
123Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_6, © Springer-Verlag London 2013

 Abstract Cloud computing is an emerging paradigm that is becoming rapidly
popular with business organisations. The software-as-a-service (SaaS) delivery
approach is increasing in demand for yet more cloud-based services. However, this
new trend needs to be more systematic with respect to software engineering (design
and development) and its related processes. In this case, a valid question is: How do
we change our existing user-based requirements capturing methodologies to a suit-
able service-based business requirements engineering ? In this chapter, we present
an approach to cloud requirements engineering that is based on business-oriented
analysis as this is the key to a successful cloud service. This chapter explores the
new requirements engineering process and relevant techniques for capturing cloud-
based services. The process and techniques have been explained using a large-scale
case study based on Amazon Cloud EC2.

 Keywords Cloud computing • Software engineering • Requirements engineering
• Cloud services • Service-oriented computing

 6.1 Introduction

 Cloud computing has evolved to address the availability of computing resources
which can be accessed from anywhere and anytime. In particular, computing hard-
ware and software often gets outdated, and, hence, it is wise to outsource comput-
ing resources and to manage their IT infrastructures outside of their company
premises, which is more cost-effective than the case at present. Applications can be

 Chapter 6
 Business Requirements Engineering
for Developing Cloud Computing Services

 Muthu Ramachandran

 M. Ramachandran (*)
 School of Computing and Creative Technologies, Faculty of Arts,
Environment and Technology, Leeds Metropolitan University, Leeds LS6 3QS, UK
 e-mail: M.Ramachandran@leedsmet.ac.uk

124

leased (as pay-per-use services) rather than being purchased. Also, companies have
increased their data centres due to demand (Amazon , Microsoft and IBM). Cloud
computing is heavily based on ‘software-as-a-service’ concept and needs high-
speed Web access. It provides services on demand, utilising resources more effec-
tively within the cloud environment. The cloud architecture, its layers and its
composition of components and services need to be designed for scalability, secu-
rity and reconfi gurability as they support services and its agreements (e.g. service-
level agreements). In this scenario, the resource management of cloud computing
is key to achieving potential benefi ts.

 Cloud computing is based on Web access. Therefore, we need to design Web
applications which are designed for security. Hence, it is essential to design
cloud applications as Web service components based on well-proven software
process, design methods and techniques such as component-based software engi-
neering (CBSE). Wang and Laszewski [1] defi ne cloud computing as a set of
network- enabled services which provide scalable, guaranteed QoS (quality of
service) and inexpensive computing platforms on demand, which are customis-
able (personalised), and all of which can be accessed in a simple and pervasive
way. An overview of different cloud computing paradigms is presented with defi -
nitions, business models and technologies by Wang and Laszewski [1] and by
many others [1 – 34].

 Traditionally, requirements engineering is defi ned as a set of activities involving
various stakeholders to elicit requirements for a software system. This process is
further refi ned to provide clear classes of requirements such as functional, non-
functional, governance and business. Requirements validation is another process of
making sure that the requirements are clear, consistent and contextual (3Cs).
Business requirements is often not clearly identifi ed and captured as this is directly
related to business level. Therefore, we can defi ne business requirements as a pro-
cess of discovering, analysing, defi ning and documenting the requirements that are
related to enterprise-wide business objectives. This process involves identifying and
capturing key business stakeholders who are mainly investors (use interviews, focus
groups, ethnographic studies and current market analysis), conducting business fea-
sibility analysis using ROI (return on investment) strategies, studying organisational
objectives that should represent true value for long-term investment, analysing the
impact of business change to the enterprise and forecasting profi t with respect to a
set time period, prioritising business requirements and producing a business require-
ments document to sign off.

 SaaS design process involves identifying service components and artefacts that
can all be mapped onto service-oriented architecture (SOA). Software components
provide a good design rationale supporting various requirements of application
developments, design fl exibility, system composition, testability, reusability and
other design characteristics. Component-based designs are customisable and inter-
faces can be designed supporting SLA (service-level agreement). SLAs vary
between service providers which need to be customised without much effort. This
can only be achieved using components which have been designed for fl exible
interfaces that link to a number of SLAs. Each SLA and associate business rule

M. Ramachandran

125

can be represented as a set of interfaces that can be mapped onto knowledge-based
database or a data server. This also allows reuse of SLAs for any individual service
providers. Some of the important characteristics of cloud computing are:

• On-demand services and pay per use
• Handling wide area multiple network addresses
• Resource grouping and management
• Effi cient elasticity vs. costing
• Measurable service delivery and QoS

 The fi rst characteristic of on-demand service and pay-per-use cost effi ciency
model poses tremendous challenges to provide effi cient support and a trustworthy
cost model (provided by cloud service providers) for pay per use for every resource
used by customer services automatically. Cloud computing is based on clients
with high bandwidth for Internet access, and each client may have N number of
end users or cloud application users. Therefore, it will create N * N multiple net-
work addresses which need to be managed accurately as it has a strong depen-
dency for costing users. The second characteristics of cloud computing is based
on clients with high bandwidth for Internet access, and each client may have N
number of end users or cloud application users. Therefore, it will create N*N
multiple network addresses which need to be managed accurately as it has a strong
dependency for costing users. The third characteristic on resource grouping and
management has to be monitored and managed effi ciently by cloud service pro-
viders both reasons of effi ciency and costing. The fourth cloud characteristic on
elasticity , scalability and costing poses huge challenge for cloud service providers
as part of the cloud service management system. The fi nal cloud characteristic on
measurable service delivery and quality of service (QoS) has long-term implica-
tions for cloud service providers to measure and improve service quality
continuously.

