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Abstract

This article presents an overview of mobile
“walking” robots that use their legs to move from
one place to another. Walking robots represent
a fascinating class of machines which holds
the potential for breakthrough applications and
inspires multidisciplinary research with rich
scientific content. The key feature that separates
walking robots from all other classes of mobile
robots is their ability to explore unprepared
surfaces using discrete footholds. In this respect,
these robots are truly the machine counterparts of
biological land animals.
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Introduction

The adventure of modern robotics is generally
considered to have started from the middle of
the twentieth century (International Federation

of Robotics 2011). During the first few decades
of this new journey, robots were not mobile.
Somewhat similar to trees, these so-called
“arm” manipulator robots were securely rooted
to the ground. The free end of these robots
typically consisted of an end-effector “hand”
with which a number of mostly manufacturing-
related tasks, such as welding, spray-painting,
and pick-and-place operations, were performed.
Life was simple, if a bit boring. However,
from the end of the 1960s, this started to
change.

Fiction writers had earlier imagined a variety
of mobile robots such as in “I, Robot” (Asimov
1950), Otho (Hamilton 1940), and Maria
(Malone 2004). Scientists and engineers
also ventured to build a number of quite
sophisticated machines such as the General
Electric experimental “walking truck” quadruped
robot by Mosher shown in Fig. 1 and the
Sparko and Elektro by Westinghouse (http://
en.wikipedia.org/wiki/Elektro). However, they
were not considered truly autonomous in the
sense we describe modern robots. Some of the
major personalities who are primarily responsible
for forever transforming the state of stationary
existence of robots and giving them intelligent
mobility are Profs. I. Kato, M. Vukobratovic, and
R. McGhee, followed by Prof. M. Raibert.

Because walking robots used legs for locomo-
tion, they immediately became the mechatronic
cousins to the entire range of biological legged
creatures, starting from tiny creatures to large
animals. Indeed, today we have robotic versions
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Walking Robots, Fig. 1 GE “walking truck” developed
by Mosher

Walking Robots, Fig. 2 Adaptive suspension vehicle
(ASV), Ohio State University

of spiders and cockroaches, geckoes and lizards,
dogs and cheetah, and even humanoids. We have
seen very large robots such as the ASV (Wal-
dron and McGhee 1986) shown in Fig. 2 and the
Dante (Bares and Wettergreen 1999), shown in
Fig. 4. We have also seen single-legged robots,
which even Mother Nature has not considered
creating so far.

Early History

The early researchers whom we mentioned
above started paving the way for walking robots.
These robots walked with their legs, explored
their own environments, and sometimes even
ventured outside. Once these walking robots
started appearing on the scene, life was never the
same.

Prof. Kato pioneered walking robot research
at Waseda University (Japan) through a series
of remarkable biped humanoid robots, of which
WL-5 is credited with genuine bipedal walk-
ing and WL-6 with displaying the first dynamic
gait. At the same time, Prof. Vukobratovic was
conducting research activities in exoskeleton and
other areas at the Mihailo Pupin Institute (former
Yugoslavia). He was instrumental in formaliz-
ing the concept of dynamic balance using the
zero moment point (ZMP) concept (Sardain and
Bessonnet 2004; Vukobratović and Juričić 1969),
which is used to this day. In the USA, Prof.
McGhee conducted path-breaking research on
computer-controlled machines at the Ohio State
University. He created the Ohio hexapod and
later, with colleague Prof. Ken Waldron, devel-
oped the truly spectacular Adaptive Suspension
Vehicle (ASV) hexapod.

Prof. Raibert started building robots in the
USA, first at Carnegie Mellon University and
then at Massachusetts Institute of Technol-
ogy (Raibert 1989). With his colleagues, he
created a series of robots, which, unlike their
stationary predecessors, were characteristically
full of energy. Situation permitting, they
would occasionally deviate from conventional
walking and running and would burst into
aerial somersaults and other acrobatic motions.
Prof. Raibert continues to actively shape the
field of walking robots to the present day; his
company Boston Dynamics (recently acquired
by Google Inc.) has introduced a number of high-
performance robots, such as LittleDog, BigDog,
RHex, Petman, and Atlas.

The hardware, sensing, and control aspects
of walking robots were steadily gaining
sophistication during the 1990s. However, except
for the new appreciation of walking dynamics
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in the study of passive bipedal gait (McGeer
1990), there was no unexpected leap in the world
of walking robots. This changed in 1996 when
Honda publicly announced the humanoid robot
P2, the result of their robotics project, till then
unknown to the outside world. This was to be
superseded by the P3 robot and then the ASIMO
humanoid robot project in 2000, which became
another important event in the humanoid robot
history.

Characteristics of Walking Robots

Compared to other forms of land locomotion,
legged walking possesses the distinct capability
of locomotion using discrete footholds (Raibert
1989). Unlike wheeled mobile robots or cars,
walking robots do not need a continuous prepared
surface such as paved road, trail, or track in order
to travel. By virtue of this single feature, a vast
extent of land surface, which is not accessible
to wheeled robots, opens up to walking robots.
Indeed, at least in principle, walking robots are
able to reach almost any location, on earth and on
other planets, wherever human and other legged
creatures can go.

