx.t/; Nu.t//p.t/

�� @
@x
LT .t; Nx.t/; Nu.t//; a.e.,

The Maximization of the Hamiltonian Condi-
tion:

H�.t; Nx.t/; p.t/; Nu.t//
D max

u2� H�.t; Nx.t/; p.t/; u/ a.e.,

The Transversality Condition:

.pT .0/;�pT .T // D �rg. Nx.0/; Nx.T //

C
k1X
iD1

˛ir�i . Nx.0/; Nx.T //

C
k2X
iD1

ˇir i . Nx.0/; Nx.T //

and ˛i D 0 for all i 2 f1; : : : ; k1g such

that �i . Nx.0/; Nx.T // < 0; in which

rh.x0; x1/. Nx0; Nx1/ W

D
	
@

@x0
h. Nx0; Nx1/; @

@x1
h. Nx0; Nx1/



: (2)

If the functions L.t; x; u/ and f .t; x; u/ are
independent of t , then also

Constancy of the Hamiltonian for Au-
tonomous Problems:

H�. Nx.t/; p.t/; Nu.t// D c a.e.

for some constant c.

We allow the cases k1 D 0 (no inequality
constraints) and k2 D 0 (no equality endpoint
constraints). In the first case, the non-degeneracy
condition becomes .p.:/; �; fˇi g/ 6D .0; 0; 0/

and the summation involving the ˛i ’s is dropped
from the transversality condition. The second
case, or any combination of the two cases, is
treated similarly.

Derivation of the costate equation and
boundary conditions. A simple way to derive

the differential equations for the pi .:/’s is, first,
to construct the Hamiltonian H�.t; x; p; u/ D
pT f .t; x; u/pT f .t; x; u/ � �L.t; x; u/ and,
second, to use the fact that the i th component
pi.:/ of the costate p.t/ D Œp1.t/; : : : ; pn.t/�

T

satisfies the equation:

� Ppi .t/ D @

@xi
H�.t; Nx.t/; p.t/; Nu.t//

for i D 1; : : : ; n:

The preceding equations are of course merely a
component-wise statement of the costate equa-
tion above. In many applications the endpoint
constraints take the form

xi .0/ D �i0 for i 2 J0 and xi .0/ 2 Rn for i … J0
xi .T / D �i1 for i 2 J1 and xi .0/ 2 Rn for i … J1

for given index sets J0; J1 � f0; : : : ; ng and n-
vectors �i0 for i 2 J0 and �i1 for i 2 J1, i.e., the
endpoints of each state trajectory component are
either “fixed” or “free.” In such cases the rules for
setting up the boundary conditions on the pi .:/’s
are

pi .0/ 2 Rn for i 2 J0 and pi.0/

D �
@

@x0i
g. Nx.0/; Nx.T // for i … J0

pi .T / 2 Rn for i 2 J1 and � pi .T /

D �
@

@x1i
g. Nx.0/; Nx.T // for i … J1;

i.e., if xi .0/ (respectively xi .T /) is fixed,
then pi .0/ (respectively pi .T /) is free, and if
xi .0/ (respectively xi .T /) is free, then pi .0/

(respectively pi .T /) is fixed.
The optimal control problem .P / is a general-

ization of the following problem in the calculus
of variations:

8̂
ˆ̂<
ˆ̂̂:

Minimize
R T
0
L.t; x.t/; Px.t//dt

over absolutely continuous arcs x.:/:
Œ0; T � ! Rn satisfying

.x.0/; x.T // D .a; b/:

(3)
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for given L W Œ0; T ��Rn �Rn ! R and .a; b/ 2
Rn �Rn. This problem is a special case of (P ) in
which f .t; x; u/ D u, � D Rn, k1 D 0, k2 D 2n

and

�
. 1.x0; x1/; : : : ;  

n.x0; x1/
�
;�

 nC1.x0; x1/ : : : ;  2n.x0; x1/
�

D �
xT0 � aT ; xT1 � bT � :

It is a straightforward exercise to deduce
from the Maximum Principle, in this special
case, that a minimizer satisfies the classical
Euler–Lagrange and Weierstrass conditions
and also that the minimizer and associate
costate arc satisfy Hamilton’s system of
equations, under an additional uniform con-
vexity hypothesis on L.t; x; :/. Thus, the
Maximum Principle unifies many of the classical
necessary conditions from the calculus of
variations and, furthermore, validates them
under reduced hypotheses. But it has far-
reaching implications, beyond these conditions,
because it allows the presence of pathwise
constraints on the velocities, expressed in terms
of a controlled differential equation and a
control constraint set, which are encountered
in engineering design, econometrics, and other
areas.

The Hamiltonian System

In favorable circumstances, we are justified in
setting the cost multiplier � D 1 and, fur-
thermore, the maximization of the Hamiltonian
condition permits us, for each t , to express u as a
function of x and p:

u D u�.t; x; p/:

The Maximum Principle now asserts that a min-
imizing arc Nx.:/ is the first component of a pair
of absolutely continuous functions . Nx.:/; p.://
satisfying Hamilton’s system of equations:

.� PpT .t/; PNxT .t// D rxpH1.t; Nx.t/; p.t/; u�

.t; Nx.t/; p.t/// a.e. ; (4)

in which rxpH1 denotes the gradient of
H.t; x; p; u/ w.r.t. the vector ŒxT ; pT �T variable
for fixed .t; u/, together with the endpoint
conditions

. Nx.0/; Nx.T // 2 C and .pT .0/;�pT .T //
D �rg. Nx.0/; Nx.T //

C
k1X
iD1

˛ir�i . Nx.0/; Nx.T //

C
k2X
iD1

ˇir i . Nx.0/; Nx.T //;

for some nonnegative numbers f˛i g and numbers
fˇig satisfying

˛i D 0 for all i 2 f1; : : : ; k1g such that

� �i . Nx.0/; Nx.T // < 0;

where rg;r� and r etc., are as defined in (2).
The minimizing control satisfies the relation

Nu.t/ D u�.t; Nx.t/; p.t//:

Notice that the first-order vector differential
equation (4) is a system of 2n scalar, first-
order differential equations. Let us suppose
that Nk1 inequality endpoint constraints are
active at . Nx.0/; Nx.T //. Then, satisfaction of
the active constraints and the transversality
condition impose 2nC Nk1 C k2 on the boundary
values of . Nx.:/; p.://. Taking account of the
fact, however, that there are Nk1 C k2 unknown
endpoint multipliers, we see that the effective
number of endpoint constraints accompanying
the differential equation (4) is

2nC Nk1 C k2 � . Nk1 C k2/ D 2n:

Thus, the set of 2n scalar first-order differen-
tial equations (4) defining the “two-point bound-
ary value problem” to determine . Nx; p/ has the
“right” number of endpoint conditions.



954 Optimal Control and Pontryagin’s Maximum Principle

Refinements

Free-Time Problems: Consider a variant on the
“autonomous” case of problem .P / (L and f
do not depend on t), call it .F T /, in which the
terminal time T is no longer fixed, but is a choice
variable along with the control function and the
initial state, and the cost function is

QJ .T; x.:/; u.://

WD
Z T

0

L.x.t/; u.t//dt C Qg.T; x.0/; x.T //

for some function Qg.:; :; /. Take a minimizer
. NT ; Nx.:/; Nu.:// for .F T /. Assume, in addition
to hypotheses (i)–(iii), that � is bounded and
the function k.:/ in (iii) is bounded. Then the
Maximum Principle conditions (for data in which
the end time is frozen at T D NT ) continue to
be satisfied for some p.:/ W Œ0; NT � ! Rn and
�, including the constancy of the Hamiltonian
condition

H�. Nx.t/; p.t/; Nu.t// D c a.e t 2 Œ0; NT �

for some constant c. But a new condition is
required to reflect the extra degree of freedom
in the new problem specification, namely, the
free end time. This is an additional transversality
condition involving the constant value c of the
Hamiltonian:

Free Time Transversality Condition: c D
� @
@T
g. NT ; Nx.0/; Nx.T //:

Other Refinements: Versions of the Maximum
Principle are available to take account of
pathwise functional inequality constraints on
state variables (“pure” state constraints) and
of both state and control variables (“mixed”
constraints). Maximum Principle-like conditions
have also been derived for optimal control
problems in which the dynamic constraint takes
the form of a retarded differential equation with
control terms and in which the class of control
functions is enlarged to include Dirac delta
functions (“impulse” optimal control problems).

The NonsmoothMaximum Principle

In early derivations of the Maximum Principle,
it was assumed that the functions f .t; x; u/ and
L.t; x; u/ were continuously differentiable with
respect to the x variable. A major research en-
deavor since the early 1970s has been to find
versions of the Maximum Principle than remain
valid when the functions f .t; x; u/ and L.t; x; u/
satisfy merely a “bounded slope” or, synony-
mously, a Lipschitz continuity condition with
respect to x. Such functions are “nonsmooth” in
the sense that they can fail to be differentiable,
in the conventional sense, at some points in their
domains. An overview of the Maximum Principle
would be incomplete without reference to such
advances.

The search for nonsmooth optimality
conditions is motivated by a desire to solve
optimal control problems where, in particular,
the function f .t; x; u/ is a piecewise linear
function of x (for fixed .t; u/). Such functions
arise, for example, when the f .t; x; u/ is
constructed empirically via a lookup table and
linear interpolation. Nonsmooth cost integrands
are encountered when they are constructed using
“pointwise” supremum and/or “absolute value”
operations. The function

J.x.:// D
Z T

0

jx.t/jdt C maxfx.1/; 0g ;

which penalizes the L1 norm of the state trajec-
tory and the terminal value of the scalar state, but
only if this is nonnegative, is a case in point.

When attempting to generalize the Maximum
Principle to allow for nonsmooth data, we en-
counter the challenge of interpreting the adjoint
equation, which can be written as

� Pp.t/ D @

@x
H�.t; Nx.t/; Nu.t/p.t//;

in circumstances when the x-gradients of f and
L are not defined, at least not in a conventional
sense. One approach to dealing with this problem
is via the Clarke generalized gradient @m of
functionmW Rn ! R at a point Nx:
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@m. Nx/ WD co f� j there exist sequences xi ! Nx,
�i ! � such that, for each i , m.:/ is Frêchet
differentiable at xi and �i D @

@x
m.xi /g:

Here, “co” means closed convex hull. In a land-
mark paper, Clarke FH 1976, Clarke proved
a necessary condition commonly referred to as
the nonsmooth Maximum Principle, in which the
adjoint equation is replaced by a differential in-
clusion involving the (partial) generalized gradi-
ent @xH.t; Nx.t/; p.t/; Nu.t// of H.t; :; p.t/; Nu.t//
w.r.t x, evaluated at Nx.t/, namely,

� PpT .t/ 2 @x H.t; Nx.t/; Nu.t// a.e. t 2 Œ0; T �:

This formulation of the “adjoint inclusion” for
the nonsmooth Maximum Principle and the un-
restricted hypothesis under which it is derived in
this paper remain state of the art.

Example

We illustrate the application of the Maximum
Principle with a simple example. It has the fol-
lowing interpretation. A 1 kg mass is located 1m
along the line and has zero velocity. We seek a
time NT > 0 s. which is the minimum over all
times T > 0 having the property: there exists a
time-varying force u.t/, 0 � t � 1 satisfying

�1 � u.t/ � C1

such that, under the action of the force, the mass
is located at the origin with zero velocity at time
T . Note that, in consequence of Newton’s second
law, the vector x.t/ D .x1.t/; x2.t// comprising
the displacement and velocity of mass satisfies

	 Px1.t/
Px2.t/



D

	
0 1

0 0


 	
x1.t/

x2.t/



C
	
0

1



u.t/:

(5)

This is a special case of the free-time problem

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂:

Minimize T
over times T > 0, measurable functions u.:/:

Œ0; T � ! R and
absolutely continuous functions x.:/:
Œ0; T � ! R2 such that

Px.t/ D Ax.t/C bu.t/ a.e.
u.t/ 2 � a.e.
.x1.0/; x2.0// D .1; 0/ and

.x1.T /; x2.T // D .0; 0/:

in which A D
	
0 1

0 0



, b D

	
0

1



and � D

Œ�1;C1�.
The (free-time) Maximum Principle provides

the following information about a minimizing
end time NT , control Nu.:/, and corresponding
state Nx.:/ D . Nx1.:/; Nx2.://. There exists an arc
p.:/ D Œp1.:/; p2.:/�

T such that
PNx1.t/ D Nx2.t/ and PNx2.t/ D Nu.t/ ; (6)

� Pp1.t/ D 0 and � Pp2.t/ D p1.t/; (7)

Nu.t/ D arg max fp2.t/u j u 2 Œ�1;C1�g (8)

. Nx1; Nx2/.0/D.1; 0/and. Nx1; Nx2/.T /D.0; 0/ (9)

p1.t/ Nx2.t/C jp2.t/j D � for all t: (10)

Condition (1) permits us to express Nu.:/ in terms
of p2.:/, thus

Nu.t/ D signfp2.t/g ;

and thereby eliminate Nu.:/. It can be shown that
relations (6)–(2) have a unique solution for NT ,
Nu.t/, Nx.t/, p.t/ and � D 0 or 1. Furthermore,
these relations cannot be satisfied with � D 0.
The unique solution (with � D 1) is

NT D 2

. Nx1.t/; Nx2.t//

D
8<
:
.1 � 1

2
t2;�t/ if t 2 Œ0; 1/

. 1
2

� .t � 1/C 1
2
.t � 1/2;

�1C 1
2
.t � 1// if t 2 Œ1; 2�;

Nu.t/ D
� �1 if t 2 Œ0; 1/

C1 if t 2 Œ1; 2�;
p1.t/D�1 and p2.t/D�1 C t for t 2 Œ0; 2�:
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The Maximum Principle is a necessary condition
of optimality. Since a minimizer exists and since
. NT ; Nx.:/; Nu.:/; p.:// is a unique solution to the
Maximum Principle relations, it follows that
. NT ; Nx.:/; Nu.:// is the solution to the problem.

This problem is amenable to simpler, more
elementary, solution techniques. But the above
solution is enlightening, because it highlights
important generic features of the Maximum Prin-
ciple. We see how the “maximization of the
Hamiltonian condition” can be used to eliminate
the control function and thereby to set up a two-
point boundary problem for Nx.:/ and p.:/ (a very
nonclassical construction).
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Optimal Control and the Dynamic
Programming Principle
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Abstract

This entry illustrates the application of Bellman’s
dynamic programming principle within the con-
text of optimal control problems for continuous-
time dynamical systems. The approach leads to a
characterization of the optimal value of the cost
functional, over all possible trajectories given
the initial conditions, in terms of a partial dif-
ferential equation called the Hamilton–Jacobi–
Bellman equation. Importantly, this can be used
to synthesize the corresponding optimal control
input as a state-feedback law.

Keywords

Continuous-time dynamics; Hamilton–Jacobi–
Bellman equation; Optimization; Nonlinear
systems; State feedback

Introduction

The dynamic programming principle (DPP) is
a fundamental tool in optimal control theory.
It was largely developed by Richard Bellman
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in the 1950s (Bellman 1957) and has since been
applied to various problems in deterministic and
stochastic optimal control. The goal of optimal
control is to determine the control function and
the corresponding trajectory of a dynamical sys-
tem which together optimize a given criterion
usually expressed in terms of an integral along
the trajectory (the cost functional) (Fleming and
Rishel 1975; Macki and Strauss 1982). The func-
tion which associates with the initial condition
of the dynamical system the optimal value of the
cost functional among all the possible trajectories
is called the value function. The most interest-
ing point is that via the dynamic programming
principle, one can derive a characterization of the
value function in terms of a nonlinear partial dif-
ferential equation (the Hamilton–Jacobi–Bellman
equation) and then use it to synthesize a feedback
control law. This is the major advantage over
the approach based on the Pontryagin Maximum
Principle (PMP) (Boltyanskii et al. 1956; Pon-
tryagin et al. 1962). In fact, the PMP merely gives
necessary conditions for the characterization of
the open-loop optimal control and of the corre-
sponding optimal trajectory. The DPP has also
been applied to construct approximation schemes
for the value function although this approach suf-
fers from the “curse of dimensionality” since one
has to solve a nonlinear partial differential equa-
tion in a high dimension. Despite the elegance of
the DPP approach, its practical application is lim-
ited by this bottleneck, and the solution of many
optimal control problems has been accomplished
instead via the two-point boundary value problem
associated with the PMP.

The Infinite Horizon Problem

Let us present the main ideas for the classical infi-
nite horizon problem. Let a controlled dynamical
system be given by

(
Py.s/ D f .y.s/; ˛.s//

y.t0/ D x0:
(1)

where x0; y.s/ 2 R
d , and

˛ W Œt0; T � ! A � R
m;

with T finite or C1. Under the assumption that
the control is measurable, existence and unique-
ness properties for the solution of (1) are ensured
by the Carathèodory theorem:

Theorem 1 (Carathèodory) Assume that:
1. f .�; �/ is continuous.
2. There exists a positive constant Lf > 0 such

that

jf .x; a/ � f .y; a/j � Lf jx � yj;

for all x; y 2 R
d , t 2 R

C and a 2 A.
3. f .x; ˛.t// is measurable with respect to t .

Then, there is a unique absolutely continuous
function y W Œt0; T � ! R

d that satisfies

y.s/ D x0 C
Z s

t0

f .y.	/; ˛.	//d	: (2)

which is interpreted as the solution of (1).

Note that the solution is continuous, but only a.e.
differentiable, so it must be regarded as a weak
solution of (1). By the theorem above, fixing a
control in the set of admissible controls

˛ 2 A WD f˛ W Œt0; T � ! A;measurableg

yields a unique trajectory of (1) which is denoted
by yx0; t0 .sI˛/. Changing the control policy
generates a family of solutions of the controlled
system (1) with index ˛. Since the dynamics (1)
are “autonomous,” the initial time t0 can be
shifted to 0 by a change of variable. So to simplify
the notation for autonomous dynamics, we can
set t0 D 0 and we denote this family by yx0.sI˛/
(or even write it as y.s/ if no ambiguity over
the initial state or control arises). It is customary
in dynamic programming, moreover, to use the
notations x and t instead of x0 and t0 (since x
and t appear as variables in the Hamilton–Jacobi–
Bellman equation).

Optimal control problems require the intro-
duction of a cost functional J W A ! R which
is used to select the “optimal trajectory” for (1).
In the case of the infinite horizon problem, we set
t0 D 0, x0 D x, and this functional is defined as
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Jx.˛/ D
Z 1

0

g.yx.s; ˛/; ˛.s//e
��sds (3)

for a given � > 0. The function g represents
the running cost and � is the discount factor,
which can be used to take into account the re-
duced value, at the initial time, of future costs.
From a technical point of view, the presence of
the discount factor ensures that the integral is
finite whenever g is bounded. Note that one can
also consider the undiscounted problem (� D
0) provided the integral is still finite. The goal
of optimal control is to find an optimal pair
.y�; ˛�/ that minimizes the cost functional. If
we seek optimal controls in open-loop form, i.e.,
as functions of t , then the Pontryagin Maximum
Principle furnishes necessary conditions for a
pair .y�; ˛�/ to be optimal.

A major drawback of an open-loop control is
that being constructed as a function of time, it
cannot take into account errors in the true state
of the system, due, for example, to model errors
or external disturbances, which may take the evo-
lution far from the optimal forecasted trajectory.
Another limitation of this approach is that a new
computation of the control is required whenever
the initial state is changed.

For these reasons, we are interested in the
so-called feedback controls, that is, controls ex-
pressed as functions of the state of the system.
Under feedback control, if the system trajectory
is perturbed, the system reacts by changing its
control strategy according to the change in the
state. One of the main motivations for using the
DPP is that it yields solutions to optimal control
problems in the form of feedback controls.

DPP for the Infinite Horizon Problem
The starting point of dynamic programming is to
introduce an auxiliary function, the value func-
tion, which for our problem is

v.x/ D inf
˛2AJx.˛/; (4)

where, as above, x is the initial position of the
system. The value function has a clear meaning:
it is the optimal cost associated with the initial

position x. This is a reference value which can
be useful to evaluate the efficiency of a control –
if Jx. N̨ / is close to v.x/, this means that N̨ is
“efficient.”

Bellman’s dynamic programming principle
provides a first characterization of the value
function.

Proposition 1 (DPP for the infinite horizon
problem) Under the assumptions of Theorem 1,
for all x 2 R

d and 	 > 0,

v.x/ D inf
˛2A

�Z 	

0

g.yx.sI˛/; ˛.s//e��sds

C e��	 v.yx.	 I˛//
�
: (5)

Proof Denote by Nv.x/ the right-hand side of (5).
First, we remark that for any x 2 R

d and N̨ 2 A,

Jx. N̨ / D
Z 1

0

g. Ny.s/; N̨ .s//e��sds

D
Z 	

0

g. Ny.s/; N̨ .s//e��sds

C
Z 1

	

g. Ny.s/; N̨ .s//e��sds

D
Z 	

0

g. Ny.s/; N̨ .s//e��sds C e��	

�
Z 1

0

g. Ny.s C 	/; N̨ .s C 	//e��sds

�
Z 	

0

g. Ny.s/; N̨ .s//e��sds C e��	 v. Ny.	//

(here, yx.s; N̨ / is abbreviated as Ny.s/). Taking
the infimum over all trajectories, first over the
right-hand side and then the left of this inequality,
yields

v.x/ � Nv.x/ (6)

To prove the opposite inequality, we recall that
Nv is defined as an infimum, and so, for any x 2
R
d and " > 0, there exists a control N̨" (and the

corresponding evolution Ny") such that
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Nv.x/C"�
Z 	

0

g. Ny".s/; N̨".s//e��sdsCe��	v. Ny".	//:
(7)

On the other hand, the value function v being also
defined as an infimum, for any x 2 R

d and " > 0,
there exists a control Q̨" such that

v. Ny".	//C " � J Ny".	/. Q̨"/: (8)

Inserting (8) in (7), we get

Nv.x/ �
Z 	

0

g. Ny".s/; N̨".s//e��sds

Ce��	J Ny".	/. Q̨"/ � .1C e��	 /"

� Jx. Ǫ / � .1C e��	 /"

� v.x/ � .1C e��	 /"; (9)

where Ǫ is a control defined by

Ǫ .s/ D
(

N̨".s/ 0 � s < 	

Q̨".s � 	/ s � 	:
(10)

(Note that Ǫ .�/ is still measurable). Since " is
arbitrary, (9) finally yields Nv.x/ � v.x/.

We observe that this proof crucially relies on
the fact that the control defined by (10) still
belongs to A, being a measurable control. The
possibility of obtaining an admissible control by
joining together two different measurable con-
trols is known as the concatenation property.

The Hamilton–Jacobi–Bellman
Equation

The DPP can be used to characterize the value
function in terms of a nonlinear partial differ-
ential equation. In fact, let ˛� 2 A be the
optimal control, and y� the associated evolution
(to simplify, we are assuming that the infimum is
a minimum). Then,

v.x/D
Z 	

0

g.y�.s/; ˛�.s//e��sdsCe��	 v.y�.	//;

that is,

v.x/�e��	 v.y�.	//D
Z 	

0

g.y�.s/; ˛�.s//e��sds

so that adding and subtracting e��	v.x/ and
dividing by 	 , we get

e��	 .v.x/ � v.y�.	///
	

C v.x/.1 � e��	 /
	

D 1

	

Z 	

0

g.y�.s/; ˛�.s//e��sds:

Assume now that v is regular. By passing to the
limit as 	 ! 0C, we have

lim
	!0C

�v .y
�.	//� v.x/

	

D �Dv.x/ � Py�.x/ D �Dv.x/ � f .x; ˛�.0//

lim
	!0C

v.x/
.1 � e��	 /

	
D �v.x/

lim
	!0C

1

	

Z 	

0

g.y�.s/; ˛�.s//e��sdsDg.x; ˛�.0//

where we have assumed that ˛�.�/ is continuous
at 0. Then, we can conclude

�v.x/�Dv.x/ � f .x; a�/� g.x; a�/ D 0 (11)

where a� D ˛�.0/. Similarly, using the equiva-
lent form

v.x/C sup
˛2A

�
�
Z 	

0

g.y.s/; ˛.s//e��sds

�e��	v.y.	//
� D 0

of the DPP and the inequality, this implies for any
(continuous at 0) control ˛ 2 A,

�v.x/ �Dv.x/ � f .x; a/ � g.x; a/
� 0; for every a 2 A: (12)

Combining (11) and (12), we obtain the
Hamilton–Jacobi–Bellman equation (or dynamic
programming equation):
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�u.x/C sup
a2A

f�f .x; a/ �Du.x/� g.x; a/g D 0;

(13)

which characterizes the value function for the
infinite horizon problem associated with mini-
mizing (3). Note that given x, the value of a
achieving the max (assuming it exists) corre-
sponds to the control a� D ˛�.0/, and this makes
it natural to interpret the argmax in (13) as the
optimal feedback at x (see Bardi and Capuzzo
Dolcetta (1997) for more details).

In short, (13) can be written as

H.x; u;Du/ D 0

with x 2 R
d , and

H.x; u;p/D�u.x/Csup
a2A

f�f .x; a/�p�g.x; a/g:
(14)

Note that H.x; u; �/ is convex (being the sup of
a family of linear functions) and that H.x; �; p/
is monotone (since � > 0). It is also easy to
see that the solution u is not differentiable even
when f and g are smooth functions (i.e., f; g;2
C1.Rn; A/), so we need to deal with weak so-
lution of the Bellman equation. This can be done
in the framework of viscosity solutions, a theory
initiated by Crandall and Lions in the 1980s
which has been successfully applied in many
areas as optimal control, fluid dynamics, and
image processing (see the books Barles (1994)
and Bardi and Capuzzo Dolcetta (1997) for an
extended introduction and numerous applications
to optimal control). Typically viscosity solutions
are Lipschitz continuous solutions so they are
differentiable almost everywhere.

An Extension to theMinimum Time
Problem

In the minimum time problem, we want to min-
imize the time of arrival of the state on a given
target set T . We will assume that T � R

d is
a closed set. Then our cost functional will be
given by

J.x; ˛/ D tx.˛/

where

tx.˛/ WD

8̂
ˆ̂̂<
ˆ̂̂̂:

minft W yx.t; ˛/ 2 T g if yx.t; ˛/ 2 T
for some t � 0

C1 ifyx.t; ˛/ … T
for any t � 0

The corresponding value function is called the
minimum time function

T .x/ WD inf
˛.�/2A tx.˛.�//: (15)

The main difference with respect to the previous
problem is that now the value function T will be
finite valued only on a subset R which depends
on the target, on the dynamics, and on the set of
admissible controls.

