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Abstract

Game theory plays a central role in studying sys-
tems with a number of interacting players com-
peting for a common resource. A communication
network serves as a prototypical example of such
a system, where the common resource is the net-
work, consisting of nodes and links with limited
capacities, and the players are the computers,
web servers, and other end hosts who want to
transfer information over the shared network. In
this entry, we present several examples of game-
theoretic interaction in communication networks
and present a simple mathematical model to study
one such instance, namely, resource allocation in
the Internet.
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Introduction

A communication network can be viewed as a
collection of resources shared by a set of compet-
ing users. If the network were totally unregulated,
then each user would attempt to grab as many
resources in the network as possible, resulting in
poor network performance, a situation commonly
referred to as the tragedy of the commons (Hardin
1968). In reality, there is a carefully designed
set of network protocols and pricing mechanisms
which provide incentives to users to act in a
socially responsible manner. Since game theory
is the mathematical discipline which studies the
interactions between selfish users, it is a natu-
ral tool to use to design these network control
mechanisms. We now provide a few examples
of network problems which naturally lend them-
selves to game-theoretic analysis. Later, we will
elaborate on the game-theoretic formulation of
one of these examples.
• Resource Allocation: A network such

as the Internet is a collection of links,
where each link has a limited data-carrying
capacity, usually measured in bits per second.
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The Internet is shared by billions of users,
and the actions of these users have to be
regulated so that they share the resources in
the network in a fair manner. Equivalently,
this problem can be viewed as one in which
a network designer has to design a collection
of protocols so that the users of the network
can equitably allocate the available resources
among themselves without the intervention of
a central authority. Such protocols are built
into every computer connected to the Internet
today, to allow for seamless operation of the
network. The problem of designing such
protocols can be posed as a game-theoretic
problem in which the players are the network
and the traffic sources using the network
(Kelly 1997).

• Routing Games: Finding appropriate routes
for each user’s data traffic is a particular form
of resource allocation mentioned above. How-
ever, routing has applications beyond commu-
nication networks (with the other major ap-
plication area being transportation networks),
so it is useful to discuss routing separately.
In communication networks, each user may
attempt to find the minimum-delay route for
its traffic, with help from the network, to
minimize the delay experienced by its packets.
In a transportation network, each automobile
on the road attempts to take the path of least
congestion through the network. An active
area of research in game theory is one which
tries to understand the impact of individual
user decisions on the global performance of
the network (Roughgarden 2005). An interest-
ing result in this regard is the Braess paradox
which is an example of a road transporta-
tion network in which the addition of a road
leads to increased delays when each user self-
ishly choose a route to minimize its delay. Of
course, if routes are chosen to minimize the
overall delay experienced in the network such
a paradox will not arise.

• Peer-to-Peer Applications: Many studies have
indicated that file sharing between users (also
known as peers) directly, without using a
centralized web site such as YouTube, is a
dominant source of traffic in the Internet.

For such a peer-to-peer service to work,
each peer should not only download files
from others, but should also be willing to
sacrifice some of its resources to upload files
to others. Naturally, peers would prefer to
only download and not upload to minimize
their resource usage. The design of incentive
schemes to induce users to both download
and upload files is another example of a
game-theoretic problem in a network (Qiu
and Srikant 2004).

• Network Economics: In addition to end-user
interaction, Internet service providers (ISPs)
have to interact with each other to allow their
customers access to all the web sites in the
world. For example, one ISP may have a
customer who wants to access a web site
connected to another ISP. In this case, the data
traffic must cross ISP boundaries, and thus,
one ISP has to transport data destined for a
customer of another ISP. Thus, ISPs must be
willing to contribute resources to satisfy the
needs of customers who do not directly pay
them. In such a situation, ISPs must have bilat-
eral agreements (commonly known as peering
agreements) to ensure that the selfish interest
of each ISP to minimize its resource usage
is aligned with the needs of its customers.
Again, game theory is the right tool to study
such inter-ISP interactions (Courcoubetis and
Weber 2003).

• Spectrum Sharing: Large portions of the ra-
dio spectrum are severely underutilized. Typ-
ically, portions of the spectrum are assigned
to a primary user, but the primary user does
not use it most of the time. There has been
a surge of interest recently in the concept of
cognitive radio, whereby radios are cognitive
of the presence or absence of the primary
user, and when the primary user is absent,
another radio can use the spectrum to transmit
its data. When there are many users and the
available spectrum is split into many channels,
it is impossible for users to perfectly coordi-
nate their transmissions to achieve maximum
network utilization. In these situations, game-
theoretic protocols which take into account the
noncooperative behavior of the users can be
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designed to allow secondary users to access
the available channels as efficiently as possi-
ble (Saad et al. 2009).
In the next section, we will elaborate on one of

the applications above, namely, resource alloca-
tion in the Internet, and show how game-theoretic
modeling can be used to design fair resource
sharing.

Resource Allocation and Game
Theory

Consider a network consisting of L links, with
link l having capacity cl . Suppose that there areR
users sharing the network, with each user r being
characterized by a set of links which connect the
user’s source to its destination. Since each user
uses a fixed route in our model, we will use r to
denote both the user and the route used by the
user. We use the notation l 2 r to denote that
link l is a part of route r . Let xr denote the rate
at which user r transmits data. Thus, we have the
following natural constraints, which state that the
total data rate on any link must be less than or
equal to the capacity of the link:

X

r Wl2r
xr � cl ; 8l: (1)

Associated with each user is a concave utility
function Ur.xr / which is the utility that user
r derives by transmitting data at rate xr . The
network utility maximization problem is to solve

max
x�0

X

r

Ur .xr /; (2)

subject to the constraint (1). In (2), x denotes the
vector .x1; x2; : : : ; xR/ and x � 0 means that
each component of x must be greater than or
equal to zero. Note that the goal of the network
in (2) is to maximize the sum of the utilities of
the users in the network.

Let pl be the Lagrange multiplier correspond-
ing to the capacity constraint in (1) for link l .
Then the Lagrangian for the problem is given by

L.x; p/ D
X

r

Ur.xr /�
X

l

pl .yl � cl /; (3)

where we have used the notation yl WD P
r Wl2r xr

to denote the total data rate on link l . If p is
known, then the optimal x can be calculate by
solving

max
x�0 L.x; p/:

Notice that the optimal solution for each xr can
be obtained by solving

max
xr�0

Ur.xr /� qrxr ; (4)

where qr D P
l2r pl . Thus, if the Lagrange

multipliers are known, then the network utility
maximization can be interpreted as a game in
the following manner. Suppose that the network
charges each user qr dollars for every bit trans-
mitted by user r though the network. Then, qrxr
is the dollars per second spent by the user if xr is
measured in bits per second. Interpreting Ur.xr /
as the dollars per second that the user is willing
to pay for transmitting at rate xr , the optimization
problem in (4) is the problem faced by user
r which wants to maximize its net utility, i.e.,
utility minus cost. Thus, the individual optimal
solution for each user is also the solution to
the network utility maximization problem. The
above game-theoretic interpretation of the net-
work utility maximization problem is somewhat
trivial since, given the pl ’s or qr ’s, there is no
interaction between the users. Of course, this
interpretation relies on the ability of the network
to compute p. We next present a scheme to com-
pute p, which couples the users closely and thus
allows for a richer game-theoretic interpretation.

Suppose that the network wants to compute p
but does not have access to the utility functions
of the users. The network asks each user r to bid
an amount wr which is interpreted as the dollars
per second that the user is willing to pay. The
network then assumes that user r’s utility func-
tion is wr logxr and solves the network utility
maximization. While this choice of utility func-
tion may seem arbitrary, the resulting solution x
has a number of attractive properties, including a
form of fairness called proportional fairness. The
proportionally fair resource allocation solution
to (4) is given by
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wr
xr

D qr : (5)

The network then allocates rate xr to user r and
charges qr dollars per bit. From (5), the amount
charged to user r per second is wr , thus satisfying
the original interpretation of wr . Knowing that the
network charges users in this manner, how might
a user choose its bid wr? Recall that user r’s goal
is to solve (4). Substituting from (5), the problem
in (4) can be rewritten as

max
wr�0

Ur

�
wr
qr

�
� wr : (6)

Thus, the users’ problem of selecting w can be
viewed as a game, with each user’s objective
given by (6). Note that qr is given by (5) and
thus depends on all the wr ’s. Depending upon the
application, the game can be solved under one of
two assumptions:
• Price-Taking Users: Under this assumption,

users are assumed to take the price qr as given,
i.e., they do not attempt to infer the impact of
their actions on the price. This is a reasonable
assumption in a large network such as the In-
ternet, where the impact of a single user on the
link prices is negligible, and it is practically
impossible for any user to infer the impact
of its decisions on the prevailing price of the
network resources. When the users are price
taking, the socially optimal solution, i.e., the
solution to the network utility maximization
problem, coincides with the Nash equilibrium
of the game. To see this, note that the solution
to (6) is given by

1

qr
U 0
r

�
wr
qr

�
� 1 D 0;

under the assumption that the utility function
is differentiable and the solution is bounded
away from zero. Using (5), this equation re-
duces to

U 0
r .xr / D qr ;

which maximizes the Lagrangian (3). It is not
difficult to see that the complementary slack-
ness equations in the Karush-Kuhn-Tucker

conditions are satisfied since the constraints
for (2) and the proportionally fair solution
are the same. Thus, under the price-taking
assumption, the equilibrium of the game so-
lution is the same as the socially optimal
solution provided the network computes qr us-
ing the proportionally fair resource allocation
formulation.

• Strategic Users: In networks where the num-
ber of users is small, it may be possible for
each user to know the topology of the network,
and thus, each user may be able to solve for
the proportionally fair resource allocation if
it has access to other users’ bids. In other
words, it may be possible to compute a Nash
equilibrium by taking into account the impact
of the wr ’s on the qr ’s. When the users are
strategic, the socially optimal solution could
be quite different from the Nash equilibrium.
The ratio of the network utility under the
socially optimal solution to the network utility
under a Nash equilibrium is called the price of
anarchy.

There is a rich literature associated with both
interpretations of the network congestion game.
In the case of price-taking users, much of the
emphasis in the literature has been on designing
distributed algorithms to achieve the socially op-
timal solution (Shakkottai and Srikant 2007). In
the case of strategic users, the focus has been on
characterizing the price of anarchy (Johari and
Tsitsiklis 2004; Yang and Hajek 2007).

Summary and Future Directions

We have presented a number of applications
which involve the interactions of selfish users
over a network. For the resource allocation
application, we have also described how simple
mathematical models can be used to provide
incentives for users to act in a socially optimal
manner. In particular, we have shown that, under
the reasonable price-taking assumption and an
appropriate computation of link prices, selfish
users automatically maximize network utility. In
the case where the users are strategic, the goal is
to characterize the price of anarchy.
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Moving forward, two areas which require con-
siderable further research are the following: (i)
inter-ISP routing and (ii) spectrum sharing. The
Internet is a fairly reliably network, and any
unreliability often arises due to routing issues
among ISPs. As mentioned in the introduction,
peering arrangements between ISPs are necessary
to make sure that ISPs carry each others’ traffic
and are appropriately compensated for it, either
through reciprocal traffic-carrying agreements or
actual monetary transfer. Thus, the policy that
an ISP uses to route traffic may be governed by
these peering agreements. The more complicated
these policies are, the more chances there are
for routing misconfigurations that lead to service
interruptions. This interplay between policies and
technology in the form of routing algorithms is an
interesting topic for further study.

Cognitive radios and spectrum sharing are
expected to be significant technological com-
ponents of future wireless networks. Designing
algorithms for selfish radios to share the avail-
able spectrum while respecting the rights of the
primary user of the spectrum is a challenge that
requires considerable further attention. This area
of research requires one to combine sensing tech-
nologies to sense the presence of other users
with game-theoretic models to ensure fair chan-
nel access to the secondary users, subject to the
constraint that the primary user should not be
affected by the presence of the secondary users.

Cross-References

�Game Theory: Historical Overview
�Networked Systems
�Optimal Deployment and Spatial Coverage

Bibliography

Courcoubetis C, Weber R (2003) Pricing communication
networks: economics, technology and modelling. Wi-
ley, Hoboken

Hardin G (1968) The tragedy of the commons. Science
162:1243–1248

Johari R, Tsitsiklis JN (2004) Efficiency loss in a network
resource allocation game. Math Oper Res 29:407–435

Kelly FP (1997) Charging and rate control for elastic
traffic. Eur Trans Telecommun 8:33–37

Qiu D, Srikant R (2004) Modeling and performance
analysis of BitTorrent-like peer-to-peer networks.
Proc ACM SIGCOMM ACM Comput Commun Rev
34:367–378

Roughgarden T (2005) Selfish routing and the price of
anarchy. MIT Press, Cambridge

Saad W, Han Z, Debbah M, Hjorungnes A, Basar T (2009)
Coalitional game theory for communication networks:
a tutorial. IEEE Signal Process Mag 26(5):77–97

Shakkottai S, Srikant R (2007) Network optimization and
control. NoW Publishers, Boston-Delft

Yang S, Hajek B (2007) VCG-Kelly mechanisms for
allocation of divisible goods: adapting VCG mecha-
nisms to one-dimensional signals. IEEE J Sel Areas
Commun 25:1237–1243

Networked Control Systems:
Architecture and Stability Issues

Linda Bushnell1 and Hong Ye2
1Department of Electrical Engineering,
University of Washington, Seattle, WA, USA
2The Mathworks, Inc., Natick, MA, USA

Abstract

When shared, band-limited, real-time communi-
cation networks are employed in a control system
to exchange information between spatially dis-
tributed components, such as controllers, actua-
tors, and sensors, it is categorized as a networked
control system (NCS). The primary advantages
of a NCS are reduced complexity and wiring,
reduced design and implementation cost, ease of
system maintenance and modification, and effi-
cient data sharing. In addition, this unique archi-
tecture creates a way to connect the cyberspace
to the physical space for remote operation of sys-
tems. The NCS architecture allows for perform-
ing more complex tasks, but also requires taking
the network effects into account when designing
control laws and stability conditions. In this entry,
we review significant results on the architecture
and stability analysis of a NCS. The results pre-
sented address communication network-induced
challenges such as time delays, scheduling, and
information packet dropouts.
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Introduction

From the washing machine, air conditioner, and
microwave oven to the telephone, stereo, and
automobile, embedded computers are present in
the modern home. In a factory environment, there
are thousands of networked smart sensors and
actuators with embedded processors, working to
complete a coordinated task. The trend in manu-
facturing plants, homes, buildings, aircraft, and
automobiles is toward distributed networking.
This trend can be inferred from many proposed
or emerging network standards, such as con-
troller area network (CAN) for automotive and
industrial automation, BACnet for building au-
tomation, PROFIBUS and WorldFIP fieldbus for
process control, and IEEE 802.11, and Blue-
tooth wireless standards for applications such
as mobile sensor networks, HVAC systems, and
unmanned aerial vehicles.

The traditional dedicated point-to-point wired
connection in control systems has been success-
fully implemented in industry for decades. With
the advance of communication network and hard-
ware technologies, it is common to integrate the
communication network into the control system
to replace the dedicated point-to-point connection
to achieve reduced weight and power, lower cost,
simpler installation and maintenance, and higher
reliability, to name a few advantages. For exam-
ple, a typical new automobile has two controller
area networks (CANs): a high-speed one in front
of the firewall for the engine, transmission, and
traction control and a low-speed one for locks,
windows, and other devices (Johansson et al.
2005).

The conventional definition of a networked
control system (NCS) is as follows: When a
feedback control system is closed via a com-
munication channel, which may be shared with
other nodes outside the control system, then the
control system is called a NCS. A NCS can also

be described as a feedback control system where
the control loops are closed through a real-time
communication network.

Architecture of Networked Control
Systems

The architecture of a NCS consists of a band-
limited, digital communication network physi-
cally and electronically integrated with a spatially
distributed control system, operated on a given
plant. Digital information, such as controller sig-
nals, actuator signals, sensor signals, and operator
input, is transmitted via the network. The compo-
nents connected by the network include all nodes
of the control system, such as the supervisory
(or “network owner”) computer, controller soft-
ware and hardware, actuators, and sensors. In this
structure, the feedback control system’s loops are
closed over the shared communication network.

The communication network can be wired or
wireless and may be shared with other unrelated
nodes outside the control system. As illustrated in
Fig. 1, the shared communication channel, which
multiplexes signals from the sensors to the con-
trollers and/or from the controllers to the actua-
tors, serves many other uses besides control. Each
of the system components directly connected to
the network via a network interface is denoted
a physical node. Besides the network interface,
the sensors and actuator nodes are typically smart
nodes with embedded microprocessors. Some-
times, the controller is colocated with the smart
actuator. Several key issues make networked con-
trol systems distinct from traditional control sys-
tems (Hespanha et al. 2007; Yang 2006).

Band-Limited Channels
Bandwidth limitation of the shared communica-
tion channel requires that all nodes in the network
must share (e.g., time sharing or frequency shar-
ing, etc.) the common network resource without
interfering with each other.

Sampling and Delays
In a NCS, the plant outputs are sampled by
the sensors, which can convert continuous-time
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NetworkedControl Systems: Architecture and Stability Issues, Fig. 1 A general networked control system (NCS)
architecture

analog signals to digital signals; perform prepro-
cessing, filtering, and encoding; and package the
data signal so that it is ready for transmission.
After winning the medium access control and
being transmitted over the network, the package
containing the sampled data signal arrives at the
receiver side, which could be a controller or a
smart actuator with a controller collocated with
it. The receiver unpacks and decodes the signal.
This process is quite different from the traditional
periodic sampling in digital control. The overall
delay between sampling and the eventual decod-
ing of the transmitted packet at the receiver can be
time varying and random due to both the network
access delay (i.e., the time it takes for a shared
network to accept the data) and the transmission
delay (i.e., the time during which data are in
transit inside the network). This also depends on
the highly variable network conditions, such as
congestion and channel quality. In some NCSs,
the data transmitted are time stamped, which
means that the receiver may have an estimate of
the delay’s duration and could take appropriate
corrective action. Given the rapid advance of em-
bedded computation and communication hard-
ware technology today, the transmission delay in

many embedded systems can be neglected when
compared with the magnitude of network access
delay.

Packet Dropouts
It is possible in a NCS that a packet may be
lost while it is in transit through the network.
The packet that contains important sampling data
or control signals may drop occasionally due
to transmission errors of the physical network
link, message collision, or node failures, to
name a few. Overflow in queue or buffer can
lead to network congestion and package loss.
Thus, the use of queues is not favored by NCSs
in general. Packet dropouts also happen if the
receiver discards outdated arrivals that have long
delays. Most network protocols are equipped
with transmission-retry mechanisms, such as
TCP, that guarantee the eventual delivery of
packets. These protocols, unfortunately, are not
appropriate for a NCS since the retransmission
of old sensor data or calculated control signals
is generally not very useful when new, time-
critical data are available. Using selected old
data for estimation or prediction is an exception,
where old data may be packaged with the new
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data in one packet. It is advantageous to discard
the old, un-transmitted data and transmit a new
packet if and when it becomes available. In this
way, the controller always receives fresh data for
its control calculation, and the actuator always
executes the up-to-date command to control the
plant.

Modeling Errors, Uncertainties, and
Disturbances
In a distributed NCS, modeling errors, uncertain-
ties, and disturbances always exist when using
the mathematical model to describe the physical
process. These factors may lead to a major impact
on the overall system performance and cause
failure in fulfilling the desired objectives. Wang
and Hovakimyan (2013) proposed a reference
model-based architecture to decouple the design
of controller and communication schemes. A ref-
erence model is introduced in each subsystem
as a bridge to build the connection between the
real system and an ideal model, free of uncer-
tainties. The closeness between the real system
and the reference model is associated only with
plant uncertainties, and the difference between
the reference model and the ideal model is only
in the communication constraints.

Stability of Networked Control
Systems

The stability of a control system is often ex-
tremely important and is generally a safety re-
quirement. Examples include the control of rock-
ets, robots, airplanes, automobiles, or ships. In-
stability in any one of these systems can result
in an unimaginable accident and loss of life.
The stability of a general dynamical system with
no input can be described with the Lyapunov
stability criteria, which is stated as follows: A
linear system is stable if its impulse response
approaches zero as time approaches infinity or if
every bounded input produces a bounded output.

When sensors, controllers, and actuators
are not colocated and use a shared network
to communicate, the feedback loop of a NCS
is closed over the network. Network-induced,

variable delays, and packet dropouts can degrade
the performance of a NCS. For example, the
NCS may have a longer settling time or bigger
overshoot in the step response. Furthermore,
the NCS may become unstable when delays
and/or packet dropouts exceed a certain range.
Designers choosing to use a NCS architecture,
however, are motivated not by performance but
by cost, maintenance, and reliability gains.

Band-Limited Channels
Inspired by Shannon’s results on the maximum
bit rate that a communication channel can carry
reliably, a significant research effort has been
devoted to the problem of determining the min-
imum bit rate that is needed to stabilize a system
through feedback over a finite capacity channel
(Baillieul 1999; Nair and Evans 2000; Tatikonda
and Mitter 2004; Wong and Brockett 1999; Bail-
lieul and Antsaklis 2007). This has been solved
exactly for linear plants, but only conservative re-
sults have been obtained for nonlinear plants. The
data-rate theorem that quantifies a fundamental
relationship between unstable physical systems
and the rate at which information must be pro-
cessed in order to stably control them was proved
independently under a variety of assumptions.
Minimum bit rate and quantization becomes es-
pecially important for networks designed to carry
very small packets with little overhead, because
encoding measurements or actuation signals with
less bits can save network bandwidth.

Most of the NCS stability results presented
here, however, are based on the observation that
the channel can transmit a finite number of pack-
ets per unit of time (packet rate) and each packet
can carry certain number of bits in the data
field. The packets on a real-time control network
typically are frequent and have small data seg-
ments compared to their headers. For example, a
CAN II packet with a single 16-bit data sample
has fixed 64 bits of overhead associated with
identifier, control field, CRC, ACK field, and
frame delimiter, resulting in 25 % utilization, and
this utilization can never exceed 50 % (data field
length is limited to 64 bits). Thus, the quan-
tization effects imposed by the communication
networks are generally ignored.
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Network-Induced Delays
A significant number of results have attempted to
characterize a maximum upper bound on the sam-
pling or transmission interval for which stability
of the NCS can be guaranteed. The upper bound
is sometimes called the maximum allowable
transfer interval (MATI) (Walsh 2001a). These
results implicitly attempt to minimize the packet
rate or schedule the traffic of the control network
that is needed to stabilize a system through
feedback. The general approach is to design
the controller using established techniques,
considering the network to be transparent, and
then to analyze the effect of the network on
closed-loop system performance and stability.

The NCS with a linear time-invariant (LTI)
plant/controller pair and one-channel feedback
(see Fig. 2) can be modeled by the following
continuous-time system, where x includes the
states of the plant and the controller, x.t/ D
Œxp.t/; xc.t/�

T :

Px D Ax C B Oy; y D C.x/ (1)

Oy.t/ D
� Oyk�1; t 2 Œtk ; tk C �k/

Oyk; t 2 Œtk C �k I tkC1/
(2)

The signal y is a vector of sensor measurements
and Oy is the input to a continuous-time controller
collocated with the actuators. Alternatively, Oy
can be viewed as the input to the actuators and
y as the desired control signal computed by a
controller collocated with the sensors. The signal
y(t) is sampled at times ftk W k 2 N g and
the samples y.k/ WD y.tk/ are sent through the
network. But the samples arrive at the destination

Networked Control Systems: Architecture and Sta-
bility Issues, Fig. 2 A NCS architecture with one-
channel feedback (controller collocated with actuator)

after a (possibly variable) delay of £k, where
we assume that the network delays are always
smaller than one sampling interval. For periodic
sampling and constant delays, a sufficient and
necessary condition for exponential stability of
the NCS (Eqs. 1 and 2) was derived (Zhang et al.
2001). By using the augmented state space model
and based on the stability of nonlinear hybrid
systems, they also proved the sufficient condition
for stability of the NCS in the time-invariant
case.

If we now assume the sampling intervals are
constant and the computation and transmission
delays are negligible, then the variable network
access delays serve as the main source of delays
in a NCS (Lin et al. 2003, 2005). Using average
dwell time results for discrete switched systems,
Zhai et al. (2002) provided conditions such that
NCS stability is guaranteed. Also, the authors
consider robust disturbance attenuation analysis
for this class of NCSs.

When the network delay is not constant or
when the signal y(t) is sampled in a nonperiodic
fashion, the system (1) and (2) is not time invari-
ant and one needs a Lyapunov-based argument to
prove its stability. Zhang and Branicky (2001) de-
rived the sufficient condition to ensure the NCS in
Fig. 2 is exponentially stable. They also proposed
a randomized algorithm to find the largest value
of sampling interval for which stability can be
guaranteed.

For a model-based NCS with state and output
feedback, an explicit model of the plant is used
to produce an estimate of the plant state behavior
between transmission times (Montestruque
and Antsaklis 2004). Sufficient conditions for
Lyapunov stability are derived for a model-based
NCS when the controller/actuator is updated
with the sensor information at nonconstant time
intervals. A NCS with transmission times that are
driven by a stochastic process with identically
independently distributed and Markov-chain-
driven transmission times almost sure stability
and mean-square sufficient conditions for
stability are introduced. Onat et al. (2011)
adapted above stability results to model-
based predictive NCSs with realistic structure
assumptions.
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Networked Control Systems: Architecture and Sta-
bility Issues, Fig. 3 A NCS architecture with two-
channel feedback

Control Network Scheduler
In general a Multi-Input/Multi-Output (MIMO)
NCS with two-channel feedback, both the sam-
pled plant output and controller output are trans-
mitted via a network (see Fig. 3). Because of the
network, only the reported output y(t) is available
to the controller and its prediction processes;
similarly, only Ou(t) is available to the actuators on
the plant. We label the network-induced error

e.t/ WD Œ Oy.t/; Ou.t/�T � Œy.t/; u.t/�T

and the combined state of controller and plant
x.t/ D Œxp.t/; xc.t/�

T . The state of the entire
NCS is given by z.t/ D Œx.t/; e.t/�T . Following
this general approach, the controller is designed
using established techniques without considering
the presence of the network.

The behavior of the network-induced error
e.t/ is mainly determined by the architecture
of the NCS and the scheduling strategy. In the
special case of one-package transmission, there is
only one node transmitting data on the network;
therefore, the entire vector e.t/ is set to zero at
each transmission time. For multiple nodes trans-
mitting measured outputs y.t/ and/or computed
inputs u.t/, the transmission order of the nodes
depends on the scheduling strategy chosen for
the NCS. In other words, the scheduling strategy
decides which components of e.t/ are set to zero
at the transmission times.

Static and dynamic schedulers (a.k.a. proto-
cols) are two main categories used in a NCS.
When the network resource or transmission order
are pre-allocated or determined before run-time,

it is called a static scheduler, such as round-
robin scheduling. A dynamic scheduler deter-
mines the network allocation while the system
runs. A novel dynamic network scheduler, try-
once-discard (TOD) and several variations were
introduced for wired and wireless NCSs (Walsh
and Ye 2001; Ye et al. 2001). For linear and
nonlinear NCSs with the new dynamic and com-
monly used static schedulers, an analytic proof
of global exponential stability of a MIMO NCS
was provided (Walsh 2001a; Walsh et al. 2001b).
Simulation and experiment results showed that
the dynamic schedulers outperform static sched-
ulers in terms of NCS performance, e.g., a bigger
MATI.

Nesic and Teel (2004a,b) generalize the above
results by considering a nonlinear NCS with
external disturbances and more general class of
protocols (or schedulers). They considered a new
class of Lyapunov uniformly globally asymptot-
ically stable (UGAS) protocols in a NCS. It is
shown that if the controller is designed without
taking into account the network, it yields input-
to-state stability (ISS) with respect to external
disturbances (not necessarily with respect to the
network-induced error), and then the same con-
troller will achieve semi-global practical ISS for
the NCS when implemented via the network
with a Lyapunov UGAS protocol. Moreover, the
ISS gain is preserved. The adjustable parameter
with respect to which semi-global practical ISS
is achieved is the MATI between transmission
times. The authors also studied the input–output
Lp stability of a NCS for a large class of network
scheduling protocols. It is shown that polling,
static protocols, and dynamic protocol such as
TOD belong to this class. Results in Nesic and
Teel (2004a) provide a unifying framework for
generating new scheduling protocols that pre-
serve Lp stability properties of the system, if
a design parameter is chosen to be sufficiently
small. The most general version of these results
can also be used to model a NCS with data packet
dropouts. The proof technique used is based on
the small gain theorem and lends itself to an easy
interpretation.

A framework for analyzing the stability of
a general nonlinear NCS with disturbances in
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the setting of Lp stability was provided by Tab-
bara et al. (2007). Their presentation provides
sharper results for both gain and MATI than
previously obtainable and details the property of
uniformly persistently exciting scheduling pro-
tocols. This class of protocols was shown to
lead to stability for high enough transmission
rates. This was a natural property to demand,
especially in the design of wireless scheduling
protocols. The property is used directly in a novel
proof technique based on the notions of vector
comparison and (quasi)-monotone systems. Via
simulations, analytical, and numerical compari-
son, it is verified that the uniform persistence of
excitation property of protocols is, in some sense,
the “finest” property that can be extracted from
wireless scheduling protocols.

Delays and Packet Dropouts
Packet dropouts can be modeled as either
stochastic or deterministic phenomena. For a
one-channel feedback NCS, Zhang and Branicky
(2001) consider a deterministic dropouts model,
with packet dropouts occurring at an asymptotic
rate. Stability conditions were studied for a NCS
with deterministic and stochastic dropouts (Seiler
and Sengupta 2005).

Sometimes, the NCS was characterized as
a continuous-time delayed differential equation
(DDE) with the time-varying delay £(t). One
important advantage is that the equations are
still valid even when the delays exceed the sam-
pling interval. Researchers successfully used the
Lyapunov–Krasovskii (Yue et al. 2004) and the
Razumikhin theorems (Yu et al. 2004) to study
the stability of a NCS that is modeled as DDEs.

Summary and Future Directions

This article introduced the concept of a net-
worked control system and its general architec-
ture. Several key issues specific to a NCS, such as
band-limited channels, network-induced delays,
and information packet dropouts, were explained.
The stability condition of a NCS with various net-
work effects was discussed with several common
modeling techniques.

In terms of future directions, there has been
significant effort in analyzing networked control
systems with variable sampling rate, but most
results investigate the stability for a given worst-
case interval between consecutive sampling
times, leading to conservative results. An open
area of research would be to look at methods that
take into account a stochastic characterization for
the inter-sampling times. Substantial work has
also been devoted to determining the stability
of a NCS, as described in this article. Possible
open areas of research would be to consider
design issues related to the joint stability and
performance of the system. The design and
development of controllers for a NCS is also an
open area of research. In designing a controller
for a NCS, one has to take into account the
challenges introduced by the communication
network. Only afterward can analysis of the
whole system take place.
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Abstract

This entry discusses optimal estimation and con-
trol for lossy networks. Conditions for stability
are provided both for two-link and multiple-link
networks. The online adaptation of network re-
sources (controlled communication) is also con-
sidered.
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Introduction

Network Control Systems (NCSs) are spatially
distributed systems in which the communication
between sensors, actuators, and controllers
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occurs through a shared band-limited digital
communication network. In this entry, we
consider the problem of estimation and control
over such networks.

A significant difference between NCSs and
standard digital control is the possibility that
data may be lost while in transit through the
network. Typically, packet dropouts result from
transmission errors in physical network links
(which is far more common in wireless than
in wired networks) or from buffer overflows
due to congestion. Long transmission delays
sometimes result in packet reordering, which
essentially amounts to a packet dropout if the
receiver discards “outdated” arrivals. Reliable
transmission protocols, such as TCP, guarantee
the eventual delivery of packets. However, these
protocols are not appropriate for NCSs since
the retransmission of old data is generally not
useful. Another important difference between
NCSs and standard digital control systems is
that, due to the nature of network traffic, delays
in the control loop may be time varying and
nondeterministic.

In this entry, we concentrate on the problem of
control and estimation in the presence of packet
losses, leaving other important features of NCSs
(such as quantization and random delays) to be
addressed in other entries of this encyclopedia.
Consequently, we assume that the network can be
viewed as a channel that can carry real numbers
without distortion, but that some of the messages
may be lost. This network model is appropriate
when the number of bits in each data packet is
sufficiently large so that quantization effects can
be ignored, but packet dropouts cannot. For more
general channel models, see, for example, Imer
and Basar (2005).

This entry also does not address network trans-
mission delays explicitly. In general, network
delays have two components: one that is due to
the time spent transmitting packets and another
due to the time packets wait in buffers waiting
to be transmitted. Delays due to packet transmis-
sion present little variation and may be modeled
as constants. For control design purposes, these
delays may be incorporated into the plant model.
Delays due to buffering depend on the network

traffic and are typically random; they can be ana-
lyzed using the techniques developed in Antunes
et al. (2012).

Notation and Basic Definitions. Throughout
the entry, R stands for real numbers and N for
nonnegative integers. For a given matrix A 2
R
n�n and vector x 2 R

n; kxk WD p
x0x denotes

the Euclidean norm of x, and �.A/ the set of
eigenvalues of A. Random variables are gener-
ally denoted in boldface. For a random variable
y;EŒy� stands for the expectation of y.

Two-Link Networks

Here, we consider a control/estimation problem
when all network effects can be modeled using
two erasure channels: one from the sensor to the
controller and the other from the controller to the
actuator (see Fig. 1).

We restrict our attention to a linear time-
invariant (LTI) plant with intermittent observa-
tion and control packets:

xkC1 D Axk C �kBuk C wk; (1a)

yk D �kCxk C vk; (1b)

8k 2 N; xk;wk 2 R
n; yk; vk 2 R

p, where
.x0;wk; vk/ are mutually independent, zero-mean
Gaussian with covariance matrices .P0;Rw; Rv/,
and �k; �k 2 f0; 1g are i.i.d. Bernoulli random
variables with Prf�k D 1g D N� and Prf�k D
1g D N�. The variable �k models the packet loss
between sensor and controller, whereas �k mod-
els the packet loss between controller and actua-
tor. When there is a packet drop from controller

Actuator

Controller

Plant Sensor

Erasure channel Erasure channel

Networked Control Systems: Estimation and Control
Over Lossy Networks, Fig. 1 Control system with two
network links
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to actuator, we set the actuator’s output to zero.
Different strategies, such as holding the control
input, could still be modeled using (1) by aug-
menting of the state vector.

