
145Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_7, © Springer-Verlag London 2013

 Abstract Cloud computing is often used to describe a model for ubiquitous,
convenient, and on-demand network access to shared pool of configurable
computing resources that can be rapidly provisioned and released with minimal
management effort or service provider interaction. Cloud computing heralds the
trend of service provider companies in comparison to traditional software licens-
ing era. As the Cloud-based services are increasing and businesses catered
through software services require reassurances, so there is a need to test those
services and applications before offering them to the customers. Cloud-based
testing offers reduction in the unit cost of computing with test effectiveness, on-
demand fl exibility, freedom from holding assets, enhanced collaboration, greater
levels of effi ciency, and, most signifi cantly, reduced time-to-market for key busi-
ness applications. This chapter largely quantifi es on testing related to Cloud
computing, elaborates fundamentals of testing and differentiates between tradi-
tional software testing techniques and software testing in Cloud environment.
It also emphasizes on analysis of the existing Cloud-based testing models and
their limitations and Cloud-based application frameworks. The chapter con-
cludes with the discussion on need of automated test case generation techniques,
potential research directions, and technologies for testing approaches in Cloud
environments.

 Keywords Cloud-based applications • Testing in the Cloud • Cloud applications
framework

 Chapter 7
 Testing Perspectives for Cloud-Based
Applications

 Inderveer Chana and Priyanka Chawla

 I. Chana (*) • P. Chawla
 Computer Science and Engineering Department, Thapar University, Patiala, India
 e-mail: inderveer@thapar.edu; priyankamatrix@gmail.com

146

7.1 Introduction

 Software testing ensures correctness, robustness, reliability, and quality in software
and is thus fundamental to software development. Testers often execute software
under a stipulated environment as well as out of bounds with the intent of fi nding
errors in it [1]. According to IEEE, software testing is the process of analyzing a
software item to detect differences between existing and required conditions and to
evaluate the features of the software item [2]. Software testing is considered to be a
critical element of software quality assurance due to the following reasons [3]:

• To test a developed system for its performance, reliability, and quality
• To ensure long-lasting working of the software without failures
• To detect the bugs and deviations from specifi cations before delivering it to the

customer

 Software testing comprises verifi cation and validation tasks. Verifi cation is the
process of evaluating a system or component to determine whether the products of
a given development phase satisfy the conditions imposed on that phase. Validation
is the process of evaluating a system or component during or at the end of develop-
ment process to determine whether it satisfi es specifi ed requirements [IEEE/ANSI].
Hence, software testing is not limited to executing software to fi nd defects only but
also to test documents and other non-executable forms of a software product and
does often become bottleneck in software development.

7.1.1 Software Testing in the Cloud

 Testing is a challenging activity for many software engineering projects, espe-
cially for large-scale systems. The amount of test cases can range from a few
hundred to several thousands, requiring signifi cant computing resources and
lengthy execution times. Cloud computing offers resources like virtualized hard-
ware, effectively unlimited storage, and software services that can aid in reducing
this execution time of large test suites in a cost-effective manner. Many organiza-
tions like SOASTA, Microsoft, Rackspace, Sogeti, IBM, CloudTesting, Wipro,
and HP provide Cloud- based testing services such as performance testing, load
testing, and Web-based application testing. Following factors account for the
migration of testing to the Cloud [4]:

 (a) Testing is a periodic activity and requires new environments to be set up for
each project. Test labs in companies typically sit idle for longer periods, con-
suming capital, power, and space.

 (b) Testing is considered an important but non-business-critical activity. Moving
testing to the Cloud is seen as a safe bet because it doesn’t include sensitive
corporate data and has minimal impact on the organization’s business-as-usual
activities.

I. Chana and P. Chawla

147

 (c) Applications are increasingly becoming dynamic, complex, distributed, and
component based, creating a multiplicity of new challenges for testing teams.
For instance, mobile and Web applications must be tested for multiple operating
systems and updates, multiple browser platforms and versions, different types
of hardware and a large number of concurrent users to understand their perfor-
mance in real time. The conventional approach of manually creating in-house
testing environments that fully mirror these complexities and multiplicities
 consume huge capital and resources.

 According to the Software Testing in the Cloud (STITC) [5], a special interest
group, there are three categories of Cloud testing as enumerated below:

 (a) Testing in the Cloud: Leveraging the resources provided by a Cloud computing
infrastructure to facilitate the concurrent execution of test cases in a virtualized
environment. Testing in the Cloud is about utilizing the Cloud for testing, such
as for confi guration testing and load testing.

 (b) Testing of the Cloud: Testing applications that are hosted and deployed in a
Cloud environment.

 (c) Migrating testing to the Cloud: Moving the testing process, test assets, and test
infrastructure from their current state to facilitate either testing in the Cloud or
testing of the Cloud.

 However, migrating testing to Cloud does not come without cost, nor is it neces-
sarily the best solution for all testing problems. The two perspectives that have to be
considered before migration of software testing to the Cloud are the characteristics
of an application under test and the types of testing performed on the application [6].

7.1.2 Benefi ts and Challenges of Cloud-Based Testing

 The benefi ts of Cloud-based testing can be enumerated as mentioned below
[7 – 10]:

 (a) Testing in the Cloud leverages the Cloud computing infrastructure reducing the
unit cost of computing, while increasing testing effectiveness.

 (b) Cloud-based testing service providers offer a standardized infrastructure and
pre-confi gured software images that are capable of reducing errors considerably.

 (c) The non-cost factors include utility like on-demand fl exibility, freedom from
holding assets, enhanced collaboration, greater levels of effi ciency, and, most
important, reduced time-to-market for key business applications.

 On-demand Cloud provisioning addresses the issues of software testing with one
click. Moreover, the effort and resources saved in the development and testing area
can be utilized for core business needs. Recent research from Fujitsu [11] (as shown
in Fig. 7.1) suggests that testing and application development rank second (57 %) as
the most likely workload to be put into the Cloud after Web sites (61 %). Although,

7 Testing Perspectives for Cloud-Based Applications

148

numerous benefi ts can be accounted for Cloud-based testing, following challenges
[6 , 12 – 14] also need to be addressed to fully exploit the benefi ts:

 (a) Lack of standards: There is no universal/standard solution to integrate public
Cloud resources with user companies’ classic data center. Cloud providers have
their own architecture, operating models, and pricing mechanisms and offer
 limited interoperability.

 (b) Security in the public Cloud: Security is currently addressed through encryption
techniques, which is not suffi cient.

 (c) Service Level Agreements (SLAs): There is no standard procedure to defi ne
terms and conditions of Cloud service providers. Existing procedures are gener-
ally not precise, misleading and biased toward the providers.

