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Abstract

Dynamic vision is a subfield of computer vision
dealing explicitly with problems characterized
by image features that evolve in time according
to some underlying dynamics. Examples include
sustained target tracking, activity classification
from video sequences, and recovering 3D geom-
etry from 2D video data. This article discusses
the central role that systems theory can play
in developing a robust dynamic vision frame-
work, ultimately leading to vision-based systems
with enhanced autonomy, capable of operating in
stochastic, cluttered environments.
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Background

In this article, we represent linear time invariant
(LTI) systems by their associated transfer matrix

G.z/. The “size” of G.z/, which plays a key
role in assessing the effects of uncertainty, will
be measured using the H1 norm, defined as
kGk1

:D sup! �
�
G.ej!

�
, where � .:/ denotes

maximum singular value. For scalar systems,
this reduces to the peak value of the frequency
response (i.e., the maximum gain of the system).
In the matrix case, this definition takes into ac-
count both the worst-case frequency and spatial
direction. Background material on the H1 norm,
its computation and its significance in the context
of robust control theory, is given in Sánchez–
Peña and Sznaier (1998). A general coverage of
linear systems theory, including alternative repre-
sentations of linear systems and their associated
properties, can be found, for instance, in Rugh
(1996).

Multiframe Tracking

A requirement common to most dynamic vision
applications is the ability to track objects across
frames, in order to collect the data required by
a subsequent activity analysis step. Current ap-
proaches integrate correspondences between in-
dividual frames over time, using a combination
of some assumed simple target dynamics (e.g.,
constant velocity) and empirically learned noise
distributions (Isard and Blake 1998; North et al.
2000). However, while successful in many sce-
narios, these approaches are vulnerable to model
uncertainty, occlusion, and appearance changes,
as illustrated in Fig. 1.
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Uncertainty and Robustness in Dynamic Vision, Fig. 1 Unscented particle filter-based tracking in the presence of
occlusion

As shown next, the fragility noted above can
be avoided by modeling the motion of the target
as the output of a dynamical system, to be iden-
tified directly from the available data, along with
bounds on the identification error. In the sequel,
we consider two different cases: (i) the motion of
the target is known to belong to a relatively small
set of a priori known motion modalities; and (ii)
no prior knowledge is available.

The case of known motion models: Consider
first the case where a set of models known to
span all possible motions of the target is known a
priori, as it is often the case with human motion.
In this case, the position yk of a given target can
be modeled as y.z/ D F.z/e.z/ C �.z/ where e
and �k denote a suitable input and measurement
noise, respectively, and where F admits an ex-

pansion of the form F D

Fp

‚ …„ ƒ
NpX

jD1
pjF j CFnp. Here

F j represent the (known) motion modalities of
the target and kFnpk1 � K , e.g., a bound on the
maximum admissible approximation error of the
expansion Fp to F is available. In the reminder
of this article, we will further assume that a set
membership descriptions �k 2 N is available
and, without loss of generality, that e.z/ D 1 (i.e.,
motion of the target is modeled as the impulse
response of the unknown operator F ).

In this context, the next location of the target
feature yk can be predicted by first identifying
the relevant dynamics F and then using it to
propagate its past values. In turn, identifying the
dynamics entails finding an operator F.z/ 2 S :D˚F.z/WF D Fp C Fnp

�
such that y � � D F ,

precisely the class of interpolation problem
addressed in Parrilo et al. (1999). As shown
there, finding such an operator reduces to solving
a linear matrix inequality (LMI) feasibility
problem. Once this operator is found, it can be
used in conjunction with a particle (or a Kalman)
filter to predict the future location of the target.
Figure 2 shows the tracking results obtained
using this approach. Here, we used a combination
of a priori information: (i) 5% noise level and (ii)
Fp 2 spanŒ 1

z�1 ;
z

z�a ;
z

.z�1/2 ;
z2

.z�1/2 ;
z2�cos!z

z2�2 cos!zC1 ,
sin!z2

z2�2 cos!zC1 � where a 2 f0:9; 1; 1:2; 1:3; 2g and
! 2 f0:2; 0:45g. The experimental information
consisted of the position of the target in N D 20

frames, where it was not occluded. Note that,
by exploiting predictive power of the identified
model, the Kalman filter is now able to track the
target past the occlusion, eliminating the need
for using a (more computationally expensive)
particle filter.

Unknown motion models: This case could be
addressed in principle by performing a purely
nonparametric worst-case identification (Parrilo
et al. 1999) and then proceeding as above.
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Uncertainty and Robustness in Dynamic Vision, Fig. 2 Using the identified model in combination with Kalman
filter allows for robust tracking in the presence of occlusion

However, a potential difficulty here stems from
the high order of the resulting model (recall that
the order of the central interpolant is the number
of experimental data points). If a bound n on
the order of the underlying models is available,
this difficulty can be avoided by recasting the
prediction problem into a rank minimization
form, which in turn can be relaxed to a semi-
definite optimization. To this effect, recall that
(Ding et al. 2008), in the absence of noise,
given 2n values of fykgtkDt�2nC1, its next value
ytC1 is the unique solution to the following rank
minimization problem:

ytC1 D argmin
y

frank ŒHnC1.y/�g where HnC1.y/

:D

2

6
6
6
4

yt�2nC1 yt�2nC2 � � � yt�n
yt�2nC2 yt�2nC3 � � � yt�nC1

:::
:::