The information available to the controller up
to time k is given by the information set:

Ik D fP0g [ fy`; �` W ` � kg [ f�` W ` � k � 1g:

Here, we make an important assumption that
acknowledgment packets from the actuator
are always received by the controller so that
�`; ` � k � 1 is available at time k to the remote
estimator.

Optimal Estimation with Remote
Computation
The optimal mean-square estimate of xk , given
the information known to the remote estimator at
time k, is given by

Oxkjk WD EŒxkjIk�:

This estimate can be computed recursively using
the following time-varying Kalman filter (TVKF)
(Sinopoli et al. 2004):

Ox0j�1 D 0; (2a)

Oxkjk D Oxkjk�1 C �kFk.yk � C Oxkjk�1/; (2b)

OxkC1jk D AOxkjk C �kBuk; (2c)

with the gain matrix Fk calculated recursively as
follows

Fk D PkC
0.CPkC 0 CRv/

�1;

PkC1 D APkA
0 CRw � �kAFk.CPkC

0 CRv/

F 0
kA

0:

Each Pk corresponds to the estimation error co-
variance matrix

Pk D E
�
.xk � Oxkjk�1/.xk � Oxkjk�1/0

�
:

For this estimator, there exists a critical
value �c for the dropout rate N� , above which

the estimation error covariance becomes
unbounded:

Theorem 1 (Sinopoli et al. 2004) Assume that�
A;R1=2w

�
is controllable, .A; C / is observable,

and A is unstable. Then there exists a critical
value �c 2 .0; 1� such that

EŒPk� � M;8k 2 N , N� � �c

where M is a positive definite matrix that may
depend on P0. Furthermore, the critical value �c
satisfies �min � �c � �max, where the lower bound
is given by

�min D 1 � 1

.max fj�.A/jg/2 ; (3)

and the upper bound is given by the solution to
the following (quasi-convex) optimization prob-
lem:

�max D minf� � 0 W ��.Y;Z/ > 0;
0 � Y � I for some Y;Zg;

where

��.Y;Z/ D
2
64

Y
p
�.YACZC/

p
1 � �YAp

�.A0Y C C 0Z0/ Y 0p
1 � �A0Y 0 Y

3
75 :

Remark 1 In some special cases, the upper
bound in (3) is tight in the sense that �c � �min.
The largest class of systems known for which
this occurs is that of nondegenerate systems
defined in Mo and Sinopoli (2012). Examples of
systems in this class include (1) those for which
the matrix C is invertible and (2) those with a
detectable pair .A; C / and such that the matrix
A is diagonalizable with unstable eigenvalues
having distinct absolute values.
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Optimal Control with Remote
Computation
From a control perspective, one may also be
interested in finding control sequences uN D
fu1; : : : ;uN�1g, as functions of the information
set IN , which minimize cost functions of the
form

JD lim
N!1

1

N
E

"
N�1X

kD0
.x0
kW xk C �ku0

kUuk/jIk
#
:

Theorem 2 (Schenato et al. 2007) Assume that
(A, B) and .A;R1=2w / are controllable, (A, C)
and .A;W 1=2/ are observable, and A is unstable.
Then, finite control costs J are achievable if
and only if N� > �c and N� > �c , where the
critical value �c is given by the (quasi-convex)
optimization problem

�c D minf� � 0 W ��.Y;Z/ > 0;
0 � Y � I for someY;Zg;

where

��.Y;Z/ D
2

66664

Y Y
p
�ZU 1=2

p
�.YA0 CZB 0/

p
1 � �YA0

Y W �1 0 0 0p
�U 1=2Z0 0 I 0 0p

�.AY C BZ0/ 0 0 Y 0p
1 � �AY 0 0 0 Y

3

77775
:

Moreover, under the above conditions, the
separation principle holds in the sense that the
optimal control is given by

uk D �.B 0SB C U /�1B 0SAOxkjk;

where Oxkjk is an optimal state estimate given
by (2) and the matrix S is the solution to the
modified algebraic Riccati (MARE) equation

S D A0SACW � N�A0SB.B 0SB C U /�1B 0SA:

Solutions to the MARE may be obtained itera-
tively when N� > �c .

Estimation with Local Computation
To reduce the gap between the bounds �min and
�max on the critical value of the drop probability
in Theorem 1 and to allow for larger probabil-
ities of drop, one may choose to compute state
estimates at the sensor and transmit those to
the controller/actuator. This scheme is motivated
by the growing number of smart sensors with
embedded processing units that are capable of
local computation. For the LTI plant

xkC1 D Axk C Buk C wk;

yk D Cxk C vk;

the smart sensor can compute locally an opti-
mal state estimate using a standard stationary
Kalman filter and transmits this estimate to the
controller. We model packet dropouts as before
using the process �k and assume that the process
�k is known to the smart sensor by means of an
perfect acknowledgment mechanism. This allows
the sensor to know uk exactly and to use it in the
Kalman filter.

Let Qxkjk D EŒxkjy`; �`; ` � k� denote the local
estimates transmitted by the sensor. Using the
messages successfully received up to time k, the
remote estimator computes the optimal estimate

Oxkjk�1 D EŒxkj�`; Qx`j`; ` � k � 1�:

recursively by

Ox0j�1 D 0;

Oxkjk D .1 � �k/Oxkjk�1 C �k Qxkjk; k 2 N;

OxkC1jk D AOxkjk C Buk
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Notice that now we are applying the (TVKF)
to estimate Qxk, which is fully observable. Since
�min and �max in Theorem 2 are equal for fully
observable processes (Schenato et al. 2007), the
local computation scheme grants a minimal criti-
cal value �c as stated in the theorem below.

Theorem 3 Assume that .A;R1=2w / is control-
lable, (A, C) is OBSERVABLE, and A is unstable.
Then the critical value �c is given by �min in (3),
i.e.,

EŒPk� � M;8k 2 N , N� � �min

where M is a positive definite matrix that may
depend on P0.

Drops in the Acknowledgement Packets
When there are drops in the acknowledgment
channel from the actuator to the controller, the
controller does not always know �k , and there-
fore, it might not always have access to the
control inputs that are actually applied to the
plant. In this case, the posterior state proba-
bility becomes a Gaussian mixture distribution
with infinitely many components, and the sepa-
ration principle no longer holds (Schenato et al.
2007). This makes the estimation and control
problems computationally more difficult, and,
due to the smaller information set, some perfor-
mance degradation in the control performance
should be expected. For this reason, it is generally
a good design choice to keep controller and actua-
tor collocated when drops in the acknowledgment
channels are significant.

Buffering
As an alternative to the approach described in
section “Estimation with Local Computation” to
use local computation at a smart sensor to allow
for larger probabilities of drop, the designer may
also consider the transmission of a sequence
of previous measurements yk; yk�1; : : : ; yk�N
in each packet. This approach is motivated
by the fact that often data packets can carry
much more than one vector of measured outputs.
When N is reasonably large, one should expect
similar estimation/control performances as in

the approach described in section “Estimation
with Local Computation”, but with a reduced
computational effort at the sensor.

Analogously, an improvement to zeroing or
simply holding the control input in case of
packet drops between controller and actuator
is for the controller to transmit a control
sequence uk;ukC1; : : : ;ukCN that contains not
only the control uk to be used at the current
time instant but also a few future controls
ukC1;ukC2; : : : ;ukCN . In the case of packet
drops between controller and actuator, the
actuator can use previously received “future”
control inputs in lieu of the one contained in the
lost packet. The sequence of future control inputs
may be obtained, e.g., by an optimal receding
horizon control strategy (Gupta et al. 2006).

Estimation with Markovian Drops
When �k is a Markov process, we no longer
have a separation principle, and the optimal con-
troller may depend on the drops sequence. Yet,
optimal state estimates are obtained using the
same TVKF presented earlier. Below, we give
conditions for the stability of the error covariance
when drops are governed by the Gilbert-Elliot
model: Prf�kC1 D j j�k D ig D pij; i; j 2
f0; 1g.

Theorem 4 (Mo and Sinopoli 2012) Assume
that .A; R1=2w / is controllable, A is unstable, and
the system given by the pair .A; C / is nonde-
generate as discussed in Remark 1. Moreover,
suppose that the transition probabilities for the
Gilbert-Elliot model satisfy p01Ip10 > 0. Then
the expected error covariance EŒPk� is uniformly
bounded if

p01 > �min

and it is unbounded for some initial condition if
p01 < �min.

Networks withMultiple Links

We now consider feedback loops that are closed
over a network of communication links, each of
which drops packets according to a Bernoulli
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process. The sensor communicates with a con-
troller across the network, and we assume that
controller and actuator are collocated. The net-
work may be represented by a graph G with nodes
in the set V and edges in the set E , where edges
are drawn between two communicating nodes.
We denote by pij the probability of a drop when
node i transmits to node j . Drops are assumed to
be independent across links and time.

To maximize robustness with respect to drops,
sensors use a Kalman filter to compute an optimal
estimate for the state of the process based on
their measurements and transmit this estimate
across the network. When the sensors do not
have access to the process input, they can take
advantage of the linearity of the Kalman filter:
as the output of a Kalman filter is the sum of a
term due to measurements with another term due
to control inputs, sensors may compute only the
contribution due to measurements and transmit
it to the controller, which can subsequently add
the contribution due to the control inputs. This
guarantees that optimal state estimates can still
be computed at the control node, even when the
sensors do not know the control input (Gupta
et al. 2009).

The communication in the network goes as
follows. Sensors time stamp their estimates and
broadcast them to all nodes in their communi-
cation ranges. After receiving information from
their neighbors, nodes compare time stamps and
keep only the most recent estimates. These esti-
mates are broadcasted to all neighboring nodes.
When the controller receives new information,
the optimal Kalman estimate is reconstructed,
taking into account the total transmission delay
(learned from the packet time stamps), and a
standard LQG control can be used (Gupta et al.
2009).

To determine whether or not this procedure
results in a stable closed loop, one defines a cut
C D .S; T / to be a partition of the node set
V such that the sensor node is in S and the
controller node is in T . The cut-set is then defined
as the set of edges .i; j / 2 E such that i 2 S
and j 2 T , i.e., the set of edges that connect
the sets S and T . The max-cut probability is then
defined as

pmax-cut D max
all cuts.S;T /

Y

.i;j /2S�T
pij :

The above maximization can be rewritten as a
minimization over the sums of �logpij , which
leads to a linear program known as the mini-
mum cut problem in network optimization theory
(Cook 1995).

Theorem 5 (Gupta et al. 2009) Assume that
Rw; Rv > 0, that .A;B/ is stabilizable, that
.A; C / is observable, and that A is unstable. Then
the control and communication policy described
above is optimal for quadratic costs, and the
expected state covariance is bounded if and only
if

pmax-cut � .maxfj�.A/jg/2 < 1:

Estimation with Controlled
Communication

To actively reduce network traffic and power
consumption, sensor measurements may not be
sent to the remote estimator at every time step. In
addition, one may have the ability to somewhat
control the probability of packet drops by varying
the transmit power or by transmitting copies of
the same message through multiple channel real-
izations. This is known as controlled communi-
cation, and it allows the designer to establish a
trade-off between communication and estimation
performance.

We consider the local estimation scenario de-
scribed in section “Estimation with Local Com-
putation” with the difference that the Bernoulli
drops are now modulated as follows

�k D
(
1 with prob: �k

0 with prob: 1 ��k

where the sensor is free to choose�k 2 Œ0; pmax�

as a function of the information available up to
time k. With its choice, the sensor incurs on a
communication cost c.�k/ at time k, where c.�/
is some increasing function that may represent,
for example, the energy needed in order to trans-
mit with a probability of drop equal to �k . Note
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that transmission scheduling, where �k is either
0 or pmax, is a special case of this framework.

In order to choose �k , the sensor considers
the estimation error Qek WD Qxkjk � Oxkjk�1 between
the local and the remote estimators. This error
evolves according to

QekC1 D
(

dk with prob: �k

AQek C dk with prob: 1 ��k

where dk is the innovations process arising from
the standard Kalman filter in the smart sensor.

Our objective is to find a “communication
policy” that minimizes the long-term average cost

QJ WD lim
K!1

1

K
E

"
K�1X

kD0
kQekk2 C �c.�k/

#
;

� > 0; (4)

which penalizes a linear combination of the re-

mote estimation error variance E
h
kQekk2

i
and

the average communication cost EŒc.�k/�. In
this context, a communication policy should be
understood as a rule that selects �k as a function
of the information available to the sensor.

When

.1 � pmax/maxfj�.A/jg2 < 1;

there exists an optimal communication policy that
chooses �k as a function of Qek, which may be
computed via dynamic programming and value
iteration (Mesquita et al. 2012). While this pro-
cedure can be computationally difficult, it is of-
ten possible to obtain suboptimal but reasonable
performance with rollout policies such as the
following one:

�k D arg min
�2Œ0;pmax �

Œ.pmax ��/Qe0
kA

0HAQek

C �c.�/� (5)

where H is the positive semidefinite solution to
the Lyapunov equation .1 � pmax/A

0HA �H D
�I (Mesquita et al. 2012).

When computing Qek and �k in (5) is com-
putationally too costly for the sensor, one may
prefer to make �k a function of the number
of consecutive dropped packets `k . In this case,
minimizing QJ in (4) is equivalent to minimizing
the cost

NJ WD lim
K!1

1

K
E

"
K�1X

kD0
trace

�
†`k

�C �c.�k/

#
;

where

†` WD
X̀

mD0
A0mRwA

m:

Since `k belongs to a countable set, one can very
efficiently solve this optimization using dynamic
programming (Mesquita et al. 2012).

Summary and Future Directions

Most positive results in the subject rely on the
assumption of perfect acknowledgments and on
actuators and controllers being collocated. Future
research should address ways of circumventing
these assumptions.
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� Information and Communication Complexity
of Networked Control Systems
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Abstract

This entry provides a brief overview on net-
worked systems from a systems and control per-
spective. We pay special attention to the nature
of the interactions among agents; the critical
role played by information sharing, dissemina-
tion, and aggregation; and the distributed control
paradigm to engineer the behavior of networked
systems.

Keywords

Autonomous networks; Cooperative control;
Multi-agent systems; Swarms

Introduction

Networked systems appear in numerous scientific
and engineering domains, including communica-
tion networks (Toh 2001), multi-robot networks
(Arkin 1998; Balch and Parker 2002), sensor
networks (Santi 2005; Schenato et al. 2007),
water irrigation networks (Cantoni et al. 2007),
power and electrical networks (Chow 1982;
Chiang et al. 1995; Dörfler et al. 2013), camera
networks (Song et al. 2011), transportation
networks (Ahuja et al. 1993), social networks
(Jackson 2010), and chemical and biological
networks (Kuramoto 1984; Strogatz 2003).
Their applications are pervasive, ranging from
environmental monitoring, ocean sampling,
and marine energy systems, through search
and rescue missions, high-stress deployment in
disaster recovery, health monitoring of critical
infrastructure to science imaging, the smart grid,
and cybersecurity.

The rich nature of networked systems makes
it difficult to provide a definition that, at the
same time, is comprehensive enough to capture
their variety and simple enough to be expressive
of their main features. With this in mind, we
loosely define a networked system as a “system of
systems,” i.e., a collection of agents that interact
with each other. These groups might be hetero-
geneous, composed by human, biological, or en-
gineered agents possessing different capabilities
regarding mobility, sensing, actuation, commu-
nication, and computation. Individuals may have
objectives of their own or may share a common
objective with others – which in turn might be ad-
versarial with respect to another subset of agents.

In a networked system, the evolutions of the
states of individual agents are coupled. Coupling
might be the result of the physical interconnec-
tion among the agents, the consequence of the im-
plementation of coordination algorithms where
agents use information about each other, or a
combination of both. There is diversity too in the
nature of agents themselves and the interactions
among them, which might be cooperative, adver-
sarial, or belong to the rich range between the
two. Due to changes in the state of the agents, the
network, or the environment, interactions among
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agents may be changing and dynamic. Such inter-
actions may be structured across different layers,
which themselves might be organized in a hi-
erarchical fashion. Networked systems may also
interact with external entities that specify high-
level commands that trickle down through the
system all the way to the agent level.

A defining characteristic of a networked sys-
tem is the fact that information, understood in a
broad sense, is sparse and distributed across the
agents. As such, different individuals have access
to information of varying degrees of quality.
As part of the operation of the networked sys-
tem, mechanisms are in place to share, transmit,
and/or aggregate this information. Some informa-
tion may be disseminated throughout the whole
network or, in some cases, all information can
be made centrally available at a reasonable cost.
In other scenarios, however, the latter might turn
out to be too costly, unfeasible, or undesirable
because of privacy and security considerations.
Individual agents are the basic unit for decision
making, but decisions might be made from in-
termediate levels of the networked system all the
way to a central planner. The combination of in-
formation availability and decision-making capa-
bilities gives rise to an ample spectrum of possi-
bilities between the centralized control paradigm,
where all information is available at a central
planner who makes the decisions, and the fully
distributed control paradigm, where individual
agents only have access to the information shared
by their neighbors in addition to their own.

Perspective from Systems
and Control

There are many aspects that come into play when
dealing with networked systems regarding com-
putation, processing, sensing, communication,
planning, motion control, and decision making.
This complexity makes their study challenging
and fascinating and explains the interest that,
with different emphases, they generate in a large
number of disciplines. In biology, scientists
analyze synchronization phenomena and self-
organized swarming behavior in groups with

distributed agent-to-agent interactions (Okubo
1986; Parrish et al. 2002; Conradt and Roper
2003; Couzin et al. 2005). In robotics, engineers
design algorithmic solutions to help multivehicle
networks and embedded systems coordinate
their actions and perform challenging spatially
distributed tasks (Arkin 1998; Committee on
Networked Systems of Embedded Computers
2001; Balch and Parker 2002; Howard et al. 2006;
Kumar et al. 2008). Graph theorists and applied
mathematicians study the role played by the
interconnection among agents in the emergence
of phase transition phenomena (Bollobás 2001;
Meester and Roy 2008; Chung 2010). This
interest is also shared in communication and
information theory, where researchers strive to
design efficient communication protocols and
examine the effect of topology control on group
connectivity and information dissemination
(Zhao and Guibas 2004; Giridhar and Kumar
2005; Lloyd et al. 2005; Santi 2005; Franceschetti
and Meester 2007). Game theorists study the gap
between the performance achieved by global,
network-wide optimizers and the configurations
that result from selfish agents interacting locally
in social and economic systems (Roughgarden
2005; Nisan et al. 2007; Easley and Kleinberg
2010; Marden and Shamma 2013). In mechanism
design, researchers seek to align the objectives
of individual self-interested agents with the
overall goal of the network. Static and mobile
networked systems and their applications to the
study of natural phenomena in oceans (Paley
et al. 2008; Graham and Cortés 2012; Zhang
and Leonard 2010; Das et al. 2012; Ouimet and
Cortés 2013), rivers (Ru and Martínez 2013;
Tinka et al. 2013), and the environment (DeVries
and Paley 2012) also raise exciting challenges in
estimation theory, computational geometry, and
spatial statistics.

The field of systems and control brings a
comprehensive approach to the modeling, analy-
sis, and design of networked systems. Emphasis
is put on the understanding of the general
principles that explain how specific collective
behaviors emerge from basic interactions; the
establishment of models, abstractions, and tools
that allow us to reason rigorously about complex
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interconnected systems; and the development
of systematic methodologies that help engineer
their behavior. The ultimate goal is to establish a
science for integrating individual components
into complex, self-organizing networks with
predictable behavior. To realize the “power
of many” and expand the realm of what is
possible to achieve beyond the individual agent
capabilities, special care is taken to obtain
precise guarantees on the stability properties
of coordination algorithms, understand the
conditions and constraints under which they
work, and characterize their performance and
robustness against a variety of disturbances and
disruptions.

Research Issues – and How the Entries
in the Encyclopedia Address Them

Given the key role played by agent-to-agent inter-
actions in networked systems, the Encyclopedia
entries �Graphs for Modeling Networked In-
teractions and �Dynamic Graphs, Connectivity
of deal with how their nature and effect can be
modeled through graphs. This includes diverse
aspects such as deterministic and stochastic
interactions, static and dynamic graphs, state-
dependent and time-dependent neighboring
relationships, and connectivity. The importance
of maintaining a certain level of coordination
and consistency across the networked system is
manifested in the various entries that deal with
coordination tasks that are, in some way or an-
other, related to some form of agreement. These
include consensus (�Averaging Algorithms
and Consensus), formation control (�Vehicular
Chains), cohesiveness, flocking (� Flocking
in Networked Systems), synchronization
(�Oscillator Synchronization), and distributed
optimization (�Distributed Optimization). A
great deal of work (e.g., see �Optimal Deploy-
ment and Spatial Coverage and �Multi-vehicle
Routing), is also devoted to the design of
cooperative strategies that achieve spatially
distributed tasks such as optimal coverage, space
partitioning, vehicle routing, and servicing. These
entries explore the optimal placement of agents,

the optimal tuning of sensors, and the distributed
optimization of network resources. The entry
�Estimation and Control over Networks explores
the impact that communication channels may
have on the execution of estimation and control
tasks over networks of sensors and actuators.
A strong point of commonality among the
contributions is the precise characterization of the
scalability of coordination algorithms, together
with the rigorous analysis of their correctness
and stability properties. Another focal point is
the analysis of the performance gap between
centralized and distributed approaches in regard
to the ultimate network objective.

Further information about other relevant
aspects of networked systems can be found
throughout this Encyclopedia. Among these, we
highlight the synthesis of cooperative strategies
for data fusion, distributed estimation, and
adaptive sampling, the analysis of the network
operation under communication constraints (e.g.,
limited bandwidth, message drops, delays, and
quantization), the treatment of game-theoretic
scenarios that involve interactions among
multiple players and where security concerns
might be involved, distributed model predictive
control, and the handling of uncertainty,
imprecise information, and events via discrete-
event systems and triggered control.

Summary and Future Directions

In conclusion, this entry has illustrated ways
in which systems and control can help us de-
sign and analyze networked systems. We have
focused on the role that information and agent
interconnection play in shaping their behavior.
We have also made emphasis on the increasingly
rich set of methods and techniques that allow
to provide correctness and performance guar-
antees. The field of networked systems is vast
and the amount of work impossible to survey in
this brief entry. The reader is invited to further
explore additional topics beyond the ones men-
tioned here. The monographs (Ren and Beard
2008; Bullo et al. 2009; Mesbahi and Egerst-
edt 2010; Alpcan and Başar 2010) and edited
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volumes (Kumar et al. 2004; Shamma 2008;
Saligrama 2008), and manuscripts (Olfati-Saber
et al. 2007; Baillieul and Antsaklis 2007; Leonard
et al. 2007; Kim and Kumar 2012), together
with the references provided in the Encyclopedia
entries mentioned above, are a good starting point
to undertake this enjoyable effort. Given the big
impact that networked systems have, and will
continue to have, in our society, from energy and
transportation, through human interaction and
healthcare, to biology and the environment, there
is no doubt that the coming years will witness
the development of more tools, abstractions, and
models that allow to reason rigorously about
intelligent networks and for techniques that help
design truly autonomous and adaptive networks.
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Abstract

There has been great interest recently in “uni-
versal model-free controllers” that do not need
a mathematical model of the controlled plant,
but mimic the functions of biological processes
to learn about the systems they are controlling
online, so that performance improves automati-
cally. Neural network (NN) control has had two
major thrusts: approximate dynamic program-
ming, which uses NN to approximately solve the
optimal control problem, and NN in closed-loop
feedback control.

Keywords

Adaptive control; Learning systems; Neural net-
works; Optimal control; Reinforcement learning

Neural Feedback Control

The objective is to design NN feedback con-
trollers that cause a system to follow, or track,
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a prescribed trajectory or path. Consider the dy-
namics of an n-link robot manipulator

M.q/ Rq C Vm.q; Pq/ Pq CG.q/C F. Pq/C �d D �

(1)

with q.t/ 2 Rn the joint variable vector, M.q/
an inertia matrix, Vm a centripetal/coriolis ma-
trix, G.q/ a gravity vector, and F.�/ representing
friction terms. Bounded unknown disturbances
and modeling errors are denoted by �d and the
control input torque is �.t/. The sliding mode
control approach (Slotine and Li 1987) can be
generalized to NN control systems. Given a de-
sired trajectory, qd 2 Rn define the tracking error
e.t/ D qd .t/� q.t/ and the sliding variable error
r D Pe C �e with � D �T > 0. Define the
nonlinear robot function,

f .x/ DM.q/. Rqd C � Pe/C Vm.q; Pq/. Pqd C �e/

CG.q/C F. Pq/

with the known vector x.t/ of measured signals
is selected as, x D �

eT PeT qTd PqTd RqTd
�
.

NN Controller for Continuous-Time
Systems
The NN controller is designed based on func-
tional approximation properties of NN as shown
in Lewis et al. (1999). Thus, assume that f .x/
can be approximated by Of .x/ D OW T 	. OV T x/

with OV ; OW the estimated NN weights. Select the
control input, � D OW T 	. OV T x/ C Kvr � v with
Kv a symmetric positive definite gain and v.t/
a robustifying function. This NN control struc-
ture is shown in Fig. 1. The outer proportional-
derivative (PD) tracking loop guarantees robust
behavior. The inner loop containing the NN is
known as a feedback linearization loop, and the
NN effectively learns the unknown dynamics
online to cancel the nonlinearities of the system.
Let the estimated sigmoid Jacobian be O	 0 �
d	.z/
d z jzD OV T x . Then, the NN weight tuning laws are

provided by

POW D F O	rT � F O	 0 OV T xrT � kF krk OW ;

POV D Gx
� O	 OW r�T � kG krk OV ;

with any constant symmetric matrices F;G > 0,
and scalar tuning parameter k > 0.

NN Controller for Discrete-Time Systems
Most feedback controllers today are implemented
on digital computers. This requires the specifi-
cation of control algorithms in discrete time or
digital form (Lewis et al. 1999). To design such
controllers, one may consider the discrete-time
dynamics xkC1 D f .xk/ C g.xk/uk with un-
known functions f .�/; g.�/. The digital NN con-
troller derived in this situation has the form of a
feedback linearization controller shown in Fig. 1.
One can derive tuning algorithms, for a discrete-
time neural network controller with L layers, that
guarantee system stability and robustness (Lewis
et al. 1999). For the i -th layer, the weight updates
are of the form

OWi.k C 1/ D OWi.k/� ˛i O
i .k/ OyTi .k/
� �

			I � ˛i O
i .k/ O
i .k/T
			 OWi.k/

where O
i .k/ are the output functions of layer i ,
0 < � < 1 is a design parameter, and

Oyi .k/ D
( OW T

i
O
i .k/CKvr.k/ for iD1; : : : ; L � 1,

r.k C 1/ for i D L

with r.k/ a filtered error.

Feedforward Neurocontroller
Industrial, aerospace, DoD, and MEMS assembly
systems have actuators that generally contain
deadzone, backlash, and hysteresis. Since these
actuator nonlinearities appear in the feedforward
loop, the NN compensator must also appear in
the feedforward loop. This design is significantly
more complex than for feedback NN controllers.
Details are given in Lewis et al. (2002). Feedfor-
ward controllers can offset the effects of dead-
zone if properly designed. It can be shown that
a NN deadzone compensator has the structure
shown in Fig. 2.
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Neural Control and Approximate Dynamic Programming, Fig. 1 Neural network robot controller

Neural Control and Approximate Dynamic Programming, Fig. 2 Feedforward NN for deadzone compensation

The NN compensator consists of two NNs.
NN II is in the direct feedforward control loop,
and NN I is not directly in the control loop but
serves as an observer to estimate the (unmea-
sured) applied torque �.t/. The feedback stability
and performance of the NN deadzone compen-
sator have been rigorously proven using nonlinear

stability proof techniques. The two NN were each
selected as having one tunable layer, namely, the
output weights. The activation functions were set
as a basis by selecting fixed random values for
the first-layer weights. To guarantee stability, the
output weights of the inversion NN II (subscript
i denotes weights and sigmoids of the inversion)
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and the estimator NN I should be tuned respec-
tively as

POWi D T	i .Viw/r
T OW T 	 0.V T u/V T

� k1T krk OWi � k2T krk
			 OWi

			 OWi ;

POW D �S	 0.V T u/V T OWi	i .V
T
i w/rT

� k1S krk OW ;

with design matrices T; S > 0 and tuning gains
k1; k2.

Approximate Dynamic Programming
for Feedback Control

The current status of work in approximate dy-
namic programming (ADP) for feedback control
is given in Lewis and Liu (2012). ADP is a
form of reinforcement learning based on an ac-
tor/critic structure. Reinforcement learning (RL)
is a class of methods used in machine learning
to methodically modify the actions of an agent
based on observed responses from its environ-
ment (Sutton and Barto 1998). The actor/critic
structures are RL systems that have two learning
structures: A critic network evaluates the perfor-
mance of a current action policy, and based on
that evaluation, an actor structure updates the ac-
tion policy as shown in Fig. 3. Adaptive optimal
controllers (Lewis et al. 2012b) have been pro-
posed by adding optimality criteria to an adaptive

controller or adding adaptive characteristics to an
optimal controller.

Optimal Adaptive Control of Discrete-Time
Nonlinear Systems
Consider a class of discrete-time systems de-
scribed by the deterministic nonlinear dynamics
in the affine state space difference equation form

xkC1 D f .xk/C g.xk/uk; (2)

with state xk 2 Rn and control input uk 2
Rm. A deterministic control policy is defined
as a function from state space to control space
Rn ! Rm. That is, for every state xk , the policy
defines a control action uk D h.xk/ as a feedback
controller. Define a deterministic cost function
that yields the value function:

V.xk/ D
1X

iDk
� i�kr.xi ; ui /;

with 0 < � � 1 a discount factor,Q.xk/; R > 0,
and uk D h.xk/ a prescribed feedback control
policy. The optimal value is given by Bellman’s
optimality equation:

V �.xk/ D min
h.:/

�
r.xk; h.xk//C �V �.xkC1/

�
;

which is the discrete-time Hamilton-Jacobi-
Bellman (HJB) equation. Two forms of RL can be
based on policy iteration (PI) and value iteration
(VI). For temporal difference learning, PI is

Neural Control and
Approximate Dynamic
Programming, Fig. 3 RL
with an actor/critic
structure
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written as follows in terms of the deterministic
Bellman equation.

Algorithm 1 PI for discrete-time systems
1: procedure
2: Given admissible policies h0.xk/
3: while

		V hi � V hi
		 � 
ac do

4: Solve for the value V.i/.x/ using

ViC1.xk/ D r.xk; hi .xk//C �ViC1.xkC1/

5: Update the control policy h.iC1/.xk/ using

hiC1.xk/ D arg min
h.�/

�
r.xk; h.xk//C �ViC1.xkC1/

�

6: i WD i C 1

7: end while
8: end procedure

where 
ac is a small number that checks the
algorithm convergence. Value iteration is similar,
but the policy evaluation procedure is performed
as ViC1.xk/ D r.xk; hi .xk// C �Vi.xkC1/. In
value iteration, we can select any initial control
policy, not necessarily admissible or stabilizing.
In the control system shown in Fig. 3, the critic
and the actor NNs are tuned online using the
observed data

�
xk; xkC1; r.xk; hi .xk//

�
along the

system trajectory. The critic and actor are tuned
sequentially in both the PI and the VI. That is, the
weights of one neural network are held constant,
while the weights of the other are tuned until
convergence. This procedure is repeated until
both neural networks have converged. Thus, the
controller learns the optimal controller online.
The convergence of value iteration using two
neural networks for the discrete-time nonlinear
system (2) is proven in Al-Tamimi et al. (2008).
Design of an ADP controller that uses only output
feedback is given in Lewis and Vamvoudakis
(2011).

Optimal Adaptive Control of
Continuous-Time Nonlinear Systems
RL is considerably more difficult for continuous-
time systems than for discrete-time systems, and
fewer results are available. This subsection will
provide the formulation of optimal control prob-
lem followed by an offline PI algorithm provided

in Abu-Khalaf and Lewis (2005) that will give
us the structure for the proposed online algo-
rithms that follow. Consider the following non-
linear time-invariant affine in the input dynamical
system given by

Px.t/ D f .x.t//C g.x.t//u.t/I x.0/ D x0 (3)

with x.t/ 2 Rn; f .x.t// 2 Rn; g.x.t// 2
Rn�m and control input u.t/ 2 Rm. We assume
that f .0/ D 0; f .x/ C g.x/u is Lipschitz
continuous on a set ˝ � Rn that contains the
origin and that the system is stabilizable on ˝ ,
that is, there exists a continuous control function
u.t/ 2 U such that the system is asymptotically
stable on ˝ . Define the infinite horizon integral
cost 8t � 0

V.xt / D
Z 1

t

r.x.�/; u.�//d�; (4)

with Q.x/ positive definite and R 2 Rm�m
a symmetric positive definite matrix. For any
admissible control policy if the associated cost
(4) is C1, then an infinitesimal version is the
Bellman equation, and the optimal cost function
V �.x/ is defined by

V �.x0/ D min
u

�Z 1

0

r.x; u/d�

�

which satisfies the HJB equation. By employing
the stationarity condition, the optimal control
function for the given problem is

u�.x/ D �1
2
R�1gT .x/

@V �.x/
@x

: (5)

Inserting the optimal control (5) into the Bellman
equation, one obtains the formulation for HJB
equation in terms of @V �.x/

@x
and with boundary

condition V �.0/ D 0

0 D r.x; u�/C @V �.x/
@x

T

.f .x/C g.x/u�/;
(6)

which for the linear case becomes the well-
known Riccati equation. In order to find the
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optimal control solution for the problem, one
needs to solve the HJB equations (6) for the value
function and then substitute in (5) to obtain the
optimal control. However, due to the nonlinear
nature of the HJB equation, finding its solution is
generally difficult or impossible. The following
PI algorithm is an iterative algorithm for solving
optimal control problems and will give us the
structure for the online learning algorithm.