 (d) Infrastructure: Limited types of confi gurations, technology, servers and storage,
networking, and bandwidth are provided by some providers, which make it dif-
fi cult to create real-time test environments.

 (e) Usage: Usage is directly dependent on the estimations made by the users. Any
error in the estimates can lead to extra costs.

 (f) Planning: Planning is very crucial for the testing teams before migrating testing
in a Cloud as it will consume additional CPU and memory. Testing teams should
be aware of all the expenses like cost of encrypting data.

 (g) Performance: Service provider may suddenly announce disruption of service
due to a maintenance window or network outage, which can cause long waiting
time for the service users.

7.2 Cloud Applications Frameworks

 Computing paradigms have evolved from dummy terminals/mainframes to PCs,
network computing, to Grid and Cloud computing [15]. Cloud computing helps to
build a model for on-demand network access to a shared pool of computing resources

70

60

50

40

30

20

10

0

Web Site

Test and Development

E-mail and PC Applications

HR and Payroll

Finance and Accounting

 Fig. 7.1 Top application of Cloud [11]

I. Chana and P. Chawla

149

that requires minimal management effort or service provider interaction [16]. The
Cloud model as defi ned by NIST promotes availability and is composed of fi ve
essential characteristics, namely, on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured service [17]. The building blocks of
Cloud computing are essential characteristics, service delivery models, deployment
models [17], and enabling technologies [18 , 19]. For Cloud applications, the
enabling technologies are the set of technological advances that made the appear-
ance of Cloud computing possible. The service delivery model identifi es the ser-
vices that are delivered on each implementation, while the deployment models
identify how those services are deployed. Essential characteristics and enabling
technologies are common to every Cloud service implementation, while the deliv-
ery and deployment models differentiate each one of the implementations.

7.2.1 Traditional Applications vs. Cloud-Based Applications

 Cloud computing environment is unlike a traditional environment in terms of appli-
cations deployment, confi guration, execution, and management. Traditional appli-
cations and Cloud-based applications differ considerably and have been compared
on the basis of type of users, multi-tenancy, security, etc., in Table 7.1 .

 Cloud applications can also be categorized on the basis of the degree of multi-
tenancy required for an application; multi-tenancy is enabled by the concept of vir-
tualization, which supports sharing of compute, storage, and network resources
among multiple clients. In a Cloud, a client (tenant) could be a user, a user group, or
an organization/company.

 Cloud-Hosted Applications : Cloud-hosted applications are the one that can be
executed on the Cloud. In Cloud-hosted applications, multi-tenancy is at the

 Table 7.1 Traditional apps vs. Cloud-based applications

 Parameters Traditional applications Cloud-based applications

 User base Known at design time May not be known and could be dynamic
 Multi-tenancy Not required Assumed
 Security Enforced by application

architecture
 Service contracts like WS-Security, SAML

provided by Cloud providers
 Deployment Only traditional tools Requires knowledge and utilization of vendor

specifi c Cloud API and tools
 Downtime Upgrades and enhancements

are associated with
downtime

 No downtime

 Infrastructure Structured and controlled Unstructured and is managed by Cloud fabric
 Components Components co-located in

same environment
 Components are mostly scattered around one

or many Clouds
 Testing In controlled environment Application (integration) is tested on the

Cloud to ensure seamless orchestration
between services on one or many Clouds

 User base Known at design time May not be known and could be dynamic

7 Testing Perspectives for Cloud-Based Applications

150

infrastructure layer, that is, only infrastructure would be shared by providers to
support multiple client applications, for example, Amazon EC2 and Rackspace.

 Cloud-Optimized Applications : Cloud-optimized applications are the one that
can leverage the Cloud to its fullest potential. These applications meet the strin-
gent requirements and deliver the maximum return on the Cloud investment. In
Cloud- optimized application multi-tenancy is supported at the different layers
like infrastructure, application, and database by leveraging a PaaS platform, for
example, Salesforce.com’s Force.com.

7.2.2 Traditional Software Testing vs. Cloud Testing

 Traditional software testing cannot be applied to test applications in a Cloud envi-
ronment as traditional software testing is designed for on-premise single-tenant
applications and cannot support multi-tenant applications. Traditional software test-
ing does not support new business requirements and risks that come with Cloud
environment. Test engineers that are trained to perform traditional software testing
need special training to perform testing in Cloud.

 New business needs and associated challenges should be properly understood
before migrating to Cloud environment in order to meet Cloud testing requirements.
Organizations need to be equipped with additional infrastructure such as different test-
ing skills required by test engineers to perform the job of testing in a Cloud [20 , 21].

 To identify the type of testing to be performed, an understanding of Cloud char-
acteristics and the risks/challenges involved is required. Right testing strategy
should be selected by addressing the following challenges:

• Quality risks of Cloud computing such as reliability, fl exibility, multi-tenancy,
self-healing, pricing band on SLA’s and location independence.

• Inherited risks associated with Cloud computing like data governance, data secu-
rity, virtualization security, reliability, monitoring, and manageability.

• Applicable Cloud models to be tested like Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS).

 Cloud testing exemplifi es testing on demand and is perceived as future of testing
services. The following testing types are performed in general for Cloud testing:

• System Integration Testing/User Acceptance Testing: The Cloud platform must
be integrated with all platforms and infrastructure services so that a user can
build up his data online.

• Interoperability Testing: Interoperability refers to moving Cloud applications
from one infrastructure to another Cloud infrastructure. Any application on
Cloud must have the ability to be operated on multiple platforms and environ-
ments. It should be able to get executed across any Cloud platform.

• Performance Testing/Load Testing: Elasticity refers to using minimum resources
and producing maximum usage for end users. The performance of Cloud should
remain intact even if there are increasing infl ows of requests.

I. Chana and P. Chawla

151

• Stress Testing/Recovery testing: In case a failure occurs, disaster recovery time
should be as less as possible. Services must be retrieved online with minimum
adverse effects on client’s business.

• Security Testing: Unauthorized access to data must be strictly prohibited. Shared
data integrity and security must be maintained all times as client trusts the Cloud
platform for securing his information.

 The infrastructure requirement for test environment is another important consid-
eration for Cloud testing. The two possible options for choosing the right test envi-
ronment are:

• Simulating in-house Cloud test environment
• Choosing the right Cloud service provider

 Apart from identifying applicable testing types, testing team must also focus on
the specifi c requirements of the application to be tested because of being in a Cloud
environment (as enumerated below):

• Supporting multiple browsers
• User session management related issues
• Test against security vulnerabilities
• In a multi-tenant environment, restricting users to access their data only
• Test engineer’s skill

7.2.3 Applications Suitable for Cloud

 Classes of applications that can be benefi ted with Cloud computing and contribute
further to its momentum are:

 (a) Mobile interactive applications: These applications reside on the mobile device,
which connects all organizations to all types of consumers and employees.
They are highly available and generally rely on large data sets that are most
conveniently hosted in large data centers. Such applications respond to infor-
mation provided either by their users or by nonhuman sensors in real time [22].