Definition 1 The reachable set R is defined by

R WD [t>0R.t/ D fx 2 R
n W T .x/ < C1g

where, for t > 0, R.t/ WD fx 2 R
n W T .x/ < tg.

The meaning is clear: R is the set of initial points
which can be driven to the target in finite time.
The system is said to be controllable on T if
for all t > 0, T � int.R.t// (here, int(D)
denotes the interior of the set D). Assuming
controllability in a neighborhood of the target one
gets the continuity of the minimum time function
and under the assumptions made on f , A, and T ,
one can prove some interesting properties:

(i) R is open.
(ii) T is continuous on R.

(iii) lim
x!x0

T .x/ D C1, for any x0 2 @R.

Now let us denote by XD the characteristic func-
tion of the set D. Using in R arguments similar
to the proof of DPP in the previous section one
can obtain the following DPP:

Proposition 2 (DPP for the minimum time
problem) For any x 2 R, the value function
satisfies

T .x/ D inf
˛2Aft ^ tx.˛/C Xft�tx.˛/gT .yx.t; ˛//g

for any t � 0 (16)
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and

T .x/ D inf
˛2Aft C T .yx.t; ˛//g

for any t 2 Œ0; T .x/� (17)

From the previous DPP, one can also obtain the
following characterization of the minimum time
function.

Proposition 3 Let RnT be open and T 2
C.RnT /, then T is a viscosity solution of

max
a2A f�f .x; a/ � rT .x/g D 1 x 2 RnT

(18)

coupled with the natural boundary condition

8<
:
T .x/ D 0 x 2 @T
lim
x!@R

T .x/ D C1

By the change of variable v.x/ D 1�e�T .x/, one
can obtain a simpler problem getting rid of the
boundary condition on @R (which is unknown).
The new function v will be the unique viscosity
solution of an external Dirichlet problem (see
Bardi and Capuzzo Dolcetta (1997) for more
details), and the reachable set can be recovered
a posteriori via the relation R D fx 2 R

d W
v.x/ < 1g.

Further Extensions and Related
Topics

The DPP has been extended from deterministic
control problems to many other problems. In
the framework of stochastic control problems
where the dynamics are given by a diffusion,
the characterization of the value function
obtained via the DPP leads to a second-order
Hamilton–Jacobi–Bellman equation (Fleming
and Soner 1993; Kushner and Dupuis 2001).
Another interesting extension has been made in
differential games where the DPP is based on the
delicate notion of nonanticipative strategies for
the players and leads to a nonconvex nonlinear
partial differential equation (the Isaacs equation)

(Bardi and Capuzzo Dolcetta 1997). For a
short introduction to numerical methods based
on DP and exploiting the so-called “value
iteration,” we refer the interested reader to the
Appendix A in Bardi and Capuzzo Dolcetta
(1997) and to Kushner and Dupuis (2001) (see
also the book Howard (1960) for the “policy
iteration”).

Cross-References
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Abstract

One approach to linear control system design in-
volves the matching of certain input-output mod-
els with respect to a quantification of closed-
loop performance. The approach is based on a
parametrization of all stabilizing feedback con-
trollers, which relies on the existence of co-
prime factorizations of the plant model. This
parametrization and spectral factorization meth-
ods for solving model-matching problems are
described within the context of impulse-response
energy and worst-case energy-gain measures of
controller performance.

Keywords

Coprime factorization; H2 control; H1 control;
Spectral factorization; Youla-Kučera controller
parametrization

Introduction

Various linear control problems can be formu-
lated in terms of the interconnection shown in
Fig. 1; e.g., see Francis and Doyle (1987), Boyd
and Barratt (1991), and Zhou et al. (1996). The
linear system K is a controller (with input y and
output u � v1) to be designed for the generalized
plant model G. The latter is constructed so that
controller performance (i.e., the quality of K
relative to specifications) can be quantified as a
nonnegative functional of

H.G;K/ D G11 CG12K.I �G22K/
�1G21;

(1)

which relates the input w and the output z when
v1 D 0 and v2 D 0. The objective is to select
K , to minimize this measure of performance.
Alternatively, controllers that achieve a speci-
fied upper bound are sought. It is also usual to
require internal stability, which pertains to the
fictitious signals v1 and v2, as discussed more
subsequently. The best known examples are H2

and H1 control problems. In the former, perfor-
mance is quantified as the energy (resp. power)
of z when w is impulsive (resp. unit white noise),
and in the latter, as the worst-case energy gain
from w to z, which can be used to reflect robust-
ness to model uncertainty; see Zhou et al. (1996).

The special case of G22 D 0 gives rise to
a (weighted) model-matching problem, in that
the corresponding performance map H.G;K/ D
G11 C G12KG21 exhibits affine dependence on
the design variable K , which is chosen to match
G12KG21 to �G11 with respect to the scalar quan-
tification of performance. Any internally stabiliz-
able problem withG22 ¤ 0, can be converted into
a model-matching problem. The key ingredients
in this transformation are coprime factorizations
of the plant model. The role of these and other
factorizations in a model-matching approach to
H2 and H1 control problems is the focus of this
article.

For the sake of argument, finite-dimensional
linear time-invariant systems are considered via
real-rational transfer functions in the frequency
domain, as the existence of all factorizations

ΣΣ

G =

⎡
⎢⎢⎣

G11 G12

G21 G22

⎤
⎥⎥⎦

K

u

v1

w

v2 y

z

Optimal Control via Factorization and Model Match-
ing, Fig. 1 Standard interconnection for control system
design
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employed is well understood in this setting.
Indeed, constructions via state-space realizations
and Riccati equations are well known. The merits
of the model-matching approach pursued here
are at least twofold: (i) the underlying algebraic
input-output perspective extends to more
abstract settings, including classes of distributed-
parameter and time-varying systems (Desoer
et al. 1980; Vidyasagar 1985; Curtain and Zwart
1995; Feintuch 1998; Quadrat 2006); and (ii)
model matching is a convex problem for various
measures of performance (including mixed
indexes) and controller constraints. The latter
can be exploited to devise numerical algorithms
for controller optimization (Boyd and Barratt
1991; Dahleh and Diaz-Bobillo 1995; Qi et al.
2004).

First, some notation regarding transfer
functions and two measures of performance
for control system design is defined. Coprime
factorizations are then described within the
context of a well-known parametrization of
stabilizing controllers, originally discovered
by Youla et al. (1976) and Kucera (1975). This
yields an affine parametrization of performance
maps for problems in standard form, and thus, a
transformation to a model-matching problem.
Finally, the role of spectral factorizations in
solving model-matching problems with respect
to impulse-response energy (H2) and worst-case
energy-gain (H1) measures of performance is
discussed.

Notation and Nomenclature

R generically denotes a linear space of matrices
having fixed row and column dimensions,
which are not reflected in the notation for
convenience, and entries that are proper real-
rational functions of the complex variable s;
i.e.,

�Pm
kD1 bksk

�
=
�Pn

kD1 aksk
�

for sets of
real coefficients fakgnkD1 and fbkgmkD1 with
m � n < 1. The compatibility of matrix
dimensions is implicitly assumed henceforth.
All matrices in R have (nonunique) “state-space”
realizations of the form C.sI � A/�1B C D,
where A;B;C and D are real valued matrices.

This form naturally arises in frequency-domain
analysis of the input-output map associated with
the time-domain model Px.t/ D Ax.t/ C Bu.t/,
with initial condition x.0/ D 0 and output
equation y.t/ D Cx.t/ C Du.t/, where Px
denotes the time derivative of x and u is the
input. The study of such linear time-invariant
differential equation models via the Laplace
transform and multiplication by real-rational
transfer function matrices is fundamental in
linear systems theory (Kailath 1980; Francis
1987; Zhou et al. 1996). P 2 R has an inverse
P�1 2 R if and only if limjsj!1 P.s/ is a
nonsingular matrix. The superscripts T and 	
denote the transpose and complex conjugate
transpose. For a matrix Z D Z� with complex
entries, Z > 0 means z�Zz � �z�z for
some � > 0 and all complex vectors z of
compatible dimension. P�.s/ WD P.�s/T ,
whereby .P.j!//� D P�.j!/ for all real !
with j WD p�1. Zeros of transfer function
denominators are called poles.

In subsequent sections, several subspaces of
R are used to define and solve two standard
linear control problems. The subspace B � R
comprises transfer functions that have no poles
on the imaginary axis in the complex plane. For
P 2 B, the scalar performance index

kP k1 WD max�1�!�1 N
.P.j!// � 0

is finite; the real number N
.Z/ is the maximum
singular value of the matrix argument Z. This
index measures the worst-case energy-gain from
an input signal u, to the output signal y D P u.
Note that kP k1 <  if and only if 2I �
P�.j!/P.j!/ > 0 for all �1 � ! � 1.

The subspace S � B � R consists of transfer
functions that have no poles with positive real
part. A transfer function in S is called stable
because the corresponding input-output map is
causal in the time domain, as well as bounded-
in-bounded-out (in various senses). If P 2 S is
such that P�P D I , then it is called inner. If
P;P�1 2 S, then both are called outer.

Let L denote the subspace of strictly-proper
transfer functions in B; i.e., for all entries of the
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matrix, the degree n of the denominator exceeds
the degreem of the numerator. Observe that P 2
L if and only if P� 2 L. Moreover, P1P2 2 L
and P3P1 2 L for all P1 2 L and Pi 2 B,
i D 2; 3. Now, for P1; P2 2 L, define the inner-
product

hP1;P2i WD 1

2�

Z 1

�1
trace.P�

1 .j!/P2.j!//d!<1

and the scalar performance index kP k2 WDphP;P i � 0 for P 2 L. This index equates
to the root-mean-square (energy) measure of the
impulse response and the covariance (power)
of the output signal y D P u, when the input
signal u is unit white noise. By the properties
trace.Z1 C Z2/ D trace.Z1/ C trace.Z2/ and
trace.Z1Z2/ D trace.Z2Z1/ of the matrix trace,
it follows that hP1 C P2; P3i D hP1; P3i C
hP2; P3i and

hP1; P2P3i D hP�
2 P1; P3i D hP1P�

3 ; P2i
D hP�

3 ;P
�
1 P2i for Pi 2L; iD1; 2; 3:

(2)

The (not closed) subspace L � B � R can be
expressed as the direct sum L D HCH?, where
H D L \ S and H? is the subspace of transfer
functions in L that have no poles with negative
real part. That is, given P 2 L, there is a unique
decomposition P D ˘ C.P / C ˘ �.P /, with
˘ C.P / 2 H and ˘ �.P / 2 H?. Observe that
P 2 H if and only if P� 2 H?. It can be shown
via Plancherel’s theorem that hP1; P2i D 0 for
P1 2 H? and P2 2 H. Finally, note that P1P2 2
H and P3P1 2 H for P1 2 H and Pi 2 S,
i D 2; 3.

Coprime and Spectral Factorizations

Given P 2 R, the factorizations P D NM�1 D
QM�1 QN are said to be (doubly) coprime over S,

if N , M , QN , QM are all elements of S and there
exist U0, V0, QU0, QV0 all in S such that

 QV0 � QU0
� 	M
N



D I and

� QN QM � 	U0
V0



D I

(3)

hold; i.e.,

MT NT

�
and

� QN QM �
are right in-

vertible in S. Importantly, if the factorizations are
coprime and P 2 S, then M�1 D QV0 � QU0P and
QM�1 D V0�PU0 are in S, as sums of products of

transfer functions in S; i.e., M and QM are outer.
Doubly coprime factorizations over S always ex-
ist, but these are not unique. Constructions from
state-space realizations can be found in Zhou
et al. (1996, Chapter 6) and Francis (1987), for
example. As mentioned above, coprime factor-
izations play a role in transforming a standard
problem into the special case of a model matching
problem, via the Youla-Kučera parametrization of
internally stabilizing controllers presented in the
next section.

Subsequently, a special coprime factoriza-
tion proves to be useful. If P�.s/P.s/ D
M��.s/N�.s/N.s/M�1.s/ > 0 for s on the
extended imaginary axis (i.e., for s D j! with
�1 � ! � 1), then it is possible to choose
the factor N to be inner. In this case, if P
is also an element of S, then P D NM�1
is called an inner-outer factorization, and
P�P D .M�1/�M�1 is called a spectral
factorization, since M;M�1 2 S. More
generally, if � D �� 2 B satisfies �.s/ > 0

for s on the extended imaginary axis, then there
exists a (non-unique) spectral factor ˙;˙�1 2 S
such that � D ˙�˙ . Similarly, there exists
a co-spectral factor Q̇ ; Q̇ �1 2 S such that
� D Q̇ Q̇ �. State-space constructions via
Riccati equations can be found in Zhou et al.
(1996, Chapter 13), for example.

Affine Controller/Performance-Map
Parametrization

With reference to Fig. 1, a generalized plant
modelG D 

G11 G12
G21 G22

� 2 R is said to be internally
stabilizable if there exists a K 2 R such that
the nine transfer functions associated with the
map from the vector of signals .w; v1; v2/ to
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the vector of signals .z; u; y/, which includes
the performance map H.G;K/ D G11 C
G12K.I � G22K/

�1G21, are all elements of S.
Accounting in this way for the influence of the
fictitious signals v1 and v2, and the behavior
of the internal signals u and y, amounts to
following requirement: Given minimal state-
space realizations, any nonzero initial condition
response decays exponentially in the time domain
when G and K are interconnected according
to Fig. 1 with w D 0, v1 D 0 and v2 D 0.
Not every G 2 R is internally stabilizable
in the sense just defined; for example, take
G11 to have a pole with positive real part and
G21 D G12 D G22 D 0. A necessary condition
for stabilizability is .I � G22K/

�1 2 R; i.e., the
inverse must be proper. The latter always holds if
G22 is strictly proper, as assumed henceforth to
simplify the presentation. It is also assumed that
G is internally stabilizable.

It can be shown that G is internally stabilized
by K if and only if the standard feedback in-
terconnection of G22 and K , corresponding to
w D 0 in Fig. 1, is internally stable. That is, if
and only if the transfer function

	
I �K

�G22 I



2 R; (4)

which relates u and y to v1 and v2 by virtue of the
summing junctions at the interconnection points,
has an inverse in S; see Francis (1987, Theo-
rem 4.2). Substituting the coprime factorizations
K D UV �1 D QV �1 QU and G22 D NM�1 D
QM�1 QN , it follows that the inverse of (4) is an

element of S if and only if

	
M U

N V


�1
2 S ,

	 QV � QU
� QN QM


�1
2 S:

(5)

The equivalent characterizations of internal
stability in (5) lead directly to affine parametriza-
tions of controllers and performance maps.
Specifically, following the approach of Desoer
et al. (1980), Vidyasagar (1985), and Francis
(1987), suppose that the factorizations G22 D
NM�1 D QM�1 QN are doubly coprime in the

sense that (3) holds for some U0; V0; QU0; QV0 2 S.
Indeed, since 0 D G22 � G22 D QM�1. QMN �
QNM/M�1, it follows that

	 QV0 � QU0
� QN QM


 	
M U0
N V0



D
	
I 0

0 I




D
	
M U0
N V0


 	 QV0 � QU0
� QN QM



:

(6)

Exploiting this and the condition (5), it holds that
K D UV �1 stabilizes G22 if and only if

U D.U0�MQ/ and V D.V0�NQ/ with Q2S:

Similarly, K stabilizes G22 if and only if K D
. QV0 �Q QN/�1. QU0 �Q QM/ withQ 2 S. Together,
these constitute the Youla-Kučera parametriza-
tions of internally stabilizing controllers. Impor-
tantly, the coprime factors that appear in these
are affine functions of the stable parameter Q.
Moreover, using (6), an affine parametrization of
the standard performance map (1) holds by direct
substitution of either controller parametrization.
Specifically,

H.G;K/ D G11 CG12K.I �G22K/�1G21
D T1 C T2QT3 with Q 2 S; (7)

where T1 D G11 C G12U0 QMG21, T2 D �G12M
and T3 D QMG21. Clearly, T1 2 S since this
is the performance map when Q D 0 2 S.
By the assumption that G is stabilizable, it fol-
lows that T2 and T3 are also elements of S;
see Francis (1987, Chapter 4). The so-called Q-
parametrization in (7) motivates the subsequent
consideration of model-matching problems with
respect to the standard measures of control sys-
tem performance k � k2 and k � k1.

Model-Matching via Spectral
Factorization

Bearing in mind the Q-parametrization (7), con-
sider the following H2 model-matching problem,
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where inf denotes greatest lower bound (infi-
mum) and Ti 2 S, i D 1; 2; 3:

inf
Q2S kT1 C T2QT3k2:

Assume that T2.s/ and T3.s/ have full column
and row rank, respectively, for s on the extended
imaginary axis. Also assume that T1 is strictly
proper, whereby Q must be strictly proper, and
thus an element of H � S, for the performance
index to be finite. Under this standard collec-

tion of assumptions, the infimum is achieved as
shown below.

A minimizer of the convex functional f WD
Q 2 H 7! h.T1 C T2QT3/; .T1 C T2QT3/i
is a solution of the model matching problem.
Given spectral factorizations ˚�˚ D T �

2 T2
and ��� D T3T

�
3 (i.e., ˚;˚�1;�;��1 2

S), which exist by the assumptions on the
problem data, let R WD ˚Q� and W WD
˚��T �

2 T1T
�
3 �

��. Then for Q 2 H, which
is equivalent to R 2 H by the properties of
spectral factors, it follows that

(8)
f .Q/ D hT1; T1i C h˚��T �

2 T1T
�
3 �

��; Ri C hR;˚��T �
2 T1T

�
3 �

��i C hR;Ri
D hT1; T1i C h.˘ �.W /C ˘ C.W /CR/; .˘ �.W /C ˘ C.W /CR/i � hW;W i
D hT1; T1i � h˘ C.W /;˘ C.W /i C h.˘ C.W /CR/; .˘ C.W /CR/i; (9)

where the second last equality holds by
“completion-of-squares” and the last equality
holds since h˘ C.W /;˘ �.W /i D 0 D
hR;˘ �.W /i. From (9) it is apparent that

Q D �˚�1˘ C.˚��T �
2 T1T

�
3 �

��/��1

is a minimizer of f . As above, spectral fac-
torization is a key component of the so-called
Wiener-Hopf approach of Youla et al. (1976) and
DeSantis et al. (1978).

Now consider the H1 model-matching prob-
lem

inf
Q2S kT1 C T2QT3k1;

given Ti 2 S, i D 1; 2; 3. This is more chal-
lenging than the problem discussed above, where
k � k2 is the performance index. While sufficient
conditions are again available for the infimum
to be achieved, computing a minimizer is gener-
ally difficult; see Francis and Doyle (1987) and
Glover et al. (1991). As such, nearly optimal
solutions are often sought by considering the
relaxed problem of finding the set of Q 2 S that
satisfy kT1CT2QT3k1 <  for a value of  > 0
greater than, but close to, the infimum.

With a view to highlighting the role of factor-
ization methods and simplifying the presentation,
suppose that T2 is inner, which is possible without
loss of generality via inner-outer factorization if
T2.s/ has full column rank for s on the extended
imaginary axis. Furthermore, assume that T3 D
I . Following the approach of Francis (1987) and
Green et al. (1990), let X� D 

X�
1 X�

2

� WD
T2 I � T2T �

2

� 2 B, so that X�X D I and
XT2 D Œ I0 �. Observe that

kT1 C T2Qk1 D kX.T1 C T2Q/k1

D
����
	
T �
2 T1 CQ

.I � T2T
�
2 /T1


����
1
< 

(10)

if and only if

0 < 2I � T �
1 .I � T2T

�
2 /T1

� .T �
2 T1 CQ/�.T �

2 T1 CQ/ (11)

on the extended imaginary axis. Note that (11)
implies 0 < 2I � T �

1 .I � T2T
�
2 /

2T1. Thus, it
follows that there exists a Q 2 S for which (10)
holds if and only if the following are both sat-
isfied: (a) there exists a spectral factorization
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2��� D 2I � T �
1 .I � T2T

�
2 /

2T1; and (b)
there exists an NR.D Q��1/ 2 S such that k NW C
NRk1 <  , where NW WD T �

2 T1�
�1 2 B. The

condition (b) is a well-known extension problem
and a solution exists if and only if the induced
norm of the Hankel operator with symbol NW is
less than  , which is part of a result known as
Nehari’s theorem. In fact, (b) is equivalent to the
existence of a spectral factor �;� �1 2 S with
� �1
11 2 S such that

� �
	
I 0

0 �2I


� D

	
I NW
0 I


� 	
I 0

0 �2I

 	
I NW
0 I



;

(12)

in which case k NW C NRk1 �  if and only if
NR D NR1 NR�1

2 with
 NRT1 NRT2

� WD  NST I �� �T ,
NS 2 S and k NSk1 �  ; see Ball and Ran

(1987), Francis (1987), and Green et al. (1990)
for details, including state-space constructions of
the factors via Riccati equations. Noting that

	
T2 T1
0 I


�	
I 0

0 �2I

	
T2 T1
0 I



D
	
I 0

0 �


�	
I NW
0 I


�

	
I 0

0 �2I

	
I NW
0 I


	
I 0

0 �



;

it follows using (12) that there exists a Q 2 S
such that (10) holds if and only if there exists
a spectral factor ˝;˝�1 2 S with ˝�1

11 2 S�
˝ D �


I 0
0 �

��
that satisfies

	
T2 T1
0 I


�	
I 0

0 �2I

	
T2 T1
0 I



D˝�

	
I 0

0 �2I


˝;

(13)

in which case kT1 C T2Qk1 �  if and only if
Q D Q1Q

�1
2 , where


QT
1 Q

T
2

� WD 
ST I

�
˝�T ,

S 2 S and kSk1 �  ; see Green et al.
(1990). So-called J -spectral factorizations of
the kind in (12) and (13) also appear in the
chain-scattering/conjugation approach of Kimura
(1989, 1997) and the factorization approach
of Ball et al. (1991), for example.

Summary

The preceding sections highlight the role of co-
prime and spectral factorizations in formulating
and solving model-matching problems that arise
from standard H2 and H1 control problems.
The transformation of standard control problems
to model-matching problems hinges on an affine
parametrization of internally stabilized perfor-
mance maps. Beyond the problems considered
here, this parametrization can be exploited to
devise numerical algorithms for various other
control problems in terms of convex mathemat-
ical programs.
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Optimal Control with State Space
Constraints

Heinz Schättler
Washington University, St. Louis, MO, USA

Abstract

Necessary and sufficient conditions for optimal-
ity in optimal control problems with state space
constraints are reviewed with emphasis on geo-
metric aspects.

Keywords

Admissible control; Bolza form; Mayer problem

Problem Formulation and
Terminology

Many practical problems in engineering or
of scientific interest can be formulated in the
framework of optimal control problems with state
space constraints. Examples range from the space
shuttle reentry problem in aeronautics (Bonnard
et al. 2003) to the problem of minimizing the base
transit time in bipolar transistors in electronics
(Rinaldi and Schättler 2003).

An optimal control problem with state space
constraints in Bolza form takes the following
form: minimize a functional

J.u/ D
Z T

t0

L.t; x.t/; u.t//dt C ˚.T; x.T //

over all Lebesgue measurable functions u W
Œt0; T � ! U that take values in a control set
U � R

m, subject to the dynamics

Px.t/ D F.t; x.t/; u.t//; x.t0/ D x0;

terminal constraints

�.T; x.T // D 0;

and state space constraints

h˛.t; x.t// � 0 for ˛ D 1; : : : ; r:

The focus of this contribution is on state space
constraints, and, for simplicity, in this formula-
tion, we have omitted mixed control state space
constraints of the form gˇ.t; x; u/ � 0. States
x lie in R

n and controls in R
m; typically, the

control set U � R
m is compact and convex,

often a polyhedron. The time-varying vector field
F W R � R

n � U ! R
n is continuously differen-

tiable in .t; x/, and the terminal constraint N D
f.t; x/ W �.t; x/ D 0g is defined by continuously
differentiable mappings  i W R � R

n ! R
k with
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the property that the gradients r i D .
@ i
@t
;
@ i
@x
/

(which we write as row vectors) are linearly
independent on N . The terminal time T can be
free or fixed; a fixed terminal time simply would
be prescribed by one of the functions  i . The
state space constraints

M˛ D f.t; x/ W h˛.t; x/ D 0g; ˛ D 1; : : : ; r;

are defined by continuously differentiable time-
varying vector fields h˛ W R�R

n ! R; .t; x/ 7!
h˛.t; x/, and we assume that the gradients rh˛
do not vanish on M˛ . In particular, each set M˛

thus is an embedded submanifold of codimension
1 of RnC1. We denote by h D .h1; : : : ; hr /

T the
time-varying vector field defining the state space
constraints.

Terminology: Admissible controls are locally
bounded Lebesgue measurable functions that
take values in the control set, u W Œt0; T � ! U .
Given any admissible control, the initial value
problem Px.t/ D F.t; x.t/; u.t//, x.t0/ D x0,
has a unique solution defined on some maximal
open interval of definition I . This solution is
called the trajectory corresponding to the control
u and the pair .x; u/ is a controlled trajectory. An
arc � of the graph of a trajectory defined over
an open interval I for which none of the state
space constraints is active is called an interior
arc, and � is a boundary arc if at least one
constraint is active on all of I . We call � anM˛-
boundary arc over I if only the constraint h˛ � 0

is active on I . The times 	 when interior arcs and
boundary arcs meet are called junction times and
the corresponding pairs .	; x.	// junction points.

Despite the abundance and importance of
practical problems that can be described as
optimal control problems with state space
constraints, for such problems the theory still
lacks the coherence that the theory for problems
without state space constraints has reached and
there still exist significant gaps between the
theories of necessary and sufficient conditions
for optimality for optimal control problems with
state space constraints. The theory of existence
of optimal solutions differs little between optimal
control problems with and without state space

constraints, is well established, and will not
be addressed here (e.g., see Cesari 1983 or the
Filippov-Cesari theorem in Hartl et al. 1995).

