
25Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_2, © Springer-Verlag London 2013

 Abstract The software engineering fi eld is on the move. The contributions of software
solutions for IT-inspired business automation, acceleration, and augmentation are enor-
mous. The business values are also rapidly growing with the constant and consistent
maturity and stability of software technologies, processes, infrastructures, frameworks,
architectural patterns, and tools. On the other hand, the uncertainty in the global econ-
omy has a direct bearing on the IT budgets of worldwide organizations. That is, they
are expecting greater fl exibility, responsiveness, and accountability from their IT
division, which is being chronically touted as the cost center. This insists on shorter
delivery cycles and on delivering low-cost yet high- quality solutions. Cloud computing
prescribes a distinguished delivery model that helps IT organizations to provide quality
solutions effi ciently in a manner that suits to evolving business needs. In this chapter,
we are to focus how software- development tasks can get greatly simplifi ed and stream-
lined with cloud-centric development processes, practices, platforms, and patterns.

 Keywords Cloud computing • Software engineering • Global software development •
 Model-driven architecture • MDA • Lean methodology • Distributed computing

2.1 Introduction

 The number of pioneering discoveries in the Internet space is quite large. In the
recent past, the availability of devices and tools to access online and on-demand
professional and personal services has increased dramatically. Software has been

 Chapter 2
 Envisioning the Cloud-Induced Transformations
in the Software Engineering Discipline

 Pethuru Raj, Veeramuthu Venkatesh, and Rengarajan Amirtharajan

 P. Raj (*)
 Wipro Technologies , Bangalore 560035 , India
 e-mail: peterindia@gmail.com

 V. Venkatesh • R. Amirtharajan
 School of Electrical and Electronics Engineering, SASTRA University ,
 Thanjavur, Tamil Nadu , India

26

pervasive and persuasive. It runs on almost all kinds of everyday devices that are
increasingly interconnected as well as Internet-connected. This deeper and extreme
connectivity opens up fresh possibilities and opportunities for students, scholars,
and scientists. The devices at the ground level are seamlessly integrated with cyber
applications at remote, online, on-demand cloud servers. The hardware and software
infrastructure solutions need to be extremely scalable, nimble, available, high-
performing, dynamic, modifi able, real-time, and completely secure. Cloud computing
is changing the total IT landscape by presenting every single and tangible IT resource
as a service over any network. This strategically sound service enablement decimates
all kinds of dependencies, portability, interoperability issues, etc.

 Cloud services and applications are becoming very popular and penetrative these
days. Increasingly, both business and IT applications are being modernized appro-
priately and moved to clouds to be subsequently subscribed and consumed by global
user programs and people directly anytime anywhere for free or a fee. The aspect
of software delivery is henceforth for a paradigm shift with the smart leverage of
cloud concepts and competencies. Now there is a noteworthy trend emerging fast to
inspire professionals and professors to pronounce the role and responsibility of
clouds in software engineering. That is, not only cloud-based software delivery but
also cloud-based software development and debugging are insisted as the need of
the hour. On carefully considering the happenings, it is no exaggeration to say that
the end-to-end software production, provision, protection, and preservation are to
happen in virtualized IT environments in a cost-effective, compact, and cognitive
fashion. Another interesting and strategic pointer is that the number and the type of
input/output devices interacting with remote, online, and on-demand cloud are on
the climb. Besides fi xed and portable computing machines, there are slim and sleek
mobile, implantable, and wearable devices emerging to access, use, and orchestrate
a wider variety of disparate and distributed professional as well as personal cloud
services. The urgent thing is to embark on modernizing and refi ning the currently
used application development processes and practices in order to make cloud-based
software engineering simpler, successful, and sustainable.

 In this chapter, we discuss cloud-sponsored transformations for IT and leveraging
clouds for global software development and present a refl ection on software
engineering . The combination of agility and cloud infrastructure for next- generation
software engineering , the convergence of service and cloud paradigms, the amalga-
mation of model-driven architecture, and the cloud and various mechanisms for
assisting cloud software development are also discussed. At the end, cloud platform
solutions for software engineering are discussed, and software engineering challenges
with respect to cloud environments are also presented.

2.2 Cloud-Sponsored Transformations for IT

 The popularity of the cloud paradigm is surging, and it is overwhelmingly accepted
as the disruptive, transformative, and innovative technology for the entire IT
fi eld. The direct benefi ts include IT agility through rationalization, simplifi cation,

P. Raj et al.

27

higher utilization, and optimization. This section explores the tectonic and seismic
shifts of IT through the cloud concepts.

• Adaptive IT – There are a number of cloud-inspired innovations in the form of
promising, potential, and powerful deployment; delivery; pricing; and consump-
tion models in order to sustain the IT value for businesses. With IT agility setting
in seamlessly, business agility, autonomy, and adaptivity are being guaranteed
with the adoption and adaption of cloud idea.

• People IT – Clouds support centralized yet federated working model. It
operates at a global level. For example, today there are hundreds of thousands
of smartphone applications and services accumulated and delivered via
mobile clouds. With ultrahigh broadband communication infrastructures
and advanced to compute clouds in place, the vision of the Internet of
devices, services, and things is to see a neat and nice reality. Self-, surroundings-,
and situation-aware services will become common, plentiful, and cheap;
thereby, IT promptly deals with peoples’ needs precisely and delivers on
them directly.

• Green IT – The whole world is becoming conscious about the power energy
consumption and the heat getting dissipated into our living environment. There
are calculated campaigns at different levels for arresting climate change and for
sustainable environment through less greenhouse-gas emission. IT is being
approached for arriving at competent green solutions. Grid and cloud computing
concepts are the leading concepts for green environment. Especially the smart
energy grid and the Internet of Energy (IoE) disciplines are gaining a lot of
ground in order to contribute decisively for the global goal of sustainability.
The much-published and proclaimed cloud paradigm leads to lean compute,
communication, and storage infrastructures, which signifi cantly reduce the
electricity consumption.

• Optimal IT – There are a number of worthwhile optimizations happening in the
business-enabling IT space. “More with less” has become the buzzword for both
business and IT managers. Cloud enablement has become the mandatory thing
for IT divisions as there are several distinct benefi ts getting accrued out of this
empowerment. Cloud certainly has the wherewithal for the goals behind the IT
optimization drive.

• Next-Generation IT – With a number of delectable advancements in wireless and
wired broadband communication space, the future Internet is being positioned as
the central fi gure in conceiving and concretizing people-centric discoveries and
inventions. With cloud emerging as the new-generation compute infrastructure,
we will have connected, simplifi ed, and smart IT that offers more infl uential and
inferential capability to humans.

• Converged, Collaborative, and Shared IT – The cloud idea is fast penetrating
into every tangible domain. Cloud’s platforms are famous for not only software
deployment and delivery but also for service design, development, debugging,
and management. Further on, clouds, being the consolidated, converged, and
centralized infrastructure, are being prescribed and presented as the best bet
for enabling seamless and spontaneous service integration, orchestration, and

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

28

collaboration. With everything (application, platform, and infrastructure) are
termed and touted as publicly discoverable, network-accessible, self-describing,
autonomous, and multitenant services, clouds will soon become the collaboration
hub. Especially business-aware, process-centric, and service-oriented compos-
ites can be easily realized with the cloud-based collaboration platform.

• Real-Time IT – Data’s variety, volume, and velocity are on the climb. The current
IT infrastructures are insuffi cient in order to extract actionable insights out of
pouring data. Hence, the emergence of big data computing and analysis
technologies are given due diligence and attention. These fast-maturing technolo-
gies are able to accomplish real-time transition from data to information and to
knowledge. Cloud is the optimized, automated, and virtualized infrastructure for
big data computing and analytics. That is, with the infrastructure support from
clouds, big data computing model is to see a lot of improvements in the days
ahead so that the ultimate goal of real-time analytics can be realized very fl uently
and fl awlessly.

2.3 Leveraging Clouds for Global Software
Development (GSD)

 Globalization and distribution are the two key concepts in the IT fi eld. Software
development goes off nations’ boundaries and tends toward places wherein quality
software engineers and project managers are available in plenty. On-site, off- shoring,
near-shoring, etc., are some of the recent buzzwords in IT circles due to these devel-
opments. That is, even a software project gets developed in different locations as
the project team gets distributed across the globe. With the sharp turnarounds in a
communication fi eld, a kind of tighter coordination and collaboration among team
members are possible in order to make project implementation successful and
sustainable. In-sourcing has paved the way for outsourcing with the maturity of
appropriate technologies. As widely known, software sharply enhances the com-
petitive advantage and edge for businesses. Hence, global software development
(GSD) has become a mandatory thing for the world organizations. Nevertheless,
when embarking on GSD, organizations continue to face challenges in adhering to
the development life cycle. The advent of the Internet has supported GSD by
bringing new concepts and opportunities resulting in benefi ts such as scalability,
fl exibility, independence, reduced cost, resource pools, and usage tracking. It has
also caused the emergence of new challenges in the way software is being delivered
to stakeholders. Application software and data on the cloud are accessed through
services, which follow SOA principles.