Algorithm 2 PI for continuous-time systems
1: procedure
2: Given admissible policies u.0/

3: while
			V u.i/ � V u.i/

			 � 
ac do

4: Solve for the value V .i/.x/ using Bellman’s
equation

Q.x/C @V

@x

u.i/ T

.f .x/C g.x/u.i//C u.i/
T
Ru.i/D0;

V u.i/ .0/ D 0

5: Update the control policy u.iC1/ using

u.iC1/ D �
 
1

2
R�1gT .x/

@V u.i/

@x

T!

6: i WD i C 1

7: end while
8: end procedure

A PI algorithm that solves online the HJB
equation without full information of the plant

dynamics is proposed in Vrabie et al. (2009)
where the Bellman equation is proved to be
equivalent to the integral reinforcement learn-
ing form with an optimal value given for some
T > 0 as

V �.x.t// D arg min
u

Z tCT

t

r.x.�/; u.�//d�

C V �.x.t C T //:

Therefore, the temporal difference error for
continuous-time systems can be defined as

e.t W t C T / D �.t W t C T /C V.x.t C T //

� V.x.t//;

with �.t W t C T / � R tCT
t r.x.�/; u.�//d� with-

out any information of the plant dynamics. The
IRL controller just given tunes the critic neural
network to determine the value while holding
the control policy fixed. The IRL algorithm can
be implemented online by RL techniques using
value function approximation OV .x/ D OW T

1 
.x/

in a critic approximator network. Using that ap-
proximation in the PI algorithm, one can use
batch least squares or recursive least squares
to update the value function, and then on con-
vergence of the value parameters, the action is
updated. The implementation of the IRL optimal
adaptive control algorithm is shown in Fig. 4.

Neural Control and ApproximateDynamic Programming, Fig. 4 Hybrid optimal adaptive controller based on IRL
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The work in Vamvoudakis and Lewis (2010)
presents a way of finding the optimal control
solution in a synchronous manner along with
stability and convergence guarantees but with
known dynamics. This procedure is more nearly
in line with accepted practice in adaptive control.

A synchronous online learning algorithm that
avoids the knowledge of drift dynamics is pro-
posed in Vamvoudakis et al. (2013).

Learning in Games
Reinforcement learning techniques have been ap-
plied to design adaptive controllers that converge
to the solution of two-player zero-sum games
in Vamvoudakis and Lewis (2012) and Vrabie
et al. (2012), of multiplayer nonzero-sum games
in Vamvoudakis et al. (2012a), and of Stackelberg
games in Vamvoudakis et al. (2012b). In these
cases, the adaptive control structure has multiple
loops, with action networks and critic networks
for each player. The adaptive controller for zero-
sum games finds the solution to the H-infinity
control problem online in real time. This adaptive
controller does not require any systems dynamics
information.

Summary and Future Directions

This entry discusses some neuro-inspired adap-
tive control techniques. These controllers have
multi-loop, multi-timescale structures and can
learn the solutions to Hamilton-Jacobi design
equations such as the Riccati equation online
without knowing the full dynamical model of the
system. A method known as Q learning allows the
learning of optimal control solutions online, in
the discrete-time case, for completely unknown
systems. Q learning has not yet been fully inves-
tigated for continuous-time systems.

Cross-References

�Adaptive Control, Overview
� Stochastic Games and Learning
�Optimal Control and the Dynamic Program-

ming Principle
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Abstract

Model-predictive control is a controller design
method which synthesizes a sampled data feed-
back controller from the iterative solution of
open-loop optimal control problems. We describe
the basic functionality of MPC controllers, their
properties regarding feasibility, stability and per-
formance, and the assumptions needed in order
to rigorously ensure these properties in a nominal
setting.

Keywords

Recursive feasibility; Sampled-data feedback;
Stability

Introduction

Model-predictive control (MPC) is a method for
the optimization-based control of linear and non-

linear dynamical systems. While the literal mean-
ing of “model-predictive control” applies to virtu-
ally every model-based controller design method,
nowadays the term commonly refers to control
methods in which pieces of open-loop optimal
control functions or sequences are put together
in order to synthesize a sampled data feedback
law. As such, it is often used synonymously with
“receding horizon control.”

The concept of MPC was first presented in
Propoı̆ (1963) and was reinvented several times
already in the 1960s. Due to the lack of suf-
ficiently fast computer hardware, for a while
these ideas did not have much of an impact.
This changed during the 1970s when MPC was
successfully used in chemical process control. At
that time, MPC was mainly applied to linear sys-
tems with quadratic cost and linear constraints,
since for this class of problems algorithms were
sufficiently fast for real-time implementation – at
least for the typically relatively slow dynamics
of process control systems. The 1980s have then
seen the development of theory and increasingly
sophisticated concepts for linear MPC, while in
the 1990s nonlinear MPC (often abbreviated as
NMPC) attracted the attention of the MPC com-
munity. After the year 2000, several gaps in the
analysis of nonlinear MPC without terminal con-
straints and costs were closed, and increasingly
faster algorithms were developed. Together with
the progress in hardware, this has considerably
broadened the possible applications of both linear
and nonlinear MPC.

In this entry, we explain the functionality of
nominal MPC along with its most important
properties and the assumptions needed to
rigorously ensure these properties. We also
give some hints on the underlying proofs. The
term nominal MPC refers to the assumption
that the mismatch between our model and the
real plant is sufficiently small to be neglected
in the following considerations. If this is not
the case, methods from robust MPC must be
used (�Robust Model-Predictive Control). We
describe all concepts for nonlinear discrete time
systems, noting that the basic results outlined in
this entry are conceptually similar for linear and
for continuous-time systems.

http://dx.doi.org/10.1007/978-1-4471-5058-9_2
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Model-Predictive Control

In this entry, we discuss MPC for discrete time
control systems of the form

xu.j C 1/ D f .xu.j /; u.j //; xu.0/ D x0 (1)

with state xu.j / 2 X , initial condition x0 2 X,
and control input sequence u D .u.0/; u.1/; : : :/
with u.k/ 2 U , where the state space X and
the control value space U are normed spaces.
For control systems in continuous time, one may
either apply the discrete time approach to a sam-
pled data model of the system. Alternatively,
continuous-time versions of the concepts and
results from this entry are available in the liter-
ature; see, e.g., Findeisen and Allgöwer (2002) or
Mayne et al. (2000).

The core of any MPC scheme is an optimal
control problem of the form

minimize JN .x0;u/ (2)

w.r.t. u D .u.0/; : : : ; u.N � 1// with

JN .x0;u/ W
N�1X

jD0
`.xu.j /; u.j //C F.xu.N //

(3)

subject to the constraints

u.j / 2 U; xu.j / 2 X for j D 0; : : : ; N � 1

xu.N / 2 X0;
(4)

for control constraint set U � U , state con-
straint set X � X , and terminal constraint set
X0 � X . The function ` W X 	 U ! R is
called stage cost or running cost; the function
F W X ! R is referred to as terminal cost.
We assume that for each initial value x0 2 X,
the optimal control problem (2) has a solution
and denote the corresponding minimizing control
sequence by u�. Algorithms for computing u�
are discussed in �Optimization Algorithms for
Model Predictive Control and �Explicit Model
Predictive Control.

The key idea of MPC is to compute the values
�N .x/ of the MPC feedback law �N from the
open-loop optimal control sequences u�. To
formalize this idea, consider the closed-loop
system

x�N .k C 1/ D f
�
x�N .k/; �N

�
x�N .k/

��
: (5)

In order to evaluate �N along the closed-loop
solution, given an initial value x�N .0/ 2 X, we
iteratively perform the following steps.

Basic MPC Loop
1. Set k WD 0.
2. Solve (2)–(4) for x0 D x�N .k/; denote

the optimal control sequence by u� D
.u�.0/; : : : ; u�.N � 1//.

3. Set �N .x�N .k// W u�.0/, compute x�N .kC1/

according to (5), set k WD kC1. and go to (1).
Due to its ability to handle constraints and pos-
sibly nonlinear dynamics, MPC has become one
of the most popular modern control methods in
the industry (�Model-Predictive Control in Prac-
tice). While in the literature various variants of
this basic scheme are discussed, here we restrict
ourselves to this most widely used basic MPC
scheme.

When analyzing an MPC scheme, three prop-
erties are important:
• Recursive Feasibility, i.e., the property that the

constraints (4) can be satisfied in Step (ii) in
each sampling instant

• Stability, i.e., in particular convergence of
the closed-loop solutions x�N .k/ to a desired
equilibrium x� as k ! 1

• Performance, i.e., appropriate quantitative
properties of x�N .k/

Here we discuss these three issues for two widely
used MPC variants:
1. MPC with terminal constraints and costs
2. MPC with neither terminal constraints nor

costs
In (a), F and X0 in (3) and (4) are specifically
designed in order to guarantee proper perfor-
mance of the closed loop. In (b), we set F � 0

and X0 D X. Thus, the choice of ` and N

in (3) is the most important part of the design
procedure.

http://dx.doi.org/10.1007/978-1-4471-5058-9_9
http://dx.doi.org/10.1007/978-1-4471-5058-9_10
http://dx.doi.org/10.1007/978-1-4471-5058-9_8
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Recursive Feasibility

Since the ability to handle constraints is one
of the key features of MPC, it is important to
ensure that the constraints x�N .k/ 2 X and

�N .x�N .k// 2 U are satisfied for all k � 0. How-
ever, beyond constraint satisfaction, the stronger
property x�N .k/ 2 XN is required, where XN

denotes the feasible set for horizonN ,

XN WD fx2Xj there exists u such that (4) holds}.

The property x 2 XN is called feasibility of
x. Feasibility of x D x�N .k/ is a prerequisite
for the MPC feedback �N being well defined,
because the nonexistence of such an admissible
control sequence u would imply that solving (2)
under the constraints (4) in Step (ii) of the MPC
iteration is impossible.

Since for k � 0 the state x�N .k C 1/ D
f .x�N .k/; u

�.0// is determined by the solution
of the previous optimal control problem, the usual
way to address this problem is via the notion of
recursive feasibility. This property demands the
existence of a set A � X such that:
• For each x0 2 A, the problem (2)–(4) is

feasible.
• For each x0 2 A and the optimal control u?

from (2) to (4), the relation f .x0; u�.0// 2 A

holds.
It is not too difficult to see that this property
implies x�N .k/ 2 A for all k � 1 if x�N .0/ 2 A.

For terminal-constrained problems, recursive
feasibility is usually established by demanding
that the terminal constraint set X0 is viable or
controlled forward invariant. This means that for
each x 2 X0, there exists u 2 U with f .x; u/ 2
X0. Under this assumption, it is quite straight-
forward to prove that the feasible set A D XN

is also recursively feasible (Grüne and Pannek
2011, Lemma 5.11). Note that viability of X0

is immediate if X0 D fx�g and x� 2 X is an
equilibrium, i.e., a point for which there exists
u� 2 U with f .x�; u�/ D x�. This setting is
referred to as equilibrium terminal constraint.

For MPC without terminal constraints, the
most straightforward way to ensure recursive fea-
sibility is to assume that the state constraint set X

is viable (Grüne and Pannek 2011, Theorem 3.5).
However, checking viability and even more con-
structing a viable state constraint set is in general
a very difficult task. Hence, other methods for
establishing recursive feasibility are needed. One
method is to assume that the sequence of feasible
sets XN ;N 2 N becomes stationary for someN0,
i.e., that XNC1 D XN holds for all N � N0.
Under this assumption, recursive feasibility of
XN0 follows, see Kerrigan (2000, Theorem 5.3).
However, like viability, stationarity is difficult to
verify.

For this reason, a conceptually different
approach to ensure recursive feasibility was
presented in Grüne and Pannek (2011, Theo-
rem 8.20); a similar approach for linear systems
can be found in Primbs and Nevistić (2000).
The approach is suitable for stabilizing MPC
problems in which the stage cost ` penalizes the
distance to a desired equilibrium x� (cf. section
“Stability”). Assuming the existence – but not
the knowledge – of a viable neighborhood N
of x�, one can show that any initial point x0
for which the corresponding open-loop optimal
solution satisfies xu�.j / 2 N or some j � N is
contained in a recursively feasible set. The fact
that ` penalizes the distance to x� then implies
xu�.j / 2 N for suitable initial values. Together,
these properties yield the existence of recursively
feasible sets AN which become arbitrarily large
as N increases.

Stability

Stability in the sense of this entry refers to the fact
that a prespecified equilibrium x� 2 X – typically
a desired operating point – is asymptotically sta-
ble for the MPC closed loop for all initial values
in some set S. This means that the solutions
x�N .k/ starting in S converge to x� as k ! 1
and that solutions starting close to x� remain
close to x� for all k � 0. Note that this setting can
be extended to time-varying reference solutions;
see �Tracking Model Predictive Control.

In order to enforce this property, we assume
that the stage cost ` penalizes the distance to the
equilibrium x� in the following sense: ` satisfies

http://dx.doi.org/10.1007/978-1-4471-5058-9_3
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`.x�; u�/ D 0 and ˛1 .jxj/ � `.x; u/ (6)

for all x 2 X and u 2 U. Here ˛1 is a
K1 function, i.e., a continuous function ˛1 W
Œ0;1/ ! Œ0;1/ which is strictly increasing,
unbounded, and satisfies ˛1.0/ D 0. With jxj, we
denote the norm on X . In this entry, we exclu-
sively discuss stage costs ` satisfying (6). More
general settings using appropriate detectability
conditions are discussed in Rawlings and Mayne
(2009, Sect. 2.7) or Grimm et al. (2005) in the
context of stabilizing MPC. Even more general `
are allowed in the context of economic MPC; see
the �Economic Model Predictive Control article.

In case of terminal constraints and terminal
costs, a compatibility condition between ` and
F is needed on X0 in order to ensure stability.
More precisely, we demand that for each x 2 X0

there exists a control value u 2 U such that
f .x; u/ 2 X0 and

F.f .x; u// � F.x/ � �`.x; u/ (7)

holds. Observe that the condition f .x; u/ 2 X0

is again the viability condition which we already
imposed for ensuring recursive feasibility. Note
that (7) is trivially satisfied for F � 0 in case of
X0 D fx�g by choosing u D u�.

Stability is now concluded by using the opti-
mal value function

VN .x0/ WD inf
u s:t: (4)

JN .x0;u/

as a Lyapunov function. This will yield stability
on S D XN, as XN is exactly the set on which VN
is defined. In order to prove that VN is a Lyapunov
function, we need to check that VN is bounded
from below and above byK1 functions˛1 and ˛2
and that VN is strictly decaying along the closed-
loop solution.

The first amounts to checking

˛1 .jxj/ � VN .x/ � ˛2 .jxj/ (8)

for all x 2 XN. The lower bound follows
immediately from (6) (with the same ˛1), and
the upper bound can be ensured by conditions

on the problem data (see, e.g., Rawlings and
Mayne 2009, Sect. 4.5; Grüne and Pannek 2011,
Sect. 5.3).

For ensuring that VN is strictly decreasing
along the closed-loop solutions, we need to prove

VN .f .x; �N .x/// � VN .x/� `.x; �N .x//: (9)

In order to prove this inequality, one uses on
the one hand the dynamic programming principle
stating that

VN�1.f .x; �N .x/// D VN .x/ � `.x; �N .x//:
(10)

On the other hand, one shows that (7) implies

VN�1.x/ � VN .x/ (11)

for all x 2 XN . Inserting (11) with f .x; �N .x//
in place of x into (10) then immediately
yields (9). Details of this proof can be found,
e.g., in Mayne et al. (2000), Rawlings and Mayne
(2009), or Grüne and Pannek (2011). The survey
Mayne et al. (2000) is probably the first paper
which develops the conditions needed for this
proof in a systematic way; a continuous-time
version of these results can be found in Fontes
(2001).

Summarizing, for MPC with terminal con-
straints and costs, under the conditions (6)–(8),
we obtain asymptotic stability of x� on SDXN.

For MPC without terminal constraints and
costs, i.e., with X0 D X and F � 0, these
conditions can never be satisfied, as (7) will
immediately imply `.x; u/ D 0 for all x 2
X, contradicting (6). Moreover, without terminal
constraints and costs, one cannot expect (9) to
be true. This is because without terminal con-
straints, the inequality VN�1.x/ � VN .x/ holds,
which together with the dynamic programming
principle implies that if (9) holds, then it holds
with equality. This, however, would imply that
�N is the infinite horizon optimal feedback law,
which – though not impossible – is very unlikely
to hold.

http://dx.doi.org/10.1007/978-1-4471-5058-9_6
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Thus, we need to relax (9). In order to do so,
instead of (9), we assume the relaxed inequality

VN .f .x; �N .x/// � VN .x/ � ˛`.x; �N .x//

(12)

for some ˛ > 0 and all x 2 X, which is still
enough to conclude asymptotic stability of x�
if (6) and (8) hold. The existence of such an ˛
can be concluded from bounds on the optimal
value function VN . Assuming the existence of
constants �K � 0 such that the inequality

VK.x/ � �K min
u2U `.x; u/ (13)

holds for all K D 1; : : :; N and x 2 X, there are
various ways to compute ˛ from �1; : : :; �N , see
Grüne (2012, Sect. 3). The best possible estimate
for ˛, whose derivation is explained in detail in
Grüne and Pannek (2011, Chap. 6), yields

˛ D 1 �
.�N � 1/

NQ
iD2

.�i � 1/
NQ
iD2

�i �
NQ
iD2

.�i � 1/
: (14)

Though not immediately obvious, a closer look at
this term reveals ˛ ! 1 as N ! 1 if the �K are
bounded. Hence, ˛ > 0 for sufficiently large N .

Summarizing the second part of this section,
for MPC without terminal constraints and costs,
under the conditions (6), (8), and (13), asymptotic
stability follows on S D X for all optimization
horizons N for which ˛ > 0 holds in (14).
Note that the condition (13) implicitly depends
on the choice of `. A judicious choice of ` can
considerably reduce the size of the horizonN for
which ˛ > 0 holds, see Grüne and Pannek (2011,
Sect. 6.6) and thus the computational effort for
solving (2)–(4).

Performance

Performance of MPC controllers can be
measured in many different ways. As the MPC
controller is derived from successive solutions
of (2), a natural quantitative way to measure its

performance is to evaluate the infinite horizon
functional corresponding to (3) along the closed
loop, i.e.,

J c`1.x0; �N / WD
1X

kD0
`
�
x�N .k/; �N

�
x�N .k/

��

with x�N .0/ D x0. This value can then be
compared with the optimal infinite horizon value

V1.x0/ WD inf
uWu.k/2U;xu.k/2X

J1.x0;u/

where

J1.x0;u/ WD
1X

kD0
`.xu.k/; u.k//:

To this end, for MPC with terminal constraints
and costs, by induction over (9) and using non-
negativity of `, it is fairly easy to conclude the
inequality

J c`1.x0; �N / � VN .x0/

for all x 2 XN . However, due to the conditions
on the terminal cost in (7), VN may be consid-
erably larger than V1 and an estimate relating
these two functions is in general not easy to
derive (Grüne and Pannek 2011, Examples 5.18
and 5.19). However, it is possible to show that un-
der the same assumptions guaranteeing stability,
the convergence

VN .x/ ! V1.x/

holds for N ! 1 (Grüne and Pannek 2011,
Theorem 5.21). Hence, we recover approximately
optimal infinite horizon performance for suffi-
ciently large horizonN .

For MPC without terminal constraints and
costs, the inequality VN .x0/ � V1.x0/ is im-
mediate; however, (9) will typically not hold. As
a remedy, we can use (12) in order to derive an
estimate. Using induction over (12), we arrive at
the estimate

J c`1.x0; �N / � VN .x0/=˛ � V1.x0/=˛:
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Since ˛ ! 1 as N ! 1, also in this case
we obtain approximately optimal infinite horizon
performance for sufficiently large horizonN .

Summary and Future Directions

MPC is a controller design method which uses
the iterative solution of open-loop optimal control
problems in order to synthesize a sampled data
feedback controller �N . The advantages of MPC
are its ability to handle constraints, the rigorously
provable stability properties of the closed loop,
and its approximate optimality properties. As-
sumptions needed in order to rigorously ensure
these properties together with the corresponding
mathematical arguments have been outlined in
this entry, both for MPC with terminal constraints
and costs and without. Among the disadvantages
of MPC are the computational effort and the fact
that the resulting feedback is a full state feedback,
thus necessitating the use of a state estimator to
reconstruct the state from output data (�Moving
Horizon Estimation).

Future directions include the application of
MPC to more general problems than set point
stabilization or tracking, the development of effi-
cient algorithms for large-scale problems includ-
ing those originating from discretized infinite-
dimensional control problems, and the under-
standing of the opportunities and limitations of
MPC in increasingly complex environments; see
also �Distributed Model Predictive Control.

Cross-References

�Distributed Model Predictive Control
�Economic Model Predictive Control
�Explicit Model Predictive Control
�Model-Predictive Control in Practice
�Moving Horizon Estimation
�Optimization Algorithms for Model Predictive

Control
�Robust Model-Predictive Control
� Stochastic Model Predictive Control
�Tracking Model Predictive Control

Recommended Reading

MPC in the form known today was first described
in Propoı̆ (1963) and is now covered in several
monographs, two recent ones being Rawlings and
Mayne (2009) and Grüne and Pannek (2011).
More information on continuous-time MPC can
be found in the survey by Findeisen and Allgöwer
(2002). The nowadays standard framework for
stability and feasibility of MPC with stabiliz-
ing terminal constraints is presented in Mayne
et al. (2000); for a continuous-time version, see
Fontes (2001). Stability of MPC without terminal
constraints was proved in Grimm et al. (2005)
under very general conditions; for a comparison
of various such results, see Grüne (2012). Feasi-
bility without terminal constraints is discussed in
Kerrigan (2000) and Primbs and Nevistić (2000).
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Abstract

We consider the control of nonlinear systems in
which parameters are uncertain and may vary.
For such systems the control must adapt to the
parameter change to deliver closed-loop perfor-
mance, such as asymptotic stability or tracking.
A concise description of available methods and
basic adaptive stabilization results, which can be
used as building blocks for complex adaptive
control problems, are discussed.
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Introduction

The adaptive control problem, namely, the prob-
lem of designing a feedback controller which
contains an adaptation mechanism to counteract
changes in the parameters of the system to be
controlled, is of significant importance in ap-
plications. In almost all systems, physical pa-
rameters are subject to changes. These may be
triggered, for example, by changes in temperature
(the volume of a liquid/gas), aging (the friction
coefficient of a mechanical system), or normal
operation (the mass of the fuel of an aircraft
changes during flight, the center of mass of a
vehicle is affected by its load).

While adaptive control is naturally associated
with the notion of estimation, i.e., the parameters
of a system have to be identified to design a
controller, it may be possible to design adaptive
controllers which do not rely on a complete pa-
rameter estimation: it is sufficient to estimate the
effect of the parameters on the control signal.

Adaptive control is different from robust con-
trol. In the simplest possible occurrence, the aim
of robust control is to design a control law guar-
anteeing performance specifications for a given
range of parameter values. Robust control thus
requires some a priori information on the parame-
ter. Adaptive control does not require any a priori
information on the parameter, although any such
information can be exploited in the controller
design, but requires a parameterized model: a
model which contains information on the way the
parameters affect the dynamics of the system.

The adaptive control problem for general non-
linear systems can be formulated as follows. Con-
sider a nonlinear system described by equations
of the form

Px D F.x; u; �/; y D H.x; �/; (1)

where x.t/ 2 Rn denotes the state of the system,
u.t/ 2 Rm denotes the input of the system,
� 2 Rq denotes the constant unknown parameter,
y.t/ 2 Rp denotes the measured output, and
F W Rn 	 Rm 	 Rq ! Rn and H W Rn 	 Rq !
Rp are smooth mappings. While we focus on
continuous-time systems, similar considerations
apply to discrete-time systems. In what follows,
for simplicity, we mostly assume that y D x: the
whole state of the system is available for control
design.

The adaptive control problem consists in find-
ing, if possible, a dynamic control law described
by equations of the form

PO� D w.x; O�; r/; (2)

u D v.x; O�; r/; (3)

with r.t/ 2 Rs an exogenous (reference) signal
and w W Rn 	 Rq 	 Rs ! Rq and v W
Rn 	 Rq 	 Rs ! Rm smooth mappings, such
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that the closed-loop system, described by the
equations

Px D F.x; v.x; O� ; r/; �/; PO� D w.x; O� ; r/;
(4)

has specific properties. For example, one could
require that all trajectories be bounded and the
x-component of the state converge to a given
value x? (this is the so-called adaptive regulation
requirement) or that the input-output behavior
of the system from the input r to some user-
defined output signal coincide with a given refer-
ence model (this is the so-called model reference
adaptive control requirement).

A natural way to characterize design specifi-
cations for the adaptive control problem and to
facilitate its solution is to assume the existence of
a known parameter controller, described by the
equation

u D v?.x; �; r/; (5)

such that the nonadaptive closed-loop system
Px D F.x; v?.x; �; r/; �/ satisfies given design
specifications. In this perspective, the adaptive
control problem boils down to the design of
the update law (2) and of the feedback law (3)
such that the behavior of the adaptive closed-loop
system matches that of the nonadaptive closed-
loop system Px D F.x; v?.x; �; r/; �/.

The above description suggests a design
method for the feedback law: one could replace
� with O� in Eq. (5). This design is often known
as certainty equivalence design and lends itself
to the interpretation that O� be an estimate for � .
Naturally, one could also modify the feedback
law, replacing � with O� and adding x-dependant
terms: this is often called a redesign. Redesign
may be guided by various considerations, for
example, it may be based on the use of a specific
Lyapunov function (yielding the so-called
Lyapunov redesign), or by structural properties
of the system, or by robustness constraints.

The interpretation of O� as an estimate for �
leads to two similar approaches for the design
of the update law. The former, pursued in the
so-called indirect adaptive control, relies on the
design of a parameter estimator, for example,

using recursive least-square methods. This ap-
proach has its roots in identification theory and
has been studied in-depth for linear systems. The
latter relies on the observation that the design of
an update law is equivalent to the design of a
(reduced-order) observer for the extended system

Px D F.x; u; �/; P� D 0;

with output y D x. This approach has its roots in
the theory of nonlinear observer design.

The approaches described so far relies on a
sort of separation principle: the update law and
the feedback law are designed separately. While
this approach may be adequate for linear systems,
for nonlinear systems it is often necessary to
design the update law and the feedback law in
one step, i.e., the selection of the feedback law
depends upon the selection of the update law
and vice versa. To illustrate this design method,
and provide some explicit adaptive control design
tools, we focus on a special class of nonlinear sys-
tems: systems which are linearly parameterized
in the unknown parameter.

Linearly Parameterized Systems

Consider the system (1) and assume the mapping
F is affine in the parameter � and in the control
u, namely,

F.x; u; �/ D f0.x/C g.x/u C f1.x/�; (6)

with f0 W Rn ! Rn, g W Rn ! Rn 	 Rm

and f1 W Rn ! Rn 	 Rq smooth mappings.
For this class of systems, under additional as-
sumptions, it is possible to provide systematic
adaptive control design tools. We provide two
formal results: additional results (depending on
the specific assumptions imposed on the system)
may be derived. In both cases the focus is on
the adaptive stabilization problem: the goal of
the adaptive controller is to render a given equi-
librium stable, in the sense of Lyapunov, and to
guarantee convergence of the x-component of the
state (recall that the state of the adaptive closed-
loop system is the vector .x; O�/).
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Theorem 1 Consider the system (6) and a point
x�. Assume there exist a known parameter con-
troller

u D v0.x/C v1.x/�;

with v0 W Rn ! Rm and v1 W Rn ! Rm 	 Rq

smooth mappings, and a positive definite and
radially unbounded function V W Rn ! R, such
that V.x?/ D 0 and

@V

@x
f �.x; �/ < 0

for all x ¤ x?.
Then the update law

PO� D �
�
@V

@x
g.x/v1.x/

�>

and the feedback law

u D v0.x/C v1.x/ O�

are such that all trajectories of the closed-loop
system are bounded and lim

t!1x.t/ D x?.

Theorem 2 Consider the system (6) and a point
x�. Assume there exists a known parameter con-
troller u D v.x; �/ such that the closed-loop
system

Px D f �.x; �/;

where f �.x; �/ D f0.x/Cf1.x/�Cg.x/v.x; �/,
has a globally asymptotically stable equilibrium
at x�. Assume, in addition, that there exists a
mapping ˇ W Rn ! Rq such that all trajectories
of the system

Pz D �


@̌

@x
f1.x/

�
z;

Px D f �.x/C g.x/ .v.x; � C z/ � v.x; �//
(7)

are bounded and satisfy

lim
t!1

Œg.x.t// .v.x.t/; � C z.t// � v.x.t/; �//� D 0:

Then the update law

PO� D � @̌
@x

h
f0.x/C f1.x/

� O� C ˇ.x/
�

C g.x/v.x; O� C ˇ.x//
i

(8)

and the feedback law

u D v.x; O� C ˇ.x//

are such that all trajectories of the closed-loop
system are bounded and lim

t!1x.t/ D x?.

The stability properties of the adaptive closed-
loop system in Theorem 1 can be studied with the
Lyapunov functionW.x; O�/ D V.x/C 1

2
k O���k2,

whereas a Lyapunov analysis for the adaptive
closed-loop system of Theorem 2 can be carried
out, under additional assumptions, via a Lya-
punov function of the form W.x; O�/ D V.x/ C
1
2
k O���Cˇ.x/k2. This suggests that in Theorem 1

O� plays the role of the estimate of � , whereas in
Theorem 2 such a role is played by O� C ˇ.x/.
Note that in none of the theorems, the parame-
ter estimate is required to converge to the true
value of the parameters, although in Theorem 2
the feedback law is required to converge, along
trajectories, to the known parameter controller.
This has a very important, possibly counterin-
tuitive, consequence: the asymptotic nonadaptive
controller u D v.x; O�1/, where O�1 D lim

t!1
O�.t/,

provided the limit exists, is not in general a
stabilizing controller for system (6).

Example 1 Consider the nonlinear system de-
scribed by the equation Px D u C �x2; with
x.t/ 2 R, u.t/ 2 R, and � 2 R. A known
parameter controller satisfying the assumptions
of Theorem 1 (with and V.x/ D x2=2) and of
Theorem 2 (with ˇ.x/ D x) is u D �x � �x2:

The resulting update laws and feedback laws are

PO�1 D x3; u1 D �x � O�x2;

and

PO�2 D x; u2 D �x � . O� C x/x2;
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respectively, the subscripts “1” and “2” are used
to refer to the construction in Theorem 1 and 2,
respectively.

The basic building blocks in Theorems 1 and 2
can be exploited repeatedly to design adaptive
controllers for systems with a specific structure,
for example, for systems described by the equa-
tions

Px1 D x2 C '1.x1/
>�;

Px2 D x3 C '2.x1; x2/
>�;

:::

Pxi D xiC1 C 'i.x1; : : : ; xi /
>�;

:::

Pxn D u C 'n.x1; : : : ; xn/
>�;

(9)

with xi .t/ 2 R, for i D 1; : : : ; n, u.t/ 2 R, 'i W
Ri ! Rq , for i D 1; : : : ; n, smooth mappings,
and � 2 Rq . Note that the last of the equations
(9) can be replaced by

Pxn D N�u C 'n.x1; : : : ; xn/
>�;

with N� 2 R, provided its sign is known (this
condition may be removed using the so-called
Nussbaum gain). The parameter N� is often re-
ferred to as the high-frequency gain of the sys-
tem: a terminology borrowed from linear systems
theory.

Output Feedback Adaptive Control

A key feature of the parameterized systems de-
scribed so far is that these are linearly parame-
terized in � . The linear parameterization allows
to develop systematic design tools, such as those
given in Theorems 1 and 2. Such results, how-
ever, require full information on the state of the
system. If only partial information on the state
is available, one has to combine an estimator of
the state with an update law. Such a combina-
tion requires either strong assumptions on the
system or very specific structures. For example,
it is feasible if the system is not only linearly
parameterized in the parameter � , but it is also

linearly parameterized in the unmeasured states,
namely, it is described by equations of the form

Px1 D x2 C  1.x1/ C '1.x1/
>�;

Px2 D x3 C  2.x1/ C '2.x1/
>�;

:::

Pxi D xiC1 C  i .x1/ C 'i .x1/
>� C biu;

:::

Pxn�1 D xn C  n�1.x1/ C 'n�1.x1/
>� C bn�1u;

Pxn D  n.x1/ C 'n.x1/
>� C bnu;

y D x1

with xi .t/ 2 R, for i D 1; : : : ; n, u.t/ 2 R,
y.t/ 2 R, 'i W R ! Rq , and  i W R ! R,
for i D 1; : : : ; n, smooth mappings, � 2 Rq ,
and b D Œbi ; � � � ; bn�1; bn�> unknown, but such
that the sign of bn is known and the polynomial
bns

n�i C bn�1sn�i�1 C � � � C bi has all roots with
negative real part (this implies that the system,
with input u and output y, is minimum phase).

Nonlinear Parameterized Systems

Adaptive control of nonlinearly parameterized
systems is an open area of research. The design
of adaptive controllers relies often upon struc-
tural assumptions, for example, the existence of
a monotonic parameterization, as in the system
described by the equation

Px D F.x; u/Cˆ.x; �/;

with x.t/ 2 Rn, u.t/ 2 Rm, � 2 Rq , and F W
Rn 	Rm ! Rn and ˆ W Rn 	 Rq ! Rn smooth
mappings and such that, for all x, the mappingˆ
satisfies the monotonicity condition

.�a � �b/> .ˆ.x; �a/�ˆ.x; �b// > 0;

for all �a ¤ �b . Alternatively, the design may
exploit the so-called over-parameterization, for
example, the equation of the system

Px D u C  1.x/ sin � C  2.x/ cos �;
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with x.t/ 2 R, u.t/ 2 R, and � 2 R, may be
rewritten in over-parameterized form as

Px D u C  1.x/�1 C  2.x/�2;

with �i 2 R, for i D 1; 2. Note that the
over-parameterized form overlooks the important
information that �21 C �22 D 1.