 (b) Parallel batch processing: Batch processing is execution of programs in some
specifi ed sequence on a computer without manual intervention. Parallel pro-
cessing is use of more than one CPU or processor core to execute a program at
the same time. Parallel batch processing is the execution of programs using
more than one CPU or processor core to make the execution faster. Cloud com-
puting is very useful for batch processing and analytics jobs that analyze tera-
bytes of data and can take hours to fi nish. By making application that is equipped
with enough data parallelism one can take care of using hundreds of computers
for short time costs. For example, Peter Harkins, a Senior Engineer at The
Washington Post, used 200 EC2 instances (1,407 server hours) to convert
17,481 pages of Hillary Clinton’s travel documents into a form more friendly to
use on the WWW within 9 h after they were released [23]. Programming

7 Testing Perspectives for Cloud-Based Applications

152

abstractions such as Google’s MapReduce [24] and its open-source counterpart
Hadoop [25] allow programmers to express such tasks while hiding the opera-
tional complexity of choreographing parallel execution across hundreds of
Cloud computing servers.

 (c) Business analytics: It is a special case of compute-intensive batch processing
which is expending large share of computing resources to understand custom-
ers, supply chains, buying habits, ranking, and so on. Hence, while online trans-
action volumes will continue to grow slowly, decision support is growing
rapidly, shifting the resource balance in database processing from transactions
to business analytics.

 (d) Extension of compute-intensive desktop applications: Cloud computing is
being used to extend the basic versions of the mathematics software packages
 MATLAB and Mathematica to perform expensive evaluations. For example,
symbolic mathematics involves large amount of computing per unit of data. An
interesting alternative model might be to keep the data in the Cloud and rely on
having suffi cient bandwidth to enable suitable visualization and a responsive
GUI back to the human user.

 (e) Web Applications: Web applications are the applications that can be accessed
from anywhere via the Web browser. Web application development through
Cloud computing provides cost-effective solution to provide specialized ser-
vices to customers without having to build, maintain, or host the applications.
Businesses can depend on Cloud service providers to collect, maintain, and
store their data. For example, multitiered Web applications like RUBiS [26] and
Media Wiki [27] can also be ported to Cloud platform [28].

 (f) Scientifi c Workfl ow Applications: Scientifi c workfl ow applications can be exe-
cuted effi ciently over utility computing platforms such as Amazon Elastic
Compute Cloud, Google App Engine and academic Cloud like Nimbus Science.
A few examples of scientifi c workfl ow applications are now listed below:

• In astronomy, scientists are using workfl ows to generate science-grade
mosaics of the sky [29], to examine the structure of galaxies to understand
the structure of the universe [30].

• In bioinformatics, workfl ows are used to understand the underpinnings of
complex diseases [31 , 32].

• In earthquake science, workfl ows are used to predict the magnitude of earth-
quakes within a geographic area over a period of time [33].

• In physics, workfl ows are used to try to measure gravitational waves [34]
and model the structure of atoms [35].

7.2.4 Cloud Application Architecture and Process Models

 Cloud application development is different from traditional application development,
as for the development of Cloud-based applications, architectural, and operational
considerations should be taken into account [36].

I. Chana and P. Chawla

153

 Software application architecture involves the process of defi ning a structured
solution that meets all of the technical and operational requirements. It concerns
with a series of decisions based on a wide range of factors, and each of these deci-
sions can have considerable impact on the quality, performance, maintainability,
and overall success of the application. Application architecture seeks to build a
bridge between business requirements and technical requirements by understanding
use cases and then fi nding ways to implement those use cases in the software.

 A good design is suffi ciently fl exible to be able to handle the natural drift that
will occur over time in hardware and software technology, as well as in user sce-
narios and requirements. To fully attain architectural goals, structure of the system
can be fully exposed, hiding the implementation details, and thus should be able to
realize all user cases and scenarios. Architecture of Cloud-based application must
possess the following attributes:

 (a) Support for service-based model: Once an application is deployed, it needs to
be maintained. In the past this meant using servers that could be repaired with-
out or with minimal downtime. Today it means that an application’s underlying
infrastructure components can be updated or even replaced without disrupting
its characteristics including availability and security.

 (b) Incorporating elasticity to dynamically scale and support large number of users:
Applications designed for Cloud computing need to scale with workload
demands so that performance and compliance with service levels remain on tar-
get. In order to achieve this, applications and their data must be loosely coupled
to maximize scalability. The term elastic often applies to scaling Cloud applica-
tions because they must be ready to not only scale up but also scale down as
workloads diminish in order to not run up the cost of deploying in the Cloud.

 (c) Supporting parallel processing: Reliability, in today’s arena, means that appli-
cations do not fail and most importantly they do not lose data. The way that
architecture addresses this characteristic today is to design applications so that
they continue to operate and their data remains intact despite the failure of one
or more of the servers or virtual machines onto which they are decomposed.

 (d) Support for multi-tenancy: The single-tenant model has a separate, logical
instance of the application for each customer, while the multi-tenant model has
a single logical instance of the application shared by many customers. It’s
important to note that the multi-tenant model still offers separate views of the
application’s data to its users.

 (e) Security of data: Applications need to provide access only to authorized,
authenticated users, and those users should be able to trust that their data is
secure. Security in today’s environments is established using strong authentica-
tion, authorization, and accounting procedures, establishing security of data at
rest and in transit, locking down networks, and hardening operating systems,
middleware, and application software.

 (f) Cloud orchestration: Cloud orchestration involves interconnecting processes
running across heterogeneous systems in multiple locations. Its main purpose is
to automate the confi guration, coordination and management of software and

7 Testing Perspectives for Cloud-Based Applications

154

software interactions. Tasks involved include managing server runtimes, directing
the fl ow of processes among applications and dealing with exceptions to typical
workfl ows. Vendors of Cloud orchestration products include Eucalyptus,
Flexiant, IBM, Microsoft, VMware, and V3 Systems.

 (g) Persistent software licensing issues: The different types of license models are
pay-as-you-go, subscription-based licenses, licenses based on number of users,
and Bring Your Own Software and License (BYOSL). For example, Amazon’s
software license models in the Cloud are often pay-as-you-go and/or subscription-
based licenses. Salesforce.com charges according to the number of users on a
subscription basis. Microsoft has created dedicated software license models for
Cloud service providers based on Processor License (PL) or Subscriber Access
License (SAL), which is based on the number of end users connected. Both of
these are licensed on a monthly basis to service providers.