 Our earlier work described by Ramachandran [22] on component model for
Web services and service-oriented architecture (SOA), grid computing and vari-
ous other systems can become an integrated aspect of any cloud computing archi-
tectures and application design. We also need to understand the basic differences
amongst SOA (service-oriented architecture), grid and cloud computing. SOA is
to offer services which are based on open standard Internet services and virtuali-
sation technology and have been running in a different environment, grid offers
services from multiple environments and virtualisation and cloud combines both.
We also need to identify a specifi c development process for capturing require-
ments, design and implementation strategies, security and testing cloud applica-
tions. Cloud computing paradigm has lots to offer, but at the same time we need
to consider building a secured and resilient architecture and services that are reli-
able and trustworthy.

 This chapter has proposed a model which is based on the notion of design for
scalability of the cloud architecture which is driven by business requirements. We
have also identifi ed a set of business as a service for Amazon EC2 cloud. The result
shows that 20 % represents BPaaS services from business requirements.

6 Business Requirements Engineering for Developing Cloud Computing Services

126

 6.2 Design for Cloud Applications

 The idea of design for reuse and design for testability have emerged to address how
best design can be represented in the system which refl ects expected design charac-
teristics (based on design principles) such as reusability, testability, securability
(building software security in) and scalability. These are the four basic architectural
characteristics that are prevalent in most systems. The main purpose of identifying
them during requirements stage is to build them right from the beginning; therefore,
they can exhibit themselves on-the-fl y. In order to defi ne a process model for cloud
computing applications, it is useful to capture some of our thoughts on understand-
ing the very nature of cloud characteristics and the type of services that it aims to
provide. Identifying characteristics of a service-oriented system is vital for design-
ers such that they can select, design and evaluate those characteristics that are appli-
cable to their applications. Service-oriented computing (SoC) involves integration
of several disciplines and subject areas, and, therefore, some of the characteristics
will overlap. Some of the identifi ed service components characteristics are:

• Reusable Web services and some other core services
• Enterprise integration services
• Dynamic binding and reconfi gurable at runtime
• Granularity
• Publish, subscribe and discover
• Open world where components must be able to connect and plug to third-party

software systems or components
• Heterogeneity supporting cross-platform applications
• Reconfi gurable
• Self-composable and recoverable
• Cloud infrastructure and resources management
• Autonomic framework
• Middleware
• QoS
• Controllability
• Visibility and fl exibility
• Security and privacy
• High performance and availability
• Integration and composition
• Standards

 These characteristics and their underpinning design principles embody a large
variety of best practices that exist widely. These best practices have evolved over the
last two decades of software engineering . For example, software requirements engi-
neering , software reuse concepts and practices have been widely adopted and are
used in the industry. Therefore, the main aim of this chapter is to consider a system-
atic approach to capturing business requirements that can be applied to the cloud
paradigm. Service design is based on the principle of loosely coupling and therefore
is a good candidate for achieving service-level reuse such as business services,

M. Ramachandran

127

infrastructure services, composite services (as services are designed based on the
principle autonomous), co-operation services, information services, task-oriented
services, and orchestration services). Therefore, service level reuse has potential to
save service development cost and cloud resource utilisation cost. The notion of
design for reuse, design for test (also known as testability) and design for security
exists in software engineering literatures more widely (Ramachandran [22]).
Controllability, visibility and fl exibility are design characteristics that can help to
build and recover new services more widely. High performance, standards and
availability characteristics can provide required service quality. In order to make a
design for cloud applications, we need to understand various required cloud
characteristics and provide a clear set of design guidelines that can be used by cloud
applications engineers. Some of such guidelines are presented as:

• Make applications loosely coupled using SOA principles.
• Design for cloud will provide a value for money in the longer term.
• Use cloud and SOA design principles and characteristics as strictly as possible as

discussed by Erl [10].
• Leverage three-tiered SOA architecture which will even allow you to design a

database service linking to two different cloud providers.
• Make use of asynchronous messaging wherever possible as discussed by

Linthicum [35].
• Avoid cloud-specifi c APIs wherever possible so as allowing portability across

clouds.

 Our work on best practice software guidelines provides a disciplined approach to
service-driven software development life cycle [22]. Our previous work on this has
identifi ed guidelines on good requirements representation using use case models for
identifying common requirements across a range of software product lines [22].
Reuse of service-level business requirements can yield higher-level reuse across
cloud service. Making business service requirements can develop reuse across dif-
ferent levels in the SOA model. Therefore, Fig. 6.1 shows a model for design for
reuse which focuses on elasticity, availability and discoverability, reuse and integ-
rity and performance and security. For each business requirement, we need to

Elasticity, Availability & Discoverability

Cloud Services

Performance & securityReuse & Integrity

 Fig. 6.1 Design for cloud
applications

6 Business Requirements Engineering for Developing Cloud Computing Services

128

conduct analysis based on main six criteria identifi ed in this model with view to
future business and its sustainability.

 For simplicity, we can defi ne some of the terms very briefl y. Elasticity directly
represents business focus for services which provide value proposition, and, therefore,
service should be able to expand and contract resources based on demand and be able
to charge pay per use. Availability can be defi ned with respect to business focus to
ensure that the services are available by creating multiple data centres, proper disaster
recovery planning and providing service recovery and failover mechanisms in place.
Discoverability is one of the key criteria as part of service- oriented design principle,
meaning that the service should be designed in such a way that it can be discovered
automatically and should be able to be adopted by service requesters automatically or
with a minimum human input. Elasticity, availability and discoverability are part of
quality of service (QoS).

