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Abstract

We explore the problem of identification and con-
trol of living cell populations. We describe how
de novo control systems can be interfaced with
living cells and used to control their behavior. Us-
ing computer controlled light pulses in combina-
tion with a genetically encoded light-responsive
module and a flow cytometer, we demonstrate
how in silico feedback control can be configured
to achieve precise and robust set point regulation
of gene expression. We also outline how external
control inputs can be used in experimental design
to improve our understanding of the underlying
biochemical processes.
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Introduction

Control systems, particularly those that employ
feedback strategies, have been used successfully
in engineered systems for centuries. But natural
feedback circuits evolved in living organisms
much earlier, as they were needed for regulating
the internal milieu of the early cells. Owing
to modern genetic methods, engineered feed-
back control systems can now be used to control
in real-time biological systems, much like they
control any other process. The challenges of con-
trolling living organisms are unique. To be suc-
cessful, suitable sensors must be used to measure
the output of a single cell (or a sample of cells in a
population), actuators are needed to affect control
action at the cellular level, and a controller that
connects the two should be suitably designed. As
a model-based approach is needed for effective
control, methods for identification of models of
cellular dynamics are also needed. In this entry,
we give a brief overview of the problem of identi-
fication and control of living cells. We discuss the
dynamic model that can be used, as well as the
practical aspects of selecting sensor and actua-
tors. The control systems can either be realized on
a computer (in silico feedback) or through genetic
manipulations (in vivo feedback). As an example,
we describe how de novo control systems can be
interfaced with living cells and used to control
their behavior. Using computer controlled light
pulses in combination with a genetically encoded
light-responsive module and a flow cytometer, we
demonstrate how in silico feedback control can
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be configured to achieve precise and robust set
point regulation of gene expression.

Dynamical Models of Cell Populations

In this entry, we focus on a model of an essential
biological process: gene expression. The goal
is to come up with a mathematical model for
gene expression that can be used for model-based
control. Due to cell variability, we will work with
a model that describes the average concentration
of the product of gene expression (the regulated
variable). This allows us to use population mea-
surements and treat them as measurements of
the regulated variable. We refer the reader to the
entry � Stochastic Description of Biochemical
Networks in this encyclopedia for more informa-
tion on stochastic models of biochemical reaction
networks. In this framework, the model consist
of an N-vector stochastic process X.t/ describ-
ing the number of molecules of each chemical
species of interest in a cell. Given the chemical
reactions in which these species are involve, the
mean, EŒX.t/�, of X.t/ evolves according to
deterministic equations described by

PEŒX.t/� D SEŒw.X.t//�;

where S is an N � M matrix that describes
the stoichiometry of the M reactions described
in the model, while w.�/ is an M -vector of
propensity functions. The propensity functions
reflect the rate of the reactions being modeled.
When one considers elementary reactions
(see � Stochastic Description of Biochemical
Networks), the propensity function of the i th
reaction, wi .�/, is a quadratic function of the
form wi .x/ D ai C bTi x C cix

TQix. Typically,
wi is either a constant: wi .x/ D a, a linear
function of the form wi .x/ D bxj or a simple
quadratic of the form wi .x/ D cx2j . Following
the same procedure, similar dynamical models
can be derived that describe the evolution of
higher-order moments (variances, covariances,
third-order moments, etc.) of the stochastic
process X.t/.

Identification of Cell Population
Models

The model structure outlined above captures the
fundamental information about the chemical re-
actions of interest. The model parameters that
enter the functions wi .x/ reflect the reaction
rates, which are typically unknown. Moreover,
these reaction rates often vary between different
cells, because, for example, they depend on the
local cell environment, or on unmodeled chem-
ical species whose numbers differ from cell to
cell (Swain et al. 2002). The combination of this
extrinsic parameter variability with the intrinsic
uncertainty of the stochastic process X.t/ makes
the identification of the values of these parame-
ters especially challenging.

To address this combination of intrinsic
and extrinsic variabilities, one can compute
the moments of the stochastic process X.t/

together with the cross moments of X.t/ and the
extrinsic variability. In the process, the moments
of the parametric uncertainty themselves become
parameters of the extended system of ordinary
differential equations and can, in principle,
be identified from data. Even though doing
so requires solving a challenging optimization
problem, effective results can often be obtained
by randomized optimization methods. For
example, Zechner et al. (2012) presents the
successful application of this approach to a
complex model of the system regulating osmotic
stress response in yeast.

When external signals are available, or when
one would like to determine what species to mea-
sure when, such moment-based methods can also
be used in experiment design. The aim here is to
determine a priori which perturbation signals and
which measurements will maximize the informa-
tion on the underlying chemical process that can
be extracted from experimental data, reducing the
risk of conducting expensive but uninformative
experiments. One can show that, given a tentative
model for the biochemical process, the moments
of the stochastic process X.t/ (and cross X.t/-
parameter moments in the presence of extrinsic
variability) can be used to approximate the Fis-
cher information matrix and hence characterize
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the information that particular experiments con-
tain about the model parameters; an approxima-
tion of the Fischer information based on the first
two moments was derived in Komorowski et al.
(2011) and an improved estimate using correction
terms based on moments up to order 4 was
derived in Ruess et al. (2013). Once an estimate
of the Fischer information matrix is available,
one can design experiments to maximize the
information gained about the parameters of the
model. The resulting optimization problem (over
an appropriate parametrization of the space of
possible experiments) is again challenging but
can be approached by randomized optimization
methods.

Control of Cell Populations

There are two control strategies that one can
implement. The control systems can be realized
on a computer, using real-time measurements
from the cell population to be controlled. These
cells must be equipped with actuators that
respond to the computer signals that close the
feedback loop. We will refer to this as in silico
feedback. Alternatively, one can implement the
sensors, actuators, and control system in the
entirety within the machinery of the living cells.
At least in principle, this can be achieved through
genetic manipulation techniques that are common
in synthetic biology. We shall refer to this type of
control as in vivo feedback. Of course some com-
bination of the two strategies can be envisioned.
In vivo feedback is generally more difficult to
implement, as it involves working within the
noisy uncertain environment of the cell and
requires implementations that are biochemical in
nature. Such controllers will work autonomously
and are heritable, which could prove advanta-
geous in some applications. Moreover, coupled
with intercellular signaling mechanisms such
as quorum sensing, in vivo feedback may lead
to tighter regulation (e.g., reduced variance) of
the cell population. On the other hand, in silico
controllers are much easier to program, debug,
and implement and can have much more complex
dynamics that would be possible with in vivo

controllers. However, in silico controllers require
a setup that maintains contact with all the cells to
be controlled and cannot independently control
large numbers of such cells. In this entry we
focus exclusively on in silico controllers.

The Actuator
There could be several ways to send actuating
signals into living cells. One consists of chemical
inducers that the cells respond to either through
receptors outside the cell or through translocation
of the inducer molecules across the cellular mem-
brane. The chemical signal captured by these
inducers is then transduced to affect gene expres-
sion. Another approach we will describe here is
induction through light. There are several light
systems that can be used. One of these includes
a light-sensitive protein called phytochrome B
(PhyB). When red light of wavelength 650 nm
is shined on PhyB in the presence of phyco-
cyanobilin (PCB) chromophore, it is activated. In
this active state it binds to another protein Pif3
with high affinity forming PhyB-Pif3 complex.
If then a far-red light (730 nm) is shined, PhyB
is deactivated and it dissociates from Pif3. This
can be exploited for controlling gene expression
as follows: PhyB is fused to a GAL4 binding do-
main (GAL4BD), which then binds to DNA in a
specific site just upstream of the gene of interest.
Pif3 in turn is fused to a GAL4 activating do-
main (GAL4AD). Upon red light induction, Pif3-
Gal4AD complex is recruited to PhyB, where
Gal4AD acts as a transcription factor to initiate
gene expression. After far-red light is shined,
the dissociation of GAL4BD-PhyB complex with
Pif3-Gal4AD means that Gal4AD no longer acti-
vates gene expression, and the gene is off. This
way, one can control gene expression – at least in
open loop.

The Sensor
To measure the output protein concentration
in cell populations, a florescent protein tag is
needed. This tag can be fused to the protein of
interest, and the fluorescence intensity emanating
from each cell is a direct measure of the protein
concentration in that cell. There are several
technologies for measuring fluorescence of cell



550 Identification and Control of Cell Populations

Fluorescent
reporter

Gal 1 UAS YFP

YFPGal 1 UAS

Gal4 AD

PIF3

PhyB Pr

Gal4 BD

PhyB Pr

Gal4 BD

Gal4 AD

Red
(650 nm)

Far Red
(730 nm)

PIF3

R

R FR R FR

FR

R FR

R R R R R

Yeast population

Actuation with light

Identification and Control of Cell Populations, Fig. 1
Top figure: shows a yeast cell whose gene expression can
be induced by light: red light turns on gene expression
while far-red turns it off. Bottom figure: Each input light
sequences can be applied to a culture of light responsive

yeast cells resulting in a corresponding gene expression
pattern that is measured by flow cytometry. By applying
multiple carefully chosen light input test sequences and
looking at their corresponding gene expression patterns a
dynamic model of gene expression can be identified

populations. While fluorimeters measure the
overall intensity of a population, flow cytometry
and microscopy can measure the fluorescence
of each individual cell in a population sample
at a given time. This provides a snapshot
measurement of the probability density function
of the protein across the population. Repeated
measurements over time can be used as a basis
for model identification (Fig. 1).

The Control System
Equipped with sensors, actuators, and a model
identified with the methods outlined above
one can proceed to design control algorithms
to regulate the behavior of living cells. Even
though moment equations lead to models that
look like conventional ordinary differential
equations, from a control theory point of view,
cell population systems offer a number of
challenges. Biochemical processes, especially

genetic regulation, are often very slow with time
constants of the order of tens of minutes. This
suggests that pure feedback control without some
form of preview may be insufficient. Moreover,
due to our incomplete understanding of the
underlying biology, the available models are
typically inaccurate, or even structurally wrong.
Finally, the control signals are often unconven-
tional; for example, for the light control system
outlined above, experimental limitations imply
that the system must be controlled using discrete
light pulses, rather than continuous signals.

Fortunately advances in control theory allow
one to effectively tackle most of these challenges.
The availability of a model, for example, enables
the use of model predictive control methods that
introduce the necessary preview into the feedback
process. The presence of unconventional inputs
may make the resulting optimization problems
difficult, but the slow dynamics work in our favor,
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Architecture of the closed-loop light control system. Cells
are kept darkness until they are exposed to light pulse se-
quences from the in silico feedback controller. Cell culture
samples are passed to the flow cytometer whose output

is fed back to the computer which implements a Kalman
filter plus a Model Predictive Controller. The objective
of the control is to have the mean gene expression level
follow a desired set value
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Left panel: The closed-loop control strategy (orange)
enables set point tracking, whereas an open-loop strategy
(green) does not. Right panel: Four different experiments,

each with a different initial condition. Closed-loop con-
trol is turned on at time t=0 shows that tracking can
be achieved regardless of initial condition. (See Milias-
Argeitis et al. (2011))
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providing time to search the space of possible
input trajectories. Finally, the fundamental
principle of feedback is often enough to deal
with inaccurate models. Unlike systems biology
applications where the goal is to develop a model
that faithfully captures the biology, in population
control applications even an inaccurate model
is often enough to provide adequate closed-loop
performance. Exploring these issues, Milias-
Argeitis et al. (2011) developed a feedback
mechanism for genetic regulation using the
light control system, based on an extended
Kalman filter and a model predictive controller
(Figs. 2 and 3). A related approach was taken
in Uhlendorf et al. (2012) to regulate the osmotic
stress response in yeast, while Toettcher et al.
(2011) develop what is affectively a PI controller
for a faster cell signaling system.

Summary and Future Directions

The control of cell populations offers novel chal-
lenges and novel vistas for control engineering
as well as for systems and synthetic biology.
Using external input signals and experiment
design methods, one can more effectively probe
biological systems to force them to reveal
their secrets. Regulating cell populations in a
feedback manner opens new possibilities for
biotechnology applications, among them the
reliable and efficient production of antibiotics
and biofuels using bacteria. Beyond biology, the
control of populations is bound to find further
applications in the control of large-scale, multi-
agent systems, including those in transportation,
demand response schemes in energy systems,
crowd control in emergencies, and education.
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Industrial MPC of Continuous
Processes

Mark L. Darby
CMiD Solutions, Houston, TX, USA

Abstract

Model predictive control (MPC) has become
the standard for implementing constrained,
multivariable control of industrial continuous
processes. These are processes which are
designed to operate around nominal steady-state
values, which include many of the important
processes found in the refining and chemical
industries. The following provides an overview
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of MPC, including its history, major technical
developments, and how MPC is applied today
in practice. Possible future developments are
provided.

Keywords

Constraints; Modeling; Model predictive con-
trol; Multivariable systems; Process identifica-
tion; Process testing

Introduction

Model predictive control (MPC) refer to a class
of control algorithms that explicitly incorporate a
process model for predicting the future response
of a plant and relies on optimization as the means
of determining control action. At each sample
interval, MPC computes a sequence of future
plant input signals that optimize future plant be-
havior. Only the first of the future input sequence
is applied to the plant, and the optimization is
repeated at subsequent sample intervals.

MPC provides an integrated solution for
controlling non-square systems with complex
dynamics, interacting variables, and constraints.
MPC has become a standard in the continuous
process industries, particularly in refining and
chemicals, where it has been widely applied
for over 25 years. In most commercial MPC
products, an embedded steady-state optimizer
is cascaded to the MPC controller. The MPC
steady-state optimizer determines feasible,
optimal settling values of the manipulated and
controlled variables. The MPC controller then
optimizes the dynamic path to optimal steady-
state values.

The scope of an MPC application may include
a unit operation such as a distillation column or
reactor, or a larger scope such as multiple distil-
lation columns, or a scope that combines reaction
and separation sections of a plant in one con-
troller. MPC is positioned in the control and de-
cision hierarchy of a processing facility as shown
in Fig. 1. The variables associated with MPC con-
sist of: manipulated variables (MVs), controlled
variables (CVs), and disturbance variables (DVs).

Industrial MPC of Continuous Processes, Fig. 1
Industrial control and decision hierarchy

CVs include variables normally controlled at a
fixed value such as a product impurity and as
well as those considered constraints, for example
limits related to capacity or safety that may only
be sometimes active. DVs are measurements that
are treated as feedforward variables in MPC. The
manipulated variables are typically setpoints of
underlying PID controllers, but may also include
valve position signals. Most of the targets and
limits are local to the MPC, but others come
directly from real-time optimization (if present),
or indirectly from planning/scheduling, which are
normally translated to the MPC in an open-loop
manner by the operations personnel.

Linear and nonlinear model forms are found in
industrial MPC applications; however, the major-
ity of the applications continue to rely on a linear
model, identified from data generated from a
dedicated plant test. Nonlinearities that primarily
affect system gains are often adequately con-
trolled with linear MPC through gain scheduling
or by applying linearizing static transformations.
Nonlinear MPC applications tend to be reserved
for those applications where nonlinearities are
present in both system gains and dynamic re-
sponses and the controller must operate at signif-
icantly different targets.



554 Industrial MPC of Continuous Processes

Origins and History

MPC has its origins in the process industries
in the 1970s. The year 1978 marked the first
published description of predictive control under
the name IDCOM, an acronym for Identification
and Command (Richalet et al. 1978). A short time
later, Cutler and Ramaker (1979) published a
predictive control algorithm under the name Dy-
namic Matrix Control (DMC). Both approaches
had been applied industrially for several years
before the first publications appeared. These pre-
dictive control approaches targeted the more dif-
ficult industrial control problems that could not
be adequately handled with other methods, ei-
ther with conventional PID control or with ad-
vanced regulatory control (ARC) techniques that
rely on single-loop controllers augmented with
overrides, feedforwards/decouplers, and custom
logic.

The basic idea behind the predictive control
approach is shown in Fig. 2 for the case of a
single input single output, stable system. Future
predictions of inputs out outputs are denoted with
the hat symbol and shown as dashes; double
indexes, t jk, indicate future values at time t

based on information up to and including time
k. The optimization problem is to bring future
predicted outputs . OykjkC1; : : : ; OykjkCP / close to
a desired trajectory over a prediction horizon,

P , by means of a future sequence of inputs
.Oukjk; : : : ; OukjkCM�1/ calculated over a control
horizon M . The trajectory may be a constant
setpoint. In the general case, the optimization
is performed subject to constraints that may be
imposed on future inputs and outputs. Only the
first of the future moves is implemented and the
optimization is repeated at the next time instant.
Feedback, which accounts for unmeasured dis-
turbances and model error, is incorporated by
shifting all future output predictions, prior to the
optimization, based on the difference between the
output measurement yk and the previous predic-
tion Oykjk�1, denoted by dkjk (i.e., the prediction
error at time instant k). Future predicted values
of the outputs depend on both past and future
values inputs. If no future input changes are made
(at time k or after), the model can be used to
calculate the future “free” output response, y0t Wk ,
which will ultimately settle at a new steady-state
value based on the settling time (or time to steady
state of the model, Tss). For the unconstrained
case, it is straightforward to show that the optimal
result is a linear control law that depends only on
the error between the desired trajectory and the
free output response.

The predictive approach seemed to contrast
with the state-space optimal control method of
the time, the linear quadratic regulator (LQR).
Later research exposed the similarities to LQR

k−1 k k+1 k+Tssk+M −1 k+P

futurepast

ut

yt

ût|k

ŷt|k

refyt|k

0ŷt|k

dk|k
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time

Industrial MPC of
Continuous Processes,
Fig. 2 Predictive control
approach
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and also Internal Model Control (IMC) (Gar-
cia and Morari 1982), although these techniques
did not solve an online optimization problem.
Optimization-based control approaches became
feasible for industrial applications due to (1) the
slower sampling requirements of most industrial
control problems (on the order of minutes) and
the hierarchical implementations in which MPC
provides setpoints to lower level PID controllers
which execute on a much faster sample time (on
the order of seconds or faster).

Although the basic ideas behind MPC
remain, industrial MPC technology has changed
considerably since the first formulations in the
late 1970s. Qin and Badgwell (2003) describe
the enhancements to MPC technology that
occurred over the next 20 plus years until the
late 1990s. Enhancements since that time are
highlighted in Darby and Nikolaou (2012).
These improvements to MPC reflect increases
in computer processing capability and additional
requirements of industry, which have led to
increased functionality and tools/techniques
to simplify implementation. A summary
of the significant enhancements that have
been made to industrial MPC is highlighted
below.
Constraints: Posing input and output constraints

as linear inequalities, expressed as a function
of the future input sequence (Garcia and
Morshedi 1986), and solved by a standard
quadratic program or an iterative scheme
which approximates one.

Two-Stage Formulations: Limitations of a
single objective function led to two-stage for-
mulations to handle MV degrees of freedom
(constraint pushing) and steady-state opti-
mization via a linear program (LP).

Integrators. In their native form, impulse and
step response models can be applied only to
stable systems (in which the impulse response
model coefficients approach zero). Extension
to handle integrating variables included em-
bedding a model of the difference of the in-
tegrating signal or integrating a fraction of the
current prediction error into the future (imply-
ing an increasing

ˇ
ˇdkCj jk

ˇ
ˇ for j � 1 in Fig. 2).