 Process model used for developing Cloud-based application should be chosen
appropriately so as to enhance the benefi ts of Cloud computing like fl exibility,
availability, and adaptability and assisting the testing of Cloud apps. Let us have a
look on the most popular process models adopted by the software development
companies and fi nd out which process models support the above discussed features
and requirements of Cloud-based application development.

 Agile Methodology : In an agile paradigm, every phase of development – requirements,
design, etc. – is continually revisited throughout the life cycle. It gives more
importance to customers, collaborations over contracts, and working software over
documentation and responds to changes at any time during the development. The
results of this approach lead to reduction in both development costs and time-to-
market. Team’s work cycle is limited to 2 weeks; customer involvement is given the
highest priority at each phase, which results in the development of right product as
per the requirements of the customers. Widely used agile processes in Cloud appli-
cation development are Scrum and Extreme Programming (XP).

 Waterfall Model : In this model, development of software occurs just like a waterfall
from one phase to other in a downward fashion. Various phases of the software
development like requirements and analysis and design become sequential phases.
Each and every phase is highly dependent on the document exchange between the
phases. This process model is good for repetitive work, but not for Cloud-based
application development because of the risks associated that increase with time.

 Iterative Model: In an iterative process, various phases of software development like
requirements and analysis and design are distributed within iterations, which occur in a
sequential manner and are often combined into phases. This process model is good for
exploratory work and risk associated is less. Widely used iterative process models are
IBM’s Rational Unifi ed Process (RUP) and Eclipse’s Open Unifi ed Process (OpenUP).

 Out of these three models, agile methodology is the most preferred process model for
Cloud-based application development as it can facilitate quick discovery and assem-
bly of resources and services available within the Cloud in order to build a software
application and thus help in easy development and testing of software applications.

I. Chana and P. Chawla

155

7.2.5 Cloud Application Development and Testing Platforms

 A Platform is very important element for application development and deployment,
which includes hardware architecture, and a software framework that facilitates
developers to build, deploy, and manage custom applications. This feature applies
to the traditionally licensed platforms and platforms that are provided as a service.
Earlier vendors like IBM, Microsoft, and Oracle provided platform products through
a traditional on-premise licensing model, but nowadays they are moving toward
delivery of Platforms as a Service (PaaS). Vendors like Google and Salesforce.com
provide computing resources as services.

 Cloud-based application development and testing platforms provide highly reli-
able, scalable, and low-cost infrastructure platform by which users can build, deploy,
test, and manage applications with great ease. Applications can be built using any
language; tool or framework and public Cloud applications can be integrated with
existing IT environment. There is also no need to maintain servers.

 Cloud computing platforms not only provide its users with various innovative
technologies but also offer lucrative businesses to its investors. Today, these plat-
forms have successfully been able to build up, customize, and deploy applications
befi tting user’s requirements exactly.

 Cloud-based application testing platforms mainly facilitate unit testing and load/
performance testing. During software development process, unit testing allows test-
ing of small and reusable modules of code. Unit testing framework works as a test
runner, runs user’s test binary, track progress via a progress bar, and displays a list
of test failures [Google Test].

 Load testing is the process of putting demand on a system or device and measur-
ing its response. It is performed to determine a system’s functional behavior and
performance under both normal and anticipated peak load conditions. Load testing
frameworks build tests by simulating large number of virtual visitors, each with
their own unique user name/login and task.

 Currently there are many Cloud-based application development and testing plat-
forms such as Google, Microsoft, Amazon, Rackspace, Right Scale, EngineYard
Cloud, Terremark Worldwide, Enki, and XCalibre Flexi Scale [37 – 45].

 In the next section, we discuss the current academic research in the area of
Cloud-based testing and various testing techniques focused by the researchers.

7.3 Cloud-Based Testing Models: State of the Art

 Cloud-based testing can be divided into seven categories based upon the type of
research models [17]. Following testing techniques are currently being used for test-
ing in Cloud environment. A comparative analysis of these techniques is presented
in Table 7.2 .

 Virtualization-Aware Automated Testing Service (VATS) : VATS is a framework that
facilitates automated performance testing and confi guration of services in Cloud

7 Testing Perspectives for Cloud-Based Applications

156

computing environments. It executes tests, manipulates virtualized infrastructure,
and collects performance information. VATS complements a Service Lifecycle
Management system named SLiM. SLiM is a model-driven service for managing the
confi guration, deployment, and runtime management of services operating in Clouds.
VATS works with SLiM and supports the testing of other services that are compatible
with SLiM. VATS uses HP LoadRunner as a load generator and provides the founda-
tion for an automatic performance evaluator for Cloud environments.

 York Extensible Testing Infrastructure (YETI): The York Extensible Testing
Infrastructure (YETI) is Cloud enabled automated random testing tool with the abil-
ity to test programs written in different programming languages [8]. While YETI is
one of the fastest random testing tools with over a million method calls per minute
on fast code, testing large programs or slow code – such as libraries using inten-
sively the memory – might benefi t from parallel executions of testing sessions. It
relies on the Hadoop package, and it does map/reduce implementation to distribute

 Table 7.2 Comparison chart of Cloud-based testing models

 Techniques/
parameters SUT

 Virtualization
technology Benefi ts

 VATS SAP/R3 System Xen Improved service
performance

 D-Cloud Distributed/parallel QEMU;
Eucalyptus

 Cost and time

 Yeti Java.lang,iText Hadoop;
Amazon EC2

 Test execution speedup

 AST Communication Virtual
Machine (CVM)

 Microsoft
Windows
Server 2008;
R2 operating
system

 Fault detection from the
interaction between
services

 PreFail HDFS Cassandra;
Zookeeper

 Reduced testing time

 NMS Simulation of
large-scale
networks

 Amazon EC2 Less expensive and more
scalable
implementation

 FATE and DESTINI HDFS – Build robust, recoverable
systems

 LSTS Symbian S60 – Easy to deploy; tester’s
task minimized

 TSaaS – – Elastic resource infrastruc-
ture; provides various
kind of testing services
to users

 Bare-Bone – – Conduct analysis on Cloud
composition and
detection of anomalies

 Cloud9 UNIX utilities Eucalyptus;
Amazon EC2

 On-demand software
testing service;
speedup

I. Chana and P. Chawla

157

tasks over potentially many computers. Cloud version of YETI can be distributed
over Amazon’s Elastic Compute Cloud (EC2).