 Service reuse can be defi ned as the process of linking business service together
to solve an end-to-end business problem or a business process. Although this looks
simple but can create reuse across cloud services with automatic discoverability and
composability with strict integrity in place. Oh et al. [36] states that the reusability
is a key intrinsic characteristic of cloud services and can yield a high return on
investment (ROI) . Services can be reused and composed to create new cloud ser-
vices and applications from a set of common service directories across different
cloud providers. Service integrity can be defi ned as the degree to which a service
can be provided without excessive impairment and the degree to which it provides
fair value to the business. Service reusability and integrity are part of the key criteria
for measuring the quality of service (QoS).

 One of the main reason for moving cloud is the cost benefi t. Therefore, it is para-
mount for cloud providers to ensure performance is effective. There are a number of
performance characteristics such as network throughput and latency. Service avail-
ability is another key factor in measuring cloud performance. This is also known as
uptime. Other parameters include scalability of service applications, pay per use,
load balancing, elastic load balancing, number of cloud computing created per ser-
vice instance, number of cloud images created per instance, number of cloud
resources created per instance and cloud profi ling.

 Cloud security is paramount amongst all other characteristics as cloud service is
internet based. Therefore, we need to make sure that network security, denial of
service attacks, software service security and other forms of security are well pro-
tected. Other aspects include cloud content management, privacy, business continu-
ity and data recovery.

 6.3 Business-Oriented Cloud Service Development Process

 Identifi cation of service requirements needs a new RE process and modelling tech-
niques as it is highly dependent on multilevel enterprises across corporation.
Identifying and knowing all requirements for all expected and even unexpected

M. Ramachandran

129

services is very hard. The idea in service-oriented engineering is to publish auto-
matically new services whereby service agents can then be able request and take
advantages of required services for their customers. Figure 6.2 shows a develop-
ment process model for service-oriented computing where initial requirements are
captured based on enterprise-wide techniques and perhaps using domain analysis
which should focus on a family of products and services. The second phase
(Services RE) involves identifying a set of requirements of system services.
This process involves service modelling and service specifi cation for which we can use
any well- known techniques such as use case design and a template for service-level
specifi cations.

 The third phase (Categorising services) involves classifying and distinguishing
services into various categories such as enterprise integration services (services
across corporations, departments, other business services), BPaaS (which represents
process related to businesses), software services (which represents core functionality
of software systems), business logic services (which represents business rules and its
constraints) and Web services (a self-contained and Web-enabled entity which pro-
vides services across businesses and customisable at runtime). IT core services
include resource management, help desk systems, IT infrastructure, procurement,
delivery services, B2B and B2C services, data services, QoS services, middleware

 Fig. 6.2 Business-oriented cloud service development process

6 Business Requirements Engineering for Developing Cloud Computing Services

130

services, transaction management services, process integration services, reconfi gu-
rability services and grid services which include grid resource management and
reconfi gurations. Based on the above fi nding, we can propose a new paradigm for
cloud applications engineering as shown in Fig. 6.3 . This illustration provides a rel-
evant link to classical software engineering process.

 As shown in Fig. 6.3 , the requirements phase is linked to identifying cloud
requirements which should, in particular, identify service requirements and relevant
software security requirements so that cloud services are built with security in rather
than adding security batches after release. The design phase is linked to designing
services for cloud environment which are reusable. Services are designed as loosely
coupled allowing high potential for reuse. The code/implementation phase is linked
to service development. Likewise testing and QA are related to cloud testing
 strategies and quality engineering.

 The key difference in cloud SE life cycle is service quality engineering/assurance
(SQoS). Service quality engineering/assurance represents quality of service
aspects which is different from software engineering quality. SQoS should con-
sider parameters such as workfl ow management which helps to manage resources
instantly, accuracy and accountability of pay-per-use, throughput, latency and
service satisfactory index.

 6.3.1 Business Process as a Service Paradigm

 Business process as a service (BPaaS) is a top-level part of the service-level archi-
tecture (BPaaS → SaaS → PaaS → IaaS) for cloud platform. This refers to any busi-
ness process such as payroll, multivendor e-commerce, advertising, printing,
enterprise-wide applications and common business processes and could include
contract negotiation services [37]. BPaaS services can also be designed to automate

 Fig. 6.3 Software engineering vs. cloud service engineering life cycle

M. Ramachandran

131

certain business utility services such as billing and shipping. BPaaS can be a part of
internal cloud services as well as external services from different cloud vendor
types such as public, hybrid and virtual private. Gandhi [37] addresses some of the
key questions that need to be addressed:

• What are the key attributes of BPaaS services to negotiate and gain new business
strategies?

• How can BPaaS partnering services accelerate new businesses?
• What are the implications if we don’t act now?

 These are some of the key strategies and business analysis to be considered for
designing BPaaS services. We should be able to use and transfer knowledge gained
in business strategies and business process re-engineering and enterprise-wide
applications. Figure 6.4 provides a process for capturing and designing BPaaS.

 As shown in Fig. 6.4 , we should be able to identify and extract business pro-
cesses and business-related functions as candidate for BPaaS from business require-
ments capturing process. The second step is to conduct a detailed workfl ow and task
analysis for each suitable BPaaS service. The third step is to conduct business pro-
cess re-engineering (BPR) for each service which aims to identify ROI , business
needs analysis, market analysis and business negotiation strategies for each task that
is identifi ed in the workfl ow analysis. Finally, conduct business effective analysis
which interlinks internal and external cloud environment.

 BPaaS’ s most important aspect of the service is to integrate scattered and embed-
ded business rules together in many organisations. Often business rules are scattered
and some embedded in different places within the organisations. Therefore, organ-
isations have diffi culties in dealing with constant change and evolution of new busi-
nesses. BPaaS will also act as business rule management system (BPMR).