: : :
:::

yt�nC1 yt�nC2 � � � y

3

7
7
7
5

(1)

Clearly, the same result holds if multiple el-
ements of the sequence y are missing, at the
price of considering longer sequences (the total
number of data points should exceed 2n). This
result allows for handling both noisy and missing
data (due, for instance, to occlusion), by simply
solving

min� frank ŒH.�/�g subject to v 2 Nv

where �i D
�

yi � vi if i 2 Ia
xi if i 2 Im

Uncertainty and Robustness in Dynamic Vision,
Fig. 3 Trajectory prediction. Rank minimization (1) ver-
sus Kalman filtering (2)

Ia and Im denote the set of available (but noisy)
and missing measurements, respectively, and
where Nv is a set membership description of
the noise v. In the case where Nv admits a
convex description, using the nuclear norm as
a surrogate for rank (Fazel et al. 2003) allows for
reducing this problem to a convex semi-definite
program. Examples of these descriptions are balls
in `1, e.g., N :D fvW jvkj � �g or constraints
on the norm of Hv, the Hankel matrix of the
noise sequence, which under mild ergodicity
assumptions are equivalent to constraints on the
magnitude of the noise covariance. Figure 3
illustrates the effectiveness of this approach.
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As shown there, the rank minimization-based
filter successfully predicts the location of the
target, while a Kalman filter-based tracker fails
due to the substantial occlusion.

Event Detection and Activity
Classification

Using the trajectories generated by the track-
ing step for activity recognition entails (i) seg-
menting the data into homogeneous segments
each corresponding to a single activity and (ii)
classifying these activities, typically based on
exemplars from a database of known activities.
As shown in the sequel, both steps can be ef-
ficiently accomplished by exploiting the proper-
ties of the underlying system. The starting point
is to model these activities as the output of a
switched piecewise linear system. In this context,
under suitable dwell time constraints, each switch
(indicating a change in the underlying activity)
can be identified by simply searching for points
associated with discontinuities in the rank of
the associated Hankel matrix, as illustrated in
Fig. 4. Further, in this framework, the problem of
classifying each subactivity can be recast into the
behavioral model (in)validation setup shown in
Fig. 5. Here yi .:/ represents the impulse response
of the (unknown) LTI system G, affected by
measurement noise �i 2 N and uncertainty

�i 2 D that accounts for the variability intrinsic
to two different realizations of the same activity.
Two different time series are considered to be
realizations of the same activity if there exists at
least one pair .�1; �2/ 2 N 2, one pair .�1;�2/ 2
D2, a LTI system G with McMillan degree at
most nG , and suitable initial conditions x1, x2
resulting in the observed data. Remarkably, this
model (in)validation problem can be reduced to
a rank minimization form. In the simpler case
where �i D 0, the problem can be solved us-
ing the following algorithm (Sznaier and Camps
2011):

Next, consider the more realistic case where
the trajectories are also affected by bounded
model uncertainty �, k�k1 � � , where �

is given as part of a priori information. In
this scenario, the internal signal z is given by
z.t/ D �.t/ � �.t/; � 2 N , where the signal �
satisfies

y D .1C�/ � �; for some � 2 D (2)

where � denotes convolution. Exploiting Theo-
rem 2.3.6 in Chen and Gu (2000) leads to an
LMI condition in the variables z; �, for feasibil-
ity of (2). Thus, the only modification to Al-
gorithm 1 required to handle model uncertainty
is to incorporate this additional (convex) con-
straint to the rank minimization problems. Table 1
shows the results of applying this approach to

Uncertainty and Robustness in Dynamic Vision, Fig. 4 The jump in the rank of the Hankelmatrix corresponds to
the time instant where the subjectsmeet and exchange a bag
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Uncertainty and Robustness in Dynamic Vision, Fig. 5 Model (in)validation setup

2 video sequences, walking and running, from
the KTH database (Laptev et al. 2008). Sam-
ple frames from these sequences are shown in
Fig. 6. In order to reduce the dimensionality of
the data, the frames were first projected into a
three-dimensional space using principal compo-
nent analysis (PCA), and the resulting time series
were used as the input to Algorithm 1, assum-
ing 10% noise and 10% model uncertainty. As
shown in Table 1, the algorithm correctly identi-
fies the subsequences (a)–(c) as being generated
by the same underlying activity (walking).

Algorithm 1 Behavioral model (in)validation
Data: Noisy measurements y1; y2.
A priori information: noise description �i 2 N
1. Solve the following rank–minimization problems:

rmin1 D min�1
rank.Hy1 � H�1 /

subject to: �1 2 N .
rmin2 D min�2

rank.Hy2 � H�2 /

subject to: �2 2 N .
rmin12 D min�1

rank.ŒHy1n Hy2n �/

subject to: �1; �2 2 N
Hy1n D Hy1 � H�1

Hy2n D Hy2 � H�2

2. The given trajectories were generated by the
same LTI system with McMillan degree � nG iff:
rmin1 D rmin2 D rmin12 � nG

Uncertainty and Robustness in Dynamic
Vision, Table 1 Activity classification results.
Sequences (a)–(c) correspond to walking and (d) to
running

Activity pair Rank.H1/ Rank(H2) Rank(ŒH1 H2�)

.a; b/ 4 4 4

.a; c/ 4 4 4

.a; d/ 4 8 8

Summary and Future Directions

Vision-based systems are uniquely positioned
to address the needs of a growing segment of
the population. Aware sensors endowed with
scene analysis capabilities can prevent crime,
reduce time response to emergency scenes, and
render viable the concept of ultra-sustainable
buildings. Moreover, the investment required to
accomplish these goals is relatively modest since
a large number of cameras are already deployed
and networked. Arguably, at this point, one of
the critical factors limiting widespread use of
these systems is their potential fragility when
operating in unstructured scenarios. This article
illustrates the key role that control theory can play
in developing a comprehensive, provably robust
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Uncertainty and Robustness in Dynamic Vision, Fig. 6 Sample frames from KTH activity video database. (a)
Walking. (b) Running

dynamic vision framework. In turn, computer
vision provides a rich environment both to draw
inspiration from and to test new developments in
systems theory.