 Model-Based Testing Using Symbolic Execution : Symbolic execution [46] is a fully
automatic technique for generating test case to achieve high testing coverage. It is
performed by executing programs with symbolic, rather than concrete inputs. The
paths followed during symbolic execution form a symbolic execution tree, represent-
ing all the possible executions through the program. However, exploring all the
possible program executions is generally infeasible, thus restricting the application
of symbolic execution in practice. Scalability of symbolic execution can be addressed
through parallelization as done in Cloud9 [14 , 47 , 48]. Cloud9, an automated testing
platform that employs parallelization to scale symbolic execution by harnessing the
resources of commodity clusters. Cloud9 helps cope with path explosion. It can auto-
matically test real systems. Doing so without Cloud9 is hard, because single computers
with enough CPU and memory to symbolically execute large systems either do not
exist today or are prohibitively expensive. Besides single- threaded single node
systems, Cloud9 also handles multi-threaded and distributed software, and it
provides an easy-to-use API for writing “symbolic tests.” Developers can specify
concisely families of inputs and environment behaviors for which to test the target
software, without having to understand how symbolic execution works.

 D-Cloud : It is a software testing environment for dependable, parallel, and distrib-
uted systems using the Cloud computing technology, namely, D-Cloud. D-Cloud
includes Eucalyptus as the Cloud management software and FaultVM based on
QEMU as the virtualization software and D-Cloud front end for interpreting test
scenario. D-Cloud enables not only to automate the system confi guration and the
test procedure but also to perform a number of test cases simultaneously and to
emulate hardware faults fl exibly.

 Autonomic Self-Testing (AST): It is based on the concepts of autonomic computing
to software testing of adaptive systems which is called as autonomic self-testing
(AST). It deploys test managers throughout the software to validate dynamic adap-
tations and updates. AST is designed with fl exible strategies for incorporating the
approach into systems with different performance and availability requirements. It
supports replication with validation strategy that can provide a highly transparent
runtime testing process in distributed environments. AST is supplemented with
 TSaaS that allows testing to cross administrative boundaries in the Cloud [48].

 Cloud-Based Performance Testing of Network Management Systems : It is a method
for NMS performance testing, which is based on off-the-shelf “Infrastructure- as-a-
Service” Cloud computing service. The method involves preparing and storing
images of managed elements on the Cloud which can be run later in large numbers
using the Cloud computing service in order to simulate large-scale networks for
NMS testing purposes. It is used to test distributed system that consists of thousands
of VoIP private branch exchange (PBX) networked through SIP. Emulation agents
have been used instead of recorded HTTP(S) traffi c, which have many advantages
like writing application level test cases instead of low-level scripts, emulation of
element-specifi c business logic, and fl exibility in the communication protocols [49].

7 Testing Perspectives for Cloud-Based Applications

158

 Model-Based Testing Using Bare-Bone Cloud: Bare-Bone Cloud is a directed graph
of providers and consumers in which computing resource such as services or intel-
lectual property access rights acts as an attribute of a graph node, and the use of a
resource as a predicate on an edge of the graph. Author has proposed algorithms
to compose Cloud computations and a family of model-based testing criteria to
support the testing of Cloud applications [50].

 Test-Support as a Service (TSaaS): TSaaS is a new model to provide testing capa-
bilities to end users. Scheduling and dispatching algorithms are developed to
improve the utilization of computing resources. Authors evaluate the scalability of
the platform by increasing the test task load, analyze the distribution of computing
time on test task scheduling and test task processing over the Cloud, and examine
the performance of proposed algorithms [50].

 Model-Based Testing Service Using Labeled State Transition Systems (LSTSs): It is
a model-based GUI testing service for Symbian S60. The server encapsulates the
domain-specifi c test models and the associated test generation heuristics. The testers,
or test execution specialists, order tests from the server, and the test adapter clients
connect to the phone targets under test. It is easy to deploy in industrial environ-
ments; in practice, the tasks of the tester are minimized to specifying the coverage
requirement [51].

 PreFail: It is a programmable failure injection tool that supports failure abstractions
and executions profi les that helps testers to write policies to prune down large spaces
of multiple-failure combinations. It facilitates the automatic sorting of failed experi-
ments depending upon the bugs that caused them and parallelization of test work-
fl ow for further speedup. PreFail has been integrated to three Cloud software
systems like HDFS, Cassandra, and Zookeeper [52].

 FATE and DESTINI: It is testing framework which has been integrated to several
Cloud systems like HDFS, for Cloud recovery which consists of different modules:
Failure Testing Service and DESTINI (Declarative Testing Specifi cations). FATE
facilitates systematic multiple-failure testing of recovery, whereas DESTINI speci-
fi es the way to recover from failures [18].

7.3.1 Limitations of the Existing Models

 Various Cloud testing techniques have been proposed that mainly focus on auto-
matic test case generation [8 – 10 , 14 , 47 , 48 , 53], runtime virtualization [8 , 14 , 48 , 51 ,
 53], checking interoperability of multiple application level services [48], etc., but
still there is a need to increase the overall testability of Cloud applications and provi-
sion of metrics related to test set size and breakdown, item pass/fail results, and code
coverage which may act as a measure of confi dence in the hosted service.

 Potential providers of Cloud have so far been focused on fl exibility; cost-
effectiveness [12]; easy obtain ability, on-demand access [12 , 13 , 54 – 57]; dynamicity,

I. Chana and P. Chawla

159

scalability, security [36]; and provision of testing service across multiple browsers
in the Cloud [58]. However, quality checks for applications that have been tested on
the Internet have not been addressed yet.

 Pricing models and service description for online software testing services need
to be well elaborated so that customers are well informed and able to estimate costs.
In order to achieve transparent pricing models, different factors and metrics should
be considered while calculating the value of a Cloud-based testing service.
Therefore, transparent pricing models based on appropriate metrics and different
factors should be designed [6 , 10 , 14 , 48 , 53].

 Testing vendors and customers interested in testing in the Cloud would want to
be aware of the characteristics of an application like test case dependency and the
operating environment under test and the types of testing that can be performed on
the application [6].

 The transformation of Capital Expenditure Model (Cap-Ex) to Operating
Expenditure Model (Op-Ex) has not been yet fully achieved. Therefore, there is a
need to shift to a fl exible Op-Ex to avail the benefi ts of Cloud computing like cost
reduction, on-demand fl exibility, freedom from holding assets, enhanced collabora-
tion, greater levels of effi ciency, and reduced time-to-market for key business appli-
cations [4 , 11].

 As we have observed that various researchers have worked on automation Cloud-
based testing, so we will discuss the need and importance of automatic test case
generation and various existing automated testing frameworks in the next section.