Legged locomotion is natural to terrains where
the only means of locomotion must be through
the use of unstructured footholds, which can be
irregularly spaced both horizontally and verti-
cally. Due to the unique design of the leg, legged
creatures can largely isolate the “payload” or
the upper body from the geometric details of
the terrain profile during locomotion. Both for
biological creatures and for walking robots, this
brings benefit in the form of significant energy
savings. For walking robots this also reduces
mechanical stress, vibration, and wear on the
system hardware, which makes them suitable for
locomotion in rough natural terrain.

In contrast, wheeled robots are typically faster,
mechanically less complex, and energetically
more efficient. However, these benefits must
be supported by very expensive infrastructure
overhead. In many places such expenditure is not
practical or not even desirable.

Classification of Walking Robots

Walking robots have been built in different sizes
and morphologies. These robots have ranged in
sizes from small hexapods (Lewinger et al. 2005),
medium-sized robots (Fig. 4), and relatively large
robots such as the BigDog (Raibert et al. 2008)
from Boston Dynamics and Toyota iWalk (Fig. 4)
and also a few giant robots such as Dante (Bares
and Wettergreen 1999) and Ambler (Fig. 4) from
CMU and the ASV (Waldron and McGhee 1986)
from OSU. With further miniaturization, it is
conceivable that we will see even smaller walking
robots in the future with unanticipated and sur-
prising application domains. One can also imag-
ine gigantic walking robots in potential applica-
tions in large construction sites such as in bridge,
building, or ships, but we have not started seeing
them just yet.

In terms of the number of legs, we have
already seen monopods, Figs. 3b and 4a; bipeds,
Fig. 8a–c; tripod, Fig. 4b; quadruped, Fig. 4a, b;
hexapods, Figs. 4c, d and 2; octopod, Fig. 4e; and
“centipede” robots with many legs, Fig. 4f.

Other than monopods, robots with odd-
numbered legs are curiously absent in this list.
Creatures with odd-numbered legs are also not
found in nature. It is not clear if an engineering
rationale is present behind this trend or the
biological inspiration is simply missing for the
creators of legged robots.

In addition to size and morphology, walking
robots can be classified in terms of the number
and types of leg joints, type of gait (e.g., walking
or running), or the domain of movement. The
next section is devoted to the humanoid robots,
which is perhaps the most popular class of walk-
ing robots.

Humanoid Robots

Humanoid robots belong to a unique class of
two-legged walking robots that has a special
place in the popular psyche. These robots are the
subject of special affection and fascination due
to their similarity with human beings. In fact,
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Walking Robots, Fig. 3 Early walking robots: (a) Waseda WL-10 (Image courtesy Atsuo Takanishi) and (b) one-
legged robot (Image courtesy of Boston dynamics)

humanoid robots might be the original inspiration
behind the entire field of robotics and perhaps
also its ultimate goal. Being perpetually inspired
by movies and novels, a long-standing dream
of the human has been to create a mechatronic
replica of themselves, the human, which will be
fully general-purpose endowed with all human
functionalities except perhaps the full indepen-
dence of thought and action.

Humanoid robots exist in different sizes, in-
cluding smaller robots such as NAO (Gouaillier
et al. 2009), HOAP, and QRIO (Ishida et al. 2004)
and life-sized robots such as HRP, HUBO, and
ASIMO. Despite their differences, these robots
bear a close resemblance to the kinematic design
and proportions of a human being and share
a common human-mimicking morphology. In-
deed, the perceived similarity between humanoid
robots and the human is so close that we routinely
describe aspects of such robots using anthropo-
morphic terms. Terms like head, arm, hand, leg,
thigh, shank, ankle, spine, gait, stumble, fall,
facial expression, and even emotion are hardly
ever used to describe any other man-made device.
Some popular humanoid robots are shown in
Fig. 9.

At current technical level, humanoid robots
cannot compete in their actual utility with
robots such as Roomba the vacuum cleaner,
the bomb-sniffing robot, or the huge population
of fully active and cost-effective welding and
spray-painting robots. Yet, our fascination
with humanoids remains as strong as ever,
and novel applications of such robots are
continuously being explored (Fig. 7). Humanoid
robots are currently considered in roles of
educators (Falconer 2013; Yamasaki and
Nakagawa 2006), dance partners (Kosuge 2010),
waiters, babysitters, companions for autistic
children or for seniors (Robins et al. 2012),
security, or emergency response team. Curiously,
the functionality of walking is not relevant or
central to many of these roles.