Cross-References

� Particle Filters
�Estimation, Survey on

Recommended Reading

Details on how to select good features to track
can be found in Richard Szeliski (2010). Using
dynamics to recover 3D structure from 2D data is
covered in Ayazoglu et al. (2010). Finally, further

details on the connection between identification
and the problem of extracting actionable infor-
mation from large data streams can be found, for
instance, in Sznaier (2012).
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Abstract

For underactuated marine vessels, the dimension
of the configuration space exceeds that of the
control input space. This article describes un-
deractuated marine vessels and the control chal-
lenges they pose. In particular, there are two
main approaches to design control systems for
underactuated marine vessels. The first approach
reduces the number of degrees of freedom (DOF)

that it seeks to control such that the number of
DOF equals the number of independent control
inputs. The control problem is then a fully actu-
ated control problem – something that simplifies
the control design problem significantly – but
special attention then has to be given to the
inherent internal dynamics that has to be carefully
analyzed. The other approach to design control
systems for underactuated marine vessels seeks
to control all DOF using only the limited number
of control inputs available. The control problem
is then an underactuated control problem and is
quite challenging to solve. In this article, it is
shown how line-of-sight methods can solve the
underactuated control problems that arise from
path following and maneuvering control of un-
deractuated marine vessels.

Keywords

Marine vessels; Underactuated marine control
problems; Underactuated marine vessels; Under-
actuation

Introduction

Marine systems are often equipped with fewer
independent actuators than degrees of freedom.
Examples include conventional ships/surface
vessels that are typically equipped with a main
thruster and a rudder or with two independent
main thrusters, but without a side thruster. As a
result, we have no control force in the sideways
direction. This means that the forward motion
(the surge motion) and the orientation (the yaw
motion) can be controlled directly, while there is
no direct way to influence the sideways motion
of the surface vessel (the sway motion). The
vessel is then said to be underactuated in sway.
It is an underactuated system since it has only
two independent control inputs, giving force and
torque in surge and yaw, while the system has
three degrees of freedom: surge, sway, and yaw.
This underactuation leads to challenges when it
comes to designing the control system.
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Definition: Underactuated
Marine Vessels

In order to properly define what we mean by
underactuated marine vessels, we need the math-
ematical model (�Mathematical Models of Ships
and Underwater Vehicles; Fossen 2011):

M P	 C C.	/	 CD.	/	 C g.�/ D
�



0

�

P� D J.�/	

where the configuration vector � 2 R
n, the

velocity vector 	 2 R
n, while the vector of

independent control inputs 
 2 R
m. The vessel is

underactuated because n > m, i.e., the dimension
of the configuration space exceeds that of the
control input space (Oriolo and Nakamura 1991;
Pettersen and Egeland 1996).

The underactuation leads to a second-order
nonholonomic constraint

Mu P	 C Cu.	/	 CDu.	/	 C gu.�/ D 0

whereMu denotes the last n�m rows of the ma-
trix M and Cu.	/;Du.	/, and gu.�/ are defined
similarly.

Definitions of nonholonomic and holonomic
constraints can be found in Goldstein (1980).
More facts about these kinds of constraints and
conditions for when this second-order nonholo-
nomic can be integrated to either a first-order
nonholonomic or a holonomic constraint can be
found in Tarn et al. (2003).

Control of Underactuated
Marine Vessels

As we have seen above, the underactuation leads
to a constraint, and this gives challenges when
it comes to designing the control system. In
particular, it can be shown that if gu.�/ has a
zero element, then there exists no continuous or
discontinuous state feedback law that can asymp-
totically stabilize the equilibrium point .�; 	/ D
.0; 0/ (Pettersen and Egeland 1996). This means

that in order to stabilize an equilibrium point,
control methods from linear or classical nonlinear
control theory cannot be applied.

There are two main classes of approaches to
control underactuated marine vessels. The first
class approaches the control problem by reducing
the number of degrees of freedom that are to be
controlled, while the other class seeks to control
all degrees of freedom using the limited number
of control inputs available.