The desired value of an integrator at steady

state (e.g., zero slope) has been incorporated
into two-stage formulations (see, e.g., Lee and
Xiao 2000).

State Space Models. The first state space for-
mulation of MPC, which was introduced in
the late 1980s (Marquis and Broustail 1988)
allowed MPC to be extended to integrating
and unstable processes. It also made use of
the Kalman filter which provided additional
capability to estimate plant states and un-
measured disturbances. Later, a state space
MPC offering was developed based on an in-
finite horizon (for both control and prediction)
(Froisy 2006). These state space approaches
provided a connection back to unconstrained
LQR theory.

Nonlinear MPC. The first applications of non-
linear MPC, which appeared in the 1990s,
were based on neural net models. In these
approaches, a linear dynamic model was com-
bined with a neural net model that accounted
for static nonlinearity (Demoro et al. 1997;
Zhao et al. 2001).
The late 1990s saw the introduction of an
industrial nonlinear MPC based on first prin-
ciple models derived from differential mass
and energy balances and reaction kinetic ex-
pressions, expressed in differential algebraic
equation (DAE) form (Young et al. 2002).
A process where nonlinear MPC is routinely
applied is polymer manufacturing.

Identification Techniques. Multivariable
prediction error techniques are now routinely
used. More recently, industrial application of
subspace identification methods has appeared,
following the development of these algorithms
in the 1990s. Subspace methods incorporate
the correlation of output measurements in the
identification of a multivariable state space
model, which can be used directly in a state
space MPC or converted to an impulse or step
response model based MPC.

Testing Methods. The 1990s saw increased
use of automatic testing methods to gen-
erate data for (linear) dynamic model
identification using uncorrelated binary
signals. Since the 2000, closed-loop testing
methods have received considerable attention.
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The motivation for closed-loop testing is to
reduce implementation time and/or effort
of the initial implementation as well as
the ongoing need to re-identify the model
of an industrial application in light of
processes changes. These closed-loop testing
methods, which require a preliminary or
existing model, utilize uncorrelated dither
signals either introduced as biases to the
controller MVs or injected through the
steady-state LP or QP, where additional
logic or optimization of the test protocol
may be performed (Kalafatis et al. 2006;
MacArthur and Zhan 2007; Zhu et al.
2012).

Mathematical Formulation

While there are differences in how the MPC
problem is formulated and solved, the following
general form captures most of the MPC products
(Qin and Badgwell 2003), although not all terms
may be present in a given product:

min
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OykCj jk D g.OxkCj jk; OukCj jk/; j D 1; : : : P

9

=

;
Model equations

ymin � sj � OykCj jk � ymax C sj ; j D 1; : : : ; P

sj � 0; j D 1; : : : P

9

=

;
Output constraints/slacks

umin � OukCj jk � umax; j D 0; : : :M � 1

��umin � �ukCj jk � �umax; j D 0; : : :M � 1

9

=

;
Input constraints

where the minimization is performed over the

future sequence of inputs U D̂ Oukjk; OukC1jk; : : : ;
OukCM�1jk . The four terms in the objective
function represent conflicting quadratic penalties

.kxk2A D̂ xTAx/; the penalty matrices are most
always diagonal. The first term penalizes the
error relative to a desired reference trajectory
(cf. Fig. 2) originating at Oykjk and terminating
at a desired steady-state, yss; the second term
penalizes output constraint violations over the
prediction horizon (constraint softening); the
third term penalizes inputs deviations from a
desired steady-state, either manually specified
or calculated. The fourth term penalizes input
changes as a means of trading off output tracking
and input movement (move suppression).

The above formulation applies to both linear
and nonlinear MPC. For linear MPCs, except
for state space formulations, there are no state

equations and the outputs in the dynamic model
are a function of only past inputs, such as with the
finite step response model.

When a steady-state optimizer is present in the
MPC, it provides the steady-state targets for uss

(in the third quadratic term) and yss (in the output
reference trajectory). Consider the case of linear
MPC with LP as the steady-state optimizer. The
LP is typically formulated as

min
�uss

cTu �uss C cTy �yss C qTCsC C qT�s�

subject to:

�yss D Gss�uss

uss D uk�1 C�uss

yss D y0
kCTss jk C�yss

9

>>=

>>;

Model equations
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ymin�s� � yss � ymaxCsC�Output constraints

umin � uss � umax

�M�umax � uss � M�umax

9

=

;
Input constraints

Gss is formed from the gains of the linear dy-
namic model. Deviations outside minimum and
maximum output limits (s� and sC, respectively)
are penalized, which provide constraint softening
in the event all outputs cannot be simultaneously
controlled within limits. The weighting in q� and
qC determine the relative priorities of the out-
put constraints. The input constraints, expressed
in terms of �umax, prevent targets from being
passed to the dynamic optimization that cannot
be achieved. The resulting solution – uss and
yss – provides a consistent, achievable steady-
state for the dynamic MPC controller. Notice that
for inputs, the steady-state delta is applied to the
current value and, for outputs, the steady-state
delta is applied to the steady-state prediction of
the output without future moves, after correcting
for the current model error (cf. Fig. 2). If a real-
time optimizer is present, its outputs, which may
be targets for CVs and/or MVs, are passed to the
MPC steady-state optimizer and considered with
other objectives but at lower weights or priorities.

Some additional differences or features found
in industrial MPCs include:

1-Norm formulations where absolute deviations,
instead of quadratic deviations, are penalized.

Use of zone trajectories or “funnels” with small
or no penalty applied if predictions remain
within the specified zone boundaries.

Use of a minimum movement criterion in ei-
ther the dynamic or steady-state optimizations,
which only lead to MV movement when CV
predictions go outside specified limits. This
can provide controller robustness to modeling
errors.

Multiobjective formulations which solve a series
of QP or LP problems instead of a single one,
and can be applied to the dynamic or steady-
state optimizations. In these formulations,
higher priority objectives are solved first,
followed by lesser priority objectives with
the solution of the higher priority objectives

becoming equality constraints in subsequent
optimizations (Maciejowski 2002).

MPCDesign

Key design decision for a given application are
the number of MPC controllers and the selection
of the MVs, DVs, and CVs for each controller;
however, design decisions are not limited to just
the MPC layer. The design problem is one of
deciding on the best overall structure for the
MPC(s) and the regulatory controls, given the
control objectives, expected constraints, qualita-
tive knowledge of the expected disturbances, and
robustness considerations. It may be that exist-
ing measurements are insufficient and additional
sensors may be required. In addition, a measure-
ment many not be updated on a time interval
consistent with acceptable dynamic control, for
example, laboratory measurements and process
composition analyzers. In this case, a soft sensor,
or inferential estimator, may need to be developed
from temperature and pressure measurements.

MPC is frequently applied to a major plant
unit, with the MVs selected based on their sen-
sitivity to key unit CVs and plant economics.
Decisions regarding the number and size of the
MPCs for a given application depend on plant ob-
jectives, (expected) constraints, and also designer
preferences. When the objective is to minimize
energy consumption based on fixed or specified
feed rate, multiple smaller controllers can be
used. In this situation, controllers are normally
designed based on the grouping of MVs with
the largest effect on the identified CVs, often
leading to MPCs designed for individual sections
of equipment, such as reactors and distillation
columns. When the objective is to maximize feed
(or certain products), larger controllers are nor-
mally designed, especially if there are multiple
constraints that can limit plant throughput. The
MPC steady-state LP or QP is ideally suited to
solving the throughput maximization problem by
utilizing all available MVs. The location of the
most limiting constraints can impact the number
of MPCs. If the major constraints are near the
front-end of the plant, one MPC can be designed



558 Industrial MPC of Continuous Processes

which connects these constraints with key MVs
such as feed rates, and other MPCs designed for
the rest of the plant. If the major constraints are
located near the back of the plant, then a single
MPC is normally considered; alternatively, an
MPC cascade could be considered, although this
is not a common practice across the industry (and
often requires customization).

The feed maximization objective is a ma-
jor reason why MPCs have become larger with
the advances in computer processing capability.
However, there is generally a higher requirement
on model consistency for larger controllers due
do the increased number of possible constraint
sets against which the MPC can operate. A larger
controller can also be harder to implement and
understand. This is a reason why some practi-
tioners prefer implementing smaller MPCs at the
potential loss of benefits.

MPC Practice

An MPC project is typically implemented in the
following sequence:
Pretest and preliminary MPC design
Plant testing
Model and controller development
Commissioning

These tasks apply whether the MPC is linear
or nonlinear, but with some differences, primar-
ily model development and in plant testing. In
nonlinear MPC, key decisions are related to the
model form and level of rigor. Note that with a
fundamental model, lower level PID loops must
be included in the model, if the dynamics are
significant; this is in contrast to empirical mod-
eling, where the dynamics of the PID loops are
embedded in the plant responses. A fundamental
model will typically require less plant testing
and make use of historical operating data to
fit certain model parameters such as heat trans-
fer coefficients and reaction constants. Historical
data and/or data from a validated nonlinear static
model can also be used to develop nonlinear
static models (e.g., neural net) to combine with
empirical dynamic models. As mentioned earlier,
most industrial applications continue to rely on

empirical linear dynamic models, fit to data from
a dedicated plant test. This will be the basis in the
following discussion.

In the pretest phase of work, the key activity
is one of determining the base level regulatory
controls for MPC, tuning of these controls, and
determining if the current plant instrumentation
is adequate. It is common to retune a significant
number of PID loops, with significant benefits
often resulting from this step alone.

A range of testing approaches are used in plant
testing for linear MPC, including both manual
and automatic (computer-generated) test signal
designs, most often in open loop but, increas-
ingly, in closed loop. Most input testing continues
to be based on uncorrelated signals, implemented
either manually or from computer-generated ran-
dom sequences. Model accuracy requirements
dictate accuracy across a range of frequencies
which is achieved by varying the duration of the
steps. Model identification runs are made through
out the course of a test to determine when model
accuracy is sufficient and a test can be stopped.

In the next phase of work, modeling of the
plant is performed. This includes constructing the
overall MPC model from individual identifica-
tion runs; for example, deciding which models
are significant and judging the models charac-
teristics (dead times, inverse response settling
time, gains) based on engineering/process and
a priori knowledge. An important step is an-
alyzing, and adjusting if necessary, the gains
of the constructed model to insure the models
gains satisfy mass balances and gain ratios do
not result in fictitious degrees of freedom (due
to model errors) that the steady-state optimizer
could exploit. Also included is the development
of any required inferentials or soft sensors, typi-
cally based on multivariate regression techniques
such as principal component regression (PCR),
principal component analysis (PCA) and partial
least squares (PLS), or sometimes based on a
fundamental model.

During controller development, initial con-
troller tuning is performed. This relates to estab-
lishing criteria for utilizing available degrees of
freedom and setting control variable priorities. In
addition, initial tuning values are established for
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the dynamic control. Steady state responses cor-
responding to expected constraint scenarios are
analyzed to determine if the controller behaves as
expected, especially with respect to the steady-
state changes in the manipulated variables.

Commissioning involves testing and tuning
the controller against different constraint sets. It
is not unusual to modify or revisit model de-
cisions made earlier. In the worst case, control
performance may be deemed unacceptable and
the control engineer is forced to revisit earlier
decisions such as the base level regulatory strat-
egy or plant model quality, which would require
re-testing and re-identification of portions of the
plant model. The main commissioning effort typ-
ically takes place over a two to three week period,
but can vary based on the size and model density
of the controller. In reality, commissioning, or
more accurately, controller maintenance, is an
ongoing activity. It is important that the operating
company have in-house expertise that can be used
to answer questions (“why is the controller doing
that?”), troubleshoot, and modify the controller to
reflect new operating modes and constraint sets.

Future Directions

Likely future developments are expected to fol-
low extensions of current approaches. Due to
the success in automatic, closed-loop testing, one
possibility is extending it to “dual” or “joint” con-
trol, where control and identification objectives
are combined and allow the user to select how
much the control (e.g., output variance) can be
affected by test perturbation signals. Another is
in formulating the plant test as a DOE 8 (design
of experiments) optimization problem that could,
for example, target specific models or model
parameters. In the identification area, extensions
have started to appear which allow constraints
to be imposed, for example, on dead-times or
gains, thus allowing a priori knowledge to be
used. Another important area that has seen recent
emphasis, and which more development can be
expected, is in monitoring and diagnosis, for ex-
ample, detecting which submodels of MPC have
become inaccurate and require re-identification.

As mentioned earlier, one of the advantages
of state-space modeling is the inherent flexibility
to model unmeasured disturbances (i.e., dkCj jj ,
cf. Fig. 2); however, these have not found wide-
spread use in industry. A useful enhancement
would be a framework for developing and imple-
menting improved estimators in a convenient and
transparent manner, that would be applicable to
traditional FIR- and FSR- based MPCs.

In the area of nonlinear control, the use of
hybrid modeling approaches has increased, for
example, integrating known fundamental model
relationships with neural net or linear time-
varying dynamic models. The motivation is in
reducing complexity and controller execution
times. The use of hybrid techniques can be
expected to further increase, especially if
nonlinear control is to be applied more broadly to
larger control problems. Even in situations where
control with linear MPC is adequate, there may
be benefits from the use of hybrid or fundamental
models, even if the models are not directly used
in the control calculation. The resulting model
could be used offline in model development or
online to update the linear MPC model. Benefits
would come from reduced plant testing and in
ensuring model consistency. In the longer term,
one can foresee a more general modeling and
control environment where the user would not
have to be concerned with the distinction between
linear and nonlinear models and would be able
to easily incorporate known relationships into the
controller model.

An area that has not received significant atten-
tion, but is suggested as an area worth pursuing
concerns MPC cascades. Most of the applica-
tions and research are based on a single MPC
or multiply distributed MPCs. An MPC cascade
would permit the lower MPC to run at a faster
time period and allow the user to decide which
degrees of freedom are to be used for higher level
objectives, such as feed maximization.
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Abstract

Information and communication complexity of
a networked control system identifies the min-
imum amount of information exchange needed
between the decision makers (such as encoders,
controllers, and actuators) to achieve a certain
objective, which may be in terms of reaching a
target state or achieving a given cost threshold.
This formulation does not impose any constraints
on the computational requirements to perform the
communication or control. Both stochastic and
deterministic formulations are considered.

Keywords

Communication complexity; Information theory;
Networked control

Introduction

Consider a dynamic team problem with L control
stations (these will be referred to as decision
makers and denoted by DMs) under the following
dynamics and measurement equations:

xtC1 D ft .xt ; u
1
t ; : : : ; u

L
t ;wt / ; t D 0; 1; � � �

(1)
yit D git .xt ; u

1
t�1; : : : ; uLt�1I vit /; (2)
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Information and
Communication
Complexity of
Networked Control
Systems, Fig. 1 A
decentralized networked
control system with
information exchange
between decision makers

where i 2 f1; 2; : : : ; Lg DW L and x0;wŒ0;T�1�;
viŒ0;T�1� are mutually independent random
variables with specified probability distributions.
Here, we use the notation wŒ0;t � WD fws; 0�s�tg.

The DMs are allowed to exchange limited in-
formation: see Fig. 1. The information exchange
is facilitated by an encoding protocol E which is
a collection of admissible encoding functions de-
scribed as follows. Let the information available
to DM i at time t be

I it D fyiŒ1;t �; uiŒ1;t�1�; zi;jŒ0;t �; zj;iŒ0;t �; j 2 Lg;

where zi;jt takes values in Z i;j
t and is the informa-

tion variable transmitted from DM i to DM j at
time t generated with

zit D fzi;jt ; j 2 Lg D E it .I it�1; uit�1; yit /; (3)

and for t D 0, zi0 D fzi;j0 ; j 2 Lg D E i0.yi0/. The
control actions are generated with

uit D �it .I it /;

for all DMs. Define log2.jZ i;j
t j/ to be the com-

munication rate from DM i to DM j at time t
and R.zŒ0;T�1�/ D PT�1

tD0
P

i;j2L log2.jZ i;j
t j/ to

be the (total) communication rate. The minimum
(total) communication rate over all coding and
control policies subject to a design objective

is called the communication complexity for this
objective.

The above is a fixed-rate formulation for com-
munication complexity, since for any two coder
outputs, a fixed number of bits is used at any
given time. One could also use variable-rate for-
mulations. The variable-rate formulation exploits
the probabilistic distribution of the system vari-
ables: see Cover and Thomas (1991).

Communication Complexity for
Decentralized Dynamic Optimization

Let E i D fE it ; t � 0g and �i D f�it ; t �
0g. Under a team-encoding policy E D
fE1; E2; : : : ; ELg, and a team-control policy
� D f�1; �2; : : : ; �Lg, let the induced cost be

E�;E Œ
T�1X

tD0
c.xt ; u

1
t ; u

2
t ; � � � ; uLt /�: (4)

In networked control, the goal is to mini-
mize (4) over all coding and control policies sub-
ject to information constraints in the system. Let
ut D fu1t ; u

2
t ; � � � ; uLt g. The following definition

and example are from Yüksel and Başar (2013).

Definition 1 Given a decentralized control prob-
lem as above, team cost-rate functionC W R ! R

is
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C.R/ W D inf
�;E

�

E�;E Œ
T�1X

tD0
c.xt ;ut /� W

1

T
R.zŒ0;T�1�/ � R

�

:

We can define a dual function.

Definition 2 Given a decentralized control prob-
lem as above, team rate-cost functionR W R ! R

is

R.C/ W D inf
�;E

�
1

T
R.zŒ0;T�1�/ W

E�;E Œ
T�1X

tD0
c.xt ;ut /� � C

�

:

The formulation here can be adjusted to in-
clude sequential (iterative) information exchange
given a fixed ordering of actions, as opposed to a
simultaneous (parallel) information exchange at
any given time t . That is, instead of (3), we may
have

zit D fzi;jt ; j 2 f1; 2; : : : ; Lgg
D E it .I it�1; uit�1; yit ; fzk;it ; k < ig/: (5)

Both to make the discussion more explicit and to
show that a sequential (iterative) communication
protocol may perform strictly better than an opti-
mal parallel communication protocol given a total
rate constraint, we state the following example:
Consider the following setup with two DMs. Let
x1; x2; p be uniformly distributed binary random
variables, DM i have access to yi , i D 1; 2, and

xD.p; x1; x2/; y1 D p; y2 D .x1; x2/;

and the cost function be

c.x; u1; u2/ D 1fpD0gc.x1; u1; u2/

C1fpD1gc.x2; u1; u2/;

with

c.s; u1; u2/ D .s � u1/2 C .s � u2/2:

Suppose that we wish to compute the minimum
expected cost subject to a total rate of 2 bits that
can be exchanged. Under a sequential scheme, if
we allow DM 1 to encode y1 to DM 2 with 1 bit,
then a cost of 0 is achieved since DM 2 knows the
relevant information that needs to be transmitted
to DM 1, again with 1 bit: If p D 0, x1 is the
relevant random variable with an optimal policy
u1 D u2 D x1, and if p D 1, x2 is relevant with
an optimal policy u1 D u2 D x2, and a cost of 0 is
achieved. However, if the information exchange
is parallel, then DM 2 does not know which state
is the relevant one, and it can be shown that a cost
of 0 cannot be achieved under any policy.

The formulation in Definition 1 can also be
adjusted to allow for multiple rounds of commu-
nication per time stage. Having multiple rounds
can enhance the performance for a class of team
problems while keeping the total rate constant.