 6.4 Business Requirements Engineering Process
and Framework

 Businesses are striving through tough market competition to deliver value-driven
products and services. The pace of business delivery has rapidly changed since
well-established business practices, nature of business service with advancement
and demand for technology-based business services such as e-commerce,
e- government, Web services and cloud services . People are looking for value for

 Fig. 6.4 BPaaS process scenario

6 Business Requirements Engineering for Developing Cloud Computing Services

132

money as well as automated results (self-driven services). Cause [38] discusses a
concept known as PRAISED which is defi ned as follows:

• P → Productivity gains
• R → Reduced cost
• A → Avoided cost
• I → Increased revenue
• S → Service-level improvements
• E → Enhanced quality
• D → Differentiation in the marketplace

 Cause [38] argues that many companies force technologies to be sold as their
way of improving business value without understanding of business and market
needs. Cause [38] has also proposed a feature-driven development (FDD) approach
to identifying business need to drive business value as it captures required features
of a business and a product. Our approach to identifying BPM using PRAISE model
will enhance BPM to drive market and business values. Figure 6.5 shows cloud
business-oriented requirements engineering which compares with classical require-
ments engineering process.

 As shown in Fig. 6.5 , classical market requirements process needs to be used for
conducting business requirements for cloud services which will include business
strategies, identifying business services requirements, market analysis and ROI .
The second phase is the requirements elicitation and specifi cation which aims to
identify stakeholders and conduct requirements analysis and validation which will
derive service requirements elicitation, evaluation and validation. This phase will
also derive business process modelling using BPMN, and business process simula-
tion will form the basis for service requirements validation. The fi nal process will
deliver hand-picked candidates for business services requirement.

 Fig. 6.5 Cloud business-oriented requirements engineering

M. Ramachandran

133

 Software security has emerged to build security in from requirements through to
testing. Security assessment and analysis needs to be applied for each phase of the
life cycle [39]. Software engineering has established techniques, methods and tech-
nology over two decades. However, due to the lack of understanding of software
security vulnerabilities, we have been not successful in applying software engineer-
ing principles when developing secured software systems. Therefore, software
security can’t be added after a system has been built as seen in today’s software
applications. However, the issue here is to apply software security techniques to
cloud services . Services are application system and therefore we should be able to
apply those techniques to develop cloud services with built-in security.

 Figure 6.6 shows a process model for the development of cloud services with
built-in security. As shown in the diagram, the cloud development process model
consists of a number of phases such as RE for cloud, conducting BPM modelling
and specifi cation (using BPMN 2 standard and BPEL), identifying and specifying
SLAs, building software security in, designing services and testing and deploying.

 As part of the cloud service requirements engineering process, we can apply
software security engineering techniques all identifi ed cloud services . This
includes using security analysis tree and various other techniques specifi ed by
Ramachandran [39]. The second step is on identifying BPM (business process
modelling) which should include software security analysis for each business pro-
cess identifi ed to allow us to identify potential security threats. This has been
illustrated in Fig. 6.6 which starts with service requirements and business require-
ments (as shown in Fig. 6.5) as the input to conduct service security analysis using
techniques such as Secure Quality Requirements Engineering (SQUARE) and
Microsoft Secure Development Lifecycle (SDL). The outcome of this process
should yield a set of cloud services security requirements with clear indication of
software security issues. The second phase is to conduct business process man-
agement during this process should identify a set of business process require-
ments with security vulnerabilities.

 The third phase is to identify service-level agreements (SLAs) which should derive
a set of security specifi c rules. It is also a well-known best practice that eliciting and

 Fig. 6.6 Cloud service security development process with built-in security

6 Business Requirements Engineering for Developing Cloud Computing Services

134

validating service-level requirements early can save as much as 70 % of the overall
test and development costs. Typically, SLA refers to a part of service contracts defi n-
ing performance attributes, message passing constraints, problem management,
customer duties, warranties, disaster recovery, service termination agreements and
required local and international laws etc., all of which can be embedded as part of the
WSDL specifi cations. In the context of business-oriented requirements, we need to
identify SLA with regard to B2B, B2C and business process and operational con-
straints. This allows services to make decision on acquiring new businesses. This can
further be classifi ed into new and existing business services, customer-driven services,
market-driven services, corporate-level services and enterprise-level services. In general,
we can defi ne a good business process as

 Business Process Business Rules Process= +

that results in simple processes, higher agility, trust, business integration and bet-
ter risk management. This will also help business processes to defi ne service
trust which is the higher form of business quality as part of QoS performance
characteristics. Building trust is the basic means of creating a branding which
has been historically successful for major business across the world. Cloud secu-
rity risks analysis should also be part of this process to identify risk associated
with each security and business requirement. Therefore, we propose a framework
for conducting security risk assessment. This is shown in Table 6.1 , a risk analy-
sis framework which can be used to systematically analyse cloud security risks.
The framework provides a comprehensive structure for analysing cloud security
risks. This framework consists of service layers and their type of service security
attacks that are well known. For each of those security attributes, we need to
assign a weighting factor from 10 to 1. The weighting factor 10 (high) has higher
risks, 5 (medium) and 1 (low). At the SaaS level, the well-known security risks
are DDoS, data stealing, wrapping attack, accountability attack etc.

 Table 6.1 Cloud security risk analysis framework

 Service layer

 Known types of security threats
and attacks on the cloud service
that will affect your network

 Weighting factors for require-
ments prioritisation – High = 10;
Medium = 5; Low = 1

 SaaS (Software
as a Service)

 DDoS (distributed denial
of service attack)

 8

 Data stealing 3
 Wrapping attack 4
 Accountability attack 4
 Man in the middle attack 6
 Botnet attack 7

 PaaS (Platform
as a Service)

 SQL injection 6
 SSL attack 3
 Spoof attack 5

 IaaS (Infrastructure
as a Service)

 Blackout/outage 1
 Malware injection attack 3

M. Ramachandran

135

 At the PaaS level, the well-known attacks are SQL injection, SSL attack and spoof
attack. At the IaaS level, the well-known attacks are blackout and malware attacks.
These lists are not limited to security risks shown in our framework which are com-
monly known and the discovery of such security risk identifi cation should continue
to grow as we gain more user experiences. The above weighting factor for prioritis-
ing security requirements is the average of total score against its known frequency of
threats, loss of business days (in terms of technical challenges associated to recover),
fi nancial loss and predictability. Ramachandran [39] discusses more detailed
approaches to vulnerability analysis.