Dynamic Equations ofWalking
Robots

The dynamic equations of a walking robot can be
expressed in the following form:

H .q/ Rq CC .q; Pq/ Pq C�g.q/ D � C� c C� ext;

(1)
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Walking Robots, Fig. 4 Walking robots with different
number of legs: (a) monopod, Toyota hopping robot;
(b) tripod, STriDER, RoMeLa (Image courtesy of Den-
nis Hong); (c) large hexapod, McGhee, OSU; (d) RHex

(RHex robot image courtesy of Boston Dynamics);
(e) octopod, Spider, RoMeLa (Image courtesy of Dennis
Hong); and (f) many legs, centipede, Harvard
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Walking Robots, Fig. 5 Two quadruped robots: (a) Sony Aibo (Image courtesy of Sony) and (b) BigDog robot (Image
courtesy of Boston Dynamics)

Walking Robots, Fig. 6 Large walking robots: (a) Dante II, CMU; (b) Ambler, CMU; and (c) John Deere Walking
Tractor
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Walking Robots, Fig. 7 Novel application of walking robots: human-carrying “chair” robots, (a) iWalk of Toyota and
(b) WL-16RV multi-purpose biped locomotor from Waseda University (Image courtesy of Atsuo Takanishi)

where q is the vector of the robot’s generalized
coordinates, which contains the world frame
transformation matrix of its base link and all its
joint angles. The generalized velocity vector is
expressed as Pq D ŒvB

P��T where vB is the base
velocity and P� is the vector of joint velocities.
Additionally, H is the joint-space inertia matrix;
C is the matrix of Coriolis, centrifugal, and
gyroscopic terms; and �g is the vector of gravity
terms. Finally, � D Œ0 ��T is the joint torque
vector, � c D J T

c f c is the joint torque resulting
from the contact forces f c such as from the
ground, and � ext D J T

e f e is the joint torque due
to external interaction forces f e .

The contact conditions which the robot must
satisfy can be written in the form of Eq. 2. The
physical constraints due to ground friction, center
of pressure (CoP) condition (explained subse-
quently), torque limits, etc., can be expressed as
in Eq. 3

J c. Rq/ D b.q; Pq/ ; (2)

AŒ Rq � f c�
T � b.q; Pq/ ; (3)

The friction condition ensures that the robot
feet do not slide on the ground, and the CoP
condition corresponds to maintaining the resul-
tant of the ground reaction force (GRF) within

the perimeter of the support polygon (Sardain and
Bessonnet 2004) so that toppling is prevented.

Some of the generalized coordinates of the
robot, specifically those which describe the base
link of the robot to the world frame, are not
powered, as apparent from the joint torque vector
representation � D Œ0 ��T , in Eq. 1. In other
words, the robot is called underactuated. In fact,
all walking robots are underactuated, and it is one
of the central characteristics that sets these robots
apart from other robots. Underactuation plays a
very important role in the dynamics, motion plan-
ning, and control of walking robots (Chevallereau
et al. 2005).

Balance and Stability

Even after several decades of research, balance
maintenance has remained one of the most im-
portant issues of walking robots and especially
of humanoid robots. Although the basic dynam-
ics of balance are currently understood (Sardain
and Bessonnet 2004; Vukobratović and Juričić
1969), robust and general controllers that can
deal with discrete and nonlevel foot support as
well as large, unexpected, and unknown exter-
nal disturbances such as from a moving sup-
port, a slip, and a trip have not yet emerged.
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Walking Robots, Fig. 8
Two well-known
human-sized humanoid
robots: (a) ASIMO,
Honda. (b) HRP-2, AIST
(Image courtesy of AIST).
(c) HUBO, Korea

In comparison with the elegance and versatility
of human balance, present-day humanoid robots
appear quite deficient.

Balance generally refers to the ability of a
walking robot to maintain a sustained gait with
a reasonably upright posture without falling
(Kajita and Espiau 2008). Robot gait can be static
or dynamic. A robot with a static gait would
continue to stay upright even if its joints were
suddenly frozen. Static gait and movement under
static balance are safe but are slow and lacks

elegance. A dynamic gait is fluid and natural
looking as it harnesses and exploits the inertial
characteristics of the physical robot. However,
the robot must be in motion for it to sustain an
upright stature. Suddenly locking the joints may
cause a fall.

The location and the nature of the resultant
GRF on the support polygon of the robot have
been traditionally used to interpret the dynamic
state of the robot’s movement. The point where
the resultant GRF acts on the robot is called its
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Walking Robots, Fig. 9 Three popular humanoid robots: (a) AIST HRP-4 (Image courtesy of AIST), (b) Toyota
Partner Robot, and (c) Waseda University Wabian (Image courtesy of Atsuo Takanishi)

Walking Robots, Fig. 10 Three small humanoid robots: Aldebaran NAO (Image courtesy of Aldebaran), Fujitsu
HOAP-2, and Sony QRIO (Image courtesy of Sony)

zero moment point (ZMP), and it is equivalent to
the CoP for planar support. Figure 11 explains the
concept of CoP.

As shown in Fig. 11, two types of interaction
forces act on the foot at the foot/ground interface.

They are the normal forces f ni , always directed
upward (Fig. 11, left), and the frictional tangen-
tial forces f t i (Fig. 11, middle). CoP, denoted
by P , is the point where the resultant Rn D
P

f ni acts. With respect to a coordinate origin
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Walking Robots, Fig. 11 Definition of center of pres-
sure (CoP), shown for one foot of a humanoid robot.
The idea can be extended to any walking robot, and in

a general setting, a single footprint is replaced by the
support polygon which is the convex hull of all ground
contact of the robot

O , OP D
P

r i fni
P

fni

, where r i is the vector to

the point of action of force f i and fni is the
magnitude of f ni .