Summary and Future Directions

The problem of adaptive stabilization for non-
linear systems has been discussed. Two concep-
tual building blocks for the design of stabilizing
adaptive controllers have been discussed, and
classes of systems for which these blocks al-
low to explicitly design adaptive controllers have
been given. The role of parameter convergence,
or lack thereof, has been briefly discussed to-
gether with connections between adaptive and
observer designs. The difficulties associated with
non-full state measurement and with nonlinear
parameterization have been also briefly high-
lighted. Several problems have not been dis-
cussed, for example, model reference adaptive
control, robust adaptive control, universal adap-
tive controllers, and the use of projections to
incorporate prior knowledge on the parameter.
Details on these can be found in the bibliography
below.
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Abstract

Nonlinear filters estimate the state of dynami-
cal systems given noisy measurements related to
the state vector. In theory, such filters can pro-
vide optimal estimation accuracy for nonlinear
measurements with nonlinear dynamics and non-
Gaussian noise. However, in practice, the actual
performance of nonlinear filters is limited by the
curse of dimensionality. There are many different
types of nonlinear filters, including the extended
Kalman filter, the unscented Kalman filter, and
particle filters.
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Description of Nonlinear Filters

Nonlinear filters are algorithms that estimate the
state vector (x) of a nonlinear dynamical system
given measurements of nonlinear functions of the
state vector corrupted by noise. Such filters also
quantify the uncertainty in the resulting estimate
of the state vector (e.g., using the error covariance
matrix). Some nonlinear filters compute the entire
probability density of the state vector conditioned
on the set of measurements available, rather than
computing a point estimate of the state vector
(e.g., conditional mean or maximum likelihood).
For some applications the conditional probability
density of x is highly non-Gaussian (e.g., strongly
multimodal). Even if the measurement noise and
the process noise and the initial uncertainty in
x are all Gaussian, the conditional density of
x can be non-Gaussian, owing to the nonlin-
earities in the dynamics or measurements. The
dynamical systems can evolve in continuous time
or discrete time, and the measurements can be
made in continuous time or at discrete times.
The most popular nonlinear filter in practical
applications is the extended Kalman filter (EKF),
but there are many other families of nonlin-
ear filters, including particle filters, unscented
Kalman filters (UKFs), batch least squares, exact
finite-dimensional filters, Gaussian sum filters,
cubature Kalman filters, etc. Table 1 summarizes
the most popular nonlinear filters. The theory
for nonlinear filters is relatively simple (see Ho
and Lee 1964), but the crucial practical issue is
computational complexity, even today with fast
modern inexpensive computers, e.g., graphical
processing units (GPUs). See Ristic et al. (2004)
for a book which is both accessible to engineers
and thorough.

Bayesian Formulation of Filtering
Problem

The Bayesian approach to nonlinear filters is by
far the most popular formulation of the problem
(see Ho and Lee 1964), and it has virtually
eliminated all other competing theories, because
it is simple, general, systematic, and useful. All
ten nonlinear filters listed in Table 1 are Bayesian.
The Bayesian approach uses a model of the dy-
namics of x as well as a model of the measure-
ments. For example, discrete-time dynamics and
measurement models are typically of the form

x.tkC1/ D f.x.tk/; tk/C w.tk/

z.tk/ D h.x.tk/; tk/C v.tk/

in which x.tk/ is the d-dimensional state vector at
time tk, z.tk/ is the m-dimensional measurement
vector at time tk, v is the measurement noise, and
w is the so-called process noise. Both v and w are
often modeled as Gaussian zero-mean random
processes with statistically independent values at
distinct discrete times, but these models could be
highly non-Gaussian with statistically correlated
random values. The initial probability density of
x before any measurements are available is also
used in the Bayesian formulations. Real physical
systems are most commonly modeled as evolving
in continuous time using Itô stochastic differen-
tial equations:

dx D f.x.t/; t/dt C dw

However, most engineers would rather think
of the above Itô equation as an ordinary differen-
tial equation driven by Gaussian white noise:

dx=dt D f.x.t/; t/C dw=dt

Mathematicians prefer the Itô equation to avoid
the embarrassment that the time derivative of w(t)
does not exist. For details of stochastic calculus,
see Jazwinski (1998). Such mathematical sub-
tleties rarely cause any trouble in practical en-
gineering applications. We emphasize, however,
that it is important to correctly model continuous-
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Nonlinear Filters, Table 1 Summary of nonlinear filters

Nonlinear filter

Conditional
probability
density

Computational
complexity Comments References

1. Extended Kal-
man filter (EKF)

Gaussian d3 Gives good accuracy for
many practical
applications but can be
highly suboptimal in
difficult problems

Gelb et al. (1974)

2. Unscented Kal-
man filter(UKF)

Gaussian d3 Often the UKF beats the
EKF, but sometimes the
EKF is better than the
UKF; see Noushin (2008)
for details

Julier and
Uhlmann (2003)

3. Batch least sq-
uares

Gaussian d3 Often beats the EKF
accuracy but can fail for
multimodal or other
strongly non-Gaussian
densities

Sorenson (1980)

4. Particle filter Arbitrary Varies from d3 to
exponential in d,
depending on many
features of the problem

Often beats the EKF
accuracy but can fail due
to the curse of
dimensionality and
particle degeneracy and
ill-conditioning

Doucet (2011)

5. Cubature Kal-
man filter

Gaussian d3 Sometimes beats the EKF
and UKF for difficult
nonlinear non-Gaussian
problems, but not always

Haykin (2010)

6. Gaussian sum Arbitrary Varies from d3 to
exponential in d,
depending on many
features of the problem

Beats the EKF for certain
difficult nonlinear
non-Gaussian problems

Sorenson (1988)

7. Exact finite-di-
mensional filters

Exponential
family

d3 Beats the EKF for certain
difficult nonlinear non-
Gaussian problems

Daum (2005)

8. Implicit
particle filters

Arbitrary Suffers from the curse
of dimensionality
(i.e., computation time
grows exponentially
in d)

Only low-dimensional
numerical examples have
been published so far

Chorin (2009)

9. Particle flow
filter

Arbitrary Faster than standard
particle filters by many
orders of magnitude
for high-dimensional
problems (but
unfortunately there is
no explicit formula for
computation time)

Beats the EKF by orders
of magnitude for certain
difficult nonlinear
non-Gaussian problems

Daum (2013)

10. Numerical so-
lution of Fokker-
Planck equation

Arbitrary Suffers from the curse
of dimensionality
(i.e., computation time
grows exponentially
in d)

Beats the EKF by orders
of magnitude for certain
difficult nonlinear
non-Gaussian problems

Ristic (2004)
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time random processes for the evolution of the
state vector (x) in many practical applications.
Similarly, one can model measurements in con-
tinuous time using Itô calculus:

dz D h.x.t/; t/dt C dv

Most engineers consider continuous-time mea-
surement models as impractical and unnecessar-
ily complicated mathematically, because digital
computers always require discrete-time measure-
ments and there are no practical analog com-
puters that can be used for nonlinear filtering,
owing to the overwhelming superiority of digital
computers in terms of accuracy, stability, dy-
namic range, and flexibility. Nevertheless, there
are many papers published by researchers us-
ing continuous-time measurement models. But
the vast majority of practical papers on nonlin-
ear filters use discrete time measurement models
for obvious reasons. This contrasts sharply with
the practical importance of correctly modeling
continuous-time random processes for the evolu-
tion of the state vector (x).

Nonlinear Filter Algorithms

There is no universally best nonlinear filter for
all applications, and there is much debate about
which is the best nonlinear filter for any given
application. Even if we knew the best nonlinear
filter for a given computer, the answer could be
very different for a different computer; in partic-
ular, some filters can exploit massively parallel
processing architectures, whereas others cannot.
Research and development of nonlinear filters
should continue rapidly for the foreseeable fu-
ture. More generally, there is no universal the-
ory of computational complexity for practical
algorithms of this type; perhaps the closest ap-
proximation to such a theory is “information-
based complexity” (IBC); e.g., see Traub and
Werschulz (1998) and Dick et al. (2013). The
estimation accuracy of x and the computational
complexity of the nonlinear filter are intimately
connected, as shown below for particle filters.

There is no useful way to quantify the com-
putational complexity of nonlinear filters with-
out also quantifying estimation accuracy of x.
This contrasts with standard computational com-
plexity theory (e.g., P vs. NP) because we are
interested in approximations rather than exact so-
lutions. This is the basic idea of IBC. In practice,
engineers compare the estimation accuracy and
computational complexity of different nonlinear
filters using Monte Carlo simulations for specific
applications and specific computers.

The most active area of current research in
nonlinear filters is focused on particle filters,
which have the promise of optimal accuracy for
essentially any nonlinear filter problem, at the
cost of very high computational complexity for
high-dimensional problems. In the early days
(1994–2004), researchers often asserted that par-
ticle filters “beat the curse of dimensionality,”
but it is well known today that this assertion
is wrong (e.g., see Daum 2005). Unfortunately,
there is no useful theory of computational com-
plexity for particle filters, but rather the currently
available theory gives asymptotic bounds on ac-
curacy with generic “constants.” Such bounds
on the variance of estimation error are generally
of the form c/N in which N is the number of
particles and c is the generic so-called constant.
But we know that the so-called constant actually
varies by many orders of magnitude depending
on the specifics of the problem, including the
following: (1) dimension of the state vector be-
ing estimated, (2) uncertainty in the initial state
vector, (3) measurement accuracy, (4) stability
of the dynamical system that describes the time
evolution of the state vector, (5) geometry of
the conditional probability densities (e.g., uni-
modal, log-concave, multimodal, etc.), (6) Lip-
schitz constants of the log probability densi-
ties, (7) curvature of the nonlinear dynamics and
measurements, (8) ill-conditioning of the Fisher
information matrix for the estimation problem,
etc. Moreover, there are no tight bounds on the
so-called constant c for practical nonlinear filter
problems, but rather the best bounds for simple
MCMC problems are known to be 30 orders of
magnitude too large; see Dick et al. (2013).
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Discrete-Time Measurement Models

Research papers on nonlinear filters are often
mathematically abstract, but advanced math is not
required for practical engineering applications
(e.g., see Ho and Lee 1964). In particular, one
can avoid the advanced stochastic mathematics
used for continuous-time measurements by using
discrete-time measurements, which is the practi-
cal case of interest anyway, owing to the use of
digital computers to implement such algorithms.
The notion that continuous-time measurements
results in simpler, better, or more elegant results
for nonlinear filters is misleading; for exam-
ple, we have the elegant innovation theory for
continuous-time measurements (Kailath 1970),
but this theory is not applicable for discrete-
time measurements, likewise with the elegant
formula for propagating the conditional mean
for continuous-time measurements (the so-called
Fujisaki-Kallianpur-Kunita formula). More gen-
erally, the simple discrete-time version of Bayes’
rule suffices for practical real-world engineering
applications; there is rarely a need to employ
the more complex continuous-time version. The
discrete time formula for Bayes’ rule is simply

p.x.tk/; tkjZk/ D p.x.tk/; tkjZk�1/p.zkjx.tk//=p.zkjZk�1/

in which

p.x.tk/, tkjZk/ D probability density of x at time
tk conditioned on Zk; this is also called the
“posteriori probability density”

x.t/ D state vector of the dynamical system at
time t

Zk D set of all measurements up to and including
time tk

zk D measurement vector at time tk
p.zkjx.tk// D probability density of zk condi-

tioned on x.tk/; this is also called the “like-
lihood”

p.AjB/ D probability density of A conditioned
on B

This is all one needs to know about Bayes’
rule for practical engineering applications of non-
linear filtering; see Ho and Lee (1964). Bayes’

rule is a simple formula that multiplies two prob-
ability densities and normalizes it by dividing by
p.zkjZk�1/. In most applications, there is no need
to normalize the density, and hence, Bayes’ rule
for the unnormalized conditional density is even
simpler:

p.x.tk/; tkjZk/ D p.x.tk/; tkjZk�1/p.zkjx.tk//

We see that Bayes’ rule for the unnormalized
conditional density is simply a multiplication of
two densities (i.e., the likelihood and the prior).

Summary and Future Directions

In practical applications, the most popular non-
linear filter is the extended Kalman filter (EKF),
followed by the unscented Kalman filter (UKF).
These two filters give good accuracy and robust
performance for many practical applications. The
computational complexity of both the EKF and
UKF grows as the cube of the dimension of the
state vector, and hence, they are very practical
to run in real time on laptops or PCs for many
real- world applications. But there are also many
difficult nonlinear or non-Gaussian problems for
which the EKF and UKF give suboptimal accu-
racy, and in some cases, they give surprisingly
bad accuracy. The accuracy of optimal nonlinear
filters is limited by the curse of dimensionality.
We know how to write the equations for the
optimal nonlinear filter, but the solution generally
takes an exponentially increasing time to com-
pute as the dimension of the state vector grows.
There are many different kinds of nonlinear fil-
ters, and this is still an active field of research,
as shown in Crisan and Rozovskii (2011). Future
research is likely to exploit advances in compu-
tational complexity theory for approximation of
functions in the style of information-based com-
plexity (IBC) rather than P vs. NP theory. This
is because we want good fast approximations
rather than exact algorithms. A lucid introduc-
tion to IBC is Traub and Werschulz (1998), and
recent work is surveyed in Dick et al. (2013).
Another fruitful direction of research is to ex-
ploit the recent advances in transport theory,
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as explained in Daum (2013); the best intro-
duction to transport theory is the book by Vil-
lani (2003), which is very accessible yet thor-
ough. Research in exact finite-dimensional fil-
ters is difficult but could yield substantial im-
provements in accuracy and computational com-
plexity; for example, see Benes (1981), Marcus
(1984), and Daum (2005). Progress in nonlin-
ear filter research could be inspired by many
diverse fields, including fluid dynamics, quan-
tum chemistry, quantum field theory, gauge the-
ory, string theory, Lie superalgebras, Lie super-
groups, and neuroscience. An important open
research topic is the stability of nonlinear fil-
ters, which is obviously a fundamental limita-
tion to good theoretical upper bounds on esti-
mation error. We still do not have a practical
theory of stability for nonlinear filters. Perhaps
the closest approximation to such a theory is
the lucid paper by van Handel (2010), which
makes an interesting attempt at understanding
the stability of nonlinear filters. In particular,
van Handel’s paper aims to generalize Kalman’s
theory of stability for the Kalman filter by con-
necting stability with the essence of controlla-
bility and observability. A good survey of what
is known about stability theory for nonlinear
filters is given in various articles in Crisan and
Rozovskii (2011).
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Abstract

Sampled-data systems are control systems in
which the feedback law is digitally implemented
via a computer. They are prevalent nowadays
due to the numerous advantages they offer
compared to analog control. Nonlinear sampled-
data systems arise in this context when either the
plant model or the controller is nonlinear. While
their linear counterpart is now a mature area,
nonlinear sampled-data systems are much harder
to deal with and, hence, much less understood.
Their inherent complexity leads to a variety of
methods for their modeling, analysis, and design.
A summary of these methods is presented in this
entry.
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Introduction

Definition: A control system in which a
continuous-time plant is controlled by a digital
computer is referred to as a sampled-data
control system or simply a sampled-data system
(Chen and Francis 1994); see Fig. 1. Nonlinear
sampled-data systems arise when either the
model of the plant or the controller is nonlinear;
otherwise the system is referred to as a linear
sampled-data system.

Motivation: Sampled-data control is prefer-
able to continuous-time (analog) control for a

range of reasons including reduced cost, reduced
wiring, more robust hardware, easier and more
flexible programming, and so on. Nowadays, a
large majority of controllers are implemented
on digital computers, and, hence, sampled-data
systems are prevalent in practice. On the other
hand, nonlinear plant models are necessary in
numerous applications when a wide range of op-
erating conditions need to be considered or when
truly nonlinear phenomena, such as friction or
state/input constraints, are not negligible. Hence,
there are many situations where nonlinear plant
models are essential, such as vertical takeoff and
landing of an aircraft, robots, automotive engines,
and biochemical reactors, to name a few. It has
to be noted that the nonlinearity may also come
from the controller even when we consider linear
plants as it is the case in adaptive control or model
predictive control with constraints, for example.

Structure of sampled-data systems: Figure 1
presents a typical structure of a sampled-data
system which consists of a continuous-time plant,
an analog-to-digital (A/D) converter (i.e., a sam-
pler), a digital-to-analog (D/A) converter (i.e., a
hold device), and a discrete-time controller.

The A/D converter takes measurements y.tk/
of a continuous-time output signal y.t/, such as
temperature or pressure, at sampling time instants
tk; k D 0; 1; : : : and sends them to the control
algorithm. The measurements are obtained with
finite precision (i.e., they are quantized); this ef-
fect is not considered in this entry. The sampling
instants tk are often equidistant, that is, tk D kT;

k D 0; 1; : : :, where the distance T between any
two consecutive sampling instants is referred to
as the sampling period. The sampling period is
an important degree of freedom in the design of
sampled-data systems and it needs to be carefully
selected.

The control algorithm is discrete in nature. It
takes the sequence of measurements y.tk/ and
processes them to produce a sequence of control
values u.tk/. The D/A converter converts the se-
quence of control values u.tk/ into a continuous-
time signal u.t/ that drives the actuators which
control the plant. Typically, a zero-order hold is
used, i.e., u.t/ D u.tk/;8t 2 Œtk ; tkC1/. However,
it is possible to use other types of holds.
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u(tk) u(t) y(t) y(tk)
Nonlinear Sampled-Data
Systems, Fig. 1
Sampled-data (control)
system

Note that the system in Fig. 1 can be general-
ized in many ways. An important generalization
is multi-rate sampling where the output of the
system is sampled at one sampling rate while
the control inputs are updated at a different sam-
pling rate. Another generalization are networked
control systems which are discussed in the last
section.

Modeling

The combination of continuous-time and
discrete-time components renders the analysis
and the design of sampled-data systems
challenging. Still, linear systems allow for
computationally efficient analysis and design
techniques that benefit from the z and ı

transforms, as well as convex optimization
(Chen and Francis 1994). Nonlinear sampled-
data systems, one the other hand, are much harder
to deal with since the aforementioned methods do
not apply in this case. This inherent difficulty has
led to a variety of models for different analysis
and design methods:
1. Continuous-time models
2. Discrete-time models
3. Sampled-data models
We discuss bellow each of these models, their
features, and the analysis or design methods that
exploit them.

Continuous-time models basically ignore the
sampling process and assume that all signals are
continuous time. They are the coarsest approx-
imation of the sampled-data system and they

are useful only for very small sampling periods.
Nevertheless, they are invaluable and are used as
the first step in the controller/observer design in
the so-called emulation design approach.

Discrete-time models only capture the be-
havior of the sampled-data system at sampling
instants. Indeed, they ignore the inter-sample be-
havior of the system and this is their main draw-
back. There are two ways in which nonlinear
discrete-time models arise: (i) from the identi-
fication of the plant model using the sampled
measurements and (ii) from the discretization
of a known continuous-time plant model. For
instance, black box identification methods often
lead to nonlinear discrete-time models in input-
output form, such as NARMA (nonlinear auto-
regressive moving average) models (Chen et al.
1989; Juditsky et al. 1995). Depending on the
approximating functions used, the nonlinearities
can be polynomial, neural network type, fuzzy
type, and so on. On the other hand, the discretiza-
tion of the continuous-time plant model requires
an exact analytic solution of a set of nonlinear
differential equations. When such an analytic
solution exists, we can obtain the exact discrete-
time models of the system; this is typically as-
sumed for linear plants. Nonlinear sampled-data
systems are different from their linear counter-
parts in that it is typically impossible to obtain the
exact discrete-time model and only approximate
discrete-time models are available for analysis
and design (Nešić et al. 1999; Nešić and Teel
2004).

Sampled-data models capture the true be-
havior of the sampled-data system including its
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inter-sample behavior. There are several ways
in which this can be achieved. One way is to
model the piecewise constant signals that arise
from zero-order hold devices as signals with a
time-varying delay; this gives rise to time-delay
nonlinear models (Teel et al. 1998). Another
recently proposed approach is to model nonlinear
sampled-data systems as hybrid dynamical sys-
tems (Goebel et al. 2012). An extensive analy-
sis and design toolbox has been developed for
hybrid dynamical systems and these results can
be used for nonlinear sampled-data systems. An-
other class of models, based on the so-called lift-
ing, has been applied for linear systems where the
system is represented as a discrete-time system
with infinite dimensional input and output spaces.
While this approach has been very successful in
the linear context (Chen and Francis 1994), it ap-
pears that it is not as useful for nonlinear systems
due to difficulties arising from harder analysis
and prohibitive computational requirements.

TheMain Issues and Analysis

Controllability/observability: Issues arising
due to sampling in linear systems transfer to
the nonlinear context although they are less
understood in this case. For instance, it is
well known that sampling may “destroy” the
controllability and/or observability properties of
the system (Chen and Francis 1994). In other
words, if the continuous-time plant model is
controllable/observable, then the corresponding
exact discrete-time model of the plant may
not verify these properties for some sampling
periods. A simple test is available for linear
systems to avoid this phenomenon, but we are
not aware of similar results in the nonlinear
context.

Finite escape times: A major difference
between continuous-time linear and nonlinear
systems is that the former have well defined
solutions for constant control inputs and
arbitrarily long sampling periods. This is not
the case, in general, for nonlinear systems as they
may exhibit finite escape times. In other words,
for a constant input it may happen for some initial

conditions of a nonlinear system that solutions
blow up within a time that is shorter than the
sampling period. As a consequence, for such an
initial condition and input, the exact discrete-time
system cannot be defined. This is a fundamental
obstacle to achieving global stability results for
nonlinear systems if the sampling period is fixed
and independent of the size of the initial state.
Nevertheless, it is possible to ensure semi-global
stability properties for very general nonlinear
systems which means that any compact domain
of convergence can be achieved if the sampling
period is sufficiently reduced (Nešić and Teel
2004).

Model structure is changed: An important
issue for nonlinear sampled-data systems is that
the sampling modifies the structure of the model.
When the continuous-time plant model has a
certain structure, such as triangular or affine
in the input, the corresponding exact discrete-
time model will not inherit it; see Monaco and
Normand-Cyrot (2007) and Yuz and Goodwin
(2005). This significantly complicates the design
of sampled-data systems via the discrete-
time approach since many nonlinear design
techniques, like backstepping or forwarding, are
heavily reliant on the structure of the model.

Zero dynamics: Probably the most signifi-
cant aspect of the changed structure are the so-
called sampling zeros. In linear systems, it is well
known that if a continuous-time linear system of
relative degree r � 2 is sampled, then generically
for fast sampling the discrete-time models of
the plant will have relative degree r D 1. In
other words, sampling introduces extra zeros in
the model which are often unstable and thus
render the system non-minimum phase. It is well
known that the controller design is much harder
for non-minimum phase systems, and, moreover,
there are certain fundamental performance limi-
tations in this case. Recently, results that extend
the notion of sampling zeros to the nonlinear
sampled-data systems have been reported; see
the references in Monaco and Normand-Cyrot
(2007).

Passivity: Some plant properties like passivity
are much more restrictive in discrete time than
in continuous time. Indeed, it is necessary for a
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continuous-time plant to have relative degree 1
or 0 to be passive, whereas only relative degree
0 discrete-time plants may possess this property.
In other words, an exact discrete-time model of
a passive continuous-time plant of relative degree
1 will not be passive; that is, sampling typically
destroys passivity.

Controller Design

Linearization: The simplest way to design
sampled-data nonlinear systems is to linearize the
plant at a given operating point. In this case, the
nonlinear plant dynamics are approximated by a
linear model around a chosen equilibrium, and
then any of the linear sampled-data techniques
can be applied to the linearized model. The
obtained solution is then implemented on the true
nonlinear plant. The drawback of this technique
is that the solution would typically perform well
only in the vicinity of the selected equilibrium
point.

Nonlinear methods: An alternative is to per-
form designs that rely on a nonlinear plant model.
These approaches can be divided into feedback
linearization, emulation design method, (approxi-
mate and exact) discrete-time design method, and
sampled-data design method.

Feedback linearization: Some classical prob-
lems, like feedback linearization, are harder for
sampled-data systems than continuous-time ones.
It was shown that a class of discrete-time nonlin-
ear systems for which feedback linearization is
possible is smaller than the corresponding class
of continuous-time systems (Grizzle 1987). This
has led to approximate feedback linearization
techniques which consider achieving feedback
linearization approximately with an error that can
be reduced by reducing the length of the sampling
period (Arapostathis et al. 1989).

Continuous-time design method (Emulation
design): Emulation is a design technique consist-
ing of two steps. In the first step, a continuous-
time controller or observer is designed for the
continuous-time plant while ignoring sampling
to achieve appropriate stability, performance,
and/or robustness guarantees. In the second step,

the designed controller/observer is discretized
for implementation and the sampling period is
reduced sufficiently for the method to work. This
method is approximate since the continuous-time
plant model approximates well the sampled-data
systems only for sufficiently small sampling peri-
ods. The discretization can be done using various
implicit or explicit Runge-Kutta methods, such as
the forward or backward Euler method (Monaco
and Normand-Cyrot 2007; Yuz and Goodwin
2005). The emulation method is probably the
best understood of all design methods. It was
shown that a range of stability properties that
can be cast in terms of dissipation inequalities
are preserved in an appropriate sense under the
emulation approach (Laila et al. 2002). Moreover,
nonconservative estimates of the upper bound for
the required sampling period in emulation have
been reported recently (Nešić et al. 2009).

Exact discrete-time design method: Exact
discrete-time design method assumes that
an exact discrete-time model of the plant is
available to the designer; see Kötta (1995)
and the references cited therein. This approach
is reasonable when black box identification
techniques are used for modeling. Moreover,
in some rare cases it is possible to obtain
the exact discrete-time model of the plant by
integrating the continuous-time model with
fixed inputs (assuming the zero-order hold is
used). This is the case when the plant dynamics
are linear while the control law is nonlinear
(e.g., adaptive control) or the plant is linear
with state/input constraints, which is a setup
often used in the model predictive control. The
literature on exact discrete-time design method
is vast and many of the nonlinear continuous-
time design techniques, like backstepping,
forwarding, and passivity-based designs, are
extended to discrete-time nonlinear systems; see
Kötta (1995) and Grizzle (1987). A drawback
of these methods is that they assume a special
structure of the discrete-time nonlinear model,
such as upper or lower triangular structure, which
is typically much more restrictive in discrete-
time than in continuous-time due to the loss of
structure due to sampling that was discussed
earlier.
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Approximate discrete-time design method:
Due to the nonlinearity, it is impossible in
most cases to obtain an exact discrete-time
plant model by integrating its continuous-time
model equations; instead, a range of approximate
discrete-time plant models, such as Runge-Kutta,
can be used for controller/observer design. It
was recently shown that this design method
may lead to disastrous consequences where the
controller stabilizes the approximate discrete-
time plant model for all (arbitrarily small)
sampling periods while the same controller
destabilizes the exact discrete-time plant model
for all sampling periods; see Nešić and Teel
(2004) and Nešić et al. (1999). This is true even
for linear systems and some commonly used
discretization techniques and controller designs.
These considerations have led to the development
of a framework for controller design based on
approximate discrete-time models (Nešić et al.
1999; Nešić and Teel 2004). This framework
provides checkable conditions on the continuous-
time plant model, the approximate discrete-time
model and the controller that guarantee that
the controllers designed in this manner would
stabilize the exact discrete-time model and,
hence, the nonlinear sampled-data system for
sufficiently small sampling periods. The design
is based on families of approximate discrete-time
models parameterized with the sampling period,
and the design objectives are more demanding
than in the continuous-time nonlinear systems.
Ideas from numerical analysis are adapted
to this context. This framework was used to
design controllers and observers for classes of
nonlinear sampled-data systems where typically
Euler approximate discretization is employed to
generate the approximate discrete-time model.

Sampled-data design method: Both emula-
tion and discrete-time design methods have their
drawbacks. Indeed, the former method ignores
the sampling at the design stage, whereas the
latter method ignores and may produce unaccept-
able inter-sampling behavior. Thus, methods that
use a sampled-data model of the plant for design
are much more attractive. There are two possible
ways in which this can be achieved for nonlinear
sampled-data systems.

The first approach consists of representing
nonlinear sampled-data systems as systems with
time-varying delays (Teel et al. 1998). However,
controller design tools for such systems need to
be further developed.

The second approach involves representing
the nonlinear sampled-data system as a hybrid
dynamical system. Recent advances on model-
ing and analysis of hybrid dynamical systems
(Goebel et al. 2012) offer great opportunities in
this context, but the full potential of this approach
is still to be exploited. Nonlinear sampled-data
systems are just a small subclass of hybrid dy-
namical systems, and developing specific anal-
ysis and design tools tailored to this class of
systems seems promising.

It should be emphasized that there are many
related techniques, such as discrete-time adaptive
control and model predictive control, that deal
with classes of nonlinear sampled-data systems
but are not a part of the mainstream nonlinear
sampled-data literature.

Summary and Future Directions

Summary: Sampled-data control systems
are nowadays prevalent and there are many
situations where nonlinear models need to be
used to deal with wider ranges of operating
conditions, more restrictive constraints, and
enhanced performance specifications. Despite
their increasing importance, the design of
nonlinear sampled-data systems remains largely
unexplored, and it is much less developed than
its continuous-time counterpart. A variety of
models, analysis, and design techniques make
nonlinear sampled-data literature very diverse
and a comprehensive textbook reference or a
unifying approach is still missing. Many open
questions remain for nonlinear sampled-data
systems, such as results on multi-rate sampling,
design techniques based on sampled-data models,
and other generalizations which are discussed
below.

Future Directions: In the 1990s, a new gener-
ation of digitally controlled systems has evolved
from the more classical sampled-data systems
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which are generally referred to as networked
control systems (NCS); see Heemels et al. (2010)
and the references cited therein. These systems
exploit digital wired or wireless communication
networks within the control loops. Such a setup
is introduced to reduce the cost, weight, and
volume of the engineered systems, but its spe-
cial structure imposes new challenges due to the
communication constraints, data packet dropouts,
quantization of data, varying sampling periods,
time delays, etc. At the same time, these systems
provide new flexibilities due to the distributed
computation within the control system that can
be used to improve the performance and mitigate
some of the undesirable network effects on the
overall system performance. Moreover, embed-
ded microprocessors allow for event-triggered
and self-triggered sampling (Anta and Tabuada
2010) that are still largely unexplored especially
for nonlinear systems. Design of NCS was identi-
fied as one of the biggest challenges to the control
research community in the twenty-first century,
and more than a decade of intense research on this
topic still has not provided a comprehensive and
unifying approach for their analysis and design.
Novel results on modeling and Lyapunov stability
theory for (nonlinear) hybrid dynamical systems
appear to offer the right analysis design tools but
they are still to be converted into efficient and
easy-to-use design tools in the control engineers’
toolbox.

Cross-References

�Event-Triggered and Self-Triggered Control
�Hybrid Dynamical Systems, Feedback Con-

trol of
�Optimal Sampled-Data Control
� Sampled-Data Systems
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Abstract

Particle filters are computational methods open-
ing up for systematic inference in nonlinear/non-
Gaussian state-space models. The particle filters
constitute the most popular sequential Monte
Carlo (SMC) methods. This is a relatively recent
development, and the aim here is to provide
a brief exposition of these SMC methods and
how they are key enabling algorithms in solving
nonlinear system identification problems. The
particle filters are important for both frequentist
(maximum likelihood) and Bayesian nonlinear
system identification.
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Introduction

The state-space model (SSM) offers a general
tool for modeling and analyzing dynamical phe-
nomena. The SSM consists of two stochastic pro-
cesses: the states fxtgt�1 and the measurements
fytgt�1, which are related according to

xtC1 j .xt D xt / 
 f�.xtC1 j xt ; ut /; (1a)

yt j .xt D xt / 
 h�.yt j xt ; ut /; (1b)

and the initial state x1 
 ��.x1/. We use bold
face for random variables and 
 means “dis-
tributed according to.” The notation xtC1 j .xt D
xt / stands for the conditional probability of xtC1
given xt D xt . The state process fxtgt�1 is a

Markov process, implying that we only need to
condition on the most recent state xt, since that
contains all information about the past. Further-
more, � denotes the parameters, f�.�/ and h�.�/
that are probability density functions, encoding
the dynamic and the measurement models, re-
spectively. In the interest of a compact notation,
we will suppress the input ut throughout the text.

The SSM introduced in (1) is general in that
it allows for nonlinear and non-Gaussian rela-
tionships. Furthermore, it includes both black-
box and gray-box models on state-space form.
Nonlinear black-box and gray-box models are
covered by �Nonlinear System Identification:
An Overview of Common Approaches. The off-
line nonlinear system identification problem can
(slightly simplified) be expressed as recovering
information about the parameters � based on the
information in the T measured inputs u1WT ,
fu1; : : : ; uT g and outputs y1WT . For a thorough ex-
position of the system identification problem, we
refer to � System Identification: An Overview.
Nonlinear system identification has a long his-
tory, and a common assumption of the past has
been that of linearity and Gaussianity. This as-
sumption is very restrictive, and we have now
witnessed well over half a century of research
devoted to finding useful approximate algorithms
allowing this assumption to be weakened. This
development has significantly intensified during
the past two decades of research on sequential
Monte Carlo (SMC) methods (including particle
filters and particle smoothers). However, the use
of SMC for nonlinear system identification is
more recent than that. The aim here is to in-
troduce the key ideas enabling the use of SMC
methods in solving nonlinear system identifica-
tion problems, and as we will see, it is not a
matter of straightforward application. The devel-
opment of SMC-based identification follows two
clear trends that are indeed more general: (1) The
problems we are working with are analytically
intractable, and hence, the mindset has to shift
from searching for closed-form solutions to the
use of computational methods, and (2) the new
algorithms have basic building blocks that are
themselves algorithms. Both these trends call for
new developments.

http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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Before the SMC methods are introduced
in section “Sequential Monte Carlo”, their
need is clearly explained by formulating both
the Bayesian and the maximum likelihood
identification problems in sections “Bayesian
Problem Formulation” and “Maximum Like-
lihood Problem Formulation”, respectively.
Solutions to these problems are then provided in
sections “Bayesian Solutions” and “Maximum
Likelihood Solutions”, respectively. Finally,
we give some intuition for online (recursive)
solutions in section “Online Solutions”, and in
section “Summary and Future Directions”, we
conclude with a summary and directions for
future research.