 GSD is actually the software-development process incorporating teams spread
across the globe in different locations, countries, and even continents. The driver for
this sort of arrangement is by the fact that conducting software projects in multiple
geographical locations is likely to result in benefi ts such as cost reduction and

P. Raj et al.

29

reduced time to market, access to a larger skill pool, proximity to customer, and
24-h development by following the sun. But, at the same time, GSD brings challenges
to distributed software-development activities due to geographic, cultural, linguistic,
and temporal distance between the project development teams.

 Because of the distance between the software-development teams, GSD
encounters certain challenges in terms of collaboration, communication, coordination,
culture, management, organizational, outsourcing, development process, develop-
ment teams, and tools. The real motive for using the cloud for supporting GSD is
that the cloud idea thrives as it is closely related to the service paradigm. That is,
services are created, provisioned, and delivered from cloud-based service platforms.
Since SOA runs a mechanism for development and management of distributed
dynamic systems, and it evolved from the distributed-component-based approach, it
is argued that cloud has the innate potential and strength to successfully cater for the
challenges of GSD where a project is developed across different geographical
locations. GSD challenges can be overcome through SOA. This will contribute to
increased interoperability, diversifi cation, and business and technology alignment.
Cloud as the next-generation centralized and service-oriented infrastructure is capable
of decimating all the internal as well as externally imposed challenges.

• Global Software Development (GSD) in Cloud Platforms [1] – Clouds offer
instant resource provisioning, fl exibility, on-the-fl y scaling, and high availability
for continuously evolving GSD-related activities. Some of the use cases include .

• Development Environments – With clouds, the ability to acquire, deploy, confi gure,
and host development environments become “on-demand.” The development
environments are always on and always available to the implementation teams
with fi ne-grained access control mechanisms. In addition, the development
environments can be purpose-built with support for application-level tools, source
code repositories, and programming tools. After the project is done, these can also
be archived or destroyed. The other key element of these “on-demand” hosting
environments is the fl exibility through its quick “prototyping” support. Prototyping
becomes fl exible, in that as new code and ideas can be quickly turned into work-
able proof of concepts (PoCs) and tested.

• Developer Tools – Hosting developer tools such as IDEs and simple code editors
in the cloud eliminates the need for developers to have local IDEs and other
associated development tools, which are made available across time zones and
places.

• Content Collaboration Spaces – Clouds make collaboration and coordination
practical, intuitive, and fl exible through easy enabling of content collaboration
spaces, modeled after the social software domain tools like Facebook, but centering
on project-related information like invoices, statements, RFPs, requirement doc-
uments, images, and data sets. These content spaces can automate many project-
related tasks such as automatically creating MS Word versions of all imported
text documents or as complex as running work fl ows to collate information from
several different organizations working in collaboration. Each content space can
be unique, created by composing a set of project requirements. Users can invite

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

30

internal and external collaborators into this customized environment, assigning
appropriate roles and responsibilities. After the group’s work is “complete,” their
content space can be archived or destroyed. These spaces can be designed to sup-
port distributed version control systems enabling social platform conversations
and other content management features.

• Continuous Code Integration – Compute clouds let “compile-test-change” software
cycle on the fl y do continuous builds and integration checks to meet strict quality
checks and development guidelines. They can also enforce policies for custom-
ized builds.

• APIs and Programming Frameworks – Clouds force developers to embrace
standard programming model APIs where ever possible and adhere to style
guides, conventions, and coding standards in meeting the specifi c project require-
ments. They also force developers to embrace new programming models and
abstractions such as .NET Framework, GWT, Django, Rails, and Spring Framework
for signifi cantly increasing the overall productivity. One more feature of using
clouds is that they enforce constraints, which push developers to address the
critical next-generation programming challenges of multicore computing, parallel
programming, and virtualization. As explained earlier in the chapter, global
software development is picking up fast, and the emergence of clouds is to boost
the GSD activities further.

2.4 A Refl ection on Software Engineering

 Radha Guha writes in [2] that over the last half-century, there have been robust and
resilient advancements in the hardware engineering domain. That is, there are radical
and rapid improvisations in computers, memory, storage, communication networks,
mobile devices, and embedded systems. This has been incessantly pushing the need
for larger and more complex software. Software development not only involves
many different hardware elements, it also involves many different parties like end
users and software engineers. That is why software development has become such
an inherently complicated task. Software developers are analyzing, articulating, and
adopting the proven and prescribed engineering disciplines. That is, leveraging
systematic, disciplined, and quantifi able approach to make software development
more manageable to produce quality software products. The success or quality of a
software project is measured by whether it is developed within the stipulated time
and agreed budget and by its throughput, user-friendliness, consumability, depend-
ability, and modifi ability.

 Typically, a software engineering engagement starts off with an explicit and
elegant process model comprising several formally defi ned and synchronized
phases. The whole development process of software from its conceptualization to
implementation to operation and retirement is called the software-development
life cycle (SDLC). SDLC goes through several sub-activities like requirement’s gath-
ering, planning, design, coding, testing, deployment, maintenance, and retirement.

P. Raj et al.

31

These activities are well synchronized in accordance to the process model adopted
for a particular software development . There are many process models to choose
from like water fall model, rapid application development (RAD) model, and spiral
model depending on the size of the project, delivery time requirement, and type of
the project. The development of an avionic embedded system will adopt a different
process model from development of a Web application.

 Even though software engineering [3] takes the engineering approach, the success
of software products is more diffi cult than products from other engineering domains
like mechanical engineering or civil engineering. This is because software is
intangible during its development. Software project managers use a number of
techniques and tools to monitor the software building activities in a more visible
way. These activities include software project tracking and control, risk management,
quality assurance, measurements, confi guration management, work product or
document’s generation, review, and reusability management.

 Even after taking all these measures for sticking to the plan and giving much
importance to document generation for project tracking and control, many software
projects failed. More than 50 % of software projects fail due to various reasons
like schedule and budget slippage, non-user-friendly interface of the software, and
non- fl exibility for maintenance and change of the software. Therefore, there is a
continued and consistent focus on simplifying and streamlining software implementa-
tion. In this chapter, we are to see some of the critical and crucial improvements in
software engineering process with the availability of cloud infrastructures.

 The Evolutions and Revolutions in the Software Engineering Field – There are a
number of desirable and delectable advancements in the fi eld of software engineering
in order to make the tough task of software construction easier and quicker. This
section describes the different levels and layers in which the software engineering
discipline and domain evolve.

 At the building-block level , data, procedures, classes, components, agents, aspects,
events, and services are the key abstraction and encapsulation units for building and
orchestrating software modules into various types of specifi c and generic software.
Services especially contribute in legacy modernization and migration to open
service-oriented platforms (SOPs) besides facilitating the integration of disparate,
distributed, and decentralized applications. In short, building blocks are the key
ingredient enabling software elegance, excellence, and evolution. In the recent past,
formal models in digital format and service composites are evolving fast in order
to further simplify and streamline the tough task of software assembly and imple-
mentation. As software complexity is on the rise, the need for fresh thoughts and
techniques is too on the climb.

 On the language level , a bevy of programming languages (open source as well as
proprietary) were produced and promoted by individuals, innovators, and institu-
tions. Even, there are efforts underway in order to leverage fi t-for-purpose languages
to build different parts and portions of software applications. Software libraries are
growing in number, and the ideas of software factory and industrialization are
picking up fast lately. Service registry and repository are an interesting phenome-
non for speeding up software realization and maintenance. Programming languages

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

32

and approaches thrive as there are different programming paradigms such as object
orientation, event- and model-driven concepts, componentization, and service
orientation. Further on, there are script languages in the recent past generating and
getting a lot of attention due to their unique ability of achieving more with less code.
Formal models in digitalized format and service composites are turning out to be
a blessing in disguise for the success and survival of software engineering. There
are domain- specifi c languages (DSLs) that could cater to the specifi c demands of
domains quite easily and quickly.

 As far as development environments are concerned, there are a number of diverse
application building platforms for halving the software developmental complexity
and cost. That is, there are a slew of integrated development environments (IDEs),
rapid application development (RAD) tools, code generators and cartridges, enabling
CASE tools, compilers, debuggers, profi lers, purpose-specifi c engines, generic and
specifi c frameworks, best practices, key guidelines, etc. Plug and play mechanism
has gained a lot with the overwhelming adoption of eclipse IDE for inserting and
instantiating different language compilers and interpreters. The long- standing
objectives of platform portability (Java) and language portability (.NET Framework)
are being achieved at a middleware level. There are standards- compliant toolkits
for process modeling, simulation, improvement, investigation, and mapping. Services
as the well-qualifi ed process elements are being discovered, compared, and orches-
trated for partial or full process automation.