Necessary Conditions for Optimality

First-order necessary conditions for optimality
are given by the Pontryagin maximum principle
(Pontryagin et al. 1962). The zero set of even a
smooth (C1) function can be an arbitrary closed
subset of the state space. As a result, in necessary
conditions for optimality, the multipliers associ-
ated with the state space constraints a priori are
only known to be nonnegative Radon measures
(Ioffe and Tikhomirov 1979; Vinter 2000). Let
u� W Œt0; T � ! U be an optimal control with
corresponding trajectory x� and, for simplicity of
presentation, also assume that no state constraints
are active at the terminal time so that the standard
transversality conditions apply. Then it follows
that there exist a constant �0 � 0, an absolutely
continuous function �, which we write as row-
vector, � W Œt0; T � ! .Rn/�, and nonnegative
Radon measures �˛ 2 C �.Œt0; T �IR/, ˛ D
1; : : : ; r , with support in the sets R˛ D ft 2
Œt0; T � W h˛.t; x�.t// D 0g, which do not all
vanish simultaneously, i.e.,

�0 C k�k1 C
rX

˛D1
�˛.Œt0; T �/ > 0;

such that with

�.t/ D �.t/ �
rX

˛D1

Z
Œt0;t /

@h˛

@x
.s; x�.s//d�˛.s/;

and

HDH.t; �0; �; x; u/D�0L.t; x; u/C�F.t; x; u/

the following conditions hold:
(a) The adjoint equation holds in the form

P�.t/ D �@H
@x
.t; �0; �.t/; x�.t/; u�.t//
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D ��0 @L
@x
.t; x�.t/; u�.t//

� �.t/@F
@x
.t; x�.t/; u�.t//;

and there exists a row-vector� 2 .Rk/� such
that

�.T / D �0
@˚

@x
.T; x�.T //C �

@�

@x
.T; x�.T //

and

0 D H.T; �0; �.T /; x�.T /; u�.T //

C �0
@˚

@t
.T; x�.T //C �

@�

@t
.T; x�.T //:

(b) The optimal control minimizes the Hamil-
tonian over the control set U along
.�.t/; x�.t//:

H.t; �0; �.t/; x�.t/; u�.t//

D min
v2U H.t; �0; �.t/; x�.t/; v/:

Furthermore,

H.t; �0; �.t/; x�.t/; u�.t//

D H.T; �0; �.t/; x�.t/; u�.t//

�
Z
Œt;T �

@H

@t
.s; �0; �.s/; x�.s/; u�.s//ds

C
rX

˛D1

Z
Œt;T �

@h˛

@t
.s; x�.s//d�˛.s/

Controlled trajectories .x; u/ for which there
exist multipliers such that these conditions are
satisfied are called extremals. In general, it cannot
be excluded that �0 vanishes and extremals with
�0 D 0 are called abnormal, while those with
�0 > 0 are called normal. In this case, the
multiplier can be normalized, �0 D 1.

Special Case: A Mayer Problem for
Single-Input Control Linear Systems
Under the general assumptions formulated above,
the sets R˛ � Œt0; T � when a particular con-
straint is active can be arbitrarily complicated.

But in many practical applications, state con-
straints have strong geometric properties – often
they are embedded submanifolds – and it is pos-
sible to strengthen these necessary conditions for
optimality in the sense of specifying the measures
further. We formulate the conditions for a partic-
ular case of common interest.

We consider an optimal control problem in
Mayer form (i.e., L 
 0) for a single-input
control linear system with dynamics

Px D F.t; x; u/ D f .t; x/C ug.t; x/

and the control set U a compact interval, U D
Œa; b�. Adjoining time as extra state variable, Pt 

1, and defining

F0.t; x/D
�

1

f .t; x/

�
and G.t; x/D

�
0

g.t; x/

�
;

for a continuously differentiable function k W R�
R
n ! R

n, the expressions

LF0k W R � R
n ! R

n;

.t; x/ 7! .LF0k/ .t; x/

D @k

@t
.t; x/C @k

@x
.t; x/f .t; x/

and

LGk W R � R
n ! R

n;

.t; x/ 7! .LGk/ .t; x/ D @k

@x
.t; x/g.t; x/

represent the Lie (or directional) derivatives of
the function k along the vector fields F0 and G,
respectively. In terms of this notation, the deriva-
tive of the function h˛ (defining the manifoldM˛)
along trajectories of the system is given by

Ph˛.t; x.t// D d

dt
h˛.t; x.t//

D LF0h˛.t;x.t//Cu.t/LGh˛.t;x.t//:

If the function LGh˛ does not vanish at a point
.Qt ; Qx/ 2 M˛, then there exists a neighborhood
V of .Qt ; Qx/ such that there exists a unique
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control u˛ D u˛.t; x/ which solves the equation
Ph˛.t; x/ D 0 on V and u˛ is given in feedback
form as

u˛.t; x/ D �LF0h˛.t; x/
LGh˛.t; x/

:

The manifold M˛ is said to be control invariant
of relative degree 1 if the Lie derivative of h˛ with
respect toG, LGh˛, does not vanish anywhere on
M˛ and if the function u˛.t; x/ is admissible, i.e.,
takes values in the control set Œa; b�.

Thus, for a control-invariant submanifold of
relative degree 1, the control that keeps the man-
ifold invariant is unique, and the corresponding
dynamics induce a unique flow on the constraint.
This assumption corresponds to the least degener-
ate, i.e., in some sense most generic or common,
scenario and is satisfied for many practical prob-
lems.

Suppose the reference extremal is normal and
let �˛ be an M˛-boundary arc defined over an
open interval I with corresponding boundary
control u˛ that takes values in the interior of the
control set along �˛. Then the Radon measure�˛
is absolutely continuous with respect to Lebesgue
measure on I with continuous and nonnegative
Radon-Nikodym derivative �˛.t/ given by

�˛.t/ D
�.t/

�
@g

@t
.t; x�.t//C Œf; g�.t; x�.t//

�
LGh˛.t; x�.t//

where Œf; g� denotes the Lie bracket of the time-
varying vector fields f and g in the variable x,

Œf; g�.t; x/ D @g

@x
.t; x/f .t; x/� @f

@x
.t; x/g.t; x/:

In particular, in this case, the adjoint equation can
be expressed in the more common form

P�.t/ D ��.t/@F
@x
.t; x�; u�/� �˛.t/

@h˛

@x
.t; x�/;

with all partial derivatives evaluated along the
reference trajectory. Furthermore, the multiplier
� remains continuous at entry or exit if the
controlled trajectory .x�; u�/meets the constraint

M˛ transversally (e.g., see Schättler 2006). This
follows from the following characterization of
transversal connections between interior and
boundary arcs due to Maurer (1977): if 	 is an
entry or exit junction time between an interior arc
and an M˛-boundary arc for which the reference
control u� has a limit at 	 along the interior
arc, then the interior arc is transversal to M˛

at entry or exit if and only if the control u� is
discontinuous at 	 .

Informal Formulation of Necessary
Conditions
In order to ensure the practicality of necessary
conditions for optimality, it is essential that be-
sides atomistic structures at junctions that lead to
computable jumps in the multipliers, the Radon
measures �˛ have no singular parts with respect
to Lebesgue measure. If it is assumed a priori that
optimal controlled trajectories are finite concate-
nations of interior and boundary arcs, and if the
constraint sets have a reasonably regular structure
(embedded submanifolds and transversal inter-
sections thereof) and satisfy a rather technical
constraint qualification (see Hartl et al. 1995)
that guarantees that the restrictions of the system
to active constraints have solutions, then it is
possible to specify the above necessary condi-
tions further and formulate more user friendly
versions for the determination of the multipliers.
Such formulations have become the standard for
numerical computations, but they still have not
always been established rigorously and somewhat
carry the stigma of a heuristic nature. Neverthe-
less, it is often this more concrete set of condi-
tions that allow to solve problems numerically
and analytically. If then, in conjunction with
sufficient conditions for optimality, it is possible
to verify the optimality of the computed extremal
solutions, this generates a satisfactory theoretical
procedure. Such conditions, following Hartl et al.
(1995), generally are referred to as the “informal
theorem”.

Suppose .x�; u�/ is a normal extremal con-
trolled trajectory defined over the interval Œt0; T �
with the property that the graph of x� is a finite
concatenation of interior and boundary arcs with
junction times 	i , i D 1; : : : ; k, t0 D 	0 < 	1 <
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: : : < 	k < 	kC1 D T . Under an appropriate
constraint qualification, there exist a multiplier �,
� W Œt0; T � ! .Rn/�, which is absolutely con-
tinuous on each subinterval Œ	i ; 	iC1�; multipliers
�˛ , �˛ W Œt0; T � ! .Rn/�, which are continuous
on each interval Œ	i ; 	iC1�; a vector � 2 .Rk/�;
and vectors �.	i / 2 .Rr /�, i D 1; : : : ; k, with
nonnegative entries such that:
(a) (adjoint equation) On each interval

.	i ; 	iC1/, i D 0; : : : ; r , � satisfies the
adjoint equation in the form

P�.t/ D �@L
@x
.t; x�.t/; u�.t//

��.t/@F
@x
.t; x�.t/; u�.t//

�
rX

˛D1
�˛.t/

@h˛

@x
.t; x�/;

with �˛.t/ D 0 if the constraint M˛ is not
active at time t . Assuming that no state space
constraint is active at the terminal time, the
value of the multiplier � at the terminal time
is given by the transversality condition

�.T / D @˚

@x
.T; x�.T //C �

@�

@x
.T; x�.T //:

At any junction time 	i between an interior
arc and a boundary arc, the multiplier � may
be discontinuous satisfying a jump condition
of the form

�.	i�/ D �.	iC/C �.	i /
@h

@x
.	i ; x�.	i //

and the complementary slackness condition

�.	i /
@h

@x
.	i ; x�.	i // D 0

holds.
(b) The optimal control minimizes the Hamil-

tonian over the control set U along
.�.t/; x�.t//:

H.t; �.t/; x�.t/; u�.t//

D min
v2U H.t; �.t/; x�.t/; v/

and at the junction times 	i we have that

H.	i ; �.	i�/; x�.	i /; u�.	i�//
D H.	i ; �.	iC/; x�.	i /; u�.	iC//

��.	i /@h
@t
.	i ; x�.	i //:

Sufficient Conditions for Optimality

The literature on sufficient conditions for opti-
mality for optimal control problems with state
space constraints is limited. The value function
for an optimal control problem at a point .t; x/ in
the extended state space, V D V.t; x/, is defined
as the infimum over all admissible controls u for
which the corresponding trajectory starts at the
point x at time t and satisfies all the constraints
of the problem,

V.t; x/ D inf
u2U J.u/:

Any sufficiency theory for optimal control prob-
lems, one way or another, deals with the solution
of the corresponding Hamilton-Jacobi-Bellman
(HJB) equation:

@V

@t
.t; x/C min

u2U

�
@V

@x
.t; x/F.t; x; u/

CL.t; x; u/g 
 0;

V .T; x/ D ˚.T; x/ whenever �.T; x/ D 0:

Value functions for optimal control problems
rarely are differentiable everywhere, but gener-
ally have singularities along lower-dimensional
submanifolds. Nevertheless, under some techni-
cal assumptions and with proper interpretations
of the derivatives, this equation describes the
evolution of the value function of an optimal
control problem and, if an appropriate solution
can be constructed, indeed solves the optimal
control problem.

There exists a broad theory of viscosity so-
lutions to the HJB equation (e.g., Fleming and
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Soner 2005; Bardi and Capuzzo-Dolcetta 2008)
that is also applicable to problems with state
space constraints (Soner 1986) and, under vary-
ing technical assumptions, characterizes the value
function V as the unique viscosity solution to the
HJB equation. This has led to the development of
algorithms that can be used to compute numerical
solutions.

A more classical and more geometric
approach to solving the HJB equation is based
on the method of characteristics and goes back to
the work of Boltyansky on a regular synthesis
for optimal control problems without state
space constraints (Boltyanskii 1966). This work
follows classical ideas of fields of extremals
from the calculus of variations and imposes
technical conditions that allow to handle the
singularities that arise in the value functions
(e.g., see, Schättler and Ledzewicz 2012).
Stalford’s results in Stalford (1971) follow
this approach for problems with state space
constraints, but a broadly applicable theory of

regular synthesis, as it was developed by Piccoli
and Sussmann in (2000) for problems without
state space constraints, does not yet exist for
problems with state space constraints. Results
that embed a controlled reference extremal into
a local field of extremals have been given by
Bonnard et al. (2003) or Schättler (2006), and
these constructions show the applicability of the
concepts of a regular synthesis to problems with
state space constraints as well.

Examples of Local Embeddings
of Boundary Arcs
We illustrate the typical, i.e., in some sense most
common, generic structures of local embeddings
of boundary arcs in Figs. 1 and 2. The state
constraint M˛ is a control-invariant submanifold
of relative degree 1 and represented by a hori-
zontal line as it arises when limits on the size
of a particular state are imposed. Figure 1 shows
the typical entry-boundary-exit concatenations of
an interior arc followed by a boundary arc and

Optimal Controlwith
State Space Constraints,
Fig. 1 A typical local
synthesis around a
boundary arc when no
terminal constraints are
present

Optimal Controlwith
State Space Constraints,
Fig. 2 A typical local
synthesis around a
boundary arc when
terminal constraints are
present
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another interior arc. The local embedding of the
boundary arc differs substantially from classi-
cal local imbeddings for unconstrained problems
in the sense that this field necessarily contains
small pieces of trajectories which, when propa-
gated backward, are not close to the reference
trajectory. This, however, does not affect the
memoryless properties required for a synthesis
forward in time, and strong local optimality of
the reference trajectory can be proven combining
synthesis type arguments with homotopy type
approximations of the synthesis (Schättler 2006).
The one trajectory marked as black line in Fig. 1
corresponds to an optimal trajectory that meets
the constraint only at the junction point and
immediately bounces back into the interior. Such
a trajectory arises as the limit when the concate-
nation structure of optimal controlled trajecto-
ries changes from interior-boundary-interior arcs
to trajectories that do not meet the constraint.
These structures are one of the extra sources
for singularities in the value function that come
up in optimal control problems with state space
constraints. Switching surfaces for the interior
arcs, as one is also shown in this figure, do not
cause such a loss of differentiability if they are
crossed transversally be the extremal trajectories
of the field.

Figure 2 depicts the structure of an optimal
synthesis for a problem from electronics, the
problem of minimizing the base transit time of
bipolar homogeneous transistors. The electrical
field that determines the transit time is controlled
by tailoring a distribution of dopants in the base
region, and this dopant profile becomes an impor-
tant design parameter determining the speed of
the device. But due to physical and engineering
limitations, the variables describing the dopants
need to be limited, and thus this becomes an
optimal control problem with state space con-
straints represented by hard limits on the vari-
ables. The constraints here are control invariant
of relative degree 1. Optimal solutions, in the
presence of initial and terminal constraints, have
both portions along the upper and lower control
limits of the constrained variable and typically
proceed from the upper to the lower values along
an optimal singular control (which takes values in

the interior of the control set) in the interior of the
admissible domain, possibly with saturation if the
control limits are reached.

Cross-References

�Numerical Methods for Nonlinear Optimal
Control Problems

�Optimal Control and Pontryagin’s Maximum
Principle
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Abstract

Optimal deployment refers to the problem of how
to allocate a finite number of resources over a
spatial domain to maximize a performance metric
that encodes certain quality of service. Depend-
ing on the deployment environment, the type of
resource, and the metric used, the solutions to this
problem can greatly vary.

Keywords

Coverage control algorithms; Facility location
problems

Introduction

The problem of deciding what are optimal geo-
graphic locations to place a set of facilities has a
long history and is the main subject in operations
research and management science; see Drezner
(1995). A facility can be broadly understood as
a service such as a school; a hospital; an airport;
an emergency service, such as a fire station; or,
more generally, routes of a vehicle, from buses
to aircraft, an autonomous vehicle, or a mobile
sensor.

The specific formulation of facility location
problems depends very much on the particular
underlying application. A distinguishing feature
is that all involve strategic planning, accounting
for the long-term impact on the facility operating
cost and their fast response to the demand. Thus,
these problems lead to constrained optimization
formulations which are typically very hard to
solve optimally. The computational complexity
of such problems, which, even in their most basic
formulations, typically lead to NP-hard problems,
has made their solution largely intractable until
the advent of high-speed computing.

Locational optimization techniques have also
been employed to solve optimal estimation
problems by static sensor networks, mesh and
grid optimization design, clustering analysis, data
compression, and statistical pattern recognition;
see Du et al. (1999). However, these solutions
typically require centralized computations and
availability of information at all times.

When the facilities are multiple vehicles or
mobile sensors, the underlying dynamics may
require additional changes and further analysis
that guarantee the overall system stability. In
what follows, we review a particular coverage
control problem formulation in terms of the
so-called expected-value multicenter functions
that makes the analysis tractable leading to
robust, distributed algorithm implementations
employing computational geometric objects such
as Voronoi partitions.

Basic Ingredients from
Computational Geometry

In order to formulate a basic optimal deployment
problem and algorithm, we require of several
notions from computational geometry; see Bullo
et al. (2009) for more information.

Let S be a measurable set of R
m, for m 2

N, consider a distance function d on R
m, and

let P D fp1; : : : ; png be n distinct points of
S , corresponding to locations of certain facil-
ities. The Voronoi partition of S generated by
P and associated with d is given by V.P / D
fV1.P /; : : : ; Vn.P /g, where
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Vi.P / D ˚
q 2 S j d.pi ; q/ � d.pj ; q/;

j 2 P n fig�; i 2 f1; : : : ; ng:

Given r 2 R>0, denote by B.pi ; r/ the closed
ball of center pi and radius r . The r-limited
Voronoi partition of S generated by P and as-
sociated with d is the Voronoi partition of the
set S \ [n

iD1B.pi ; r/, denoted as Vr .P / D
fV1;r .P /; : : : Vn;r .P /g.

Let � W S ! R�0 be a measurable density
function on S . The area and the centroid (or
center of mass) of W � S with respect to � are
the values

A�.W / D
Z
W

�.q/dq;

CM�.W / D 1

A�.W /

Z
W

q�.q/dq:

We say that the set of distinct points P in S

is a centroidal Voronoi configuration (resp., a r-
limited centroidal Voronoi configuration) if each
pi is at the centroid of its own Voronoi cell.
That is, pi D CM�.Vi .P //, i 2 f1; : : : ; ng
(resp., pi D CM�.Vi;r .P //, and i 2 f1; : : : ; ng).
Voronoi partitions and centroidal Voronoi config-
urations help assess the distribution of locations
in a spatial domain as we establish below.

A Voronoi partition induces a natural proxim-
ity graph, called the Delaunay graph, over the
set of points P . We recall that a graph G is a
pair G D .V;E/ where V is a set of n vertices
and E is a set of ordered pair of vertices, E �
V � V , called edge set. A proximity graph is
a graph function defined on the set S , which
assigns a set of distinct points P � S to a graph
G.P / D .P;E.P //, where E.P / is a function
of the relative locations of the point set. Example
graphs include the following:
1. The r-disk graph, Gdisk,r , for r 2 R>0. Here,
.pi ; pj / 2 Edisk,r .P / if d.pi ; pj / � r .

2. The Delaunay graph, GD. We have .pi ; pj / 2
ED.P / if Vi .P / \ Vj .P / ¤ ;.

3. The r-limited Delaunay graph, GLD,r , for r 2
R>0. Here, .pi ; pj / 2 ELD,r .P / if Vi;r .P / \
Vi;r .P / ¤ ;.

Expected-ValueMulticenter
Functions

Facility location problems consist of spatially
allocating a number of sites to provide certain
quality of service. Problems of this class are for-
mulated in terms of multicenter functions and, in
particular, expected-value multicenter functions.

To define these, consider � W S ! R�0
a density function over a bounded measurable
set S � R

m. One can regard � as a function
measuring the probability that some event takes
place over the environment. The larger the value
of �.q/, the more important the location q will
have. We refer to a nonincreasing and piecewise
continuously differentiable function f W R�0 !
R, possibly with finite jump discontinuities, as a
performance function.

Performance functions describe the utility of
placing a node at a certain distance from a loca-
tion in the environment. The smaller the distance,
the larger the value of f , that is, the better the
performance. For instance, in sensing problems,
performance functions can encode the signal-to-
noise ratio between a source with an unknown
location and a sensor attempting to locate it.
Without loss of generality, it can be assumed that
f .0/ D 0.

An expected-value multicenter function mod-
els the expected value of the coverage over any
point in S provided by a set of points p1; : : : ; pn.
Formally,

H.p1; : : : ; pn/D
Z
S

max
i2f1;:::;ng

f.kq�pik2/�.q/dq;
(1)

where k � k2 denotes the 2-norm of R
m. This

definition can be understood as follows: consider
the best coverage of q 2 S among those provided
by each of the nodes p1; : : : ; pn, which corre-
sponds to the value maxi2f1;:::;ng f .kq � pik2/.
Then, modulate the performance by the impor-
tance �.q/ of the location q. Finally, the infinites-
imal sum of this quantity over the environment S
gives rise to H.p1; : : : ; pn/ as a measure of the
overall coverage provided by p1; : : : ; pn.

From here, we can formulate the following
geometric optimization problem, known
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as the continuous p-median problem, see
Drezner (1995):

max
fp1;:::;png�S

H.p1; : : : ; pn/: (2)

The expected-value multicenter function can
be alternatively described in terms of the Voronoi
partition of S generated by P D fp1; : : : ; png.
Let us define the set

C D ˚
.p1; : : : ; pn/ 2 .Rm/n j pi D pj

for some i ¤ j g ;

consisting of tuples of n points, where some of
them are repeated. Then, for .p1; : : : ; pn/ 2 Sn n
C, one has

H.p1; : : : ; pn/D
nX
iD1

Z
Vi .P /

f .kq�pik2/�.q/dq:

(3)

This expression of H is appealing because it
clearly shows the result of the overall coverage
of the environment as the aggregate contribution
of all individual nodes. If .p1; : : : ; pn/ 2 C, then
a similar decomposition of H can be written in
terms of the distinct points P D fp1; : : : ; png.

Inspired by (3), a more general version of
the expected-value multicenter function is given
next. Given .p1; : : : ; pn/ 2 Sn and a partition
fW1; : : : ;Wng of S , let

H.p1; : : : ; pn;W1; : : : ;Wn/

D
nX
iD1

Z
Wi

f .kq � pik2/�.q/dq: (4)

For all .p1; : : : ; pn/ 2 Sn n C, we have that
H.p1; : : : ;pn/DH.p1; : : : ; pn;V1.P /; : : : ;Vn.P //.
With respect to, e.g., sensor networks, this
function evaluates the performance associated
with an assignment of the sensors’ locations
at .p1; : : : ; pn/ and a region assignment
.W1; : : : ;Wn/.

Moreover, one can establish that the Voronoi
partition (Du et al. 1999) V.P / is optimal for
H among all partitions of S . That is, let P D

fp1; : : : ; png 2 S . For any performance function
f and for any partition fW1; : : : ;Wng of S ,

H.p1; : : : ; pn; V1.P /; : : : ; Vn.P // �
H.p1; : : : ; pn;W1; : : : ;Wn/;

with a strict inequality if any set in fW1; : : : ;Wng
differs from the corresponding set in fV1.P /; : : : ;
Vn.P /g by a set of positive measure.

Next, we characterize the smoothness of the
expected-value multicenter function (Cortés et al.
2005). Before stating the precise properties, let
us introduce some useful notation. For a perfor-
mance function f , let discont.f / denote the (fi-
nite) set of points where f is discontinuous. For
each a 2 discont.f /, define the limiting values
from the left and from the right, respectively, as

f�.a/ D lim
x!a�

f .x/; fC.a/ D lim
x!aC

f .x/:

Recall that the line integral of a function g W
R
2 ! R over a curve C parameterized by a con-

tinuous and piecewise continuously differentiable
map  W Œ0; 1� ! R

2 is defined as follows:

Z
C

g D
Z
C

g./d WD
Z 1

0

g..t// k P.t/k2 dt;

and is independent of the selected parameteriza-
tion.

Now, given a set S � R
m that is bounded

and measurable, a density � W S ! R�0, and
a performance function f W R !�0 R, the
expected-value multicenter functionH W Sn ! R

is globally Lipschitz (Given S � R
h, a function

f W S ! R
k is globally Lipschitz if there exists

K 2 R>0 such that kf .x/ � f .y/k2 � Kkx �
yk2 for all x; y 2 S .) on Sn; and continuously
differentiable on Sn n C, where for i 2 f1; : : : ; ng

@H
@pi

.P / D
Z
Vi .P /

@

@pi
f .kq � pik2/�.q/dq

C
X

a2discont.f /

�
f�.a/ � fC.a/

�
Z
Vi .P /\ @B.pi ;a/

nout.q/�.q/dq; (5)
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where nout is the outward normal vector to
B.pi ; a/.

Different performance functions lead to differ-
ent expected-value multicenter functions. Let us
examine some important cases.

Distortion Problem
Consider the performance function f .x/ D �x2.
Then, on Sn n C, the expected-value multicenter
function takes the form

Hdistor.p1; : : : ; pn/D �
nX
iD1

Z
Vi .P /

kq � pik22�.q/dq:
In signal compression �Hdistor is referred to as
the distortion function and is relevant in many
disciplines where including vector quantization,
signal compression, and numerical integration;
see Gray and Neuhoff (1998) and Du et al.
(1999). Here, distortion refers to the average
deformation (weighted by the density �) caused
by reproducing q 2 S with the location pi in
P D fp1; : : : ; png such that q 2 Vi.P /. By
means of the Parallel Axis Theorem (see Hibbeler
2006), it is possible to express Hdistor as a sum

Hdistor.p1; : : : ; pn;W1; : : : ;Wn/

D
nX
iD1

� J�.Wi ;CM�.Wi //

� A�.Wi/kpi � CM�.Wi /k22; (6)

where J�.W; p/ D R
W

kq � pk2�.q/dq is the
so-called moment of inertia of the region W

about p with respect to �. In this way, the terms
J�.Wi ;CM�.Wi// only depend on the partition
of S , whereas the second terms multiplied by
A�.Wi / include the particular location of the
points. As a consequence of this observation, the
optimality of the centroid locations for Hdistor

follows Bullo et al. (2009). More precisely, let
fW1; : : : ;Wng be a partition of S . Then, for any
set points P D fp1; : : : ; png in S ,

Hdistor
�
CM�.W1/; : : : ;CM�.Wn/;W1; : : : ;Wn

�
� Hdistor.p1; : : : ; pn;W1; : : : ;Wn/;

and the inequality is strict if there exists i 2
f1; : : : ; ng for which Wi has nonvanishing area
and pi 6D CM�.Wi /. In other words, the centroid
locations CM�.W1/; : : : ;CM�.Wn/ are optimal
for Hdistor among all configurations in S .

Note that when n D 1, the node location that
optimizes p 7! Hdistor.p/ is the centroid of the
set S , denoted by CM�.S/.

Recall that the gradient of Hdistor on Sn n C
takes the form,

@Hdistor

@pi
.P / D2A�.Vi .P //.CM�.Vi .P // � pi /;

i 2 f1; : : : ; ng;

that is, the i th component of the gradient points
in the direction of the vector going from pi
to the centroid of its Voronoi cell. The critical
points of Hdistor are therefore the set of centroidal
Voronoi configurations in S . This is a natural
generalization of the result for the case n D 1,
where the optimal node location is the centroid
CM�.S/.