Bayesian Problem Formulation
In formulating the Bayesian problem, the param-
eters � are modeled as unknown stochastic vari-
ables, ı.e., the model (1) needs to be augmented
with a prior density for the parameters � 

p.�/. The aim in Bayesian system identification
is to compute the posterior density of � given
the measurements p.� j y1WT /. More generally,
we typically compute the joint posterior of the
parameters � and the states x1WT ,

p.�; x1WT j y1WT / D p.x1WT j �; y1WT /p.� j y1WT /:
(2)

By explicitly including the state variables x1WT in
the problem formulation according to (2), they
take on the role of auxiliary variables. The reason
for including the state variables x1WT as auxiliary
variables is that the alternative of excluding them
would require us to analytically marginalize the
states x1WT . This is not possible for the model (1)
under study. However, once we have an approxi-
mation of p.�; x1WT j y1WT / available, the density
p.� j y1WT / is easily obtained by straightforward
marginalization.

Maximum Likelihood Problem
Formulation
In formulating the maximum likelihood (ML)
problem, the parameters � are modeled as un-
known deterministic variables. The ML formula-
tion offers a systematic way of computing point

estimates of the unknown parameters � in a
model, by making use of the information avail-
able in the obtained measurements y1WT . The
ML estimate is obtained by finding the � that
maximizes the so-called log-likelihood function,
which is defined as

`T .�/ , logp�.y1WT / D
TX

tD1
logp�.yt j y1Wt�1/:

(3)

Note that we use � as a subindex to denote
that the corresponding probability density func-
tion is parameterized by � , analogously to what
was done in (1). The one step ahead predictor
p�.yt j y1Wt�1/ is computed by marginalizing
p.yt ; xt j y1Wt�1/ D h�.yt j xt /p� .xt j y1Wt�1/
w.r.t. xt , i.e., integrating out xt from p.yt ; xt j
y1Wt�1/. To summarize, the ML estimate O�ML is
obtained by solving the following optimization
problem:

O�ML , arg max
�

PT
tD1 log

R
h�.yt j xt /

p�.xt j y1Wt�1/dxt : (4)

This problem formulation clearly reveals the im-
portant fact that the nonlinear state inference
problem (here computing p�.xt j y1Wt�1/) is
inherent in any maximum likelihood formulation
for identification of SSMs. For linear Gaussian
models, the Kalman filter offers closed-form so-
lutions for the state inference problem, but for
nonlinear models, there are no closed-form solu-
tions available.

Sequential Monte Carlo

Solving the nonlinear system identification
problem implicitly requires us to solve various
nonlinear state inference problems. We will, for
example, need to approximate the smoothing
density p.x1WT j y1WT / and the filtering
density p.xt j y1Wt /. The SMC samplers
offer approximate solutions to these and other
nonlinear state inference problems, where
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the accuracy is only limited by the available
computational resources. This section only deals
with the state inference problem, allowing us to
drop the � in the notation for brevity.

Most SMC samplers hinge upon importance
sampling, motivating section “Importance Sam-
pling”. In section “Particle Filter”, we make use
of importance sampling in computing an approxi-
mation of the filtering density p.xt j y1Wt /, and in
section “Particle Smoother”, a particle smoothing
strategy is introduced to approximately compute
p.x1WT j y1WT /.

Importance Sampling
Let z be a random variable distributed according
to some complicated density �.z/ and let '.�/ be
some function of interest. Importance sampling
offers a systematic way of evaluating integrals of
the form

E Œ'.z/� D
Z
'.z/�.z/dz; (5)

without requiring samples directly generated
from �.z/. The density �.z/ is referred to as
the target density, i.e., the density we are trying
to sample from. The importance sampler relies
on a proposal density q.z/, from which it is
simple to generate samples, let zi 
 q.z/,
i D 1; : : : ; N . Since each sample zi is drawn
from the proposal density rather than from
the target density �.z/, we must somehow
account for this discrepancy. The so-called
importance weights Qwi D �.zi /=q.zi / encode
the difference. By normalizing the weights
wi D Qwi =

PN
jD1 Qwj , we obtain a set of

weighted samples fzi ;wi gNiD1 that can be used to
approximately evaluate the integral (5) resulting
in E Œ'.z/� � PN

iD1 wi '.zi /. Schön and Lindsten
(2014) provide an introduction to importance
sampling within a dynamical systems setting,
whereas Robert and Casella (2004) provide a
general treatment.

Particle Filter
The solution to the nonlinear filtering problem
is provided by the following two recursive
equations:

p.xt j y1Wt / D h.yt j xt /p.xt j y1Wt�1/
p.yt j y1Wt�1/ ; (6a)

p.xt j y1Wt�1/ D
Z
f .xt j xt�1/

p.xt�1 j y1Wt�1/dxt�1: (6b)

In the general case (1) there are no analytical
solutions available for the above equations. The
particle filter maintains an empirical approxima-
tion of the solution, which at time t�1 amounts to

OpN .xt�1 j y1Wt�1/ D
NX

iD1
wi
t�1ıxit�1

.xt�1/; (7)

where ıxit�1
.xt�1/ denotes the Dirac delta mass

located at xit�1. Furthermore, wi
t�1 and xit�1 are

referred to as the weights and the particles, re-
spectively. We will now derive the particle filter
by designing an importance sampler allowing
us to approximately solve (6). The derivation is
performed in an inductive fashion, starting by
assuming that p.xt�1 j y1Wt�1/ is approximated
by (7). Inserting (7) into (6b) results in OpN
.xt j y1Wt�1/ D PN

iD1 wi
t�1f .xt j xit�1/; which is

used in (6a) to compute an approximation of the
filtering density p.xt j y1Wt / up to proportionality.
Hence, this allows us to target p.xt j y1Wt /
using an importance sampler, where the form of
OpN .xt j y1Wt�1/ suggests that new samples can be

proposed according to

xit 
 q.xt j y1Wt / D
NX

iD1
wi
t�1f .xt j xit�1/: (8)

It is worth noting that we can obtain a more
general algorithm by replacing f .xt j xit�1/ in
the above mixture with a density q.xt j xit�1; yt /.
However, in the interest of a simple, but still
highly useful algorithm, we keep (8). The pro-
posal density (8) is a weighted mixture consisting
of N components, which means that we can
generate a sample Qxit from it via a two-step
procedure: first we select which component to
sample from, and secondly we generate a sample
from that component. More precisely, the first
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Algorithm 1 Bootstrap particle filter (for i D
1; : : : ; N )
1. Initialization (t D 1):

(a) Sample xi1 � �.x1/.
(b) Compute the importance weights Qwi

1 D h.y1 j xi1/
and normalize wi

1 D Qwi
1=
PN

jD1 Qwj
1 .

2. For t D 2 to T do:
(a) Resample fxit�1;w

i
t�1g resulting in equally

weighted particles fQxit�1; 1=N g.
(b) Sample xit � f .xt j Qxit�1/.
(c) Compute the importance weights Qwi

t D h.yt j xit /
and normalize wi

t D Qwi
t =
PN

jD1 Qwj
t .

part amounts to selecting one of the N particles
fxit�1gNiD1 according to

P

�
Qxt�1 D xit�1 j fxjt�1;w

j
t�1gNjD1



D wi

t�1;

where the selected particle is denoted as Qxt�1.
By repeating this N times, we obtain a set of
equally weighted particles fQxit�1gNiD1, constituting
an empirical approximation of p.xt�1 j y1Wt�1/,
analogously to (7). We can then draw xit 

f .xt j Qxit�1/ to generate a realization from the
proposal (8). This procedure that turns a weighted
set of samples into an unweighted one is com-
monly referred to as resampling.

Finally, using the approximation OpN .xt j
y1Wt�1/ in (6a) and the proposal density according
to (8) allows us to compute the weights as
Qwi
t D h.yt j xit /. Once all the N weights are

computed and normalized, we obtain a collection
of weighted particles fxit ;w

i
t gNiD1 targeting the

filtering density at time t . We have now (in a
slightly nonstandard fashion) derived the so-
called bootstrap particle filter, which was the first
particle filter introduced by Gordon et al. (1993)
two decades ago. Since the introduction of
Algorithm 1, the surrounding theory and practice
have undergone significant developments; see,
e.g., Doucet and Johansen (2011) for an up-
to-date survey. The weights fwi

1WT gNiD1 and
the particles fxi1WT gNiD1 are random variables,
and in executing the algorithm, we generate
one realization from these. This is a useful
insight both when it comes to understanding,
but also when it comes to the analysis of the

particle filters. There is by now a fairly good
understanding of the convergence properties of
the particle filter; see, e.g., Doucet and Johansen
(2011) for basic results and further pointers into
the literature.

Particle Smoother
A particle smoother is an SMC method targeting
the joint smoothing density p.x1WT j y1WT / (or
one of its marginals). There are several different
strategies for deriving particle smoothers. Rather
than mentioning them all, we introduce one pow-
erful and increasingly popular strategy based on
backward simulation, giving rise to the family
of forward filtering/backward simulation (FFBSi)
samplers.

In an FFBSi sampler the joint smoothing den-
sity p.x1WT j y1WT / is targeted by complementing
a forward particle filter with a second recur-
sion evolving in the time-reversed direction. The
following factorization of the joint smoothing
density

p.x1WT j y1WT / D
 
T�1Y

tD1
p.xt j xtC1; y1Wt /

!

p .xT j y1WT /;

immediately suggests a highly useful time-
reversed recursion. Start by generating a sample
QxT 
 p.xT j y1WT /. We then continue generating
samples backward in time by sampling from the
so-called backward kernel p.xt j xtC1; y1Wt /
according to Qxt 
 p.xt j QxtC1; y1Wt /, for
t D T � 1; : : : ; 1. The resulting sample
Qx1WT , . Qx1; : : : ; QxT / is then by construction a
sample from the joint smoothing density. Hence,
in performing M backward simulations, we
obtain the following approximation of the joint
smoothing density:

OpM.x1WT j y1WT / D
MX

iD1

1

M
ıQxi1WT .x1WT /: (9)

For details on how to design algorithms
implementing the backward simulation strategy,
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derivations, properties, and references, we refer
to the recent survey on backward simulation
methods by Lindsten and Schön (2013).

Bayesian Solutions

Strategies
The posterior density (2) is analytically
intractable, but we can make use of Markov chain
Monte Carlo (MCMC) samplers to address the
inference problem. An MCMC sampler allows
us to approximately generate samples from
an arbitrary target density �.z/. This is done
by simulating a Markov chain (ı.e., a Markov
process) fzŒr�gr�1, which is constructed in such
a way that the stationary distribution of the chain
is given by �.z/. The sample paths fzŒr�gRrD1 of
the chain can then be used to draw inference
about the target distribution. Two constructive
ways of finding a suitable Markov chain to
simulate are provided by the Metropolis Hastings
(MH) and the Gibbs samplers, where the latter
can be interpreted as a special case of the
former. See, e.g., Robert and Casella (2004)
for details on MCMC. A Gibbs sampler targeting
p.�; x1WT j y1WT / is given by
(i) Draw � 0 
 p.� j x1WT ; y1WT /.

(ii) Draw x0
1WT 
 p.x1WT j � 0; y1WT /.

The second step is hard, since it requires us
to generate a sample from the joint smoothing
density. Simply replacing step (ii) with a back-
ward simulator does not result in a valid method
(Andrieu et al. 2010).

One interesting solution is provided by the
family of particle MCMC (PMCMC) sampler,
first introduced by Andrieu et al. (2010). PM-
CMC provides a systematic way of combining
SMC and MCMC, where SMC is used to con-
struct the proposal density for the MCMC sam-
pler. The so-called particle Gibbs (PG) sampler
resolves the problems briefly mentioned above by
a nontrivial modification of the SMC algorithm.
Introducing the PG sampler lies outside the scope
of this work; we refer the reader to the ground-

breaking work by Andrieu et al. (2010). During
the past 3 years, the PG samplers have developed
quite a lot, and improved versions are surveyed
and explained by Lindsten and Schön (2013).

A Nontrivial Example
To place PMCMC in the context of nonlinear sys-
tem identification, we will now solve a nontrivial
identification problem. The PG sampler is used
to compute the posterior density for a general
Wiener model (linear Gaussian system followed
by a static nonlinearity) (Giri and Bai 2010):

xtC1 D �
A B

� �xt
ut

�
C vt ; vt 
 N .0;Q/;

(10a)

zt D Cxt ; (10b)

yt D g.zt /C et ; et 
 N .0; r/:
(10c)

Based on observed inputs u1WT and outputs y1WT ,
we wish to identify the model (10). We place
a matrix normal inverse Wishart (MNIW) prior
on f.A;B/;Qg, an inverse gamma prior on r,
and a Gaussian process (Rasmussen and Williams
2006) prior on the function g, resulting in a
semiparametric model. We can without loss of
generality fix the matrix C according to C D
.1; 0; : : : ; 0/. For a complete model specification,
we refer to Lindsten et al. (2013).

The posterior distribution p.�; x1WT j y1WT /
is computed using a newly developed PG
sampler referred to as particle Gibbs with
ancestor sampling (PGAS); see Lindsten and
Schön (2013). In the present experiment we
make use of T D 1;000 observations. The
dimension of the state–space is 6, the linear
dynamics contains complex poles resulting in
oscillations as seen in Fig. 1, and the nonlinearity
is non-monotonic; see Fig. 2. A subspace
method is used to find an initial guess for the
linear system, and the static nonlinearity is
initialized using a linear function (i.e., a straight
line).
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It is worth pausing for a moment to reflect
upon the posterior distribution p.�; x1WT j y1WT /
that we are computing. The unknown “parame-
ters” � live in the space‚ D R

64	F , where F is
an appropriate function space. The states x1WT live
in the space R

6�1;000. Hence, p.�; x1WT j y1WT /
is actually a rather complicated object for this
example.

Using the PGAS sampler (with N D
15 particles), we construct a Markov chain
f�Œr�; x1WT Œr�gRrD1 with p.�; x1WT j y1WT / as
its stationary distribution. We run this Markov
chain for R D 25;000 iterations, where
the first 10;000 are discarded. The result is
visualized in Figs. 1 and 2, where we plot
the Bode diagram for the linear system and
the static nonlinearity, respectively. In both
figures we also provide the 99 % Bayesian
credibility interval. MATLAB code for Bayesian
identification of Wiener models is available
from user.it.uu.se/~thosc112/research/software.
html.

The resonance peaks are accurately modeled,
but the result is less accurate at low frequen-
cies (likely due to a lack of excitation). The
fact that the posterior mean is inaccurate at low
frequencies is encoded in our estimate of the
posterior distribution as shown by the credibility
intervals.

In Figs. 1 and 2, we have visualized not only
the posterior mean but also the uncertainty for the
entire model. We could do this since the model
is a linear dynamical system followed by a static
nonlinearity. It would be most interesting if we

user.it.uu.se/~thosc112/research/software.html
user.it.uu.se/~thosc112/research/software.html
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can come up with ways in which we could visu-
alize the uncertainty inherent in general nonlinear
dynamical systems.

Maximum Likelihood Solutions

Identifying the parameters � in a general non-
linear SSM using maximum likelihood amounts
to solving the optimization problem (3). This
is a challenging problem for several reasons,
for example, it requires the computation of the
predictor densityp�.yt j y1Wt�1/. Furthermore, its
gradient (possibly also its Hessian) is very useful
in setting up an efficient optimization algorithm.
There are no closed-form solutions available for
these objects, forcing us to rely on approxima-
tions. The SMC methods briefly introduced in
section “Sequential Monte Carlo” provide rather
natural tools for this task, since they are capable
of producing approximations where the accuracy
is only limited by the available computational
resources.

To establish a clear interface between the
maximum likelihood problem (3) and the SMC
methods, it has proven natural to make use of
the expectation maximization (EM) algorithm
(Dempster et al. 1977). The EM algorithm
proceeds in an iterative fashion to compute ML
estimates of unknown parameters � in probabilis-
tic models involving latent variables. The strategy
underlying the EM algorithm is to exploit the
structure inherent in the probabilistic model to
separate the original problem into two closely
linked problems. The first problem amounts to
computing the so-called intermediate quantity

Q.�; � 0/ ,
Z

logp�.x1WT ; y1WT /

p� 0.x1WT j y1WT /dx1WT
D E� 0 Œlogp�.x1WT ; y1WT / j y1WT � ; (11)

where we have already made use of the
fact that the latent variables in an SSM are
given by the states. Furthermore, � 0 denotes
a particular value for the parameters � . We
can show that by choosing a new � such that

Q.�; � 0/ � Q.� 0; � 0/, the likelihood is either
increased or left unchanged, ı.e., `T .�/ � `T .�

0/.
The EM algorithm now suggests itself in that

we can generate a sequence of iterates f�kgk�1
that guarantees that the log-likelihood is not de-
creased for increasing k by alternating the fol-
lowing two steps: (1) (Expectation) compute the
intermediate quantity Q.�; �k/ and (2) (maxi-
mization) compute the subsequent iterate �kC1
by maximizing Q.�; �k/ w.r.t. � . This procedure
is then repeated until convergence, guaranteeing
convergence to a stationary point on the likeli-
hood surface.

The FFBSi particle smoother offers an approx-
imation of the joint smoothing density p� 0.x1WT j
y1WT / according to (9), which inserted into (11)
provides an approximative solution OQM .�; � 0/ to
the expectation step. In solving the maximization
step, we typically want gradients of the interme-
diate quantity r�

OQM.�; � 0/. These can also be
approximated using (9). The above development
is summarized in Algorithm 2, providing a solu-
tion where the basic building blocks are them-
selves complex algorithms, an SMC algorithm
for the E step and a nonlinear optimization algo-
rithm for the M step. This means that we have the
option of replacing the FFBSi particle smoother
in step 2a with any other algorithm capable of
producing estimates of the joint smoothing den-
sity. The family of PMCMC methods introduced
in section “Bayesian Solutions” contains several
highly interesting alternatives. A detailed account
on Algorithm 2 is provided by Schön et al.
(2011); see also Cappé et al. (2005).

Algorithm 2 EM for nonlinear system identifica-
tion
1. Initialization: Set k D 0 and initialize �k .
2. Expectation (E) step:

(a) Compute an approximation OpM
�k
.x1WT j y1WT /, for

example, using an FFBSi sampler.
(b) Calculate OQM.�; �k/.

3. Maximization (M) step: Compute

�kC1 D arg max
�

OQM.�; �k/:

4. Check termination condition. If satisfied, terminate;
otherwise, update k ! k C 1 and return to step 2.
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Finally, we mention Fisher’s identity opening
up yet another avenue for designing ML esti-
mators using SMC approximations. Even if we
are not interested in using EM when solving
the nonlinear system identification problem, the
intermediate quantity (11) is useful. The reason
is provided via Fisher’s identity,

r� `T .�/
ˇ̌
�D� 0

D r�Q.�; � 0/
ˇ̌
�D� 0

D R r� logp�.x1WT ; y1WT /
ˇ̌
�D� 0

p� 0.x1WT j y1WT /dx1WT ;
which provides a means to compute approxi-
mations of the log-likelihood gradient. Hessian
approximations are also available, but these are
more involved. Hence, Fisher’s identity opens up
for direct use of any off-the-shelf gradient-based
optimization method in solving (4).

Online Solutions

Online (also referred to as recursive or adap-
tive) identification refers to the problem where
the parameter estimate is updated based on the
parameter estimate at the previous time step and
the new measurement. This is used when we
are dealing with big data sets and in real-time
situations. SMC offers interesting opportunities
when it comes to deriving online solutions for
nonlinear state- space models. The most direct
idea is simply to make use of a gradient method

�t D �t�1 C �tr� logp�.yt j y1Wt�1/;

where f�tg is the sequence of step sizes. Fisher’s
identity (12) opens up for the use of SMC in
approximating r� logp�.yt j y1Wt�1/ However,
this leads to a rapidly increasing variance,
something that can be dealt with by the so-called
“marginal” Fisher identity; see Poyiadjis et al.
(2011) for details.

An interesting alternative is provided by an
online EM algorithm; see, e.g., Cappé (2011) for
a solid introduction. The online EM approaches
rely on the additive properties of the Q-function.
The area of online solutions via SMC is likely

to grow in the future as there is a clear need
motivated by the constantly growing data sets and
there are also clear theoretical opportunities.

Summary and Future Directions

We have discussed how SMC samplers can be
used to solve nonlinear system identification
problems, by sketching both Bayesian and
ML solutions. A common feature of the
resulting algorithms is that they are (nontrivial)
combinations of more basic algorithms. We
have, for example, seen the combined use of
a particle smoother and a nonlinear optimization
solver in Algorithm 2 to compute ML estimates.
As another example we have the class of
PMCMC methods, where the basic building
blocks are provided by SMC samplers and
MCMC samplers. The use of SMC and MCMC
methods for nonlinear system identification has
only just started to take off, and it presents very
interesting future prospects. Some directions for
future research are as follows: (1) The family
of PMCMC algorithms is rich and fast growing,
with great potential for further developments. For
example, its use in solving the state smoothing
problem (i.e., computing p.x1WT j y1WT /) is likely
to provide better algorithms in the near future.
(2) Related to this is the potential to design new
particle smoothers capable of generating new
particles also in the time-reversed direction. (3)
There are open and highly relevant challenges
when it comes to designing backward simulators
for Bayesian nonparametric methods (Hjort et al.
2010). A key question here is how to represent
the backward kernel p.xt j xtC1; y1Wt / in such
nonparametric settings. (4) The use of Bayesian
nonparametric models will open up interesting
possibilities for hybrid system identification,
since they allow us to systematically express and
work with uncertainties over segmentations.

Cross-References

�Nonlinear System Identification: An Overview
of Common Approaches

�System Identification: An Overview

http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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Recommended Reading

An overview of SMC methods for system iden-
tification is provided by Kantas et al. (2009),
and a thorough introduction to SMC is provided
by Doucet and Johansen (2011). The forthcom-
ing monograph by Schön and Lindsten (2014)
provides a textbook introduction to particle fil-
ters/smoothers (SMC), MCMC, PMCMC, and
their use in solving problems in nonlinear system
identification and nonlinear state inference. A
self-contained introduction to particle smoothers
and the backward simulation idea is provided by
Lindsten and Schön (2013). The work by Cappé
et al. (2005) also contains a lot of very relevant
material in this respect.
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Abstract

Nonlinear mathematical models are essential
tools in various engineering and scientific
domains, where more and more data are recorded
by electronic devices. How to build nonlinear
mathematical models essentially based on
experimental data is the topic of this entry. Due
to the large extent of the topic, this entry provides
only a rough overview of some well-known
results, from gray-box to black-box system
identification.

Keywords

Black-box models; Block-oriented models; Gray-
box models; Nonlinear system identification

Introduction

The wide success of linear system identification
in various applications (Ljung 1999; � System
Identification: An Overview) does not necessarily
mean that the underlying dynamic systems are

user.it.uu.se/~thosc112/lds
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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N

intrinsically linear. Quite often, linear system
identification can be successfully applied to a
nonlinear system if its working range is restricted
to a neighborhood of some working point. Nev-
ertheless, some advanced engineering systems
may exhibit significant nonlinear behaviors under
their normal working conditions, so do most
biological or social systems. There is therefore an
increasing demand on nonlinear dynamic system
modeling theory. Nonlinear system identification
is studied to partly answer this demand, when
experimental data carry the essential information
for modeling purpose.

Nonlinear system identification, compared to
its linear counterpart, is a much more vast topic,
as in principle a nonlinear model can be any
description of a system which is not linear. For
this reason, this entry provides only a rough
overview of some well-known results.

An overview of the basic concepts of system
identification can be found in � System Iden-
tification: An Overview, notably the five basic
elements to be taken into account in each ap-
plication, among which the (nonlinear) model
structures will be mainly focused on by this
entry, as they represent the essential particu-
larities of nonlinear system identification prob-
lems.

The various model structures used in non-
linear system identification are often classified
by the level of available prior knowledge about
the considered system: from white-box models
to black-box models, via gray-box models. In
principle, a white-box model is fully built from
prior knowledge. Such a fully white-box ap-
proach is rarely feasible for complex systems
because of insufficient prior knowledge or of in-
tractable system complexity. Therefore, the sys-
tem identification methods summarized in this
entry concern gray-box and black-box models,
for which experimental data play an essential
role.

For ease of presentation, the main content of
this entry will be restricted to the single-input
single-output (SISO) case. The multiple-input
multiple-output (MIMO) case will be discussed
in the section “Multiple-Input Multiple-Output
Systems” below.

Gray-BoxModels

This section covers gray-box models, from the
most to the least demanding ones in terms of prior
knowledge.

Parametrized Physical Models
The dynamic behaviors of some engineering
systems are governed by well-known physical
laws, typically in the form of differential
equations, possibly with unknown parameters.
These parametrized physical equations can
be used as gray-box models for system
identification. In most situations, such a model
can be written in the form of a vectorial first-order
ordinary differential equation (ODE), known as
state equation, and can be generally written as

dx.t/

dt
D f .x.t/; u.t/I �/ (1)

where t represents the time, x.t/ is the state
vector, u.t/ the input, and f .�/ a (nonlinear)
function parametrized by the vector � .

The observation on the system (typically with
electronic sensors), referred to as the output and
denoted by y.t/, is related to x.t/ and u.t/
through another known parametrized equation

y.t/ D h.x.t/; u.t/I �/C v.t/ (2)

where v.t/ represents the measurement error.
With digital electronic instruments, the input

u.t/ and the output y.t/ are sampled at some
discrete-time instants, say t D �; 2�; 3�; : : : ; N�

with some constant sampling period � > 0. For
the sake of notation simplicity, let the sampling
period � D 1 and assume ideal instantaneous
samplers; then the sampled input-output data set
is denoted by

ZN D fu.1/; y.1/; u.2/; y.2/; : : : ; u.N /; y.N /g :
(3)

In some applications, data samples are made at
irregular time instants. Some studies are particu-
larly focused on system identification in this case
(Garnier and Wang 2008).

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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The main remaining task of gray-box system
identification is to estimate the parameter vec-
tor � from the data set ZN . The identification
criterion is typically defined with the aid of an
output predictor derived from the system model.
A natural output predictor is simply based on
the numerical solution of the state equation (1):
for some given value of � , initial state x.0/ and
some assumed inter-sample behavior of the input
u.t/ (e.g., with a zero order hold), the trajectory
of x.t/, denoted by Ox.t j�/, is computed with a
numerical ODE solver, then the output prediction
is computed as

Oy.t j�/ D h. Ox.t j�/; u.t/I �/: (4)

The parameter vector � is typically estimated
by minimizing the sum of squared prediction
error ".t j�/ D y.t/ � Oy.t j�/. See � System
Identification: An Overview and Bohlin (2006)
for more details.

The predictor based on the numerical solution
of the state equation (1) (known as a simulator)
may be in trouble if this equation with the given
value of � is unstable. Moreover, the state equa-
tion (1) may also be subject to some modeling
error that should be taken into account in the
output predictor. In such cases, the output predic-
tor can be made with the aid of some nonlinear
state observer (Gauthier and Kupka 2001) or
some nonlinear filtering algorithm (Doucet and
Johansen 2011).

Alternatively, sequential Monte Carlo (SMC)
methods can also be applied to the identification
of (small size) nonlinear state-space systems,
typically assuming a discrete-time counterpart of
the model described by Eqs. (1) and (2). See
�Nonlinear System Identification Using Particle
Filters.

The gray-box approach is particularly useful
in an engineering field when some software li-
brary of commonly used components is available.
In this case, a system model can be built by
connecting available component models. Never-
theless, the “connection” of the component mod-
els may introduce algebraic constraints through
variables shared by connected components, lead-
ing to differential algebraic equations (DAE),

which are a wider class of dynamic system mod-
els than the abovementioned state-space mod-
els (�Modeling of Dynamic Systems from First
Principles). For most dynamic systems, it is pos-
sible to avoid the DAE formulation by causality
analysis, so that the connections between differ-
ent system components are treated as information
flow, instead of algebraic constraints. There ex-
ist also some theoretic studies on DAE system
identifiability (Ljung and Glad 1994) and some
recent developments on the identification of such
systems (Gerdin et al. 2007).

Combined Physical and Black-Box Models
It may happen that, in a complex system, part
of the components is well described by physical
laws (possibly with available models from a soft-
ware library), but some other components are not
well studied. In this case, the latter components
can be dealt with black-box models (or possibly
empirical models). The entire model can be fitted
to a collected data set ZN , like in the case of the
previous subsection.

Block-Oriented Models
Complex systems, notably those studied in en-
gineering, are often made of a certain number
of components; thus a system model can be
built by connecting component models. In this
sense, such component-based models could be
said “block-oriented.” In the system identifica-
tion literature, the term block-oriented model is
often used in a particular context (Giri and Bai
2010), where it is typically assumed that each
component is either a linear dynamic subsystem
or a nonlinear static one. Here, the term “static”
means that the behavior of the component is
memoryless and can be described by an algebraic
equation. The study of system identification with
such models is motivated by the fact that, when a
controlled system is stabilized around a working
point, its dynamic behavior can be well described
by a linear model, but its actuators and sensors
may exhibit significant nonlinear behaviors like
saturation or dead zone. The choice of a particular
block-oriented model structure depends on the
prior knowledge about the underlying system,

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_106
http://dx.doi.org/10.1007/978-1-4471-5058-9_102
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Nonlinear
Static

y(t)x(t)

Nonlinear System Identification: An Overview of
CommonApproaches, Fig. 1 Hammerstein system

u(t) Nonlinear
Static

Linear 
Dynamic

y(t)z(t)

Nonlinear System Identification: An Overview of
CommonApproaches, Fig. 2 Wiener system

with specific identification methods available for
different model structures.

The most frequently studied block-oriented
models for system identification concern the
Hammerstein system and the Wiener system,
each composed of two blocks, as illustrated,
respectively, in Figs. 1 and 2.

Hammerstein System Identification
A SISO Hammerstein system is typically formu-
lated as

x .t/ D f .u .t// (5a)

y .t/ C a1y.t � 1/C � � � C anay.t � na/

D b1x .t � 1/C � � � C bn
b
x .t � nb/

C v .t/ : (5b)

If the nonlinearity f .�/ is expressed in the form
of

f .u/ D
mX

lD1
�l�l .u/ (6)

with some chosen basis functions �l.�/, then
the identification problem amounts to fitting the
model parameters �l ; ai ; bj to a collected data
set ZN . A well-known method is based on over-
parametrization (Bai 1998): replace in (5b) each
x.t � j / with the right-hand side of (6) and treat
each parameter product bj �l as an individual
parameter, then the newly parametrized model is
equivalent to a linear ARX model (� System
Identification: An Overview), which can be

estimated by a well-established linear system
identification method. As the nb Cm parameters
bj and �l ; are replaced by nbm parameters
in the new parametrization, the term “over-
parametrization” refers to the fact that typically
nb Cm < nbm. The estimated over-parametrized
model can be reduced to the original parametriza-
tion, usually through the singular value decom-
position (SVD) of the matrix filled with the esti-
mated parameter products bj �l . See Giri and Bai
(2010) for other identification methods with vari-
ant formulations of Hammerstein system model.

When the linear subsystem is approximated
by a finite impulse response (FIR) model, it is
possible to first estimate the linear model before
estimating a model for the nonlinear block (Gre-
blicki and Pawlak 1989).

Wiener System Identification
A SISO Wiener system is typically formulated as

z.t/ D
1X

kD1
hku.t � k/ (7a)

y.t/ D g.z.t//C v.t/ (7b)

where the sequence h1; h2,. . . is the impulse re-
sponse of the linear subsystem, g.�/ is some non-
linear function, and v.t/ is a noise independent of
the input u.t/.

Some methods for Wiener system identifica-
tion assume a finite impulse response (FIR) of
the linear subsystem. In this case, the linear sub-
system model is characterized by the vector col-
lecting the FIR coefficients hT = [h1; h2,. . . , hn].
There are two typical kinds of efficient solutions,
assuming either the Gaussian distribution of the
input u.t/ (Greblicki 1992) or the monotonicity
of the nonlinear function g.�/ (Bai and Reyland
Jr 2008). In both cases, it is possible to directly
estimate the FIR coefficients h from the input-
output dataZN , without explicitly estimating the
unknown nonlinear function g.�/: The estimated
h can be used to compute the internal variable
z.t/. It then becomes relatively easy to estimate
the nonlinear function g.�/ from the computed
z.t/ and the measured y.t/.

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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Other Block-OrientedModel Structures
Among block-oriented models composed of
more blocks, the most well-known ones concern
Hammerstein-Wiener system and Wiener-
Hammerstein system. They are both composed
of 3 blocks connected in series, the former has
a linear dynamic block preceded and followed
by two nonlinear static blocks, and the latter
has a nonlinear static block in the middle of
two linear dynamic blocks. In general, the
prediction error method (PEM) (Ljung 1999)
is applied to the identification of such systems,
with heuristic methods for the initialization
of model parameters. Some recent results on
Hammerstein-Wiener system identification have
been reported in Wills et al. (2013). There exist
also some other variants, with parallel blocks
or feedback loops. In most cases, each block is
either linear dynamic or nonlinear static, but
there is a notable exception: hysteresis blocks.
Hysteresis is a phenomenon typically observed
in some magnetic or mechanic systems. Its
mathematical description is both dynamic and
strongly nonlinear and cannot be decomposed
into linear dynamic and nonlinear static blocks.
Due to the importance of hysteresis components
in some control systems, system identification
involving such blocks is currently an active
research topic (Giri et al. 2008).

LPV Models
Linear parameter-varying (LPV) models could be
classified as black-box models, because typically
they rely more on experimental data than on prior
knowledge. However, engineers often have good
insights into such models; they are thus presented
in the gray-box section.