 At the process level , waterfall is the earliest one, and thereafter there came a
number of delicious variations in software-development methodology with each
one having both pros and cons. Iterations, increments, and integrations are being
touted as the fundamental characteristics for swifter software production. Agile pro-
gramming is gaining a lot of ground as business changes are more frequent than
ever before and software complexity is also growing. Agility and authenticity in
software building are graciously achieved with improved and constant interactions
with customers and with the enhanced visibility and controllability on software
implementation procedures. Agility, being a well-known horizontal technique,
matches, mixes, and merges with other paradigms such as service-oriented program-
ming and model-driven software development to considerably assist in lessening
the workload of software developers and coders. Another noteworthy trend is that
rather than code-based implementation, confi guration-based software production
catches up fast.

 At the infrastructural level, the cloud idea has brought in innumerable transfor-
mations. The target of IT agility is seeing a neat and nice reality and this in turn
could lead to business agility. Technically, cloud-inspired infrastructures are virtual-
ized, elastic, self-servicing, automated, and shared. Due to the unique capabilities
and competencies of cloud IT infrastructures (in short, clouds), all kinds of enterprise
IT platforms (development, execution, management, governance, and delivery)
are being accordingly manipulated and migrated to be hosted in clouds, which are
extremely converged, optimized, dynamic, lean, and green. Such meteoric movement
decisively empowers application platforms to be multitenant, unifi ed, and central-
ized catering to multiple customers and users with all the enhanced productivity,

P. Raj et al.

33

extensibility, and effectiveness. In other words, cloud platforms are set to rule and
reign the IT world in the days to unfold. In other words, platforms are getting
service-enabled so that any service (application, platform, and infrastructure) can
discover and use them without any barriers. Service enablement actually expresses
and exposes every IT resource as a service so that all kinds of the resource’s incom-
patibilities are decimated completely. That is, resources readily connect, concur,
compose, and collaborate with one another without any externally or internally
imposed constrictions, contradictions, and confusions. In a nutshell, the unassailable
service science has come as a unifying factor for the dilapidated and divergent
IT world.

 In summary, the deeply dissected, discoursed, and deliberated software-
development discipline is going through a number of pioneering and positive
changes as described above.

2.5 Combination of Agility and Cloud Infrastructure
for Next-Generation Software Engineering

 As indicated previously, there have been many turns and twists in the hot fi eld of
software engineering. It is an unquestionable fact that the cloud paradigm, without
an iota of doubt, has impacted the entire IT elegantly and exceedingly. Besides
presenting a bright future on the aspect of centralized deployment, delivery, and
management of IT resources, the cloud idea has opened up fresh opportunities and
possibilities for cloud-based software design, development, and debugging in a
simplifi ed and systematic fashion. That is, with the overwhelming adoption and
adaption of cloud infrastructures (private, public, community, and hybrid), produc-
ing and preserving enterprise-scale, mission-critical, and value-added software are
going to be defi nitely distinct. There are four key drivers that unanimously elevate
the software development to be advanced to an accomplished in a cloud. These are:

• Time, Cost, and Productivity – The developer community is being mandated to
do more, quicker, and with fewer resources.

• Distributed Complex Sourcing – Due to various reasons, IT project team
members are geographically dispersed.

• Faster Delivery of Innovation – The focus is on enabling architects and developers
to think ingeniously in order to deliver business value.

• Increasing Complexity – In today’s world, an enterprise-scale project easily
consumes several million lines resulting in more complexity.

 In order to reduce complexity, resources, cost, and time considerably, profes-
sionals and professors are vigorously and rigorously striving and searching for
incredibly inventive solutions. Newer concepts, process optimization, best practices,
fresh programming models, state-of-the-art platforms, design patterns and metrics,
and advanced tools are being increasingly unearthed and utilized for lessening the
software development workload. Researchers are continuously at work in order to

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

34

discover competent and compact methods and mechanisms for simplifying and
streamlining the increasingly multifaceted tasks of constructing and conserving
next-generation software systems. The major benefi ts of agile methodology over the
traditional methods are:

• Faster time to market
• Quick return on investment
• Shorter release cycles
• Better adaptability and responsiveness to business changing requirements
• Early detection of failure and immediate correction

 There are several agile development methods such as Scrum, extreme programming,
test-driven development, and lean software development [4]. With agile models,
business houses expect that services and solutions are being delivered incrementally
earlier rather than later, and delivery cycle time period comes down sharply. That
is, one delivery cycle takes up from 2 to 4 weeks. However, in the midst of these
turnarounds, there arise a number of critical challenges, as mentioned below:

• High effort and cost involved in setting up infrastructures
• Lack of skilled resources
• Lack of ability to build applications from multiple places across the globe

 There are a few popular cloud platforms available in order to enable software
development in cloud environments. Google App Engine , salesforce.com, cloud-
foundry.org, cloudbees.com, corenttech.com, heroku.com, windowsazure.com, etc.,
are the leading platforms for cloud-based application development, scaling, and
sustainability.

 Collabnet (http://www.collab.net/), a product fi rm for enabling software devel-
opment in cloud-based platforms, expounds and enlightens on the seamless conver-
gence of the agile programming models, application lifecycle management (ALM)
product, and clouds for a precise and decisive answer for the perpetual software
engineering challenges, changes, and concerns. It convincingly argues that cloud
technologies reduce development barriers by providing benefi ts in the following
critical areas:

• Availability – Code is centralized and infrastructure is scalable and available on
demand.

• Access – Ensures fl exible access to test environments and transparency to project
data for the entire team.

• Overhead – Reduced support overhead, no upgrade latency – teams use an on-
demand model to get what they need, quickly and easily.

 Agile processes set the strong and stimulating foundation for distributed teams to
work closely together with all the right and relevant stakeholders to better anticipate
and respond to user expectations. Agile teams today are empowered to clearly
communicate with users to act and react expediently to their feedback. That is, they
are able to collaboratively and cleverly iterate toward the desired state and user
satisfaction. Cloud intrinsically facilitates open collaboration across geographies

P. Raj et al.

http://www.collab.net/

35

and time zones with little investment or risk. With more and more development and
test activities moving toward clouds, organizations are able to save time and money
using virtual and shared resources on need basis. Developers could save time
by leaving confi guration, upgrades, and maintenance to cloud providers, who usually
employ highly educated and experienced people. Anytime anywhere access is facil-
itated for those with proper authentication and authorization, and assets are
completely centralized and controlled.

 Agile and cloud are being positioned together and prescribed as a powerful and
pathbreaking combination for the software-development community. This might
seem counterintuitive to those entrenched in waterfall processes or those comfort-
able with the idea of a daily stand-up and colocated teams. The reality is altogether
different. That is, there are a number of technical and business cases emerging for
using the agile methods in the cloud. The agility concepts make development
teams responsive to the changing needs of businesses and empower them to be
adaptable and fl exible. Further on, proven agile processes help to break down all
sorts of barriers and blockages between development and production, allowing
teams to work together to concentrate on meeting stakeholder expectations. The
synchronization of agile and cloud paradigms fully free up developers from all
kinds of diffi culties to achieve more with less, to innovate fast, and to ultimately
bring value to the business.

2.6 Convergence of Service and Cloud Paradigms

 The service idea has matured and stabilized as the dominant approach for designing,
developing, and delivering open, sustainable, and interoperable service-oriented
systems for enterprise, Web, embedded, and cloud spaces. Even many of the modules
of packaged business software solutions are modifi ed and presented as services.
Services are publicly discoverable and accessible, reusable, and composable
modules for building distinct and specifi c applications through confi guration and
customization, runtime matching, selection and usage of distributed, disparate
and decentralized services, replacement of existing service components through the
substitution of new advanced service components, and service orchestration.
Services as process elements are supporting and sustaining process-oriented systems,
which are generally more fl exible. That is, operation and controlling of software
solutions at process level considerably reduce the software development , management,
and maintenance tasks.

 Thus, the process propensity of the service paradigm and cloud-centric service-
oriented infrastructures and platforms bring a number of distinct advantages for
software engineering. Services and cloud computing have garnered much attention
from both industry and academia because they enable the rapid and radical devel-
opment of enterprise-scale, mission-critical, high-performance, dynamic, and dis-
tributed applications. Agility, adaptivity, and affordability, the prime characteristics
of next-generation software systems, can be realized with the smart leverage of

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

36

processes, services, and cloud platforms. Precisely speaking, the service paradigm
is to energize futuristic software design, whereas cloud platforms are being tipped
and touted as the next-generation service-centric platforms for service development,
deployment, management, and delivery.

 Service-Oriented Software Development – It is to see a lot of delectable and
decisive shifts with the adoption of cloud platforms. The smooth and seamless
convergence of services and clouds promises shining days for software-development
community. Of course, there are a few challenges that need utmost attention from
scholars, scientists, and students. Security, visibility, controllability, performance,
availability, usability, etc., need to be obviated in order to fast-track service-based
software implementation in clouds.