Area Problem
For r 2 R>0, consider the performance function
f .x/ D 1Œ0;r�.x/, that is, the indicator function
of the closed interval Œ0; r�. Then, the expected-
value multicenter function becomes

Harea,r.p1; : : : ; pn/ D
nX
iD1

A�.Vi .P /\B.pi ; r//

D A�.[n
iD1B.pi ; r//;

which corresponds to the area, measured accord-
ing to �, covered by the union of the n balls
B.p1; r/; : : : ; B.pn; r/.

Let us see how the computation of the partial
derivatives of Harea,r specializes in this case.
Here, the performance function is differentiable
everywhere except at a single discontinuity, and
its derivative is identically zero. Therefore, the
first term in (5) vanishes. The gradient of Harea,r
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on Sn n C then takes the form, for each i 2
f1; : : : ; ng,

@Harea,r

@pi
.P / D

Z
Vi .P /\ @B.pi ;r/

nout.q/�.q/dq;

where nout is the outward normal vector to
B.pi ; r/. The critical points of Harea,r correspond
to configurations with the property that each pi
is a local maximum for the area of Vi;r .P / D
Vi .P / \ B.pi ; r/ at fixed Vi.P /. We refer to
these configurations as r-limited area-centered
Voronoi configurations.

Optimal Deployment Algorithms

Once a set of optimal deployment configurations
have been characterized, the next step is to devise
a distributed algorithm that allows a group of
mobile robots to converge to such configurations.
Gradient algorithms are the first of the options
that should be explored.

For the expected-value multicenter functions,
robots whose dynamics can be described by first-
order integrator dynamics and which can commu-
nicate at predetermined communication rounds of
a fixed time schedule, these laws present a similar
structure, loosely described as follows:

[Informal description] In each communication
round, each robot performs the following tasks: (i)
it transmits its position and receives its neighbors’
positions; (ii) it computes a notion of the geometric
center of its own cell, determined according to
some notion of partition of the environment. (iii)
Between communication rounds, each robot moves
toward this center.

The notions of geometric center and of par-
tition of the environment differ depending on
what is the type of expected-value multicenter
function used. In the Voronoi-center deployment
algorithm, the geometric center just reduces to
CM�.Vi /. In the limited-Voronoi-normal deploy-
ment problem in (ii), each agent computes the
direction of v D @Harea,r

@pi
for some r and (iii)

moves for a maximum step size in this direction
to ensure the area function will be decreased.

The Voronoi-center deployment algorithm
achieves convergence of a set of nodes
to a centroidal Voronoi configuration, thus
maximizing the expected-value multicenter
function Hdistor. The algorithm is distributed over
the proximity graph GD, as the computation of
the centroids requires information in NGD.pi /,
for each i 2 f1; : : : ; ng. Additional properties of
this algorithm are that the algorithm is adaptive
to agent departures or arrivals and amenable to
asynchronous implementations.

On the other hand, the limited-Voronoi-normal
deployment algorithm achieves convergence to a
set that locally maximizes the area covered by the
set of sensing balls. The algorithm is distributed
in the sense that agents only need to know in-
formation from neighbors in the proximity graph
G2r or, more precisely, GLD,r . Thus, it can be
implemented by agents that employ range-limited
interactions. It enjoys similar robustness proper-
ties as the Voronoi-center deployment algorithm.

Simulation Results

We show evolutions of the Voronoi-centroid de-
ployment algorithm in Fig. 1. One can verify that
the final network configuration is a centroidal
Voronoi configuration. For each evolution we
depict the initial positions, the trajectories, and
the final positions of all robots.

Finally, we show an evolution of limited-
Voronoi-normal deployment algorithm in
Fig. 2. One can verify that the final network
configuration is an r

2
-limited area-centered

Voronoi configuration. In other words, the
deployment task is achieved.

Future Directions for Research
The algorithms described above achieve
locally optimal deployment configurations with
respect to expected-value multicenter functions.
However, this simplified setting does not
account for many important constraints, such
as obstacles and deployment in non-convex
environments (Pimenta et al. 2008; Caicedo-
Nùñez and Žefran 2008), deployment with vis-
ibility sensors, range-limited and wedge-shaped
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Optimal Deployment and Spatial Coverage, Fig. 1
The evolution of the Voronoi-centroid deployment algo-
rithm with n D 20 robots. The left-hand (resp., right-
hand) figure illustrates the initial (resp., final) locations

and Voronoi partition. The central figure illustrates the
evolution of the robots. After 13 s, the value of Hdistor has
monotonically increased to approximately �0:515

Optimal Deployment and Spatial Coverage, Fig. 2
The evolution of the limited-Voronoi-normal deployment
algorithm with n D 20 robots and r D 0:4. The
left-hand (resp., right-hand) figure illustrates the initial
(respectively, final) locations and Voronoi partition. The

central figure illustrates the evolution of the robots. The
r
2
-limited Voronoi cell of each robot is plotted in light

gray. After 36 s, the value of Harea, with a D r
2
, has

monotonically increased to approximately 14:141

footprints (Ganguli et al. 2006; Laventall
and Cortés 2009), and energy and vehicle
dynamical restrictions (Kwok and Martínez
2010a,b). Deployment strategies find application
in exploration and data gathering tasks, and so
these algorithms have been expanded to account
for uncertainty and learning of unknown density
functions (Schwager et al. 2009; Graham and
Cortés 2012; Zhong and Cassandras 2011;
Martínez 2010). Gossip and self-triggered
communications (Bullo et al. 2012; Nowzari
and Cortés 2012), self-triggered computations
for region approximation (Ru and Martínez
2013), and area equitable partitions (Cortés
2010) have also been investigated. Much work is
currently being devoted to solve on the current
limitations of these nontrivial extensions, which
make the problem settings significantly harder to
solve.

Cross-References

�Graphs for Modeling Networked Interactions
�Multi-vehicle Routing
�Networked Systems
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Optimal Sampled-Data Control

Yutaka Yamamoto
Department of Applied Analysis and Complex
Dynamical Systems, Graduate School of
Informatics, Kyoto University, Kyoto, Japan

Abstract

This article gives a brief overview on the modern
development of sampled-data control. Sampled-
data systems intrinsically involve a mixture of
two different time sets, one continuous and the
other discrete. Due to this, sampled-data systems
cannot be characterized in terms of the stan-
dard notions of transfer functions, steady-state
response, or frequency response. The technique
of lifting resolves this difficulty and enables the
recovery of such concepts and simplified solu-
tions to sampled-data H1 and H2 optimization
problems. We review the lifting point of view, its
application to such optimization problems, and
finally present an instructive numerical example.

Keywords

Computer control; Frequency response; H1 and
H2 optimization; Lifting; Transfer operator

Introduction

A sampled-data control system consists of
a continuous-time plant and a discrete-time
controller, with sample and hold devices
that serve as an interface between these two
components. As can be seen from this fact,
sampled-data systems are not time invariant,
and various problems arise from this property.

To be more specific, consider the unity-
feedback control system shown in Fig. 1; r is
the reference signal, y the system output, and
e the error signal. These are continuous-time
signals. The error e.t/ goes through the sampler
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Optimal Sampled-Data Control, Fig. 1 A unity-feedback system

Optimal Sampled-Data Control, Fig. 2 Sampling with 0-order hold

(or an A/D converter) S. This sampler reads out
the values of e.t/ at every time step h called
the sampling period and produces a discrete-
time signal ed Œk�, k D 0; 1; 2; : : : (Fig. 2). In
particular, the sampling operator S acts on a
continuous-time signal w.t/, t � 0, as

S.w/Œk� WD w.kh/; k D 0; 1; 2; : : :

The discretized signal is then processed by the
discrete-time controller C.z/ and becomes a con-
trol input ud . There can also be a quantization
effect, although for the sake of simplicity this is
neglected here. The obtained signal ud then goes
through another interface H called a hold device
or a D/A converter to become a continuous-time
signal. A typical example is the 0-order hold
where H simply maintains the value of a discrete-
time signal wŒk� constant as its output until the
next sampling time:

.H.wŒk�// .t/ WD wŒk�; for kh � t < .k C 1/h:

A typical sample-hold action is shown in Fig. 2.
While one can consider a nonlinear plant P or

controllerC , or infinite-dimensionalP andC we
confine ourselves to linear and finite-dimensional
P and C , and also suppose that P and C are time
invariant in continuous time and in discrete time,
respectively.

TheMain Difficulty

As stated above, the unity-feedback system Fig. 1
is not time invariant either in continuous time or
in discrete time, even when the plant and con-
troller are both time invariant in their respective
domains of operators. The mixture of the two
time sets prohibits the total closed-loop system
from being time invariant.
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The lack of time-invariance implies that we
cannot naturally associate to sampled-data sys-
tems such classical concepts of transfer functions,
steady-state response and frequency response.

One can regard Fig. 1 as a time-invariant
discrete-time system by ignoring the intersample
behavior and focusing attention on the sample-
point behavior only. But the obtained model does
not then reflect what happens between sampling
times. This approach can lead to the neglect
of undesirable inter-sample oscillations, called
ripples. To monitor the intersample behavior,
the notion of the modified z-transform was
introduced, see, e.g., Jury (1958) and Ragazzini
and Franklin (1958); however, this transform is
usable only after the controller has been designed
and hence not for the design problems considered
in this article.

Lifting: A Modern Approach

A new approach was introduced around 1990–
1991 (Bamieh et al. 1991; Tadmor 1991; Toivo-
nen 1992; Yamamoto 1990, 1994). The new idea,
now called lifting, makes it possible to describe
sampled-data systems via a time-invariant model
while maintaining the intersample behavior.

Let f .t/ be a continuous-time signal. Instead
of sampling f .t/, we will represent it as a se-
quence of functions. Namely, we set up the cor-
respondence:

L W f 7! ff Œk�.�/g1
kD0;

f Œk�.�/ D f .khC �/; 0 � � < h (1)

See Fig. 3.

This idea makes it possible to view a (time-
invariant or even periodically time-varying)
continuous-time system as a linear, time-invariant
discrete-time system.

Let
Px.t/ D Ax.t/C Bu.t/
y.t/ D Cx.t/:

(2)

be a given continuous-time plant and lift the input
u.t/ to obtain uŒk�.�/. We apply this lifted input
with the timing t D kh (h is the prespecified sam-
pling rate as above) and observe how it affects the
system. Let xŒk� be the state at time t D kh. The
state xŒk C 1� at time .k C 1/h is given by

xŒk C 1� D eAhxŒk� C
Z h

0

eA.h�	/BuŒk�.	/d	:

(3)

The right-hand side integral defines an operator

L2Œ0; h/ ! R
n W u.�/ 7!

Z h

0

eA.h�	/Bu.	/d	:

While the state-transition (3) only described a
discrete-time update, the system keeps producing
an output during the intersample period. If we
consider the lifting of x.t/, it is easily seen to be
described by

xŒk�.�/ D eA�xŒk�C
Z �

0

eA.��	/BuŒk�.	/d	:

As such, the lifted output yŒk�.�/ is given by

yŒk�.�/ D CeA�xŒk�C
Z �

0

CeA.��	/BuŒk�.	/d	:

(4)

Observe that formulas (3) and (4) take the form

Optimal Sampled-Data Control, Fig. 3 Lifting
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xŒk C 1� D AxŒk� C BuŒk�

yŒk� D CxŒk�C DuŒk�;

and the operators A;B; C;D do not depend
on the time variable k. In other words, it is
possible to describe this continuous-time system
with discrete timing, once we adopt the lifting
point of view. To be more precise, the operators
A;B; C;D are defined as follows:

A W R
n ! R

n W x 7! eAhx

B W L2Œ0; h/ ! R
n W u 7! R h

0
eA.h�	/Bu.	/d	

C W R
n ! L2Œ0; h/ W x 7! CeA.�/x

D W L2Œ0; h/ ! L2Œ0; h/ W u 7!R �
0
CeA.��	/Bu.	/d	

(5)

Thus the continuous-time plant (2) can be de-
scribed by a time-invariant discrete-time model.
Once this is done, it is straightforward to connect
this expression with a discrete-time controller,
and hence, sampled-data systems (for example,
Fig. 1) can be fully described by time-invariant
discrete-time equations, without discarding the
intersampling information. We will also denote
the overall equation (with discrete-time controller
included) abstractly in the form

xŒk C 1� D AxŒk� C BuŒk�
yŒk� D CxŒk�C DuŒk�:

(6)

While the obtained discrete-time model is a time
invariant, the input and output spaces are now
infinite dimensional. Its transfer function (oper-
ator) is defined as

G.z/ WD D C C.zI � A/�1B: (7)

Note that A in (6) is a matrix because it is so for
A in (5). Hence, (6) is stable ifG.z/ is analytic for
fz W jzj � 1g, provided that there is no unstable
pole-zero cancellation.

Definition 1 LetG.z/ be the transfer operator of
the lifted system given by (7), which is stable in
the sense above. The frequency response operator
is the operator

G.ej!h/ W L2Œ0; h/ ! L2Œ0; h/ (8)

regarded as a function of ! 2 Œ0; !s/ (!s WD
2�=h). Its gain at ! is defined to be

kG.ej!h/k D sup
v2L2Œ0;h/

kG.ej!h/vk
kvk : (9)

The maximum kG.ej!h/k over Œ0; !s/ is the H1
norm of G.z/. The H2-norm of G is defined by

kGk2 WD
 
h

2�

Z 2�=h

0

trace fG�.ej!h/G.ej!h/gd!
!1=2

;

(10)

where the trace here is taken in the sense of
Hilbert-Schmidt norm; see Chen and Francis
(1995) for details.

H 1 and H 2 Control Problems

A significant consequence of the lifting approach
described above is that various robust control
problems such as H1 and H2 control problems
for sampled-data control systems can be
converted to corresponding discrete-time (finite-
dimensional) problems. The approach was
initiated by Chen and Francis (1990) and later
solved by Bamieh and Pearson (1992), Kabamba
and Hara (1993), Sivashankar and Khargonekar
(1994), Tadmor (1991), and Toivonen (1992)
in more complete forms; see Chen and Francis
(1995) for the pertinent historical accounts.

Let us introduce the notion of generalized
plants. Suppose that a continuous time plant is
given in the following model:

Pxc.t/ D Axc.t/C B1w.t/C B2u.t/
z.t/ D C1xc.t/CD11w.t/CD12u.t/
y.t/ D C2xc.t/

(11)

Here w is the exogenous input, u.t/ control input,
y.t/ measured output, and z.t/ is the controlled
output. The objective is to design a controller that
takes the sampled measurements of y and returns
a control variable u according to the following
formula:

xd Œk C 1� D Adxd Œk�C BdSyŒk�
vŒk� D Cdxd Œk�CDdSyŒk�

uŒk�.�/ D H.�/vŒk�

(12)
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Optimal Sampled-Data Control, Fig. 4 Sampled feed-
back system

where H.�/ is a suitable hold function. This
is depicted in Fig. 4. The objective here is to
design or characterize a controller that achieves
a prescribed performance level  > 0 in such a
way that

kTzwk1 <  (13)

where Tzw denotes the closed-loop transfer oper-
ator from w to z. This is the H1 control problem
for sampled-data systems. If we take the H2-
norm (10) instead, then the problem becomes that
of the H2 (sub)optimal control problem.

The difficulty here is that both w and z are
continuous-time variables, and hence their lifted
variables are infinite dimensional. A remarkable
fact here is that the H1 problem (and the
H2 problem as well) (13) can be equivalently
transformed to an H1 problem for a finite-
dimensional discrete-time system. We will
indicate in the next section how this can be done.

H 1 Norm Computation and
Reduction to Finite Dimension

Let us write the system (11) and (12) in the form

xŒk C 1� D AxŒk�C BuŒk�
yŒk� D CxŒk�C DuŒk�:

(14)

as in (6). For simplicity of treatments, assume
D11 in (11) to be zero; for the general case, see
Yamamoto and Khargonekar (1996).

LetG.z/ be the transfer operatorG.z/ WD DC
C.zI � A/�1B. The H1 norm of G is given as
the maximum of the singular values of the gain
G.ej!h/ for ! 2 Œ0; 2�=h/.

Now consider the singular value equation

.2I �G�G.ej!h//w D 0: (15)

and suppose that  > kDk. A crux here is
that A;B; C are finite-rank operators, and we can
reduce this to a finite-dimensional rank condition.
Taking the adjoint of (14), we obtain

pŒk� D A�pkC1 C C�vŒk�

eŒk� D B�pkC1 C D�vŒk�:

Taking the z-transforms of both sides, setting z D
ej!h, and substituting v D y and e D 2w, we
obtain

ej!hx D Ax C Bw

p D ej!hA�p C C�.Cx C Dw/

.2 � D�D/w D ej!hB�p C D�Cx:

Eliminating the variable w then yields

�
ej!h

	
I BR�1

 B�
0 A� C C�DR�1

 B�



�
	

A C BR�1
 D�C 0

C�.I C DR�1
 D�/C I


�	
x

p



D 0 (16)

whereR D .I �D�D/. The important point to
be noted here is that all the operators appearing
here are actually matrices. For example, B is an

operator from L2Œ0; h/ to R
n, and its adjoint B�

is an operator from R
n to L2Œ0; h/. Hence, the

composition BR�1
 B� is a linear operator from
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R
n into itself, i.e., a matrix. Thus, for a given

 the singular value equation admits a nontrivial
solution w for (15) if and only if the finite-
dimensional equation (16) admits a nontrivial so-
lution


x p

�T
(Yamamoto 1993; Yamamoto and

Khargonekar 1996). (Note that R is invertible
since  > kDk.)

It is possible to find matricesA;B;C such that
A D A C BR�1

 D�C, BB
�
=2 D BR�1

 B�, and

C
�
C D C�.I C DR�1

 D�/C, and hence (16) is
equivalent to

 
�

"
I �B B�

=2

0 A
�

#
�
	

A 0

�C�
C I


!	
x

p



D 0

(17)

for � D ej!h. In other words, we have that
kGk1 <  if and only if there exists no � of
modulus 1 such that (17) holds.

It can be proven that by substituting the ex-
pressions of (11) and (12) for .A;B; C;D/, one
obtains a finite-dimensional discrete-time gener-
alized plant Gd with digital controller (12) such
that kGk1 <  if and only if kGdk1 <  . The
precise formulas for the discrete-time plant can
be found, e.g., Bamieh and Pearson (1992), Chen
and Francis (1995), Kabamba and Hara (1993),
Yamamoto and Khargonekar (1996), and Cantoni
and Glover (1997).

An H 1 Design Example

For sampled-data control systems, there used to
be, and still is, a rather common myth that if
one takes a sufficiently fast sampling rate, it will
not cause a major problem. This can be true for
continuous-time design, but we here show that if
we employ a sample-point discretization without
a performance consideration for intersampling
behavior, fast sampling rates can cause a serious
problem.

Take a simple second-order plant P.s/ D
1=.s2C0:1sC1/, and consider the disturbance re-
jection problem minimizing the H1-norm from
w to z as given in Fig. 5. Set the sampling time
h D 0:5. We execute the following:

• Sampled-dataH1 design with the generalized
plant

G.s/ D
	
P.s/ P.s/

P.s/ P.s/



;

• Discrete-time H1 design with the discrete-
time generalized plant Gd.z/ given by the
step-invariant transformation (see, e.g., Chen
and Francis 1995) of G.s/.
Figures 6 and 7 show the frequency and

time responses of the two resulting closed-
loop systems, respectively. In Fig. 6, the solid
curve shows the response of the sampled design,
while the dash-dotted curve shows the discrete-
time frequency response, but purely reflecting
its sample-point behavior only. At first glance,
it may appear that the discrete-time design
performs better. But when we actually compute
the lifted sampled-data frequency response in
the sense defined in Definition 1, it becomes
obvious that the sampled-data design is far
superior. The dashed curve shows the frequency
response of the closed-loop, i.e., that of G.s/
connected with the discrete-time designed
Kd . The response is similar to the discrete-
time frequency response in low frequency, but
exhibits a very sharp peak around the Nyquist
frequency (i.e., half the sampling frequency;
in the present case, �=h � 6:28 rad/s, i.e.,
1=2h D 1Hz).

This can also be verified from the initial-
state responses Fig. 7 with x.0/ D .1; 1/. The
solid curve shows the sampled-data design
and the dashed curve the discrete-time one.
Both responses decay to zero rapidly at
sampled instants as shown by the circles for
the discrete-time design. But the discrete-time
design exhibits very large ripples, with period
approximately 1 s. This corresponds to 1Hz,
which is the same as 2� D �=h [rad/s],
i.e., the Nyquist frequency. This is precisely
captured in the lifted frequency response in
Fig. 6.

It is worth noting that when we take the
sampling period h smaller, the response for the
discrete-time design becomes even more oscilla-
tory and shows a very high peak in the frequency
response.
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Optimal Sampled-Data
Control, Fig. 5
Disturbance rejection

Optimal Sampled-Data
Control, Fig. 6 Frequency
responses h D 0:5

Summary, Bibliographical Notes, and
Future Directions

We have given a short summary of the main
achievements of modern sampled-data control
theory. Particularly, we have reviewed how the
technique of lifting resolved the intrinsic diffi-
culty arising from the mixture of two distinct time
sets: continuous and discrete. This idea further
led to the new notions of transfer operators and
frequency response. These notions together en-
abled us to treat optimal sampled-data control
problems in a unified and transparent way. We
have outlined how the sampled-data H1 control
problem can equivalently be reduced to a cor-
responding discrete-time H1 problem, without
sacrificing the performance in the intersample be-
havior. This has been exemplified by a numerical
example.

There are other performance indices for opti-
mality, typically those arising from H2 and L1

norms. These problems have also been studied
extensively, and fairly complete solutions are
available. For the lack of space, we cannot list all
references, and the reader is referred to Chen and
Francis (1995) and Yamamoto (1999) for a more
concrete survey and references therein.

For classical treatments of sampled-data con-
trol, it is instructive to consult Jury (1958) and
Ragazzini and Franklin (1958). The textbook
Åström and Wittenmark (1996) covers both clas-
sical and modern aspects of digital control. For a
mathematical background of the computation of
adjoints treated in section “H1 Norm Computa-
tion and Reduction to Finite Dimension,” consult
Yamamoto (2012) as well as Yamamoto (1993).

Since control devices are now mostly digital,
the importance of sampled-data control will
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Optimal Sampled-Data Control, Fig. 7 Initial-state responses h D 0:5

definitely increase. While the linear, time-
invariant case as treated here is now fairly
complete, sampled-data control for a nonlinear
or an infinite-dimensional plant seems to be still
quite an open issue, although it is unclear if the
methodology treated here is effective for such
classes of plants.

Sampled-data control has much to do with
signal processing. Indeed, since it can optimize
continuous-time performance, it can shed a new
light on digital signal processing. Traditionally,
Shannon’s paradigm based on the perfect band-
limiting hypothesis and the sampling theorem
has been prevalent in the signal processing
community. Since the sampling theorem opts
for perfect reconstruction, the resulting theory
reduces mostly to discrete-time problems. In
other words, the intersample information is
buried in the sampling theorem. It should,
however, be noted that the very stringent band-
limiting hypothesis is almost never satisfied
in reality, and various approximations are
necessitated. In contrast, sampled-data control
can provide an optimal platform for dealing with
and optimizing the response between sampling

points when the band-limiting hypothesis does
not hold. See, for example, Yamamoto et al.
(2012) and Nagahara and Yamamoto (2012) for
the idea and some efforts in this direction.

Cross-References

�Control Applications in Audio Reproduction
�H2 Optimal Control
�H-Infinity Control
�Optimal Control via Factorization and Model

Matching
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Abstract

This entry reviews optimization algorithms for
both linear and nonlinear model predictive con-
trol (MPC). Linear MPC typically leads to spe-
cially structured convex quadratic programs (QP)
that can be solved by structure exploiting active
set, interior point, or gradient methods. Nonlin-
ear MPC leads to specially structured nonlinear
programs (NLP) that can be solved by sequential
quadratic programming (SQP) or nonlinear inte-
rior point methods.

Keywords

Banded matrix factorization; Convex optimiza-
tion; Karush-Kuhn-Tucker (KKT) conditions;
Sparsity exploitation

Introduction

Model predictive control (MPC) needs to solve
at each sampling instant an optimal control prob-
lem with the current system state Nx0 as initial
value. MPC optimization is almost exclusively
based on the so-called direct approach which
first discretizes the continuous time system to
obtain a discrete time optimal control problem
(OCP). This OCP has as optimization variables
a state trajectory X D Œx>

0 ; : : : ; x
>
N �

> with xi 2
R
nx for i D 0; : : : ; N and a control trajectory

U D Œu>
0 ; : : : ; u

>
N�1�> with ui 2 R

nu for i D
0; : : : ; N � 1. For simplicity of presentation, we
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restrict ourselves to the time-independent case,
and the OCP we treat in this article is stated as
follows:

minimize
X;U

N�1X
iD0

L.xi ; ui / C E .xN / (1a)

subject to x0 � Nx0 D 0; (1b)

xiC1 � f .xi ; ui / D 0; i D 0; : : : ; N � 1;

(1c)

h.xi ; ui / � 0; i D 0; : : : ; N � 1;

(1d)

r .xN / � 0: (1e)

The MPC objective is stated in Eq. (1a), the sys-
tem dynamics enter via Eq. (1c), while path and
terminal constraints enter via Eqs. (1d) and (1e).
All functions are assumed to be differentiable and
to have appropriate dimensions (h.x; u/ 2 R

nh

and r.x/ 2 R
nr ). Note that Nx0 2 R

nx is not an op-
timization variable, but a parameter upon which
the OCP depends via the initial value constraint in
Eq. (1b). The optimal solution trajectories depend
only on this value and can thus be denoted by
X�. Nx0/ and U �. Nx0/. Obtaining them, in partic-
ular the first control value u�

0 . Nx0/, as fast and
reliably as possible for each new value of Nx0 is
the aim of all MPC optimization algorithms. The
most important dividing line is between convex
and non-convex optimal control problems (OCP).
If the OCP is convex, algorithms exist that find a
global solution reliably and in computable time.
If the OCP is not convex, one usually needs to be
satisfied with approximations of locally optimal
solutions. The OCP (1) is convex if the objec-
tive (1a) and all components of the inequality
constraint functions (1d) and (1e) are convex and
if the equality constraints (1c) are linear.

We typically speak of linear MPC when the
OCP to be solved is convex, and otherwise of
nonlinear MPC.

General Algorithmic Features for MPC
Optimization
In MPC we would dream to have the solution to
a new optimal control problem instantly, which is

impossible due to computational delays. Several
ideas can help us to deal with this issue.