From Gain Scheduling to LPV Models
Gain scheduling is a method originally developed
for the control of nonlinear systems. It consists
in designing different controllers for different
working points of a nonlinear system and in
switching among the designed controllers accord-
ing to the actual working point. It is typically
assumed that the working point is determined by
some observed variable (vector) referred to as the
scheduling variable and denoted by �. Around

each considered working point, the nonlinear
system is linearized so that the corresponding
controller can be designed from the linear control
theory. A by-product of this controller design
procedure is a collection of linearized models
indexed by the scheduling variable �. This col-
lection, seen as a whole model of the globally
nonlinear system, is known as an LPV model
(Toth 2010). This approach has been particularly
successful in the field of flight control.

An LPV model can be formulated either in
input-output form or in state-space form. In the
input-output form, a SISO model can be written
as

y .t/Ca1 .�/ y .t�1/C � � � C ana .�/ y .t � na/

D b1 .�/ u .t � 1/C � � � C bnb .�/ u .t � nb/
C v .t/ : (8)

and in the state-space form as

x .t C 1/ D A .�/ x .t/CB .�/ u .t/C w .t/
(9a)

y .t/ D c .�/ x .t/CD .�/ u .t/C v .t/

(9b)

As a global model of the whole nonlinear
system, the �-dependent parameters (matrices)
ai .�/; bj .�/; A.�/, etc., are functions defined for
all � 2 �, where � is the relevant working
range of the considered system (a compact subset
of a real vector space). If originally the LPV
model was built through a collection of linearized
models around different working points, then the
values of these functions are first defined for
the corresponding discrete values of �. For other
values of � 2 �, these functions can be defined
by interpolation. Alternatively, by choosing some
parametric forms of ai .�/; bj .�/; A.�/, etc., the
whole LPV model can also be estimated by fitting
it to a data set ZN , through nonlinear optimiza-
tion (Toth 2010).

Local Linear Models
In an LPV model, the model parameters can in
principle depend on the scheduling variable � in
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any chosen manner. A particularly useful case
is when they are formulated as expansions over
local basis functions. For example, in (8), the
parameter ai .�/ may be expressed as

ai .�/ D
mX

lD1
ai;l �l .�/ (10)

where kl.�/ are some chosen bell-shaped (local)
basis functions, typically the Gaussian function,
centered at different positions � D cl; 2 �, and
ai;l are coefficients of the expansion. Similarly

bj .�/ D
mX

lD1
bi;l�l .�/ : (11)

Assume that the basis functions are normalized
such that

mX

lD1
�l .�/ D 1 (12)

for all � 2 �. Then the LPV model (8) can be
viewed as an interpolation of m “local” models

y.t/C a1;ly.t � 1/C � � � C ana;l y.t � na/

D b1;lu.t � 1/C � � � C bnb;lu.t � nb/Cv.t/
(13)

indexed by l D 1; 2; : : : ; m. Each of these linear
models is valid for � close to cl , the center of the
corresponding basis function �l.�/; hence, they
are called local linear models.

If the local basis functions �l.�/ are viewed as
membership functions of fuzzy sets, then the local
linear model is strongly related to the Takagi-
Sugeno fuzzy model (Takagi and Sugeno 1985).
An advantage of this point of view is the possi-
bilities of incorporating prior knowledge in the
form of linguistic rules and of interpreting some
local linear models resulting from system identi-
fication.

There are two approaches to building local
linear models. The first one is the local ap-
proach: for each chosen value of cl; 2 �, a
local model is estimated from data corresponding
to the values of � within a neighborhood of
cl . This approach has the advantages of being
computationally efficient, easily updatable, and
well understood by engineers. The second one

is the global approach: all the model parameters
are estimated simultaneously by solving a single
optimization problem for the whole model. This
approach can produce more accurate models in
terms of prediction error, but it is numerically
much more expensive and may lead to models
difficult to be interpreted by engineers.

The practical success of local linear models
strongly depends on the possibility of finding a
scheduling variable � of small dimension rel-
evantly determining the working point of the
considered system. If there exists a nonlinear
state-space model of the system, then in principle
the working point is determined jointly by the
state and the input of the system. As quite often
physically meaningful state variables are not fully
observed, they cannot be used in the definition of
�. It is possible to define � as delayed output and
input variables, e.g.,

�TD Œy.t/; : : : ; y.t�na/; u.t�1/; : : : ; u.t�nb/�

but it typically leads to a vector of quite large
dimension. It is thus important to use practical
insights about a given system to find a relevant
vector � of reduced dimension.

For a single-dimensional �, the choice of
the local basis function centers cl can be made
following some practical insight or equally
spaced within �. For a large-dimensional �,
this task is more difficult. The equally spaced
approach would lead to too many local models,
as their number would exponentially increase
with the dimension of �. In this case, an
empirical approach, called local linear model
tree (LOLIMOT) (Nelles 2001), can be applied.
It iteratively partitions � in order to place the
local basis functions where the system is more
likely nonlinear or where the available data are
more concentrated.

Black-BoxModels

Ideally speaking, a black-box model should be
solely built from experimental data, without any
prior knowledge. In practice, some prior knowl-
edge is always necessary, though experimental
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data play a much more important role. For in-
stance, the choice of the input and output vari-
ables, implying some causality relationship, is an
important prior knowledge.

With the fast development of electronic de-
vices, more and more sensor signals are available
in various fields, notably for engineering, envi-
ronmental, and biomedical systems. Meanwhile,
the processing power of modern computers in-
creases every year. Black-box modeling has thus
more and more potential applications. Neverthe-
less, the importance of prior knowledge in a
modeling procedure should not be forgotten. In
general prior knowledge leads to more reliable
models in terms of validity range, as the validity
of physical equations is often well understood. In
contrast, for a black-box model essentially based
on experimental data, it may be hard to ensure
its validity for interpolation and even harder for
extrapolation.

Input-Output Black-Box Models
As the primary role of a mathematical model
is to predict the output of the system for given
input values, it is natural to design black-box
models directly in the form of a predictor. As
the output y.t/ of a dynamic system depends on
the past inputs, a predicted output Oy .t/ may be
formulated in the form of

Oy .t/ D f .u .t � 1/ ; u .t � 2/ ; : : : ; u .t � nb//

(14)

where f .�/ is some nonlinear function (to be
estimated from experimental data) and nb is a
chosen integer. In principle, nb can be infinitely
large (as y.t/ depends on all the past inputs
in general), but in practice, a model of finite
complexity has to be chosen. If the considered
system is stable in the sense that sufficiently old
past inputs are (gradually) forgotten, then it is
reasonable to truncate the dependence on the past
inputs.

The model structure (14) is similar to the
linear finite impulse response (FIR) model (Ljung
1999). It is known that, for linear system identi-
fication, the use of ARX models, predicting y.t/
from both past inputs and past outputs, is often

more efficient than FIR models, in the sense of
requiring fewer model parameters. By analogy,
the nonlinear ARX model takes the form

Oy .t/ D f .y .t � 1/ ; : : : ; y .t � na/;
u .t � 1/ ; : : : :u .t � nb// : (15)

This is likely the most frequently used black-
box model structure for nonlinear dynamic sys-
tem identification (Sjöberg et al. 1995; Juditsky
et al. 1995).

Nonlinear Function Estimators
For a nonlinear ARX model in the form of (15),
the nonlinear function f .�/ has to be estimated
from an available input-output data set ZN . Typ-
ically, an estimator of f .�/ with some chosen
parametric structure is used. Let


T .t/ D Œy .t � 1/ ; : : : ; y .t � na/;
u .t � 1/ ; : : : ; u .t � nb/� ; (16)

then system identification in this case amounts to
solving a nonlinear regression problem

y .t/ D g .
 .t/ I �/C v .t/ (17)

where g.�/ is a chosen nonlinear function
parametrized by � , capable of approximating
a large class of nonlinear functions by appropri-
ately adjusting � , and v.t/ is the modeling error
to be minimized in some sense.

The most well-known nonlinear function es-
timators implementing g.�/ in practice are poly-
nomials, splines, multiple-layer neural networks,
radial basis networks, wavelets, and fuzzy-neural
estimators. Most of these estimators can be writ-
ten in the form

g .
 .t/ I �/ D
mX

lD1
�l� .˛l .
 � ˇl // (18)

or in some close variant of this form, where
�.�/ is some “mother” basis function dilated
and translated by ˛l and ˇl before being
weighted by �l in the sum forming the estimator
(Sjöberg et al. 1995). For example, �.�/ is
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typically chosen as a (Gaussian) bell-shaped
function in radial basis networks or a sigmoid
(S-shaped) function in multiple-layer neural
networks.

Another approach to nonlinear function
estimation is called nonparametric estimation.
Its main idea is to estimate f ('*) for any
given value of '* by the (weighted) average
of the values of y.t/ in the available data
set corresponding to values of '.t/ close to
'*. This category includes kernel estimators
(Nadaraya 1964) and memory-based estimators
(Specht 1991).

The nonlinear function estimation problem as
formulated in (17) can also be addressed with the
Gaussian process model. Assume that g in (17) is
a Gaussian process whose covariance matrix for
any regressor pair '.t/ and '.�/ is a known func-
tion of the regressor pair, then the posterior dis-
tribution of g given observations on y.t/ can be
computed by applying the Bayes’ theorem under
certain assumptions (Rasmussen and Williams
2006). This method is strongly related to the least
squares support vector machines (Suykens et al.
2002) and to some extent is similar to kernel
estimators.

The difficulty for estimating a nonlinear func-
tion f .'/ strongly depends on the dimension of
'. In the single-dimensional case, most existing
methods can produce satisfactory results. When
the dimension of ', say n, increases, in order to
keep the data “density” unchanged, the number
of data points must increase exponentially with
n. This fact implies that, in the high-dimensional
case (say n > 10), for most practically available
data sets, the data points are sparse in the space
of '. It is thus practically impossible to estimate
f .'/ with a good accuracy everywhere in the
space of '. In order to remedy this problem, prior
knowledge can be used to form a more elaborated
vector ' of reduced dimension, instead of the
simple form of past input and output variables.
The resulting model will be more of gray-box
nature. If this approach is not possible, one has
to expect that the estimation algorithm automat-
ically discovers some low-dimension nature of
the nonlinear relationship being estimated. The
success would depend on the suitability of the

chosen particular nonlinear function estimator for
the considered system.

State-Space Black-Box Models
For a gray-box model in the form of (1) and
(2), it is assumed that the parametric forms of
the nonlinear functions f .�/ and h.�/ are known
from prior knowledge. If no such knowledge is
available, it is possible to estimate these nonlinear
functions with some function estimator, like those
introduced in the previous subsection. Such an
approach leads to state-space black-box models.
In practice, it is easier to use the discrete-time
counterpart of the state equation (1). Because
typically the state vector x.t/ is not directly
observed, the estimation of f .�/ and h.�/ cannot
be formulated as nonlinear regression problems,
in contrast to the case of input-output black-
box models. Another difficulty is related to the
nonuniqueness of the state-space representation
of a given system: any (linear or nonlinear) state
transformation would lead to a different state-
space representation of the same system. In some
existing methods, a linear state-space model is
first estimated; then nonlinear function estimators
are used to compensate the residuals of f .�/ and
h.�/ after their linear approximations (Paduart
et al. 2010).

Multiple-Input Multiple-Output
Systems

For multiple-input multiple-output (MIMO)
systems, state-space models like (1)–(2) remain
in the same form, by considering vector values
of the notations u.t/ and y.t/ at each time
instant, up to some similar adaptation of the other
involved notations. For input-output models like
(15), the involved notations can also be vector
valued, but the fact that different inputs and/or
outputs can have different delays makes the
notations more complicated. For block-oriented
models, though a MIMO linear block is usually
described by a general linear model in state-
space form or in input-output form, there is no
consensus for the structural choice of MIMO
nonlinear blocks.
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Some Practical Issues

The general practical aspects discussed in
� System Identification: An Overview are
of course also valid for nonlinear system
identification, but some particularities in the
nonlinear case should be highlighted.

It is important to apply appropriate input sig-
nals so that the collected data convey sufficient
information for system identification. The de-
sign of input signals for this purpose is known
as experiment design. In the framework of lin-
ear system identification, experiment design is
usually formulated through the optimization of
the covariance matrix of model parameter esti-
mates (�Experiment Design and Identification
for Control), which often leads to non-convex
optimization problems. Experiment design in the
nonlinear case has not been systematically stud-
ied. If possible, the chosen input signal should
be similar to what will be actually applied to
the considered system and cover various working
conditions. Another simple rule is that the input
should excite a nonlinear system at different am-
plitudes, whereas binary input signals are often
used for linear systems.

Model validation is a particularly delicate
task for nonlinear black-box models. As already
mentioned when such models are introduced,
the available data points are usually sparse
when a nonlinear function is estimated in a
high-dimensional space; it is thus practically
impossible to uniformly ensure the estimation
accuracy of the nonlinear function. It is important
to extensively perform cross-validation, by
testing the validity of the model on large data sets
that have not been used for model estimation.

Regularization is also an important issue for
nonlinear black-box models. Because of lack of
prior knowledge, each nonlinear black-box model
has a flexible structure in order to cover a large
class of nonlinear systems, typically with many
model parameters, implying large variances of
parameter estimates (� System Identification: An
Overview). Appropriately applying a regularized
criterion for model parameter estimation can re-
duce the variances. For gray-box models, prior
knowledge can be used for regularization through

a Bayesian approach, but this approach is not
applicable to black-box models.

Summary and Future Directions

Compared to linear system identification, the non-
linear case is a much more vast topic, of which
this entry provides only a rough overview. The
main lines that should be retained are that both
prior knowledge and experimental data are re-
quired for system identification and that the more
prior knowledge is incorporated in a model, the
better the extent of its validity is understood. The
lack of prior knowledge should be compensated by
the processing of large amounts of data. The data
that can be processed within an acceptable time
depend on the power of computers that progresses
every year. Meanwhile, the research and develop-
ment of efficient algorithms for large data process-
ing with multiple or massively parallel processors
are an exciting topic in system identification.

Cross-References

�Experiment Design and Identification for Con-
trol

�Modeling of Dynamic Systems from First Prin-
ciples

�Nonlinear System Identification Using Particle
Filters

�System Identification: An Overview

Recommended Reading

Nonlinear system identification is covered by a
vast literature. After the readings about general
topics on system identification (see � System
Identification: An Overview and references
therein), the reader may further read (Nelles
2001) for black-box system identification,
(Bohlin 2006) for gray-box system identification,
(Giri and Bai 2010) for block-oriented system
identification, and (Toth 2010) for LPV system
identification.
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Abstract

The notion of zero dynamics plays a role in
nonlinear systems that is analogous to the role
played, in a linear system, by the notion of zeros
of the transfer function. In this article, we review
the basic concepts underlying the definition of
zero dynamics and discuss its relevance in the
context of nonlinear feedback design.

Keywords

High-gain feedback; Inverse systems; Minimum-
phase nonlinear systems; Normal forms; Output
regulation; Stabilization

Introduction

The concept of zero dynamics of a nonlinear
system was introduced in the early 1980s as the
nonlinear analogue of the concept of transmission
zero of a linear system. This concept played
a fundamental role in the development of sys-
tematic methods for asymptotic stabilization of
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relevant classes of nonlinear systems. As a matter
of fact, a nonlinear system in which the zero dy-
namics possess a globally asymptotically stable
equilibrium can be robustly stabilized, globally
or at least with guaranteed region of attraction,
by means of output feedback. This is a nonlinear
analogue of a well-know property of linear sys-
tems, namely, the property that an n-dimensional
linear systems having n � 1 zeros with neg-
ative real part can be stabilized by means of
proportional output feedback, if the feedback
gain is sufficiently large. The concept of zero
dynamics also plays a relevant role in variety of
other problems of feedback design, such as input-
output linearization with internal stability, non-
interacting control with internal stability, output
regulation, and feedback equivalence to passive
systems.

The Zero Dynamics

One of the cornerstones of the geometric the-
ory of control systems (for linear as well as
for nonlinear systems) is the analysis of how
the observability property can be influenced by
feedback. This study, originally conceived in the
context of the problem of disturbance decoupling,
had far reaching consequences in a number of
other domains. One of these consequences is the
possibility of characterizing in “geometric terms”
the notion of zero of the transfer function of
a system. In a (single-input single-output and
minimal) linear system, a complex number z is
a zero of the transfer function if and only if the
input u.t/ D exp.zt/ yields – for a suitable
choice of the initial state – a forced response
in which the output is identically zero. This
“open-loop” and “time-domain” characterization
has a “closed-loop and “geometric” counterpart:
all such z’s coincide with the eigenvalues of the
unobservable part of the system, once the latter
has been rendered maximally unobservable by
means of feedback. One of the earlier successes
of the geometric approach to the analysis and
design of nonlinear systems was the possibility
of extending these equivalent characterizations to
the domain of nonlinear systems.

To see how this is possible, consider for sim-
plicity the case of a system modeled by equations
of the form

Px D f .x/C g.x/u
y D h.x/

with state x 2 R
n, input u 2 R, output y 2

R and in which f .x/; g.x/; h.x/ are smooth
functions. Systems of this forms are called input-
affine systems. The analysis of such systems is
rendered particularly simple if appropriate no-
tations are used. Given any real-valued smooth
function �.x/ and any n-vector valued smooth
function X.x/, let LX�.x/ denote the (direc-
tional) derivative of �.x/ along X.x/, that is the
real-valued smooth function

LX�.x/ D
nX

iD1

@�

@xi
Xi.x/ ;

and, recursively, set LdX� D LXL
d�1
X �.x/ for

any d � 1.
Suppose there exists an integer r � 1 with the

following properties

Lgh.x/ D LgLf h.x/ D � � � D LgL
r�2
f h.x/

D 0 8x 2 R
n

LgL
r�1
f h.x/ ¤ 0 8x 2 R

n :

If this is the case, it is possible to show that the
set

Z� D fx 2 R
n W h.x/ D Lh.x/ D � � �

D Lr�1f h.x/ D 0g

is a smooth sub-manifold of Rn, of codimension
r . It is also easy to show that the state-feedback
law

u�.x/ D � Lrf h.x/

LgL
r�1
f h.x/

renders the vector

f �.x/ D f .x/C g.x/u�.x/
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tangent to Z�, at each point x of Z�. In other
words, Z� is an invariant manifold of the
feedback-modified system

Px D f �.x/:

It is seen from this construction that the output
y.t/ D h.x.t// of the system is identically zero
if and only if x.0/ 2 Z� and u.t/ D u�.x.t//,
where x.t/ is the solution of Px D f �.x/ passing
through x.0/ at time t D 0. As a consequence,
the restriction of Px D f �.x/ to its invariant
manifold Z� characterizes all internal dynamics
that occur in the system once initial condition and
input are chosen in such a way that the output is
constrained to be identically zero. The dynamics
in question are called the zero-dynamics of the
system. Note that this construction demonstrates,
as anticipated, the equivalence between an “open-
loop” and a “closed-loop” characterization of all
the (internal) dynamics of a given system that
are compatible with the constraint that the output
is identically zero. This construction can be ex-
tended to multi-input multi-output systems, with
the aid of an appropriate recursive algorithm,
known as the zero dynamics algorithm (Isidori
1995).

Normal Forms

The coordinate-free construction presented above
becomes even more transparent if special coordi-
nates are chosen. To this end, set

g�.x/ D 1

LgL
r�1
f h.x/

g.x/

and define, recursively,

X0.x/ D g�.x/; Xk.x/ D Œf �.x/; Xk�1.x/� ;

for 1 � k � r�1, in which ŒY.x/;X.x/� denotes
the Lie bracket of Y.x/ andX.x/. It is possible to
show that if the vector fields X0.x/; : : : ; Xn�1.x/
are complete, there exists a smooth nonlinear,
globally defined, change of variables by means
of which the system can be transformed into a
system of the form

Pz D f0.z; �/
P� D Ar� CBr Œq0.z; �/C b.z; �/u�

y D Cr�

in which z 2 R
n�r , � 2 R

n, the matrices
Ar ,Br ,Cr have the form

Ar D

0
BBBB@

0 1 0 � � � 0
0 0 1 � � � 0
� � � � � � �
0 0 0 � � � 1
0 0 0 � � � 0

1
CCCCA
; Br D

0
BBBB@

0

0

� � �
0

1

1
CCCCA
;

Cr D �
1 0 0 � � � 0� ;

and b.z; �/ ¤ 0 for all .z; �/. These equations are
said to be in normal form (Isidori 1995).

It is easy to check that, in these coordinates,
the manifold Z� is the set of all pairs .z; �/
having � D 0, the state feedback law u�.x/ is
the function

u�.z; �/ D � q0.z; �/

b.z; �/

and the restriction of Px D f �.x/ to the manifold
Z� is nothing else than

Pz D f0.z; 0/:

The latter provide a simple characterization of
the zero dynamics of the system, once that the
latter has been brought to its normal form.

It is worth observing that, in the case of a
linear system, functions f0.z; �/ and q0.z; �/ are
linear functions, and b.z; �/ is a constant. Conse-
quently, the normal form can be written as

Pz D F z CG�
P� D Ar� C BrŒH z CK� C bu�
y D Cr� :

It is also easy to check that the transfer func-
tion of the system can be expressed as

T .s/ D b
det.sI � F /

det.sI � A/
;
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in which

A D
�
F G

BrH Ar C BrK

�
:

From this it is concluded that in a (controllable
and observable) linear system, the zeros of the
transfer function T .s/ coincide with the eigen-
values of F . In other words, in a linear system
the zero dynamics are linear dynamics whose
eigenvalues coincide with the zeros of the transfer
function of the system.

The Inverse System

Another property associated with the notion of
zero of the transfer function, in a (single-input
single-output) linear system, is the fact that the
zeros characterize the dynamics of the inverse
system (the latter being – loosely speaking – a
system able to reproduce the input u.t/ from
output y.t/ that this input has generated). This
property has an immediate analogue for nonlinear
systems. Considering system in normal form and
setting

yr�1.t/ D col.y.t/; y.1/.t/; : : : ; y.r�1/.t// ;

it is easily seen that the input u.t/ can be deter-
mined as the output of a dynamical system, driven
by yr�1.t/ and y.r/.t/, modeled by

Pz D f0.z; yr�1/

u D y.r/ � q0.z; yr�1/
b.z; yr�1/

:
(1)

Thus, it is concluded that the unforced internal
dynamics of the inverse system coincide with the
zero dynamics as defined above.

It should be stressed, though, that the coin-
cidence is limited to the case of single-input
single-output systems. For a multi-input multi-
output nonlinear systems, the link between zero
dynamics and the dynamics of the inverse system
is more subtle. This is essentially due to the fact
that while the concept of zero dynamics only
seeks to determine the dynamics compatible with

the constraint that the output is identically zero,
the inverse system must describe all dynamics
resulting in any admissible output function. As a
consequence, computation of the zero dynamics
and computation of the inverse system (whenever
this is possible) are not equivalent and the lat-
ter is possible only under substantially stronger
assumptions. The computation of the zero dy-
namics is based on an extension (Isidori 1995)
of the classical algorithm of Wonham (1979) for
the computation of the largest controlled invariant
subspace in the kernel of the output map, while
the computation of the inverse system is based
on extensions, due to Hirschorn (1979) and Singh
(1981) of the so-called structure algorithm intro-
duced by Silverman (1969) for the computation
of inverses and zero structure at the infinity.
For a comparison of such assumptions and of
their influence on the outcome of the associated
algorithms, see Isidori and Moog (1988).

Input-Output Linearization

An appealing feature of the normal form de-
scribed above is the straightforward observation
that a (state) feedback law of the form

u D 1

b.z; �/
Œ�q0.z; �/CKr� C v�

changes the system into a system

Pz D f0.z; �/
P� D .Ar C BrKr/� CBrv

y D Cr�

whose input-output behavior (between input v
and output y) is fully linear (and stable if Kr is
chosen so that the matrixAr CBrKr in Hurwitz).
In fact, the law in question renders the sys-
tem partially unobservable, with all nonlinearities
confined to its unobservable part (Isidori et al.
1981). This control law is clearly non-robust,
as it relies upon exact cancelation of possibly
uncertain terms, but it can be rendered robust
by means of appropriate dynamic compensation
(Freidovich and Khalil 2008).
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The system obtained in this way has the struc-
ture of a cascade of two sub-systems, one of
which, modeled as

Pz D f0.z; �/ ;

is seen as “driven” by the input �. This motivates
the interest in classifying the asymptotic proper-
ties of such subsystem, as discussed below.

Asymptotic Properties of the Zero
Dynamics

Linear systems with no zeroes in the right-half
complex plane are traditionally called minimum-
phase systems, in view of certain properties of the
Bode gain and phase plots of its transfer function.
Thus, in view of the interpretation given above,
linear systems whose zero dynamics are asymp-
totically stable are minimum-phase systems. This
terminology has been (somewhat abusively, but
with the clear intent of providing a concise and
expressive characterization) borrowed to classify
nonlinear systems whose zero dynamics have
desirable (from the stability viewpoint) proper-
ties. Assuming that z D 0 is an equilibrium of
Pz D f0.z; 0/, the following cases are consid-
ered:
• A nonlinear system is locally minimum-phase

(respectively, locally exponentially minimum-
phase) if the equilibrium z D 0 of Pz D f0.z; 0/
is locally asymptotically (respectively locally
exponentially) stable (Byrnes and Isidori
1984).

• A nonlinear system is globally minimum-
phase if the equilibrium z D 0 of Pz D f0.z; 0/
is globally asymptotically stable (Byrnes and
Isidori 1991).

• A nonlinear system is strongly minimum-
phase if the system Pz D f0.z; �/, viewed as
a system with input � and state z, is input-to-
state stable (Liberzon 2002).
According to the well-known criterion of

Sontag (1995) for input-to-state stability, a
system is strongly minimum phase if and only
if there exists a positive definite and proper
smooth real-valued function V.z/, class K1

functions ˛.�/; ˛.�/; ˛.�/ and a class K function
�.�/ satisfying

˛.jzj/ � V.z/ � ˛.jzj/ 8z

@V

@z
f0.z; �/ � �˛.jzj/ 8.z; �/

such that jzj � �.j�j/:

As a special case, it is seen that a system is
globally minimum phase if and only if there
exists a function V.z/, bounded as above, such
that

@V

@z
f0.z; 0/ � �˛.jzj/ 8z :

If, instead, the weaker inequality

@V

@z
f0.z; 0/ � 0 8z

holds, the system is said to be globally weakly
minimum-phase.

The criterion summarized above is of
paramount importance in the design of feedback
laws to the purpose of stabilizing nonlinear
systems that are globally (or strongly) minimum
phase, as it will be seen below.

Zero Dynamics and Stabilization

The first and foremost immediate implication of
the properties described above is the fact that the
feedback law

u D 1

b.z; �/
Œ�q0.z; �/CKr�� ;

if Kr is chosen so that the matrix Ar C BrKr

in Hurwitz, globally asymptotically stabilizes
the equilibrium .z; �/ D .0; 0/ of a strongly
minimum-phase system. In fact, as observed, the
corresponding closed-loop system can be seen as
an asymptotically stable (linear) system driving
an input-to-state stable (nonlinear) system. As
already observed, this control mode is non-
robust (as it relies upon exact cancelations) and
requires the availability of the full state .z; �/
of the controlled system. However, both these
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deficiencies can be to some extent fixed, by
means of appropriate techniques, that will be
briefly reviewed below.

If the requirement of global stability is re-
placed by the (weaker) requirement of stability
with a guaranteed region of attraction, then the
desired control goal can be achieved by means
of a much simpler law, depending only on the
partial state � and not requiring cancelations.
Stability with a guaranteed region of attraction
essentially means that a given equilibrium is
rendered asymptotically stable, with a region of
attraction that contains an a priori fixed compact
set. In this context, the most relevant results can
be summarized as follows.

Assume the system possesses a globally de-
fined normal form and, without loss of generality,
let b.z; �/ > 0. Let the system be controlled by a
“partial state” feedback of the form

u D �kKr� ;

in which k 2 R. Under this control mode, the
following results are obtained:
• Suppose the system is strongly minimum

phase. Then, there is a matrix Kr and, for
every choice of a compact set C and of a
number " > 0, there are a number k� and a
time T � such that, if k � k�, all trajectories of
the closed-loop system with initial condition
in C are bounded and satisfy jx.t/j � " for all
t � T �.

• Suppose the system is strongly minimum
phase and also locally exponentially minimum
phase. Suppose q0.0; 0/ D 0. Then, there
is a matrix Kr and, for every choice of a
compact set C there is a number k� such
that, if k � k�, the equilibrium x D 0 of
the system is locally asymptotically stable,
with a domain of attraction that contains the
set C.
In these results, the system is stabilized by

means of a static control law that depends only
on the partial state � and not on the (possi-
bly unknown) quantities q0.z; �/, b.z; �/. Bear-
ing in mind the fact that the r components of
� coincide with the output y and its deriva-
tives y.1/; : : : ; y.r�1/, it is possible to replace the

control in question by means of a dynamic control
law that only depends on the output y, following
a design paradigm originally proposed by H.
Khalil. In fact, if the system is strongly minimum
phase and also locally exponentially minimum
phase and if q0.0; 0/ D 0, asymptotic stability
with a guaranteed region of attraction can be
achieved by means of dynamical feedback law of
the form Khalil and Esfandiari (1993)

PO�1 D O�2 C �cr�1.y � O�1/
PO�2 D O�3 C �2cr�2.y � O�1/

� � �
PO�r�1 D O�r C �r�1c1.y � O�1/

PO�r D �rc0.y � O�1/
u D �	L.kKr

O�/ ;

in which � and the ci are design parameters and
	L.s/ is a smooth saturation function, character-
ized as follows: 	L.s/ D s if jsj � L, 	L.s/
is odd and monotonically increasing, with 0 <
	 0
L.s/ � 1, and lims!1 	L.s/ D L.1 C c/ with
0 < c � 1. The number L is a design parameter
also.

It is also possible to show that a suitable
“extension” of this dynamic feedback law can be
used to asymptotically recover the effects of the
input-output linearizing law considered earlier.
In this way, the lack of robustness intrinsically
present in such control law is overcome (Frei-
dovich and Khalil (2008)).

Output Regulation

The concept of zero dynamics plays a fundamen-
tal role in the problem of output regulation. The
problem in question considers a controlled plant
modeled by

Px D f .w; x; u/
e D h.w; x/ ;

in which u is the control input, w is a set of ex-
ogenous variables (command and disturbances),
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and e is a set of regulated variables. The exoge-
nous variables are thought of as generated by an
autonomous system

Pw D s.w/

known as the exosysten. The problem is to design
a (possibly dynamic) controller

Pxc D fc.xc; e/

u D hc.xc; e/

driven by the regulated variable e, such that
in the resulting closed-loop system all trajecto-
ries are ultimately bounded and limt!1 e.t/ D
0: The problem in question has been the ob-
ject of intensive research in the past years. In
what follows we limit ourselves to highlight the
role of the concept of zero dynamics in this
problem.

Assume that the set W where the exosystem
evolves is compact and invariant and suppose a
controller exists that solves the problem of output
regulation. Then, the associated closed-loop has a
steady-state locus (see Isidori and Byrnes 2008),
the graph of a possibly set-valued map defined on
W . Suppose the map in question is single-valued,
which means that for each given exogenous input
function w.t/, there exists a unique steady-state
response, expressed as x.t/ D �.w.t// and
xc.t/ D �c.w.t//. If, in addition,�.w/ and �c.w/
are continuously differentiable, it is readily seen
that

Ls�.w/ D f .w; �.w/;  .w//
0 D h.w; �.w//

Ls�c.w/ D fc.�c.w/; 0/

 .w/ D hc.�c.w/; 0/

8w 2 W:

The first two equations, introduced in Isidori
and Byrnes (1990), are known as the nonlinear
regulator equations. They clearly show that the
graph of the map �.w/ is a manifold contained
in the zero set of the output map e, rendered
invariant by the control u D  .w/. In particular,
the steady-state trajectories of the closed-loop
system are trajectories of the zero dynamics of

the controlled plant. The second two equations,
on the other hand, interpret the ability, of the
controller, to generate the feedforward input nec-
essary to keep e.t/ D 0 in steady-state. This is
a nonlinear version of the well-known internal
model principle of Francis and Wonham (1975).

Passivity

Consider a nonlinear input-affine system having
the same number m of inputs and outputs and
recall that this system is said to be passive if
there exists a continuous nonnegative function
real-valued function W.x/, with W.0/ D 0, that
satisfies

W.x.t// �W.x.0// �
Z t

0

yT.s/u.s/ds

along trajectories. The function W.x/ is the so-
called storage function of the system.

It is well known that the notion of passiv-
ity plays an important role in system analysis
and that the theory of passive systems leads to
powerful methodologies for the design of feed-
back laws for nonlinear systems. In this context,
the question of whether a given, non-passive,
nonlinear system could be rendered passive by
means of state feedback is indeed relevant. It
turns out that this possibility can be simply ex-
pressed as a property of the zero dynamics of the
system.

Suppose that Lgh.x/ is nonsingular and set
g�.x/ D g.x/ŒLgh.x/�

�1. If the m columns
of g�.x/ are complete and commuting vector
fields, there exists a globally defined change of
coordinates that brings the system in normal form

Pz D f0.z; y/
Py D q0.z; y/C b.z; y/u

Then, there exists a feedback law u D ˛.z; y/ that
renders the resulting closed-loop system passive,
with a C2 and positive definite storage function
W.x/, if and only if the system is globally weakly
minimum phase (Byrnes et al. 1991).
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Limits of Performance

It is well-known that linear systems having zeros
in the left-half plane are difficult to control, and
obstruction exists to the fulfillment of certain
control specifications. One of these is found in
the analysis of the so-called cheap control prob-
lem, namely, the problem of finding a stabilizing
feedback control that minimizes the functional

J" D 1

2

Z 1

0

ŒyT.t/y.t/C "uT.t/u.t/�dt

when " > 0 is small. As " ! 0, the optimal
value J �

" tends to J �
0 , the ideal performance. It

is well-known that, in a linear system, J �
0 D 0

if and only if the system is minimum phase and
right invertible and, in case the system has zeros
with positive real part, it is possible to express
explicitly J �

0 in terms of the zeros in question. If
the (linear) system is expressed in normal form as

Pz D F z CG�
P� D H z CK� C bu
y D �

with b ¤ 0, and the zero dynamics are antistable
(that is all the eigenvalues of F have positive real
part), it can be shown that J �

0 coincides with the
minimal value of the energy

J D 1

2

Z 1

0

�T.t/�.t/dt

required to stabilize the (antistable) system Pz D
F zCG�. In other words, the limit as " ! 0 of the
optimal value of J" is equal to the least amount of
energy required to stabilize the dynamics of the
inverse system.