Because of the unilaterality of the foot/ground
constraint f ni � 0, which implies that P must
lie within the support polygon. The resultant of
the tangential forces may be represented at P

by a force Rt D P
f t i and a moment M D

P
r i � f t i where r i is the vector from P to

the point of application of
P

f t i . A basic control
objective for walking robots is to maintain the
CoP within the perimeter of the support polygon.

Safety

Safety is a serious concern that is paramount to
any application where robots are likely to coexist
in interactive human environments. The power of
mobility of walking robots adds to this concern.

Out of a number of possible situations where
safety is an issue, one that involves a balance

loss and fall is particularly worrisome for walking
robots. All walking robots, and in fact all mo-
bile robots, are subjected to this unique “failure”
mode. A fall may be caused due to unexpected
or excessive external forces, unusual or unknown
slipperiness, and slope or profile of the ground,
causing the robot to slip, trip, or topple. Fall can
also result when the balance controller is partially
or fully incapacitated due to an internal failure of
the robot involving its sensor or actuator.

Fall can be costly in terms of the damage to
the robot and also, depending on the shape and
size of the robot, can result in external damage
and injury to human.

For humanoid robots, fall is a particularly
serious issue (Fujiwara et al. 2002). Humanoid
robots, similar to humans, have a larger ratio of
CoM height to support area size, which makes
them more susceptible to fall, in case of a failure.
At the same time, due to their higher CoM, a fall
of such robots contains generally higher kinetic
energy which is able to cause higher damage and
injury.
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Summary

Walking robots represent an important class of
autonomous machines which can find application
in the general area of service robotics. The power
of mobility makes these robots uniquely capable
of serving in niche need areas such as plant main-
tenance and security, disaster response, personal
companion, and so on. Humanoid walking robots
have attracted strong popular fascination, and this
has fueled their rapid development. At present it
appears that defense-related applications are the
most likely to experience practical use of walking
robots.

Walking robots possess interesting and com-
plex kinematics and dynamics. Control of such
machines, especially with regard to balancing,
motion planning, and reactive behavior, is a rich
research area that is challenging and demands
special skill-sets.

Cross-References

�Disaster Response Robot
�Redundant Robots
�Robot Motion Control
�Robot Teleoperation
�Underactuated Robots

Recommended Reading

Out of the references listed below, Vukobratović
and Juričić (1969) is the earliest paper dealing
with bipedal robot balance, and it introduces the
concept of ZMP. A very good recent overview of
legged robots can be found in Kajita and Espiau
(2008). Also of interest is the foundational paper
on passive bipedal gait by McGeer (1990).
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Vukobratović M, Juričić D (1969) Contribution to the
synthesis of biped gait. IEEE Trans Bio-Med Eng
16(1):1–6

Waldron KJ, McGhee RB (1986) The adaptive suspension
vehicle. IEEE Control Syst Mag 6(6): 7–12

Yamasaki F, Nakagawa Y (2006) Education using small
humanoid robot. In: Proceedings of the 3rd inter-
national symposium on autonomous minirobots for
research and edutainment (AMiRE 2005), Fukui,
pp 248–253

Wheeled Robots

Giuseppe Oriolo
Sapienza Università di Roma, Roma, Italy

Abstract

The use of mobile robots in service applications
is steadily increasing. Most of these systems
achieve locomotion using wheels. As a conse-
quence, they are subject to differential constraints
that are nonholonomic, i.e., non-integrable. This
article reviews the kinematic models of wheeled
robots arising from these constraints and dis-
cusses their fundamental properties and limita-
tions from a control viewpoint. An overview of
the main approaches for trajectory planning and
feedback motion control is provided.

Keywords

Differential flatness; Nonholonomic constraints;
Nonlinear controllability; Smooth stabilizability

Introduction

Although all robots are, by definition, capable
of movement, the expression mobile robots
is mainly used to indicate robots that can
displace their own base by means of some
locomotion mechanism. Most often, this consists
of a set of wheels. The main advantage of
mobile robots over fixed-base manipulators

is their virtually unlimited workspace. As a
consequence, such robots are fundamental in
service applications, which require increased
capabilities of autonomous motion.

More precisely, from a mechanical viewpoint,
a wheeled robot essentially consists of a rigid
body (base) equipped with a system of wheels.
This basic arrangement may be complicated, for
example, by attaching to the base one or more
trailers, or by mounting a manipulator on the base
(mobile manipulator).

Any wheeled vehicle is subject to kinematic
constraints that in general reduce its local mobil-
ity while leaving intact the possibility of reaching
arbitrary configurations by appropriate maneu-
vers. For example, any driver knows by experi-
ence that, while it is impossible to move instan-
taneously a car in the direction orthogonal to its
heading, it is still possible to park it anywhere,
at least in the absence of obstacles. This peculiar
feature makes wheeled mobile robots very chal-
lenging from the control viewpoint, and in fact,
some recent developments in nonlinear control
were triggered by the study of these systems.

Here, we will consider only mobile robots that
are equipped with conventional wheels, either
orientable or fixed (as the front or rear wheels of a
car, respectively). Omnidirectional mobile robots
realized using, e.g., Mecanum wheels, are not
covered in this article. Indeed, the local mobility
of these vehicles is unrestricted, and therefore no
special control treatment is necessary.