Communication Complexity
in Decentralized Computation

Yao (1979) initiated the research on communica-
tion complexity in distributed computation. This
may be viewed as a special case of the setting
considered earlier but with finite spaces and in a
deterministic and an error-free context: Consider
two decision makers (DMs) who have access to
local variables x 2 f0; 1gn; y 2 f0; 1gn. Given a
function f of variables .x; y/, what is the max-
imum (over all input variables x; y) of the min-
imum amount of information exchange needed
for at least one agent to compute the value of
the function? Let s.x; y/ D fm1;m2; � � � ; mtg be
the communication symbols exchanged on input
.x; y/ during the execution of a communication
protocol. Let mi denote the i th binary message
symbol with jmi j bits. The communication com-
plexity for such a setup is defined as

R.f / D min
�;E

max
.x;y/2f0;1gn�f0;1gn

js.x; y/j; (6)

where js.x; y/j D Pt
iD1 jmi j and E is a protocol

which dictates the iterative encoding functions as
in (5) and � is a decision policy.
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For such problems, obtaining good lower
bounds is in general challenging. One lower
bound for such problems is obtained through
the following reasoning: A subset of the form
A � B , where A and B are subsets of f0; 1gn,
is called an f -monochromatic rectangle if
for every x 2 A; y 2 B , f .x; y/ is the
same. It can be shown that given any finite
message sequence fm1;m2; � � � ; mt g, the set
f.x; y/ W s.x; y/ D fm1;m2; � � � ; mtgg is an
f -monochromatic rectangle. Hence, to minimize
the number of messages, one needs to minimize
the number of f -monochromatic rectangles
which has led to research in this direction.
Upper bounds are typically obtained by explicit
constructions. For a comprehensive review, see
Kushilevitz and Nisan (2006).

For control systems, the discussion takes fur-
ther aspects into account including a design ob-
jective, system dynamics, and the uncertainty in
the system variables.

Communication Complexity in Reach
Control

Wong (2009) defines the communication com-
plexity in networked control as follows: Consider
a design specification where two DMs wish to
steer the state of a dynamical system in finite
time. This can be viewed as a setting in (1)–(2)
with 4 DMs, where there is iterative communi-
cation between a sensor and a DM, and there is
no stochastic noise in the system. Given a set of
initial states x0 2 X0, and finite sets of objective
choices for each DM .A for DM 1, B for DM 2),
the goal is to ensure that (i) there exists a finite
time where both DMs know the final state of the
system, (ii) the final state satisfies the choices
of the DMs, and (iii) the finite time (when the
objective is satisfied) is known by the DMs.

The communication complexity for such a
system is defined as the infimum over all pro-
tocols of the supremum over the triple of initial
states, and choices of the DMs, such that the
above is satisfied. That is,

R.X0;A;B/ D inf
�;E

sup
˛;ˇ;x0

R.�; E ; ˛; ˇ; x0/;

where R.�; E ; ˛; ˇ; x0/ denotes the communica-
tion rate under the control and coding functions
�; E , which satisfies the objectives given by the
choices ˛; ˇ and initial condition x0.

Wong obtains a cut-set type lower bound:
Given a fixed initial state, a lower bound is given
by 2D.f /, where f is a function of the objec-
tive choices and D.f / is a variation of R.f /
introduced in (6) with the additional property that
both DMs know f at the end of the protocol. An
upper bound is established by the exchange of the
initial states and objective functions also taking
into account signaling, that is, the communication
through control actions, which is discussed fur-
ther below in the context of stabilization. Wong
and Baillieul (2012) consider a detailed analysis
for a real-valued bilinear controlled decentralized
system.

Connections with Information Theory

Information theory literature has made significant
contributions to such problems. An information
theoretic setup typically entails settings where an
unboundedly large sequence of messages are en-
coded and functions of which are to be computed.
Such a setting is not applicable in a real-time set-
ting but is very useful for obtaining performance
bounds (i.e., good lower bounds on complexity)
which can at certain instances be achievable even
in a real-time setting. That is, instead of a single
realization of random variables in the setup of
(1)–(2), the average performance for a large num-
ber of independent realizations/copies for such
problems is typically considered.

In such a context, Definitions 1 and 2 can
be adjusted so that the communication complex-
ity is computed by mutual information (Cover
and Thomas 1991). Replacing the fixed-rate or
variable-rate (entropy) constraint in Definition 1
with a mutual information constraint leads to
convexity properties for C.R/ and R.C/. Such
an information theoretic formulation can pro-
vide useful lower bounds and desirable analytical
properties.

We note here the interesting discus-
sion between decentralized computation and



564 Information and Communication Complexity of Networked Control Systems

communication provided by Orlitsky and Roche
(2001) as well as by Witsenhausen (1976) where
a probability-free construction is considered and
a zero-error (non-asymptotic and error-free)
computation is considered in the same spirit
as in Yao (1979).

Such decentralized computation problems can
be viewed as multiterminal source coding prob-
lems with a cost function aligned with the com-
putation objective. Ma and Ishwar (2011) and
Gamal and Kim (2012) provide a comprehensive
treatment and review of information exchange
requirements for computing. Essential in such
constructions is the method of binning, which is
a key tool in distributed source coding problems.
Binning efficiently designates the enumeration of
symbols (which can be confused in the absence
of coding) given the relevant information at a
receiver DM.

Such problems involve interactive communi-
cations as well as multiterminal coding problems.
As mentioned earlier, it is also important to point
out that multi-round protocols typically reduce
the average rate requirements.

Communication Complexity
in Decentralized Stabilization

An important relevant setting of reach control is
where the target final state is the zero vector: The
system is to be stabilized. Consider the following
special case of (1)–(2) for an LTI system:

xtC1 D Axt C
LX

jD1
Bjujt ;

yit D C ixt t D 0; 1; : : : (7)

where i 2 L, and it is assumed that the joint
system is stabilizable and detectable, but the
individual pairs .A;Bi / may not be stabilizable
or .A; C i/ may not be detectable. Here, xt 2 R

n

is the state, uit 2 R
mi is the control applied

by station i , and yit 2 R
pi is the observation

available at station i , all at time t . The initial
state x0 is generated according to a probability

Plant

y1 y2 y3

q1 q2 q3

Plant

Station 1

Actuator 1 Actuator 2 Actuator 3

Station 2 Station 3

u1 u2 u3

Information and Communication Complexity of Net-
worked Control Systems, Fig. 2 Decentralized stabi-
lization with multiple controllers

distribution supported on a compact set X0 �
R
n. We denote controllable and unobservable

subspaces at station i by Ki and N i and refer to
the subspace orthogonal to N i as the observable
subspace at the i th station, denoted by Oi . The
information available to station i at time t is I it D
fyiŒ0;t �; uiŒ0;t�1�g. For such a system (see Fig. 2),
it is possible for the controllers to communicate
through the plant with the process known as
signaling which can be used for communication
of mode information among the decision makers.
Denote by i ! j the property that DM i

can signal to DM j . This holds if and only if
Cj .A/lBi ¤ 0, for at least one l , 1 � l � n.
A directed graph G among the L stations can
be constructed through such a communication
relationship.

Suppose that A is such that in its Jordan
form, where each Jordan block admits distinct
real eigenvalues. Then, a lower bound on the
communication complexity (per time stage) for
stabilizability is given by

P

j�i j>1 �Mi log2.j�i j/,
where

�Mi D min
l;m2f1;2;:::;Lg

fd.l;m/C 1 W l ! m;

Œxi � � Oi [Om; Œxi � � Kmg;
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with d.l;m/ denoting the graph distance (num-
ber of edges in a shortest path) between DM
l and DM m in G and Œxi � denoting the sub-
space spanned by xi . Furthermore, there exist
stabilizing coding and control policies whose
sum rate is arbitrarily close to this bound. When
different Jordan blocks may admit repeated and
possibly complex eigenvalues, variations of the
result above are applicable. In the special case
where there is a centralized controller which re-
ceives information from multiple sensors (under
stabilizability and joint detectability), even in the
presence of noise, to achieve asymptotic stability,
it suffices to have the average total rate be greater
than

P

j�i j>1 log2.j�i j/. The results above follow
from Matveev and Savkin (2008) and Yüksel and
Başar (2013). For the case with a single sensor,
this result has been studied extensively in net-
worked control (see the chapter on �Quantized
Control and Data Rate Constraints in the Ency-
clopedia).

Summary and Future Directions

In this text, we discussed the problem of
communication complexity in networked control
systems. Our analysis considered both cost
minimization and controllability/reachability
problems subject to information constraints. We
also discussed the communication complexity
in distributed computing as has been studied in
the computer science community and provided
a brief discussion on the information theoretic
approaches for such problems together with
structural results. There are many relevant
open problems on structural results for optimal
policies, explicit solutions, as well as nontrivial
upper and lower bounds on the optimal
performance.

Cross-References

�Data Rate of Nonlinear Control Systems and
Feedback Entropy

� Flocking in Networked Systems
� Information-Based Multi-Agent Systems

�Networked Control Systems: Estimation and
Control over Lossy Networks

�Quantized Control and Data Rate Constraints

Recommended Reading

The information exchange requirements for
decentralized optimization depend also on the
structural properties of the cost functional to
be minimized. For a class of team problems,
one might simply need to exchange a sufficient
statistic needed for optimal solutions. For some
problems, there may be no need for an exchange
at all, if the sufficient statistics are already
available, as in the case of mean field equilibrium
problems when the number of decision makers
is unbounded or very large for almost optimal
solutions; see Huang et al. (2006) and Lasry
and Lions (2007). In case there is no common
probabilistic information, the problem considered
becomes further involved. The consensus
literature, under both Bayesian and non-Bayesian
contexts, aims to achieve agreement on a class of
system variables under information constraints:
see, e.g., Tsitsiklis et al. (1986). Optimization
under local interaction and sparsity constraints
and various criteria have been investigated in
a number of publications including Rotkowitz
and Lall (2006). A review for the literature
on norm-optimal control as well as optimal
stochastic dynamic teams is provided in Mahajan
et al. (2012). Tsitsiklis and Athans (1985) have
observed that from a computational complexity
viewpoint, obtaining optimal solutions for a class
of such communication protocol design problems
is non-tractable (NP-hard).

Even though obtaining explicit solutions for
optimal coding and control results may be dif-
ficult, it is useful to obtain structural results on
optimal coding and control policies since one
can reduce the search space to a smaller class of
functions. For dynamic team problems, these typ-
ically follow from the construction of a controlled
Markov chain (see Walrand and Varaiya 1983)
and applying tools from stochastic control theory
which obtain structural results on optimal coding
and control policies (see Nayyar et al. 2013).
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http://dx.doi.org/10.1007/978-1-4471-5058-9_152
http://dx.doi.org/10.1007/978-1-4471-5058-9_149


566 Information and Communication Complexity of Networked Control Systems

Along these lines, for system (1)–(2), if the DMs
can agree on a joint belief P.xt 2 �jI it ; i 2 L/
at every time stage, then the optimal cost that
would be achieved under a centralized system
could be attained (see Yüksel and Başar 2013).
As a further important illustrative case, if the
problem described in Definition 1 is for a real-
time estimation problem for a Markov source,
then the optimal causal fixed-rate coder minimiz-
ing any cost function uses only the last source
symbol and the information at the controller’s
memory: see Witsenhausen (1979). We also note
that the optimal design of information channels
for optimization under information constraints
is a non-convex problem; see Yüksel and Lin-
der (2012) and Yüksel and Başar (2013) for a
review of the literature and certain topological
properties of the problem. We refer the reader
to Nemirovsky and Yudin (1983) for a com-
prehensive resource on information complexity
for optimization problems. A sequential setting
with an information theoretic approach to the
formulation of communication complexity has
been considered in Raginsky and Rakhlin (2011).
A formulation relevant to the one in Definition 1
has been considered in Teneketzis (1979) with
mutual information constraints. Giridhar and Ku-
mar (2006) discuss distributed computation for a
class of symmetric functions under information
constraints and present a comprehensive review.
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Abstract

The concept of “information structures” in
decentralized control is a formalization of the
notion of “who knows what and when do they
know it.” Even seemingly simple problems with
simply stated information structures can be
extremely hard to solve. Perhaps the simplest
of such unsolved problem is the celebrated
Witsenhausen counterexample, formulated
by Hans Witsenhausen in 1968. This entry
discusses how the information structure of the
Witsenhausen counterexample makes it hard
and how an information-theoretic approach,
which explores the knowledge gradient due to
a nonclassical information pattern, has helped
obtain insights into the problem.

Keywords

Decentralized control; Information theory; Im-
plicit communication; Team decision theory

Introduction

Modern control systems often comprise of multi-
ple decentralized control agents that interact over
communication channels (Fig. 1). What charac-
teristic distinguishes a centralized control prob-
lem from a decentralized one? One fundamental
difference is a “knowledge gradient”: agents in
a decentralized team often observe, and hence
know, different things. This observation leads to
the idea of information patterns (Witsenhausen
1971), a formalization of the notion of “who

knows what and when do they know it” (Ho et al.
1978; Mitter and Sahai 1999).

The information pattern is said to be classi-
cal if all agents in the team receive the same
information and have perfect recall (so they do
not forget it). What is so special about classi-
cal information patterns? For these patterns, the
presence of external communication links has no
effect on the optimal costs! After all, what could
the agents use the communication links for, when
there is no knowledge gradient? More interesting,
therefore, are the problems for which the infor-
mation pattern is nonclassical. These problems sit
at the intersection of communication and control:
communication between agents can help reduce
the knowledge differential that exists between
them, helping them perform the control task.
Intellectually and practically, the concept of non-
classical information patterns motivates a lot of
formulations at the control-communication inter-
section. Many of these formulations – including
some discussed in this Encyclopedia (e.g., �Data
Rate of Nonlinear Control Systems and Feed-
back Entropy; � Information and Communica-
tion Complexity of Networked Control Systems
�Quantized Control and Data Rate Constraints;
�Networked Control Systems: Architecture and
Stability Issues; and �Networked Control Sys-
tems: Estimation and Control Over Lossy Net-
works) – intellectually ask the question: for a
realistic channel that is constrained by noise,
bandwidth, and speed, what is the optimal com-
munication and control strategy?

One could ask the question of optimal control
strategy even for decentralized control problems
where no external channel is available to bridge
this knowledge gradient. Why could these
problems be of interest? First, these problems
are limiting cases of control with communi-
cation constraints. Second, and perhaps more
importantly, they bring out an interesting
possibility that can allow the agents to
“communicate,” i.e., exchange information, even
when the external channel is absent. It is possible
to use control actions to communicate through
changing the system state! We now introduce
this form of communication using a simple toy
example.

http://dx.doi.org/10.1007/978-1-4471-5058-9_150
http://dx.doi.org/10.1007/978-1-4471-5058-9_154
http://dx.doi.org/10.1007/978-1-4471-5058-9_149
http://dx.doi.org/10.1007/978-1-4471-5058-9_151
http://dx.doi.org/10.1007/978-1-4471-5058-9_152
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Fig. 1 The evolution of control systems. Modern “net-

worked control systems” (also called “cyber-physical sys-
tems”) are decentralized and networked using communi-
cation channels

Communicating Using Actions:
An Example

To gain intuition into when communication using
actions could be useful, consider the inverted
pendulum example shown in Fig. 2. The goal of
the two agents is to bring the pendulum as close to
the origin as possible. Both controllers have their
strengths and weaknesses. The “weak” controller
Cw has little energy, but has perfect state observa-
tions. On the other hand, the “blurry” controller
Cb has infinite energy, but noisy observations.
They act one after the other, and their goal is
to move the pendulum close to the center from
any initial state. The information structure of
the problem is nonclassical: the Cw, but not Cb,
knows the initial state of the pendulum, and Cw

does not know the precise (noisy) observation of
Cb using which Cb takes actions.

A possible strategy: A little thought reveals an
interesting strategy – the weak controller, having
perfect observations, can move the state to the
closest of some predecided points in space, effec-
tively quantizing the state. If these quantization
points are sufficiently far from each other, they
can be estimated accurately (through the noise)
by the blurry controller, which can then use its
energy to push the pendulum all the way to zero.
In this way, the weak controller expends little
energy, but is able to “communicate” the state
through the noise to the blurry controller, by

Step 1

Step 2

x

Cw

Cb

Weak
controller

Blurry
Controller

Information Structures, the Witsenhausen Coun-
terexample, and Communicating Using Actions,
Fig. 2 Two controllers, with their respective strengths
and weaknesses, attempting to bring an inverted pendulum
close to the center. Also shown (using green “+” signs) are
possible quantization points chosen by the controllers for
a quantization-based control strategy

making it take values on a finite set. Once the
blurry controller has received the state through
the noise, it can use its infinite energy to push the
state to zero.

TheWitsenhausen Counterexample

The above two-controller inverted-pendulum ex-
ample is, in fact, motivated by what is now
known as “the Witsenhausen counterexample,”
formulated by Witsenhausen in 1968 (see Fig. 3).
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Fig. 3 The Witsenhausen counterexample is a decep-
tively simple two-time-step two-controller decentralized
control problem. The weak and the blurry controllers, Cw

and Cb act in a sequential manner

In the counterexample, two controllers (denoted
here by Cw for “weak” and Cb for “blurry”) act
one after the other in two time-steps to minimize
a quadratic cost function. The system state is
denoted by xt , where t is the time index. uw and
ub denote the inputs generated by the two con-
trollers. The cost function is k2E

�

u2w
�CE

�

x22
�

for
some constant k. The initial state x0 and the noise
z at the input of the blurry controller are assumed
to be Gaussian distributed and independent, with
variances �20 and 1 respectively. The problem
is a “linear-quadratic-Gaussian” (LQG) problem,
i.e., the state evolution is linear, the costs are
quadratic, and the primitive random variables are
Gaussian.

Why is the problem called a “counterexam-
ple”? The traditional “certainty-equivalence”
principle (Bertsekas 1995) shows that for all
centralized LQG problems, linear control laws
are optimal. Witsenhausen (1968) provided
a nonlinear strategy for the Witsenhausen
problem which outperforms all linear strategies.
Thus, the counterexample showed that the
certainty-equivalence doctrine does not extend
to decentralized control.

What is this strategy of Witsenhausen that
outperforms all linear strategies? It is, in fact, a
quantization-based strategy, as suggested in our
inverted-pendulum story above. Further, it was
shown by Mitter and Sahai (1999) that multipoint
quantization strategies can outperform linear
strategies by an arbitrarily large factor! This
observation, combined with the simplicity of
the counterexample, makes the problem very
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Fig. 4 The optimization solution of Baglietto et al. (1997)
for k2 D 0:5, �20 D 5. The information-theoretic strategy
of “dirty-paper coding” Costa (1983) also yields the same
curve (Grover and Sahai 2010)

important in decentralized control. This simple
two-time-step two-controller LQG problem
needs to be understood to have any hope of un-
derstanding larger and more complex problems.