Off-line Precomputations and Code
Generation
As consecutive MPC problems are similar and
differ only in the value Nx0, many computations
can be done once and for all before the MPC
controller execution starts. Careful preprocessing
and code optimization for the model routines is
essential, and many tools automatically gener-
ate custom solvers in low-level languages. The
generated code has fixed matrix and vector di-
mensions, has no online memory allocations, and
contains a minimal number of if-then-else state-
ments to ensure a smooth computational flow.

Delay Compensation by Prediction
When we know how long our computations for
solving an MPC problem will take, it is a good
idea not to address a problem starting at the cur-
rent state but to simulate at which state the system
will be when we will have solved the problem.
This can be done using the MPC system model
and the open-loop control inputs that we will ap-
ply in the meantime. This feature is used in many
practical MPC schemes with non-negligible com-
putation time.

Division into Preparation and Feedback Phase
A third ingredient of several MPC algorithms is
to divide the computations in each sampling time
into a preparation phase and a feedback phase.
The more CPU intensive preparation phase is
performed with a predicted state Nx0, before the
most current state estimate, say Nx0

0, is available.
Once Nx0

0 is available, the feedback phase delivers
quickly an approximate solution to the optimiza-
tion problem for Nx0

0.

Warmstarting and Shift
An obvious way to transfer solution information
from one solved MPC problem to the next one
uses the existing optimal solution as an initial
guess to start the iterative solution procedure of
the next problem. We can either directly use
the existing solution without modification for
warmstarting or we can first shift it in order to
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account for the advancement of time, which is
particularly advantageous for systems with time-
varying dynamics or objectives.

IteratingWhile the Problem Changes
A last important ingredient of some MPC algo-
rithms is the idea to work on the optimization
problem while it changes, i.e., to never iterate
the optimization procedure to convergence for an
MPC problem getting older and older during the
iterations but to rather work with the most current
information in each new iteration.

Convex Optimization for Linear MPC

Linear MPC is based on a linear system model of
the form xiC1 D Axi CBui and convex objective
and constraint functions in (1a), (1d), and (1e).
The most widespread linear MPC setting uses
a convex quadratic objective function and affine
constraints and solves the following quadratic
program (QP):

minimize
X;U

1

2

N�1X
iD0

	
xi
ui


>	
Q S

S> R


	
xi
ui



C 1

2
x>
NPxN

(2a)

subject to x0 � Nx0 D 0; (2b)

xiC1 �Axi � Bui D 0;i D 0; : : : ; N � 1;
(2c)

b C Cxi CDui � 0;i D 0; : : : ; N � 1;
(2d)

c C FxN � 0: (2e)

Here, b; c are vectors and Q;S;R;P; C;D;F

matrices, and matrices

	
Q S

S> R



and P are sym-

metric and positive semi-definite to ensure the QP
is convex.

Sparsity Exploitation
The QP (2) has a specific sparsity structure that
can be exploited in different ways. One way is to
reduce the variable space by a procedure called
condensing and then to solve a smaller-scale QP

instead of (2). Another way is to use a banded
matrix factorization.

Condensing
The constraints (2b) and (2c) can be used to
eliminate the state trajectory X . This yields an
equivalent but smaller-scale QP of the following
form:

minimize
U 2 R

Nnu

1

2

	
U

Nx0

> 	

H G

G> J


 	
U

Nx0



(3a)

subject to d CK Nx0 CMU � 0: (3b)

The number of inequality constraints is the same
as in the original QP (2) and given by m D
Nnh C nr . Note that in the simplest case without
inequalities (m D 0), the solution U �. Nx0/ of
the condensed QP can be obtained by setting the
gradient of the objective to zero, i.e., by solving
HU �. Nx0/ C G Nx0 D 0. The factorization of a
dense matrixH with dimensionNnu�Nnu needs
O.N3n3u/ arithmetic operations, i.e., the compu-
tational cost of condensing-based algorithms typ-
ically grows cubically with the horizon lengthN .

Banded Matrix Factorization
An alternative way to deal with the sparsity is
best sketched at hand of a sparse convex QP (2)
without inequality constraints (2d) and (2e). We
define the vector of Lagrange multipliers Y D
Œy>
0 ; : : : ; y

>
N �

> and the Lagrangian function by

L.X;U; Y / D y>
0 .x0 � Nx0/C 1

2
x>
NPxN

C 1

2

N�1X
iD0

	
xi
ui


>	
Q S

S> R


	
xi
ui



Cy>

iC1

.xiC1�AxiCBui /: (4)

If we reorder all unknowns that enter the Lagran-
gian and summarize them in the vector

W D Œy>
0 ; x

>
0 ; u

>
0 ; y

>
1 ; x

>
1 ; u

>
1 ; : : : ; y

>
N ; x

>
N �

>

the optimal solution W �. Nx0/ is uniquely charac-
terized by the first-order optimality condition
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rWL.W �/ D 0:

Due to the linear quadratic dependence of L on
W , this is a block-banded linear equation in the
unknownW �:

2
66666666664

0 I

I Q S �A>
S> R �B>
�A �B 0 I

I Q � �
� � �
� � 0 I

I P

3
77777777775
W �D

2
66666666664

Nx0
0

0

0

�
�
�
0

3
77777777775
:

Because the above matrix has nonzero elements
only on a band of width 2nx C nu around the di-
agonal, it can be factorized with a computational
cost of orderO.N.2nx C nu/

3/.

Treatment of Inequalities
An important observation is that both the un-
condensed QP (2) and the equivalent condensed
QP (3) typically fall into the class of strictly con-
vex parametric quadratic programs: the solution
U �. Nx0/; X�. Nx0/ is unique and depends piecewise
affinely and continuously on the parameter Nx0.
Each affine piece of the solution map corresponds
to one active set and is valid on one polyhedral
critical region in parameter space. This observa-
tion forms the basis of explicit MPC algorithms
which precompute the map u�

0 . Nx0/, but it can also
be exploited in online algorithms for quadratic
programming, which are the focus of this section.

We sketch the different ways of how to treat
inequalities only for the condensed QP (3), but
they can equally be applied in sparse QP al-
gorithms that directly address (2). The optimal
solution U �. Nx0/ for a strictly convex QP (3)
is – together with the corresponding vector of
Lagrange multipliers, or dual variables ��. Nx0/ 2
R
m – uniquely characterized by the so-called

Karush-Kuhn-Tucker (KKT) conditions, which
we omit for brevity. There are three big families
of solution algorithms for inequality-constrained
QPs that differ in the way they treat inequalities:
active set methods, interior point methods, and
gradient projection methods.

Active Set Methods
The optimal solution of the QP is characterized
by its active set, i.e., the set of inequality con-
straints (3b) that are satisfied with equality at this
point. If one would know the active set for a given
problem instance Nx0, it would be easy to find the
solution. Active set methods work with guesses
of the active set which they iteratively refine.
In each iteration, they solve one linear system
corresponding to a given guess of the active set.
If the KKT conditions are satisfied, the optimal
solution is found; if they are not, another division
into active and inactive constraints needs to be
tried. A crucial observation is that an existing
factorization of the linear system can be reused to
a large extent when only one constraint is added
or removed from the guess of the active set. Many
different active set strategies exist, three of which
we mention: Primal active set methods first find
a feasible point and then add or remove active
constraints, always keeping the primal variables
U feasible. Due to the difficulty of finding a
feasible point first, they are difficult to warmstart
in the context of MPC optimization. Dual active
set strategies always keep the dual variables �
positive. They can easily be warmstarted in the
context of MPC. Parametric or online active
set strategies ensure that all iterates stay primal
and dual feasible and go on a straight line in
parameter space from a solved QP problem to
the current one, only updating the active set when
crossing the boundary between critical regions, as
implemented in the online QP solver qpOASES.

Active set methods are very competitive in
practice, but their worst case complexity is not
polynomial. They are often used together with the
condensed QP formulation, for which each active
set change is relatively cheap. This is particu-
larly advantageous if an existing factorization can
be kept between subsequent MPC optimization
problems.

Interior Point Methods
Another approach is to replace the KKT condi-
tions by a smooth approximation that uses a small
positive parameter 	 > 0:

HU � CG Nx0 CM>�� D 0; (5a)
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�
d CK Nx0 CMU ��

i
��
i C 	 D 0; i D 1; : : : ; m:

(5b)

These conditions form a smooth nonlinear system
of equations that uniquely determines a primal
dual solution U �. Nx0; 	/ and ��. Nx0; 	/ in the in-
terior of the feasible set. They are not equiv-
alent to the KKT conditions, but for 	 ! 0,
their solution tends to the exact QP solution. An
interior point algorithm solves the system (5a)
and (5b) by Newton’s method. Simultaneously,
the path parameter 	 , that was initially set to
a large value, is iteratively reduced, making the
nonlinear set of equations a closer approximation
of the original KKT system. In each Newton
iteration, a linear system needs to be factored
and solved, which constitutes the major com-
putational cost of an interior point algorithm.
For the condensed QP (3) with dense matrices
H;M , the cost per Newton iteration is of order
O.N3/. But the interior point algorithm can also
be applied to the uncondensed sparse QP (2),
in which case each iteration has a runtime of
order O.N/. In practice, for both cases, 10–30
Newton iterations usually suffice to obtain very
accurate solutions. As an interior point method
needs always to start with a high value of 	 and
then reduces it during the iterations, warmstarting
is of minor benefit. There exist efficient code
generation tools that export convex interior point
solvers as plain C-code such as CVXGEN and
FORCES.

Gradient Projection Methods
Gradient projection methods do not need to
factorize any matrix but only evaluate the
gradient of the objective function HU Œk� C G Nx0
in each iteration. They can only be implemented
efficiently if the feasible set is a simple set
in the sense that a projection P.U / on this
set is very cheap to compute, as, e.g., for
upper and lower bounds on the variables U ,
and if we know an upper bound LH > 0

on the eigenvalues of the Hessian H . The
simple gradient projection algorithm starts
with an initialization U Œ0� and proceeds as
follows:

U ŒkC1� D P
�
U Œk� � 1

LH
.HU Œk� CG Nx0/

�
:

An improved version of the gradient projection
algorithm is called the optimal or fast gradient
method and has probably the best possible iter-
ation complexity of all gradient type methods.
All variants of gradient projection algorithms
are easy to warmstart. Though they are not as
versatile as active set or interior point methods,
they have short code sizes and can offer ad-
vantages on embedded computational hardware,
such as the code generated by the tool FIOR-
DOS.

Optimization Algorithms for
Nonlinear MPC

When the dynamic system xiC1 D f .xi ; ui /
is not affine, the optimal control problem (1)
is non-convex, and we speak of a nonlinear
MPC (NMPC) problem. NMPC optimization
algorithms only aim at finding a locally optimal
solution of this problem, and they usually do
it in a Newton-type framework. For ease of
notation, we summarize problem (1) in the form
of a general nonlinear programming problem
(NLP):

minimize
X;U

ˆ.X;U / (6a)

subject to Geq.X;U; Nx0/ D 0; (6b)

Gineq.X;U / � 0: (6c)

Let us first discuss a fundamental choice that
regards the problem formulation and number of
optimization variables.

Simultaneous vs. Sequential Formulation
When an optimization algorithm addresses prob-
lem (6) iteratively, it works intermediately with
nonphysical, infeasible trajectories that violate
the system constraints (6b). Only at the optimal
solution the constraint residual is brought to zero
and a physical simulation is achieved. We speak



994 Optimization Algorithms for Model Predictive Control

of a simultaneous approach to optimal control
because the algorithm solves the simulation and
the optimization problems simultaneously. Vari-
ants of this approach are direct discretization or
direct multiple shooting.

On the other hand, the equality con-
straints (6b) could easily be eliminated by
a nonlinear forward simulation for given
initial value Nx0 and control trajectory U ,
similar to condensing in linear MPC. Such a
forward simulation generates a state trajectory
Xsim. Nx0; U / such that for the given value of Nx0; U
the equality constraints (6b) are automatically
satisfied: Geq.Xsim. Nx0; U /; U; Nx0/ D 0. Inserting
this map into the NLP (6) allows us to formulate
an equivalent optimization problem with a
reduced variable space:

minimize
U

ˆ.Xsim. Nx0; U /; U / (7a)

subject to Gineq.Xsim. Nx0; U /; U / � 0: (7b)

When solving this reduced problem with an it-
erative optimization algorithm, we sequentially
simulate and optimize the system, and we speak
of the sequential approach to optimal control.

The sequential approach has a lower dimen-
sional variable space and is thus easier to use
with a black-box NLP solver. On the other hand,
the simultaneous approach leads to a sparse NLP
and is better able to deal with unstable nonlinear
systems. In the remainder of this section, we
thus only discuss the specific structure of the
simultaneous approach.

Newton-Type Optimization
In order to simplify notation further, we summa-
rize and reorder all optimization variables U and
X in a vectorV D Œx>

0 ; u
>
0 ; : : : ; x

>
N�1; u>

N�1; x>
N �

>
and use the same problem function names as
in (6) also with the new argument V .

As in the section on linear MPC, we can
introduce multipliers Y for the equalities and �
for the inequalities and define the Lagrangian

L.V; Y; �/ D ˆ.V /C Y >Geq.V; Nx0/
C �>Gineq.V /: (8)

All Newton-type optimization methods try to
find a point satisfying the KKT conditions by
using successive linearizations of the problem
functions and Lagrangian. For this aim, starting
with an initial guess .V Œ0�; Y Œ0�; �Œ0�/, they
generate sequences of primal-dual iterates
.V Œk�; Y Œk�; �Œk�/.

An observation that is crucial for the efficiency
of all NMPC algorithms is that the Hessian of
the Lagrangian is at a current iterate given by a
matrix of the form

r2
V L.�/ D

2
6666666664

Q
Œk�
0 S

Œk�
0

S
Œk�;>
0 R

Œk�
0

Q
Œk�
1 S

Œk�
1

S
Œk�;>
1 R

Œk�
1 � �

� �
P Œk�

3
7777777775
:

This block sparse matrix structure makes it possi-
ble to use in each Newton-type iteration the same
sparsity-exploiting linear algebra techniques as
outlined in section “Convex Optimization for
Linear MPC” for the linear MPC problem.

Major differences exist on how to treat the
inequality constraints, and the two big families of
Newton-type optimization methods are sequen-
tial quadratic programming (SQP) methods and
nonlinear interior point (NIP) methods.

Sequential Quadratic Programming (SQP)
A first variant to iteratively solve the KKT sys-
tem is to linearize all nonlinear functions at the
current iterate .V Œk�; Y Œk�; �Œk�/ and to find a new
solution guess from the solution of a quadratic
program (QP):

minimize
V

ˆquad.V IV Œk�; Y Œk�; �Œk�/ (9a)

subject to Geq;lin.V; Nx0IV Œk�/ D 0; (9b)

Gineq;lin.V IV Œk�/ � 0: (9c)

Here, the subindex “lin” in the constraints G�;lin
expresses that a first-order Taylor expansion at
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V Œk� is used, while the QP objective is given
by ˆquad.V IV Œk�; Y Œk�; �Œk�/ D ˆlin.V IV Œk�/ C
1
2
.V � V Œk�/>r2

VL.�/.V � V Œk�/. Note that the
QP has the same sparsity structure as the QP (2)
resulting from linear MPC, with the only differ-
ence that all matrices are now time varying over
the MPC horizon. In the case that the Hessian
matrix is positive semi-definite, this QP is convex
so that global solutions can be found reliably
with any of the methods from section “Con-
vex Optimization for Linear MPC.” The solu-
tion of the QP along with the corresponding
constraint multipliers gives the next SQP iterate
.V ŒkC1�; Y ŒkC1�; �ŒkC1�/. Apart from the presented
“exact Hessian” SQP variant, which has quadratic
convergence speed, several other SQP variants
exist, which make use of other Hessian approx-
imations. A particularly useful Hessian approx-
imation for NMPC is possible if the original
objective functionˆ.V / is convex quadratic, and
the resulting SQP variant is called the generalized
Gauss-Newton method. In this case, one can just
use the original objective as cost function in the
QP (9a), resulting in convex QP subproblems and
(often fast) linear convergence speed.

Nonlinear Interior Point (NIP) Method
In contrast to SQP methods, an alternative way
to address the solution of the KKT system is to
replace the last nonsmooth KKT conditions by a
smooth nonlinear approximation, with 	 > 0:

rVL.V �; Y �; ��/ D 0 (10a)

Geq.V
�; Nx0/ D 0 (10b)

Gineq;i .V
�/ ��

i C 	 D 0; i D 1; : : : ; m:

(10c)

We summarize all variables in a vector W D
ŒV >; Y >; �>�> and summarize the above set of
equations as

GNIP.W; Nx0; 	/ D 0: (11)

The resulting root finding problem is then
solved with Newton’s method, for a descending
sequence of path parameters 	 Œk�. The NIP

method proceeds thus exactly as in an interior
point method for convex problems, with the only
difference that it has to re-linearize all problem
functions in each iteration. An excellent software
implementation of the NIP method is given in the
form of the code IPOPT.

Continuation Methods and Tangential
Predictors
In nonlinear MPC, a sequence of OCPs with
different initial values NxŒ0�0 ; NxŒ1�0 ; NxŒ2�0 ; : : : is solved.
For the transition from one problem to the next,
it is beneficial to take into account the fact that
the optimal solution W �. Nx0/ depends almost ev-
erywhere differentiably on Nx0. The concept of a
continuation method is most easily explained in
the context of an NIP method with fixed path
parameter N	 > 0. In this case, the solution
W �. Nx0; N	/ of the smooth root finding problem
GNIP.W

�. Nx0; N	/; Nx0; N	/ D 0 from Eq. (11) is
smooth with respect to Nx0. This smoothness can
be exploited by making use of a tangential pre-
dictor in the transition from one value of Nx0 to
another. Unfortunately, the interior point solution
manifold is strongly nonlinear at points where the
active set changes, and the tangential predictor is
not a good approximation when we linearize at
such points.

Generalized Tangential Predictor and
Real-Time Iterations
In fact, the true NLP solution is not determined
by a smooth root finding problem (10a)–(3)
but by the (nonsmooth) KKT conditions. The
solution manifold has smooth parts when the
active set does not change, but non-differentiable
points occur whenever the active set changes.
We can deal with this fact naturally in an SQP
framework by solving one QP of form (9) in
order to generate a tangential predictor that
is also valid in the presence of active set
changes. In the extreme case that only one
such QP is solved per sampling time, we speak
of a real-time iteration (RTI) algorithm. The
computations in each iteration can be subdivided
into two phases, the preparation phase, in
which the derivatives are computed and the QP
is condensed, and the feedback phase, which
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only starts once NxŒkC1�
0 becomes available and

in which only a condensed QP of form (3) is
solved, minimizing the feedback delay. This
NMPC algorithm can be generated as plain
C-code, e.g., by the tool ACADO. Another
class of real-time NMPC algorithms based on
a continuation method can be generated by the
tool AutoGenU.

Cross-References

�Explicit Model Predictive Control
�Model-Predictive Control in Practice
�Numerical Methods for Nonlinear Optimal

Control Problems

Recommended Reading

Many of the algorithmic ideas presented in this
article can be used in different combinations than
those presented, and several other ideas had to be
omitted for the sake of brevity. Some more details
can be found in the following two overview arti-
cles on MPC optimization: Binder et al. (2001)
and Diehl et al. (2009). The general field of nu-
merical optimal control is treated in Bryson and
Ho (1975), Betts (2010), and the even broader
field of numerical optimization is covered in the
excellent textbooks (Fletcher 1987; Wright 1997;
Nesterov 2004; Gill et al. 1999; Nocedal and
Wright 2006; Biegler 2010). General purpose
open-source software for MPC and NMPC is de-
scribed in the following papers: FORCES (Dom-
ahidi et al. 2012), CVXGEN (Mattingley and
Boyd 2009), qpOASES (Ferreau et al. 2008),
FiOrdOs (Richter et al. 2011), AutoGenU (Oht-
suka and Kodama 2002), ACADO (Houska et al.
2011), and IPOPT (Wächter and Biegler 2006).
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Abstract

This entry describes the basic setup of linear ro-
bust control and the difficulties typically encoun-
tered when designing optimization algorithms to
cope with robust stability and performance spec-
ifications.
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Linear Robust Control

Robust control allows dealing with uncertainty
affecting a dynamical system and its environ-
ment. In this section, we assume that we have a
mathematical model of the dynamical system
without uncertainty (the so-called nominal
system) jointly with a mathematical model of
the uncertainty. We restrict ourselves to linear
systems: if the dynamical system we want to
control has some nonlinear components (e.g.,
input saturation), they must be embedded in
the uncertainty model. Similarly, we assume
that the control system is relatively small
scale (low number of states): higher-order
dynamics (e.g., highly oscillatory but low energy
components) are embedded in the uncertainty
model. Finally, for conciseness, we focus
exclusively on continuous-time systems, even
though most of the techniques described in this
section can be transposed readily to discrete-time
systems.

Our control system is described by the first-
order ordinary differential equation

Px D A .ı/ x CD .ı/ u
y D C .ı/ x

where as usual x 2 R
n denotes the states, u 2

R
m denotes the controlled inputs, and y 2 R

p

denotes the measured outputs, all depending on
time t , with Px denoting the time derivative of x.
The system is subject to uncertainty and this is
reflected by the dependence of matrices A, B ,
andC on uncertain parameter ı which is typically
time varying and restricted to some bounded set

ı 2 � � R
q:

A linear control law

u D Ky

modeled by a matrix K 2 R
m	p must be

designed to overcome the effect of the uncertainty
while optimizing some performance criterion
(e.g., pole placement, disturbance rejection,
H2 or H1 norm). Sometimes, a relevant
performance criterion is that the control should
be stabilizing for the largest possible uncertainty
(measured, e.g., by some norm on �). In this
section, for conciseness, we restrict our attention
to static output feedback control laws, but most
of the results can be extended to dynamical output
feedback control laws, where the control signal u
is the output of a controller (a linear system to be
designed) whose input is y.

UncertaintyModels

Amongst the simplest possible uncertainty mod-
els, we can find the following:
• Unstructured uncertainty, also called norm-

bounded uncertainty, where

� D fı 2 R
q W jjıjj � 1g

and the given norm can be a standard vector
norm or a more complicated matrix norm if ı is
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interpreted as a vector obtained by stacking the
column of a matrix
• Structured uncertainty, also called polytopic

uncertainty, where

� D conv fıi ; i D 1; : : : ; N g
is a polytope modeled as the convex combination
of a finite number of given vertices ıi 2 R

q; i D
1; : : : ; N

We can find more complicated uncertainty
models (e.g., combinations of the two above: see
Zhou et al. 1996), but to keep the developments
elementary, they are not discussed here.

Nonconvex Nonsmooth Robust
Optimization

The main difficulties faced when seeking a feed-
back matrixK are as follows:
• Nonconvexity: The stability conditions are

typically nonconvex in K .
• Nondifferentiability: The performance cri-

terion to be optimized is typically a non-
differentiable function of K .

• Robustness: Stability and performance
should be ensured for every possible instance
of the uncertainty.

So if we are to formulate the robust control
problem as an optimization problem, we should
be ready to develop and use techniques from non-
convex, nondifferentiable, robust optimization.

Let us first elaborate on the first difficulty
faced by optimization-based robust control,
namely, the nonconvexity of the stability
conditions. In continuous time, stability of a
linear system Px D Ax is equivalent to negativity
of the spectral abscissa, which is defined as the
maximum real part of the eigenvalues of A:

˛.A/ D maxfRe � W det.�In �A/ D 0; � 2 Cg:

It turns out that the open cone of matrices
A 2 R

n	n such that ˛.A/ < 0 is nonconvex
(Ackermann 1993). This is illustrated in Fig. 1
where we represent the set of vectors K D

.k1; k2; k3/ 2 R
3 such that k21 C k22 C k23 < 1

and ˛.A.K// < 0 for

A.K/ D
��1 k1
k2 k3

�
:

There exist various approaches to handling non-
convexity. One possibility consists of building
convex inner approximations of the stability re-
gion in the parameter space. The approxima-
tions can be polytopes, balls, ellipsoids, or more
complicated convex objects described by linear
matrix inequalities (LMI). The resulting stability
conditions are convex, but surely conservative, in
the sense that the conditions are only sufficient
for stability and not necessary. Another approach
to handling nonconvexity consists of formulating
the stability conditions algebraically (e.g., via the
Routh-Hurwitz stability criterion or its symmetric
version by Hermite) and using converging hier-
archies of LMI relaxations to solve the result-
ing nonconvex polynomial optimization problem:
see, e.g., Henrion and Lasserre (2004) and Chesi
(2010).

The second difficulty characteristic of
optimization-based robust control is the potential
nondifferentiability of the objective function.
Consider for illustration one of the simplest
optimization problems which consists of
minimizing the spectral abscissa ˛.A.K// of
a matrix A.K/ depending linearly on a matrix
K . Such a minimization makes sense since
negativity of the spectral abscissa is equivalent
to system stability. Then typically, ˛.A.K// is
a continuous but non-Lipschitz function of K ,
which means that its gradient can be unbounded
locally. In Fig. 2, we plot the spectral abscissa
˛.A.K// for

A.K/ D
�
0 1

K �K
�

andK 2 R. The function is non-Lipschitz atK D
0, at which the global minimum ˛.A.0// D 0

is achieved. Nonconvexity of the function is also
apparent in this example. The lack of convexity
and smoothness of the spectral abscissa and other
similar performance criteria renders optimization
of such functions particularly difficult (Burke
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typically nonconvex and
nonsmooth

et al. 2001, 2006b). In Fig. 3, we represent graphs
of the spectral abscissa (with flipped vertical
axis for better visualization) of some small-size
matrices depending on two real parameters, with
randomly generated parametrization. We observe
the typical nonconvexity and lack of smoothness
around local and global optima.

The third difficulty for optimization-based
robust control is the uncertainty. As explained
above, optimization of a performance criterion
with respect to controller parameters is already
a potentially difficult problem for a nominal
system (i.e., when the uncertainty parameter is
equal to zero). This becomes even more difficult
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OptimizationBasedRobust Control, Fig. 3 The graph of the negative spectral abscissa for some randomly generated
matrix parametrizations

when this optimization must be carried out for
all possible instances of the uncertainty ı in
�. This is where the above assumption that the
uncertainty set � has a simple description proves
useful. If the uncertainty ı is unstructured and
not time varying, then it can be handled with the
complex stability radius (Ackermann 1993), the
pseudospectral abscissa (Trefethen and Embree
2005), or via an H1 norm constraint (Zhou et al.
1996). If the uncertainty ı is structured, then
we can try to optimize a performance criterion
at every vertex in the polytopic description
(which is a relaxation of the problem of
stabilizing the whole polytope). An example
is the problem of simultaneous stabilization,
where a controllerK must be found such that the
maximum spectral abscissa of several matrices
Ai .K/; i D 1; : : : ; N is negative (Blondel 1994).
Finally, if the uncertainty ı is time varying, then
performance and stability guarantees can still be
achieved with the help of Lyapunov certificates or
potentially conservative convex LMI conditions:
see, e.g., Boyd et al. (1994) and Scherer et al.
(1997).