The most popular wheel arrangement for mo-
bile robots is the differential drive, in which two
fixed wheels whose axes of rotation coincide are
controlled by separate actuators (see Fig. 1). One
or more passive (caster) wheels are usually added
for statical balance. This wheeled robot is the
most agile, in that it can rotate on the spot by
applying equal and opposite angular speeds to the
wheels. A kinematically equivalent arrangement
is the synchro drive, in which three orientable
wheels are synchronously driven by two motors
through mechanical coupling; the first motor pro-
vides traction, whereas the second controls the
common orientation of the wheels.

Other possible wheel arrangements are those
of a tricycle (one steering and two fixed wheels)
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Wheeled Robots, Fig. 1 The Pioneer by Adept is a
popular differential-drive platform

and of a car (two steering and two fixed wheels).
Vehicles of this type are however less common
in robotics, due partly to their reduced maneuver-
ability (they have a nonzero turning radius) and
partly to their increased mechanical complexity.
For example, both these vehicles require a spe-
cific device (differential) for distributing traction
torque to the driving wheels.

Modeling

The starting point for modeling wheeled mobile
robots is the single wheel. This may be repre-
sented as an upright disk rolling on the ground.
Its configuration is described by three generalized
coordinates: the Cartesian coordinates .x; y/ of
the contact point with the ground, measured in
a fixed reference frame, and the orientation �

of the disk plane with respect to the x axis
(see Fig. 2). The configuration vector is therefore
q D .x y �/T . The pure rolling constraint is
expressed as

�
sin � � cos �

�
� Px

Py
�

D 0 (1)

and entails that, in the absence of slipping,
the velocity of the contact point has a zero
component in the direction orthogonal to the
wheel plane. The angular speed of the wheel
around the vertical axis is instead unconstrained.

Wheeled Robots, Fig. 2 Generalized coordinates for a
single wheel

The kinematic constraint (1) is nonholonomic,
i.e., it cannot be integrated to a geometric
constraint; this may be easily shown using
Frobenius theorem, a well-known differential
geometry result on integrability of differential
forms. An important consequence of this fact is
that constraint (1) implies no loss of accessibility
in the configuration space of the wheel.

In a single-body vehicle equipped with multi-
ple wheels, the n-dimensional configuration vec-
tor q consists of the Cartesian coordinates of a
representative point on the robot, the orientation
of all independently orientable wheels, plus the
orientation of the body if there are fixed wheels.
By writing one pure rolling constraint like (1)
for each independent wheel, orientable or fixed,
and expressing it in the chosen generalized coor-
dinates, one obtains a set of k constraints in the
form

AT .q/ Pq D 0: (2)

Kinematic constraints of this form (i.e., linear in
the generalized velocities) are called Pfaffian. In
wheeled mobile robots, Pfaffian constraints are in
general completely nonholonomic.

The k Pfaffian constraints (2) reduce the num-
ber of degrees of freedom (i.e., independent in-
stantaneous motions) of the robot to m D n � k.
In particular, at each configuration q, the general-
ized velocities must belong to the m-dimensional
null space of matrix AT .q/:

Pq D
mX

j D1

gj .q/uj D G.q/u; (3)

where vectors g1.q/; : : : ; gm.q/ are a basis of
N .AT .q// and u D .u1 : : : um/T is a coefficient
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vector. Kinematically admissible trajectories are
the solutions of (3), which is called kinematic
model of the wheeled mobile robot. This model
can be seen as a nonlinear dynamic system, with
q as state and u as input. In particular, system (3)
is driftless and has more state variables than
control inputs.

For example, consider the unicycle, a rather
ideal mobile robot equipped with a single, ori-
entable wheel. The generalized coordinates for
this robot are q D .xy �/T , the same as the single
wheel, and the vehicle is subject to the rolling
constraint (1). One possible kinematic model for
the unicycle is then

0

@
Px
Py
P�

1

A D
0

@
cos �

sin �

0

1

A v C
0

@
0

0

1

1

A !; (4)

where v D p Px2 C Py2 and ! D P� represent,
respectively, the driving and steering velocity of
the wheel. Both the differential-drive and the
synchro-drive robots are kinematically equivalent
to the unicycle, i.e., their kinematic model can be
put in the form (3) by properly defining q and u.

Similar to what is done for robot manipulators,
the dynamic models of wheeled mobile robots
may be derived following the Euler-Lagrange
method. The main difference is the presence of
the nonholonomic Pfaffian constraints, which
give rise to reaction forces expressed via
Lagrange multipliers (Neimark and Fufaev
1972).

Structural Properties

The nonholonomic nature of wheeled mobile
robots has precise consequences in terms of struc-
tural properties of the kinematic model (3).