7.4 Automatic Test Case Generation

 Software testing can be roughly divided into automated and manual testing.
Automated software testing implies automation of software testing activities and
tasks [59]. Increased automation of the testing process supports a more continuous
approach to software quality. These activities include the development and execution
of test scripts, the verifi cation of testing requirements, and the use of automated test
tools. Testing a software product forms a considerable expense, but so do the costs
caused by faults in the software product. By automating at least some of test process
phases and directing available resources toward additional testing can result in gains
[60]. Most of the test cases in one project are executed at least fi ve times, and one-
fourth over 20 times [61]. For example, smoke tests, component tests, and integration
tests are repeated constantly, so there is a dire need for automation development.

 Test automation is a signifi cant area of interest in current testing research, with
the aim to improve the degree of automation, either by developing advanced tech-
niques for generating test inputs or by fi nding support procedures to automate the
testing process itself [62]. The main benefi ts of test automation are quality improve-
ment, the possibility to execute more tests in less time and fl uent reuse of testware.
The major disadvantages are the costs associated with developing test automation
especially in dynamic customized environments. Optimal case for automated

7 Testing Perspectives for Cloud-Based Applications

160

software testing would be a standardized product with a stable, consistent platform
and cases that yield unambiguous results which can be verifi ed with minimal human
intervention [59].

 Nowadays, complexity of applications further increases due to adoption of tech-
nologies like Cloud or Big Data, which results in insuffi cient test coverage by the
existing traditional automation strategies. Hence, there is a need to defi ne an effec-
tive Test Automation strategy that focuses on maintenance of test scripts and the
learning curve associated with it along with improved test coverage.

 Following are some of most popular existing automation frameworks used in
distributed environment:

 JAT: It is a test automation framework for Multi-Agent Systems based upon aspect-
oriented techniques and is implemented using the agent platform JADE. It has
very high fault detection effectiveness [63].

 HadoopUnit: It is distributed execution framework which is built upon Hadoop for
JUnit test cases for creation and execution of JUnit test cases. It is very useful for
data-intensive application testing and has shown reduction in the test execution
time when tested experimentally [64].

 STAF (Software Testing Automation Framework): It is multi-platform, multi-
language approach based on the concept of reusable services that can be used to
automate major activities in the testing process [65].

 Test Automation in Agile Projects : It is an established fact that automated testing
facilitates change and delivers working software in agile. Practices such as Test-
Driven Design or Test-Driven Development as well as Continuous Integration
are all complemented by the automated tests. Impetus believes that the need for
automation is refl ected in the agile principles. Organizations must incorporate
the following key attributes into their automation strategy [66]:

• Testing across multiple levels to ensure optimum test coverage and save time
and costs.

• Regular updating of storyboards to include acceptance tests before automation.
• Knowledge of appropriate automation tools to match up with changing

requirements, which changes with time.
• Making of system in iterations, which helps customers, has more control over

the system and measurement of automation scripts.
• Exchange of ideas, plans, or problems through sprint planning by the whole

team to facilitate required automation at all the levels.
• Continuous Integration to ensure code links and compiles correctly.

7.5 Future Research Directions

 Organizations use testing in the Cloud to overcome their limitations of testing infra-
structure. They are then able to test traditional/on-premise resident applications
over the Clouds. There is no distinct or ideal approach for Cloud testing. This is

I. Chana and P. Chawla

161

primarily due to the fact that when an organization uses Cloud testing, various
factors like the Cloud architecture design, and non-functional and compliance
requirements need to be taken into account to ensure successful and complete test-
ing. Cloud infrastructure for setting up test environment can be very useful in the
scenario where there is requirement of distributed servers and distributed load gen-
erators. Setting up actual test infrastructure in different geographic locations can be
very diffi cult, time-consuming, and expensive, but in case of Cloud this would be
very quick and less expensive. Also, number of load generators required for testing
can be easily increased and decreased in case of Cloud, which otherwise becomes
diffi cult in case of in-house test environment.

 Cloud computing can provide online access to testing infrastructure with quality
attributes like availability, reliability, security, performance, scalability, and elastic-
ity. There is a need to migrate software testing to Cloud owing to reasons like para-
digm shift in the provision and use of computing services, reduction in cost of
software development, shorter development cycles, fl exibility, on-demand basis,
and access to global markets for both providers and customers. Furthermore, online
software testing is required to support agile development methods by providing
continuous testing services. Largely the companies are providing performance test-
ing, functional testing, and unit testing as Cloud test services but, very few compa-
nies are providing security testing, recovery testing, and fault-tolerance testing.
There has not been much progress by the academia also in the Cloud-based testing
techniques especially in security testing, fault-tolerance, and recovery testing. There
is also lack of standards in test tools and their connectivity and interoperability to
support Test-Support as a Service (TSaaS).

 Furthermore, pricing models and service description for online software testing
services need to be well elaborated so that customers are well informed and able to
estimate costs. Transparent pricing models based on appropriate metrics and differ-
ent factors need to be designed. In future it can be concluded that though initial
steps have been taken, but much more effort needs to be accomplished in order to
facilitate Cloud-based software Test-Support as a Service.

 References

 1. Harrold, M.J.: Testing: a roadmap. In: Proceedings of the Conference on the Future of Software
Engineering, ICSE’00, pp. 61–72. ACM, New York (2000)

 2. IEEE Computer Society: IEEE Standard Glossary of Software Engineering Terminology.
Technical Report. IEEE, New York (1990)

 3. Ahamad, S.: Studying the feasibility and importance of software testing: an analysis. ETRI J.
 1 (3), 119–128 (2009)

 4. Cognizant: Taking Testing to the Cloud. Cognizant Whitepaper. http://www.cognizant.com/
InsightsWhitepapers/Taking-Testing-to-the-Cloud.pdf (2012). Accessed May 2012

 5. Software Testing in the Cloud (STITC). http://www.stitc.org/
 6. Parveen, T., Tilley, S.: When to migrate software testing to the Cloud? In: Proceedings of the

2010 Third International Conference on Software Testing, Verifi cation, and Validation
Workshops, ICSTW’10, pp. 424–427. IEEE Computer Society, Washington, DC (2010)

7 Testing Perspectives for Cloud-Based Applications

http://www.cognizant.com/InsightsWhitepapers/Taking-Testing-to-the-Cloud.pdf
http://www.cognizant.com/InsightsWhitepapers/Taking-Testing-to-the-Cloud.pdf
http://www.stitc.org/

162

 7. Gaisbauer, S., Kirschnick, J., Edwards, N., Rolia, J.: VATS: Virtualized-Aware Automated Test
Service. In: Quantitative Evaluation of Systems, 2008. QEST’08. Fifth International
Conference,] pp. 93–102, IEEE St Malo, France, September 2008

 8. Oriol, M., Ullah, F.: Yeti on the Cloud. In: 2010 Third International Conference on Software
Testing, Verifi cation, and Validation Workshops (ICSTW), pp. 434–437, IEEE Paris, France,
April 2010

