
305Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_14, © Springer-Verlag London 2013

 Abstract As cloud computing continues to burgeon throughout the technology
sphere, it becomes essential to understand the signifi cance of this emerging technol-
ogy. By its nature, it offers an organization a great deal of agility and cost savings.
Cloud technologies are being applied and leveraged in different applications fueling
growth in the number of Infrastructure-as-a-Service (IaaS) and Platform-as-a-
Service (PaaS) vendors. The business delivery models of cloud computing have
raised interests across the IT industry as the resources are offered as utilities and on
demand. From a developer perspective, it is important to grasp the nuances of cloud-
based application development to improve the development process. This chapter
discusses best practices in relation to some of the celebrated cloud features.
Furthermore, most common and well-known features of cloud frameworks are pre-
sented to aid the developer’s choice. Lastly, comparative cloud-based architectural
discussion on developing and deploying a Web application using industry popular
frameworks is presented. Although, cloud computing as a service/development
paradigm addresses several well-known issues like scalability and availability, there
are several concerns with respect to security and privacy of data which has opened
doors for research opportunities. Some plausible research directions are also
identifi ed.

 Keywords Scalability • Cloud computing • Azure • App engine • Storage •
 Frameworks • Application development

 Chapter 14
 Effi cient Practices and Frameworks
for Cloud- Based Application Development

 Anil Kumar Muppalla, N. Pramod, and K. G. Srinivasa

 A. K. Muppalla • N. Pramod • K. G. Srinivasa (*)
 High Performance Computing Laboratory , Department of Computer Science and Engineering ,
 M S Ramaiah Institute of Technology , Bangalore , India
e-mail: anil.kumar.848@gmail.com; npramod05@gmail.com; srinivasa.kg@gmail.com

306

14.1 Introduction

 Prior to 2007, there was a need for any large technology corporation to maintain
infrastructure to fulfi ll the needs of the company and its clients [1]. With the emer-
gence of cloud computing, the situation has changed. There seems to be wide
acceptance in the prospect of buying infrastructure usage rather than the hardware
itself with immediate cost benefi ts. The on-demand delivery of hardware, software,
and storage as a service is termed as cloud computing . The union of data center
hardware, software, and storage is what we will call a cloud . An application based
on such clouds is taken as a cloud application . This paradigm has revolutionized the
service industry with increasing support from Microsoft [2], Google [3], and IBM [4].
Three striking aspects of cloud computing are [5]:

• The impression of infi nite cloud resources available on demand, thereby dismiss-
ing the need for users to plan far ahead for provisioning.

• The on-demand commitment of resources by cloud, thereby allowing companies
to start small and request resources as and when the need arises.

• The pay-per-use model has encouraged ability to pay for use of computing
resources on a short-term basis as needed and release them as needed.

 Efforts to conceptualize cloud computing dates back to, at least, 1998 [6].
However, the adoption and promotion of cloud computing has been slow until
2007 [1]. The background of early industrial adoptions of cloud computing coin-
cides with that of service computing [7]. Service computing [8] received worldwide
support from leading companies like IBM and Microsoft [9]. The widespread
adoption of cloud computing is driven by stable and mature development of tech-
nologies and computing resources. Success stories of Web services have comple-
mented the popularity service computing, although a Web service is one such
technology to fulfi ll the need for service orientation [7]. Many distributed computing
techniques for cloud computing have been mature [10 – 12]. Decoupling the parts
of the application environment allows for scalability on different levels; these parts
are further provided to the developers as services. Based on the type of the service
provided, cloud computing can be classifi ed as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS) [13].

 Developers reap several benefi ts developing their application on a cloud-based
programming environment provided through a PaaS provider, such as automatic
scaling and load balancing, as well as integration with other services (email and
authentication). Such provisions alleviate much of the overhead of developing cloud
applications. Furthermore, integration of their applications with other services on-
demand increases the likelihood of usage of these applications, thereby driving the
need to develop cloud-based applications. This in turn makes the cloud application
development a less complicated task, accelerates the deployment time, and mini-
mizes the logic faults in the application, for example, deployment of a distributed
computing environment such as Hadoop [14 , 26] on the cloud which provides its
application developers with a programming environment, that is, MapReduce

A.K. Muppalla et al.