This result has an appealing nonlinear coun-
terpart (Seron 1999). In fact, for a nonlinear
input-affine system having the same numberm of
inputs and outputs in normal form, with f0.z; �/
of the form f0.z; �/ D f0.z/ C g0.z/� and Pz D
f0.z/ antistable, under appropriate technical as-
sumptions (mostly related to the existence of the
solution of the associated optimal control prob-
lems), the same result holds: the lowest attainable

value of the L2 norm of the output coincides with
the least amount of energy required to stabilize
the dynamics of z.

Summary and Future Directions

The concept of zero dynamics plays an important
role in a large number of problems arising in
analysis and design of nonlinear control systems,
among which the most relevant ones are the
problems of asymptotic stabilization and those of
asymptotic tracking/rejection of exogenous com-
mand/disturbance inputs. Essentially, all such ap-
plications deal with single-input single-output
systems, require the system to be preliminarily
reduced to a special form by means of appropriate
change of coordinates, and assume the dynamics
in question to be globally asymptotically stable.
The analysis of systems having many inputs and
many outputs, of systems in which normal forms
cannot be defined, and of systems in which the
zero dynamics are unstable is still a challenging
and unexplored area of research.

Cross-References

�Differential Geometric Methods in Nonlinear
Control

� Input-to-State Stability
�Regulation and Tracking of Nonlinear Systems
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in System Identification

Rik Pintelon and Johan Schoukens
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Abstract

This entry gives an overview of classical
and state-of-the-art nonparametric time and
frequency-domain techniques. In opposition to

parametric methods, these techniques require
no detailed structural information to get
insight into the dynamic behavior of complex
systems. Therefore, nonparametric methods are
used in system identification to get an initial
idea of the model complexity and for model
validation purposes (e.g., detection of unmodeled
dynamics). Their drawback is the increased
variability compared with the parametric
estimates. Although the main focus of this entry
is on the classical identification framework
(estimation of dynamical systems operating
in open loop from known input, noisy output
observations), the reader will also learn more
about (i) the connection between transient and
leakage errors, (ii) the estimation of dynamical
systems operating in closed loop, (iii) the
estimation in the presence of input noise, and (iv)
the influence of nonlinear distortions on the linear
framework. All results are valid for discrete- and
continuous-time systems. The entry concludes
with some user choices and practical guidelines
for setting up a system identification experiment
and choosing an appropriate estimation method.

Keywords

Best linear approximation; Correlation method;
Empirical transfer function estimate; Errors-
in-variables; Feedback; Frequency response
function; Gaussian process regression; Impulse
transient response modeling method; Local
polynomial method; Local rational method;
Noise (co)variances; Noise power spectrum;
Spectral analysis

Introduction

Nonparametric representations such as frequency
response functions (FRFs) and noise power spec-
tra are very useful in system identification: they
are used (i) to verify the quality of the identifi-
cation experiment (high or poor signal-to-noise
ratio?), (ii) to get quickly insight into the dy-
namic behavior of the plant (complex or easy
identification problem?), and (iii) to validate the
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parametric plant and noise models (detection of
unmodeled dynamics); see also � System Identi-
fication: An Overview. In addition, via specially
designed periodic excitation signals, it is possible
to detect and quantify the nonlinear distortions
in the FRF estimate. As such, without estimating
a parametric model, the users can easily decide
whether or not the linear framework is accurate
enough for their particular application.

The estimation of the nonparametric models
typically starts from sampled input-output signals
u.nTs/ and y.nTs/; n D 0; 1; : : : ; N � 1, that
are transformed to the frequency domain via the
discrete Fourier transform (DFT)

X.k/ D 1p
N

N�1X

nD0
x.nTs/e

�j 2�kn=N (1)

with Ts the sampling period, x D u or y, and
X D U or Y . One of the main difficulties
in estimating an FRF and noise power spec-
trum is the leakage error in the DFT spectrum
X.k/ D DFT.x.t// (1). It is due to the finite
duration NTs of the experiment, and it increases
the mean square error of the nonparametric esti-
mates. Therefore, all methods try to suppress the
leakage error as much as possible.

This entry starts by a detailed analysis of
the leakage problem (section “The Leakage
Problem”), followed by an overview of standard
and advanced nonparametric time (section
“Nonparametric Time-Domain Techniques”) and
frequency (section “Nonparametric Frequen-
cy-Domain Techniques”) domain techniques.
First, it is assumed that the system operates
in open loop (see Fig. 1) and that known
input, noisy output observations are available
(sections “Nonparametric Time-Domain Tech-
niques” and “Nonparametric Frequency-Domain
Techniques”). Next, section “Extensions”
extends the results to systems operating in
closed loop (section “Systems Operating in
Feedback”); to noisy input, noisy output
observations (section “Noisy Input, Noisy Output
Observations”); and to nonlinear systems (section
“Nonlinear Systems”). Finally, some user choices
are discussed (section “User Choices”) and

Plant

N
oi
se

Nonparametric Techniques in System Identification,
Fig. 1 Classical identification framework: discrete- or
continuous-time plant operating in open loop; known in-
put u.t /, noisy output y.t/ observations; and v.t/ filtered
discrete-time or band-limited continuous-time white noise
e.t/ that is independent of u.t /. y0.t/ denotes the true
output of the plant. In the continuous-time case, it is
assumed that the unobserved driving noise source e.t/ has
finite variance and constant (white) power spectrum within
the acquisition bandwidth

some practical guidelines are given (section
“Guidelines”). Unless otherwise stated, the input
u.t/ and the disturbing noise v.t/ are assumed to
be statistically uncorrelated.

The Leakage Problem

For arbitrary excitations u.t/, the relationship
between the true inputU.k/ and true outputY0.k/
DFT spectra (1) of a linear dynamic system is
given by

Y0.k/ D G.�k/U.k/C TG.�k/ (2)

where �k D j!k or exp.�j!kTs/ for,
respectively, continuous- and discrete-time
systems; !k D 2�k=.NTs/; G.�k/ the plant
frequency response function; and TG.�k/

the leakage error due to the plant dynamics
(Pintelon and Schoukens 2012, Section 6.3.2).
The leakage error TG.�/ is a smooth function of
the frequency that decreases to zero asO.N�1=2/
for N increasing to infinity. It depends on the
difference between the initial and final conditions
of the experiment and has exactly the same poles
as the plant transfer function. Therefore, the

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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time-domain response of TG.�/ is decaying
exponentially to zero as a transient error.

From this short discussion, it can be concluded
that the leakage error in the frequency domain
is equivalent to the transient error in the time
domain. The only difference being that the former
depends on the difference between the initial and
final conditions, while the latter solely depends
on the initial conditions.

Standard spectral analysis methods (see sec-
tion “Spectral Analysis Method”) suppress the
leakage term TG.�k/ in (2) by multiplying the
time-domain signals with a window w.t/ before
taking the DFT (1)

.X.k//W D 1p
Nwrms

N�1X

nD0
w.nTs/x.nTs/e

�j 2� kn
N

(3)

with wrms D
�
N�1P
nD0

jw.nTs/j2 =N
�1=2

the root

mean square (rms) value of the window w.t/.
The scaling in (3) is such that the transformation
preserves the rms value of the signal. The rela-
tionship between the DFT spectra .U.k//W and
.Y0.k//W of the windowed input-output signals
w.t/u.t/ and w.t/y0.t/ is given by

.Y0.k//WDG.�k/ .U.k//W CEint.k/CEleak.k/

(4)

where Eint.k/ and Eleak.k/ are, respectively, the
interpolation error and the remaining leakage
error

Eint.k/ D .G.�k/U.k//W �G.�k/ .U.k//W
(5)

Eleak.k/ D .TG.�k//W (6)

Note that Eint.k/ D 0 if G.�k/ is constant
within the bandwidth ofW.k/, while the interpo-
lation error is large if the FRF varies significantly
within the window bandwidth. To keep Eint.k/

small, the frequency resolution 1=.NTs/ should
be sufficiently large and the window bandwidth
should be small enough. On the other hand, a
larger window bandwidth is beneficial for reduc-
ing the leakage error Eleak.k/. Hence, choosing
an appropriate window for nonparametric FRF

and noise power spectrum estimation is making
a trade-off between the reduction of the leakage
error Eleak.k/ and the increase of the interpola-
tion error Eint.k/ (Schoukens et al. 2006).

Note that exactly the same analysis can be
made for the continuous- or discrete-time dynam-
ics of the disturbing output noise v.t/ in Fig. 1

V.k/ D H.�k/E.k/C TH.�k/ (7)

with H.�k/ the noise frequency response
function, E.k/ the DFT of the unobserved
driving discrete-time or band-limited continuous-
time white noise source e.t/ (Pintelon and
Schoukens 2012, Section 6.7.3), and TH.�k/

the noise leakage (transient) term. The noise
leakage term is often neglected but can be
important for lightly damped systems (e.g., in
modal analysis). Most nonparametric techniques
suppress the sum of the plant and noise leakage
errors TG.�k/C TH.�k/.

If an integer number of periods of the
steady-state response to a periodic excitation
is measured, then the plant leakage error TG.�k/

in (2) is zero, which simplifies significantly the
estimation problem. Therefore, for the frequency-
domain techniques, a distinction is made between
periodic and nonperiodic excitations. Note,
however, that the noise leakage (transient)
term TH.�k/ in (7) remains different from
zero.

Nonparametric Time-Domain
Techniques

The time-domain methods estimate the impulse
response of the plant via the time-domain rela-
tionship that the true output y0.t/ equals the con-
volution product between the impulse response
g.t/ and the true input u.t/. For discrete-time
systems, it takes the form

y0.t/ D
1X

nD0
g.n/u.t � n/ (8)

In practice only a finite number of impulse re-
sponse coefficients g.t/ can be estimated from
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N input-output samples, and, therefore, (8) is
approximated by a finite sum

y0.t/ �
LX

nD0
g.n/u.t � n/ (9)

where L � N � 1 should also be determined
from the data. From (9), it can be seen that
the response depends on the past input values
u.�1/; u.�2/; : : :; u.�L/. Since these values are
unknown, an exponentially decaying transient
error is present in the first L samples of the pre-
dicted output (9). This transient error is the time-
domain equivalent of the leakage error TG.�k/

in (2). To remove the transient error, the first L
output samples can be discarded in the predicted
output (9). It reduces the amount of data from N

to N � L and, hence, increases the mean square
error of the estimates. If it is known that the
transfer function has no direct term, then g.0/ D
0, and the sum (9) starts from n D 1.

CorrelationMethods
Correlation methods have been studied inten-
sively since the end of the 1950s (see Eykhoff
1974) and are nowadays still used in telecom-
munication channel estimation and equalization.
The impulse response coefficients are found by
minimizing the sum of the squared differences
between the observed output samples and the
output samples predicted by (9)

N�1X

tDL
.y.t/ �

LX

nD0
g.n/ u.t � n//2 (10)

w.r.t. g.m/;m D 0; 1; : : :; L. The solution of
this linear least squares problem is given by the
famous Wiener-Hopf equation

ORyu.m/ D
LX

nD0
g.n/ ORuu.m � n/ (11)

for m D 0; 1; : : :; L, where ORyu and ORuu are
estimates of, respectively, the cross- and autocor-
relation functionsRyu.�/ D Efy.t/u.t � �/g and
Ruu.�/ D Efu.t/u.t � �/g

ORyu.m/ D 1

N � L

N�1X

tDL
y.t/u.t �m/ (12)

ORuu.m � n/ D 1

N �L
N�1X

tDL
u.t � n/u.t �m/

(13)

(Godfrey 1993, Chapter 1; Ljung 1999, Chap-
ter 6). Since the number of estimated impulse
response coefficientsL can grow with the amount
of data N , the correlation method (11) is clas-
sified as being nonparametric. If the input is
white noise, then the expected value of ORuu.m/ is
proportional to the Kronecker delta ı.m/, and the
cross-correlation ORyu.m/ (11) is – within a scal-
ing factor – a good approximation of the impulse
response. This property is used in blind channel
estimation.

Gaussian Process Regression
The linear least squares (10) solution can be
(very) sensitive to disturbing output noise if L
is not much smaller than N . This problem is
circumvented by the Gaussian process regression
approach. The key idea consists in modeling
the impulse response coefficients g.n/ as a
zero-mean Gaussian process with a certain
covariance structure PL that depends on a few
hyper-parameters (Pillonetto et al. 2011). In
Chen et al. (2012), it has been shown that the
Gaussian process regression is equivalent to
the following regularized (see also � System
Identification Techniques: Convexification, Reg-
ularization, and Relaxation) linear least squares
problem

N�1X

tDL
.y.t/ �

LX

nD0
g.n/u.t � n//2 C 	2gT P�1

L g

(14)

where g D .g.0/; g.1/; : : :; g.L//T and with
	2 the variance of the output disturbance. The
hyper-parameters defining PL and the noise vari-
ance 	2 are estimated via an empirical Bayes
method.

http://dx.doi.org/10.1007/978-1-4471-5058-9_101
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Nonparametric Frequency-Domain
Techniques

The frequency-domain techniques estimate the
frequency response function (FRF) using rela-
tionship (2) or (4) between the input-output DFT
spectra. We start with the simplest approach and
gradually increase the complexity of the esti-
mation methods. Note that nonparametric FRF
estimation is still a quickly evolving research
area, such that the pros and cons of the advanced
methods are yet not well established.

Empirical Transfer Function Estimation
If an integer number of periods P of the steady-
state response to a periodic excitation is ob-
served, then the leakage term in TG.�k/ in (2)
is zero, and the FRF is estimated by dividing the
output by the input DFT spectra at the excited
frequencies (Pintelon and Schoukens 2012, Sec-
tion 2.4)

OG.�k/ D Y.k/

U.k/
(15)

The output noise variance 	2V .k/ is estimated via
the sample variance O	2V .k/ of the output DFT
spectra over the P consecutive signal periods.
The variance of the FRF estimate (15) is then
given by

var. OG.�k// D 	2V .k/

P jU.k/j2 (16)

where jU.k/j is the magnitude of U.k/.
Applying (15) to random excitations gives

the empirical transfer function estimate (Ljung
1999, Section 6.3). Due to the presence of the
plant leakage error TG.�k/=U.k/, the statistical
properties of (15) for random inputs are quite
different from those for periodic inputs. While
the empirical transfer function estimate (ETFE) is
unbiased and has finite variance (16) for periodic
inputs, it is biased and has infinite variance for
random inputs (Broersen 2004). To improve the
statistical properties of the ETFE for random
inputs, one can either approximate locally the
ETFE by a polynomial (Stenman et al. 2000)
or perform a weighted average of ETFEs over

subrecords of the total response (Ljung 1999,
Section 6.4). In Heath (2007), it is shown that the
optimally (in mean square sense) weighted ETFE
equals the spectral analysis method.

Spectral Analysis Method
The spectral analysis method is available in any
digital spectrum analyzer. It is based on the
relationship between the FRF and the cross-
and autopower spectra of the input-output
signals

G.�/ D Syu.�/

Suu.�/
D F fRyu.�/g
F fRuu.�/g (17)

with F fg the Fourier transform (Bendat and Pier-
sol 1980, Chapter 4; Brillinger 1981, Chapter 8).
Comparing (11) and (17), it can be seen that the
spectral analysis method is the frequency-domain
equivalent of the correlation method (take the
Fourier transform of the expected value of (11)).
There are basically two methods for estimating
the cross- and autopower spectra in (17) from
sampled data: the Blackman and Tukey (1958)
and the Welch (1967) procedures.

The Blackman-Tukey procedure (Blackman
and Tukey 1958; Ljung 1999, Section 6.4) con-
sists in taking the DFT (3) of the windowed cross-
and autocorrelation functions, viz.,

ORyu.�/ D 1

N

N�1X

tD
y.t/ u.t � �/ (18)

OSRyu.k/ D 1p
N

N�1X

�D0
w.�/ ORyu.�/e

�j 2� k�
N (19)

resulting in an FRF estimate (17) at the full
frequency resolution 1=.NTs/ of the measure-
ment. It can be shown that (19) is a smoothed
version of the periodogram Y.k/U.k/, where is
NU the complex conjugate of U (Brillinger 1981,

Chapter 5).
In the Welch approach (Welch 1967; Pin-

telon and Schoukens 2012, Section 2.6), the N
input-output samples are split into M subrecords
of N=M samples each, and the DFT spectra
.U Œm�.k//W and .Y Œm�.k//W of the windowed
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input and output samples are calculated via (3)
where N is replaced by N=M , giving

OSYW UW .k/ D 1

M

MX

mD1

�
Y Œm�.k/

�
W
�
U Œm�.k/

�
W

(20)

OSUW UW .k/ D 1

M

MX

mD1

ˇ̌�
U Œm�.k/

�
W
ˇ̌2

(21)

The spectral analysis estimate of the FRF and its
variance are then given by

OG.�k/ D
OSYW UW .k/
OSUW UW .k/

(22)

var. OG.�k// � 	2V .k/

M
E

n OS�1
UW UW

.k/
o

(23)

(Brillinger 1981, Chapter 8; Heath 2007). Finally,
the output noise variance 	2V .k/ in (23) is esti-
mated as

O	2V .k/ D M

M � 1

0
B@ OSYW YW .k/ �

ˇ̌
ˇ OSYW UW .k/

ˇ̌
ˇ
2

OSUW UW .k/

1
CA

(24)

(Brillinger 1981, Chapter 8; Pintelon and
Schoukens 2012, Section 2.5.4). Due to
the spectral width of the window used, the
estimates (22) and (24) are correlated over
the frequency (the correlation length is about
twice the spectral width). Note that (21) is used
for estimating noise power spectra (Brillinger
1981, Chapter 5). Note also that for periodic
excitations combined with a rectangular window
w.nTs/ D 1, the spectral analysis estimate (22),
where each subrecord is equal to a signal period,
simplifies to the ETFE (15).

Compared with the Blackman-Tukey proce-
dure (19), the FRF estimate (22) based on the
Welch approach (20) and (21) has a frequency
resolution and a variance (23) that are M times
smaller. In measurement devices, the FRFs are
estimated using the Welch approach (20)–(22)
where each subrecord is an independent measure-
ment with a fixed number of samples. The reason
for this is that the cross- and autopower spectra
estimates (20) and (21) can easily be updated as

more experiments (input-output data records) are
available. If the number of measured records M
increases to infinity, then (22) converges to the
true value, provided a perfect suppression of the
leakage error.

In measurement devices, the quality of the
spectral analysis estimate (22) is often quantified
via the coherence �2.!/

�2.!/ D
ˇ̌
Syu.�/

ˇ̌2

Syy.�/Suu.�/
(25)

which is comprised between 0 and 1. It is related
to the variance of the spectral analysis estimate as

var. OG.�k// D 1 � �2.!k/2
�

.!k/ jG.�k/j2

A coherence smaller than 1 indicates the presence
of disturbing noise, residual leakage errors, non-
linear distortions, or a nonobserved input.

Following the same lines of Welch (1967),
the statistical properties of the spectral analysis
estimate (22) can be improved via overlapping
subrecords in the cross- and autopower spectra
estimates (20) and (21). This has been studied in
detail for noise power spectra in Carter and Nut-
tall (1980) and for FRFs in Antoni and Schoukens
(2007).

Advanced Methods
The goal of the advanced methods is to estimate
the FRF at the full frequency resolution 1=.NTs/
of the experiment duration NTs while suppressing
the influence of the leakage and the noise errors.
Without some extra information, it is impossi-
ble to achieve this goal via (2). The additional
piece of information that allows one to solve the
problem is that the FRF and the leakage error are
locally smooth functions of the frequency.

The local polynomial method (Pintelon and
Schoukens 2012, Chapter 7) approximates the
FRF and the leakage error in (2) locally in the
frequency band Œk � n; k C n� by a polynomial.
From the residuals of the local linear least squares
solution, one also gets an estimate of the output
noise variance 	2V and, hence, also of the variance
of the FRF. The whole procedure is repeated for
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all DFT frequencies k in the frequency band of
interest. The correlation length of the estimates
equals ˙2n, which is twice the local bandwidth
of the polynomial approximation.

The local rational method (McKelvey and
Guérin 2012) follows the same lines as the local
polynomial method, except that the FRF and the
leakage error in (2) are locally approximated by
rational forms with the same poles (G D B=A

and TG D I=A). Due to the common poles,
the local rational approximation problem can be
transformed into a local linear least squares prob-
lem. The method is biased but suppresses better
the plant leakage error of lowly damped systems.

The transient impulse response modeling
method (Hägg and Hjalmarsson 2012) ap-
proximates the FRF and the leakage error by,
respectively, finite impulse and transient response
models, giving a large sparse global linear least
squares problem. From the residuals of the global
linear least squares solution, one gets an estimate
of the output noise variance 	2V and, hence, also
of the variance of the FRF. This approach has the
best smoothing properties and is recommended
in case the noise error is dominant.

Extensions

In sections “Nonparametric Time-Domain Tech-
niques” and “Nonparametric Frequency-Domain
Techniques,” it is assumed that the linear plant
operates in open loop and that the input is known
exactly. If the plant operates in feedback and/or
the input observations are noisy, then the pre-
sented time and frequency-domain techniques are
biased. In sections “Systems Operating in Feed-

back” and “Noisy Input, Noisy Output Observa-
tions,” it is shown that the estimation bias can
be avoided if a known external reference signal
is available (typically the signal stored in the
arbitrary waveform generator).

Since most real-life systems behave to some
extent nonlinearly, it is important to detect and
quantify the nonlinear effects in FRF estimates.
This issue is handled in section “Nonlinear Sys-
tems.”

Systems Operating in Feedback
The key difficulty of estimating the FRF of a plant
operating in feedback (see Fig. 2) using nonpe-
riodic excitations is that the true input u.t/ is
correlated with the process noise v.t/. The direct
approaches of sections “Nonparametric Time–
Domain Techniques” and “Nonparametric Fre-
quency-Domain Techniques” lead to biased esti-
mates (Wellstead 1981). This can easily be seen
from the ETFE (15) applied to the feedback setup
in Fig. 2

OG.�k/ D G.�k/Gact.�k/R.k/C V.k/

Gact.�k/R.k/ �Gfb.�k/V .k/
(26)

where Gact.�k/ and Gfb.�k/ are, respectively,
the actuator and feedback dynamics. From (26),
it follows that in those frequency bands where
the process noise V.k/ dominates, one rather
estimates minus the inverse of the feedback dy-
namics instead of the plant FRF. On the other
hand, at those frequencies where the reference
signal injects most power, the ETFE (26) will be
close to the plant FRF.

Actuator

Feedback

Plant

Nonparametric Techniques in System Identification,
Fig. 2 Plant operating in closed loop: r.t/ is the ex-
ternal reference signal, the known input u.t / depends

on the process noise v.t/, and y.t/ is the noisy output
observation
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Actuator Plant

Nonparametric Techniques in System Identification,
Fig. 3 Errors-in-variables framework: r.t/ is the external
reference signal; ng.t/ is the generator noise; mu.t /,

my.t/ are the input and output measurement errors; v.t/ is
the process noise; and u.t /, y.t/ are the noisy input, noisy
output observations

If a known external reference signal is avail-
able, then the bias is avoided via the indirect
method proposed in Wellstead (1981)

G.�/ D Syr.�/=Srr.�/

Sur .�/=Srr.�/
D Syr.�/

Sur .�/
: (27)

The basic idea consists in modeling the feedback
setup (see Fig. 2) from the known reference to the
input and output simultaneously. This reduces the
single-input, single-output closed loop problem
to a single-input, two-output open loop problem.
Since the process noise v.t/ is independent of
the reference signal r.t/, the direct estimate of
the single-input, two-output FRF is unbiased.
Calculating the ratio of the two FRFs finally
gives the indirect estimate (27). This procedure
can be applied to any of the direct methods
of sections “Nonparametric Time-Domain Tech-
niques” and “Nonparametric Frequency-Domain
Techniques.” Proceeding in this way, unstable
plants operating in a stabilizing feedback loop
can also be handled.

If the excitation is periodic, then the process
noise v.t/ is independent of the periodic part
of the input u.t/, and the ETFE (15) converges
to the true value as the number of periods P
tends to infinity (Pintelon and Schoukens 2012,
Section 2.5). Hence, in the periodic case, no
external reference is needed.

Noisy Input, Noisy Output Observations
The key difficulty of estimating the FRF of a plant
excited by a nonperiodic signal from noisy input,
noisy output observations (see Fig. 3) is that the

input autopower spectrum in (17) is biased. In-
deed, due to the noise on the input, Suu.�/ is
too large, resulting in too small direct FRF esti-
mates. This is true for all direct FRF approaches
in sections “Nonparametric Time-Domain Tech-
niques” and “Nonparametric Frequency-Domain
Techniques.” Applying the indirect method of
section “Systems Operating in Feedback” re-
moves the bias because the noise on the in-
put is independent of the reference signal (e.g.,
see (27)). Proceeding in this way, the closed
loop case (see Fig. 2) with noisy input, noisy
output observations is also solved by the indirect
method.

If the excitation is periodic, then the mean
value of the input-output DFT spectra over the
P consecutive periods converges to the their
true values as P tends to infinity (Pintelon
and Schoukens 2012, Section 2.5). Hence, the
ETFE (15) is still consistent, and no external
reference is needed. The same conclusion is valid
for systems operating in feedback.

Nonlinear Systems
The classes of nonlinear systems considered are
those systems whose steady-state response to
a periodic input is periodic with the same pe-
riod as the input. It excludes phenomena such
as chaos and subharmonics but allows for hard
nonlinearities such as saturation, dead zones, and
clipping.

The classes of excitations considered are
stationary random signals with a specified
power spectrum and probability density function.
An important special case is the class of
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NL
PISPO

BLA

Nonparametric Techniques in System Identification,
Fig. 4 Best linear approximation (BLA) of a nonlinear
(NL) period in, same period out (PISPO) system, excited
by a zero-mean random signal u.t / with a given power
spectrum and probability density function. y.t/ is the
zero-mean part of the actual output of the nonlinear
system. uDC and yDC are the DC levels of the actual input
and output of the nonlinear system. The zero-mean output
residual ys.t/ is uncorrelated with – but not independent
of – the input u.t /

Gaussian excitation signals with a specified
power spectrum. This class includes random
phase multisines (a sum of harmonically
related sinewaves with user-specified amplitudes
and random phases) with the same Riemann
equivalent power spectrum (Pintelon and
Schoukens 2012, Section 4.2).

Consider a nonlinear (NL) period in, same
period out (PISPO) system excited by a random
excitation belonging to a particular class (see
Fig. 4). The FRF (17), where the expected value
is taken w.r.t. the random realization of the exci-
tation, is the best (in mean square sense) linear
approximation (BLA) of the nonlinear PISPO
system, because the difference ys.t/ between the
actual output of the nonlinear system (DC value
excluded) and the output predicted by the linear
approximation is uncorrelated with the input u.t/
(Enqvist and Ljung 2005). Although uncorre-
lated with the input, the output residual ys.t/
still depends on u.t/. If the NL PISPO system
operates in feedback (see Fig. 2), then the indirect
method (27) is used for calculating the BLA, and
the output residual ys.t/ is uncorrelated with –
but not independent of – the reference signal r.t/
(Fig. 2).

For the class of Gaussian excitation signals, it
can be shown that the DFT spectrum YS.k/ of

ys.t/ has the following properties (Pintelon and
Schoukens 2012, Section 3.4.4):
1. YS.k/ has zero-mean value: EfYs.k/g D 0.
2. YS.k/ it is uncorrelated with – but not inde-

pendent of �U.k/ W EfY.k/U.k/g D 0.
3. YS.k/ is asymptotically .N ! 1/ normally

distributed.
4. YS.k/ is asymptotically .N ! 1/ uncorre-

lated over the frequency.
These second-order properties are exactly the
same as those of a filtered white noise distur-
bance, except that the noise is independent of
the input. It shows that it is impossible to dis-
tinguish the nonlinear distortions ys.t/ from the
disturbing noise v.t/ in FRF measurements using
stationary random excitations (only second-order
statistics are involved in (22)–(24)).

Using random phase multisines, it is possible
to detect and quantify the nonlinear distortions
because ys.t/ is then periodically related to the
input u.t/ (property of the NL PISPO system).
Indeed, analyzing the FRF over consecutive sig-
nal periods quantifies the noise variance v.t/

(ys.t/ does not change over the periods), while
analyzing the FRF over different random phase
realizations of the input quantifies the sum of the
noise variance and the variance of the nonlinear
distortions (ys.t/ depends on the random phase
realization of the input). Subtracting both vari-
ances gives an estimate of the variance of the non-
linear distortions. While this variance quantifies
exactly the variability of the nonparametric FRF
estimate due to the nonlinear distortions, it can
(significantly) underestimate the variability of a
parametric plant model. The basic reason for this
is that the true variance of the parametric plant
model also depends on the nonzero higher (>2)
order moments between the input u.t/ and the
nonlinear distortions ys.t/.

User Choices

There is no clear answer to the question which
of the presented techniques is the best. It strongly
depends on the intended use of the nonparametric
estimates and the particular application handled.
For example, the intended use can be:
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1. A smooth representation of the FRF
2. Use of the nonparametric estimates as an in-

termediate step for parametric modeling of the
plant

In the first case, one should opt for the mini-
mum mean square error solution, while in the
second case, it is crucial that the nonparametric
estimates are unbiased, possibly at the price of an
increased variance. Indeed, the parametric plant
modeling step cannot eliminate the bias error in
the nonparametric estimates while it suppresses
the variance error.

The application-dependent answers to the fol-
lowing questions strongly influence the choice
and the settings of the method used:
1. Is a large frequency resolution needed and/or

is leakage the dominant error?
2. Is the noise or the leakage error dominant?
3. Is it necessary to detect and quantify the non-

linear behavior?
If the answer to the first question is yes, then
one should opt for one of the advanced methods
(section “Advanced Methods”) or use the spec-
tral analysis estimates (section “Spectral Analysis
Method”) with a small numberM of subrecords.
On the other hand, if the noise error is dominant,
then M in (22)–(24) should be chosen as large
as possible. To detect and quantify the nonlinear
effects, one should use periodic signals (random
phase multisines) combined with the ETFE (sec-
tion “Empirical Transfer Function Estimation”).

Finally, comparing the different nonparamet-
ric techniques is also not straightforward because
of their different
1. Frequency resolution
2. Quality of the estimated noise model
3. Correlation length over the frequency
The latter is set by the spectral width of the
window used in the spectral analysis method and
the local bandwidth in the advanced methods.

Guidelines

While the previous sections give well-established
facts about the different nonparametric techniques,

in this section, we provide some advices/
guidelines based on our personal interpretation
of these facts:
• Always store the reference signal together

with the observed input-output signals. The
knowledge of the reference signal allows one
to solve nonparametrically the closed loop and
errors-in-variables problems.

• Whenever possible use periodic excitation sig-
nals (random phase multisines): they allow
one to estimate from one experiment the FRF,
the noise level, and the level of the nonlinear
distortions. As such the deviation of the true
dynamic behavior from the ideal linear time-
invariant framework is quantified.

• Select one of the advanced methods if fre-
quency resolution is of prime interest.

• If the goal of the identification experiment
is to minimize the prediction error, then the
Gaussian process regression method is a very
promising approach.

• For lowly damped systems and a limited fre-
quency resolution, the local rational method is
a good candidate solution.

• Use a minimum mean square solution for a
smooth representation of the FRF.

• Choose unbiased nonparametric estimates for
use in parametric plant modeling (estimation,
validation, and model selection).

• When comparing nonparametric techniques,
always take into account all aspects of
the estimates: the bias and variance of
the FRF and noise model, the frequency
resolution, and the correlation length over the
frequency.

Summary and Future Directions

Nonparametric techniques are very useful
because they simplify the parametric plant
modeling in the initial selection of the model
complexity and in the detection of unmodeled
dynamics. The classical correlation and spectral
analysis methods developed in the 1950s and
refined till the 1980s are still widely used.
Recently, advanced time- and frequency-domain
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methods have been developed which all try to
minimize the sensitivity (bias and variance) of the
nonparametric estimates to disturbing noise, non-
linear distortion, and transient (leakage) errors.

The renewed research interest in nonparamet-
ric techniques should be continued to handle
the following challenging problems: short data
sets, missing data, detection and quantification of
time-variant behavior, modeling of time-variant
dynamics, and modeling of nonlinear dynamics.

Cross-References

� Frequency Domain System Identification
� Frequency-Response and Frequency-Domain

Models
� System Identification: An Overview
� System Identification Techniques: Convexifica-

tion, Regularization, and Relaxation

Recommended Reading

The classical correlation (see section “Correla-
tion Methods”) and spectral analysis (see section
“Spectral Analysis Method”) methods are well
covered by the text books listed below. The rec-
ommended reading list includes the basic papers
on the spectral analysis methods (Blackman and
Tukey 1958; Welch 1967; Wellstead 1981) and
the most recent developments described in sec-
tions “Gaussian Process Regression” and “Ad-
vanced Methods.”
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Abstract

This expository article provides a brief review
of numerical methods for stochastic control in
continuous time. It concentrates on the methods
of Markov chain approximation for controlled
diffusions. Leaving most of the technical details
out with the broad general audience in mind,
it aims to serve as an introductory reference
or a user’s guide for researchers, practitioners,
and students who wish to know some-
thing about numerical methods for stochastic
control.
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Introduction

This expository article provides a brief review
of numerical methods for stochastic control in
continuous time. Leaving most of the technical
details out with the broad general audience in
mind, it aims to serve as an introductory reference
for researchers, practitioners, and students, who
wish to know something about numerical meth-
ods for stochastic controls.