 The next phase is on service design which starts with business and service
requirements in order to design cloud service components, service interfaces and
architecture. During this stage, we need to identify security-driven approach to
design of interfaces, message descriptions and handing vulnerabilities that are iden-
tifi ed in the previous phase. The fi nal phase is on cloud testing and deployment.
During this phase, the main aim is to identify security test strategies such as penetra-
tion testing, attack tree testing and other forms of testing. Numerous test strategies
have been discussed by Ramachandran [39].

 To help manage business process requirements, we have identifi ed a generic enter-
prise requirements framework (ERF) as shown in Fig. 6.7 . The concept of enterprise
requirement is based on IT service management, business process management and
software development. The main aim is to identify business goals, service concept,
change management, organisational rules, enterprise economics, business analysis
and software development. Business analysis can be defi ned as a set of tasks, knowl-
edge and techniques that are required to identify business needs and to determine
solution to business problems. The solutions often include system development, soft-
ware development, organisational change and process improvement [40].

 The ERF, as presented in Fig. 6.7 , consists of three major categories:

• Customer requirements aim to identify service needs, business goals and business
types. This further classifi ed into B2B, B2C and C2C business types. Secondly, it aims
to identify service requirements and, thirdly, to identify governance requirements.

• Market analysis aims to identify clear rationale for a business service and to
analyse return on investment strategies. This further classifi ed into industry
strategies, opportunities, competitor analysis and business assets.

• Investment analysis aims to identify required systems, services and infrastructures.
The application system refers to identifying cloud infrastructure services, content
management services and service types such as SaaS , PaaS and IaaS . This further
classifi ed into identifi cation of business application systems; dynamic scaling is the
key basic rationale behind elasticity , the ability of a cloud to be able to add and remove
capacity as and when it is required. This can also be referred as elastic scaling.
Secondly, to identify infrastructure services refers to management services required to
manage IaaS. Thirdly, to identify service security rationale, risk analysis, availability
and resiliency is the ability to withstand security attacks and vulnerability.

 The ERF framework provides a structured approach to capturing enterprise
requirements. The ERF can also be used to document enterprise-wide requirements
as it provides a template. This should also identify peak user performance metrics,

6 Business Requirements Engineering for Developing Cloud Computing Services

136

capacity planning, security and privacy, availability, response time, hours of opera-
tion, pay-per-use calculations, server load, load balancing and cloud management.

 6.5 Design of Service Components

 Component models and their architecture provide a framework for system composi-
tion and integration. A generic component model that is presented in this chapter
provides a unique concept of two distinct set of services: provide and requires .
Software components are the basic unit of artefact that supports service composi-
tion with the cloud computing architecture and its environment. However, each
development paradigm and application demands customisable and extendable com-
ponent architectures that suit the needs of their applications. Each Web service com-
ponent interface is mapped onto different ports within architectural layers to request
for services and offer services as and when required at runtime.

 The aim is to map business requirements onto a service component that can be
designed and implemented. A service component can be defi ned as the one that confi g-
ures a service implementation. A service component model (UML-based service model)
is shown in Fig. 6.8 which refl ects service component design principle with a number of
plug-in-type interfaces that allow to connect other service components, service provider
type of interfaces (IServiceInterface1, 2 etc.) and IServiceContract interface which is
a unique concept in our design that allows you to build and reuse business rules. The
other types of interface include EntryPort, RejectedMessagePort and ExitPort.
These interfaces refl ect WSDL descriptions and can be automatically generated.

 Fig. 6.7 Enterprise requirements framework

M. Ramachandran

137

Service Component

PlugIn1

PlugIn2

<<component>>
Service/SaaS

EntryPort RejectedMessagePort ExitPort

IServiceInterface1

IServiceInterface2

IServiceContract

 Fig. 6.8 Component model for SaaS

Service component

IInBoundContracts

IOutBoundContracts

IOutBoundContracts

IQoSContracts

IServiceContract

IInBoundContracts

 Fig. 6.9 Component model for service contract interface

 The service contract interface IServiceContract is a complex class as it allows us to
build component rules and be able to reuse them in another service implementation
where the similar design contract applies. Due to its nature of complexity, we have
designed a separate service component as shown in Fig. 6.8 . The service contract
component model provides plug-in interfaces such as IInBoundContracts which
allows a service component to take business contracts/rules as input to the component,
whereas the provider interface such as IOutBoundContracts provides business con-
tract services to other service components. The IQoSContracts service provides ser-
vices contracts on quality of service rules that are embedded within the service
component implementation (Fig. 6.9).

 The service component modelling and design provides a systematic approach to
building cloud service components to allow on-the-fl y confi guration, to discover
new business services and to be able to connect and disconnect service composi-
tions. Service composition is one of the key principles of service design which can’t
be achieved without a component-based approach. The design principle of

6 Business Requirements Engineering for Developing Cloud Computing Services

138

component interface allows service fl exibility, elasticity and scalability. A service
composition is defi ned as the development of customised services by discovering,
integrating and executing existing services. Design of service composition is not
only to consume services but also to provide services. Cloud service orchestration
layer and its principle can also be addressed and achieved using service composition
when services are designed as components based on the model as shown here.