A unified approach to addressing conflicting
performance criteria and uncertainty consists of
searching for locally optimal solutions of a nons-
mooth optimization problem that is built to incor-
porate minimization objectives and constraints
for multiple plants. This is called (linear robust)
multiobjective control, and formally, it can be
expressed as the following optimization prob-
lem

minK maxiD1;:::;N fgi .K/ W ˇi D 1g
s:t: gi .K/ � ˇi ; i D 1; : : : ; N;

where each gi (K) is a function of the closed-
loop matrix Ai.K/ (e.g., a spectral abscissa
or an H1 norm) and the scalars ˇi are given
and such that if ˇi D 1 for some i , then gi
appears in the objective function and not in a
constraint: see Gumussoy et al. (2009) for details.
In the above problem, the objective function,
a maximum of nonsmooth and nonconvex
functions, is typically also nonsmooth and
nonconvex. Moreover, without loss of generality,
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we can easily impose a sparsity pattern on
controller matrix K to account for structural
constraints (e.g., a low-order decentralized
controller).

Software Packages

Algorithms for nonconvex nonsmooth opti-
mization have been developed and interfaced
for linear robust multiobjective control in the
public domain Matlab package HIFOO released
in Burke et al. (2006a) and based on the theory
described in Burke et al. (2006b). In 2011,
The MathWorks released HINFSTRUCT, a
commercial implementation of these techniques
based on the theory described in Apkarian and
Noll (2006).
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Abstract

Structured output feedback controller synthesis
is an exciting new concept in modern control
design, which bridges between theory and
practice insofar as it allows for the first time
to apply sophisticated mathematical design
paradigms like H1 or H2 control within
control architectures preferred by practitioners.
The new approach to structured H1 control,
developed during the past decade, is rooted
in a change of paradigm in the synthesis
algorithms. Structured design may no longer
be based on solving algebraic Riccati equations
or matrix inequalities. Instead, optimization-
based design techniques are required. In
this essay we indicate why structured con-
troller synthesis is central in modern control
engineering. We explain why non-smooth
optimization techniques are needed to compute
structured control laws, and we point to
software tools which enable practitioners
to use these new tools in high-technology
applications.
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Introduction

In the modern high-technology field of control,
engineers usually face a large variety of con-
curring design specifications such as noise or
gain attenuation in prescribed frequency bands,
damping, decoupling, constraints on settling or
rise time, and much else. In addition, as plant
models are generally only approximations of the
true system dynamics, control laws have to be
robust with respect to uncertainty in physical
parameters or with regard to un-modeled high-
frequency phenomena. Not surprisingly, such a
plethora of constraints present a major challenge
for controller tuning, not only due to the ever-
growing number of such constraints but also
because of their very different provenience.

The dramatic increase in plant complexity is
exacerbated by the desire that regulators should
be as simple as possible, easy to understand and
to tune by practitioners, convenient to hardware
implement, and generally available at low cost.
Such practical constraints explain the limited use
of black-box controllers, and they are the driving
force for the implementation of structured control
architectures, as well as for the tendency to re-
place hand-tuning methods by rigorous algorith-
mic optimization tools.

Structured Controllers

Before addressing specific optimization tech-
niques, we introduce some basic terminology
for control design problems with structured
controllers. A state-space description of the given
P used for design is given as

P W
8<
:

PxP D AxP C B1w C B2u
z D C1xP CD11w CD12u
y D C2xP CD21w CD22u

(1)

where A, B1,: : : are real matrices of appropriate
dimensions, xP 2 R

nP is the state, u 2 R
nu the

control, y 2 R
ny the measured output, w 2 R

nw

the exogenous input, and z 2 R
nz the regulated

output. Similarly, the sought output feedback
controllerK is described as

K W
� PxK DAKxK C BKy

u DCKxK CDKy
(2)

with xK 2 R
nK and is called structured if

the (real) matrices AK;BK;CK;DK depend
smoothly on a design parameter x 2 R

n, referred
to as the vector of tunable parameters. Formally,
we have differentiable mappings

AK D AK.x/; BK D BK.x/; CK D CK.x/;

DK D DK.x/;

and we abbreviate these by the notation K.x/ for
short to emphasize that the controller is structured
with x as tunable elements.

A structured controller synthesis problem is
then an optimization problem of the form

minimize kTwz.P;K.x//k
subject to K.x/ closed-loop stabilizing

K.x/ structured, x 2 R
n

(3)

where Twz.P;K/ D F`.P;K/ is the lower feed-
back connection of (1) with (2) as in Fig. 1 (left),
also called the linear fractional transformation
(Varga and Looye 1999). The norm k�k stands for
the H1 norm, the H2 norm, or any other system
norm, while the optimization variable x 2 R

n

regroups the tunable parameters in the design.
Standard examples of structured controllers

K.x/ include realizable PIDs and observer-based,
reduced-order, or decentralized controllers,
which in state space are expressed as

2
4 0 0 1

0 �1=	 �kD=	
kI 1=	 kP C kD=	

3
5 ;
	
A� B2Kc �Kf C2 Kf

�Kc 0



;

	
AK BK
CK DK



;

2
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q
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BKi
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CKi
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iD1

DKi
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Optimization-Based Control Design Techniques and Tools, Fig. 1 Black-box full-order controller K on the left,
structured 2-DOF control architecture withK D block-diag.K1;K2/ on the right

Optimization-Based
Control Design
Techniques and Tools,
Fig. 2 Synthesis of K D
block-diag.K1; : : : ; KN /

against multiple
requirements or models
P .1/; : : : ; P .M/. Each
Ki.x/ can be structured

In the case of a PID, the tunable parameters
are x D .	; kP ; kI ; kD/, for observer-based
controllers x regroups the estimator and state-
feedback gains .Kf ;Kc/, for reduced order
controllers nK < nP the tunable parameters x
are the n2K C nKny C nKnu C nynu unknown
entries in .AK;BK; CK;DK/, and in the
decentralized form x regroups the unknown
entries in AK1; : : : ;DKq . In contrast, full-
order controllers have the maximum number
N D n2P C nP ny C nP nu C nynu of degrees of
freedom and are referred to as unstructured or as
black-box controllers.

More sophisticated controller structures K.x/
arise from architectures like, for instance, a
2-DOF control arrangement with feedback
block K2 and a set-point filter K1 as in Fig. 1
(right). Suppose K1 is the 1st-order filter
K1.s/ D a=.s C a/ and K2 the PI feedback
K2.s/ D kP C kI =s. Then the transfer Try
from r to y can be represented as the feedback
connection of P andK.x/ with

P WD

2
664
A 0 0 B

C 0 0 D

0 I 0 0

�C 0 I �D

3
775 ; K.x/ WD

	
K1.s/ 0

0 K2.s/



;

where K.x/ takes a typical block-diagonal
structure featuring the tunable elements x D
.a; kP ; kI /.

In much the same way, arbitrary multi-loop in-
terconnections of fixed-model elements with tun-
able controller blocksKi.x/ can be rearranged as
in Fig. 2 so that K.x/ captures all tunable blocks
in a decentralized structure general enough to
cover most engineering applications.

The structure concept is equally useful to
deal with the second central challenge in control
design: system uncertainty. The latter may be
handled with �-synthesis techniques (Stein and
Doyle 1991) if a parametric uncertain model
is available. A less ambitious but often more
practical alternative consists in optimizing the
structured controller K.x/ against a finite set
of plants P .1/; : : : ; P .M/ representing model
variations due to uncertainty, aging, sensor and
actuator breakdown, and un-modeled dynamics,
in tandem with the robustness and performance
specifications. This is again formally covered by
Fig. 2 and leads to a multi-objective constrained
optimization problem of the form

minimize f .x/ D max
k2SOFT;i2Ik

kT .k/wi zi .K.x//k
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subject to g.x/ D max
k2HARD;j2Jk

kT .k/wj zj .K.x//k � 1

K.x/ structured and stabilizing

x 2 R
n (4)

where T .k/wi zi denotes the i th closed-loop robust-
ness or performance channel wi ! zi for the
kth plant model P .k/.s/. The rationale of (4)
is to minimize the worst-case cost of the soft
constraints kT .k/wi zi k, k 2 SOFT while enforcing
the hard constraints kT .k/wj zj k � 1, k 2 HARD.
Note that in the mathematical programming ter-
minology, soft and hard constraints are classi-
cally referred to as objectives and constraints.
The terms soft and hard point to the fact that
hard constraints prevail over soft ones and that
meeting hard constraints for solution candidates
is mandatory.

Optimization Techniques Over the
Years

During the late 1990s, the necessity to develop
design techniques for structured regulators
K.x/ was recognized (Fares et al. 2001), and
the limitations of synthesis methods based on
algebraic Riccati equations (AREs) or linear
matrix inequalities (LMIs) became evident, as
these techniques can only provide black-box
controllers. The lack of appropriate synthesis
techniques for structured K.x/ led to the
unfortunate situation, where sophisticated
approaches like the H1 paradigm developed by
academia since the 1980s could not be brought to
work for the design of those controller structures
K.x/ preferred by practitioners. Design engineers
had to continue to rely on heuristic and ad hoc
tuning techniques, with only limited scope and
reliability. As an example, post-processing to
reduce a black-box controller to a practical size
is prone to failure. It may at best be considered a
fill-in for a rigorous design method which directly
computes a reduced-order controller. Similarly,
hand-tuning of the parameters x remains a
puzzling task because of the loop interactions
and fails as soon as complexity increases.

In the late 1990s and early 2000s, a change
of methods was observed. Structured H2- and
H1-synthesis problems (3) were addressed by
bilinear matrix inequality (BMI) optimization,
which used local optimization techniques based
on the augmented Lagrangian method (Fares
et al. 2001; Noll et al. 2002; Kocvara and Stingl
2003), sequential semidefinite programming
methods (Fares et al. 2002; Apkarian et al. 2003),
and non-smooth methods for BMIs (Noll et al.
2009; Lemaréchal and Oustry 2000). However,
these techniques were based on the bounded
real lemma or similar matrix inequalities and
were therefore of limited success due to the
presence of Lyapunov variables, i.e., matrix-
valued unknowns, whose dimension grows
quadratically in nP C nK and represents the
bottleneck of that approach.

The epoch-making change occurs with the
introduction of non-smooth optimization tech-
niques (Noll and Apkarian 2005; Apkarian and
Noll 2006b,c, 2007) to programs (3) and (4).
Today non-smooth methods have superseded ma-
trix inequality-based techniques and may be con-
sidered the state of the art as far as realistic
applications are concerned. The transition took
almost a decade.

Alternative control-related local optimization
techniques and heuristics include the gradient
sampling technique of Burke et al. (2005),
derivative-free optimization discussed in Kolda
et al. (2003) and Apkarian and Noll (2006a)
and particle swarm optimization; see Oi
et al. (2008) and references therein and also
evolutionary computation techniques (Lieslehto
2001). The last three classes do not exploit
derivative information and rely on function
evaluations only. They are therefore applicable
to a broad variety of problems including those
where function values arise from complex
numerical simulations. The combinatorial nature
of these techniques, however, limits their
use to small problems with a few tens of
variable. More significantly, these methods often
lack a solid convergence theory. In contrast,
as we have demonstrated over recent years
(Apkarian and Noll 2006b; Noll et al. 2008),
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specialized non-smooth techniques are highly
efficient in practice, are based on a sophis-
ticated convergence theory, are capable of
solving medium-size problems in a matter
of seconds, and are still operational for
large-size problems with several hundreds of
states.

Non-smooth Optimization
Techniques

The benefit of the non-smooth casts (3) and
(4) lies in the possibility to avoid searching for
Lyapunov variables, a major advantage as their
number .nP C nK/

2=2 usually largely dominates
n, the number of true decision parameters x.
Lyapunov variables do still occur implicitly in the
function evaluation procedures, but this has no
harmful effect for systems up to several hundred
states. In abstract terms, a non-smooth optimiza-
tion program has the form

minimize f .x/
subject to g.x/ � 0

x 2 R
n

(5)

where f; g W R
n ! R are locally Lipschitz

functions and are easily identified from the cast
in (4).

In the realm of convex optimization, non-
smooth programs are conveniently addressed by
so-called bundle methods, introduced in the late
1970s by Lemaréchal (1975). Bundle methods
are used to solve difficult problems in integer pro-
gramming or in stochastic optimization via La-
grangian relaxation. Extensions of the bundling
technique to non-convex problems like (3) or
(4) were first developed in Apkarian and Noll
(2006b,c, 2007), Apkarian et al. (2008), Noll
et al. (2009), and, in more abstract form, Noll
et al. (2008).

Figure 3 shows a schematic view of a
non-convex bundle method consisting of a
descent-step generating inner loop (yellow
block) comparable to a line search in smooth
optimization, embedded into the outer loop

Optimization-Based Control Design Techniques and Tools, Fig. 3 Flowchart of proximity control bundle
algorithm
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(blue box), where serious iterates are processed,
stopping criteria are applied, and the model
tradition is assured. Serious steps or iterates refer
to steps accepted in a line search, while null steps
are unsuccessful steps visited during the search.
By model tradition, we mean continuity of the
model between (serious) iterates xj and xjC1
by recycling some of the older planes used at
counter j into the new working model at j C 1.
This avoids starting the first inner loop k D 1 at
j C 1 from scratch and therefore saves time.

At the core of the interaction between in-
ner and outer loop is the management of the
proximity control parameter 	 , which governs
the stepsize kx � ykk between trial steps yk

at the current serious iterate x. Similar to the
management of a trust region radius or of the
stepsize in a line search, proximity control al-
lows to force shorter trial steps if agreement of
the local model with the true objective function
is poor and allows larger steps if agreement is
satisfactory.

Oracle-based bundle methods traditionally as-
sure global convergence in the sense of subse-
quences under the sole hypothesis that for every
trial point x, the function value f .x/ and a Clarke
subgradient � 2 @f .x/ are provided. In automatic
control applications, it is as a rule possible to
provide more specific information, which may be
exploited to speed up convergence.

Computing function value and gradients of the
H2 norm f .x/ D kTwz .P;K.x// k2 requires es-
sentially the solution of two Lyapunov equations
of size nP CnK (see Apkarian et al. 2007; Rautert
and Sachs 1997). For the H1 norm, f .x/ D
kTwz .P;K.x// k1, function evaluation is based
on the Hamiltonian algorithm of Benner et al.
(2012) and Boyd et al. (1989). The Hamiltonian
matrix is of size nP C nK so that function eval-
uations may be costly for very large plant state
dimension (nP > 500), even though the number
of outer loop iterations of the bundle algorithm is
not affected by a large nP and generally relates
to n, the dimension of x. The additional cost for
subgradient computation for large nP is relatively
cheap as it relies on linear algebra (Apkarian and
Noll 2006b).

Computational Tools

The novel non-smooth optimization methods
became available to the engineering commu-
nity since 2010 via the MATLAB Robust
Control Toolbox (Robust Control Toolbox 4.2
2012; Gahinet and Apkarian 2011). Routines
HINFSTRUCT , LOOPTUNE , and SYSTUNE are
versatile enough to define and combine tunable
blocks Ki.x/, to build and aggregate design
requirements T .k/wz of different nature, and to
provide suitable validation tools. Their imple-
mentation was carried out in cooperation with
P. Gahinet (MathWorks). These routines further
exploit the structure of problem (4) to enhance
efficiency (see Apkarian and Noll 2006b, 2007).

It should be mentioned that design problems
with multiple hard constraints are inherently
complex. It is well known that even simultaneous
stabilization of more than two plants P .j / with
a structured control law K.x/ is NP-complete so
that exhaustive methods are expected to fail even
for small to medium problems. The principled
decision made in Apkarian and Noll (2006b)
and reflected in the MATLAB routines is to
rely on local optimization techniques instead.
This leads to weaker convergence certificates
but has the advantage to work successfully
in practice. In the same vein, in (4) it is
preferable to rely on a mixture of soft and hard
requirements, for instance, by the use of exact
penalty functions (Noll and Apkarian 2005).
Key features implemented in the mentioned
MATLAB routines are discussed in Apkarian
(2013), Gahinet and Apkarian (2011), and
Apkarian and Noll (2007).

Design Example

Design of a feedback regulator is an interactive
process, in which tools like SYSTUNE ,
LOOPTUNE , or HINFSTRUCT support the
designer in various ways. In this section we
illustrate their enormous potential by solving
a multi-model, fixed-structure reliable flight
control design problem.
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Optimization-Based Control Design Techniques and Tools, Fig. 4 Synthesis interconnection for reliable control

Optimization-Based Control Design Techniques and Tools, Table 1 Outage scenarios where 0 stands for failure

Outage cases Diagonal of outage gain

Nominal mode 1 1 1 1 1

Right elevator outage 0 1 1 1 1

Left elevator outage 1 0 1 1 1

Right aileron outage 1 1 0 1 1

Left aileron outage 1 1 1 0 1

Left elevator and right aileron outage 1 0 0 1 1

Right elevator and right aileron outage 0 1 0 1 1

Right elevator and left aileron outage 0 1 1 0 1

Left elevator and left aileron outage 1 0 1 0 1

In reliable flight control, one has to maintain
stability and adequate performance not only in
nominal operation but also in various scenarios
where the aircraft undergoes outages in elevator
and aileron actuators. In particular, wind gusts
must be alleviated in all outage scenarios to main-
tain safety. Variants of this problem are addressed
in Liao et al. (2002).

The open loop F16 aircraft in the scheme of
Fig. 4 has six states, the body velocities u; v;w
and pitch, roll, and yaw rates q; p; r . The state
is available for control as is the flight-path bank
angle rate � (deg/s), the angle of attack ˛ (deg),
and the sideslip angle ˇ (deg). Control inputs are
the left and right elevator, left and right aileron,

and rudder deflections (deg). The elevators are
grouped symmetrically to generate the angle of
attack. The ailerons are grouped antisymmetri-
cally to generate roll motion. This leads to three
control actions as shown in Fig. 4. The controller
consists of two blocks, a 3�6 state-feedback gain
matrix Kx in the inner loop and a 3 � 3 integral
gain matrixKi in the outer loop, which leads to a
total of 27 D dim x parameters to tune.

In addition to nominal operation, we consider
eight outage scenarios shown in Table 1.

The different models associated with the
outage scenarios are readily obtained by pre-
multiplication of the aircraft control input by a
diagonal matrix built from the rows in Table 1.



1008 Optimization-Based Control Design Techniques and Tools

Optimization-Based Control Design Techniques and Tools, Fig. 5 Responses to step changes in �, ˛, and ˇ for
nominal design

The design requirements are as follows:
• Good tracking performance in �, ˛, and ˇ

with adequate decoupling of the three axes.
• Adequate rejection of wind gusts of 5 m/s.
• Maintain stability and acceptable performance

in the face of actuator outage.
Tracking is addressed by an LQG cost

(Maciejowski 1989), which penalizes integrated
tracking error e and control effort u via

J D lim
T!1E

�
1

T

Z T

0

kWeek2 C kWuuk2dt
�
:

(6)
Diagonal weights We and Wu provide tuning
knobs for trade-off between responsiveness, con-
trol effort, and balancing of the three channels.
We use We D diag.20; 30; 20/;Wu D I3 for nor-
mal operation and We D diag.8; 12; 8/;Wu D I3
for outage conditions. Model-dependent weights
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Optimization-Based Control Design Techniques and Tools, Fig. 6 Responses to step changes in �, ˛, and ˇ for
fault-tolerant design

allow to express the fact that nominal operation
prevails over failure cases. Weights for failure
cases are used to achieve limited deterioration of
performance or of gust alleviation under deflec-
tion surface breakdown.

The second requirement, wind gust allevia-
tion, is treated as a hard constraint limiting the
variance of the error signal e in response to white
noise wg driving the Dryden wind gust model.

In particular, the variance of e is limited to 0:01
for normal operation and to 0:03 for the outage
scenarios.

With the notation of section “Non-smooth Op-
timization Techniques,” the functions f .x/ and
g.x/ in (5) are f .x/ WD maxkD1;:::;9 kT .k/rz .x/k2
and g.x/ WD maxkD1;:::;9 kT .k/wge.x/k2, where r
denotes the set-point inputs in �, ˛, and ˇ. The
regulated output z is
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zT WD
h
.W

1=2
e e/T .W

1=2
u u/T

iT
;

with x D .vec.Ki /; vec.Kx// 2 R
27. Soft

constraints are the square roots of J in (6)
with appropriate weightings We and Wu, hard
constraints the RMS values of e, suitably
weighted to reflect variance bounds of 0:01 and
0:03. These requirements are covered by the
Variance and WeightedVariance options
in Robust Control Toolbox 4.2 (2012).

With this setup, we tuned the controller
gains Ki and Kx for the nominal scenario only
(nominal design) and for all nine scenarios
(fault-tolerant design). The responses to set-
point changes in �, ˛, and ˇ with a gust speed
of 5 m/s are shown in Fig. 5 for the nominal
design and in Fig. 6 for the fault-tolerant design.
As expected, nominal responses are good but
notably deteriorate when faced with outages. In
contrast, the fault-tolerant controller maintains
acceptable performance in outage situations.
Optimal performance (square root of LQG cost
J in (6)) for the fault-tolerant design is only
slightly worse than for the nominal design (26
vs. 23). The non-smooth program (5) was solved
with SYSTUNE , and the fault-tolerant design
(9 models, 11 states, 27 parameters) took 30 s
on Mac OS X with 2:66GHz Intel Core i7 and
8GB RAM. The reader is referred to Robust
Control Toolbox 4.2 (2012) or higher versions,
for further examples, and additional details.

Future Directions

From an application viewpoint, non-smooth
optimization techniques for control system
design and tuning will become one of the
standard techniques in the engineer’s toolkit.
They are currently studied in major European
aerospace industries.

Future directions may include:
• Extension of these techniques to gain schedul-

ing in order to handle larger operating do-
mains.

• Application of the available tools to integrated
system/control when both system physical
characteristics and controller elements are

optimized to achieve higher performance.
Application to fault detection and isolation
may also reveal as an interesting vein.

Cross-References

�H-Infinity Control
�Optimization Based Robust Control
�Robust Synthesis and Robustness Analysis

Techniques and Tools

Bibliography

Apkarian P (2013) Tuning controllers against multiple
design requirements. In: American control conference
(ACC), Washington, DC, pp 3888–3893

Apkarian P, Noll D (2006a) Controller design via nons-
mooth multi-directional search. SIAM J Control Op-
tim 44(6):1923–1949

Apkarian P, Noll D (2006b) Nonsmooth H1 synthesis.
IEEE Trans Autom Control 51(1):71–86

Apkarian P, Noll D (2006c) Nonsmooth optimization
for multidisk H1 synthesis. Eur J Control 12(3):
229–244

Apkarian P, Noll D (2007) Nonsmooth optimization for
multiband frequency domain control design. Automat-
ica 43(4):724–731

Apkarian P, Noll D, Thevenet JB, Tuan HD (2003) A
spectral quadratic-SDP method with applications to
fixed-order H2 and H1 synthesis. Eur J Control
10(6):527–538

Apkarian P, Noll D, Rondepierre A (2007) Mixed
H2=H1 control via nonsmooth optimization. In: Pro-
ceedings of the 46th IEEE conference on decision and
control, New Orleans, pp 4110–4115

Apkarian P, Noll D, Prot O (2008) A trust region spectral
bundle method for nonconvex eigenvalue optimiza-
tion. SIAM J Optim 19(1):281–306

Benner P, Sima V, Voigt M (2012) L1-norm compu-
tation for continuous-time descriptor systems using
structured matrix pencils. IEEE Trans Autom Control
57(1):233–238

Boyd S, Balakrishnan V, Kabamba P (1989) A bisection
method for computing the H1 norm of a transfer
matrix and related problems. Math Control Signals
Syst 2(3):207–219

Burke J, Lewis A, Overton M (2005) A robust gradient
sampling algorithm for nonsmooth, nonconvex opti-
mization. SIAM J Optim 15:751–779

Fares B, Apkarian P, Noll D (2001) An augmented la-
grangian method for a class of LMI-constrained prob-
lems in robust control theory. Int J Control 74(4):
348–360

http://dx.doi.org/10.1007/978-1-4471-5058-9_166
http://dx.doi.org/10.1007/978-1-4471-5058-9_159
http://dx.doi.org/10.1007/978-1-4471-5058-9_145


Option Games: The Interface Between Optimal Stopping and Game Theory 1011

O

Fares B, Noll D, Apkarian P (2002) Robust control via
sequential semidefinite programming. SIAM J Control
Optim 40(6):1791–1820

Gahinet P, Apkarian P (2011) Structured H1 synthesis
in MATLAB. In: Proceedings of the IFAC world
congress, Milan, pp 1435–1440

Kocvara M, Stingl M (2003) A code for convex nonlinear
and semidefinite programming. Optim Methods Softw
18(3):317–333

Kolda TG, Lewis RM, Torczon V (2003) Optimization by
direct search: new perspectives on some classical and
modern methods. SIAM Rev 45(3):385–482

Lemaréchal C (1975) An extension of Davidon methods
to nondifferentiable problems. In: Balinski ML, Wolfe
P (eds) Nondifferentiable optimization. Mathematical
programming study, vol 31. North-Holland, Amster-
dam, pp 95–109

Lemaréchal C, Oustry F (2000) Nonsmooth algorithms
to solve semidefinite programs. In: El Ghaoui L,
Niculescu S-I (eds) SIAM advances in linear matrix
inequality methods in control series. SIAM

Liao F, Wang JL, Yang GH (2002) Reliable robust flight
tracking control: an LMI approach. IEEE Trans Con-
trol Syst Technol 10:76–89

Lieslehto J (2001) PID controller tuning using evolution-
ary programming. In: American control conference,
Arlington, Virginia, vol 4, pp 2828–2833

Maciejowski JM (1989) Multivariable feedback design.
Addison-Wesley, Wokingham

Noll D, Apkarian P (2005) Spectral bundle meth-
ods for nonconvex maximum eigenvalue func-
tions: first-order methods. Math Program B 104(2):
701–727

Noll D, Torki M, Apkarian P (2002) Partially augmented
lagrangian method for matrix inequality constraints.
Submitted Rapport Interne, MIP, UMR 5640, Maths.
Dept. – Paul Sabatier University

Noll D, Prot O, Rondepierre A (2008) A proximity con-
trol algorithm to minimize nonsmooth and nonconvex
functions. Pac J Optim 4(3):571–604

Noll D, Prot O, Apkarian P (2009) A proximity control al-
gorithm to minimize nonsmooth and nonconvex semi-
infinite maximum eigenvalue functions. J Convex Anal
16(3–4):641–666

Oi A, Nakazawa C, Matsui T, Fujiwara H, Matsumoto K,
Nishida H, Ando J, Kawaura M (2008) Development
of PSO-based PID tuning method. In: International
conference on control, automation and systems, Seoul,
Korea, pp 1917–1920

Rautert T, Sachs EW (1997) Computational design of
optimal output feedback controllers. SIAM J Optim
7(3):837–852

Robust Control Toolbox 4.2 (2012) The MathWorks Inc.,
Natick

Stein G, Doyle J (1991) Beyond singular values and
loopshapes. AIAA J Guid Control 14:5–16

Varga A, Looye G (1999) Symbolic and numerical soft-
ware tools for LFT-based low order uncertainty mod-
eling. In: Proceedings of the CACSD’99 symposium,
Cohala, pp 1–6

Option Games: The Interface
BetweenOptimal
Stopping and Game Theory

Benoit Chevalier-Roignant1 and Lenos
Trigeorgis2
1Oliver Wyman, Munich, Germany
2University of Cyprus, Nicosia, Cyprus

Abstract

Managers can stake a claim by committing to
capital investments today that can influence their
rivals’ behavior or take a “wait-and-see” or step-
by-step approach to avoid possible adverse mar-
ket consequences tomorrow. At the core of this
corporate dilemma lies the classic trade-off be-
tween commitment and flexibility. This trade-
off calls for a careful balancing of the merits
of flexibility against those of commitment. This
balancing is captured by option games.