While the optimal costs for the problem are
still unknown (even though it is known that an
optimal strategy exists (Witsenhausen 1968;
Wu and Verdú 2011)), there exists a wealth of
understanding of the counterexample that has
helped address more complicated problems. A
body of work, starting with that of Baglietto
et al. (1997), numerically obtained solutions that
could be close to optimal (although there is no
mathematical proof thereof). All these solutions
have a consistent form (illustrated in Fig. 4),
with slight improvements in the optimal cost.
Because the discrete version of the problem,
appropriately relaxed, is known to be NP-
complete (Papadimitriou and Tsitsiklis 1986),
this approach cannot be used to understand the
entire parameter space and hence has focused on
one point: k2 D 0:5; �20 D 5. Nevertheless, the
approach has proven to be insightful: a recent
information-theoretic body of work shows that
the strategies of Fig. 4 can be thought of as
information-theoretic strategies of “dirty-paper
coding” Costa (1983) that is related to the idea of
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embedding information in the state. The question
here is: how do we embed the information about
the state in the state itself ?

An information-theoretic view of the coun-
terexample: This information-theoretic approach
that culminated in Grover et al. (2013) also
obtained the first approximately optimal
solutions to the Witsenhausen counterexample
as well as its vector extensions. The result is
established by analyzing information flows in the
counterexample that work toward minimizing the
knowledge gradient, effectively an information
pattern in which Cw can predict the observation
of Cb more precisely. The analysis provides
an information-theoretic lower bound on cost
that holds irrespective of what strategy is used.
For the original problem, this characterizes the
optimal costs (with associated strategies) within
a factor of 8 for all problem parameters (i.e., k
and �20 ). For any finite-length extension, uniform
finite-ratio approximations also exist (Grover
et al. 2013). The asymptotically infinite-
length extension has been solved exactly
(Choudhuri and Mitra 2012).

The problem has also driven delineation of de-
centralized LQG control problems with optimal
linear solutions and those with nonlinear optimal
solutions. This led to the development and under-
standing of many variations of the counterexam-
ple (Bansal and Başar 1987; Başar 2008; Ho et al.
1978; Rotkowitz 2006) and understanding that
can extend to larger decentralized control prob-
lems. More recent work shows that the promise
of the Witsenhausen counterexample was not
a misplaced one: the information-theoretic ap-
proach that provides approximately optimal solu-
tions to the counterexample (Grover et al. 2013)
yields solutions to other more complex (e.g.,
multi-controller, more time-steps) problems as
well (Grover 2010; Park and Sahai 2012).

Summary and Future Directions

Even simple problems with nonclassical
information structures can be hard to solve
using classical techniques, as is demonstrated

by the Witsenhausen counterexample. However,
nonclassical information pattern for some simple
problems – starting with the counterexample –
has recently been explored via an information-
theoretic lens, yielding the first optimal or
approximately optimal solutions to these
problems. This approach is promising for larger
decentralized control problems as well. It is
now important to explore what is the simplest
decentralized control problem that cannot be
solved (exactly or approximately) using ideas
developed for the counterexample. In this
manner, the Witsenhausen counterexample can
provide a platform to unify the more modern
(i.e., external-channel centric approaches, see
�Quantized Control and Data Rate Constraints;
�Data Rate of Nonlinear Control Systems
and Feedback Entropy; �Networked Control
Systems: Architecture and Stability Issues;
�Networked Control Systems: Estimation and
Control Over Lossy Networks; � Information
and Communication Complexity of Networked
Control Systems; in the encyclopedia) with the
more classical decentralized LQG problems,
leading to enriching and useful formula-
tions.
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Abstract

Multi-agent systems are encountered in nature
(animal groups), in various domains of technol-
ogy (multi-robot networks, mixed robot-human
teams) and in various human activities (such as
dance and team athletics). Information exchange
among agents ranges from being incidentally
important to crucial in such systems. Several sys-
tems in which information exchange among the
agents is either a primary goal or a primary en-
abler are discussed briefly. Specific topics include
power management in wireless communication
networks, data-rate constraints, the complexity
of distributed control, robotics networks and for-
mation control, action-mediated communication,
and multi-objective distributed systems.

Keywords

Distributed control; Information constraints;
Multi-agent systems

Introduction

The role of information patterns in the
decentralized control of multi-agent systems has
been studied in different theoretical contexts for
more than five decades. The paper Ho (1972)
provides references to early work in this area.
While research on distributed decision making
has continued, a large body of recent research on
robotic networks has brought new dimensions of
geometric aspects of information patterns to the
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forefront (Bullo et al. 2009). At the same time,
machine intelligence, machine learning, machine
autonomy, and theories of operation of mixed
teams of humans and robots have considerably
extended the intellectual frontiers of information-
based multi-agent systems (Baillieul et al. 2012).
A further important development has been the
study of action-mediated communication and the
recently articulated theory of control communica-
tion complexity (Wong and Baillieul 2012). These
developments may shed light on nonverbal forms
of communication among biological organisms
(including humans) and on the intrinsic energy
requirements of information processing.

In conventional decentralized control, the con-
trol objective is usually well-defined and known
to all agents. Multi-agent information-based con-
trol encompasses a broader scenario, where the
objective can be agent dependent and is not
necessarily explicitly announced to all. For il-
lustration, consider the power control problem
in wireless communication – one of the ear-
liest engineering systems that can be regarded
as multi-agent information based. It is common
that multiple transmitter-receiver communication
pairs share the same radio frequency band and
the transmission signals interfere with each other.
The power control problem searches for feedback
control for each transmitter to set its power level.
The goal is for each transmitter to achieve tar-
geted signal-to-interference ratio (SIR) level by
using information of the observed levels at the
intended receiver only.

A popular version of the power control
problem (Foschini and Miljanic 1993) defines
each individual objective target level by means
of a requirement threshold, known only to the
intended transmitter. As SIR measurements
naturally reside on a receiver, the observed
SIR needs to be communicated back to the
transmitter. For obvious reasons, the bandwidth
for such communication is limited. The resulting
model fits the bill of multi-agent information-
based control. In Sung and Wong (1999), a
tristate power control strategy is proposed
so that the power control outputs are either
increased or decreased by a fixed dB or no
change at all. Convergence of the feedback

algorithm was shown using a Lyapunov-like
function.

This entry surveys key topics related to multi-
agent information-based control systems, includ-
ing control complexity, control with data-rate
constraints, robotic networks and formation con-
trol, action-mediated communication, and multi-
objective distributed systems.

Control Complexity

In information-based distributed control systems,
how to efficiently share computational and com-
munication resources is a fundamental issue. One
of the earliest investigations on how to schedule
communication resources to support a network
of sensors and actuators is discussed in Brockett
(1995). The concept of communication sequenc-
ing was introduced to describe how the commu-
nication channel is utilized to convey feedback
control information in a network consisting of
interacting subsystems. In Brockett (1997), the
concept of control attention was introduced to
provide a measure of the complexity of a con-
trol law against its performance. As attention is
a shared, limited resource, the goal is to find
minimum attention control. Another approach to
gauge control complexity in a distributed system
is by means of the minimum amount of communi-
cated data required to accomplish a given control
task.

Control with Data-Rate Constraints

A fundamental challenge in any control imple-
mentation in which system components com-
municate with each other over communication
links is ensuring that the channel capacity is
large enough to deal with the fastest time con-
stants among the system components. In a single
agent system, the so-called Data-Rate Theorem
has been formulated in various ways to under-
stand the constraints imposed between the sensor
and the controller and between the controller
and the actuator. Extensions to this fundamental
result have been focused on addressing similar
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problems in the network control system context.
Information on such extensions in the distributed
control setting can be found in Nair and Evans
(2004) and Yüksel and Basar (2007).

Robotic Networks and Formation
Control

The defining characteristic of robotic networks
within the larger class of multi-agent systems
is the centrality of spatial relationships among
network nodes. Graph theory has been shown
to provide a generally convenient mathematical
language in which to describe spatial concepts
and it is the key to understanding spatial rigid-
ity related to the control of formations of au-
tonomous vehicles (Anderson et al. 2008), or
in flocking systems (Leonard et al. 2012), or in
consensus problems (Su and Huang 2012), or in
rendezvous problems (Cortés et al. 2006). For
these distributed control research topics, readers
can consult other sections in this Encyclopedia
for a comprehensive reference list.

Much of the recent work on formation
control has included information limitation
considerations. For consensus problems, for
example, Olfati-Saber and Murray (2004)
introduced a sensing cost constraint, and in
Ren and Beard (2005) information exchange
constraints are considered, and in Yu and Wang
(2010) communication delays are explicitly
modeled.

Action-Mediated Communication

Biological organisms communicate through mo-
tion. Examples of this include prides of lions or
packs of wolves whose pursuit of prey is a coop-
erative effort and competitive team athletics in the
case of humans. Recent research has been aimed
at developing a theoretical foundation of action-
mediated communication. Communication proto-
cols for motion-based signaling between mobile
robots have been developed (Raghunathan and
Baillieul 2009) and preliminary steps towards a
theory of artistic expression through controlled

movements in dance have been reported in Bail-
lieul and Özcimder (2012). Motion-based com-
munication of this type involves specially tailored
motion description languages in which sequences
of motion primitives are assembled with the ob-
jective of conveying artistic intent, while min-
imizing the use of limited energy resources in
carrying out the movement. These motion primi-
tives constitute the alphabet that enables commu-
nication, and physical constraints on the motions
define the grammatical rules that govern the ways
in which motion sequences may be constructed.

Research on action-mediated communication
helps illustrate the close connection between con-
trol and information theory. Further discussion
of the deep connection between the two can be
found, for example, in Park and Sahai (2011),
which argues for the equivalence between the
stabilization of a distributed linear system and
the capacity characterization in linear network
coding.

Multi-objective Distributive Systems

In a multi-agent system, agents may aim to carry
out individual objectives. These objectives can
either be cooperatively aligned (such as in a
cooperative control setting) or may contend an-
tagonistically (such as in a zero-sum game set-
ting). In either case, a common assumption is that
the objective functions are a priori known to all
agents. However, in many practical applications,
agents do not know the objectives of other agents,
at least not precisely. For example, in the power
control problem alluded to earlier, the signal-to-
interference requirement of a user may be un-
known to other users. Yet this does not prevent the
possibility of deriving convergence algorithms to
allow the joint goals to be achieved.

The issue of unknown objectives in a multi-
agent system is formally analyzed in Wong
(2009) via the introduction of choice-based
actions. In an open access network, objectives of
an individual agent may be known only partially,
via the form of a random distribution in some
cases. In order to achieve a joint control objective
in general, some communication via the system
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is required if there is no side communications
channel. A basic issue is how to measure the
minimum amount of information exchange
that is required to perform a specific control
task. Motivated by the idea of communication
complexity in computer science, the idea
of control communication complexity was
introduced in Wong (2009), which can provide
such a measure. In Wong and Baillieul (2009),
the idea was extended to a rich class of nonlinear
systems that arise as models of physical processes
ranging from rigid body mechancs to quantum
spin systems.

In some special cases, control objectives
can be achieved without any communication
among the agents. For systems with bilinear
input–output mapping, including the Brockett
Integrator, it is possible to derive conditions
that guarantee this property (Wong and Baillieul
2012). Moreover, for quadratic type of control
cost, it is possible to compute the optimal
control cost. Similar results can be extended
to linear systems as discussed in Liu et al.
(2013). This circle of ideas is connected to the so-
called standard parts problem as investigated in
Baillieul and Wong (2009). Another connection
is to correlated equilibrium problems that have
been recently studied by game theorists Shoham
and Leyton-Brown (2009).

Cross-References

�Motion Description Languages and Symbolic
Control

�Multi-vehicle Routing
�Networked Systems
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Input-to-State Stability
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Synonyms

ISS

Abstract

The notion of input to state stability (ISS)
qualitatively describes stability of the mapping
from initial states and inputs to internal states
(and more generally outputs). This entry focuses
on the definition of ISS and a discussion of
equivalent characterizations.

Keywords

Asymptotic stability; Dissipation; Lyapunov
functions

Introduction

We consider here systems with inputs in the usual
sense of control theory:

Px.t/ D f .x.t/; u.t//

(the arguments “t” are often omitted). There
are n state variables and m input channels.
States x.t/ take values in Euclidean space
R
n, and the inputs (also called “controls”

or “disturbances” depending on the context)
are measurable in locally essentially bounded
maps u.�/ W Œ0;1/ ! R

m. The map f W
R
n � R

m ! R
n is assumed to be locally

Lipschitz with f .0; 0/ D 0. The solution, defined
on some maximal interval Œ0; tmax.x

0; u//, for
each initial state x0 and input u, is denoted as
x.t; x0; u/ and, in particular, for systems with
no inputs Px.t/ D f .x.t//; just as x.t; x0/. The
zero system associated to Px D f .x; u/ is by
definition the system with no inputs Px D f .x; 0/.
Euclidean norm is written as jxj. For a function
of time, typically an input or a state trajectory,
kuk, or kuk1 for emphasis, is the (essential)
supremum or “sup” norm (possibly C1, if u is
not bounded). The norm of the restriction of a
signal to an interval I is denoted by kuIk1 (or
justkuIk).

Input-to-State Stability

It is convenient to introduce “comparison func-
tions” to quantify stability. A class K1 function
is a function ˛ W R�0 ! R�0 which is con-
tinuous, strictly increasing, and unbounded and
satisfies ˛.0/ D 0, and a class KL function is
a function ˇ W R�0 � R�0 ! R�0 such that
ˇ.�; t/ 2 K1 for each t and ˇ.r; t/ decreases to
zero as t ! 1, for each fixed r .

http://dx.doi.org/10.1007/978-1-4471-5058-9_100010


576 Input-to-State Stability

For a system with no inputs Px D f .x/, there
is a well-known notion of global asymptotic
stability (for short from now on, GAS, or
“0-GAS” when referring to the zero system
Px D f .x; 0/ associated to a given system with
inputs Px D f .x; u/) due to Lyapunov and usually
defined in “–-ı” terms. It is an easy exercise
to show that this standard definition is in fact
equivalent to the following statement:

.9ˇ 2 KL/jx.t; x0/j �ˇ �jx0j; t	8 x0; 8 t � 0:

The notion of input to state stability (ISS) was
introduced in Sontag (1989), and it provides theo-
retical concepts used to describe stability features
of a mapping .u.�/; x.0// ’x.�/ that sends initial
states and input functions into states (or, more
generally, outputs). Prominent among these fea-
tures are that inputs that are bounded, “eventually
small,” “integrally small,” or convergent should
lead to outputs with the respective property. In
addition, ISS and related notions quantify in what
manner initial states affect transient behavior. The
formal definition is as follows.

A system is said to be input to state stable
(ISS) if there exist some ˇ 2 KL and � 2 K1
such that

jx.t/j � ˇ.
ˇ
ˇx0
ˇ
ˇ ; t/ C � .kuk1/ (ISS)

holds for all solutions (meaning that the estimate
is valid for all inputs u.�/, all initial conditions
x0, and all t � 0). Note that the supremum
sups2Œ0;t � �.ju.s/j/ over the interval Œ0; t � is the
same as �.kuŒ0;t �k1/ D �.sups2Œ0;t �.ju.s/j//,
because the function � is increasing, so one may
replace this term by �.kuk1/, where kuk1 D
sups2Œ0;1/ �.ju.s/j/ is the sup norm of the input,
because the solution x.t/ depends only on values
u.s/; s � t (so, one could equally well consider
the input that has values � 0 for all s > t).

Since, in general, maxfa; bg � a C b �
maxf2a; 2bg, one can restate the ISS condition
in a slightly different manner, namely, asking for
the existence of some ˇ 2 KL and � 2 K1
(in general, different from the ones in the ISS
definition) such that

≈ x0

≈ |u|∞

x

t

Input-to-State Stability, Fig. 1 ISS combines over-
shoot and asymptotic behavior

jx.t/j � max
˚

ˇ.jx0j; t/ ; � .kuk1/
�

holds for all solutions. Such redefinitions, using
“max” instead of sum, are also possible for each
of the other concepts to be introduced later.

Intuitively, the definition of ISS requires that,
for t large, the size of the state must be bounded
by some function of the sup norm – that is to say,
the amplitude – of inputs (becauseˇ.jx0j ; t/ ! 0

as t ! 1). On the other hand, the ˇ.jx0j ; 0/
term may dominate for small t , and this serves
to quantify the magnitude of the transient (over-
shoot) behavior as a function of the size of the
initial state x0 (Fig. 1). The ISS superposition the-
orem, discussed later, shows that ISS is, in a pre-
cise mathematical sense, the conjunction of two
properties, one of them dealing with asymptotic
bounds on jx0j as a function of the magnitude of
the input and the other one providing a transient
term obtained when one ignores inputs.

For internally stable linear systems Px D AxC
Bu, the variation of parameters formula gives
immediately the following inequality:

jx.t/j � ˇ.t/
ˇ
ˇx0
ˇ
ˇ C � kuk1 ;

where

ˇ.t/ D �
�etA

�
� ! 0 and

� D kBk
Z 1

0

�
�esA

�
� ds < 1:
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This is a particular case of the ISS estimate,
jx.t/j � ˇ.jx0j; t/ C � .kuk1/, with linear
comparison functions.

Feedback Redesign

The notion of ISS arose originally as a way to
precisely formulate, and then answer, the follow-
ing question. Suppose that, as in many problems
in control theory, a system Px D f .x; u/ has been
stabilized by means of a feedback law u D k.x/

(Fig. 2), that is to say, k was chosen such that the
origin of the closed-loop system Px D f .x; k.x//

is globally asymptotically stable. (See, e.g., Son-
tag 1999 for a discussion of mathematical aspects
of state feedback stabilization.) Typically, the de-
sign of k was performed by ignoring the effect of
possible input disturbances d.�/ (also called ac-
tuator disturbances). These “disturbances” might
represent true noise or perhaps errors in the calcu-
lation of the value k.x/ by a physical controller
or modeling uncertainty in the controller or the
system itself. What is the effect of considering
disturbances? In order to analyze the problem, d
is incorporated into the model, and one studies
the new system Px D f .x; k.x/ C d/, where d is
seen as an input (Fig. 3). One may then ask what
is the effect of d on the behavior of the system.
Disturbances d may well destabilize the system,
and the problem may arise even when using a rou-
tine technique for control design, feedback lin-
earization. To appreciate this issue, take the fol-
lowing very simple example. Given is the system

Px D f .x; u/ D x C .x2 C 1/u:

In order to stabilize it, substitute u D Qu
x2C1 (a pre-

liminary feedback transformation), rendering the
system linear with respect to the new input Qu: Px D
xCQu, and then use Qu D �2x in order to obtain the
closed-loop system Px D �x. In other words, in
terms of the original input u, the feedback law is

k.x/ D �2x
x2 C 1

x = f (x,u)

u = k(x)

u x

Input-to-State Stability, Fig. 2 Feedback stabilization,
closed-loop system Px D f .x; k.x//

x = f (x, u)

u = k(x)

u

ud

x

Input-to-State Stability, Fig. 3 Actuator disturbances,
closed-loop system Px D f .x; k.x/C d/

so that f .x; k.x// D �x. This is a GAS system.
The effect of the disturbance input d is analyzed
as follows. The system Px D f .x; k.x/ C d/ is

Px D �x C .x2 C 1/ d :

This system has solutions which diverge to
infinity even for inputs d that converge to zero;
moreover, the constant input d � 1 results in
solutions that explode in finite time. Thus k.x/ D
�2x
x2C1 was not a good feedback law, in the sense
that its performance degraded drastically once
actuator disturbances were taken into account.