 As widely pronounced, services are being positioned as the most fl exible and
fertile component for software production. That is, software solutions are made of
interoperable services. It is all about the dynamic discovery and purposeful interac-
tions among a variety of services that are local or remote, business or IT-centric, and
owned or subscribed from third-party service providers. Services are standards-
compliant, self-describing, and autonomous entities in order to decimate all kinds
of dependencies and incompatibilities, to promote seamless and spontaneous
collaborations, and to share each of their capability and competency with others
over networks. Process and workfl ow-based service compositions result in dynamic
applications that are highly portable. XML is the key data representation, exchange,
and persistence mechanism facilitating service interoperability. Policies are being
framed and encouraged in order to achieve automated service fi nding, binding, usage,
monitoring, and governance. The essence of service governance is to explicitly
establish pragmatic policies and enforce them stringently. With a consistent rise in
automation, there is a possibility for deviation and distraction, and hence the service
governance discipline is gaining a lot of ground these days.

 As there is a clear distinction between service users and providers, service-level
agreement (SLA) and even operation-level agreement (OLA) are becoming vital for
service-centric business success and survival. Furthermore, there are geographically
distributed several providers providing identical or similar services and hence SLA,
which unambiguously describes runtime requirements that govern a service’s
interactions with different users, has come as a deciding factor for service selection
and utilization. A service contract describes its interface and the associated con-
tractual obligations. Using standard protocols and respective interfaces, application
developers can dynamically search, discover, compose, test, verify, and execute
services in their applications at runtime. In a nutshell, SOA-based application devel-
opment is through service registration, discovery, assessment, and composition,
which primarily involves three stakeholders:

• A service provider is one who develops and hosts the service in cloud platforms.
• A service consumer is a person or program that fi nds and uses a service to build

an application.
• A service broker mediates between service providers and consumers. It is a

program or professional in helping out providers publishing their unique services
and guiding consumers to identify ideal services.

P. Raj et al.

37

 The service science is on the growth trajectory. There are service-oriented
platforms, patterns, procedures, practices, products, and packages. Service manage-
ment has become a niche area of study and research. The knowledge-driven service
era is to dawn with the availability of competent service-centric technologies,
infrastructures and processes, toolsets, architectures, and frameworks. Service
engineering is picking up fast with the suffi cient tweaking and tuning of software
engineering principles, techniques, and tips. Everything related to IT is being con-
scientiously manipulated and presented as a service for the outside world setting the
context and case for IT as a service (ITaaS). In other words, any service can connect
and cooperate with other services individually or collectively to make bigger and
better things for the total humanity.

 The Synchronization Between Service and Cloud Ideas – As explained and
elucidated above, the service and cloud computing models together signal a sunny
and shining days ahead for software building. A combined framework comprising
the service and the cloud concepts goes a long way in halving the application devel-
opment drudgery. Cloud-centric application development gets a consolidated, cen-
tralized, virtualized, and shared IT infrastructure for effi ciently constructing and
preserving applications. Multitenancy, auto-provisioning, and elasticity features are
the strong business and technical cases for embracing the cloud idea.

 Now with the concepts of the Inter-cloud that are fast emerging and evolving,
cloud integration and federation aspects are bound to grow signifi cantly. That is,
connected and federated clouds will become the common, casual, and cheap thing
for next-generation enterprise IT. The federation of multiple types of clouds (mobile,
device, sensor, knowledge, information cloud, high-performance cloud, etc.) is to
enable distributed, global, and collaborative software development [5]. The open
and industry-strength interoperability standards of SOA empower service- sponsored
cloud integration and, on the other hand, cloud-hosted service integration. In short,
the cloud grid is not an option but a necessity considering the growing complexity
of IT toward sustaining the business dynamism.

 The concept of designing and developing applications using SOA and delivery
through cloud is to explode. Cloud brokerage fi rms could maintain cloud-hosted
service registry and repository that works out as a single point of contact for global
application developers. The service metadata offers the exact location, interface,
and contract of services being probed for use. Service developers could host their
services in service platforms of worldwide cloud providers, and this enables appli-
cation developers to search and choose right and relevant services based on the
business requirements. Service providers could also host integrated development
environments and rapid application development tools, code generators and car-
tridges, debuggers, simulators, emulators, etc., in their own clouds or in third-party
cloud infrastructures. Furthermore, they could publish software artifacts such as
modifi able and extendible business processes, workfl ows, application templates,
user interfaces, data schema, and policies to facilitate software development and
generation. Developers can fi nd viable and value-added services from multiple ser-
vice providers and leverage these artifacts in order to come out with service- oriented

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

38

applications. The fast-maturing federation science is to dictate the future of software
engineering. In short, there are cloud-based components such as:

• Application development artifacts such as templates, processes, and workfl ows
• Service development environments and tools
• Service registry repository
• SCA-compliant application implementation platforms with service discovery,

integration, and orchestration features and facilities leveraging the application
artifacts

• Application delivery as a service via the Internet as the cheap and open commu-
nication infrastructure

 Service-Based Software Design and Development – Development of service
systems remains a quiet big challenge because services are being developed by
different entities and deposited in geographically distributed locations. For an appli-
cation to fructify, diverse services need to be smartly collected and consolidated.
Different services are covered up with disparate policies. Varying capabilities decorate
services. Also application development process is increasingly diversifi ed because
application developers, service brokers, and application service providers are dis-
tributed. The coordination here is very important for the SOA-based IT and business
successes. Standardized protocols, messaging mechanisms, and interfaces are very
essential services to be linked remotely and resiliently.

 Software engineering revolves around two main activities: decomposition and
composition. As business problem evolves and enlarges, the act of decomposition
of business problem is required as our mental capability is limited. Once an appro-
priate solution for the business problem is designed, then identify those solution
building blocks and compose them to develop the solution.

 Similar to other development methodologies, service-oriented software develop-
ment starts with requirements extraction, elucidation, and engineering. During this
phase, the application developer develops a business model; works with the customer
to articulate, analyze, authenticate, and refi ne requirements; designs a workfl ow for
the business model; and fi nally decomposes the requirements into smaller and
manageable modules. Then the application developer sends each of the disinte-
grated and disengaged requirements to a service brokerage to fi nd suitable services
that satisfy the enshrined requirements. Once the right services are identifi ed for
each of the requirement parts, the application developer simply composes them into
an application. Service component architecture (SCA) is a recent architectural style
enabling application componentization into service modules that in turn get assem-
bled to form a single entity. There are SCA-compliant IDEs from different product
vendors. In some cases, correct services might not be available and hence one has to
develop those services from the scratch.

 Cloud-Based Software Delivery – Software engineering encompasses not only
the software-developmen t processes but also the effective delivery of the developed
software to users, which includes software deployment and maintenance. However,
SOA does not prescribe any specifi c methods for software deployment, manage-
ment, governance, and enhancement. These can be decided and activated by software
service organizations differently. Clouds as the standardized and smart infrastructure

P. Raj et al.

39

come to the rescue here by ensuring effective application delivery. Applications can
be affordably deployed and maintained in advanced cloud platforms. Application
capabilities can be provided as a service. All kinds of non- functional (quality of
service (QoS)) attributes are effortlessly accomplished with clouds. Anytime any-
where resource access is being facilitated. Centralized monitoring and management
are remarkably simplifi ed here. That is, clouds as the next- generation service-
oriented infrastructures (SOIs) have emerged in correct time in order to take the
service idea to greater heights. It is therefore no exaggeration to proclaim that
the software engineering fi eld is greatly and grandiosely empowered by evolving
cloud concepts.

 Agile Service Networks (ASNs) [6 , 7] – Cloud computing’ s high fl exibility needs
novel software engineering approaches and technologies to deliver agile, fl exible,
scalable, yet secure software solutions with full technical and business gains. One
way is to allow applications to do the computing in cloud, and the other is to allow
users to integrate with the applications. Agile service networks (ASNs) are themselves
an emerging paradigm envisioning collaborative and dynamic service interactions
(network edges) among global service-oriented applications (network nodes). ASNs
can be used as a paradigm for software engineering in the cloud, since they are
indeed able to deliver solutions which are both compliant to the cloud’s needs and
able to harness it, bringing about its full potential.

 Context adaptation is used in ASNs to achieve agility. The concept of ASN is
defi ned as a consequence of “late service binding.” In the context of services’ dyna-
mism, which is achieved through late service binding, ASNs become a perfect
example of how agility can be achieved in SOA systems. Adaptation is presented as
one of the main tenets of SOA. This paradigm regards highly dynamic systems
within a rapidly changing context to which applications must adapt. In this sense,
ASNs are used to exemplify industrial needs for adaptive, context-aware systems.

 ASN Key Features – ASNs are dynamic entities. Dynamism is seen as an essential
part of the service interactions within collaborative industries (i.e., industrial value
networks). Dynamism in ASNs is the trigger to service rearrangement and applica-
tion adaptation. For example, an ASN made of collaborative resource brokering
such as distributed stock markets is dynamic in the sense that different partners may
participate actively, others may be dynamically added while brokering is ongoing,
others may retire from the brokering process, and others may dynamically change
their business goals and hence their brokering strategy. ASNs are business- oriented:
ASNs are borne out of business corporative collaborations and represent complex
service applications interacting in a networked business scenario involving multiple
corporations or partners in different sites (i.e., different geo-locations). Within
ASNs, business value can be computed, analyzed, and maximized.