The first, and most important, is that in spite
of the reduced number of degrees of freedom, a
wheeled robot is controllable in its configuration
space; i.e., given two arbitrary configurations,
there always exists a kinematically admissible
trajectory (with the associated velocity inputs)
that transfers the robot from one to the other

Wheeled Robots, Fig. 3 In spite of its restricted local
mobility, a nonholonomic wheeled robot can reach any
point in its configuration space

(Fig. 3). Since the kinematic model (3) is drift-
less, a well-known result (Chow theorem) implies
that it is controllable if and only if the accessibil-
ity rank condition holds:

dim N� D n; (5)

where N� denotes the involutive closure of distri-
bution � D fg1; : : : ; gmg under the Lie bracket
operation. In turn, this is guaranteed to be true in
view of the nonholonomy of constraints (2). For
example, since the Lie bracket of the two input
vector fields in (4) is always linearly independent
from them, the kinematic model of the unicycle
is controllable.

However, the controllability of wheeled mo-
bile robots is intrinsically nonlinear. In fact, the
linear approximation of (3) at any configuration
clearly results to be uncontrollable due to the
reduced number of inputs. In practice, this means
that no linear feedback can stabilize the system
at a given configuration. The situation is actu-
ally worse: for nonholonomic robots, there exists
no continuous time-invariant feedback law that
provides point stabilization. This negative result
can be established on the basis of a celebrated
result on smooth stabilizability of control systems
due to Brockett (1983). Note that the result does
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not apply to time-varying stabilizing controllers,
which may thus be continuous in q.

Another related drawback of wheeled mo-
bile robots is that in general, they do not admit
universal controllers, i.e., feedback control laws
that can asymptotically stabilize arbitrary state
trajectories, either persistent or not (Lizárraga
2004). This means that, in principle, tracking and
regulation problems in wheeled robots should be
addressed using separate approaches.

All the above limitations of nonholonomic
systems are established with reference to the
kinematic model, but of course, they are passed
on to dynamic models. Altogether, they con-
tribute to making the control problem for wheeled
mobile robots much more difficult than, for
example, for robotic manipulators, which are
linearly controllable, smoothly stabilizable and
admit universal controllers.

Trajectory Planning

Trajectory planning for wheeled robots is a
nontrivial problem, because not all trajectories
are feasible – once again, a consequence of
nonholonomy. This leads to the necessity of
maneuvering, i.e., performing certain specific
movements, in order to execute transfer
motions.

Most kinematic models of wheeled mobile
robots exhibit a property known as differential
flatness (Fliess et al. 1995): namely, there exists a
set of outputs z, called flat outputs, such that the
state q and the control inputs u can be expressed
algebraically as a function of z and its time
derivatives up to a certain order � :

q D ' .z; Pz; Rz; : : : ; z.�// (6)

u D � .z; Pz; Rz; : : : ; z.�//: (7)

As a consequence, once an output trajectory z.t/
is specified, the associated state trajectory q.t/

and control history u.t/ are uniquely determined.
For example, the unicycle admits z D .x y/T as
flat outputs. In fact, once a Cartesian trajectory is
assigned for the contact point with the ground,
the wheel orientation �.t/ is constrained to be

tangent to the trajectory; the associated control
input v and ! are then uniquely and algebraically
computable from q.t/.

Differential flatness is particularly useful for
planning. For example, assume that we want to
transfer a wheeled mobile robot from an initial
configuration qi to a final configuration qf . One
then computes the corresponding values zi and zf

of the flat outputs, plus the appropriate boundary
conditions, and uses any interpolation scheme
(e.g., polynomial interpolation) to plan the tra-
jectory of z. The evolution of the generalized co-
ordinates q, together with the associated control
inputs u, can then be computed algebraically from
(6–7). The resulting configuration space trajec-
tory will automatically satisfy the nonholonomic
constraints (2).

Another approach to nonholonomic trajectory
planning is based on the possibility of putting the
equations of most wheeled robots into a canonical
format known as a 2-input chained form

Pz1 D w1

Pz2 D w2

Pz3 D z2w1 (8)

:::

Pzn D zn�1w1

by means of a feedback transformation, i.e., a
change of coordinates z D ˛.q/ coupled with an
input transformation w D ˇ.q/u. In particular,
this is always possible with kinematic models (3)
for which n � 4 and m D 2 (e.g., unicy-
cle or car-like robots). Once the system is cast
in the form (8), one may use sinusoidal open-
loop controls at integrally related frequencies
to drive all variables sequentially to their final
values (Murray and Sastry 1993). This approach
is particularly interesting from a theoretical view-
point because such control maneuvers achieve
motion in the direction of the Lie brackets of the
input vector fields.

Note that differential flatness and chained-
form transformability are equivalent properties
for 2-input nonholonomic mobile robots.
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Feedback Control

The motion control problem for wheeled mobile
robots is generally formulated with reference to
the kinematic model (3). For example, in the
case of the unicycle (4), this means that the
control inputs are directly v and !, the driving
and steering velocities. There are essentially two
reasons for taking this simplifying assumption.

First, the kinematic model (3) fully captures
the essential nonlinearity of single-body wheeled
robots, which stems from their nonholonomic
nature. This is another fundamental difference
with respect to the case of robotic manipula-
tors, in which the main source of nonlinearity
is the inertial coupling among multiple bodies.
Second, in mobile robots it is typically not pos-
sible to command directly the wheel torques,
because there are low-level wheel control loops
integrated in the hardware or software architec-
ture. Any such loop accepts as input a reference
value for the wheel angular speed, which is then
reproduced as accurately as possible by stan-
dard regulation actions (e.g., PID controllers).
In this situation, the actual inputs available for
high-level control are precisely these reference
velocities.