 9. Candea, G., Bucur, S., Zamfi r, C.: Automated software testing as a service. In: Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC’10, pp. 155–160. ACM, New York (2010)

 10. Ciortea, L., Zamfi r, C., Bucur, S., Chipounov, V., Candea, G.: Cloud9: A software testing service.
SIGOPS Oper. Syst. Rev. 43 , 5–10 (2010)

 11. Fujitsu: Confi dence in Cloud Grows, Paving Way for New Levels of Business Effi ciency.
Fujitsu Press Release, November 2010. http://www.fujitsu.com/uk/news/ (2010). Accessed
May 2012

 12. Sogeti: STaaS – Software Testing as a Service. Sogeti Cloud Testing Tool, September 2011
 http://www.sogeti.com/looking-for-solutions/Services/Software-Control-Testing/STaaS-/
(2011). Accessed May 2012

 13. IBM: CloudBurst: Cloud Testing Tool. http://www-304.ibm.com/ . Accessed May 2012
 14. Banzai, T., Koizumi, H., Kanbayashi, R., Imada, T., Hanawa, T., Sato, M.: D-Cloud: design of

a software testing environment for reliable distributed systems using Cloud computing tech-
nology. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, CCGRID’10, pp. 631–636. IEEE Computer Society, Washington,
DC (2010)

 15. Voas, J., Zhang, J.: Cloud computing: new wine or just a new bottle? IT Prof. 11 (2), 15–17 (2009)
 16. Mell, P., Grance, T.: NIST Defi nition of Cloud Computing. National Institute of Standards and

Technology, 7 October 2009. www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf (2009)
 17. Priyanka, C.I., Rana, A.: Empirical evaluation of cloud-based testing techniques: a systematic

review. SIGSOFT Softw. Eng. Notes 37 (3), 1–9 (2012). doi: 10.1145/180921.2180938 http://
doi.acm.org/10.1145/180921.2180938

 18. Gunawi, H.S., Do, T., Joshi, P., Alvaro, P., Yun, J., Hellerstein, J.M., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H., Sen, K., Borthakur, D.: FATE and DESTINI: a framework for Cloud
recovery testing. EECS Department, University of California, Berkeley, Tech. Rep. UCB/
EECS-2010-127, Sept 2010. http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-
127.html (2010)

 19. Jin, H., Ibrahim, S., Qi, L., Cao, H., Wu, S., Shi, X.: Tools and technologies for building
Clouds. In: Antonopoulos, N., Gillam, L. (eds.) Cloud Computing: Principles, Systems and
Applications, pp. 3–20. Springer, London (2010)

 20. AppLabs: Approach to Cloud Testing. Applabs Whitepaper. http://www.applabs.com/html/ .
Accessed May 2012

 21. Ghag, S.: Software Validations of Application Deployed on Windows Azure. Infosys
Whitepaper. www.infosys.com/cloud/ . Accessed May 2012

 22. Siegele, L.: Let it rise: a special report on corporate IT. The Economist. www.economist.com/
node/12411882 (2008)

 23. Washington Post Case Study: Amazon Web Services. http://aws.amazon.com/solutions/
case- studies/washington-post/

 24. Dean, J., Ghemawat, S.: Map reduce: Simplifi ed data processing on large clusters. In: OSDI’04:
Proceedings of the 6th Conference on Symposium on Operating Systems Design &
Implementation, pp. 10–10. USENIX, Berkeley (2004)

 25. Bialecki, A., Cafarella, M., Cutting, D., O’Malley, O.: Hadoop: a framework for running appli-
cations on large clusters built of commodity hardware. http://lucene.apache.org/hadoop (2005)

 26. RUBiS: Rice University Bidding System. http://rubis.ow2.org/index.html . Accessed
May 2012

 27. MediaWiki: http://www.mediawiki.org . Accessed May 2012
 28. Li, A., Zong, X., Zhang, M., Kandula, S., Yang, X.: CloudProphet: towards application perfor-

mance prediction in Cloud. ACM SIGCOMM Comput. Commun. Rev. SIGCOMM ‘11 41 (4),
426–427 (2011)

I. Chana and P. Chawla

http://www.fujitsu.com/uk/news/
http://www.sogeti.com/looking-for-solutions/Services/Software-Control-Testing/STaaS-/
http://www-304.ibm.com/
http://dx.doi.org/www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf
http://dx.doi.org/10.1145/180921.2180938http://doi.acm.org/10.1145/180921.2180938
http://dx.doi.org/10.1145/180921.2180938http://doi.acm.org/10.1145/180921.2180938
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-127.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-127.html
http://www.applabs.com/html/
http://www.infosys.com/cloud/
http://dx.doi.org/www.economist.com/node/12411882
http://dx.doi.org/www.economist.com/node/12411882
http://aws.amazon.com/solutions/case-studies/washington-post/
http://aws.amazon.com/solutions/case-studies/washington-post/
http://lucene.apache.org/hadoop
http://rubis.ow2.org/index.html
http://www.mediawiki.org/

163

 29. Montage: http://montage.ipac.caltech.edu
 30. Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.): Workfl ows in e-Science. Springer,

London (2006)
 31. Stevens, R.D., Robinson, A.J., Goble, C.A.: MyGrid: personalised bioinformatics on the infor-

mation grid. In: Bioinformatics (11th International Conference on Intelligent Systems for
Molecular Biology) 19 , i302–i304 (2003)

 32. Oinn, T., Li, P., Kell, D.B., Goble, C., Goderis, A., Greenwood, M., Hull, D., Stevens, R., Turi,
D., Zhao, J.: Taverna MyGrid: aligning a workfl ow system with the life sciences community.
In: Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.) Workfl ows in e-Science. Springer,
New York (2006)

 33. Deelman, E., Callaghan, S., Field, E., Francoeur, H., Graves, R., Gupta, N., Gupta, V., Jordan,
T.H., Kesselman, C., Maechling, P., Mehringer, J., Mehta, G., Okaya, D., Vahi, K., Zhao, L.:
Managing large-scale workfl ow execution from resource provisioning to provenance tracking:
the CyberShake example. In: E-SCIENCE ‘06: Proceedings of the 2nd IEEE International
Conference on e-Science and Grid Computing, p. 14, IEEE Washington, DC (2006)

 34. Brown, D.A., Brady, P.R., Dietz, A., Cao, J., Johnson, B.A., McNabb, J.: A case study on the
use of workfl ow technologies for scientifi c analysis: gravitational wave data analysis. In:
Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.) Workfl ows for e-Science. Springer,
New York (2006)

 35. Piccoli, L.: Lattice QCD workfl ows: a case study. In SWBES08: Challenging Issues in
Workfl ow Applications, Indianapolis, IN (2008)

 36. Sun Microsystems: Introduction to Cloud Computing Architecture. Sun Microsystems
Whitepaper. eresearch.wiki.otago.ac.nz/images/7/75/Cloudcomputing.pdf . Accessed May
2012.