If we reduce the number of degrees of free-
dom (DOF) that we seek to control, such that
the number of DOF agrees with the number of
independent control inputs, then we have a fully
actuated control problem although the vessel is
underactuated. This may at first sight look like
a very simple way to design a control system
for underactuated marine vessels. Note, however,
that then, there will inherently be internal dynam-
ics that needs to be examined carefully (Isidori
1995; Nijmeijer and van der Schaft 1990). Say,
for instance, that we only care about controlling
the position of the ship, and we choose not to care
very much about the orientation of the ship. We
do, for instance, want the ship to follow a straight
line trajectory .xr .t/; yr .t//, where x and y give
the ship’s position in an earth-fixed coordinate
system, and the angle giving the ship orientation,
 ; is not so important to us. It is quite straight-
forward to use, for instance, output feedback
linearization to this end (Isidori 1995; Nijmeijer
and van der Schaft 1990). The resulting dynamics
of the subsystem .x; y/ is then called the external
dynamics. We have full control over this using the
two independent control inputs and can make it
track any smooth trajectory .xr .t/; yr .t//. Every-
thing looks simple when considering the external
dynamics only, but the internal dynamics can
frequently be hard to predict. The orientation of
the ship, given by the yaw angle psi, also needs
to be analyzed. The controlled motion will not
necessarily have the ship aligned with the tangent
of the trajectory, for instance. Firstly, the ship
control system that only focuses on the position
variables .x; y/ may equally well result in the
ship moving backward along the line; a behavior
that is not really desirable with respect to energy
efficiency or for passenger comfort. Secondly,

http://dx.doi.org/10.1007/978-1-4471-5058-9_121
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there will always be environmental disturbances:
currents, wind, and waves, and we need to make
a thorough stability analysis of the internal dy-
namics in order to guarantee sufficient robustness
properties for these. So to conclude, if you reduce
the number of DOF that you seek to control, in
order to achieve a fully actuated control problem,
then you need to consider the internal dynamics
very carefully when dealing with underactuated
marine vessels.

If we follow the other approach to controlling
underactuated marine vessels, where we seek to
control more degrees of freedom than we have
independent control inputs, then we not only have
an underactuated marine vessel at hand, but we
also have an underactuated control problem. This
is a challenging control problem, and we will now
see how this can be solved for path following and
maneuvering control.

Path Following andManeuvering
Control of UnderactuatedMarine
Vessels

For path following control systems, the control
objective is to make the vessel follow a given path
P , often defined as a parametrized path

Yd WD fy 2 R
m W 9� 2 R such that y D yd .�/g

where m � n and yd is continuously
parametrized by the path variable � . The control
objective is thus to force the output y to converge
to the desired path yd .�/ W limt!1 jy.t/ �
yd .�.t//j D 0. This constitutes a geometric task.
When there is also a dynamic task, for instance,
a speed assignment like forcing the path speed P�
to converge to a desired speed vs.�.t/; t/

lim
t!1 j P�.t/ � vs.�.t/; t/j D 0

then the control problem is an output maneuver-
ing problem (Skjetne et al. 2004).

Line-of-sight (LOS) guidance control has
proven to be a powerful tool for path following
and maneuvering control of underactuated
vessels. LOS guidance is much used in practice

for manual control of ships, where the helmsman
typically will steer the vessel toward a point
lying a constant distance, called the look-ahead
distance, ahead of the vessel along the desired
path. LOS guidance is simple, intuitive, and easy
to tune, and it can be shown that it provides
nice path convergence properties (Breivik and
Fossen 2004; Børhaug et al. 2008; Caharija et al.
2012; Fredriksen and Pettersen 2006; Lefeber
et al. 2003). For the simplified case without any
environmental disturbances and when the desired
path is a straight line, the LOS guidance law for
an underactuated surface vessel is given by

 d D  LOS D � tan�1
� y
�

	
; � > 0

where y is the cross-track error. The angle  LOS

is called the line-of-sight (LOS) angle, and geo-
metrically, it corresponds to the orientation of the
vessel when headed toward the point that lies a
distance� > 0 ahead of the vessel along the path
y D 0, cf. Fig. 1. The look-ahead distance � is a
control design parameter.

In order to handle ocean currents and other
environmental disturbances such as wind and
waves, the LOS guidance law can be extended
with integral action

 mLOS D � tan�1
�
yC�yint
�

	
; � > 0

Pyint D �y

.yC�yint/2C�2

Underactuated Marine Control Systems, Fig. 1
Illustration of LOS guidance
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where � > 0 is a design parameter, an integral
gain, and � > 0 has the same interpretation as
above. The integral effect will generate a sideslip
angle that allows the vessel to stay on the desired
path even though affected by environmental dis-
turbances with components normal to the path,
even though the vessel has no control forces to
act in the sideways direction.

Various standard control techniques can read-
ily be used to track the above guidance com-
mands. LOS guidance can also be extended to the
3D case for path following/maneuvering control
of underactuated autonomous underwater vehi-
cles (AUV), cf. the references given above.

Summary and Future Directions

Underactuated marine vessels are vessels for
which the dimension of the configuration space
exceeds that of the control input space. There
are two main approaches to design control
systems for underactuated marine vessels. The
first approach reduces the number of degrees of
freedom (DOF) that it seeks to control, such
that the number of DOF equals the number
of independent control inputs. The control
problem is then a fully actuated control problem,
something that simplifies the control design
problem significantly, but special attention
then has to be given to the inherent internal
dynamics that has to be carefully analyzed. The
other approach to design control systems for
underactuated marine vessels seeks to control all
DOF using only the limited number of control
inputs available. The control problem is then
an underactuated control problem, and this is a
quite challenging control problem. In this entry,
it is shown how line-of-sight methods can solve
the underactuated control problems that arise
from path following and maneuvering control of
underactuated marine vessels.