Two basic control problems can be considered:
• Trajectory tracking: the robot must asymp-

totically track a desired Cartesian trajectory
.xd .t/; yd .t//.

• Point stabilization: the robot must asymptoti-
cally reach a desired configuration qd .
From a practical point of view, the most rele-

vant of these problems is certainly the first. This
is because mobile robots must be able to operate
in unstructured workspaces that invariably con-
tain obstacles. Clearly, forcing the robot to move
along (or close to) a trajectory planned in advance
reduces considerably the risk of collisions. The
point stabilization problem, however, is more dif-
ficult and therefore particularly interesting from a
scientific perspective. In a certain sense, the rela-
tive difficulty of the two problems is reminescent
of human car driving: learning to drive a car along
a road is relatively easy, whereas parking poses a
greater challenge.

Trajectory Tracking
Several methods are available to drive a wheeled
mobile robot in feedback along a desired trajec-
tory. A straightforward possibility is to compute
first the linear approximation of the system along
the desired trajectory (which, unlike the approx-
imation at a configuration, results to be control-
lable) and then stabilize it using linear feedback.
Only local convergence, however, can be guar-
anteed with this approach. For the kinematic
model of the unicycle, global asymptotic stability
may be achieved by suitably morphing the linear
control law into a nonlinear one (Canudas de Wit
et al. 1993).

In robotics, a popular approach for trajectory
tracking is input–output linearization via static
feedback. In the case of a unicycle, consider as
output the Cartesian coordinates of a point B

located ahead of the wheel, at a distance b from
the contact point with the ground. The linear
mapping between the time derivatives of these
coordinates and the velocity control inputs turns
out to be invertible provided that b is nonzero;
under this assumption, it is therefore possible to
perform an input transformation via feedback that
converts the unicycle to a parallel of two simple
integrators, which can be globally stabilized with
a simple proportional controller (plus feedfor-
ward). This simple approach works reasonably
well. However, if one tries to improve tracking
accuracy by reducing b (so as to bring B close
to the ground contact point), the control effort
quickly increases.

Trajectory tracking with b D 0 (i.e.,
for the actual contact point on the ground)
can be achieved using dynamic feedback
linearization (Oriolo et al. 2002). In particular,
this method provides a one-dimensional dynamic
compensator that transforms the unicycle into a
parallel of two double integrators, which is then
globally stabilized with a proportional-derivative
controller (plus feedforward). In contrast to static
feedback linearization, no residual zero dynamics
is present in the transformed system. However,
the dynamic compensator has a singularity
when the unicycle driving velocity is zero.
This is expected, because otherwise the tracking
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controller would represent a universal controller.
Note that dynamic feedback linearizability using
the x; y outputs is related to them being flat – the
two properties are equivalent.

Point Stabilization
The impossibility of stabilizing a nonholonomic
mobile robot using continuous pure-state feed-
back has generated two main directions of re-
search to solve the problem:
• Discontinuous feedback, i.e., time-invariant

control laws u D �.q/, where � is discon-
tinuous precisely at the configuration that one
seeks to stabilize.

• Time-varying feedback, in the form u D
�.q; t/ where � may or may not be continuous
at the desired configuration.
For the unicycle, a well-known stabilizing

controller belonging to the first category was
designed by Aicardi et al. (1995) by formulating
the problem in polar coordinates centered at the
goal and then using a Lyapunov-like analysis to
establish asymptotic convergence. The controller,
once rewritten in original coordinates, turns out
to be discontinuous at the goal (not surprisingly).
Although this rules out proper stability in the
sense of Lyapunov, this controller is effective in
that it produces rather natural approach trajecto-
ries to the goal.

Continuous time-varying stabilizers in the
sense of Lyapunov exist (Samson 1993) but have
mainly theoretical interest due to their provably
slow (polynomial) rate of convergence; this is a
direct consequence of the fact that the linear ap-
proximation of the system is not controllable. A
more effective approach is to give up (Lipschitz-)
continuity at the desired configuration. As shown
by M’Closkey and Murray (1997) and Morin and
Samson (2000), this allows to design control laws
that guarantee a modified form of exponential
convergence to the goal.

Most of the aforementioned control designs –
both for trajectory tracking and point stabilization
– were first developed with reference to the unicy-
cle robot but can be carried out on chained forms,

thereby providing an effective extension to other
kinematic models, e.g., the car-like robot.

Summary and Future Directions

Wheeled mobile robots are increasingly present
in applications. Over the last two decades, sig-
nificant results have been reached in terms of
modeling, planning and control of these systems,
and the field is now considered to be well estab-
lished, at least from an application point of view.
Nevertheless, a number of research directions are
still open, including the following:
• Planning and control for non-flat systems:

Relatively harmless wheeled robots (such as
a unicycle towing more than one off-hooked
trailer) are not flat.

• Robustness: The performance of controllers in
the presence of disturbances and model pertur-
bations has not received sufficient attention so
far.

• Localization: Feedback control requires
accurate measurements of the configuration
variables, which in mobile robots cannot be
reliably reconstructed from onboard sensors
(odometric data). Integration of exteroceptive
sensing is essential to this end.