The key observation for what follows is that
if one adds a correction term “�x” to the above
formula for k.x/, so that now,

Qk.x/ D �2x
x2 C 1

�x;

then the system Px D f .x; Qk.x/ C d/ with
disturbance d as input becomes instead

Px D � 2x � x3 C .x2 C 1/ d

and this system is much better behaved: it is still
GAS when there are no disturbances (it reduces
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to Px D �2x�x3), but, in addition, it is ISS (easy
to verify directly, or appealing to some of the
characterizations mentioned later). Intuitively, for
large x, the term �x3 serves to dominate the term
.x2 C 1/d , for all bounded disturbances d.�/, and
this prevents the state from getting too large.

This example is an instance of a general result,
which says that, whenever there is some feedback
law that stabilizes a system, there is also a (pos-
sibly different) feedback so that the system with
external input d is ISS.

Theorem 1 (Sontag 1989). Consider a system
affine in controls

Px D f .x; u/ D g0.x/C
mX

iD1
uigi .x/ .g0.0/ D 0/

and suppose that there is some differentiable
feedback law u D k.x/ so that

Px D f .x; k.x//

has x D 0 as a GAS equilibrium. Then, there is a
feedback law u Dek.x/ such that

Px D f .x;ek.x/C d/

is ISS with input d.�/.
The reader is referred to the book Krstić et al.

(1995), and the references given later, for many
further developments on the subjects of recursive
feedback design, the “backstepping” approach,
and other far-reaching extensions.

Equivalences for ISS

This section reviews results that show that ISS
is equivalent to several other notions, including
asymptotic gain, existence of robustness mar-
gins, dissipativity, and an energy-like stability
estimate.

Nonlinear Superposition Principle
Clearly, if a system is ISS, then the system with
no inputs Px D f .x; 0/ is GAS: the term kuk1

vanishes, leaving precisely the GAS property.
In particular, then, the system Px D f .x; u/ is
0-stable, meaning that the origin of the system
without inputs Px D f .x; 0/ is stable in the sense
of Lyapunov: for each – > 0, there is some ı > 0
such that jx0j < ı implies jx.t; x0/j < –. (In
comparison-function language, one can restate 0-
stability as follows: there is some � 2 K such that
jx.t; x0/j � �.jx0j/ holds for all small x0.)

On the other hand, since ˇ.jx0j; t/ ! 0 as t !
1, for t large one has that the first term in the
ISS estimate jx.t/j � max fˇ.jx0j; t/; � .kuk1/g
vanishes. Thus an ISS system satisfies the fol-
lowing asymptotic gain property (“AG”): there
is some � 2 K1 so that:

lim
t!C1

ˇ
ˇx.t; x0; u/

ˇ
ˇ � � .kuk1/ 8 x0; u.�/

(AG)

(see Fig. 4). In words, for all large enough t ,
the trajectory exists, and it gets arbitrarily close
to a sphere whose radius is proportional, in a
possibly nonlinear way quantified by the function
� , to the amplitude of the input. In the language
of robust control, the estimate (AG) would be
called an “ultimate boundedness” condition; it
is a generalization of attractivity (all trajectories
converge to zero, for a system Px D f .x/ with
no inputs) to the case of systems with inputs; the
“lim sup” is required since the limit of x.t/ as
t ! 1 may well not exist. From now on (and
analogously when defining other properties), we

x(0)

γ (⏐⏐u⏐⏐)
x(t)

Input-to-State Stability, Fig. 4 Asymptotic gain prop-
erty
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will just say “the system is AG” instead of the
more cumbersome “satisfies the AG property.”

Observe that, since only large values of t mat-
ter in the limsup, one can equally well consider
merely tails of the input u when computing its sup
norm. In other words, one may replace �.kuk1/
by �.limt!C1 ju.t/j/, or (since � is increasing)
limt!C1�.ju.t/j/.

The surprising fact is that these two necessary
conditions are also sufficient. This is summarized
by the ISS superposition theorem:

Theorem 2 (Sontag and Wang 1996). A sys-
tem is ISS if and only if it is 0-stable and AG.

A minor variation of the above superposition
theorem is as follows. Let us consider the limit
property (LIM):

inf
t�0 jx.t; x0; u/j � �.kuk1/ 8 x0; u.�/ (LIM)

(for some � 2 K1).

Theorem 3 (Sontag and Wang 1996). A sys-
tem is ISS if and only if it is 0-stable and LIM.

Robust Stability
In this entry, a system is said to be robustly stable
if it admits a margin of stability �, that is, a
smooth function � 2 K1 so the system

Px D g.x; d/ WD f .x; d�.jxj//

is GAS uniformly in this sense: for some ˇ 2
KL,

ˇ
ˇx.t; x0; d /

ˇ
ˇ � ˇ.

ˇ
ˇx0
ˇ
ˇ; t/

for all possible d.�/ W Œ0;1/ ! Œ�1; 1�m. An al-
ternative way to interpret this concept (cf. Sontag
and Wang 1995) is as uniform global asymptotic
stability of the origin with respect to all possible
time-varying feedback laws � bounded by �:
j�.t; x/j � �.jxj/. In other words, the system

Px D f .x;�.t; x//

(Fig. 5) is stable uniformly over all such pertur-
bations�. In contrast to the ISS definition, which
deals with all possible “open-loop” inputs, the

x = f (x, u)

Δ

u x

Input-to-State Stability, Fig. 5 Margin of robustness

present notion of robust stability asks about all
possible closed-loop interconnections. One may
think of � as representing uncertainty in the
dynamics of the original system, for example.

Theorem 4 (Sontag and Wang 1995). A sys-
tem is ISS if and only if it is robustly stable.

Intuitively, the ISS estimate jx.t/j � max
fˇ.jx0j; t/; � .kuk1/g says that the ˇ term
dominates as long as ju.t/j 	 jx.t/j for all t , but
ju.t/j 	 jx.t/j amounts to u.t/ D d.t/:�.jx.t/j/
with an appropriate function �. This is an instance
of a “small gain” argument, see below. One
analog for linear systems is as follows: if A is
a Hurwitz matrix, then A C Q is also Hurwitz,
for all small enough perturbations Q; note that
when Q is a nonsingular matrix, jQxj is a K1
function of jxj.

Dissipation
Another characterization of ISS is as a dissipation
notion stated in terms of a Lyapunov-like func-
tion. A continuous function V W Rn ! R is said
to be a storage function if it is positive definite,
that is, V.0/ D 0 and V.x/ > 0 for x 6D 0, and
proper, that is, V.x/ ! 1 as jxj ! 1. This
last property is equivalent to the requirement that
the sets V �1.Œ0; A�/ should be compact subsets
of R

n, for each A > 0, and in the engineering
literature, it is usual to call such functions radi-
ally unbounded. It is an easy exercise to show that
V W Rn ! R is a storage function if and only if
there exist ˛; ˛ 2 K1 such that

˛.jxj/ � V.x/ � ˛.jxj/ 8 x 2 R
n



580 Input-to-State Stability

(the lower bound amounts to properness and
V.x/ > 0 for x 6D 0, while the upper
bound guarantees V.0/ D 0). For convenience,
PV W Rn � R

m ! R is the function:

PV .x; u/ WD rV.x/:f .x; u/

which provides, when evaluated at .x.t/; u.t//,
the derivative dV.x.t//=dt along solutions of
Px D f .x; u/.

An ISS-Lyapunov function for Px D f .x; u/
is by definition a smooth storage function V for
which there exist functions �; ˛ 2 K1 so that

PV .x; u/ � �˛.jxj/ C �.juj/ 8 x; u :
(L-ISS)

Integrating, an equivalent statement is that, along
all trajectories of the system, there holds the
following dissipation inequality:

V.x.t2//� V.x.t1// �
Z t2

t1

w.u.s/; x.s// ds

where, using the terminology of Willems
(1976), the “supply” function is w.u; x/ D
�.juj/ � ˛.jxj/. For systems with no inputs,
an ISS-Lyapunov function is precisely the same
object as a Lyapunov function in the usual sense.

Theorem 5 (Sontag and Wang 1995). A sys-
tem is ISS if and only if it admits a smooth ISS-
Lyapunov function.

Since �˛.jxj/ � �˛.˛�1.V .x///, the ISS-
Lyapunov condition can be restated as

PV .x; u/ � � Q̨ .V .x// C �.juj/ 8 x; u

for some Q̨ 2 K1. In fact, one may strengthen
this a bit (Praly and Wang 1996): for any ISS
system, there is a always a smooth ISS-Lyapunov
function satisfying the “exponential” estimate
PV .x; u/ � �V.x/C �.juj/.

The sufficiency of the ISS-Lyapunov condi-
tion is easy to show and was already in the orig-
inal paper Sontag (1989). A sketch of proof is as
follows, assuming for simplicity a dissipation es-
timate in the form PV .x; u/ � �˛.V.x//C�.juj/.
Given any x and u, either ˛.V.x// � 2�.juj/

or PV � �˛.V /=2. From here, one deduces by
a comparison theorem that, along all solutions,

V.x.t//� max
˚

ˇ.V.x0/; t/; ˛�1.2�.kuk1//
�

;

where the KL function ˇ.s; t/ is the solution y.t/
of the initial value problem

Py D �1
2
˛.y/C �.u/; y.0/ D s:

Finally, an ISS estimate is obtained from
V.x0/ � ˛.x0/.

The proof of the converse part of the theorem
is based upon first showing that ISS implies
robust stability in the sense already discussed
and then obtaining a converse Lyapunov
theorem for robust stability for the system
Px D f .x; d�.jxj// D g.x; d/, which is
asymptotically stable uniformly on all Lebesgue-
measurable functions d.�/ W R�0 ! B.0; 1/. This
last theorem was given in Lin et al. (1996) and
is basically a theorem on Lyapunov functions
for differential inclusions. The classical result of
Massera (1956) for differential equations (with
no inputs) becomes a special case.

Using “Energy” Estimates Instead of
Amplitudes
In linear control theory,H1 theory studiesL2 !
L2 induced norms, which under coordinate
changes leads to the following type of estimate:

Z t

0

˛ .jx.s/j// ds � ˛0.
ˇ
ˇx0
ˇ
ˇ/C

Z t

0

�.ju.s/j/ ds

along all solutions and for some ˛; ˛0; � 2 K1.
Just for the statement of the next result, a system
is said to satisfy an integral-integral estimate if
for every initial state x0 and input u, the solution
x.t; x0; u/ is defined for all t > 0 and an estimate
as above holds. (In contrast to ISS, this definition
explicitly demands that tmax D 1.)

Theorem 6 (Sontag 1998). A system is ISS if
and only if it satisfies an integral-integral esti-
mate.



Input-to-State Stability 581

I

This theorem is quite easy to prove, in
view of previous results. A sketch of proof
is as follows. If the system is ISS, then
there is an ISS-Lyapunov function satisfying
PV.x; u/ � �V.x/ C �.juj/, so, integrating along

any solution:

Z t

0

V .x.s// ds �
Z t

0

V .x.s// ds C V.x.t//

� V.x.0// C
Z t

0

�.ju.s/j/ ds

and thus an integral-integral estimate holds. Con-
versely, if such an estimate holds, one can prove
that Px D f .x; 0/ is stable and that an asymptotic
gain exists.

Integral Input to State Stability

A concept of nonlinear stability that is truly
distinct from ISS arises when considering a
mixed notion which combines the “energy” of the
input with the amplitude of the state. A system
is said to be integral-input to state stable (iISS)
provided that there exist ˛; � 2 K1 and ˇ 2 KL
such that the estimate

˛ .jx.t/j/ � ˇ.
ˇ
ˇx0
ˇ
ˇ; t/ C

Z t

0

�.ju.s/j/ ds
(iISS)

holds along all solutions. Just as with ISS, one
could state this property merely for all times
t 2 tmax.x

0; u/. Since the right-hand side is
bounded on each interval Œ0; t � (because, recall,
inputs are by definition assumed to be bounded
on each finite interval), it is automatically true
that tmax.x

0; u/ D C1 if such an estimate
holds along maximal solutions. So forward-
completeness (solution exists for all t > 0) can
be assumed with no loss of generality.

One might also consider the following type of
“weak integral to integral” mixed estimate:

Z t

0

˛.jx.s/j/ ds � 	.jx0j/

C ˛


Z t

0

�.ju.s/j/ ds
�

for appropriateK1 functions (note the additional
“˛”).

Theorem 7 (Angeli et al. 2000b). A system
satisfies a weak integral to integral estimate if
and only if it is iISS.

Another interesting variant is found when consid-
ering mixed integral/supremum estimates:

˛.jx.t/j � ˇ.jx0j; t/ C
Z t

0

�1.ju.s/j/ ds

C �2.kuk1/

for suitable ˇ 2 KL and ˛; �i 2 K1. One then
has

Theorem 8 (Angeli et al. 2000b). A system
satisfies a mixed estimate if and only if it is iISS.

Dissipation Characterization of iISS
A smooth storage function V is an iISS-Lyapunov
function for the system Px D f .x; u/ if there are
a � 2 K1 and an ˛ W Œ0;C1/ ! Œ0;C1/

which is merely positive definite (i.e., ˛.0/ D 0

and ˛.r/ > 0 for r > 0) such that the inequality

PV .x; u/ � �˛.jxj/ C �.juj/ (L-iISS)

holds for all .x; u/ 2 R
n � R

m. To compare,
recall that an ISS-Lyapunov function is required
to satisfy an estimate of the same form but where
˛ is required to be of class K1; since every K1
function is positive definite, an ISS-Lyapunov
function is also an iISS-Lyapunov function.

Theorem 9 (Angeli et al. 2000a). A system is
iISS if and only if it admits a smooth iISS-
Lyapunov function.

Since an ISS-Lyapunov function is also an iISS
one, ISS implies iISS. However, iISS is a strictly
weaker property than ISS, because ˛ may be
bounded in the iISS-Lyapunov estimate, which
means that V may increase, and the state become
unbounded, even under bounded inputs, so long
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as �.ju.t/j/ is larger than the range of ˛. This
is also clear from the iISS definition, since a
constant input with ju.t/j D r results in a term
in the right-hand side that grows like rt .

An interesting general class of examples is
given by bilinear systems

Px D
 

AC
mX

iD1
uiAi

!

x C Bu

for which the matrix A is Hurwitz. Such systems
are always iISS (see Sontag 1998), but they are
not in general ISS. For instance, in the case when
B D 0, boundedness of trajectories for all con-
stant inputs already implies that A C Pm

iD1 uiAi
must have all eigenvalues with nonpositive real
part, for all u 2 R

m, which is a condition
involving the matrices Ai (e.g., Px D �x C ux
is iISS but it is not ISS).

The notion of iISS is useful in situations where
an appropriate notion of detectability can be
verified using LaSalle-type arguments. There
follow two examples of theorems along these
lines.

Theorem 10 (Angeli et al. 2000a). A system is
iISS if and only if it is 0-GAS and there is a
smooth storage function V such that, for some
� 2 K1:

PV .x; u/ � �.juj/
for all .x; u/.

The sufficiency part of this result follows from
the observation that the 0-GAS property by itself
already implies the existence of a smooth and
positive definite, but not necessarily proper, func-
tion V0 such that PV0 � �0.juj/ � ˛0.jxj/ for all
.x; u/, for some �0 2 K1 and positive definite
˛0 (if V0 were proper, then it would be an iISS-
Lyapunov function). Now, one uses V0 C V as an
iISS-Lyapunov function (V provides properness).

Theorem 11 (Angeli et al. 2000a). A system is
iISS if and only if there exists an output function
y D h.x/ (continuous and with h.0/ D 0)
which provides zero detectability (u � 0 and
y � 0 ) x.t/ ! 0) and dissipativity in the

following sense: there exists a storage function V
and � 2 K1, ˛ positive definite, so that

PV .x; u/ � �.juj/� ˛.h.x//

holds for all .x; u/.

Angeli et al. (2000b) contains several additional
characterizations of iISS.

Superposition Principles for iISS
There are also asymptotic gain characterizations
for iISS. A system is bounded energy weakly
converging state (BEWCS) if there exists some
� 2 K1 so that the following implication holds:

Z C1

0

�.ju.s/j/ ds < C1 )

lim inf
t!C1

ˇ
ˇx.t; x0; u/

ˇ
ˇ D 0 BEWCS

(more precisely: if the integral is finite,
then tmax.x

0; u/ D C1 and the liminf
is zero). It is bounded energy frequently
bounded state (BEFBS) if there exists some
� 2 K1 so that the following implication
holds:

Z C1

0

�.ju.s/j/ ds < C1 )

lim inf
t!C1

ˇ
ˇx.t; x0; u/

ˇ
ˇ < C1 BEFBS

(again, meaning that tmax.x
0; u/ D C1 and the

lim inf is finite).

Theorem 12 (Angeli et al. 2004). The follow-
ing three properties are equivalent for any given
system Px D f .x; u/:
• The system is iISS.
• The system is BEWCS and 0-stable.
• The system is BEFBS and 0-GAS.

Summary and Future Directions

This entry focuses on stability notions relative to
steady states, but a more general theory is also
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possible that allows consideration of more
arbitrary attractors, as well as robust and/or
adaptive concepts. Much else has been omitted
from this entry. Most importantly, one of the key
results is the ISS small-gain theorem due to Jiang
et al. (1994), which provides a powerful sufficient
condition for the interconnection of ISS systems
being itself ISS.

Other topics not treated include, among many
others, all notions involving outputs; ISS proper-
ties of time-varying (and in particular periodic)
systems; ISS for discrete-time systems; questions
of sampling, relating ISS properties of continuous
and discrete-time systems; ISS with respect to
a closed subset K; stochastic ISS; applications
to tracking, vehicle formations (“leader to fol-
lowers” stability); and averaging of ISS systems.
Sontag (2006) may also be consulted for further
references, a detailed development of some of
these ideas, and citations to the literature for
others. In addition, the textbooks Isidori (1999),
Krstić et al. (1995), Khalil (1996), Sepulchre
et al. (1997), Krstić and Deng (1998), Freeman
and Kokotović (1996), and Isidori et al. (2003)
contain many extensions of the theory as well as
applications.
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Krstić M, Deng H (1998) Stabilization of uncertain non-
linear systems. Springer, London
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Abstract

The main functional and support facilities of-
fered by interactive environments and tools for
computer-aided control system design (CACSD)
and reference examples of such software systems
are presented, from both a user and a developer
perspective. The essential functions these envi-
ronments should possess and requirements which
should be satisfied are discussed. The importance
of reliability and efficiency is highlighted, be-
sides the desired friendliness and flexibility of
the user interface. Widely used environments and
software tools for CACSD, including MATLAB,
Mathematica, Maple, and the SLICOT Library,
serve as illustrative examples.

Keywords

Automatic control; Controller design; Numerical
algorithms; Simulation; User interface

Introduction

The complexity of many processes or systems
to be controlled, and the strong performance
requirements to be fulfilled nowadays, makes
it very difficult or even impossible to design
suitable control laws and algorithms without
resorting to computers and dedicated software
tools. computer-aided control system design
(CACSD) is the use of computer programs to
support the creation, analysis, evaluation, or
optimization of a control system design. CACSD
is a specialization of computer-aided design
(CAD) for control systems. CAD is used in many

domains, to enhance designer’s productivity and
the design quality and to manage the design
versions and documentation. CACSD is not a
new paradigm, since the first such software
systems have been developed about 50 years
ago. See the historical overview in a companion
paper.