 Service composition and orchestration allows service-level reuse to happen. Service
reuse is a notion of designing services as generic as possible to be reused in another
service invocation. Designing services for reuse is based on SOA design principles:

• Loose coupling is to limit dependency between service consumers and service
providers. This can be achieved by service interface design which has been part
of a service component model as discussed.

• Autonomy is the key principle that enables service reuse. This can be achieved
by designing services that can manage their own resources as database and lega-
cies and to maintain by themselves without depending on other services. Service
autonomy facilitates service adoption, scalability, QoS , SLA and virtualisation.

• Statelessness is the property of a service to have a context, but it will not have
any intermediary state waiting for an event or a callback.

• Granularity has been a prominent design principle of reuse. A large granularity
of service component which is self-autonomous can yield higher level of service
reuse through service composition. However, a balance must be struck when
designing service components and interfaces.

• Composability is the process by which services are combined and integrated to
provide a comprehensive and composite service. This principle is also the key to
achieving cloud orchestration. A composite service consists of an aggregation of
services that can produce another reusable service (s).

• Discoverability is an important means of mandating service time (design time
reuse and runtime discoverability) notion when designing service components so
that component can be called on when required. Service component interface
concept allows components to be discovered and connected.

 Designing reusable services can save cost as it is a well-known benefi t of reuse.
Cost reduction is one of the key aspects of cloud computing which aim to reduce cost
for consumers by allowing pay-per-use cost model. The design rationale and service
component model discussed in this section will help to improve cloud service reuse
experiences.

 6.6 Case Study: Amazon EC2

 Amazon has three main businesses that are consumer business, seller business and
IT infrastructure business. Firstly, let’s look at initial business requirements set out
by Amazon to create a new cloud as a new business venture. It is aimed to build a

M. Ramachandran

139

powerful cloud with features supporting scalability, failure resilient and enterprise
applications including (EC2 2012 [41]):

• Elastic and scalable means users can increase or decrease computational power
and other resources within minutes and are charged per use.

• Flexible means users have the choice to choose type of OS, platforms, multiple
instances and applications packages.

• Designed for use with other Amazon Web services such as Amazon S3 (a simple
storage service), RDS (relational DB services), SimpleDB and Amazon SQS
(simple queue service).

 These are the examples of non-functional requirements. There are more than
100 business processes, also known as functional requirements, identifi ed from
this study which are of typical nature such as account creation, pay-per-service
metre, resource management and usage, billing and payment, data storage and
maintenance and security and privacy related. Some of the currently offered
Amazon Web services are, as part of the AWS, shown in Fig. 6.10 and explained
as follows:

• Higher level business processes for Amazon EC2 which consists of composite
business services such as RDS, MapReduce, S3, SimpleDB, VPC and SQS.

• Each of these business services can be decomposed into a number categories of
business services such task-oriented, infrastructure-oriented, and business
service-oriented.

 We have developed a number of business services using Bonita software for
business process modelling using BPMN notation.

Create EC2
Instance

Amazon EC2 Service
(Amazon Web Service

AWS)
Amazon S3 (Simple

Storage Service)
Amazon VPC (Virtual
Private Cloud as IaaS)

Amazon SQS
(Simple Queue

Service)

Amazon SimpleDB
(Core database

service)

Amazon RDS
(Relational
Database)

Amazon
CloudFront

Amazon Elastic
MapReduce (data
analysis service)

EC2 user

M
yP

ro
ce

ss
1

La
ne

1

 Fig. 6.10 Amazon Web services (business process modelling)

6 Business Requirements Engineering for Developing Cloud Computing Services

140

 The business process model design tool which is used in this project is Bonita
OpenSolution-v5.5 (BOS 5.5). Bonita Open Solutions 5.5 is not only for modelling
but we can also conduct process simulations and debugging the process. We can
also conduct a range of business process modelling tasks such as service, users, call
activity, script, abstract, send and receive. The fi nal simulation process graphs are
displayed in another GUI tab. To run the simulation with Bonita, we need to com-
plete three major steps such as:

• Defi ne the process.
• Manage the resources.
• Load profi les.

 After completion of the three processes, we then should be able to generate
reports of the designed process. We can generate graphs against various process and
performance parameters such as execution time, time to completion, response time
and raise alarm to study any intrusion during a specifi c time period.

 Amazon S3 (Simple Storage Service) provides a simple Web services inter-
face that can be used to store and retrieve any amount of data, at any time, from
anywhere on the Web. It provides a discoverable WSDL document describing
service operations that can be implemented using RESTful HTML as well as
SOAP RPC interfaces. In this experiment, we have attempted to describe its
basic functionality using a subset of the available services. Basic executable
SOA business models were created based on assumptions made from informa-
tion provided by online Amazon AWS documents. The Amazon S3 Web Service
is just one piece of entire Amazon AWS SOA structure. Other than discoverabil-
ity, none of the SOA Design concepts can really be applied to the Amazon S3
service on its own. Some of the AWS business services are identifi ed as follows
(EC2 2012 [41–42]):

• Amazon S3 (Simple Storage Service) provides a simple Web services interface
that can be used to store and retrieve any amount of data, at any time, from any-
where on the Web.

• Amazon EC2 (Elastic Compute Cloud) is a Web service that provides resizable
compute capacity in the cloud.

• Amazon CloudFront is a Web service for content delivery. It integrates with
other Amazon Web Services to give developers and businesses an easy way to
distribute content to end users with low latency, high data transfer speeds and no
commitments.

• Amazon Route 53 is a highly available and scalable DNS service designed to
give developers and businesses an extremely reliable and cost-effective way to
route end users to Internet applications.