Keywords
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Introduction

The global competitive environment has become
increasingly more challenging as modern
economies undergo unprecedented changes in
the midst of the global economic turmoil. Real-
world dilemmas corporate managers face today
are driven by the interplay among strategic
and market uncertainty. The tech industry
has evolved most rapidly, putting companies
unable to respond to market developments
and technological breakthroughs at severe
disadvantage. Corporate management’s plans
and how they implement their strategy will likely
determine whether the firm will survive and be
successful in the marketplace or become extinct.
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Formulating the right strategy in the right
competitive environment at the right time is a
nontrivial task. Whether to invest in a new tech-
nology, a new product or enter a new market is
a strategic decision of immense importance. Cor-
porate management must assess strategic options
with proper analytical tools that can help deter-
mine whether to commit to a particular strategic
path, given scarce or costly resources, or whether
to stay flexible. Oftentimes, firms need to position
themselves flexibly to capitalize on future oppor-
tunities as they emerge, while limiting potential
losses arising from adverse future circumstances.
In many cases, corporate managers find them-
selves in need to revise their decision plans in
view of actual market developments when facing
an uncertain future; they can then decide to un-
dertake only those projects with sufficiently high
prospects in the future to justify commitment at
that time. This needs to be balanced with the
need to make irreversible strategic commitments
to seize first-mover advantage presenting rivals
with a fait accompli to which they have no choice
but adapt.

Capital Budgeting Ignoring Strategic
Interactions

Net Present Value
Prevailing management approaches simplify
matters and often lead to investment decisions
that are detrimental to the firm’s long-term well-
being. Suppose a firm’s future cash flow at time
t is given by a random variable Xt . Cash flows
then evolve as a geometric Brownian motion

dXt D gXtdt C 
XtdBt andX0 
 x

with drift parameterg and volatility 
 . The Brow-
nian motion .Bt I t � 0/ captures exogenous
market uncertainty. The standard criterion used
in corporate finance is based on discounted cash
flows (DCF) or net present value (NPV). This
consists in assessing the current value of a project
by discounting the expected future cash flows
EŒXt � at a constant discount rate, r . Management
supposedly creates shareholder value by under-

taking projects with positive NPV, i.e., projects
for which the present value of cash flows, v.x/ DR1
0
e�rtEŒXt �dt , exceeds the necessary invest-

ment cost, I . In the present case, the firm will
invest under the zero-NPV criterion if

x

r � g � I (1)

This traditional criterion views investment oppor-
tunities as now-or-never decisions under passive
management. However, this precludes the possi-
bility to adjust future decisions in case the market
develops off the expected path. While market
uncertainty is factored in through the discount
rate, the flexibility management has is typically
not properly accounted for.

Real Options Analysis
It has become standard practice in finance and
strategy to interpret real investment opportunities
as being analogous to financial options. This view
is well accepted among academics and practi-
tioners alike and is at the core of real options
analysis (ROA). ROA is an extension of option-
pricing theory to real investment situations (My-
ers 1977; Trigeorgis 1996). This approach effec-
tively allows one to capture the dynamic nature of
decision-making since it factors in management’s
flexibility to revise and adapt its decision in the
face of market uncertainty. ROA allows managers
with flexibility to adapt to actual market devel-
opments as uncertainty gets resolved. Managers
may, for example, delay the start (or closure) of a
project depending on its prospects. This approach
leverages on optimal stopping theory (e.g., see
Bensoussan and Lions 1982; Dixit and Pindyck
1994) and is considered to be more reflective
of real decision-making than traditional methods.
In the case the firm can delay the decision to
invest, for example, the problem is one of optimal
stopping:

V.x/ D maxT EŒe�rT .v.XT / � I /�

by ROA, the discount rate r is the risk-free
interest (Dixit and Pindyck 1994; Trigeorgis
1996). The time of managerial action, T, is
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now a strategic decision variable random by
nature as the decision maker faces an uncertain
environment. This problem has an analytical
solution characterized by a threshold policy, say
a trigger NX , given by

NX
r � g

D b

b � 1I (2)

where b is the positive root of a quadratic
function (e.g., see Dixit and Pindyck 1994) and
b=.b � 1/ > 1. When decisions are costly or
difficult to reverse, corporate managers would be
more cautious and careful to make decisions. A
firm should not always commit immediately –
even if the NPV criterion (1) indicates so – but
wait until the gross project value is sufficiently
positive to cover the investment cost I by a factor
larger than one, as expressed in (2). Investing
prematurely may destroy shareholder value.
Real options may justify sometimes undertaking
projects with negative (static) net present value
if it creates a platform for growth options or
delaying projects with positive NPV.

Accounting for Strategic Interactions
in Capital Budgeting

Strategic Uncertainty
As natural monopolies have lost their secular
well-protected positions owing to market liber-
alization in the European Union and elsewhere
across the globe, strategic interdependencies have
become new key challenge for managers. At
the same time sectors traditionally populated by
multiple firms have undergone significant consol-
idation, often resulting in oligopolistic situations
with a reduced number of players. The ongoing
economic crisis has amplified these consolidation
pressures. These two ongoing phenomena – lib-
eralization and consolidation – have put high on
the corporate agenda the assessment of strategic
options under competition. Standard real options
analysis often examines investment decisions as
if the option holder has a proprietary right to
exercise. This perspective may not be realistic
in the new oligopolistic environment as several

firms may share the right to a related investment
opportunity in the industry.

Game Theory
In oligopolistic industries, firms often have dif-
ficulty predicting how rivals will behave and
make decisions based on beliefs about their likely
behavior. A theory that helps characterize beliefs
and form predictions about which strategies op-
ponents will follow is helpful in analyzing such
oligopolistic situations. Game theory has tradi-
tionally been used to frame strategic interactions
arising in conflict situations involving parties
with different objectives or interests. It attempts
to model behavior in strategic situations or games
in which one party’s success in making choices
depends on the choices of other players through
influencing one another’s welfare. Game theory
adopts a different perspective on optimization, as
the focus is on the formation of beliefs about
how rivals’ optimal strategies. Finance theory
has been primarily concerned with “moves by
nature,” while game theory focuses on “optimiza-
tion problems” involving multiple players. To
solve a game, one needs to reduce a complex
multiplayer problem into a simpler structure that
captures the essence of the conflict situation. One
can then derive useful predictions about how
rivals are likely to react in a given situation.
Game theory helped reshape microeconomics by
providing analytical foundations for the study of
market behavior and has been at the foundation
of the Nobel prize winning research field of
industrial organization.

Dynamic game theory (see, e.g., Basar and
Olsder 1999) addresses problems in which
several parties are in repeated interaction.
Strategic management approaches based on
dynamic economic theory can provide a richer
foundation for understanding developments and
competitive reactions within an industry. As
firm competitiveness involves interactions among
several players (rivals, suppliers or clients), game
theoretic analysis brings important insights into
strategic management in addressing such issues
as first- and second-mover advantages, firm
entry and exit decisions, strategic commitment,
reputation, signaling, and other informational
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effects. A key lesson is that, when firms react to
one another, it may sometimes be appropriate
for one firm to take an aggressive stance in
expectation that rivals will back off. Dynamic
industrial organization includes the analysis of
“games of timing” such as preemption games
or war of attrition, whereby firms decide on
appropriate investment timing under rivalry.

Option Games

The earlier optimal stopping problem falls in the
category of “games of timing” when a firm’s
entry decision influences another firm’s market
strategy. Option games are most suitable to help
model situations where a firm that has a real op-
tion to (dis)invest faces rivalry. Here, the problem
consists in finding a Nash equilibrium solution
for the two-player equivalent of the above optimal
stopping problem. This solution must also satisfy
certain dynamic consistency criteria. For sequen-
tial investments, the follower is faced with a
single-agent optimal investment timing problem;
it will thus enter if the gross project value exceeds
the investment cost by a sufficient factor. A firm
entering the market early on, i.e., a leader, earns
temporary monopoly rents as long as demand
remains below the follower’s entry threshold.
Following the follower’s entry, the firms act as
a duopoly. As long as the leader’s value exceeds
the follower’s, there is an incentive for one firm to
invest, but not necessarily for both of them, lead-
ing to a “coordination problem.” The competitive
pressure will dissipate away the leader’s first-
mover advantage, leading to a market entry point
that is not socially optimal and to rent dissipa-
tion. Unfortunately, the multiplayer problem does
not involve a simple analytical solution, since at
each point a duopolist firm might end up in any
of four distinct situations (two-by-two matrix)
depending on the rival’s entry decision. Option
games indicate in each situation which driving
force (commitment vs. flexibility) prevails and
whether to go ahead with the investment or wait
and see. Main drivers of the prevailing market

equilibrium include the riskiness of the venture,

 , the magnitude of the first-mover advantage and
the exclusive or shared ability to reap the benefits
of the investment vis-à-vis rivals. When firms
can grasp a large first-mover advantage from in-
vesting early but cannot differentiate themselves
sufficiently from each other, they may be tempted
to wage a preemptive war, investing prematurely
at an early market stage that actually kills option
value. If firms are more on an equal footing but
do not see much benefit from investing early,
they may prefer to wait and invest (jointly) at a
later stage when the future market is sufficiently
mature. If, however, one firm has a comparative
cost advantage that dominates (e.g., a radical or
drastic technological superiority) its rival indus-
try, participants may prefer a consensual leader-
follower investment arrangement involving less
option value destruction.

Conclusions

Corporate management’s strategic tool kit should
provide clearer guidance on whether to pursue
a wait-and-see stance in the face of uncertain
market developments or jump on the first-mover
bandwagon to build competitive advantage. We
discussed two different modeling approaches that
provide complementary perspectives and insights
to help management deal with issues of flexibility
versus commitment: real options and dynamic
game theory. While each approach separately
might turn a blind eye to flexibility or commit-
ment, an integrative perspective through “options
games" might provide the right balance and serve
as a tool kit for adaptive competitive strategy.
Both perspectives ultimately aim to derive bet-
ter insights into industry dynamics under indus-
try conditions characterized by both market and
strategic uncertainty.

Option games pave the way for a consis-
tent approach in addressing managerial decision-
making, elevating the art of strategy to scientific
analysis. Option games integrates in a common,
consistent framework recent advances made in
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these diverse set of disciplines. This emerging
field that represents a promising strategic man-
agement tool that can help guide managerial
decisions through the complexity of the modern
competitive marketplace.

Cross-References
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Recommended Reading

Smit and Trigeorgis (2004) discuss related trade-
offs with discrete-time real option techniques.
Grenadier (2000) and Huisman (2001) examine
a number of continuous-time models. Chevalier-
Roignant and Trigeorgis (2011) synthesize both
types of “option games.” An overview of the
literature is provided in Chevalier-Roignant et al.
(2011).
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Abstract

The nonlinear Kuramoto equations for n coupled
oscillators are derived and studied. The oscilla-
tors are defined to be synchronized when they os-
cillate at the same frequency and their phases are
all equal. A control-theoretic viewpoint reveals
that synchronized states of Kuramoto oscillators
are locally asymptotically stable if every oscilla-
tor is coupled to all others. The problem of syn-
chronization in Kuramoto oscillators is closely
related to rendezvous, consensus, and flocking
problems in distributed control. These problems,
with their elegant solution by graph theory, are
discussed briefly.

Keywords

Graph theory; Kuramoto model; Laplacian;
Oscillator; Synchronization

Introduction

An oscillator is an electronic circuit or other kind
of dynamical system that produces a periodic
signal. If several oscillators are coupled together
in some fashion and the periodic signals that they
each produce are of the same frequency and are in
phase, the oscillators are said to be synchronized.
The book Sync: The Emerging Science of Spon-
taneous Order, by Strogatz, introduces a wide
variety of phenomena where oscillators synchro-
nize. Some examples from biology: networks of
pacemaker cells in the heart, circadian pacemaker
cells in the suprachiasmatic nucleus of the brain,

http://dx.doi.org/10.1007/978-1-4471-5058-9_36
http://dx.doi.org/10.1007/978-1-4471-5058-9_34
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Oscillator Synchronization, Fig. 1 Two metronomes
on a board that is on two pop cans. After the metronomes
are let go at the same frequency but at different times, they
soon become synchronized and tick in unison.

metabolic synchrony in yeast cell suspensions,
groups of synchronously flashing fireflies, and
crickets that chirp in unison. Engineering exam-
ples include clock synchronization in distributed
communication networks and electric power net-
works with synchronous generators.

A very simple example of oscillator synchro-
nization was discovered by Christiaan Huygens,
the prominent Dutch scientist and mathematician
who lived in the 1600s. One of his contributions
was the invention of the pendulum clock, where a
pendulum swings back and forth with a constant
frequency. Huygens observed that two pendulum
clocks in his house synchronized after some time.
The explanation for this phenomenon is that the
pendula were coupled mechanically through the
wooden frame of the house. The same principle
can be observed by a fun, simple experiment. As
in Fig. 1, put two pop cans on a table, on their
sides and parallel to each other. Place a board on
top of them, and place two (or more) metronomes
on the board. Set the metronomes to tick at the
same frequency. Start them off ticking but not in
unison. Within a few minutes they will be ticking
in unison.

In this essay we derive what are known as
the Kuramoto equations, a mathematical model
of n oscillators, and then we study when they will
synchronize.

The KuramotoModel

In 1975 the Japanese researcher Yoshiki Ku-
ramoto gave one of the first serious mathemati-

cal studies of coupled oscillators. To derive Ku-
ramoto’s equations, we begin with a simple hy-
pothetical setup. Imagine n runners going around
a circular track. Suppose they’re all going at
roughly the same speed, but each adjusts his/her
speed based on the speeds of his/her nearest
neighbors. If some runner passes another, that one
tends to speed up to close the gap. The synchro-
nization question is do the runners eventually end
up running together in a tight pack?

Idealize the runners to be merely points, num-
bered k D 1; : : : ; n. They move on the unit
circle in the complex plane. A point on the unit
circle can be written as ej� , where j denotes the
unit imaginary number and � denotes the angle
measured counterclockwise from the positive real
axis. The position of point k at time t is zk.t/ D
ej.!tC�k.t//, where ! is the nominal rotational
speed in rad/s, and �k.t/ is the difference between
the actual angle at time t and the nominal angle
!t . Notice that ! is a constant positive real
number and it is the same for all n points. As
in circuit theory, it simplifies the mathematics to
refer all the positions to the sinusoid ej!t , and
therefore we define the local position of point k
to be pk.t/ D zk.t/=ej!t , i.e., pk.t/ D ej�k.t/:
Differentiate the local position with respect to
time and let “dot” denote d=dt : Ppk D ej�kj P�k:
Define the local rotational velocity vk D P�k and
substitute into the preceding equation:

Ppk D vkjpk: (1)

The local velocity vk could be positive or neg-
ative. Notice that if we view pk as a vector
from the origin and view multiplication by j

as rotation by �=2, then jpk can be viewed as
tangent to the circle at the point pk – see the
picture on the left in Fig. 2.

Now we propose a feedback law for vk in
Eq. (1); see the picture on the right in Fig. 2. Take
vk proportional to the projection of pi onto the
tangent at pk , that is, vk D hpi ; jpki. Here the
inner product between two complex numbers v;w
is hv;wi D Re Nvw. (You may check that this is
equivalent to the usual dot product of vectors in
R
2.) Thus from (1) the model to get k to close the

gap is Ppk D hpi ; jpkijpk.
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Oscillator Synchronization, Fig. 2 Left: The vectors pk
and jpk . Right: The local velocity vk

More generally, suppose that point k pays
attention to not just point i but a fixed set of points
called its neighbors. Let Nk denote the index set
of neighbors of point k and for simplicity assume
Nk does not depend on time. We consider the
control law vk D P

i2Nk
hpi ; jpki and thereby

arrive at the model of the evolution of the posi-
tions pk :

Ppk D
X
i2Nk

hpi ; jpkijpk:

However, the Kuramoto model gives the evo-
lution of the angles �k rather than the points pk .
To find the equation for �k , we observe that

hpi ; jpki D Re . Npijpk/
D Re

�
e�j�i j ej�k

�
D sin.�i � �k/:

In this way, the controlled points move according
to

Ppk D
X
i2Nk

sin.�i � �k/jpk:

Substitute in pk D ej�k and then cancel jpk :

P�k D
X
i2Nk

sin.�i � �k/; k D 1; : : : ; n: (2)

This is the Kuramoto model of coupled oscil-
lators in terms of the phases of the oscillators.
There are n coupled nonlinear ordinary differen-
tial equations.

Equation (2) has the vector form P� D g.�/.
There are some variations in the literature about

the state space associated with this equation. It is
important to get the state space right because oth-
erwise the concepts of stability and synchroniza-
tion become shaky. The phase angles �k are real
numbers with units of radians, so at first glance
the state space is R

n. But the angles are defined
modulo 2� and so their values are restricted to lie
in the interval Œ0; 2�/. In this way the state space
becomes Œ0; 2�/n. For example, if n D 2 the state
space is the square Œ0; 2�/ � Œ0; 2�/ viewed as
a subset of the plane R

2. The mapping � 7! ej�

is a one-to-one correspondence from the interval
Œ0; 2�/ to the unit circle in the complex plane
C. This unit circle is usually denoted S

1, the
superscript signifying the circle’s dimension as a
manifold. By this correspondence the state space
of (2) is the n-fold product S1 � � � � � S

1, and this
is sometimes called the n-torus, denoted T

n.
To recap, in what follows, the state space

is Œ0; 2�/n. This is an n-dimensional manifold
rather than a vector space.

Synchronization

Control-theoretic methods, for example, that of
Sepulchre et al. (2007), have been insightful. We
address now the question of whether or not the
oscillators in (2) synchronize, that is, the phases
asymptotically converge to a common value. In
the state space, Œ0; 2�/n, the set of synchronized
states is the set of vectors � of the form c1,
where c 2 Œ0; 2�/ and 1 is the vector of 1’s. The
simplest case is when every point is a neighbor of
every other point, i.e., Nk contains every integer
in the set 1; : : : ; n except k. Then (2) becomes

P�k D
nX
iD1

sin.�i � �k/; k D 1; : : : ; n: (3)

Let us show that if the initial phases �k.0/ are
all close enough together, then �.t/ converges
asymptotically to a synchronized state. This will
show that the synchronized states are locally
asymptotically stable in a certain sense.

As stated before, Eq. (3) has the form P� D
g.�/. The function g.�/ is the gradient of a
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positive definite function. Indeed, let rej denote
the average of the points ej�1 ; : : : ; ej�n . Of course,
r and  are functions of � , and so we have

r.�/ej .�/ D 1

n

�
ej�1 C � � � C ej�n

�

and therefore

r.�/ D 1

n

ˇ̌
ej�1 C � � � C ej�n

ˇ̌
:

The average of n points on the unit circle lives
inside the unit disc, and therefore r.�/ is a real
number between 0 and 1. It equals 1 if and only
if the n points are equal, that is, the n phases are
equal, and this is the state where the phases are
synchronized.

Define the function

V.�/ D n2

2
r.�/2

D 1

2

ˇ̌̌
ej�1 C � � � C ej�n

ˇ̌̌2

D 1

2

�
ej�1C � � � Cej�n

� �
e�j�1C � � � Ce�j�n

�
:

Thus

@V.�/

@�k
D sin.�1 � �k/C � � � C sin.�n � �k/

and therefore (3) can be written as P� D
@V.�/=@�: This is a gradient equation. If �.0/
is chosen so that all the phases are close enough
together, then r.�.0// will be close to 1, and
therefore � will move in a direction to increase
V.�/, that is, increase r.�/, until in the limit
r.�/ D 1 and the phases are synchronized.

There are results, e.g., Sepulchre et al. (2008),
when the coupling is not all-to-all. Also, the term
“synchronization” is used more generally than
just for oscillators Wieland et al. (2011).

Rendezvous, Consensus, Flocking,
and Infinitely Many Oscillators

Synchronization of coupled oscillators is closely
related to other problems known as rendezvous,

consensus, or flocking problems. Phase synchro-
nization is replaced by the requirement of mobile
robots gathering at some location, by the require-
ment of temperature sensors in a sensor network
converging to the same temperature estimate, or
by the requirement that mobile robots should
head in the same direction. The simplest form of
these problems has the equations

P�k D
X
i2Nk

.�i � �k/; k D 1; : : : ; n: (4)

Notice that this can be obtained from the Ku-
ramoto model (2) merely by replacing sin.�i��k/
by �i � �k in (2), that is, by linearizing the
latter at a synchronized state. We shall continue
to call �k a phase of an oscillator. When do the
phases evolving according to (4) synchronize?
The answer to the question involves a lovely col-
laboration between graph theory and dynamics.

Introduce a directed graph that is in one-to-
one correspondence with the neighbor structure.
The graph is made up of n nodes, one for each
oscillator. From each node there is an arrow to
every neighbor of that node; that is, from node
k is an arrow to every node in Nk . Denote the
adjacency matrix and the degree matrix of the
graph by, respectively, A and D. That is, aij D 1

if j is a neighbor of i and dii equals the sum of
the elements on row i of A. The Laplacian of the
graph is defined to be L D D � A. Then (4) is
equivalent to simply

P� D �L�; (5)

where � is still the vector with elements
�1; : : : ; �n. Whether or not synchronization
occurs depends on the connectivity of the graph.
We stop here and refer the reader to the articles
�Averaging Algorithms and Consensus and
�Flocking in Networked Systems

Suppose there are an infinite but countable
number of oscillators in the model (5). When will
they synchronize? To answer this, we have to be
more specific.

Let us allow an infinite number of oscillators
numbered by the integers, positive, zero, and
negative. Denote the phases by �k and let �

http://dx.doi.org/10.1007/978-1-4471-5058-9_214
http://dx.doi.org/10.1007/978-1-4471-5058-9_215
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denote the phase vector, whose kth component is
�k . Assume each oscillator has only finitely many
neighbors, let Nk denote the set of neighbors of
oscillator k, and let L be the Laplacian of the as-
sociated graph. Finally, let �.t/ evolve according
to the Eq. (5). This equation isn’t automatically
well posed in the sense that there may not be a
solution defined for all t > 0. We have to impose
a framework so that solutions do indeed exist.
One natural space in which to place �.0/ is `2,
the Hilbert space of square-summable sequences.
If L is a bounded operator on `2, then so is e�Lt
for every t > 0, and hence the phase vector
exists and belongs to `2 for every t > 0. Another
natural space in which to place �.0/ is `1, the
Banach space of bounded sequences. Again, a
phase vector exists for all t > 0 if L is a bounded
operator on `1.

The following example is from Feintuch and
Francis (2012). Take the neighbor sets to be
Nk D fk � 1g. The graph is a chain: There is
an arrow from node k to node k � 1, for every
k, and the Laplacian is the infinite matrix with
1 on the diagonal, �1 on the first subdiagonal,
and zero elsewhere. This Laplacian is a bounded
operator on both `2 and `1. Now the vector c1,
where 1 is the vector of all 1’s, belongs to `1
for every real number c, but it belongs to `2

only for c D 0. So the phases can potentially
synchronize at any value in `1, but only at 0 in
`2. For the example under discussion, if the initial
phase vector is in `2, then the phases synchro-
nize at 0. By contrast, there exist initial phase
vectors in `1 such that synchronization does
not occur. Even worse, limt!1 �.t/ does not
exist. The conclusion is that whether or not the
oscillators will synchronize is a difficult question
in general.

Summary and Future Directions

The Kuramoto model is a widely used paradigm
for coupled oscillators. The model has the form
P� D f .E�/, where � is the vector of phases,
the matrix E maps � into the vector of possible
differences �i � �k , and f is a function. The
Kuramoto model considered in this essay is not

the most general. A more general model allows
different frequencies !k instead of just one, and
also a coupling gainK , leading to the model

P�k D !k C K

n

X
i2Nk

sin.�i � �k/; k D 1; : : : ; n:

(6)

An important problem associated with the
Kuramoto model is to determine which synchro-
nized states are stable. The linearized equation is
interesting in its own right and relates to problems
of rendezvous, consensus, and flocking.

Reference Dörfler and Bullo (2014) offers
some questions for future study. In particular,
it would be interesting to extend the Kuramoto
model beyond the first-order oscillators of (2).
Also, the case of general neighbor sets has much
room for exploration.

Asymptotic stability is a robust property. For
example, if the origin is asymptotically stable
for the system Px D Ax, it remains so if A is
perturbed by a sufficiently small amount. This
is because the spectrum of a matrix is a con-
tinuous function of the matrix. The sketch in
Fig. 1 vividly depicts the concept of synchronized
oscillators. A topic for future study is that of ro-
bustness. Mathematically, if the two metronomes
are identical, they will synchronize perfectly –
this can be proved. Of course, physically two
metronomes cannot be identical, and yet they will
synchronize if they are close enough physically.
A mathematical study of this phenomenon might
be interesting.