The study of stochastic control has witnessed
tremendous progress in the last few decades; see,
for example, Fleming and Rishel (1975), Fleming
and Soner (1992), Kushner (1977), and Yong and
Zhou (1999) among others, for fundamentals of

stochastic controls as well as historical remarks.
Much of the development has been accompanied
by the needs and progress in science, engineering,
as well as finance. Typically, the problems are
highly nonlinear, so a closed-form solution is
very difficult to obtain. As a result, designing
feasible numerical algorithms becomes vitally
important. Among the many approximation
methods, the Markov chain approximation
methods have shown most promising features.
Primarily for treating diffusions, the Markov
chain approximation method was initiated in the
1970s (Kushner 1977) and substantially devel-
oped further in Kushner (1990b) and Kushner
and Dupuis (1992). Nowadays, such method
are used for more complex jump diffusions, or
systems with random switchings. There were also
efforts to incorporate the methods into an expert
system so that the methods can be placed into
an easily usable tool box (Chancelier et al. 1986,
1987). In addition to the existing applications in
a wide variety of engineering problems, recently
applications include such areas as insurance,
quantile hedging for guaranteed minimum death
benefits, dividend payment and investment
strategies with capital injection, singular control,
risk management, portfolio selection with
bounded constraints, and production planning
and manufacturing problems; see Jin et al. (2011,
2012, 2013), Sethi and Zhang (1994), and Yin
et al. (2009) and references therein.

Let us begin with the controlled diffusion
problem. We wish to minimize the cost function
defined by

J.x; u.�//DEx
hZ �

0

R.X.t/; u.t//dtCB.X.�//
i
;

(1)

with the R
r -valued process X.t/ defined by the

solution of the stochastic differential equation

dX.t/ D b.X.t/; u.t//dt C 	.X.t//dW;

X.0/ D x (2)
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where x 2 R
r , u.�/ is a U -valued, measurable

process with U � R
d being a compact control

set, W.�/ is an r-dimensional standard Brownian
motion, and � is the first exit time of the diffusion
from a bounded domain D, that is, � D minft W
X.t/ 62 D0g with D0 denoting the interior of D,
b.�; �/ W Rr 	 R

d 7! R
r , 	.�/ W Rr 7! R

r 	 R
r ;

and R.�; �/ W Rr 	 R
d 7! R and B.�/ W Rr 7! R.

In the above, b.�/ is the control-dependent drift,
	.�/ is the diffusion matrix, R.�/ is the running
cost, and B.�/ is the terminal or boundary cost.
Throughout the entry, we assume that the stop-
ping time � < 1 with probability one (w.p.1) for
simplicity. Denote the value function by V.x/ D
infu J.x; u.�//; where the inf is taken over all
admissible controls. Write the transpose of Y 2
R
d1�d2 as Y 0 with d1; d2 � 1, a.x/ D 	.x/	 0.x/,

and define the generator of the controlled Markov
process by

Luf .x/ D 1

2
tr.a.x/fxx.x//C b0.x; u/fx.x/;

(3)

for a suitably smooth function f .�/, where fx.�/
and fxx.�/ denote the gradient and Hessian
of f .�/, respectively. Note that the operator
is control dependent. Using @D to denote the
boundary of D, then the associated Hamilton-
Jacobi-Bellman (HJB) equation satisfied by the
value function is given by

(
inf

u
ŒLuV.x/CR.x; u/� D 0; x 2 D0;

V .x/ D B.x/; x 2 @D: (4)

The subject matter of this article is to
solve the optimal stochastic control problem
numerically.

The rest of the entry is arranged as follows.
Section “Markov Chain Approximation” focuses
on Markov chain approximation. It illustrates
how one can construct the controlled Markov
chain in discrete time for the approximation of
the continuous-time stochastic control problems.
Section “Illustration: A One-Dimensional Prob-
lem” uses a one-dimensional case as an example

for illustration. Section “Numerical Computa-
tion” discusses the implementation issues. We
conclude the entry with a few further remarks.

Markov Chain Approximation

The main idea was initiated in Kushner (1977)
and streamlined, extended, and further developed
in Kushner and Dupuis (1992). An earlier paper
describing how to discretize the elliptic HJB
equation and then interpret it according to a
controlled Markov chain can be found in Kushner
and Kleinman (1968). This section illustrates
the Markov chain approximation methods with
simple setup. The reader is suggested to read the
references mentioned above for a comprehensive
treatment. To begin, let h > 0 be a small
“step size” in the approximation. Instead of
the domain D, we need to work with a finite
set to ensure computational feasibility. Set R

r
h

to be r-dimensional lattice cube, i.e., R
r
h D

f: : : ;�2h;�h; 0; h; 2h; : : :gr (an r-dimensional
product of the indicated set). Denote the interior
of D by D0, and define D0

h D D0 \ R
r
h.

We shall construct a controlled, discrete-time
Markov chain, whose transition probabilities
have desired properties in line with the controlled
diffusion and whose values are in Dh

0 . Suppose
that f˛hng is a time-homogeneous, discrete-time,
controlled Markov chain with finite state space
Dh
0 and transition probabilities P D .p.x; yjv//

with x; y 2 Dh
0 . Here we only consider the

case that the Markov chain has a finite state
space. This is sufficient for our computational
purposes. At any time n, the control action is a
random variable denoted by uhn taking values in a
compact set U . Set the interpolation interval by
�th.x; v/ > 0 and write �thn D �th.˛n; uhn/
such that supx;v �t

h.x; v/ ! 0 as h ! 0

but infx;v �th.x; v/ > 0 for each h > 0. The
control is admissible if the Markov property
P.˛hnC1 D yj˛hi ; uhi I i � n/ D P.˛hnC1 D
yj˛hn; uhn/ D P.˛hn; yjuhn/ holds. Use Uh

to denote the collection of controls, which
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are determined by a sequence of measurable
functions F h

n .�/ such that uhn D F h
n .˛

h
k ; k �

nI uhk; k < n/:Denote the conditional expectation

given f˛hj ; uhj W j � n; ˛hn D x; uhn D vg by Eh
n .

We say that a control policy is locally consistent
if

Eh
n˛

h
n D b.x; v/�th.x; v/C o.�h.x; v//;

Eh
n Œ�˛

h
n �Eh

n�˛
h
n�Œ�˛

h
n � Eh

n�˛
h
n�

0 D a.x/�th.x; v/C o.�th.x; v//; (5)

a.x/ D 	.x/	 0.x/; j�˛hn j ! 0 as h ! 0 uniformly in n; !;

where �˛hn D ˛hnC1 � ˛hn . The meaning of the
local consistency can be seen from the corre-
sponding controlled diffusion (2) (withX.0/ D x

and u.t/ D v for t 2 Œ0; ı�, where ı > 0 is a small
parameter) in that Ex.X.ı/ � x/ D b.x; v/ı C
o.ı/, ExŒX.ı/ � x�ŒX.ı/ � x�0 D a.x/ı C o.ı/:

Let �h be the first time that f˛hng leaves the setD0
h.

We have an approximation for the cost function of
the controlled diffusion (1) given by

J h.x; uh/ D Euh
x

2

4
�h�1X

jD0
R.˛hj ; u

h
j /�t

h
j C B.˛h�h/

3

5:

(6)

Define thn D Pn�1
jD0 �thj and the continuous-

time interpolations ˛h.t/ D ˛hn , uhn D uhn for
t 2 Œthn ; t

h
nC1/: Define the first exit time of ˛h.�/

from D0
h by �h D th�h : Corresponding to the

continuous-time problems, the first term on the
right-hand side of (6) represents the running cost
and the last term gives the terminal cost. Denote
the value function by V h.x/. Then it satisfies the
dynamic programming equation

V h.x/ D

8
<̂

:̂

inf
v2Uh

ŒR.x; v/�th.x; v/

CPy p
h.x; yjv/V h.y/�; x 2D0

h;

B.x/; x 62 D0
h:

(7)

Proving the convergence of the numerical al-
gorithms is an important task. This requires the
use of local consistency, interpolation of the ap-
proximating sequences in continuous time, as
well as martingale representation. The proof is

facilitated by the use of the so-called relaxed
controls (Kushner and Dupuis 1992, p. 267),
which enables us to characterize the limit under
the framework of weak convergence. The detailed
argument is beyond the scope of this entry. We
refer the reader to Kushner and Dupuis (1992,
Chapter 10) for further reading on the proof of
convergence and the conditions needed.

Illustration: A One-Dimensional
Problem

In this section, we use a one-dimensional exam-
ple to illustrate the Markov chain approximation
methods, which enables us to present the results
with a better visualization. Consider (2) with x 2
R. We proceed to find the transition probabilities
and interpolation intervals for the Markov chain
f˛hng. To construct a controlled Markov chain that
is locally consistent, we first consider a special
case, namely, the control space has only one
admissible control uh 2 Uh. In this case, min in
(7) can be removed. Discretize the HJB equation
using upwind finite difference method with step
size h > 0 by

V.x/ ! V h.x/

Vx.x/ ! V h.x C h/ � V h.x/

h
for b.x; v/ > 0;

Vx.x/ ! V h.x/� V h.x � h/

h
for b.x; v/ < 0;

Vxx.x/ ! V h.x C h/ � 2V h.x/C V h.x � h/
h2

:

For x 2 D0
h, it leads to
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V h.x C h/� V h.x/

h
bC.x; v/ � V h.x/ � V h.x � h/

h
b�.x; v/

Ca.x/

2

V h.x C h/ � 2V h.x/C V h.x � h/
h2

CR.x; v/ D 0;

where bC and b� are the positive and nega-
tive parts of b, respectively. Comparing with the
dynamic programming equation, we obtain the
transition probabilities

ph.x; x C h/jv/ D .a.x/=2/C hbC.x; v/
Q� ;

ph.x; x � h/jv/ D .a.x/=2/C hb�.x; v/
Q� ;

ph.�/ D 0; otherwise, �th.x; v/ D h2

Q� ;

with Q� D a.x/ C hjb.x; v/j being well defined.
With the transition probabilities given above, we
can proceed to verify the local consistency by
straight forward calculations and prove the de-
sired convergence.

Numerical Computation

To numerically approximate the controlled diffu-
sions, frequently used methods are either value
iterations or policy iterations (iteration in policy
space). Using Markov chain approximation in
conjunction with either value iteration or iteration
in policy space, we can further obtain a sequence
of value functions fV h;ng such that V h;n ! V h

as n ! 1. The procedures can be described as
follows.

Value Iteration
1. Given a tolerance " > 0, set n D 0; for x 2
D0
h, set V h;0 D constant (for instance, 0).

2. Using V h;n obtained in (7) to obtain V h;nC1.
3. If jV h;nC1�V h;nj > ", go to Step 3 above with
n ! nC 1.

Policy Iteration
1. Given a tolerance " > 0, set n D 0; for x 2
D0
h, take an initial control uh0.x/ D constant.

Use uh0.x/ in lieu of v, solve (7) to find V h;0.�/.

2. Find an improved control by
uh;nC1.x/ WD argminv2Uh Œ

P
y p

h..x; y/jv/
V h;n.y/CR.x; v/�th.x; v/�:

3. Find V h;nC1.�/with uh;nC1.�/ by solving (7). If
jV h;nC1 � V h;nj > ", go to Step 2 above with
n ! nC 1.

Further Remarks

Variations of the Problems. Variants of the
problems can be considered. For example, one
may consider nonlinear filtering problems or sin-
gularly perturbed control and filtering problems.
For problems arising in manufacturing systems,
one often needs to treat controlled Markov chain
with no diffusion terms. Such a case can also
be handled by the Markov chain approximation
methods; see Sethi and Zhang (1994) for the
problem and Yin and Zhang (2013, Chapter 9) for
the numerical methods. In this article, we mainly
discussed the approach by using probabilistic
approach for getting the weak convergence of
the interpolations of the controlled Markov chain.
One can also use the so-called viscosity solution
methods to treat the convergence; see Barles
and Souganidis (1991) (also Kushner and Dupuis
1992, Chapter 11).

Variance Control. In this entry, only drift in-
volves control term. When the diffusion term is
also subject to controls, the problem becomes
more difficult. In Peng (1990), the idea of using
backward stochastic differential equations was
initiated, which had significant impact in the
development of such stochastic control problems.
Detailed discussions can be found in Yong and
Zhou (1999). The numerical problems for diffu-
sion term involving controls can also be treated;
see Kushner (2000) for further discussion. In this
case, the so-called numerical noise or numerical
viscosity can be introduced, so care must be
taken.
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Complex Models Involving Jump and Switch-
ing. Note that only controlled diffusions are
considered in this entry. More complex models
such as controlled jump diffusions (Kushner and
Dupuis 1992), switching diffusions (Yin and Zhu
2010), and switching jump diffusions can be
treated (Song et al. 2006). Differential games can
also be treated (Kushner 2002; Song et al. 2008).

Differential Delay Systems. Stochastic differ-
ential delay systems may come into play. The
corresponding numerical algorithms have been
studied extensively in Kushner (2008). Due to
their inherent infinite dimensionality, a main is-
sue here concerns suitable finite approximation to
the memory segments.

Rates of Convergence. This entry mainly
discusses the convergence of the approximation
methods. There is also much interest in ascertain-
ing rates of convergence. Such effort goes back
to the paper Menaldi (1989) (see also Zhang
2006). Subsequently, it has been resurgent effort
in dealing with this issue from a nonlinear partial
differential equation point of view; see Krylov
(2000). Our recent work Song and Yin (2009)
complements the study by providing a probabilis-
tic approach for treating switching diffusions.

Stochastic Approximation. In certain optimal
control problems, the optimal controls or near-
optimal controls turn out to be of threshold
type. An alternative way of solving such
problems leading to at least suboptimal or
near-optimal control is to use a stochastic
approximation approach; see Kushner and
Yin (2003) for a comprehensive treatment of
stochastic approximation algorithms. Some
successful examples include manufacturing
systems (Yin and Zhang 2013, Section 9.3) and
liquidation decision making (Yin et al. 2002).

Cross-References

� Stochastic Dynamic Programming
� Stochastic Maximum Principle
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Abstract

In this article we describe the three most
common approaches for numerically solving
nonlinear optimal control problems governed by
ordinary differential equations. For computing
approximations to optimal value functions and
optimal feedback laws, we present the Hamilton-
Jacobi-Bellman approach. For computing
approximately optimal open-loop control
functions and trajectories for a single initial
value, we outline the indirect approach based
on Pontryagin’s maximum principle and the
approach via direct discretization.

Keywords

Direct discretization; Hamilton-Jacobi-Bellman
equations; Optimal control; Ordinary differential
equations; Pontryagin’s maximum principle

Introduction

This article concerns optimal control problems
governed by nonlinear ordinary differential equa-
tions of the form

Px.t/ D f .x.t/; u.t// (1)

with f W R	R
n	R

m ! R
n. We assume that for

each initial value x 2 R
n and measurable control

function u.�/ 2 L1.R;Rm/ there exists a unique
solution x.t/ D x.t; x; u.�// of (1) satisfying
x.0; x; u.�// D x.

Given a state constraint set X � R
n and a

control constraint set U � R
m, a running cost

g W X	U ! R, a terminal cost F W X ! U , and
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a discount rate ı � 0, we consider the optimal
control problem

minimize
u.�/2UT .x/

J T .x; u.�// (2)

where

J T .x; u.�// WD
Z T

0

e�ısg.x.s; x; u.�//; u.s//ds

C e�ıT F.x.T; x; u.�///
(3)

and

UT .x/ WD
�

u.�/ 2 L1.R; U /
ˇ̌
ˇ̌ x.s; x; u.�// 2 X

for all s 2 Œ0; T �
�

(4)

In addition to this finite horizon optimal con-
trol problem, we also consider the infinite horizon
problem in which T is replaced by “1,” i.e.,

minimize
u.�/2U1.x/

J1.x; u.�// (5)

where

J1.x; u.�// WD
Z 1

0

e�ısg.x.s; x; u.�//; u.s//ds
(6)

and

U1.x/ WD
�

u.�/ 2 L1.R; U /
ˇ̌
ˇ̌x.s; x; u.�// 2 X
for all s � 0

�
; (7)

respectively.
The term “solving” (2)–(4) or (5)–(7) can

have various meanings. First, the optimal value
functions

V T .x/ D inf
u.�/2UT .x/

J T .x; u.�//

or
V1.x/ D inf

u.�/2U1.x/
J1.x; u.�//

may be of interest. Second, and often more im-
portantly, one would like to know the optimal

control policy. This can be expressed in open-
loop form u? W R ! U , in which the function
u? depends on the initial value x and on the
initial time which we set to 0 here. Alternatively,
the optimal control can be computed in state-
and time-dependent closed-loop form, in which
a feedback law �? W R 	 X ! U is sought. Via
u?.t/ D �?.t; x.t//, this feedback law can then
be used in order to generate the time-dependent
optimal control function for all possible initial
values. Since the feedback law is evaluated along
the trajectory, it is able to react to perturbations
and uncertainties which may make x.t/ deviate
from the predicted path. Finally, knowing u? or
�?, one can reconstruct the corresponding opti-
mal trajectory by solving

Px.t/ D f .x.t/; u?.t// or

Px.t/ D f .x.t/; �?.t; x.t///:

Hamilton-Jacobi-Bellman Approach

In this section we describe the numerical ap-
proach to solving optimal control problems via
Hamilton-Jacobi-Bellman equations. We first de-
scribe how this approach can be used in order
to compute approximations to the optimal value
function V T and V1, respectively, and after-
wards how the optimal control can be synthesized
using these approximations. In order to formulate
this approach for finite horizon T , we interpret
V T .x/ as a function in T and x. We denote
differentiation w.r.t. T and x with subscript T
and x, i.e., V T

x .x/ D dV T .x/=dx, V T
T .x/ D

dV T .x/=dT etc.
We define the Hamiltonian of the optimal

control problem as

H.x; p/ WD max
u2U f�g.x; u/ � p � f .x; u/g;

with x; p 2 R
n, f from (1), g from (3) or (6), and

“�” denoting the inner product in R
n. Then, under

appropriate regularity conditions on the problem
data, the optimal value functions V T and V1
satisfy the first order partial differential equations
(PDEs)
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V T
T .x/C ıV T .x/CH.x; V T

x .x// D 0

and
ıV1.x/CH.x; V1

x .x// D 0

in the viscosity solution sense. In the case of
V T , the equation holds for all T � 0 with the
boundary condition V 0.x/ D F.x/.

The framework of viscosity solutions is
needed because in general the optimal value
functions will not be smooth; thus, a generalized
solution concept for PDEs must be employed (see
Bardi and Capuzzo Dolcetta 1997). Of course,
appropriate boundary conditions are needed at
the boundary of the state constraint set X .

Once the Hamilton-Jacobi-Bellman char-
acterization is established, one can compute
numerical approximations to V T or V1 by
solving these PDEs numerically. To this end,
various numerical schemes have been suggested,
including various types of finite element and
finite difference schemes. Among those, semi-
Lagrangian schemes Falcone (1997) or Falcone
and Ferretti (2013) allow for a particularly
elegant interpretation in terms of optimal control
synthesis, which we explain for the infinite
horizon case.

In the semi-Lagrangian approach, one takes
advantage of the fact that by the chain rule for
p D V1

x .x/ and constant control functions u,
the identity

ıV1.x/ � p � f .x; u/ D d

dt

ˇ̌
ˇ̌
tD0

� .1� ıt/V1

.x.t; x; u//

holds. Hence, the left-hand side of this equality
can be approximated by the difference quotient

V1.x/ � .1 � ıh/V1.x.h; x; u//
h

for small h > 0. Inserting this approximation
into the Hamilton-Jacobi-Bellman equation, re-
placing x.h; x; u/ by a numerical approxima-
tion Qx.h; x; u/ (in the simplest case, the Euler
method Qx.h; x; u/ D x C hf .x; u/), multiplying

by h, and rearranging terms, one arrives at the
equation

V1
h .x/ D min

u2U fhg.x; u/

C .1 � ıh/V1
h . Qx.h; x; u//g

defining an approximation V1
h � V1. This is

now a purely algebraic dynamic programming-
type equation which can be solved numerically,
e.g., by using a finite element approach. The
equation is typically solved iteratively using a
suitable minimization routine for computing the
“min” in each iteration (in the simplest case, U
is discretized with finitely many values and the
minimum is determined by direct comparison).
We denote the resulting approximation of V1 by
QV1
h . Here, approximation is usually understood

in the L1 sense (see Falcone 1997 or Falcone
and Ferretti 2013).

The semi-Lagrangian scheme is appealing for
synthesis of an approximately optimal feedback
because V1

h is the optimal value function of
the auxiliary discrete-time problem defined by Qx.
This implies that the expression

�?h.x/ WD argmin
u2U

fhg.x; u/

C .1 � ıh/V1
h . Qx.h; x; u//g;

is an optimal feedback control value for this
discrete-time problem for the next time step, i.e.,
on the time interval Œt; t C h/ if x D x.t/. This
feedback law will be approximately optimal for
the continuous-time control system when applied
as a discrete-time feedback law, and this ap-
proximate optimality remains true if we replace
V1
h in the definition of �?h by its numerically

computable approximation QV1
h . A similar con-

struction can be made based on any other numer-
ical approximation QV1 � V1, but the explicit
correspondence of the semi-Lagrangian scheme
to a discrete-time auxiliary system facilitates the
interpretation and error analysis of the resulting
control law.

The main advantage of the Hamilton-
Jacobi approach is that it directly computes an
approximately optimal feedback law. Its main
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disadvantage is that the number of grid nodes
needed for maintaining a given accuracy in
a finite element approach to compute QV1

h

in general grows exponentially with the state
dimension n. This fact – known as the curse
of dimensionality – restricts this method to low-
dimensional state spaces. Unless special structure
is available which can be exploited, as, e.g., in
the max-plus approach (see McEneaney 2006), it
is currently almost impossible to go beyond state
dimensions of about n D 10, typically less for
strongly nonlinear problems.

Maximum Principle Approach

In contrast to the Hamilton-Jacobi-Bellman ap-
proach, the approach via Pontryagin’s maximum
principle does not compute a feedback law. In-
stead, it yields an approximately open-loop op-
timal control u? together with an approximation
to the optimal trajectory x? for a fixed initial
value. We explain the approach for the finite
horizon problem. For simplicity of presentation,
we omit state constraints in our presentation, i.e.,
we set X D R

n and refer to, e.g., Vinter (2000),
Bryson and Ho (1975), or Grass et al. (2008) for
more general formulations as well as for rigorous
versions of the following statements.

In order to state the maximum principle
(which, since we are considering a minimization
problem here, could also be called minimum
principle), we define the non-minimized
Hamiltonian as

H.x; p; u/ D g.x; u/C p � f .x; u/:

Then, under appropriate regularity assumptions,
there exists an absolutely continuous function p W
Œ0; T � ! R

n such that the optimal trajectory x?

and the corresponding optimal control function
u? for (2)–(4) satisfy

Pp.t/ D ıp.t/ � Hx.x
?.t/; p.t/; u?.t// (8)

with terminal or transversality condition

p.T / D Fx.x
?.T // (9)

and

u?.t/ D argmin
u2U

H.x?.t/; p.t/; u/; (10)

for almost all t 2 Œ0; T � (see Grass et al. 2008,
Theorem 3.4). The variable p is referred to as the
adjoint or costate variable.

For a given initial value x0 2 R
n, the numer-

ical approach now consists of finding functions
x W Œ0; T � ! R

n, u W Œ0; T � ! U and p W
Œ0; T � ! R

n satisfying

Px.t/ D f .x.t/; u.t// (11)

Pp.t/ D ıp.t/ � Hx.x.t/; p.t/; u.t// (12)

u.t/ D argmin
u2U

H.x.t/; p.t/; u/ (13)

x.0/ D x0; p.T / D Fx.x.T // (14)

for t 2 Œ0; T �. Depending on the regularity of
the underlying data, the conditions (11)–(14) may
only be necessary but not sufficient for x and
u being an optimal trajectory x? and control
function u?, respectively. However usually x and
u satisfying these conditions, are good candidates
for the optimal trajectory and control, thus justi-
fying the use of these conditions for the numerical
approach. If needed, optimality of the candidates
can be checked using suitable sufficient optimal-
ity conditions for which we refer to, e.g., Maurer
(1981) or Malanowski et al. (2004). Due to the
fact that in the maximum principle approach first
optimality conditions are derived which are then
discretized for numerical simulation, it is also
termed first optimize then discretize.

Solving (11)–(14) numerically amounts to
solving a boundary value problem, because the
condition x?.0/ D x0 is posed at the beginning
of the time interval Œ0; T � while the condition
p.T / D Fx.x

?.T // is required at the end.
In order to solve such a problem, the simplest
approach is the single shooting method which
proceeds as follows:

We select a numerical scheme for solving the
ordinary differential equations (11) and (12) for
t 2 Œ0; T � with initial conditions x.0/ D x0,
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p.0/ D p0 and control function u.t/. Then, we
proceed iteratively as follows:
(0) Find initial guesses p00 2 R

n and u0.t/ for
the initial costate and the control, fix " > 0,
and set k WD 0.

(1) Solve (11) and (12) numerically with initial
values x0 and pk0 and control function uk.
Denote the resulting trajectories by Qxk.t/ and
Qpk.t/.

(2) Apply one step of an iterative method for
solving the zero-finding problem G.p/ D 0

with

G.pk0 / WD Qpk.T / � Fx. Qxk.T //

for computing pkC1
0 . For instance, in case of

the Newton method we get

pkC1
0 WD pk0 �DG.pk0 /�1G.pk0 /:

If kpkC1
0 � pk0k < ", stop; else compute

ukC1.t/ WD argmin
u2U

H.xk.t/; pk.t/; u/;

set k WD k C 1, and go to (1).
The procedure described in this algorithm is
called single shooting because the iteration
is performed on the single initial value pk0 .
For an implementable scheme, several details
still need to be made precise, e.g., how to
parameterize the function u.t/ (e.g., piecewise
constant, piecewise linear or polynomial), how
to compute the derivative DG and its inverse
(or an approximation thereof), and the argmin in
(2). The last task considerably simplifies if the
structure of the optimal control, e.g., the number
of switchings in case of a bang-bang control, is
known.

However, even if all these points are set-
tled, the set of initial guesses p00 and u0 for
which the method is going to converge to a
solution of (11)–(14) tends to be very small.
One reason for this is that the solutions of (11)
and (12) typically depend very sensitively on
p00 and u0. In order to circumvent this problem,
multiple shooting can be used. To this end, one
selects a time grid 0 D t0 < t1 < t2 <

: : : < tN D T and in addition to pk0 intro-
duces variables xk1 ; : : : ; x

k
N�1; pk1 ; : : : ; pkN�1 2

R
n. Then, starting from initial guesses p00 , u0, and

x01; : : : ; x
0
N�1; p01; : : : ; p0N�1, in each iteration the

Eqs. (11)–(14) are solved numerically on the in-
tervals Œtj ; tjC1� with initial values xkj and pkj ,
respectively. We denote the respective solutions
in the k-th iteration by Qxkj and Qpkj . In order
to enforce that the trajectory pieces computed
on the individual intervals Œtj ; tjC1� fit together
continuously, the map G is redefined as

G.xk1 ; : : : ; x
k
N�1; pk0 ; pk1 ; : : : ; pkN�1/ D

0
BBBBBBBBBB@

Qxk0 .t1/ � xk1
:::

QxkN�2.t1/ � xkN�1
Qpk0 .t1/ � pk1

:::

QpkN�2.t1/ � pkN�1
QpkN�1.T / � Fx. QxkN�1.T //

1
CCCCCCCCCCA

:

The benefit of this approach is that the so-
lutions on the shortened time intervals depend
much less sensitively on the initial values and
the control, thus making the problem numerically
much better conditioned. The obvious disadvan-
tage is that the problem becomes larger as the
function G is now defined on a much higher di-
mensional space but this additional effort usually
pays off.

While the convergence behavior for the multi-
ple shooting method is considerably better than
for single shooting, it is still a difficult task to
select good initial guesses x0j , p0j and u0. In order
to accomplish this, homotopy methods can be
used (see, e.g., Pesch 1994) or the result of a
direct approach as presented in the next section
can be used as an initial guess. The latter can
be reasonable as the maximum principle-based
approach can yield approximations of higher ac-
curacy than the direct method.

In the presence of state constraints or mixed
state and control constraints, the conditions (12)–
(14) become considerably more technical and
thus more difficult to be implemented numeri-
cally (cf. Pesch 1994).
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Direct Discretization

Despite being the most straightforward and sim-
ple of the approaches described in this article,
the direct discretization approach is currently the
most widely used approach for computing single
finite horizon optimal trajectories. In the direct
approach, we first discretize the problem and then
solve a finite dimensional nonlinear optimiza-
tion problem (NLP), i.e., we first discretize, then
optimize. The main reasons for the popularity
of this approach are the simplicity with which
constraints can be handled and the numerical ef-
ficiency due to the availability of fast and reliable
NLP solvers.

The direct approach again applies to the finite
horizon problem and computes an approximation
to a single optimal trajectory x?.t/ and control
function u?.t/ for a given initial value x0 2 X .
To this end, a time grid 0 D t0 < t1 < t2 < : : : <

tN D T and a set Ud of control functions which
are parameterized by finitely many values are
selected. The simplest way to do so is to choose
u.t/ � uj 2 U for all t 2 Œti ; tiC1�. However,
other approaches like piecewise linear or piece-
wise polynomial control functions are possible,
too. We use a numerical algorithm for ordinary
differential equations in order to approximately
solve the initial value problems

Px.t/ D f .x.t/; ui /; x.ti / D xi (15)

for i D 0; : : : ; N � 1 on Œti ; tiC1�. We de-
note the exact and numerical solution of (15)
by x.t; ti ; xi ; ui / and Qx.t; ti ; xi ; ui /, respectively.
Finally, we choose a numerical integration rule in
order to compute an approximation

I.ti ; tiC1; xi ; ui / �
Z tiC1

ti

e�ıt

g.x.t; ti ; xi ; u/; u.t//dt:

In the simplest case, one might choose Qx as
the Euler scheme and I as the rectangle rule,
leading to

Qx.tiC1; ti ; xi ; ui / D xi C .tiC1 � ti /f .xi ; ui /

and

I.ti ; tiC1; xi ; ui / D .tiC1 � ti /e
�ıti g.xi ; ui /:

Introducing the optimization variables
u0; : : : ; uN�1 2 R

m and x1; : : : ; xN 2 R
n, the

discretized version of (2)–(4) reads

minimize
xj2Rn;uj2Rm

N�1X

iD0
I.ti ; tiC1; xi ; u/C e�ıT F.xN /

subject to the constraints

uj 2 U; j D 0; : : : ; N � 1

xj 2 X; j D 1; : : : ; N

xjC1 D Qx.tjC1; tj ; xj ; u/; j D 0; : : : ; N

This way, we have converted the optimal control
problem (2)–(4) into a finite dimensional nonlin-
ear optimization problem (NLP). As such, it can
be solved with any numerical method for solving
such problems. Popular methods are, for instance,
sequential quadratic programming (SQP) or in-
terior point (IP) algorithms. The convergence of
this approach was proved in Malanowski et al.
(1998); for an up-to-date account on theory and
practice of the method, see Gerdts (2012) and
Betts (2010). These references also explain how
information about the costates p.t/ can be ex-
tracted from a direct discretization, thus linking
the approach to the maximum principle.

The direct method sketched here is again a
multiple shooting method, and the benefit of this
approach is the same as for solving boundary
problems, thanks to the short intervals Œti ; tiC1�;
the solutions depend much less sensitively on the
data than the solution on the whole interval Œ0; T �,
thus making the iterative solution of the resulting
discretized NLP much easier. The price to pay is
again the increase of the number of optimization
variables. However, due to the particular structure
of the constraints guaranteeing continuity of the
solution, the resulting matrices in the NLP have
a particular structure which can be exploited
numerically by a method called condensing (see
Bock and Plitt 1984).
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An alternative to multiple shooting methods
are collocation methods, in which the internal
variables of the numerical algorithm for solv-
ing (15) are also optimization variables. However,
nowadays, the multiple shooting approach as de-
scribed above is usually preferred. For a more
detailed description of various direct approaches,
see also Binder et al. (2001), Sect. 5.

Further Approaches for Infinite
Horizon Problems

The last two approaches only apply to finite
horizon problems. While the maximum princi-
ple approach can be generalized to infinite hori-
zon problems, the necessary conditions become
weaker and the numerical solution becomes con-
siderably more involved (see Grass et al. 2008).
Both the maximum principle and the direct ap-
proach can, however, be applied in a receding
horizon fashion, in which an infinite horizon
problem is approximated by the iterative solution
of finite horizon problems. The resulting control
technique is known under the name of model
predictive control (MPC; see Grüne and Pannek
2011), and under suitable assumptions, a rigorous
approximation result can be established.

Summary and Future Directions

The three main numerical approaches to optimal
control are:
• The Hamilton-Jacobi-Bellman approach,

which provides a global solution in feedback
form but is computationally expensive for
higher dimensional systems

• The Pontryagin maximum principle approach
which computes single optimal trajectories
with high accuracy but needs good initial
guesses for the iteration

• The direct approach which also computes sin-
gle optimal trajectories but is less demanding
in terms of the initial guesses at the expense of
a somewhat lower accuracy

Currently, the main trends in numerical optimal
control lie in the areas of Hamilton-Jacobi-

Bellman equations and direct discretization. For
the former, the development of discretization
schemes suitable for increasingly higher
dimensional problems is in the focus. For the
latter, the popularity of these methods in online
applications like MPC triggers continuing effort
to make this approach faster and more reliable.

Beyond ordinary differential equations, the
development of numerical algorithms for the
optimal control of partial differential equations
(PDEs) has attracted considerable attention
during the last years. While many of these
methods are still restricted to linear systems,
in the near future we can expect to see many
extensions to (classes of) nonlinear PDEs. It is
worth noting that for PDEs, maximum principle-
like approaches are more popular than for
ordinary differential equations.
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