Future developments of underactuated marine
control systems will include solving more un-
deractuated control problems of marine vessels
taking into account both the complete mathe-
matical model of the vessels and also advanced

mathematical models of all the environmental
disturbances in both 2D and 3D.
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Abstract

Underactuated robots, robots with fewer actua-
tors than degrees of freedom, are found in many
robot applications. This entry classifies underac-
tuated robots according to their dynamics and
constraints and provides an overview of control-
lability, stabilization, and motion planning.

Keywords

Nonholonomic constraints; Nonlinear control;
Underactuation

Introduction

An underactuated robot is a robot with fewer
actuators (control inputs) than the number of
variables describing its configuration (degrees of
freedom). Some robots have this property un-
avoidably, while others are specifically designed
this way, perhaps to save the cost of actuators.
Examples include:
• A cart and pendulum (inverted pendulum).

This system has two degrees of freedom, the
linear position of the cart and the angle of
the pendulum, but only one control input, the
acceleration of the cart.

• A car. A car has only two control inputs
(steering and forward/backward speed) but at
least three degrees of freedom: the position
.x; y/ and orientation � of the chassis. If the
steering and/or rolling angles of the wheels
are included in the representation of the con-
figuration, the car has even more degrees of
freedom.

• A walking robot. When a biped steps with
one foot in the air and the toes of the other
foot on the ground, there is no actuator at the
toes to directly control the angle between the
foot and the ground.

• A quadrotor flying robot. A quadrotor has
four control currents driving the four pro-
pellers, but its configuration is described by
six variables: .x; y; z/ position and roll, pitch,
and yaw.

• An underactuated robot hand. Robot hands
generally have many joints, up to four per
finger for anthropomorphic hands. To reduce
cost, a small number of motors (as few as one)
may be used to open and close the fingers,
with joint motions coupled by springs.

• Robot manipulation. When a robot arm and
hand manipulates a rigid object, the entire
system, taken together, has at least six more
degrees of freedom than actuators – the six
degrees of freedom of the object.
In all underactuated robot systems of interest,

the fewer control inputs are somehow coupled
to all of the degrees of freedom. This entry
focuses on coupling through the inertia matrix
and kinematic constraints. In addition, this entry
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focuses on control of the full configuration, or
more generally the state, of the robot system.
Other goals, such as successfully grasping an
object with a compliant underactuated hand, are
outside the scope of this entry.

Classification of Underactuated
Robots

The robot has n degrees of freedom, and its
configuration is written in local coordinates as a
column vector q 2 R

n. If the robot is described
as a kinematic system, then its state x is simply q
and the control inputs are velocities. If the robot
is a mechanical system, then its state is x D
ŒqT ; PqT �T and the control inputs are accelerations
(forces). Let p denote the dimension of the state
space, where p D n for a kinematic system and
p D 2n for a mechanical system.

The equations of motion of an underactuated
robot can be written in the control-affine form

Px D f .x/C
mX

iD1
uigi .x/ where m < n: (1)

The vector field f .x/ is a drift vector field
describing the unforced motion of the robot,
the gi .x/ are linearly independent control vector
fields describing how the controls act on the
robot, and u D Œu1; : : : ; um�T is the control.
Kinematic systems are commonly drift-free
(f .x/ D 0). For a mechanical system, the
drift field f .x/ typically includes velocities
acting on positions and gravity acting on
velocities.

The fact that the number of controls m is less
than the number of degrees of freedom n can be
viewed as n�m constraints on the motion. For a
kinematic system, these are velocity constraints.
For a mechanical system, these are acceleration
constraints. In addition, a mechanical system may
be subject to a separate set of k velocity con-
straints, often called Pfaffian constraints, of the
form

A.q/ Pq D 0; (2)

where A.q/ 2 R
n�k . Such constraints arise from

conservation laws and rolling without slip, for
example.

Understanding the integrability of these con-
straints is key to understanding the controllability
of underactuated robots (section “Determining
Controllability”). For example, if acceleration
constraints can be integrated to yield equivalent
velocity constraints, then the dimension of the
space of reachable velocities of the mechanical
system is reduced. If velocity constraints can
be integrated to yield equivalent configuration
constraints, then the dimension of the reachable
configuration space is reduced. If some velocity
constraints are integrable to configuration con-
straints, we simply eliminate those configuration
variables from the description of the system so we
can focus on the controllable degrees of freedom.
Velocity constraints that cannot be integrated are
called nonholonomic, while configuration con-
straints are called holonomic.

Based on the type of constraints, we can clas-
sify underactuated robots into three categories –
pure kinematic, pure mechanical, and mixed
kinematic and mechanical – as described below.

Pure Kinematic
This category consists of systems with velocities
as inputs, as well as mechanical systems that can
be modeled by a kinematic reduction that has
time-differentiable velocities as controls (Bullo
and Lewis 2004; Bullo et al. 2002). (The actual
acceleration controls of the original system are
the time derivatives of these velocities.) Exam-
ples of mechanical systems that can be reduced
to kinematic systems include systems with actua-
tors for every degree of freedom (fully actuated
systems, of little interest here) and mechanical
systems whose acceleration constraints can be
completely integrated to equivalent velocity con-
straints.