• Amazon RDS (Relational Database Service) is a Web service that makes it easy
to set up, operate and scale a relational database in the cloud.

• Amazon SimpleDB (Simple Database Service) is a Web service providing the
core database functions of data indexing and querying in the cloud.

M. Ramachandran

141

• Amazon SQS (Simple Queue Service) is a reliable, highly scalable, hosted queue
for storing messages as they travel between computers.

• Amazon SNS (Simple Notifi cation Service) is a Web service that makes it easy
to set up, operate and send notifi cations from the cloud.

• Amazon Elastic MapReduce is a Web service that enables businesses, research-
ers, data analysts and developers to easily and cost-effectively process vast
amounts of data.

 These services have been considered as a whole to meet the multiple SOA Design
criteria by being business-driven, enterprise-centric, loosely coupled, discoverable,
stateless and fl exibly contractable, and they promote vendor neutrality. The services
are provided by Amazon but they can be accessed by any language running on virtu-
ally any platform. They are highly scalable and the pricing structure is set up on a
cost-per-use basis. Services can be scaled almost instantly when needed and reduced
just as fast providing the best of both worlds for businesses, on-demand access with-
out the associated overhead and the delay that would otherwise be required for local
on-site implementation. Figure 6.11 shows a bar chart of 100 business processes,
out of which we have discovered about 20 BPaaS processes, which is about 20 %.

 This is an interesting outcome for our research, in particular, how many BPaaS
requirements that can be extracted to evaluate business process service exclusively.
BPaaS has a growing strength in making cloud a success with respect to business as
a service.

 6.7 Conclusion

 Cloud computing is emerging rapidly with increasing demand for service-oriented
computing and associated technologies. This is the right time to explore what works
better and what doesn’t work for cloud environment. Therefore, the proposed model
helps to understand how it should be developed to avoid classical issues related to
software development projects. We believe the proposed model will help us to
develop cloud applications systematically. This project has explored some of the
process described using Amazon EC2 case study, and we have discovered that there
are 20 % of the service requirements that belong to BPaaS as it is a growing busi-
ness entity for cloud services .

 Fig. 6.11 Amazon BPaaS
requirements

6 Business Requirements Engineering for Developing Cloud Computing Services

142

 References

 1. Wang, L., Laszewski, V.G.: Scientifi c cloud computing: early defi nition and experience. http://
cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf (2008)

 2. Creeger, M.: Cloud computing: an overview. Distributed computing. ACM Queue. http://
queue.acm.org/detail.cfm?id=1554608 , June 1, 2009

 3. Aoyama, M., et al.: Web services engineering: promises and challenges. In: ICSE’02, Orlando,
19–25 May 2002

 4. Bertolino, A., et al.: Audition of web services for testing conformance to open specifi ed proto-
cols. In: Stafford, J., et al. (eds.) Architecting Systems with Trustworthy Components. Springer,
Berlin/New York (2006)

 5. Bias, R., Cloud Expo Article, Cloud Computing: Understanding infrastructure as a service.
Cloud Comput. J. http://cloudcomputing.sys-con.com/node/807481 . January 2009

 6. Chesbrough, H., Spohrer, J.: A research manifesto for services science, Special issue on ser-
vices science. CACM 49 (7), 30–87 (2006)

 7. Cobweb: http://www.cobweb.com/ (2009)
 8. Curbera, F.: Component contracts in service-oriented architectures, Special issue on service-

oriented computing. IEEE Comput. 40 (11), 74–80 (2007)
 9. Clarke, R.: User requirements for cloud computing architecture. In: 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing, Melbourne, 17–20 May
2010

 10. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
Upper Saddle River (2005)

 11. Farrell, J., Ferris, C.: What are web services? (Special issue). CACM 46 (6), 31 (2003)
 12. Khaled, L.: Deriving architectural design through business goals. Int. J. Comput. Sci. Inf.

Secur. (IJCSIS) 7 (3), 20–26 (2010)
 13. Helbig, J.: Creating business value through fl exible IT architecture, Special Issue on service-

oriented computing. IEEE Comput. 40 (11), 80–89 (2007)
 14. IaaS, Cloud computing world forum. http://www.cloudwf.com/iaas.html (2010)
 15. IThound Video Whitepaper. http://images.vnunet.com/video_WP/V4.htm (2010). Accessed

Feb 2010
 16. Lakshminarayanan, S.: Interoperable security service standards for web services, IT pro. IEEE

CS Press USA (2010)
 17. Nano, O., Zisman, A.: Realizing service-centric software systems, Special issue on SoC. IEEE

Softw. 24 (6), 28–30 (2007)
 18. Naone, E.: Computer in the cloud, technology review. http://www.technologyreview.com/

Infotech/19397/?a=f (2007)
 19. NIST: http://csrc.nist.gov/groups/SNS/cloud-computing/index.html (2009)
 20. PaaS. Types of PaaS solutions http://www.salesforce.com/uk/paas/paas-solutions/ (2010)
 21. Papazoglou, P.M., et al.: Service-oriented computing: State of the art and research challenges,

Special issue on service-oriented computing. IEEE Comput. 40 (11), 38–45 (2007)
 22. Ramachandran, M.: Software Components: Guidelines and Applications. Nova, New York (2008)
 23. SaaS: SaaS http://www.saas.co.uk/ (2009)
 24. Science Group, 2020 Science Group: Toward 2020 science, tech. report, Microsoft. http://

research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf (2006)
 25. Serugendo, G., et al. (eds): Self-organisation: paradigms and applications. In: Engineering

Self-Organising Systems: Nature-Inspired Approaches to Software Engineering. Springer,
Berlin/New York (2004)

 26. Taiyuan, S.: A fl exible business process customization framework for SaaS. In: WASE
International Conference on Information Engineering, Taiyuan, 10–11 July 2009