 37. Google AppEngine. http://developers.google.com/AppEngine . Accessed May 2012
 38. Amazon Web Services: aws.amazon.com/ . Accessed May 2012
 39. Microsoft Azure: www.windowsazure.com . Accessed May 2012
 40. Enki: http://www.enki.co/ . Accessed May 2012
 41. XCalibre FlexiScale: www.fl exiscale.com . Accessed May 2012
 42. RackSpace: www.rackspace.com . Accessed May 2012
 43. RightScale: www.rightscale.com/ . Accessed May 2012
 44. Terremark Worldwide: www.terremark.com . Accessed May 2012
 45. Engine Yard Cloud: www.engineyard.com . Accessed May 2012
 46. King, J.C.: Symbolic execution and program testing. ACM Commun. 19 , 385–394 (1976)
 47. Bucur, S., Ureche, V., Zamfi r, C., Candea, G.: Parallel symbolic execution for automated real-

world software testing. In: Proceedings of the Sixth Conference on Computer systems,
EuroSys’11, pp. 183–198. ACM, New York (2011)

 48. King, T.M., Ganti, A.S.: Migrating autonomic self-testing to the Cloud. In: Proceedings of the
2010 Third International Conference on Software Testing, Verifi cation, and Validation
Workshops, ICSTW’10, pp. 438–443. IEEE Computer Society, Washington, DC (2010)

 49. Ganon, Z., Zilbershtein, I.E.: Cloud-based performance testing of network management sys-
tems. In: Computer Aided Modeling and Design of Communication Links and Networks,
2009. CAMAD’09, IEEE 14th International Workshop, pp. 1–6. IEEE Germany (2009)

 50. Yu, L., Tsai, W., Chen, X., Liu, L., Zhao, Y., Tang, L., Zhao, W.: Testing as a service over
Cloud. In: 2010 Fifth IEEE International Symposium on Service Oriented System Engineering,
pp. 181–188. IEEE Nanjing, China (2010)

 51. Jaaskelainen, A., Katara, M., Kervinen, A., Heiskanen, H., Maunumaa, M., Tuula, P.: Model-
based testing service on the web. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.)
Testing of Software and Communicating Systems. Lecture Notes in Computer Science.
Springer, Berlin/Heidelberg (2008)

 52. Joshi, P., Gunawi, H.S., Sen, K.: PreFail: a programmable tool for multiple-failure injection.
In: Proceedings of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, pp. 171–188. ACM Portland (2011)

7 Testing Perspectives for Cloud-Based Applications

http://montage.ipac.caltech.edu/
http://eresearch.wiki.otago.ac.nz/images/7/75/Cloudcomputing.pdf
http://developers.google.com/AppEngine
http://aws.amazon.com/
http://www.windowsazure.com/
http://www.enki.co/
http://www.flexiscale.com/
http://www.rackspace.com/
http://www.rightscale.com/
http://www.terremark.com/
http://www.engineyard.com/

164

 53. Das, D., Vaidya, K.: Taking Testing to the Cloud. CSC Whitepaper. http://assets1.csc.com/lef/
downloads/CSC_Papers_2011_Agile_Process_Framework.pdf . Accessed May 2012

 54. Zephyr: Zephyr Cloud Testing Tool, September 2011. http://Zephyr.com/ (2011). Accessed
May 2012

 55. Skytap: SkyTap Cloud Testing Tool. http://skytap.com/ . Accessed May 2012
 56. uTest: uTest Cloud Testing Tool. http://utest.com/ . Accessed May 2012
 57. VMLogix: VMLogix Lab Manager Cloud Testing Tool. http://vmlogix.com/ . Accessed May

2012
 58. SauceLabs: On Demand Cloud Testing tool. http://saucelabs.com/ . Accessed May 2012
 59. Taipale, O., Kasurinen, J., Karhu, K., Smolander, K.: Trade-off between automated and manual

software testing. Int. J. Syst. Assur. Eng. Manag. 2 (2), 1–12 (2011)
 60. Ramler, R., Wolfmaier, K.: Economic perspectives in test automation: balancing automated

and manual testing with opportunity cost. In: Proceedings of the 2006 International Workshop
on Automation of Software Test, AST’06, pp. 85–91. ACM, New York (2006)

 61. Berner, S., Weber, R., Keller, R.K.: Observations and lessons learned from automated testing.
In: Proceedings of the 27th International Conference on Software Engineering, ICSE’05, pp.
571–579. ACM St. Louis, MO, USA (2005)

 62. Bertolino, A.: Software testing research: achievements, challenges, dreams. In: 2007 Future of
Software Engineering, FOSE’07, pp. 85–103. IEEE Computer Society, Washington, DC
(2007)

 63. Coelho, R., Cirilo, E., Kulesza, U., Von Staa, A., Rashid, A.: JAT: a test automation framework
for multi-agent systems. In: 2007 I.E. International Conference on Software Maintenance, vol.
34, pp. 425–434 (2007)

 64. Parveen, T., Tilley, S., Daley, N., Morales, P.: Towards a distributed execution framework for
JUnit test cases. Software Maintenance, 2009. ICSM 2009. IEEE International Conference,
pp. 425, 428, 20–26 September 2009

 65. Rankin, C.: The software testing automation framework. IBM Syst. J. 41 (1), 126–139 (2002)
 66. Impetus: Using Test Automation to Address Agile Testing Challenges, Impetus Whitepaper.

 www.impetus.com/Home/Downloads . Accessed May 2012

I. Chana and P. Chawla

http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.pdf
http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.pdf
http://zephyr.com/
http://skytap.com/
http://utest.com/
http://vmlogix.com/
http://saucelabs.com/
http://www.impetus.com/Home/Downloads

	Chapter 7: Testing Perspectives for Cloud-Based Applications
	7.1 Introduction
	7.1.1 Software Testing in the Cloud
	7.1.2 Benefits and Challenges of Cloud-Based Testing

	7.2 Cloud Applications Frameworks
	7.2.1 Traditional Applications vs. Cloud-Based Applications
	7.2.2 Traditional Software Testing vs. Cloud Testing
	7.2.3 Applications Suitable for Cloud
	7.2.4 Cloud Application Architecture and Process Models
	7.2.5 Cloud Application Development and Testing Platforms

	7.3 Cloud-Based Testing Models: State of the Art
	7.3.1 Limitations of the Existing Models

	7.4 Automatic Test Case Generation
	7.5 Future Research Directions
	References