• Vision-based control: As an alternative to
localization-based methods, the feedback
loop may be closed directly in the image
plane, with significant advantages in terms of
simplicity and robustness.

• Multi-robot systems: The problem is to control
the motion of multiple mobile robots in order
to perform a cooperative motion task, e.g.,
formation control.
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Recommended Reading

For background material on nonlinear control-
lability, including the necessary concepts of
differential geometry, see Sastry (2005). General
introductions to mobile robots can be found
in Siegwart and Nourbakhsh (2004), Choset et al.
(2005), Morin and Samson (2008), and Siciliano
et al. (2009). A classification of wheeled mobile
robots based on the number, placement, and type
of wheels was proposed by Bastin et al. (1996).
A detailed extension of some of the planning and
control techniques reviewed in this article to the
case of car-like kinematics is given in De Luca
et al. (1998). A framework for the stabilization
of non-flat nonholonomic robots was presented
by Oriolo and Vendittelli (2005). Recent work
aimed at designing practical universal controllers
was carried out by Morin and Samson (2009).

Bibliography

Aicardi M, Casalino G, Bicchi A, Balestrino A (1995)
Closed loop steering of unicycle-like vehicles via
lyapunov techniques. IEEE Robot Autom Mag 2(1):
27–35

Bastin G, Campion G, D’Andréa-Novel B (1996) Struc-
tural properties and classification of kinematic and dy-
namic models of wheeled mobile robots. IEEE Trans
Robot Autom 12: 47–62

Brockett RW (1983) Asymptotic stability and feedback
stabilization. In: Brockett RW, Millman RS, Suss-
mann HJ (eds) Differential geometric control theory.
Birkhauser, Boston

Canudas de Wit C, Khennouf H, Samson C, Sørdalen OJ
(1993) Nonlinear control design for mobile robots. In:
Zheng YF (ed) Recent trends in mobile robots. World
Scientific, Singapore, pp 121–156

Choset H, Lynch KM, Hutchinson S, Kantor G, Bur-
gard W, Kavraki LE, Thrun S (2005) Principles of
robot motion: theory, algorithms, and implementa-
tions. MIT, Cambridge

This encyclopedia includes no entries for J, X, Y & Z.

De Luca A, Oriolo G, Samson C (1998) Feedback control
of a nonholonomic car-like robot. In: Laumond J-P
(ed) Robot motion planning and control. Springer,
London, pp 171–253

Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness
and defect of nonlinear systems: introductory theory
and examples. Int J Control 61:1327–1361

Lizárraga DA (2004) Obstructions to the existence of
universal stabilizers for smooth control systems. Math
Control Signals Syst 16:255–277

M’Closkey RT, Murray RM (1997) Exponential stabi-
lization of driftless nonlinear control systems using
homogeneous feedback. IEEE Trans Autom Control
42:614–628

Morin P, Samson C (2000) Control of non-linear chained
systems: from the Routh-Hurwitz stability criterion
to time-varying exponential stabilizers. IEEE Trans
Autom Control 45: 141–146

Morin P, Samson C (2008) Motion control of wheeled
mobile robots. In: Khatib O, Siciliano B (eds)
Handbook of robotics. Springer, New York,
pp 799–826

Morin P, Samson C (2009) Control of nonholonomic mo-
bile robots based on the transverse function approach.
IEEE Trans Robot 25:1058–1073

Murray RM, Sastry SS (1993) Nonholonomic motion
planning: steering using sinusoids. IEEE Trans Autom
Control 38:700–716

Neimark JI, Fufaev FA (1972) Dynamics of non-
holonomic systems. American Mathematical Society,
Providence

Oriolo G, Vendittelli M (2005) A framework for the
stabilization of general nonholonomic systems with an
application to the plate-ball mechanism. IEEE Trans
Robot 21:162–175

Oriolo G, De Luca A, Vendittelli M (2002) WMR control
via dynamic feedback linearization: design, imple-
mentation and experimental validation. IEEE Trans
Control Syst Technol 10: 835–852

Samson C (1993) Time-varying feedback stabilization
of car-like wheeled mobile robots. Int J Robot Res
12(1):55–64

Sastry S (2005) Nonlinear systems: analysis, stability and
control. Springer, New York

Siciliano B, Sciavicco L, Villani L, Oriolo G (2009)
Robotics: modelling, planning and control. Springer,
London

Siegwart R, Nourbakhsh IR (2004) Introduction to au-
tonomous mobile robots. MIT, Cambridge


	W
	Walking Robots
	Abstract
	Keywords
	Introduction
	Early History
	Characteristics of Walking Robots
	Classification of Walking Robots
	Humanoid Robots
	Dynamic Equations of Walking Robots
	Balance and Stability
	Safety
	Summary
	Cross-References
	Recommended Reading
	Bibliography

	Wheeled Robots
	Abstract
	Keywords
	Introduction
	Modeling
	Structural Properties
	Trajectory Planning
	Feedback Control
	Trajectory Tracking
	Point Stabilization

	Summary and Future Directions
	Cross-References
	Recommended Reading
	Bibliography