 27. Tyagi, S.: RESTful web services. http://www.oracle.com/technetwork/articles/javase/index-
 137171.html (2006)

M. Ramachandran

http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf
http://queue.acm.org/detail.cfm?id=1554608
http://queue.acm.org/detail.cfm?id=1554608
http://cloudcomputing.sys-con.com/node/807481
http://www.cobweb.com/
http://www.cloudwf.com/iaas.html
http://images.vnunet.com/video_WP/V4.htm
http://www.technologyreview.com/Infotech/19397/?a=f
http://www.technologyreview.com/Infotech/19397/?a=f
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html
http://www.salesforce.com/uk/paas/paas-solutions/
http://www.saas.co.uk/
http://research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf
http://research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.oracle.com/technetwork/articles/javase/index-137171.html

143

 28. Venkataraman, T., et al.: A model of cloud based application environment. Int. J. Comput. Sci.
Inf. Secur. (IJCSIS) 7 (3) (2010)

 29. Verizon: http://www.zdnet.co.uk/news/cloud/2010/10/08/the-cloud-lessons-from-history-
 40090471/ . October 2010

 30. Vouk, M.A.: Cloud computing – issues, research and implementations. J. Comput. Info.
Technol. (CIT) 16, 40–45 (2008)

 31. Wilson, C., Josephson, A.: Microsoft offi ce as a platform for software + services. Archit. J.
(13). www.architecturejournal.net . 98–102 (2007)

 32. Weiss, A.: Computing in the clouds. http://di.ufpe.br/~redis/intranet/bibliography/middleware/
weiss-computing08.pdf , December 2007

 33. Yang, J.: Web service componentisation. Commun. ACM 46 (10), 35–40 (2003)
 34. Zhang, L-J., Zhou, Q.: CCOA: Cloud Computing Open Architecture. In: IEEE International

Conference on Web Services, Bangalore, 21–25 September 2009
 35. Linthicum, D.: Application design guidelines for cloud computing. InfoWorld. http://www.

infoworld.com/d/cloud-computing/application-design-guidelines-cloud-computing-
784?page=0,0 . November (2009)

 36. Oh, S.H., et al.: A reusability evaluation suite for cloud services. In: Eighth IEEE International
Conference on e-Business Engineering. IEEE CS Press USA (2011)

 37. Gandhi, B.: Business Process as a Service (BPaaS) delivered from the cloud. http://thought-
soncloud.com/index.php/2011/12/business-process-as-a-service-bpaas-delivered-from-the-
cloud/ . December (2011)

 38. Cause, G.: Delivering real business value using FDD. http://www.methodsandtools.com/
archive/archive.php?id=19 . Accessed April 2012

 39. Ramachandran, M.: Software Security Engineering: Design and Applications. Nova Science,
New York, ISBN: 978-1-61470-128-6. https://www.novapublishers.com/catalog/product_
info.php?products_id=26331 (2012)

 40. Longo, T., Hass, K., Cannon, D.: ITIL, business analysis and the enterprise requirements hier-
archy. http://h10076.www1.hp.com/education/ITIL_BusAnalysis_Enterprise_Req_Hierarchy.
pdf (2012)

 41. EC2: http://aws.amazon.com/ec2/ (2012). Accessed April 2012
 42. What is Cloud Computing – A complete engineering of design and implementation of cloud

computing. http://www.keendirect.com/blog/cloudcomputing/ . Accessed April 2012

6 Business Requirements Engineering for Developing Cloud Computing Services

http://www.zdnet.co.uk/news/cloud/2010/10/08/the-cloud-lessons-from-history-40090471/
http://www.zdnet.co.uk/news/cloud/2010/10/08/the-cloud-lessons-from-history-40090471/
http://www.architecturejournal.net/
http://di.ufpe.br/~redis/intranet/bibliography/middleware/weiss-computing08.pdf
http://di.ufpe.br/~redis/intranet/bibliography/middleware/weiss-computing08.pdf
http://www.infoworld.com/d/cloud-computing/application-design-guidelines-cloud-computing-784?page=0,0
http://www.infoworld.com/d/cloud-computing/application-design-guidelines-cloud-computing-784?page=0,0
http://www.infoworld.com/d/cloud-computing/application-design-guidelines-cloud-computing-784?page=0,0
http://thoughtsoncloud.com/index.php/2011/12/business-process-as-a-service-bpaas-delivered-from-the-cloud/
http://thoughtsoncloud.com/index.php/2011/12/business-process-as-a-service-bpaas-delivered-from-the-cloud/
http://thoughtsoncloud.com/index.php/2011/12/business-process-as-a-service-bpaas-delivered-from-the-cloud/
http://www.methodsandtools.com/archive/archive.php?id=19
http://www.methodsandtools.com/archive/archive.php?id=19
https://www.novapublishers.com/catalog/product_info.php?products_id=26331
https://www.novapublishers.com/catalog/product_info.php?products_id=26331
http://h10076.www1.hp.com/education/ITIL_BusAnalysis_Enterprise_Req_Hierarchy.pdf
http://h10076.www1.hp.com/education/ITIL_BusAnalysis_Enterprise_Req_Hierarchy.pdf
http://aws.amazon.com/ec2/
http://www.keendirect.com/blog/cloudcomputing/

	Chapter 6: Business Requirements Engineering for Developing Cloud Computing Services
	6.1 Introduction
	 6.2 Design for Cloud Applications
	6.3 Business-Oriented Cloud Service Development Process
	6.3.1 Business Process as a Service Paradigm

	6.4 Business Requirements Engineering Process and Framework
	 6.5 Design of Service Components
	 6.6 Case Study: Amazon EC2
	 6.7 Conclusion
	References