The interactive environments and tools for
CACSD have evolved significantly during the last
decades, in parallel with the developments of
numerical linear algebra, scientific computations,
and computer hardware and software, includ-
ing programming and networking capabilities.
Starting from simple collections of specialized
tools for solving well-defined system analysis
and design problems, the CACSD became in-
creasingly more sophisticated and powerful, al-
lowing complicated tasks to be orchestrated for
fully covering the stages of control engineering
design, prototyping, and testing, including even
the transfer to practical systems and applications.
Modeling, system analysis and synthesis, and
control system assessment are activities which
are assisted by the nowadays advanced CACSD
environments and software tools. The main aim is
to help the designer to concentrate on the design
problem itself, not on theoretical approaches,
numerical algorithms, and computational details.
Moreover, CACSD environments allow the de-
velopers and users to do conceptual thinking,
but also programming and debugging at a higher
level of abstraction, in comparison with standard
programming languages, like Fortran, C/C++, or
JavaTM.

There are both commercial or free and open-
source CACSD environments and tools. State-
of-the-art CACSD systems exist for several
platforms (Windows, Linux/UNIX, and Mac
OS X). Multiple high-speed CPUs, graphics
cards, and large amounts of RAM are well suited
to perform graphically and computationally
intensive tasks. A common feature is the presence
of a “friendly” graphical user interface, but often
a dedicated command language is also available.
The user interacts with the CACSD environment,
e.g., by specifying the model or control structure,
the design requirements, and the values of es-
sential parameters or by selecting and combining
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Interactive CACSD environment (e.g., MATLAB, Mathematica, Maple)
(for modeling, simulation, analysis, synthesis, etc.)

Toolboxes or packages with executables or functions written in the environment language
(Graphical) User interface, Interactive language, Graphical functions, API

CACSD subroutine libraries (e.g., SLICOT)
Mathematical subroutine libraries (e.g., LAPACK, ARPACK, IMSL, NAG)

Computer-optimized mathematical libraries or their generators (e.g., BLAS, MKL, ATLAS)
Libraries of intrinsic functions (e.g., in Fortran or C/C++)

Interactive Environments and Software Tools for CACSD, Fig. 1 Hierarchy of the software components incorpo-
rated in an interactive CACSD environment

the tools to be used. The process can be repeated
until a satisfactory behavior is obtained.

Usually, the underlying computational tools
on which the interactive environments are based
are hidden to the user. Moreover, software for
extensive testing is not normally provided, but
demonstrators running few examples are offered.
Unfortunately, even mathematically simple
problems of small dimension can conduct to
wrong results when using unsuitable algorithms.
Illustrative control-related examples are given,
e.g., in Van Huffel et al. (2004). Since system
analysis and design tasks usually involve sequen-
tial or iterative solution of large and complex
subproblems, it follows that the quality of the
intermediate results is of utmost importance.
Consequently, the interactive environments for
CACSD should be based on reliable, efficient,
and thoroughly tested computational building
blocks, which are called at the lower layers of
calculations. These blocks constitute the compu-
tational engine of an interactive environment.

Figure 1 gives a typical hierarchy of the soft-
ware components incorporated in an interactive
CACSD environment.

Interactive Environments for CACSD

Main Functionality
A comprehensive set of functions of and require-
ments for interactive environments for control
engineering are described in MacFarlane et al.
(1989), but such a set has probably not yet been
covered by any single environment. State-of-the-
art interactive environments for CACSD include
many attractive functional features:

• Define or find (via first principles or system
identification) various system models (e.g.,
state-space models or transfer-function matri-
ces) and convert between different representa-
tions

• Find reduced order (or simplified) models,
which can more economically be used for
simulation, control, prediction, etc.

• Analyze basic system properties, like stabil-
ity, controllability, observability, stabilizabil-
ity, detectability, minimality, properness, etc.

• Analyze interactively the behavior of a control
system for various scenarios

• Provide alternative tools for different cate-
gories of users, from novice to expert, and
from classical to “modern” or advanced anal-
ysis and synthesis techniques, in time domain
or frequency domain

• Provide a wide range of tools, covering mod-
eling, system identification, filtering, control
system design, simulation, real-time behav-
ior, hardware-in-the-loop simulation, and code
generation for easy deployment and ensure
their interoperability

• Allow the user to add extensions at vari-
ous levels, new functions, interfaces, or even
toolboxes or packages, which can be made
available to a general community and allow
customization

In addition to the functional and computational
tools, essential components of an interactive en-
vironment are the user interface, the application
program interface (API), and the support tools
which enable to easily specify, document, and
store a design solution, to visualize and interpret
the results, to export them to other applications
for further processing, to generate reports, etc.
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A good paradigm for the data environment is
object orientation.

It is a common feature of an interactive envi-
ronment for CACSD to address the requirements
of a large diversity of users, in various stages
of familiarity with the environment. This feature
is expressed, e.g., by the option to use either
a graphical user interface or a command lan-
guage to call and sequence various computational
procedures. In addition, tools for easy building
new computational or graphical procedures, or
for managing the codes and results, are often
included. The command language should oper-
ate both on low-level data constructs, such as
a matrix, and on high-level ones (e.g., system
objects), and it should allow operator overloading
(e.g., taking G1 
 G2 as the result of a series
interconnection of the systems represented by the
system objects G1 and G2).

An environment for CACSD should integrate
advanced user interfaces and API, a collection
of problem solvers based on reliable and ef-
ficient numerical and possibly symbolic algo-
rithms, and tools for visualizing and interpreting
the results. Widely used such environments are,
for instance, MATLAB from The MathWorks,
Inc., Mathematica from Wolfram Research, or
Maple from Waterloo Maple Inc. (Maplesoft).
Earlier developments of CACSD packages are
surveyed in Frederick et al. (1991). There are
also environments dedicated to modeling and
simulation, which cover a broad range of tech-
nical and engineering computations, including
those for mechanical, electrical, thermodynamic,
hydraulic, pneumatic, or thermal systems. An
example is Dymola, presented in a subsequent
subsection.

Reference interactive environments and tools
for CACSD are presented in the following
(sub)sections.

Reference Interactive Environments
MATLAB (MATrix LABoratory) is an
integrated, interactive environment for tech-
nical computing, visualization, and program-
ming (MathWorks 2013). Based on a powerful
high-level interpreter language and development
tools, an easy-to-use, flexible, and customizable

graphical user interface, complemented with
attractive visualization capabilities, and open
for extensions with new toolkits, MATLAB
can be used for solving intricate scientific
and engineering problems, as well as for the
development and deployment of applications.

MATLAB R� and Simulink R� are registered
trademarks of The MathWorks, Inc. MATLAB,
Simulink, and several toolboxes, including Sys-
tem Identification Toolbox, Control System Tool-
box, and Robust Control Toolbox, are suitable
for solving various control engineering problems;
other toolboxes, such as Signal Processing Tool-
box, Optimization Toolbox, and Symbolic Math
Toolbox, offer additional useful facilities. See
http://www.mathworks.com/products/.

Simulink is a high-level implementation of the
engineering approach, based on block diagrams,
to analyze and design control systems. It is also a
powerful modeling and multi-domain simulation
and model-based design tool for dynamic sys-
tems, which supports hierarchical system-level
design, simulation, automatic code generation,
and continuous test and verification of embed-
ded systems. Simulink offers a graphical edi-
tor, customizable block libraries, and solvers for
modeling and simulating dynamic systems. The
models may include MATLAB algorithms, and
the simulation results may be further processed
to MATLAB. Managing projects (files, compo-
nents, data), connecting to hardware for real-time
testing, and deploying the designed system are
additional, useful Simulink features. Real-Time
Workshop code generation allows to speed up
the design and implementation, by generating
syntactically and semantically correct code which
can be uploaded to the target machine.

MATLAB environment is very suitable for
rapid prototyping, seen in a broad sense. This
may include not only fully designing and imple-
menting a new control law, testing it on a host
computer, and deploying on a target computer
but also support for developing and testing new
mathematical or control theories and algorithms.

Born around 1980, MATLAB has evolved and
improved impressively. Since 2004, two releases
have been issued each year. There was a major
change of the interface in Release 2012b, visible

http://www.mathworks.com/products/
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both in the core MATLAB “Desktop” and in
Simulink. The so-called Toolstrip interface re-
places former menus and toolbars and includes
tabs which group functionality for common tasks.
A gallery of applications from the MATLAB
family of products is additionally available and
can be extended by the user.

MATLAB supports developing applications
with graphical user interface (GUI) features;
this itself can be done graphically using GUIDE
(GUI development environment). MATLAB has
support for object-oriented programming and
interfacing with other languages or connecting to
similar environments as Maple or Mathematica.
When using the command-line interface,
MATLAB helps the user, e.g., by showing the
arguments of the typed MATLAB functions; also,
MATLAB allows execution profiling, for increas-
ing the computational efficiency, and its editor
can suggest changes in the user functions (the so-
called M-files) for improving the performance.

MATLAB users may upload their own contri-
butions to the MATLAB Central website or may
download tools developed by other people. User
feedback is used by the MATLAB developers
to improve the functionality, reliability, and effi-
ciency of the computations.

Commercial competitors to MATLAB include
Mathematica, Maple, and IDL; free open-source
alternatives are, e.g., GNU Octave, FreeMat,
and Scilab, intended to be mostly compatible
with the MATLAB language. For instance,
a set of free CACSD tools for GNU Octave
version 3.6.0 or beyond has been very recently
developed (see http://octave.sourceforge.net/
control/). The Octave extension package called
control is based on the SLICOT Library and
includes functionalities for system identification,
system analysis, control system design (including
H1 synthesis), and model reduction, which are
the basic steps of the control engineer design
workflow.

Mathematica is an interactive environment
which supports complete computational work-
flows, making it suitable for a convenient
endeavor from ideas to deployed solutions
(see http://www.wolfram.com/mathematica/).

Mathematica offers, e.g., tools for 2D and 3D
data and function visualization and animation,
numeric and symbolic tools for discrete and
continuous calculus, a toolkit for adding user
interfaces to applications, control systems
libraries, tools for parallel programming,
etc. High-performance computing capabilities
include the use of packed and sparse arrays,
multiple precision arithmetic, automatic multi-
threading on multi-core computers (based on
processor-specific optimized libraries), hardware
accelerators, support for grid technology,
and CUDA and OpenCL GPU hardware.
Mathematica and SystemModeler (based on
Modelica c� language) offer numerous built-in
functions which allow to design, analyze, and
simulate continuous- and discrete-time control
systems; simplify models; interactively test
controllers; and document the design. Both
classical and modern techniques are provided. A
powerful symbolic-numeric computation engine
and highly efficient numerical algorithms are
used. Mathematica allows to define the system
models in a more natural form than MATLAB.
It can analyze not only numeric systems but
also symbolic ones, represented by state-space
or transfer-function models. The computational
precision and algorithms can be automatically
controlled and selected, respectively, and using
arbitrary precision arithmetic is possible.

Maple is a computer algebra system, which
combines a powerful engine for mathematical
calculations with an intuitive user interface
(see http://www.maplesoft.com/). Classical
mathematical notation can be used, and the
interface is customizable. Arbitrary precision
numerical computations, as well as symbolic
computations, can be performed. The Maple
language is provided by a small kernel. NAG
Numerical Libraries, ATLAS libraries, and other
libraries written in this language are used for
numerical calculations. Symbolic expressions
are stored as directed acyclic graphs. The
latest release, Maple 17, added hundreds of
new problem-solving commands and interface
enhancements. Many calculations recorded an
impressive improvement in efficiency, compared

http://octave.sourceforge.net/control/
http://octave.sourceforge.net/control/
http://www.wolfram.com/mathematica/
http://www.maplesoft.com/
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to the previous release. Examples include cal-
culations with complex floating-point numbers
and linear algebra operations. It is possible
to use multiple cores and CPUs. The parallel
memory management has been improved. Maple
includes some CACSD tools for linear and
nonlinear dynamic systems. For instance, the
built-in package DynamicSystems (available
since Maple 12 release) covers the analysis of
linear time-invariant systems. Numerical solvers
for Sylvester and Lyapunov equations have been
added to the LinearAlgebra packages in Maple
13, and solvers for algebraic Riccati equations –
based on SLICOT Library routines – have been
included in Maple 14 (available in multiple
precision arithmetic since Maple 15). Moreover,
the MapleSim environment, based on Modelica,
is dedicated to physical modeling and simulation.
Symbolic simplification, numerical solution
of the differential-algebraic equations (DAEs),
and model post-processing (sensitivity analysis,
linearization, parameter optimization, code
generation, etc.) can be performed in MapleSim.
Its Control Design Toolbox provides solutions
for optimal control, Kalman filtering, pole
assignment, etc. Bidirectional communication
with MATLAB is possible.

MuPAD is another computer algebra system,
initially developed by a group at the University
of Paderborn, Germany, and then in cooperation
with SciFace Software GmbH & Co. KG, com-
pany purchased in 2008 by The MathWorks, Inc.
MuPAD has been used with Scilab, and now it is
available in the Symbolic Math Toolbox. MuPAD
is able to operate on formulas symbolically or
numerically (with specified accuracy). It offers a
programming language allowing object-oriented
and functional programming, several packages
for linear algebra, differential equations, number
theory, and statistics, an interactive graphical sys-
tem supporting animations and transparent areas
in tridimensional images, etc.

LabVIEW (Laboratory Virtual Instrumentation
Engineering Workbench), from National
Instruments, is an interactive development
environment, based on MATRIXx, for a visual
programming language mainly used for data

acquisition, instrument control, and industrial
automation. Its Control Design and Simulation
Module (see http://sine.ni.com/psp/app/doc/p/id/
psp-648/lang/en) can be used to build process and
controller models using transfer-function, state-
space, or zero-pole-gain representations, analyze
the open- and closed-loop system behavior,
deploy the designed controllers to real-time
hardware using built-in functions and LabVIEW
Real-Time Module, etc.

Software Tools for CACSD

The software tools for CACSD are formally
divided below into computational and support
tools. SLICOT Library and Dymola serve as
illustrative examples. The support tools can also
include computational components.

Computational Tools
The computational tools for CACSD implement
the main numerical algorithms of the systems and
control theory and should satisfy several strong
requirements:
• Reliability or guaranteed accuracy, which im-

plies the use of numerically stable algorithms
as much as possible and the estimation of the
problem sensitivity (conditioning) and of the
results accuracy; backward numerical stability
ensures that the computed results are exact for
slightly perturbed original data.

• Computational efficiency, which is important
for large-scale engineering design problems or
for real-time control.

• Robustness, which is mainly ensured by
avoiding overflows, harmful underflows,
and unacceptable accumulation of rounding-
errors; scaling the data may be essential.

• Ease-of-use, achieved by simplified user inter-
face (hiding the details), and default values for
algorithmic parameters, such as tolerances.

• Wide scope and rich functionality, which ad-
dress the range of problems and system repre-
sentations that can be handled.

• Portability to various platforms, in the sense
of functional correctness.

• Reusability, in building several dedicated en-
gineering software systems or environments.

http://sine.ni.com/psp/app/doc/p/id/psp-648/lang/en
http://sine.ni.com/psp/app/doc/p/id/psp-648/lang/en
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More details are given, e.g., in Van Huffel et al.
(2004). An example addressing all these aspects
is discussed in what follows.

SLICOT Library Benner et al. (1999) and
Van Huffel et al. (2004) is one of the most com-
prehensive libraries for control theory numerical
computations, containing over 500 subroutines
which cover system analysis, benchmark and
test problems, data analysis, filtering, identifica-
tion, mathematical routines, some capabilities for
nonlinear systems, synthesis, system transforma-
tion, and utility routines (see http://www.slicot.
org/). The requirements above have been taken
into account in the SLICOT Library develop-
ment. Some of the SLICOT components are used
in several interactive environments for CACSD,
including MATLAB, Maple, Scilab, and Octave
control package. The library is still under devel-
opment. It is worth mentioning the new focus
on structure-preserving algorithms, which offer
increased accuracy, reliability, and efficiency, in
comparison with standard solvers. Many proce-
dures for optimal control and filtering, model
reduction, etc., can benefit from using the “struc-
tured” solvers. There are also separate SLICOT-
based toolboxes for MATLAB (Benner et al.
2010). SLICOT components follow predefined
implementation and documentation standards.

SLICOT Library routines, and functions from
many interactive environments for CACSD call
components from the Basic Linear Algebra
Subprograms (BLAS, see Dongarra et al. 1990
and the references therein) and Linear Algebra
PACKage (LAPACK, Anderson et al. 1999). This
approach enhances portability and efficiency,
since optimized BLAS and LAPACK Libraries
are provided for major computer platforms.

Support Tools
The support software tools for CACSD offer
additional capabilities compared to compu-
tational tools. They may include alternative
algorithms, symbolic computations (usually,
for low-dimensional problems), and extended
functionality, e.g., for modeling/simulation of
nonlinear systems, code generation, etc. The
support tools can be used by software developers
of CACSD environments or computational tools

or directly by other users. For instance, symbolic
calculations are useful for checking the accuracy
of numerical algorithms. The code generation
facility offers a safe and convenient support
for deploying a design solution to the control
hardware. A reference support software tool is
briefly presented below.

Dymola (Dynamic modeling laboratory), from
Dassault Systemes (see http://www.3ds.com/
products/catia/portfolio/dymola), deals with
high-fidelity modeling and simulation of complex
systems from various domains, like aerospace,
automotive, robotics, process control, and other
applications. Compatible and comprehensive
model libraries, developed by leading experts,
exist for many engineering branches. The
users may create their own libraries or adapt
existing libraries. This flexibility and openness is
provided by the use of the open, object-oriented
modeling language Modelica c�, currently further
developed by the Modelica Association.

Equation-oriented models, based on DAEs,
and symbolic manipulation are used, stimulating
the reuse of components and enhancing the re-
liability and efficiency of the calculations. This
approach enables to simplify generating the equa-
tions, which result from interconnecting various
subsystems, and to deal with algebraic loops
and structurally singular models. Algebraic loops
are encountered when some auxiliary variables
depend algebraically upon each other in a mu-
tual way (Cellier and Elmqvist 1992). Structural
singularities are related to DAE of index higher
than 1.

Dymola allows performing hardware-in-the-
loop simulation and real-time 3D animation. A
model can be built by graphical composition,
connecting components from various libraries
using simple dragged-and-dropped operations.
The parameters a model depends on can be tuned
either by parameter estimation (also called model
calibration), which minimizes the error between
the physical measurements and simulation
results, or by optimization, which minimizes
certain performance criteria. Sometimes, e.g.,
when designing certain controllers, the criteria
values are obtained by simulation. Dymola offers
also facilities for model management, including

http://www.slicot.org/
http://www.slicot.org/
http://www.3ds.com/products/catia/portfolio/dymola
http://www.3ds.com/products/catia/portfolio/dymola
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checking, testing, encrypting, or comparing
models, and version control.

Summary and Future Directions

The main functional and support facilities of-
fered by interactive environments and software
tools for CACSD and reference examples have
been presented. Their remarkable evolution dur-
ing the past decades, combined with the im-
portance of the design solutions they offer, is
the strong argument that the CACSD software
arsenal will continue to evolve and more reli-
able, efficient, and powerful systems will come
into place. Progress is expected at all levels,
including basic algorithms and numerical and
symbolic libraries but also command languages,
user interfaces, human-machine communication,
and associated hardware. Tools for adaptive, non-
linear, and distributed control systems design
should be developed and integrated. Artificial
intelligence support might be required to add
expert capabilities to the forthcoming interactive
environments.