 Cloud-Induced Software Engineering Challenges – As widely reported, there
are some important concerns with public clouds. Security, controllability, visibility,
performance, and availability are the major issues. Virtualization, the central
technology for the massive uptake and incontestable success of the cloud idea, has
introduced new security holes. Typically, public clouds are more or less accom-
modating several customers to be economical, and there are real dangers and risks
in a shared environment. If a cloud is not available for a few minutes, the resulting

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

40

loss would be very enormous necessitating the sharp increment in guaranteeing
cloud availability. Cloud reliability is another central and crucial factor not to be
sidestepped easily. The security of data in rest or in transit has to be infallibly
secure, and cryptography is the major source of inspiration for data security in a
cloud environment. Identity and access management solutions are being conceived
and concretized for the more open and risky cloud systems. Besides, application
and service security and network and physical security aspects are also critical in a
cloud environment.

 Smartphone applications are becoming very popular and very large in the number
with the massive production and release of slim and sleek, handy and trendy, yet
multifaceted mobile phones. As there are literally more mobile devices compared to
desktop and other powerful compute machines, application development for the
fastest-growing mobile space is gaining unprecedented importance. Mobile
technologies, application architectures and frameworks, toolsets, service delivery
platforms, hypervisors for mobile devices, unifi ed and integrated application devel-
opment environments, etc., are being produced in plenty by competing parties in
order to score over others in the mind and market shares. There are specifi c cloud
infrastructures for securely storing a variety of mobile data, content, mails, services,
and applications. Besides cell phones and smartphones, other mobile and portable
devices incessantly capturing the imagination of people are the powerful tablets.
Thus, there are several dimensions and directions in which the nifty and niche
content and application development activities for the mobile landscape are
proceeding.

 With cloud emerging as the centralized place for mobile services, the days of
anywhere anytime information and service access and upkeep are bright. Especially
form builder applications for smartphones are being made available so that users
could creatively produce their own forms in order to indulge in commercial and
fi nancial activities on the move. Hundreds of thousands of smartphone applications
are being built, hosted, and subscribed by various smartphone vendors. Games are
the other prominent and dominant entities for the mobile world. Precisely speaking,
mobiles and clouds are increasingly coming closer for context-aware, customer-
centric, and cognitive applications.

 In summary, the penetration of cloud idea is simply mesmerizing and momen-
tous. The cloud-based platforms are being positioned as the dynamic, converged,
and fi t-for-purpose ones for application engineering not only for enterprise IT
but also for embedded IT, which incidentally includes mobile, wearable, porta-
ble, fi xed, nomadic, wireless, implantable, and invisible devices. Extremely and
deeply connected applications and services are bound to rule the IT in the com-
ing days, and the cloud paradigm is the defi nite and decisive contributor for the
future IT.

 Although, the service and cloud concepts have greater affi nity in strengthen-
ing software development and delivery, there are some serious issues to be
addressed urgently in order to eliminate all kinds of doubts of in the minds of
enterprise executives in order to reach into the promised land of cloud-sponsored
service era.

P. Raj et al.

41

2.7 Amalgamation of Model-Driven Architecture
and the Cloud Paradigms

 Modeling has been a fundamental and foundational activity for ages. Before a
complex system gets formed, a model of the system is created as it could throw
some light about the system’s fi nal structure and behavior. Models could extract
and expose any kind of hidden risks and lacunae in system functioning and give a
bit of confi dence for designers and developers to plan and proceed obviating all
kinds of barriers. Models give an overall understanding about the system to be
built. In short, models decompose the system into a collection of smaller and man-
ageable chunks in order to empower engineers to have a fi rm grip and grasp of the
system under implementation. Modeling is one of the prominent and dominant
complexity- mitigation techniques as systems across domains are fast-growing in
complexity.

 As IT systems are growing complexity, formal models are presented as the next-
generation abstraction and encapsulation unit for them. In the recent past, models
have been used as building blocks for having portable, sustainable, and fl exible IT
systems. Models are created digitally, stored, refi ned, and revitalized as per the
changing needs. There are formats such as XML Metadata Interchange (XMI) for
exporting models over the network or any other media to other systems as inputs for
further processing. There are unifi ed and visual languages and standardized notations
emerging and energizing compact and formal model representation, persistence,
manipulation, and exchange. Product vendors and open source software developers
have come out with innumerable software tools for facilitating model creation, trans-
formation, verifi cation, validation, and exporting. For object orientation, unifi ed
modeling language (UML) has been the standard one for defi ning and describing
models for various constructs and activities. For component-based assembly and ser-
vice-orientation programming, UML profi les have been created in order to keep UML
as the modeling language for software engineering. Further on, there are processing
modeling and execution languages such as BPML and BPEL and notations such as
BPMN in order to develop process-centric applications. That is, process models act as
the building blocks for system engineering.

 Model-driven architecture (MDA) is the associated application architecture.
Model-driven software engineering (MDSE) is being presented as the most dynamic
and drastic method for application engineering. Emerging and evolving MDSE
techniques can automate the development of new cloud applications program-
matically. Typically, cloud applications are a seamless union of several unique
services running on different IT platforms. That is, for producing competent cloud
applications, all the right and relevant services from diverse and geographically
distributed servers have to be meticulously found, bound, and linked up in order to
build and sustain modular (loosely coupled and highly cohesive) cloud applications.
Precisely speaking, services have been overwhelmingly accepted as the most
productive and pliable building block for realizing adaptive, mission-critical, and
enterprise-scale applications.

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

42

 For building service-oriented cloud applications, there is a need for modernizing
all the legacy software modules into services. Model-driven reverse engineering
techniques are capable of discovering and generating standardized models out of
legacy software modules. The overall idea is to use such techniques and enabling
frameworks such as MoDisco framework to speed up the task of model creation
from legacy modules. These formal models can be subjected to further transfor-
mation to derive corresponding services that in collaborate with other cloud-
based services in order to craft fresh cloud applications quickly. That is, just
as software as a service (SaaS) paradigm, the notion of modeling as a service
(MaaS) is to see brighter days ahead especially in assisting the formation of
cloud applications out of existing non-cloud applications. As there are billions of
legacy code still contributing extensively for fortune corporations across the
globe, MaaS is to grow exponentially. There will be processes to be defi ned,
frameworks to be produced, cloud platforms to be immensely utilized, etc.
Reverse engineering of application modules into a PIM and then into one or more
PSMs to automate the service realization out of old software components is the
cleverest and clear-cut approach for the forthcoming cloud era. It is keenly antic-
ipated that similar to SaaS, MaaS will become a pioneering initiative. Here are
some possible applications of MaaS [8]:

• Creation of collaborative and distributed modeling tools to allow the specifi cation
and sharing of software models among team members in real time.

• Defi nition of modeling mash-ups as a combination of MDSE services from
different vendors.

• Availability of model transformation engines in the cloud to provide platform-
independent model management services.

• Improving Scalability of MDSE – Models of real-life applications (especially
those obtained by reverse engineering of running systems) are usually very large.
Modeling services in the cloud would ensure the scalability of MDSE techniques
in those scenarios.

• Facilitating Model Execution and Evolution – Moving code-generation and
simulation services to cloud would facilitate the deployment and evolution of
software applications (regardless of whether those applications were implemented
as SaaS) and substantially reduce the time to market. The cloud service providers
(CSPs) with their infrastructure administration experts could set up the relevant
infrastructures to compile and deploy the applications quickly.

• Solving Tool Interoperability Problems – Exchanging data (and metadata) among
MDSE tools is one of the major challenges nowadays. So far, the problem is
being addressed by defi ning bridges among the tools, but MaaS is to offer a more
transparent and global solution to this problem. For instance, bridges could be
defi ned as services and executed on demand automatically by other services
when incompatibility issues surface.

• Distributed Global Model Management – Complex MDSE projects involve
several models (possibly conforming to different metamodels), model transfor-
mations, model injectors and projectors, etc. The MaaS paradigm is to facilitate
the manipulation of all these modeling artifacts in a distributed environment.

P. Raj et al.

43

 Model-Driven and Cloud-Sponsored Legacy Enablement Toward Mainstream
Computing – Long-living software systems [9] constantly undergo a number of
changes during their lifetime. These are triggered by a changing system context
(system usage and technology stacks) and/or changing system requirements. The
changes include functional and/or non-functional attributes, for example, the capability
and capacity of the system to deal with increasing system workload. The latter is
often a direct consequence of providing the access to existing systems over the
Internet, for example, for the integration of the systems into novel service compositions.