Example 1 (Upright rolling wheel) Consider a
wheel of radius R rolling upright on a hori-
zontal plane (Fig. 1a). The center of the wheel
is .px; py; pz/, and the orientation is described
by its “leaning” angle � , rolling angle  , and
heading angle �. The constraints that the wheel
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Underactuated Robots,
Fig. 1 (a) A wheel in
space, then confined to be
upright on a horizontal
plane with coordinates
.px; py;  ; �/. (b) A top
view of a robotic
snakeboard. The
configuration is given by
.px; py; �/ for the board,
the steering angle � of the
wheels, and the angle  of
the reaction wheel

remain upright and touching the plane can be
written differentially as Ppz D 0 and P� D 0,
but these constraints can be integrated to the
equivalent configuration constraints pz D R and
� D 0, so we eliminate these variables from the
description of the configuration and focus on the
remaining four coordinates.

Writing the configuration vector as q D
Œpx; py;  ; ��

T and the two control inputs as
the rolling velocity u1 D P and the heading rate
of change u2 D P�, the control system is

Pq D u1g1.q/C u2g2.q/;

where g1.q/ D ŒR cos�;R sin �; 1; 0�T and
g2.q/ D Œ0; 0; 0; 1�T . Implicit in these equations
of motion are the two rolling constraints
A.q/ Pq D 0, where

A.q/ D
�
1 0 �R cos� 0

0 1 �R sin � 0

�
:

These velocity constraints cannot be integrated to
equivalent configuration constraints.

Example 2 (Reaction-wheel satellite) The three-
dimensional orientation of a satellite can be con-
trolled by spinning internal reaction wheels. The
controls to the reaction wheels are torques. By
conservation of angular momentum, the total an-
gular momentum P of the satellite is subject to
the constraints

P D J! C
X

i

Ji!i D constant;

where J is the inertia of the satellite body,! is its
angular velocity, Ji is the inertia of momentum
wheel i , and !i is its angular velocity. These
constraints are velocity constraints – given the
angular velocity of the momentum wheels, the
angular velocity of the satellite is known. Thus,
we can treat the original mechanical system as
a kinematic system with (differentiable) angular
velocities of the momentum wheels as inputs.
If the system satisfies P D 0, the kinematic
reduction is drift-free.

While satellite orientation is commonly
controlled using three orthogonal reaction
wheels (a fully actuated system), two reaction
wheels suffice to control the orientation of
the kinematic reduction in the case P D 0.
This is apparent from the fact that successive
rotations about two orthogonal body-fixed axes
(e.g., body-referenced ZYZ Euler angles) are
sufficient to arbitrarily orient a rigid body in
space.

Pure Mechanical
This category consists of mechanical systems
without any velocity constraints.

Example 3 (3R robot arm with a passive joint)
The dynamics of a robot arm are determined by
its inertia matrix M.q/, from which the kinetic
energy K D 1

2
PqTM.q/ Pq is derived, and its

potential energy V.q/. If one of the joints of the
arm rotates freely without an actuator, the arm
is underactuated. One such robot is a planar arm
with two actuated joints and one passive (Bullo
and Lynch 2001; Lynch et al. 2000). For this
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robot, the acceleration constraint arising from the
lack of an actuator cannot be integrated to an
equivalent velocity constraint.

Mixed Kinematic and Mechanical
This category consists of mechanical systems
with both (1) velocity constraints and (2) accel-
eration constraints that cannot be integrated.

Example 4 (Snakeboard) The snakeboard is a
skateboard with steerable wheels. The rider
can locomote without touching the ground by
twisting his or her body while steering the
wheels. The configuration of a robotic model of
the snakeboard and rider (Ostrowski et al. 1994)
consists of the position .x; y/ and orientation
� of the board, the steering angle of the wheels
(assumed to be coupled to be equal and opposite),
and the angle of a reaction wheel representing
the rider (Fig. 1b). The controls are the steering
torque to the wheels and the driving torque of the
reaction wheel. This system is mixed because of
the presence of the no-slipping constraint at the
wheels.

While in some cases it is obvious whether
velocity or acceleration constraints can be inte-
grated to equivalent constraints on configuration
or velocity, respectively, in general this is not
trivial. Instead of attempting to determine the
integrability of constraints, we typically study
the reachable sets of the system (1). This is
the topic of controllability of nonlinear systems,
section “Determining Controllability”.

Underactuated robots can also be classified ac-
cording to the set of available controls U � R

m.
For example, the control set could be a discrete
set of points in R

m, or only nonnegative values,
or a bounded set of Rm containing the origin in
the interior. For simplicity, assume u 2 U D R

m.

Control Challenges

Determining Controllability
For linear systems of the form Px D AxCBu, x 2
R
p; u 2 R

m, there is one notion of controllability,
determined by the Kalman rank condition (KRC).
If the rank of the matrix

ŒB AB A2B : : : Ap�1B�

is p, then it is possible to transfer the system from
any state to any other state in finite time.

Most underactuated systems of the form (1),
such as all of the examples given above, are non-
linear systems, however. For nonlinear systems,
there are many possible notions of controllability
(see Bullo and Lewis 2004; Lynch et al. 2011;
Nijmeijer and van der Schaft 1990; Sussmann
1983). Some examples include:
• Small-time local accessibility (STLA) at x: For

any time T > 0, the reachable set starting
from x at times t < T contains a full-
dimensional subset of the state space.

• Small-time local controllability (STLC) at x:
For any time T > 0, the reachable set starting
from x at times t < T contains a neighbor-
hood of x.

• Global controllability: The robot can reach
any state from any other state.

STLC is strictly stronger than STLA. Neither im-
plies global controllability nor does global con-
trollability imply either of the local properties.
STLA and STLC are illustrated in Fig. 2.