Cross-References

�Computer-Aided Control Systems Design: In-
troduction and Historical Overview

�Model Order Reduction: Techniques and Tools
�Multi-domain Modeling and Simulation
�Optimization-Based Control Design Tech-

niques and Tools
�Robust Synthesis and Robustness Analysis

Techniques and Tools
� System Identification: An Overview
�Validation and Verification Techniques and

Tools

Recommended Reading

CACSD is well presented in many textbooks.
A very recent one is Chin (2012), which covers
modeling, control system design, implemen-
tation, and testing, and describes practical

applications using MATLAB and Simulink.
Many IFAC (International Federation of
Automatic Control) and IEEE (Institute for Elec-
trical and Electronics Engineers) international
conferences and symposia have been dedicated
to CACSD, going back more than two decades.
A wealth of material is available, e.g., on IEEE
Xplore (ieeexplore.ieee.org), containing the
proceedings of many of the IEEE CACSD events.
A recent event is the 2011 IEEE International
Symposium on CACSD. Similar IEEE events
were hold on 2010, 2008, 2006, 2004, 2002,
2000, 1999, 1996, 1994, 1992, and 1989. A new
IEEE CACSD Conference, for Systems under
Uncertainty, took place in July 2013.
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Abstract

This entry is a brief survey of classical inventory
models and their extensions in several direc-
tions such as world-driven demands, presence
of forecast updates, multi-delivery modes and
advanced demand information, incomplete in-
ventory information, and decentralized inventory
control in the context of supply chain manage-
ment. Important references are provided. We con-
clude with suggestions for future research.

Keywords

Base stock policy; EOQ model; Incomplete infor-
mation; Newsvendor model; (s; S ) policy

Introduction

Optimal inventory theory deals with managing
stock levels of goods to effectively meet the
demand of those goods. Because of the huge
amount of capital that is tied up in inventory,
its management is critical to the profitability of
firms. A systematic analysis of inventory prob-
lems began with the development of the classi-
cal economic order quantity (EOQ) formula of
Ford W. Harris in 1913. A substantial amount
of research was reported in 1958 by Kenneth J.
Arrow, Samuel Karlin, and Herbert Scarf, and
much more has accumulated since then. Books on
the topic include Zipkin (2000), Porteus (2002),
Axsäter (2006), and Bensoussan (2011).

In this entry, we review single- and multi-
period models with deterministic, stochastic, par-
tially observed demand for a single product. In
these models, our aim is to decide on the time
of the orders and the order quantities. The time

between issuing an order and its receipt is called
the lead time. For most of this review, we will
assume the lead time to be zero, and the reader
can consult the referenced books for nonzero lead
time extensions and other topics not covered here.

Deterministic Demand

We will describe two classical models: the EOQ
model and the dynamic lot size model.

The EOQModel
This basic and most important deterministic
model is concerned with a product that has a
constant demand rate D in continuous time over
an infinite horizon. No shortages are allowed.
The costs consist of a fixed setup/ordering costK
and a holding cost h per unit of average on-hand
stock per unit time. The production/purchase cost
per unit time is a sunk cost since there is no
choice of a total amount to produce, and hence
it can be ignored. Although dynamic, the model
can be reduced to a static model by a simple
argument of periodicity. Moreover, it is obvious
that one should never produce or order except for
when the inventory level is zero, and one should
order the same lot size Q each time the inventory
level reaches zero. Since the average inventory
level over time is Q=2 and the number of setups
is D=Q per unit time, the long-run average cost
to be minimized is KD/Q+hQ/2. The optimal
policy that minimizes this cost, obtained using
the first-order condition, is to order the lot size

Q D
r

2KD

h
(1)

every time the inventory level reaches zero.
Harris (1913) introduced the model. Erlenkotter
(1990) provides a historical account of the
formula, and Beyer and Sethi (1998) provide
a mathematically rigorous proof involving
quasi-variational inequalities (QVI) that arise
in the course of dealing with continuous-time
optimization problems involving fixed costs.
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The Dynamic Lot Size Model
This is an analogue of the EOQ model when
the demand varies over time. Wagner and Whitin
(1958) developed it in the discrete-time finite
horizon framework. With D.t/ denoting the de-
mand in period t and other costs similar to those
in the EOQ model, they showed that there exists
an optimal policy in which an order will be
issued just as the inventory level reaches zero,
except for the first order. This policy is called
the zero-inventory policy. With this in hand, the
problem reduces to selecting only the order times.
This is accomplished by applying a shortest path
algorithm. Moreover, there are forward (recur-
sion) procedures for solving the problem.

An important feature of this model is that in
most cases, one can detect a forecast horizon
which essentially separates earlier periods from
later ones. More specifically, T is a forecast
horizon if the first order in a T horizon problem
remains optimal in any finite horizon problem
with horizon longer than T , regardless of the
demands beyond the period T . For an extensive
bibliography of this literature, see Chand et al.
(2002).

Stochastic Demand

We shall discuss three classical models and some
of their extensions.

The Single-Period Problem: The
Newsvendor Model
The problem of a newsvendor is to decide on an
order quantity of newspapers to meet a stochas-
tic demand at a minimum cost. If the realized
demand is larger than the ordered quantity, it is
lost and there is an opportunity loss of cu (selling
price minus purchase cost) for each paper short.
On the other hand, for each paper ordered but not
sold, there is an opportunity loss of co (purchase
cost plus holding cost). The newsvendor concep-
tualizes the decision by each additional paper as a
separate marginal contribution. The first is almost
certain to be sold. Each additional paper is less
likely to be sold than the previous one. Thus,
each additional paper will be worth somewhat

less, and the marginal paper at the optimum
should be worth exactly zero. Thus, cu times the
probability of selling the marginal paper minus
co times the probability of not selling it should
equal zero. Now, if F denotes the cumulative
probability distribution function of the demand
D, then clearly the optimal order quantity Q

satisfies co �F .Q/� cu � .1� F.Q// D 0, which
gives us the famous newsvendor formula for the
optimal order quantity

Q D F �1



cu

cu C co

�

; (2)

where cu=.cu C co/ is known as the critical frac-
tile.

If p denotes the unit sale price, c the unit
cost, and h the holding cost per unit per unit
time, then cu D p � c and co D c C h, and
therefore, the critical fractile can be expressed as
.p � c/ = .p C h/. An extension of the newsven-
dor formula to allow for a unit cost g of lost
goodwill and a unit salvage value s received at
the end of the period for each unit not sold is
immediate. If we let ˛ > 0 denote the periodic
discount factor, then cu D p C g � c and co D
c C h � ˛s and the critical fractile becomes
.p C g � c/ = .p C g C h � ˛s/ ; and therefore,

Q D F �1



p C g � c
p C g C h � ˛s

�

: (3)

The newsvendor model has been used exten-
sively in the context of supply chain management
with multiple agents maximizing their individual
objectives. In this case, inefficiencies arise due
to double marginalization. Then, a question of
appropriate contracts that can lead to the first-best
solution, or coordinate the supply chain, becomes
important. Cachon (2003) surveys this literature.

Multi-period Inventory Models: No
Fixed Cost
The newsvendor model is a single-period model,
and its multi-period generalization requires that
the inventory not sold in a period is carried over
to the next period. This results in the multi-period
inventory model with lost sales. It is assumed
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that demand in each period is independent and
identically distributed (i.i.d.) with F denoting its
cumulative probability distribution function. A
rigorous analysis requires the method of dynamic
programming, and it shows that there is a stock
level St called base stock in period t , that we
would ideally like to have at the beginning of
period t . Thus, the optimal policy in period t ,
called the base stock policy, is to order

Qt.x/ D
n
St�x if x<St ;
0 if x�St : (4)

In the special case when the terminal salvage
value of an item is exactly equal to its cost c, it is
possible to come up with the optimal policy using
intuition. Since we do not need to salvage unused
items in the multi-period setting, one can argue
that an item carried over to the next period is
worth its purchase cost c. Therefore, its presence
means that the next period will need to order one
less and thus save an amount c. In the last period,
when there is no next period, our terminal sal-
vage value assumption also guarantees a leftover
item’s worth to be also c. Thus, we can modify
(3) and obtain a stationary base stock level

S D F �1



p C g � c

.p C g � c/C .c C h� ˛c/

�

D F �1



p C g � c

p C g C h � ˛c
�

(5)

for each period t .
Thus, the elimination of the endgame effect

delivers us a myopic policy, a policy optimal in
the single-period case to be also optimal in the
dynamic multi-period setting. A more general
concept than the optimality of a myopic policy
is that of the forecast horizon mentioned earlier
in the context of the dynamic lot size model.

Sometimes, when the demand exceeds the
on-hand inventory in the period, the demand is
not lost but backlogged. In this case, each unit
of backlogged demand is satisfied in the next
period, and unit revenue p is recovered, but a unit
backlogging cost b is incurred, due to expediting,
special handling, delayed receipt of revenue, and
loss of goodwill. Thus, cu D b � .1 � ˛/c,

where the second term represents the savings due
to postponing the purchase of the backlogged
demand unit by one period, and co D c C h� ˛c
as in (4). This gives us the base stock level

S D F �1


b � .1 � ˛/c

b C h

�

; (6)

which can be used in (5) to give the optimal
policy.

Sometimes it is possible to have multiple de-
livery modes such as fast, regular, and slow as
well as demand forecast updates. Then, at the be-
ginning of each period, on-hand inventory and de-
mand information are updated. At the same time,
decisions on how much to order using each of the
modes are made. Fast, regular, and slow orders
are delivered at the ends of the current, the next,
and one beyond the next periods, respectively.
In such models, a modified base stock policy is
optimal only for the two fastest modes. For details
and further generalization, see Sethi et al. (2005).

An important extension includes serial inven-
tory systems where stage 1 receives supplies from
an outside source and each downstream stage
receives supplies from its immediate upstream
stage. Clark and Scarf (1960) introduced the
notion of the echelon inventory position at a stage
to consist of the stock at that stage plus stock
in transit to that stage plus all downstream stock
minus the amount backlogged at the final stage.
Then, the optimal ordering policy at each stage
is given by an echelon base stock policy with
respect to the echelon inventory position at that
stage. It is known that assembly systems can be
reduced to a serial system. Details can be found
in Zipkin (2000).

Multi-period Inventory Models: Fixed Cost
When there is a fixed cost of ordering, it is clear
that it would not be reasonable to follow the base
stock policy when the inventory level is not much
below the base stock level. Indeed, Scarf (1960)
proved that there are numbers st and St , st < St ,
for period t such that the optimal policy in period
t is to order

Qt.x/ D
n
St�x if x�st
0 if x>st :

(7)
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Such a policy is famously known as an (s; S )
policy.

When the demands are not i.i.d., the model
has been extended to Markovian demands. In this
case, there is an exogenous Markov process, and
the distribution of the demand in each period
depends on the state of the Markov process,
called the demand state, in that period. It can
be shown that the optimal policy in period t

is (sit ; S
i
t ), where i denotes the demand state

in the period. Such a policy is also called a
state-dependent (s; S ) policy. Further details are
available in Beyer et al. (2010). Recent advances
in information technology have allowed man-
agers to obtain advance demand information in
addition to forecast updates. In such cases, a
state-dependent (s; S ) policy can be shown to be
optimal. For details, refer to Ozer (2011).

The Continuous-Time Model: Fixed Cost
The marriage of the two classical results (1)
and (7) is accomplished by Presman and Sethi
(2006) in a continuous-time stochastic inventory
model involving a demand that is the sum of a
constant demand rate and a compound Poisson
process. The optimal policies that minimize a
discounted cost or the long-run average cost are
both of (s; S ) type. The (s; S ) policy minimizing
the long-run average cost reduces to the EOQ for-
mula when the intensity of the compound Poisson
process is set to zero. And when the constant de-
mand component vanishes, the model reduces to
the continuous-review stochastic inventory model
with fixed cost and compound Poisson demand.

Incomplete Inventory Information
Models (i3)
A critical assumption in the vast inventory theory
literature has been that the level of inventory at
any given time is fully observed. The celebrated
results (1) and (7) have been obtained under the
assumption of full observation. Yet the inventory
level is often not fully observed in practice, for a
variety of reasons such as replenishment errors,
employee theft, customer shoplifting, improper
handling and damaging of merchandise,
misplaced inventories, uncertain yield, imperfect
inventory audits, and incorrect recording of

sales. In such an environment of incomplete
information, inventories are known to be partially
observed and most of the well-known inventory
policies including (1) and (7) are not even
admissible, let alone optimal. In such cases,
Bensoussan et al. (2010) show that the dynamic
programming equation can be written in terms of
the unnormalized conditional probability of the
current inventory level given past observations,
referred to as signals, instead of just the inventory
level in the full observation case. Furthermore,
one can write the evolution of the conditional
probability in terms of its current value, the
current order, and the current observation. How-
ever, there are no longer simple optimal policies
except in cases of information delay reported in
Bensoussan et al. (2009) where modified base
stock and (s; S ) policies are shown to be optimal.

Summary and Future Directions

We briefly describe some classical results in in-
ventory theory. These are based on full obser-
vation. Some recent work on inventory models
under incomplete information is reported. This
work leads to a number of new research direc-
tions, both theoretical and empirical as reported
in Sethi (2010). It would be of much interest
to know the industries where the i3 problem is
serious enough to warrant the difficult mathemat-
ical analysis required. Furthermore, how are the
observed signals related to the inventory level? It
is also clear from the reviewed literature that there
are no simple optimal policies for most i3 prob-
lems, so it would be important to develop effi-
cient computational procedures to obtain optimal
solutions or to specify a class of simple imple-
mentable policies and optimize within this class.
An important benefit of solving i3 problems op-
timally is the provision of an economic justifi-
cation for technologies such as RFID that may
reduce inaccuracies in inventory observations.

Another area of research would be to study
multi-period multi-agent supply chains with a
stochastic inventory dynamics. While these can
be formulated as dynamic games, there are a
number of equilibrium concepts to deal with,
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depending on the information the agents have.
Some of them are time consistent or subgame
perfect and some are not. Regardless, there are
inefficiencies that arise from these decentralized
game settings, and developing contracts for coor-
dinating dynamic supply chains remains a wide
open topic of research.
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Abstract

The simplest investment-consumption problem is
the celebrated example of Robert Merton (J Econ
Theory 3(4):373-413, 1971). This survey shows
three different ways of solving the problem, each
of which is a valuable solution method for more
complicated versions of the question.

Keywords

Budget constraint; Hamilton-Jacobi-Bellman
(HJB) equation; Merton problem; Value function

Introduction

Consider an investor in a market with a riskless
bank account accruing continuously compounded
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interest at rate rt , and with a single risky asset
whose price St at time t evolves as

dSt D St.�tdWt C 
tdt/; (1)

where W is a standard Brownian motion, and �
and 
 are processes previsible with respect to the
filtration of W . The investor starts with initial
wealth w0 and chooses the rate ct of consuming,
and the wealth �t to invest in the risky asset, so
that his overall wealth evolves as

dwt D�t .�tdWt C 
tdt/Crt .wt � �t /dt � ctdt

(2)

D rtwt dt C �t f�tdWt C .
t � rt /dtg � ct dt:

(3)

For convenience, we assume that � , ��1, and 

are bounded. See Rogers and Williams (2000a,b)
for background information on stochastic pro-
cesses. The three terms in (2) have natural in-
terpretations: The first expresses the evolution of
the wealth invested in the stock, the second the
interest accruing on the wealth .w��/ invested in
the bank account, and the third is the cash being
withdrawn for consumption.

To avoid so-called doubling strategies, we in-
sist that the wealth process so generated by the
controls .c; �/ must remain bounded below in
some suitable way, which here is just the condi-
tion wt � 0 for all t � 0; any .c; �/ satisfying
this condition will be called admissible. The set
of admissible .c; �/ will be denoted A.w0/, a
notation which makes explicit the dependence on
the investor’s initial wealth.

The investor’s objective is taken to be to obtain

V.w0/ � sup
.c;�/2A.w0/

E

�Z 1

0

e��tU.ct / dt



(4)

for some constant � > 0. The problem cannot
be solved explicitly at this level of generality,
but if we take some special cases, we are able
to illustrate the main methods used to attack
it. Many other objectives with various different
constraints can be handled by similar techniques:
see Rogers (2013) for a wide range of examples.

TheMain Techniques

We present here three important techniques for
solving such problems: the value function ap-
proach; the use of dual variables; and the use of
martingale representation. The first two methods
only work if the problem is Markovian; the third
only works if the market is complete. There is
a further method, the Pontryagin-Lagrange ap-
proach; see Sect. 1.5 in Rogers (2013). While
this is a quite general approach, we can only
expect explicit solutions when further structure is
available.

The Value Function Approach
To illustrate this, we focus on the original Merton
problem (Merton 1971), where � and 
 are both
constant, and the utility U is constant relative risk
aversion (CRRA):

U 0.x/ D x�R .x > 0/ (5)

for some R > 0 different from 1. The case
R D 1 corresponds to logarithmic utility, and
can be solved by similar methods. Perhaps the
best starting point is the Davis-Varaiya Martin-
gale Principle of Optimal Control (MPOC): The
process Yt D e��t V .wt / C R t

0
e��s U.cs/ ds

is a supermartingale under any control, and a
martingale under optimal control. If we use Itô’s
formula, we find that

e�tdYt D ��V.wt /dt C V 0.wt /dwt

C 1
2
�2�2t V

00.wt /dt C U.ct /dt

:D Œ��V C f�t .
 � r/ � ct C rgV 0

C 1
2
�2�2t V

00 C U.ct /� dt; (6)

where the symbol
:D denotes that the two sides

differ by a (local) martingale. If the MPOC is to
hold, then we expect that the drift in dY should
be non-positive under any control, and equal to
zero under optimal control. We simply assume
for now that local martingales are martingales;
this is of course not true in general, and is a point
that needs to be handled carefully in a rigorous
proof. Directly from (6), we then deduce the
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Hamilton-Jacobi-Bellman (HJB) equations for
this problem:

0 D sup
c;�

Œ��V C f�.
� r/ � c C rgV 0

C 1
2
�2�2V 00 C U.c/�: (7)

Write QU .y/ � sup {U.x/ � xy} for the convex
dual of U;which in this case has the explicit form

QU.y/ D � y1�R0

1 � R0 (8)

with R0 � 1=R. We are then able to perform the
optimizations in (7) quite explicitly to obtain

0 D ��V C rV 0 C QU .V 0/ � 1
2
	2

.V 0/2

V 00
(9)

where
	 � 
 � r

�
: (10)

Nonlinear PDEs arising from stochastic optimal
control problems are not in general easy to solve,
but (9) is tractable in this special setting, because
the assumed CRRA form of U allows us to
deduce by a scaling argument that V.w/ /
w1�R / U.w/, and we find that

V.w/ D ��R
M U.w/; (11)

where

R�M D �C .R � 1/.r C 1
2
	2=R/: (12)

The optimal investment and consumption
behavior is easily deduced from the optimal
choices which took us from (7) to (9). After some
calculations, we discover that

��
t D �Mwt � 
 � r

�2R
wt ; c�

t D �M wt
(13)

specifies the optimal investment/consumption
behavior in this example. (The positivity of �M
is necessary and sufficient for the problem to
be well posed; see Sect. 1.6 in Rogers (2013)).
Unsurprisingly, the optimal solution scales
linearly with wealth.