 Cloud computing brings a new ray of hope of addressing this issue very deftly by
providing almost unlimited amount of compute or storage resources. In order to
utilize this new offer, long-living software systems have to be migrated to cloud. Often
this implies major changes (invasive) to the system structure for which no systematic
engineering process is available today. This vacuum can lead to high risks or even
project failures. There has to be a bridge between the conventional and classic com-
puting and the cloud computing architectures. That is, the age-old architectural styles
and patterns such as three-tier client/server architecture do help in building business
applications. With cloud’s emergence, new-generation architectural styles emerge
for the effi cient use of the almost unlimited computational resources in the cloud.
There is a new architectural style (the so-called SPOSAD style: Shared, Polymorphic,
Scalable Application and Data) allowing massive replication of the business logic,
which is enabled by a smart physical data distribution. This evolution in different
directions and dimensions has to be bridged through a systematic engineering
support for facilitating the movement from the old to new architecture. The authors
have focused on supporting performance and scalability predictions.

 They have proposed a formal process. First, existing systems have to be reverse-
engineered to obtain a performance prediction model. These models contain both static
as well as dynamic aspects such as contributing components and their interactions.
Second, the software architect has to select a set of potential target architecture styles
or patterns, which have to be appropriately formalized. For example, the architect plans
to evaluate the impact of the classical system architecture movement to MapReduce or
to the SPOSAD style, and, thus, he/she automatically adapts the reverse-engineered
performance prediction models by the selected architectural styles.

 Third, the performance of the target architectures is evaluated to get a fi nal ranking
and to come to a recommendation for the migration. Finally, based on the analyzed
target architecture, the system’s implementation has to be adapted. The major
foundations for the sketched process are already in place (software architectural
patterns, software performance engineering, architecture evolution, and model
transformations).

2.8 Mechanisms for Assisting Cloud Software Development

 Today, not only development processes but also environments have to be very
agile [10] and anticipative as software development becomes more sophisticated.
Cloud- induced agile IT environments are being presented as the viable and valuable

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

44

resources for new-generation software construction. The unique capabilities of
clouds are being succinctly indicated below:

• On-demand provisioning and de-provisioning of resources in minutes through a
self-service access.

• Non-function requirements of servers, storages, and network products are being
ensured.

• Implicit support for virtual development environments and multi-tier application
architectures.

• Easier migration of the existing virtual-server images and workloads into the cloud.

 Clouds can accelerate the development cycle by creating multiple development
environments that enable several software activities to be carried out simultane-
ously. Testing can be accomplished along with development. The unique on-demand
resource provisioning capability of clouds makes this parallelization possible.
Cloud supports different levels of quality of service (QoS). Developers could choose
the appropriate QoS level as per the applications. This means that a higher level
of performance, security, and availability needs to be assigned to a development
environment for performance and scalability testing. In exchange, the hourly cost of
such environment goes up. The QA process will also benefi t from on-demand up
and down scaling of cloud resources, as this fi nally solves the problem of testing
performance and scalability of applications at a large scale, but without indefi nitely
reserving and paying for resources when they are unused.

 Cloud virtual machines (VMs) support multi-tier application development and
testing. That is, presentation tier, business logic tier, and data tier are being deployed
in different VMs. When the development in a virtual cloud environment is fi nished,
the images of virtual servers can be easily transferred to the production environment.

 The advantage is to avoid problems related to confi guring a new application for
transfer from the development to the production environment, which again affects
the speed of the application time to market.

 The Lean Thinking Principles for Cloud Software Development – There are lean
approaches and principles being sincerely and seriously examined and expounded by
professionals and pundits for optimally implementing a variety of industrial systems.
Software engineers are also vigorously following the same line of thinking for produc-
ing high-quality software solutions for a variety of business and societal problems.
The core elements of the lean principle are “eliminate waste, build quality in, create
knowledge, defer commitment, deliver fast, respect people and optimize the whole.”
This set of well-intended tasks defi nitely creates a sound case for contemporary
cloud enterprises. As corporates are planning and assimilating cloud technologies
as a part of their business transformation initiative, there are other mandatory things
to be accomplished in parallel in order to reap the envisioned advantages.

 Here is what a few software companies have achieved by applying lean principles
to their development process [11]:

• Salesforce.com has improved time to market of major software releases by 61 %
and boosted productivity across their R&D organization by 38 % since adopting
agile development.

P. Raj et al.

45

• BT Adastral, the largest telecommunications company in the UK, completed its
fi rst major lean software project 50 % sooner than expected and incorporated
many product changes along the way. The product yielded 80 % ROI in the
fi rst year.

• PatientKeeper, specializing in software for the healthcare industry, puts out
weekly maintenance releases, monthly new feature releases, and quarterly new
application releases. This company completes 45 development cycles in the time
it takes their competitors to do 1 cycle.

• Timberline Software (now part of The Sage Group), serving the construction and
real estate market, estimates that improvements in quality, costs, and time to market
were all greater than 25 % as a result of switching to lean software development .

 Lean thinking is important for scaling agile in several ways [12]:

• Lean provides an explanation for why many of the agile practices work. For
example, Agile Modeling’s practices of lightweight, initial requirements envi-
sioning followed by iteration modeling and just-in-time (JIT) model storming
work because they refl ect deferment of commitment regarding what needs to be
built until it is actually needed, and the practices help eliminate waste because
we are only modeling what needs to be built.

• Lean offers insight into strategies for improving our software process. For exam-
ple, by understanding the source of waste in IT, we can begin to identify it and
then eliminate it.

• Lean principles provide a philosophical foundation for scaling agile approaches.
• It provides techniques for identifying waste. Value stream mapping, a technique

common within the lean community, whereby we model a process and then
identify how much time is spent on value-added work versus wait time, helps
calculate overall time effi ciency of what we are doing. Value stream maps are a
straightforward way to illuminate our IT processes, providing insight into where
signifi cant problems exist.

 The lean manufacturing with its emphasis on eliminating waste and empowering
employees shook up the automotive industry. Lean principles are revolutionizing
software development industry as well. Lean developers can build software faster,
better, and cheaper than competitors using traditional bulky and bulging methods.
By adopting agile practices and test-driven development, a software fi rm can go a
long way toward leaning out its operations and serving its customers better.

 Lean Agile Methodologies Accentuate Benefi ts of Cloud Computing [13] – Lean
and agile are two different production methodologies that are used extensively
in business. The lean approach is derived from the production processes adopted by
Toyota, Japan. It focuses on a demand-driven approach with an emphasis on:

• Building only what is needed
• Eliminating anything that does not add value
• Stopping production if something goes wrong

 The agile approach is focused on the notion that software should be developed in
small iterations with frequent releases, because neither the end-user requirements

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

46

nor the exact amount of efforts can be accurately fi nalized upfront. Even the end
users themselves cannot fully articulate what they need. Hence, the requirements
must be collaboratively discovered, analyzed, and fi nalized. Agile processes [14]
involve building software in small segments, testing those segments, and then getting
end-user feedback. The aim is to create a rapid feedback loop between the develop-
ers and the actual users.

 Lean agile development methodologies and the cloud model complement each
other very well. Cloud services take pride in meeting user requirements rapidly,
delivering applications whenever and to whatever extent they are needed. Agile
methods give high credence to user collaboration in requirements discovery.
The lean agile system of software development aims to break down project require-
ments into small and achievable segments. This approach guarantees user feedback
on every task of the project. Segments can be planned, developed, and tested
individually to maintain high-quality standards without any major bottlenecks. The
development stage of every component thus becomes a single “iteration” process.
Moreover, lean agile software methods place huge emphasis on developing a
collaborative relationship between application developers and end users. The entire
development process is transparent to the end user and feedback is sought at all
stages of development, and the needy changes are made accordingly then and there.

 Using lean agile development in conjunction with the cloud paradigm provides a
highly interactive and collaborative environment. The moment developers fi nalize
a feature, they can push it as a cloud service; users can review it instantly and
provide valuable feedback. Thus, a lengthy feedback cycle can be eliminated
thereby reducing the probability of misstated or misunderstood requirements. This
considerably curtails the time and efforts for the software development organization
while increasing end-user satisfaction. Following the lean agile approach of
demand- driven production, end users’ needs are integrated in a more cohesive and
effi cient manner with software delivery as cloud services. This approach stimulates
and sustains a good amount of innovation, requirement discovery, and validation in
cloud computing.

2.9 Cloud Platform Solutions for Software Engineering

 Compared to on-premise applications, cloud-based software as a service (SaaS)
application are delivered through the Web, billed on a subscription basis, and
service providers themselves are responsible for delivering the application at accept-
able service levels. As a consequence, the economics of delivering SaaS is different
from traditional software applications. Companies delivering SaaS/Cloud applica-
tions need to realize economies of scale and keep the application delivery costs
low. These issues have a signifi cant impact on how SaaS applications are archi-
tected, developed, and delivered. For the paradigm of SaaS to succeed, issues like
application scalability, cost of delivery, and application availability had to be
resolved comprehensively. A new set of architectural, development, and delivery
principles have emerged and strengthened the spread of the SaaS model.