STLA can be tested by a Taylor expansion of
flows along vector fields. A key object in this
study is the Lie bracket of two vector fields
V1.x/ and V2.x/, defined as the new vector
field

ŒV1; V2� D @V2

@x
V1 � @V1

@x
V2:

If the system were to start from x and flow along
V1 for a short time �, then V2 for �, then �V1 for �,
then �V2 for �, a Taylor expansion shows that the
net motion of the system would be �2ŒV1; V2�.x/
(plus terms of order �3 and higher). If this direc-

Underactuated Robots, Fig. 2 Example reachable sets
in small time for systems that are STLA and STLC at x
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tion is neither zero nor a linear combination of V1
and V2, then effectively a new motion direction
has been created.

For the upright rolling wheel, the Lie bracket
of g1 (forward-backward rolling) and g2 (turn-
ing) is

Œg1; g2� D ŒR sin �;�R cos�; 0; 0�T ;

a sideways “parallel parking” motion. This new
direction increases the dimension of the locally
reachable set beyond what could be reached by a
local linearization of the nonlinear system.

Roughly speaking, the Lie algebra of a set
of vector fields V is the set of vector fields V ,
all iterated Lie brackets of these vector fields,
and their linear combination. For example, the
Lie algebra of V D fg1; g2g includes Œg1; g2�,
Œg1; Œg1; g2��, Œg2; Œg1; Œg1; g2���, etc., as well as
their linear combinations. Deeper Lie brackets
correspond to higher-order terms in the Taylor
expansion of flows.

With these concepts, a theorem due to Chow
(1939) says that a system (1) satisfies STLA
at x if the dimension of the Lie algebra of
ff; g1; : : : ; gmg at x is p, the dimension of the
state space. This is known as the Lie algebra rank
condition (LARC). Most underactuated systems
of interest satisfy the LARC but not the KRC.
For the upright rolling wheel, the linearization
at any q fails the KRC, but the four-dimensional
configuration space is spanned by g1, g2, Œg1; g2�,
and Œg2; Œg1; g2�� at all q, satisfying the LARC.
Therefore the system is STLA at all points.

The STLA property can be strengthened to
STLC if the system additionally satisfies certain
symmetry properties, allowing it to proceed both
forward and backward along Lie bracket direc-
tions. For example, if f .x/ D 0 and the control
set U contains the origin in the interior, the LARC
implies STLC. This is the case for the upright
rolling wheel. More general notions of symmetry
have also been derived (e.g., Sussmann 1987).

For mechanical systems, STLC can only hold
at zero-velocity states where f .x/ D 0. In
addition, velocity constraints may prevent the
system from reaching a 2n-dimensional set in
state space. A more relevant question may be

whether the configuration alone can be locally
controlled at zero-velocity states. Specialized
Lie-algebraic controllability tests have been
developed for configuration controllability of
mechanical and mixed systems (Bullo and Lewis
2004; Bullo and Lynch 2001; Bullo et al. 2002;
Lewis 2000).

Global controllability results often derive from
STLC at all states for drift-free systems or from
STLA and global properties of the vector fields
or the topology of the state space (Choset et al.
2005).

Feedback Stabilization
For some underactuated robots, the linearization
at a state x may satisfy the KRC. An example
is an inverted pendulum linearized at a balanced
equilibrium state. In this case, it is possible to
derive a linear feedback controller, based on the
linearization, to stabilize the balanced state.

For many underactuated systems of interest,
however, the linearization at a desired state is
not controllable. For such systems, a famous
theorem due to Brockett (1983), plus subsequent
strengthening, implies the following:

Theorem 1 For any drift-free underactuated
kinematic system of the form (1), there exists no
time-invariant continuous state feedback law that
stabilizes the origin.

For example, there exists no continuous state-
feedback control law that can stabilize the upright
rolling wheel to a desired configuration.

This obstruction to stabilizability has resulted
in a number of different approaches to feedback
control of underactuated systems, including (1)
time-varying feedback control laws, (2) feed-
back control laws that are discontinuous in the
state, and (3) two-degree-of-freedom controllers
consisting of a motion planner plus a feedback
controller for the easier problem of stabilizing
the nominal trajectory. Strategies for planning
nominal motions for two-degree-of-freedom con-
trollers are discussed next.

Motion Planning
Given an initial state x.0/ D xstart and a goal
state xgoal, the motion planning problem for a
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system Px D h.x; u/ is to find a control history
u W Œ0; T � ! U such that

xgoal D x0 C
Z T

0

h.x.s/; u.s//ds

while avoiding any obstacles that may be present
in the environment. It may also be desired to
minimize some notion of cost,

J D
Z T

0

L.x.s/; u.s//ds:

One choice ofL.s/ is uT .s/u.s/, the square of the
control effort.

Ideally the motion planning method would
be complete (guaranteed to find a solution in
finite time if one exists) or probabilistically
complete (if a solution exists, the probability
of finding a solution goes to one as time goes to
infinity).

A variety of approaches to motion planning
have been proposed in the robotics literature.
Approaches that apply to underactuated systems
include:
• Search-based methods. A popular class of

search-based methods are rapidly exploring
random trees (RRTs) and variants (LaValle
and Kuffner 2001). These approaches offer
probabilistic completeness for many systems,
including systems with obstacles, but naïve
implementations may be slow to find solu-
tions, and the solutions generally do not sat-
isfy optimality criteria.