Dual Variables
We illustrate the use of dual variables in the
constant-coefficient case of the previous section,
except that we no longer suppose the special form
(5) for U . The analysis runs as before all the way
to (9), but now the convex dual QU is not simply
given by (8). Although it is not now possible to
guess and verify, there is a simple transformation
which reduces the nonlinear ODE (9) to some-
thing we can easily handle. We introduce the new
variable z > 0 related to w by z D V 0.w/, and
define a function J by

J.z/ D V.w/ � wz: (14)

Simple calculus gives us J 0 D �w, J 00 D
�1=V 00, so that the HJB equation (9) transforms
into

0 D QU .z/��J.z/C .�� r/zJ 0.z/C 1
2
	2z2J 00.z/;

(15)
which is now a second-order linear ODE,
which can be solved by traditional methods;
see Sect. 1.3 of Rogers (2013) for more details.

Use of Martingale Representation
This time, we shall suppose that the coefficients

t , rt , and �t in the wealth evolution (3) are
general previsible processes; to keep things sim-
pler, we shall suppose that 
, r , and ��1 are
all bounded previsible processes. The Markovian
nature of the problem which allowed us to find
the HJB equation in the first two cases is now
destroyed, and a completely different method
is needed. The way in is to define a positive
semimartingale 
 by

d
t D 
t .�rtdt � 	tdWt /; 
0 D 1 (16)

where 	t D .
t � rt /=�t is a previsible process,
bounded by hypothesis. This process, called the
state-price density process, or the pricing kernel,
has the property that if w evolves as (3), then
Mt � 
twt C R t

0

scs ds is a positive local

martingale.
Since positive local martingales are super-

martingales, we deduce from this that
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M0 D w0 � E

�Z 1

0


scs ds




: (17)

Thus, for any .c; �/ 2 A.w0/, the budget con-
straint (17) must hold. So the solution method
here is to maximize the objective (4) subject
to the constraint (17). Absorbing the constraint
with a Lagrange multiplier �, we find the uncon-
strained optimization problem

supE

�Z 1

0

fe��sU.cs/ � �
scsg ds



C �w0

(18)
whose optimal solution is given by

e��sU 0.cs/ D �
s; (19)

and this determines the optimal c, up to knowl-
edge of the Lagrange multiplier �, whose value is
fixed by matching the budget constraint (17) with
equality.

Of course, the missing logical piece of this
argument is that if we are given some c � 0

satisfying the budget constraint, is there necessar-
ily some � such that the pair .c; �/ is admissible
for initial wealth w0? In this setting, this can be
shown to follow from the Brownian integral rep-
resentation theorem, since we are in a complete
market; however, in a multidimensional setting,
this can fail, and then the problem is effectively
insoluble.

Summary and Future Directions

This brief survey states some of the main ideas
of consumption-investment optimization, and
sketches some of the methods in common use.
Explicit solutions are rare, and much of the inter-
est of the subject focuses on efficient numerical
schemes, particularly when the dimension of
the problem is large. A further area of interest
is in continuous-time principal-agent problems;
Cvitanic and Zhang (2012) is a recent account
of some of the methods of this subject, but it has
to be said that the theory of such problems is
much less complete than the simple single-agent
optimization problems discussed here.
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Synonyms
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Abstract

Iterative learning control addresses tracking con-
trol where the repetition of a task allows im-
proved tracking accuracy from task to task. The
area inherits the analysis and design issues of
classical control but adds convergence conditions
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for task to task learning, the need for acceptable
task-to-task performance and the implications of
modeling errors for task-to-task robustness.

Keywords

Adaptation; Optimization; Repetition; Robust-
ness

Introduction

Iterative learning control (ILC) is relevant to
trajectory tracking control problems on a finite in-
terval Œ0; T � (Ahn et al. 2007b; Bien and Xu 1998;
Chen and Wen 1999). It has close links to multi-
pass process theory (Edwards and Owens 1982)
and repetitive control (Rogers et al. 2007) plus
conceptual links to adaptive control. It focuses
on problems where the repetition of a specified
task creates the possibility of improving tracking
accuracy from task to task and, in principle,
reducing the tracking error to exactly zero. The
iterative nature of the control schemes proposed,
the use of past executions of the control to up-
date/improve control action, and the asymptotic
learning of the required control signals put the
topic in the area of adaptive control, although
other areas of study are reflected in its method-
ologies.

Application areas include robotic assembly
(Arimoto et al. 1984), electromechanical test sys-
tems (Daley et al. 2007), and medical rehabili-
tation robotics (Rogers et al. 2010). For example,
consider a manufacturing robot required to under-
take an indefinite number of identical tasks (such
as “pick and place” of components) specified by
a spatial trajectory on a defined time interval.
The problem is two-dimensional. More precisely,
the controlled system evolves with two variables,
namely, time t 2 Œ0; T � (elapsed in each iteration)
and iteration index k � 0. Data consists of signals
fk.t/ denoting the value of the signal f at time t
on iteration k. The conceptual algorithm used is:
Step one: (Preconditioning) Implement loop

controllers to condition plant dynamics.

Step two: (Initialization) Given a demand sig-
nal r.t/; t 2 Œ0; T �, choose an initial input
u0.t/; t 2 Œ0; T � and set k D 0.

Step three: (Response measurement) Return
the plant to a defined initial state. Find the
output response yk to the input uk . Construct
the tracking error ek D r � yk . Store data.

Step four: (Input signal update) Use past
records of inputs used and tracking er-
rors generated to construct a new input
ukC1.t/; t 2 Œ0; T � to be used to improve
tracking accuracy on the next trial.

Step five: (Termination/task repetition)
Either terminate the sequence or increase k
by unity and return to step 3.
It is the updating of the input signal based

on observation that provides the conceptual link
to adaptive control. ILC causality defines “past
data” at time t on iteration k as data on the
interval Œ0; t � on that iteration plus all data on
Œ0; T � on all previous iterations. Feedback plus
feedforward control normally contains feedfor-
ward transfer of information from past iterations
to the current iteration.

Modeling Issues

Design approaches have been model-based. Most
nonlinear problems assume nonlinear state space
models relating the ` � 1 input vector u.t/ to the
m� 1 output vector y.t/ via an n� 1 state vector
x.t/ as follows:

Px.t/ D f .x.t/; u.t//; y.t/ D h.x.t/; u.t//;

where t 2 Œ0; T �, x.0/ D x0 and f and h

are vector-valued functions. The discrete time
(sample data) version replaces derivatives by a
forward shift, where t is now a sample counter,
0 � t � N (the index of the last sample). The
continuous time linear model is

Px.t/ D Ax.t/CBu.t/; y.t/ D Cx.t/CDu.t/

with an analogous model for discrete systems. In
both cases, the matrices A;B;C;D are constant
or time varying of appropriate dimension.
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Nonlinear systems present the greatest
technical challenge. Linear system’s challenges
are greater for the time-varying, continuous time
case. The simplest linear case of discrete time,
time-invariant systems can be described by a
matrix relationship

y D Gu C d (1)

where y denotes the m.N C 1/ � 1 “su-
pervector” generated by the time series
y.0/; y.1/; : : : ; y.N / and the construction y D
�

yT .0/; yT .1/; : : : ; yT .N /
�T

, the supervector
u is generated, similarly, by the time series
u.0/; u.1/; : : : ; u.N /, and d is generated by the
times series Cx0; CAx0; : : : ; CANx0. The matrix
G has the lower block triangular structure

G D

2

6
6
6
6
6
4

D 0 0 � � � 0
CB D 0 � � � 0
CAB CB D � � � 0
:::

CAN�1B CAN�2B � � � D

3

7
7
7
7
7
5

defined in terms of the Markov parameter matri-
ces D;CB;CAB; : : : of the plant. This structure
has led to a focus on the discrete time, time-
invariant case, and exploitation of matrix algebra
techniques.

More generally,G W U ! Y can be a bounded
linear operator between suitable signal spaces U
and Y . Taking G as a convolution operator, the
representation (1) also applies to time-varying
continuous time and discrete time systems. The
representation also applies to differential-delay
systems, coupled algebraic and differential sys-
tems, multi-rate systems, and other situations of
interest.

Formal Design Objectives

Problem Statement: Given a reference signal
r 2 Y and an initial input signal u0 2 U ,
construct a causal control update rule/algorithm

ukC1 D  k.ekC1; ek; : : : ; e0; uk; uk�1; : : : ; u0/

that ensures that limk!1 ek D 0 (convergence)
in the norm topology of Y .

The update rule  k.�/ represents the simple
idea of expressing ukC1 in terms of past data. A
general linear “high-order” rule is

ukC1 D
kX

jD0
Wj uk�j C

kC1X

jD0
Kj ekC1�j (2)

with bounded linear operators Wj W U ! U and
Kj W Y ! U , regarded as compensation elements
and/or filters to condition the signals. Typically
Kj D 0 (resp. Wj D 0) for j > Me (resp. j >
Mu). A simple structure is

ukC1 D W0uk CK0ekC1 CK1ek (3)

Assuming that G and W0 commute (i.e., GW0 D
W0G), the resultant error evolution takes the form

ekC1 D .I CGK0/
�1.W0 �GK1/ek

C.I CGK0/
�1.I �W0/.r � d/

ROBUST ILC: An ILC algorithm is said to be
robust if convergence is retained in the presence
of a defined class of modeling errors.

Results from multipass systems theory (Ed-
wards and Owens 1982) indicate robust conver-
gence of the sequence fekgk�o to a limit e1 2 Y
(in the presence of small modeling errors) if the
spectral radius condition

rŒ.I CGK0/
�1.W0 �GK1/� < 1 (4)

is satisfied where rŒ�� denotes the spectral radius
of its argument. However, the desired condition
e1 D 0 is true only if W0 D I . For a given
r , it may be possible to retain the benefits of
choosing W0 ¤ I and still ensure that e1 is
sufficiently small for the application in mind,
e.g., by limiting limit errors to a high-frequency
band. This and other spectral radius conditions
form the underlying convergence condition when
choosing controller elements but are rarely com-
puted. The simplest algorithm using eigenvalue
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computation for a linear discrete time system
defines the relative degree to be k� D 0 ifD ¤ 0

and the smallest integer k such that CAk�1B ¤
0 otherwise. Replacing Y by the range of G;
choosing W0 D I;K0 D 0, and K1 D I ;
and supposing that k� � 1, the Arimoto input
update rule ukC1.t/ D uk.t/C ek.t Ck�/; 0 �
t � N C 1 � k� provides robust convergence if,
and only if, rŒI � CAk

��1B� < 1. It does not
imply that the error signal necessarily improves
each iteration. Errors can reach very high values
before finally converging to zero. However, if (4)
is replaced by the operator norm condition

k.I CGK0/
�1.W0 �GK1/k < 1 ; then (5)

fkek � e1kQgk�0 monotonically decreases to
zero.

The spectral radius condition throws light on
the nature of ILC robustness. Choosing, for sim-
plicity, K0 D 0 and W0 D I , the requirement
that rŒI � GK1� < 1 will be satisfied by a
wide range of processes G, namely those for
which the eigenvalues of I �GK1 lie in the open
unit circle of the complex plane. Translating this
requirement into useful robustness tests may not
be easy in general. The discussion does however
show that the behavior of GK1 must be “sign-
definite” to some extent as, if rŒI � GK1� < 1,
then rŒI � .�G/K1� > 1, i.e., replacing the plant
by �G (no matter how small) will inevitably pro-
duce non-convergent behavior. A more detailed
characterization of this property is possible for
inverse model ILC.

Inverse Model-Based Iteration

If a linear system G has a well-defined inverse
model G�1, then the required input signal is
u1 D G�1.r � d/. The simple update rule

ukC1 D uk C ˇG�1ek ; (6)

where ˇ is a learning gain, produces the dynam-
ics

ekC1 D .1 � ˇ/ek or ekC1 D .1 � ˇ/ke0 ;

proving that zero error is attainable with added
flexibility in convergence rate control by choos-
ing ˇ 2 .0; 2/. Errors in the system model used
in (6) are an issue. Insight into this problem
has been obtained for single-input, single-output
discrete time systems with multiplicative plant
uncertainty U as retention of monotonic conver-
gence is ensured (Owens and Chu 2012) by a
frequency domain condition

j 1
ˇ

� U.ei� /j < 1

ˇ
; for all � 2 Œ0; 2�� (7)

that illustrates a number of general empirical
rules for ILC robust design. The first is that
a small learning gain (and hence small input
update changes and slow convergence) will
tend to increase robustness and, hence, that it is
necessary that multiplicative uncertainties satisfy
some form of strict positive real condition which,
for (6), is

Re
�

U.ei� /
�

> 0; for all � 2 Œ0; 2�� ; (8)

a condition that limits high-frequency roll-off
error and constrains phase errors to the range
.��

2
; �
2
/. The second observation is that if G is

non-minimum phase, the inverseG�1 is unstable,
a situation that cannot be tolerated in practice.

Optimization-Based Iteration

Design criteria can be strengthened by a mono-
tonicity requirement. Measuring error magnitude
by a norm kekQ on Y , such as the weighted mean
square error (withQ symmetric, positive definite)

kekQ D
s
Z T

0

eT .t/Qe.t/dt ;

then the condition kekC1kQ < kekkQ for all
k � 0 provides a performance improvement from
iteration to iteration. This idea leads to a number
of design approaches, Owens and Daley (2008)
and Ahn et al. (2007b) (which also examines
aspects of robustness).
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Function/Time Series Optimization
Norm optimal ILC (NOILC) (Owens and Daley
2008) guarantees monotonicity and convergence
to e1 D 0 by computing ukC1 to minimize an
objective function

J.u/ D kek2Q C ku � ukk2R;

subject to plant dynamics. For linear models (1),

ukC1 D uk CG�ekC1

where G� W Y ! U is the adjoint operator of
G. For continuous or discrete time linear state
space models, the problem is a classical optimal
tracking problem with a solution with online state
feedback and a feedforward term generated off-
line by simulation of an “adjoint” model. Re-
ducing R in J leads to faster convergence rates,
but the presence of non-minimum-phase zeros
has a negative effect on convergence (Owens
and Chu 2010). Monotonicity and convergence to
zero is retained, but, after an initial fall, the error
norm then reduces infinitesimally each iteration
producing the practical effect of limited error
reductions over finite iteration horizons. Rules
exist (Owens and Chu 2010) to minimize the
effect by choice of u0 and r .

Related Linear NOILC Problems
If Y and U are real Hilbert spaces, geometrical
arguments can be used to generate algorithms ex-
tending the NOILC algorithm to include (Owens
and Daley 2008) acceleration mechanisms, pre-
dictive control, and the inclusion of input signal
constraints. They also allow more flexibility in
the form and specification of the task. In the
intermediate point NOILC problem (denoted IP-
NOILC), the task requirement is that the output
signal y.t/; 0 � t � T takes specified values
r.t1/; r.t2/; : : : ; r.tM / as it passes through theM
intermediate points 0 < t1 < t2 < � � � < tM . The
precise nature of the trajectory between points
is of secondary importance. Again, the solution,
for linear state space systems, can be constructed
from Riccati equation-based feedback rules com-
bined with “jump” conditions and feedforward
control signals computed off-line.

The IPNOILC solution is nonunique, and the
remaining degrees of freedom can be used to
satisfy other design objectives. Switching algo-
rithms (Owens et al. 2013) converge to a solution
of the problem while simultaneously minimizing
an auxiliary criterion

Jaux.u/ D kz � z0k2QQ C ku � u0k2R:

Auxiliary optimization is a tool for shaping the
solution of the IPNOILC problem. The auxiliary
variable z could be internal states whose behavior
is important to plant operation or simply defined
by the output, e.g., z D Ry which, if small, might
reduce input “forces” and hence actuator activity.

Parameter Optimization
NOILC can be simplified by reducing the degrees
of freedom defining control action to a small
number of control law parameters. For a discrete
system (1), a general update rule is

ukC1 D uk C �.ˇkC1/ek; k � 0 :

Here the matrix �.ˇ/ is linear in the p � 1

parameter vector ˇ with �.0/ D 0. Under these
conditions �.ˇ/e D F.e/ˇ where the matrix
F.e/ is linear in e with F.0/ D 0. Examples
of useful parameterizations include inverse model
control (Owens et al. 2012).

Monotonicity of the error norm is ensured by
choosing the parameter vector ˇkC1 to minimize

J.ˇ/ D kek2Q C ˇTWkC1ˇ

subject to the dynamic constraint (1). Each p�p
weighting matrix WkC1 is symmetric, positive
definite, and may be iteration dependent. The
algorithm creates a nonlinear ILC law providing
a link between parameter evolution, past errors,
and the choice of weightWkC1.

Summary and Future Directions

The basic structure of ILC is now well understood
with a number of algorithms available with
known convergence properties and empirical
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links between parameter choice and convergence
rates (Ahn et al. 2007a; Bristow et al. 2006;
Owens and Daley 2008; Wang et al. 2009;
Xu 2011). Optimization-based algorithms
provide a structured approach to convergence
and have a familiar quadratic optimal control
structure. Despite the practical benefits of
monotonic error norms, this approach underlines
the difficulties induced by non-minimum-
phase (NMP) properties of the plant. Operator
representations extend this theory to include more
general problems such as the intermediate point
tracking problem and, where solutions are non-
unique, can be converted into iterative algorithms
that inherit the properties of NOILC but converge
to a solution that also minimizes an auxiliary
optimization criterion.

Many of the challenges addressed by NOILC
are inherited by other algorithms, many of which
mimic established control design paradigms. For
example, the commonly used PD update law

ukC1.t/ D uk.t/CK1ek.t/CK2 Pek.t/

can produce convergence by suitable choice of
K1 and K2. Proofs of convergence are typi-
cally based on spectral radius conditions similar
to (4) for linear systems or on techniques such as
contraction mapping (fixed point) theorems (Xu
2011) for nonlinear systems. The nonlinear case
generally suggests local convergence conditions
dependent on growth conditions on the nonlinear-
ity. They typically cannot be checked in practice
but do link convergence to simple, empirical, gain
selection rules.

ILC, as a topic, is a very large area of study.
Survey papers indicate that progress has been
made in a number of other areas including adap-
tive ILC, the use of intelligent control ideas of
fuzzy logic and neural networks-based control
structures, 2D systems theory, and mathematical
studies of fractional order control laws (Chen
et al. 2013). The further development of ILC
from its current strong base will draw extensively
from classical control knowledge but relies on the
three aspects of plant modeling, control design,
and coping with uncertainty. Issues central to
medium-term success include:

1. Extending current ILC knowledge to other
classes of model needed for applications.

2. Integration of online data-based modeling into
ILC schemes to enhance adaptive control op-
tions.

3. Ensuring the property of error monotonicity
or characterizing any non-monotonicity to be
expected.

4. The construction of robustness tests and using
the ideas in new robust design methodologies.

5. Providing a better understanding of the effect
of noise and disturbances on algorithm perfor-
mance.

6. Extending the range of tasks to include, for
example, different challenges for different out-
puts on different subintervals of Œ0; T �.

7. Creating design tools for nonlinear plant that
ensure convergence and a degree of robustness
but, in particular, provide some control of
internal plant states that may be subject to
dynamical constraints.
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