P. Raj et al.

47

 In order to achieve the acceptable levels of maturity, companies need to address
issues in three core areas [15]:

• They need to build applications that support a multitenant architecture that
enables a single instance of the application to be shared among multiple customers.
Multitenancy has a signifi cant impact on all layers of the application stack and is
challenging to achieve. This architectural principle is a signifi cant contributing
factor in reducing application delivery costs.

• SaaS vendors need to address a signifi cant number of non-functional application
concerns that are essential for the success of the service. For example, traditional
software vendors were not concerned with issues like metadata management,
tenant customization and confi guration, scalability, fault tolerance to meet SLAs,
metering, monitoring, robust security in distributed environments, and a host
of other concerns.

• As applications grow and scale, companies need to address automation of
operations and application management. Automation of operations and application
management is among the primary contributing factors in reducing application
delivery costs. Despite emerging automation in areas like the infrastructure
cloud, 75–80 % of the issues arising in operations are best solved at the applica-
tion design and development level. Furthermore, it is diffi cult and expensive
to achieve operational and administrative automation once the service is designed
and developed. SaaS providers can achieve signifi cant benefi ts if application
architecture takes automation of operations into account early in the applica-
tion life cycle.

 The cloud idea is everywhere and engineers, executives, exponents, and evange-
lists are trying different ways and means of adopting and adapting the cloud con-
cepts as per their organizational needs. Data centers are being pruned and tuned
to be cloud centers, traditional applications are getting modernized and migrated to
local as well as remote cloud environments, centralized delivery and management
of IT resources are being insisted and illustrated, innovative and disruptive ideas get
quickly concretized by renting needed compute and storage servers from public
cloud providers, server systems exclusively for backup and disaster recovery to
guarantee business continuity are being subscribed out of cost-effective cloud
servers, all kinds of customer-centric applications such as collaboration software
are unhesitatingly moved to cloud systems in order to reap their distinct advantages
(technical as well as business), etc. In the recent past, cloud is being prescribed as
the most productive solution for software coding and testing. That is, platform as a
service (PaaS), which has been dormant and dumb for quite a long time, gets a fresh
life with the realization across the globe that cloud-based platforms are much more
effective, simpler, and quicker for software building.

 How Azure Helps Cloud Software Development to Be Agile? – Microsoft Azure
is an application platform on the cloud that provides a wide range of core infrastructure
services such as compute and storage along with building blocks that can be con-
sumed for developing high-quality business applications. Azure provides platform
as a service (PaaS) capabilities for assisting application development, hosting,

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

48

execution, and management within Microsoft cloud centers. Windows Azure is an
open cloud platform that enables to quickly build applications in any language,
tool, or framework. The advantages of Azure cloud are:

• Azure provides staging and production environments on the cloud which provide
resource elasticity on demand, and this agility factor helps a lot for any Windows
application development team.

• Only the development and unit testing is carried out on-premise systems.
• Cloud staging environment can be used to create different test environments on

cloud such as integration, system, and UAT.
• Application source code can be maintained in Azure cloud storage.
• Developers test their application with a production-like environment as setting

up a real production environment for testing involves more investment, planning,
time, and resources. That is, all kinds of infrastructure-intensive software testing
can be accomplished in Azure cloud with high dependability cost-effectively due
to the inherent elastic nature of Azure. This enables application providers to
ensure the SLA to their customers and consumers.

• A couple of integrated development environments such as Visual Studio.NET
are provided by Microsoft in order to simplify and speed up cloud application
development activities.

• Source code can be promoted from one environment to another rather seamlessly
without developers having to write verbose deployment scripts or instruction
manuals to set up the application in the target environments.

 How Azure Helps Software Delivery to Be Agile? – Delivery is also facilitated
by Azure cloud. By providing fl exible infrastructures just in time, cloud software
delivery is made agile. All kinds of fl uctuations of infrastructure needs are being
automatically taken care of Azure cloud. All kinds of plumping works are being
delegated to cloud center experts so that designers, developers, and testers can focus
on their core activities.

 As Visual Studio IDE is tightly integrated with the cloud environment, applica-
tion development and deployment happen faster and are hugely simplifi ed. The
cloud provides all the libraries and APIs upfront in order to lessen the developmental
cost and complexity. Further on, in the Azure cloud, deployment and upgrade
processes are completely automated to minimize or eliminate some of the lengthy
and tedious steps while planning and executing the traditionally accomplished
deployment process. Working prototypes built by geographically dispersed devel-
opers and centrally deployed in Azure can be made available and accessible
immediately to prospective customers in order to elicit and extract their feelings and
feedbacks as this arrangement sharply reduces time especially for contemplating
any major or minor corrections to take the products to market quickly.

 The Alice Platform [15] – In order to help companies with the challenges of
building and delivering successful SaaS services, the authors have developed
the fi rst open SaaS platform called Alice. As a company focused on developing
cloud- based SaaS services, it became quite evident that traditional JEE, .NET, and
Ruby on Rails platforms were not designed to address base level architectural

P. Raj et al.

49

concerns of large and scalable SaaS applications. While building applications for
our clients, developers had to address multitenancy, data management, security,
scalability, caching, and many other features. Many of the most successful SaaS
companies had themselves built their own platforms and frameworks to address
their specifi c applications and cost needs. Companies like Salesforce and NetSuite,
fi rst and foremost, built platforms to meet their application needs and lower delivery
costs, rather than building them to be sold as a platform as a service (PaaS).

 Release of SaaS application platforms by companies like Salesforce has not
made a signifi cant difference in the development and delivery of commercial
SaaS applications. Currently, many PaaS /SaaS platforms on the market are suitable
for development of only small situational applications, rather than commercial busi-
ness applications that are of interest to startups, independent software vendors
(ISVs), and enterprises. These platforms use proprietary languages, are tied to a
specifi c hardware/software infrastructures, and do not provide the right abstractions
for developers. Alice was developed to address the above concerns and provide
a robust and open platform for the rapid development of scalable cloud services
applications. Figure 2.1 illustrates the reference architecture of the Alice Platform
for SaaS application development and delivery.

 Fig. 2.1 The architectural diagram of the Alice platform

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

50

2.10 Software Engineering Challenges in Cloud Environments

 With the coherent participation of cloud service providers, the software development
complexity is to climb further [3]. In the ensuing cloud era, software develop-
ment process will start to involve heterogeneous platforms, distributed services, and
multiple enterprises geographically dispersed all over the world. Existing software
process models are simply insuffi cient unless the remote interaction with cloud
providers is a part and parcel of the whole process. Requirements gathering phase
so far included customers, end users, and software engineers. Now it has to include
cloud service providers (CSPs) as well, as they will be supplying the computing
infrastructure, software development, management, maintenance platforms, etc.
As the cloud providers are only conversant with the infrastructure utilization details,
their experts can do the capacity planning, risk management, confi guration manage-
ment, quality assurance, etc., well. Similarly, analysis and design activities should
also include CSPs, who can chip in with some decision-enabling details such as
software-development cost, schedule, resource, and time.

 Development and debugging can be done on cloud platforms. There is a huge
cost benefi t for individuals, innovators, and institutions. This will reduce the cost
and time for verifi cation and validation. Software developers should have gained
more right and relevant expertise in building software from readily available
components than writing them from the scratch. The monolithic applications have
been shunted out and modular application has the future. Revisiting and refactoring
of existing application is required to best utilize the cloud paradigm in a cost-effective
manner. In the recent past, computers are fi t with multicore processors. Another
trend is computers are interconnected as well as with the Web. Computers are
becoming communicators and vice versa. Computers are multifaceted, networked,
and shrinking in size, whereas the scope of computing is growing. Therefore,
software engineers should train themselves in parallel and distributed computing
to complement the unprecedented and inescapable advances in hardware and
networking. Software engineers should train themselves in Web protocols, XML,
service orientation, etc. Web is on the growing trajectory as it started with a simple
Web (Web 1.0). Today it is the social Web (Web 2.0) and semantic Web (Web 3.0)
attracting the attention of professionals as well as people. Tomorrow defi nitely it
will be the smart Web (Web 4.0). The cloud proposition is on the fast track and
thereby there will be a scintillating synchronization between the enlarging Web
concepts and the cloud idea.

 Cloud providers also have the appropriate infrastructure and methods in hand in
order for application maintenance [14]. There is a service-level agreement (SLA)
being established as a contract between cloud users (in this case, software engineers)
and cloud providers. Especially the advanced cloud infrastructure ensures non-
functional (scalability, availability, security, sustainability, etc.) requirements. Other
serious challenges confronting the cloud-based software development include
the following. As we see, the development of software is multilateral in a cloud envi-
ronment unlike the collocated and conventional application software development.

P. Raj et al.

51

The difference between these two radical approaches presents some of the noticeable
challenges to software engineering:

• Software Composition – Traditionally, application software engineers develop a
set of coherent and cohesive modules and assemble them to form an application,
whereas in the fast-expanding cloud landscape, fi nding and composing third-
party software components is a real challenge.