• Numerical optimization. The control history
can be converted to a finite parameterization
using representations such as polynomials, cu-
bic B-splines, wavelets, and truncated Fourier
series. Numerical optimization methods can
then be applied to solve the two-point bound-
ary value problem while minimizing a cost
function. Gradient-based numerical optimiza-
tion methods may yield locally optimal so-
lutions, but they may suffer from numerical
convergence problems, and they may get stuck
in local minima depending on an initial guess.
Optimization methods that do not use gradient
information potentially offer globally optimal

solutions, but typically at the expense of sig-
nificantly longer computation times.

• Fictitious input methods. These methods
assume that there is a direct control input
available for each Lie bracket motion
direction. These fictitious inputs are then
converted to a sequence of feasible inputs
utilizing the Campbell-Baker-Hausdorff-
Dynkin expansion of flows (Lafferriere and
Sussmann 1991). In general, these methods
require iterative application to account for
errors in the approximate conversion.

• Trajectory transformation methods. One way
to deal with obstacles is to first use a global
motion planner that is complete under the
assumption that the robot has no motion
constraints. Then the template unconstrained
solution is iteratively subdivided into smaller
pieces, with each piece replaced by an
obstacle-free feasible trajectory generated
by a local planner. If the system is drift-
free and STLC at all configurations, then it
is possible to develop a local planner that
guarantees success of the transformation
from an unconstrained trajectory to a feasible
trajectory as the subdivisions get small enough
(Laumond et al. 1994).
Often it is possible to exploit structure of the

equations of motion beyond the general form (1).
Making use of extra structure can reduce the
computational complexity of motion planning.
• Chained form, sinusoidal controls, and av-

eraging. Certain drift-free kinematic systems
can be transformed to a canonical chained
form. For systems in such a form, sinusoidal
controls of integrally related frequencies can
be chosen to drive one of the configuration
variables to its desired value while having zero
net effect on configuration variables already at
their desired value. In this way, configuration
variables can be driven sequentially to their
desired values (Murray and Sastry 1993).

For many underactuated systems, si-
nusoidal controls can be used to achieve
approximate motion in each Lie bracket
direction needed to complete the LARC. The
resulting periodic motions are sometimes
called gaits, and motion planning can be
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achieved using a finite set of gaits (Bullo
and Lewis 2004; Ostrowski et al. 1994).

• Differentially flat systems. For certain under-
actuated systems with u 2 R

m, there exist a
set of m functions wi of the state, the control,
and its derivatives,

wi .x; u; Pu; Ru; : : : ; u.r//; i D 1 : : :m;

such that the states and control inputs can
be expressed as functions of w and its time
derivatives. The wi are called flat outputs. The
motion planning problem is to find w.t/; t 2
Œ0; T �, such that w.0/; Pw.0/; Rw.0/; : : : and
w.T /; Pw.T /; Rw.T /; : : : satisfy the constraints
specified by xstart and xgoal. The problem
changes from constrained motion planning
in the p-dimensional state space to finding
a curve satisfying start and end constraints
on w and its derivatives (Fliess et al. 1995;
Sira-Ramirez and Agrawal 2004).

• Kinematic reductions. Motion planning in
configuration space is a lower-dimensional
problem than motion planning in
configuration-velocity space. Therefore, when
a mechanical system can be reduced to
a kinematic equivalent, motion planning
can be more efficient. Examples include
mechanical systems that can be fully reduced
to a kinematic system (like the reaction-
wheel satellite) and mechanical systems
that admit rank-1 kinematic reductions –
vector fields on configuration space that
can be followed at any speed, despite the
underactuation constraints. These vector fields
become primitives for motion planning on
configuration space (Bullo and Lewis 2004;
Bullo and Lynch 2001; Bullo et al. 2002;
Choset et al. 2005).

Summary and Future Directions

Underactuated systems arise in all areas of
robotics, including robot manipulation and
aerial, ground, and underwater locomotion.
Underactuation raises a number of challenging
issues in robot motion planning and control.

While significant progress has been made, further
research is needed on computationally efficient
motion planning and robust stabilization of
nominal trajectories. In addition, although this
entry focuses on systems that can be described
by a single set of dynamics, many interesting
underactuated systems are hybrid systems
that experience changing contact constraints.
Examples include biped robots striding from
one foot to the next and robot manipulators that
manipulate objects with changing contact modes
(grasping, rolling, pushing, etc.). Further work is
needed to incorporate contact models, beyond
simple kinematic constraints, and changing
equations of motion in motion planning and
control of hybrid underactuated systems.
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Recommended Reading

Introductions to underactuated robot systems can
be found in Choset et al. (2005), Lynch et al.
(2011), and Murray et al. (1994).

While this entry focuses on configuration
spaces modeled locally as R

n, most robotic
systems consist of rigid bodies whose positions
and orientations can be described globally as
elements of the Lie group SE.3/ or one of its
subgroups: SE.2/, SO.3/, or SO.2/. Geometric
methods for control of underactuated systems
make use of the extra structure of Lie groups and
their Lie algebras, symmetries, and concepts
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from geometric mechanics such as tangent
and cotangent bundles, Riemannian metrics on
manifolds, symplectic manifolds, connections,
fiber bundles, covariant derivatives, etc. Excellent
treatments can be found in Bloch et al. (2003),
Bullo and Lewis (2004), and Murray et al. (1994).
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