Cross-References

�Averaging Algorithms and Consensus
�Flocking in Networked Systems
�Graphs for Modeling Networked Interactions
�Networked Systems
�Vehicular Chains

Recommended Reading

The literature on the Kuramoto model is
huge – there are now many hundreds of journal

http://dx.doi.org/10.1007/978-1-4471-5058-9_214
http://dx.doi.org/10.1007/978-1-4471-5058-9_215
http://dx.doi.org/10.1007/978-1-4471-5058-9_212
http://dx.doi.org/10.1007/978-1-4471-5058-9_211
http://dx.doi.org/10.1007/978-1-4471-5058-9_221
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papers continuing the study of oscillators using
Kuramoto’s model. There is space here only to
highlight a few sources.

You can find a mathematical study of
coupled metronomes in Pantaleone (2002). Also,
Pantaleone’s webpage Pantaleone describes
some experimental observations. Kuramoto’s
original paper is Kuramoto (1975). Dörfler and
Bullo have recently written a comprehensive
survey (Dörfler and Bullo (2014)). Strogatz has
written extensively on oscillator synchronization.
His book Sync is fascinating and is highly
recommended (Strogatz 2004). See also Strogatz
(2000) and Strogatz and Stewart (1993). The
papers Scardovi et al. (2007) and Dörfler
and Bullo (2011) are recommended for more
recent results, the latter treating the general
model (6).

Getting phases in oscillators to synchronize is
a special case of getting the states or outputs of
coupled systems asymptotically to converge to
a common value. There is a very large number
of references on these subjects, a seminal one
being Jadbabaie et al. (2003); others are Lin et al.
(2007) and Moreau (2005). Regarding infinitely
many oscillators, the physics literature treats only
a continuum of oscillators, whereas countably
many oscillators are the subject of Feintuch and
Francis (2012).

Acknowledgments I greatly appreciate the help from
Luca Scardovi, Florian Dörfler, and Francesco Bullo.
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Abstract

This entry discusses some of the salient fea-
tures of the output regulation problem for hybrid
systems, especially in connection with the steady-
state characterization. In order to better high-
light such peculiarities, the discussion is mostly
focused on the simplest class of linear time-
invariant systems exhibiting such behaviors. In
comparison with the usual regulation theory, the
role played by the zero dynamics and by the
presence of more inputs than outputs is particu-
larly striking.
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Introduction

Output regulation is one of the most classical
problems in control theory, and its celebrated
solution in the linear time-invariant case (Davison
1976; Francis and Wonham 1976) is character-
ized by remarkable elegance and ideas (like the
internal model principle). While the extension to
nonlinear systems is still an active field of inves-
tigation, the study of output regulation for hybrid
systems is also being actively pursued, and sev-
eral surprising results have already appeared for
the linear case, suggesting that a richer structure
arises in hybrid output regulation problems due to
the interplay between flow and jump dynamics.

The problem can be stated as follows. A
known exosystem E with initial state belonging
to a suitably defined set W0 produces a signal
w possibly affecting both the plant P and the
compensator C; the compensator has to guarantee
that for any initial state of E in a set W0:
• All closed-loop responses are bounded.
• The output e of P asymptotically converges to

zero.
In order to avoid trivialities, the exosystem E
is assumed to be such that its state evolution
from nonzero initial states in W0 is bounded and
not asymptotically converging to zero, both in
forward and in backward time.

Two typical embodiments of the output regu-
lation problem are the disturbance rejection and
the reference tracking problems. In disturbance
rejection, w acts as a disturbance on P and cannot
be measured by C, and the output e from which
the effect of w has to be canceled is the actual
plant output. In reference tracking, w contains the
references to be tracked by an output yr of P ,
so that w can be assumed to be known by C; by
defining the regulated output e as e D yr � r , the
reference tracking problem is cast as an output
regulation problem.

The solution of an output regulation prob-
lem entails the solution of two subproblems: the
definition of a set of zero output steady-state
solutions and the asymptotic stabilization of such
solutions (or at least making them attractive; in
many cases of interest, the achievement of this
last objective actually yields asymptotic stabi-
lization). As a matter of fact, the stabilization
subproblem is already widely studied and de-
scribed per se; for this reason, after some short
remarks in section “Stabilization Obstructions in
Hybrid Regulation”, the remainder of this pre-
sentation will focus only on steady-state-related
issues, for the simplest class of systems which
exhibit the most peculiar and interesting phe-
nomena of hybrid steady-state behavior (see in
particular section “Key Features in Hybrid vs
Classical Output Regulation”). For concreteness,
only hybrid systems E , P characterized by linear
time-invariant (flow and jump) dynamics will
be considered; following Goebel et al. (2012,
Chap. 2), a two-dimensional parameterization of
hybrid time .t; k/ 2 R � N will be used, with t
measuring the flow of (usual) time and k counting
the number of jumps experienced by the solution
(see Fig. 1 for a specific example). So, the exosys-
tem E will be described at time .t; k/ by

Pw D Sw ; .w; t; k/ 2 CE ; (1a)

wC D Jw ; .w; t; k/ 2 DE ; (1b)

1

2

3

4

M 2 M 3 M 4 M t

k

0
0

(t2, 2)

(t3, 2)

(t3,3)

(t4, 3)

(t4, 4)

Output Regulation Problems in Hybrid Systems,
Fig. 1 Hybrid time domain T for a “sampled data” hybrid
system. Dots indicate .t; k/ 2 T when jumps occur
(see section “Hybrid Steady-State Generation” for the tk
notation)
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and the plant P will be described at time .t; k/ by

Px D Ax C Bu C Pw ; .x; u; t; k/ 2 CP ;
(2a)

xC D Ex CRw ; .x; u; t; k/ 2 DP ;
(2b)

e D Cx CQw ; (2c)

with x.t; k/ 2 R
n, u.t; k/ 2 R

m, e.t; k/ 2 R
p,

w.t; k/ 2 R
q , and suitably defined flow sets CE ,

CP and jump sets DE , DP .

Stabilization Obstructions in Hybrid
Regulation

The achievement of asymptotic stabilization of
the desired (zero output) steady-state responses
for the considered class of linear hybrid systems
crucially depends on whether the plant P and
the exosystem E have synchronous jump times or
not.

Asynchronous Jumps
Typically, jumps in P and E will be asyn-
chronous, and this will cause the undesirable
phenomenon that genuinely close trajectories
will look “distant” around each jump when the
distance is measured according to the usual
Euclidean norm. The simplest illustration of
such phenomenon consists in considering two
trajectories of the same system starting from
"-close initial conditions. Consider the system

Pv D 1; v 2 Œ0; 1�; vC D 0; v 62 .0; 1/;

with the initial states v0 D 0 and v1 D ", 0 <
" < 1. The two ensuing solutions at time .t; k/
are immediately computed as

v.t; kI v0/Dt � k; t 2 Œk; k C 1�;

v.t; kI v1/D
(
t � k C "; t 2 Œk; k C 1 � "�;
t � k C " � 1; t 2 Œk C 1 � "; k C 1�;

Hence, the (Euclidean) distance between the two
solutions at time .t; k/ is given by

d.t; k/ D
(
"; t 2 Œk; k C 1 � "�;

.1 � "/; t 2 Œk C 1 � "; k C 1�I

in other words, choosing " > 0 as small as de-
sired, arbitrarily close initial conditions generate
trajectories which are apart by a finite amount (as
close as desired to 1) during the arbitrarily small
time intervals where t 2 Œk C 1 � "; k C 1�.
Since stability deals with trajectories remaining
close forever and attractivity deals with trajecto-
ries getting closer and closer, examples such as
the one above pose serious issues when defining
(let alone establish) stability and attractivity in
the hybrid case. Similar problems arise not only
in output regulation problems but also in other
areas like state tracking, observers, and general
interconnections of hybrid systems.

However, intuition suggests (and mathematics
confirms, by using a suitable notion of “dis-
tance”) that such trajectories are close indeed.
Several approaches have been proposed in order
to overcome such difficulty. Considering as an
example a bouncing ball tracking another bounc-
ing ball, the problematic time intervals are those
between the bounce of the first ball hitting the
ground and the bounce of the other ball; in such
a case, the modified distances are defined by
either
• Allowing to exclude sufficiently short

“problematic” intervals (possibly requiring
that their length asymptotically tends to zero);
see, e.g., Galeani et al. (2008, 2012)

• Considering alternative “mirrored” trajecto-
ries computed as if the last jump did not
happen; see, e.g., Forni et al. (2013a,b)

• Using a “stretched” distance function ı such
that when point a is in the jump set and
its image via the jump map is g.a/, then
ı.a; b/ D ı.g.a/; b/; see, e.g., Biemond et al.
(2013).

While the first approach has been proposed first,
the other two (which are strongly related) have
the advantage of providing (under mild additional
hypotheses) global control Lyapunov functions.
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Finally, it is worth noting that the most adequate
tools to address similar issues for general hybrid
systems are the “graphical distance” among hy-
brid arcs and related concepts (see Goebel et al.
2012, Chap. 5).

Synchronous Jumps
When synchronous jumps are considered, the
above issue disappears, and asymptotic stabiliza-
tion becomes a much simpler matter. Although
synchronous jumps look more like an exception
than a rule in hybrid systems, they are very
reasonable for specific classes of problems.

In order to have synchronous jumps, some
authors have considered the use of “jump inputs”
which impose a jump at a certain time, which
can be physically reasonable in some systems,
e.g., two tanks separated by a movable wall,
assuming that when the wall is removed the fluid
reaches the equilibrium configuration almost in-
stantaneously.

Another relevant class consists of “sampled
data” systems, whose jumps are essentially due
to digital components which operate at a fixed
sampling rate, which will be considered in the
rest of this entry. In such a case, letting 	M be the
sampling period, the time domain of the hybrid
system is fixed as (see Fig. 1)

T WD f.t; k/ W t 2 Œk	M ; .k C 1/	M �; k 2 Zg;
(3)

all jumps happen exactly for .t; k/ with t D .kC
1/	M , and then (1) can be simplified as

Pw D Sw ; (4a)

wC D Jw ; (4b)

and (2) can be simplified as

Px D Ax C Bu C Pw ; (5a)

xC D Ex CRw ; (5b)

e D Cx CQw ; (5c)

since flow and jump times are clear from the
context.

For the latter class of systems, by using linear
time-invariant hybrid control laws and observers

(and an easily provable separation principle), it is
easily shown that:
• Under a hybrid stabilizability hypothesis,

state feedback stabilization of (5) is easily
achieved.

• Output feedback stabilization of (5) from e

is also trivial under an additional hybrid de-
tectability hypothesis.

• Under hybrid detectability of the cascade
of (4) and (5), w can be asymptotically
estimated from e.

Due to the above facts, it can be assumed without
loss of generality that (5) is asymptotically sta-
ble (equivalently, that all eigenvalues of EeA	M

have modulus strictly less than one). Asymptotic
stability then yields incremental stability, since
letting Ox and Lx denote two motions under the
same inputs u, w and only differing in their initial
states, it is immediate to see that their difference
Qx WD Ox � Lx evolves as

PQx D POx � PLx D A Ox C Bu C Pw

� .A Lx C Bu C Pw/;

QxC D OxC � LxC D E Ox CRw � .E Lx CRw/;

that is, PQx D A Qx, QxC D E Qx, and so it is
just a free motion of the plant, asymptotically
converging to zero. Incremental stability implies
that regulation is achieved as soon as it is shown
that for any exogenous input w it is possible
to find an input u and an initial state of (5)
such that e is identically zero, since then any
other motion arising from a different initial state
will asymptotically converge to the motion with
identically zero e. Moreover, it is easy to see that
asymptotic stability of the origin actually implies
uniform, global, and exponential stability of any
trajectory for such systems.

Hybrid Steady-State Generation

From this point on, the rest of the presentation
will be focused only on the case where the prob-
lem data are of the form (3) to (5), since this
allows to provide an uncluttered view on some
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peculiar features of hybrid steady-state motions,
without the burden of having to take care of
delicate stability issues arising in more general
contexts.

Based on the preceding discussion, there is no
loss of generality at this point in assuming that:
• Plant (5) is asymptotically stable, which is

equivalent to all eigenvalues of EeA	M having
a magnitude strictly less than one.

• Exosystem (4) is Poisson stable, which is
equivalent to all eigenvalues of JeS	M having
a magnitude equal to one.
It is also customary to distinguish between full

information and error feedback regulation, where
in the first case controller C has access to the
complete state .w; x/ of the cascade of E and P ,
whereas in the second case C can only measure
the output e of P .

Having assumed asymptotic stability of plant
P , the only role of compensator C consists in
generating the correct steady-state input, since
then, by incremental stability of P , asymptotic
regulation is ensured from any initial state. Re-
calling the expression of T in (3), for the follow-
ing developments it is useful to define the jump
times tk and the elapsed time of flow since last
jump 
 as

tk WD k	M ; 
.t; k/ WD t � k	M I

the arguments of 
.t; k/ will usually be omitted
since clear from the context. Note that 
 satisfies
P
 D 1, 
C D 0, and it is often explicitly
introduced as an additional timer variable.

The Full Information Case
Consider the candidate steady-state motion and
input:

	
xss.t; k/

uss.t; k/



D
	
….
/

�.
/



w.t; k/: (6)

Requiring that such expressions actually charac-
terize a response of the considered plant, as well
as the associated output is zero, amounts to ask
that:
• During flows, Pxss.t; k/ has to satisfy the two

equations:

Pxss.t; k/ D P….
/w.t; k/C….
/ Pw.t; k/;
Pxss.t; k/ D Axss.t; k/C Buss.t; k/

C Pw.t; k/:

• At jumps, xC
ss .t; k/ has to satisfy the two

equations:

xC
ss .tkC1; k/ D ….0/wC.tkC1; k/;

xC
ss .tkC1; k/ D Exss.tkC1; k/CRw.tkC1; k/:

• For the output ess to be identically zero:

0 D Cxss.t; k/CQw.t; k/:

Substituting (6) in the above conditions and con-
sidering that such relations should hold for all
values of w, the following hybrid regulator equa-
tions are obtained:

P….
/C….
/S D A….
/C B�.
/C P;

(7a)

….0/J D E….	M /CR; (7b)

0 D C….
/CQ: (7c)

Equations (7) can be shown to be both necessary
and sufficient for (6) to solve the output regula-
tion problem under the considered assumptions.
Once a solution of (7) is available, the full in-
formation regulator simply reduces to the time-
varying static feedforward controller

u.t; k/ D �.
/w.t; k/ (8)

which just provides as input the steady-state input
uss characterized as in (6); in fact, since (5) is
incrementally stable (as follows from its asymp-
totic stability, which was assumed without loss of
generality), its output response under the control
law (8) must converge to the output response
associated to (6).

For later use, note that in the non-hybrid case
where P and E only flow

Pw D Sw; (9a)
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Px D Ax C Bu C Pw; (9b)

e D Cx CQw; (9c)

the candidate steady state (6) is replaced by

	
xss.t/

uss.t/



D
	
…

�



w.t/; (10)

and (7) reduces to the celebrated regulator equa-
tions (or Francis equations)

…S D A…C B� C P; (11a)

0 D C…CQ; (11b)

and, as above, assuming without loss of gener-
ality that the plant is asymptotically stable, the
full information regulator reduces to the time-
invariant static feedforward controller:

u.t; k/ D �w.t; k/ (12)

The Error Feedback Case
When the exosystem state is not measured, a
dynamic compensator of the form

P� D F � CGe ; (13a)

�C D L� ; (13b)

u D H� ; (13c)

which is also supposed to flow and jump accord-
ing to the a priori fixed time domain T considered
for the plant, is introduced, and the corresponding
candidate steady-state motion including � is

2
4xss.t; k/�ss.t; k/

uss.t; k/

3
5 D

2
4….
/†.
/

�.
/

3
5w.t; k/: (14)

By following similar steps as above, requiring
invariance of such a manifold in the space of
.x; �; u;w/, as well as zero output on it, leads
to the conclusion that in addition to (7), the
following relations must be satisfied as well:

P†.
/C†.
/S D F†.
/ ; (15a)

†.0/J D L†.	M / : (15b)

�.
/ D H†.
/ ; (15c)

Equations (7) and (15) can be shown to be both
necessary and sufficient for (13) to solve the
output regulation problem under the considered
assumptions and generalize the corresponding
conditions for the non-hybrid case where P and
E only flow (see (9)) and (13) and (14) are
replaced by

P� D F � CGe ; (16a)

u D H� ; (16b)
2
4xss.t/�ss.t/

uss.t/

3
5 D

2
4…†
�

3
5w.t/; (16c)

and (15) reduces to

†S D F†; (17a)

� D H†: (17b)

Relations (17) are an expression of the in-
ternal model principle, stating that in order to
achieve error feedback regulation, the compen-
sator C must include a suitable “copy” of the
exosystem, namely, (17a) imposes a constraint on
the � dynamics of C which, coupled with (17b),
ensures that the signal uss D �w used in the full
information case can be equivalently produced
(without measuring w!) as uss D H†�. A similar
interpretation can be given to (15), which must
be required in addition to (7) in order for (13) to
solve the hybrid error feedback output regulation
problem.

Key Features in Hybrid vs Classical
Output Regulation

While the previous section mainly aimed at show-
ing how the classical theory generalizes in the
hybrid case (at least for a special class of hybrid
systems), the aim of this section is to point out
some of the striking differences between the two
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cases. Before proceeding further, and in order to
keep focus on the characterization of the steady-
state response, it is worth mentioning here that al-
though time-varying systems will be considered,
no issue regarding nonuniform stability (like in
general nonautonomous systems) arises since the
timer 
 just ranges in the compact set Œ0; 	M � due
to the assumed periodic structure of T (see also
the end of section “Synchronous Jumps”).

Comparing the classical and the hybrid output
regulator and considering that P and E are time
invariant, it seems somewhat strange that in the
output feedback case the linear time-invariant
regulator (16a) and (16b) generalizes to a hybrid
linear time-invariant regulator (13), whereas in
the full information case the linear time-invariant
regulator (12) generalizes to a hybrid linear time-
varying regulator (8).

One argument in favor of the time-varying reg-
ulator (8) is based on the following consideration.
It is well known that (11) has a unique solution
in the case of a square plant (m D p) under the
nonresonance condition between the zeros of P
and the eigenvalues of E , requiring that

rank

	
A � sI B
C 0



D nC p; 8s 2 ƒ.S/;

whereƒ.S/ denotes the spectrum of S . In such a
case, (11) amounts to a system of nqCpq linear
equations in nq C mq unknowns (the elements
of…, �), which might be expected to be satisfied
sincem � p. If one were trying to use the unique
constant solution .…; �/ of (11) as a solution
of (7), clearly (7a) and (7c) would be satisfied,
but then (7b) would impose other nq equations
on … which would unlikely be satisfied. For
this reason, apparently the additional degree of
freedom offered by choosing time dependent …
and � might be of help. In fact, it can be shown
that if m D p and under a hybrid nonreso-
nance condition (involving EeA	M and JeS	M )
between P and E , (7a) and (7b) have a unique
solution for any choice of �.
/, so that the design
boils down to satisfying (7c) by choosing �.
/;
but is this always possible? In order to answer
this nontrivial question, a different path must be
followed. While a complete formal analysis can

be performed, the following discussion will be
mainly based on showing the simplest examples
exhibiting the pathologies of interest.

Consider the system with 	M D 1 (so that
tk D k, for all k 2 Z) and

Pw D 0; (18a)

wC D �w; (18b)

	 Px1
Px2



D
	�1 0

0 �2

 	
x1
x2



C
	
0

1



u C

	
0

1



w;

(18c)

	
xC
1

xC
2



D
	
0 1

2e 1


 	
x1
x2



; (18d)

e D 
0 1
� 	x1
x2



� w: (18e)

The unique steady-state solution achieving out-
put regulation can be simply computed. In fact,
by (18a) and (18b),

w.t; k/ D .�1/kw.0; 0/I

then, by (18e) it appears that ess D 0, 8.t; k/ 2 T
implies

x2;ss .t; k/ D w.t; k/ D .�1/kw.0; 0/;

8.t; k/ 2 T ;

which in turn implies that Px2;ss D 0 for all t 2
.k; k C 1/, k 2 Z and the unique steady-state
input

uss D 2x2;ss � w:

Since (18d) implies that x1;ss.tkC1; k C 1/ D
x2;ss.tkC1; k/ D w.tkC1; k/ and (18c) implies
that x1;ss.t; k/ D �e�.t�k/x1;ss.tk ; k/, for t 2
.tk; tkC1/, it follows that

x1;ss.t; k/ D �e�.t�tk/w.tk ; k/; t 2 .tk; tkC1/;
(19)

which finally is coherent with the jump equation
for x2;ss in (18d) since
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x2;ss.tkC1; kC1/D2ex1;ss.tkC1; k/Cx2;ss.tkC1; k/

D2e.�e�1/w.tk ; k/C w.tk ; k/
(20a)

D � w.tk ; k/ (20b)

D.�1/kC1w.0; 0/: (20c)

Before commenting the meaning of the above

derived steady-state evolution, it is worth noting
that (18) might actually derive from an original
system with (18c) replaced by
	 Px1

Px2



D
	�1 0

1 �2

 	
x1
x2



C
	
0

1



u C

	
0

1



w; (21)

under the preliminary state feedback

u D �x1 C v: (22)

Such a feedback renders the subspace
fx W x2 D 0g unobservable (when the system
only flows) and reveals that the dynamics of x1
in (18c) is the flow zero dynamics of P , that
is, the zero dynamics of P when jumps are
inhibited. Having set the stage, several interesting
observations can be made now.

The flow zero dynamics samples the ex-
ogenous signal w at jumps and then evolves
according to its own modes (see (19)). In fact,
while in the classical case (10) the state and input
at steady state can be expressed as a constant
matrix times the current value of w, the real
nature of the time dependence of � and … in (6)
is linked to this phenomenon of sampling w.tk ; k/
and propagating along the zero dynamics. A
suitable analysis shows that ….
/, �.
/ contain
products of matrices with rightmost factor e�S

(which recovers w.tk ; k/ D e�S
w.t; k/ from the
current value w.t; k/ of w) and leftmost factor
containing the fundamental matrix of the flow
zero dynamics. It is worth mentioning that the
“motion along the zeros” in the present context is
strongly related to the same kind of motions used
for perfect tracking in non-hybrid systems. The
above insight about the nature of the dependence
on 
 in (6) also reveals why in the output feed-
back case (13) such dependence is not needed:
the required modes of the flow zero dynamics in

that case are provided by copying them in the
compensator dynamics!

An even stronger consequence of the analysis
above is a flow zero dynamics internal model
principle, which essentially states that any output
feedback compensator solving the output regula-
tion problem must be able to produce as free re-
sponses (during flow) a suitable subset of the nat-
ural modes of the flow zero dynamics (and a suit-
ably modified version applies to the feedforward
static compensator (8)). It is worth noting that
while the classical internal model principle re-
quires exact knowledge of the exosystem modes
(which is kind of a mild requirement, especially
when the exosystem models references, or con-
stant offsets), the flow zero dynamics internal
model principle requires the exact knowledge of
the modes of the zero dynamics, which typically
depends on not precisely known plant parame-
ters; clearly, this fact poses serious questions in
view of the achievement of robust regulation.

A final point, also raising serious issues about
what can be robustly achieved (and how) in the
setting of hybrid output regulation, is the fact
that generically, existence of solutions is not
robust to arbitrarily small parameter varia-
tions. In particular, looking again at the compu-
tations in (20), it should be clear that the involved
functions are all fixed by previous reasonings,
whereas satisfaction of (20) crucially depends on
exact cancellations of certain coefficients. Any
small variations of such coefficients in (18d)
imply that the problem admits no steady state
yielding zero output. This fact is in sharp contrast
with classical regulation, where the nonresonance
condition ensures existence of (different) solu-
tions for small parameter variations. It has to be
noted, though, that under additional conditions,
robust existence of solutions is guaranteed if
the plant is fat, that is, m > p. Using again the
previous example, this is the case if an additional
input is introduced

	 Px1
Px2



D
	�1 0

0 �2

 	
x1
x2



C
	
1 0

0 1


 	
u1
u2



C
	
0

1



w;

since then even a constant (suitably chosen) value
of u1 can be used to ensure that when the time to
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jump arrives, the value of x1 is such to ensure
a correct jump for x2 (remember that since x1
is unobservable during flows, its motion can be
changed as wished if this helps with ensuring that
the observable x2 achieves zero output).

Summary and Future Directions

The investigation of the output regulation prob-
lem for hybrid systems is still at a very early
stage. While the issues of stabilization of the
manifold where regulation is achieved seem to
be a relatively better understood topic (possibly
drawing from a richer literature on stabilization
of hybrid systems), the geometry and design of
such manifold appear to involve several much
more intricate issues, whose understanding will
be crucial in order to achieve more complete
solutions.

Already in the very simplified case of linear
dynamics and synchronous jumps, the important
role played by the whole flow zero dynamics
for feasibility (existence of solutions in the nom-
inal parameter values) and by the availability
of more inputs than outputs for well posedness
(existence of solutions for slightly perturbed pa-
rameter values) marks a strong difference with
the linear non-hybrid case, where both properties
are granted by satisfaction of the nonresonance
condition, which only involves the spectrum of
the zero dynamics, even for square plants.

While the expected final goal of this investiga-
tion should hopefully lead to the design of robust
output regulators based on a suitable internal
model principle, a deeper understanding of the
structure of the steady-state motion achieving
regulation, as well as of the effect of additional
inputs in shaping it, seems to be an important
preliminary step towards such goal.

Cross-References

�Hybrid Dynamical Systems, Feedback Control
of

�Nonlinear Zero Dynamics
�Regulation and Tracking of Nonlinear Systems

Recommended Reading

Foundational contributions on classical output
regulation are Francis and Wonham (1976), Davi-
son (1976), and Wonham (1985); more recent
monographs include Huang (2004), Trentelman
et al. (2001), Pavlov et al. (2005), Saberi et al.
(2000), and Byrnes et al. (1997). Goebel et al.
(2012) provides a solid introduction to a pow-
erful and elegant framework for hybrid systems,
including a thorough discussion of stability is-
sues related to those mentioned here. Regulation
problems (mainly reference tracking) for classes
of hybrid systems with asynchronous jumps are
presented in Biemond et al. (2013), Forni et al.
(2013a,b), Morarescu and Brogliato (2010), and
Galeani et al. (2008, 2012); synchronous jumps
(and the ensuing advantages) are considered e.g.,
Sanfelice et al. (2013). The class of linear systems
with synchronous jumps considered in sections
“Hybrid Steady State Generation” and “Key Fea-
tures in Hybrid vs Classical Output Regulation”
has been proposed in Marconi and Teel (2010,
2013) and studied in Cox et al. (2011, 2012); the
issues related to flow zero dynamics, fat plants
and robustness have been discussed in Carnevale
et al. (2012a,b, 2013), partly developing remarks
contained in Galeani et al. (2008, 2012).
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