• Query-Oriented Versus API-Oriented Programming – MapReduce, streaming,
and complex event processing require developers to adopt a more functional
query-oriented style of processing to derive information. Rather than a large sur-
face area of OO APIs, these systems use an extension of SQL-like operations
where clients pass in application specifi c functions which are executed against
associated data sources. Doing complex join queries or function composition
such as MapReduce is a diffi cult proposition.

• Availability of Source Code – In the current scene, full source of the code is
available. However, in the multilateral software development , there is no source
code available because of third-party components. Therefore, the challenge for
software engineers is the complete comprehension of the system.

• Execution Model – The application software developed generally is executed
on single machine, whereas the multilateral software developed for cloud
environment is often distributed between multiple machines. Therefore, the
challenge for software engineers is the traceability of state of executing entity
and debugging.

• Application Management – The challenges are there as usual when there is an
attempt to embrace newer technologies. Application lifecycle management
(ALM) is quiet straightforward in the traditional setting, whereas globally,
collaborative and cloud-based application management is beset with defi nite
concerns and challenges.

 The need of the hour to make the cloud concepts more benefi cial to all sections
of the world is to activate the innovation culture; thereby, a stream of inventive
approaches can be unearthed to reinvigorate the sagging and struggling software
engineering domain. Here is one. Radha Guha [2] has come out with an improved
cost estimation model for the cloud-based software development .

2.11 Conclusion

 Nowadays, for most business systems, software is a key enabler of their business
processes. The software availability and stability directly impact the company’s
revenue and customer satisfaction. Software development is therefore a critical
activity. Software development is undergoing a series of key changes. A growing
number of independent software vendors (ISVs) and system integrators (SIs) trans-
form themselves into service providers delivering their customers’ and partners’
applications in the form of services hosted in the cloud.

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

52

 The cloud technology could reduce the time needed for the development of
business services and to take them to the market. Each additional month or quarter
in which the cloud services are accessible to users has a direct impact on increasing
revenues, which affects the fi nal fi nancial statements. The speed at which software
applications can be developed, tested, and brought into production is defi nitely
one of the critical success factors for many companies. Therefore, any solution
accelerating the application time to market has an immediate and measurable impact
on return on investment (ROI).

 Application developers are regularly confronted with a request to establish
special environments for developing, debugging, and compiling appropriate soft-
ware libraries for making software solutions. Typically, these environments are
established for a limited period of time. Accessing appropriately confi gured
development environments with an adequate processing power and storage space
on demand is very crucial for software engineering. To perform their tasks, the
programmers should be able to quickly confi gure servers, storage, and network
connections. Here comes the signifi cance of cloud environments for taking soft-
ware to market quickly. In this chapter, we primarily discussed the pathbreaking
contributions of cloud infrastructures for realizing sophisticated and smart services
and applications.

 References

 1. Yara, P., Ramachandran, R., Balasubramanian, G., Muthuswamy, K., Chandrasekar, D.: Global
software development with cloud platforms. In: Software Engineering Approaches for
Offshore and Outsourced Development. Lecture Notes in Business Information Processing.
 http://link.springer.com/chapter/10.1007/978-3-642-02987-5_10 . vol. 35, pp. 81–95 (2009)

 2. Guha, R.: Software engineering on semantic web and cloud computing platform. http://www.
cs.pitt.edu/~chang/231/y11/papers/cloudSE (2011). Accessed 24 Oct 2012

 3. Chhabra, B., Verma, D., Taneja, B.: Software engineering issues from the cloud application
perspective. Int. J. Inf. Technol. Knowl. Manage. 2 (2), 669–673 (2010)

 4. Kuusela, R., Huomo, T., Korkala, M.: Lean Thinking Principles for Cloud Software
Development. VTT www.vtt.fi . A Research Summary of VTT Technical Research Centre of
Finland (2010)

 5. Hashmi, S.I.: Using the cloud to facilitate global software development challenges. In: Sixth
IEEE International Conference on Global Software Engineering Workshops, 15–18 Aug 2011,
pp. 70–77. IEEE XPlore Digital Library, IEEE, Piscataway (2011)

 6. Tamburri, D.A., Lago, P.: Satisfying cloud computing requirements with agile service networks.
In: IEEE World Congress on Services, 4–9 July 2011, pp. 501–506. IEEE XPlore Digital
Library, IEEE, Los Alamitos (2011)

 7. Carroll, N., et al.: The discovery of agile service networks through the use of social network
analysis. In: International Conference on Service Sciences. IEEE Computer Society, IEEE,
Washington, DC (2010)

 8. Bruneli’ere, H., Cabot, J., Jouault, F.: Combining model-driven engineering and cloud com-
puting. http://jordicabot.com/papers/MDE4Service10.pdf (2010). Accessed 24 Oct 2012

 9. Becker, S., Tichy, M.: Towards model-driven evolution of performance critical business infor-
mation systems to cloud computing architectures. In: MMSM. http://www.cse.chalmers.
se/~tichy/2012/MMSM2012.pdf (2012). Accessed 24 Oct 2012

P. Raj et al.

http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-02987-5_10
http://www.cs.pitt.edu/~chang/231/y11/papers/cloudSE
http://www.cs.pitt.edu/~chang/231/y11/papers/cloudSE
http://jordicabot.com/papers/MDE4Service10.pdf
http://www.cse.chalmers.se/~tichy/2012/MMSM2012.pdf
http://www.cse.chalmers.se/~tichy/2012/MMSM2012.pdf

53

 10. Dumbre, A., Senthil, S.P., Ghag, S.S.: Practicing Agile Software Development on the Windows
Azure Platform. White paper by Infosys Ltd., Bangalore. http://www.infosys.com/cloud/
resource-center/documents/practicing-agile-software-development.pdf (2011) Accessed 24
Oct 2012

 11. Lean Software Development – Cutting Fat Out of Your Diet. A White Paper by Architech solutions.
 http://www.architech.ca/wp-content/uploads/2010/07/Lean-Software-Development- Cutting-
Fat-Out-of-Your-Diet.pdf . Accessed 24 Oct 2012

 12. Tripathi, N.: Practices of lean software development. http://cswf.wikispaces.com/fi le/view/Pra
ctices+in+Lean+Software+Development.pdf (2011). Accessed 24 Oct 2012

 13. Talreja, Y.: Lean Agile methodologies accentuate benefi ts of cloud computing. http://www.
the-technology-gurus.com/yahoo_site_admin/assets/docs/LACC_white_paper_ed_
v5.320180428.pdf (2010). Accessed 24 Oct 2012

 14. Das, D., Vaidya, K.: An Agile Process Framework for Cloud Application. A White Paper
by CSC. http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.
pdf (2011). Accessed 24 Oct 2012

 15. Alice Software as a Service(SaaS) Delivery Platform. A Whitepaper by Ekartha, Inc.
 http://www.ekartha.com/resources/Alice_saas_delivery_platform.pdf . Accessed 24 Oct 2012

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

http://www.infosys.com/cloud/resource-center/documents/practicing-agile-software-development.pdf
http://www.infosys.com/cloud/resource-center/documents/practicing-agile-software-development.pdf
http://www.architech.ca/wp-content/uploads/2010/07/Lean-Software-Development-Cutting-Fat-Out-of-Your-Diet.pdf
http://www.architech.ca/wp-content/uploads/2010/07/Lean-Software-Development-Cutting-Fat-Out-of-Your-Diet.pdf
http://cswf.wikispaces.com/file/view/Practices+in+Lean+Software+Development.pdf
http://cswf.wikispaces.com/file/view/Practices+in+Lean+Software+Development.pdf
http://www.the-technology-gurus.com/yahoo_site_admin/assets/docs/LACC_white_paper_ed_v5.320180428.pdf
http://www.the-technology-gurus.com/yahoo_site_admin/assets/docs/LACC_white_paper_ed_v5.320180428.pdf
http://www.the-technology-gurus.com/yahoo_site_admin/assets/docs/LACC_white_paper_ed_v5.320180428.pdf
http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.pdf
http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.pdf
http://www.ekartha.com/resources/Alice_saas_delivery_platform.pdf

	Chapter 2: Envisioning the Cloud-Induced Transformations in the Software Engineering Discipline
	2.1 Introduction
	2.2 Cloud-Sponsored Transformations for IT
	2.3 Leveraging Clouds for Global Software Development (GSD)
	2.4 A Reflection on Software Engineering
	2.5 Combination of Agility and Cloud Infrastructure for Next-Generation Software Engineering
	2.6 Convergence of Service and Cloud Paradigms
	2.7 Amalgamation of Model-Driven Architecture and the Cloud Paradigms
	2.8 Mechanisms for Assisting Cloud Software Development
	2.9 Cloud Platform Solutions for Software Engineering
	2.10 Software Engineering Challenges in Cloud Environments
	2.11 Conclusion
	References