307

framework for the cloud. As such, cloud software environments facilitate the pro-
cess of cloud application development.

 Cloud computing brings this whole new way of thinking about architecture and
design, since we don’t control the infrastructure directly hence one step less in the
design process. The application is supported to scale horizontally, be very cost
effective in operation as you can scale up and scale down and obtain granular con-
trol over CPU expense. As several platforms such as Force.com are rich and provide
the boilerplate code, developing applications on it becomes a much higher-level
activity. The gap between domain experts who conceptualize the product and devel-
opers who code it signifi cantly narrows down. The adoption of cloud computing has
improved the development process of several applications and services.

 The differences between cloud-based application and traditional application
are presented in Table 14.1 . There is no signifi cant change in the development
process of a cloud application; since the division of the application development
environment into infrastructure, platform, and software has signifi cantly helped
in overcoming some common challenges of traditional software development,

 Table 14.1 Comparison between traditional and cloud-based application

 Traditional applications Cloud-based applications

 Each application is deployed and maintained
as a bundle in a common environment

 With diverse environment capabilities of
the cloud, the application is deployed
and maintained as modules, scattered
across environments

 Run-time infrastructure is structured and controlled,
giving rise to maintenance overhead

 Run-time infrastructure is unstructured
and managed by cloud fabric, with
computing capabilities changing

 Business functionality is realized by using
“controller” components that calls methods
(functions) of business components

 Service orchestration is used to realize
business functionality—invoke one or
many business services

 Support for multi-tenancy is typically not required Multi-tenancy support is assumed
 User base is assumed at design time, and scalability

is addressed at run-time by procuring necessary
hardware

 User base need not be known, potential
to scale up and down rapidly

 Enhancements and upgrades require downtime No downtime required for enhancements
and upgrades

 Components interact with non-SOA contracts like
RMI and CORBA

 Standard SOA service-based interaction
between components is assumed like
SOAP and REST

 Deployment requires traditional tools
(application server admin console, ANT, etc.)

 Along with traditional tools, requires
knowledge and utilization of
vendor-specifi c cloud APIs

 Application is tested in controlled environment
(Unit/integration/system)

 Application (integration) is tested
on the cloud to ensure seamless
orchestration between services
on one or many clouds

 Security is enforced by application architecture
(LDAP lookup based authentication/authorization)

 Security is built into the service contracts
(WS-Security, SAML, etc.)

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

308

it has led to accelerated development and deployment, ensuring shorter release
cycles. The cloud application development enforces an agile form of development.
Some advantages are:

• Short release cycles means processes used for developing these applications are
agile/scrum based.

• Heavy stress on acceptance as well as unit tests.
• Traditional task management practices and timesheet processes are not

applicable.
• No formal workfl ow processes for reviews.

14.2 Design Patterns for Key Issues of Cloud Application
Development

14.2.1 Scalability

 This is defi ned as the ability of the system to handle growing amount of work in a
reliable manner [15]. Scalability in cloud perspective can be addressed by considering
the following:

14.2.1.1 Load Sharing

 It is the logical spreading of requests across similar components for handling those
requests, from a cloud development point of view, and distribution of requests,
which are mainly HTTP but can be any application protocol, across all the instances
using an effi cient confi gured load-balancing algorithm. This is a scaling-out
approach. Several load-balancing facilities are provided across development
platforms; the task of the developer would be to tie the application to these APIs.

14.2.1.2 Partitioning

 Intelligent load distribution across many components by routing an individual
request to a data-specifi c component, effi ciency, and performance is dramatically
increased in an application’s delivery architecture while enabling this facility.
Instead of having identical instances, each instance or pool of instances, as shown
in Fig. 14.1 , is marked as the owner . This enables the developers to confi gure the
development environment to handle type-specifi c request. The concept of applica-
tion switching and load balancing achieve individual importance as the former is
used to route a particular request which can be then load balanced across a pool of
resources. It’s a subtle distinction but an important one when architecting not only
effi cient and fast but resilient and reliable delivery networks.

A.K. Muppalla et al.

309

14.2.1.3 Vertical Partitioning

 It is a partitioning using different processing units while routing application requests
that we separate by function that is associated with a URI. Content wise, partition-
ing is the most common implementation strategy. Consider an example of creating
resource pools based on the Content-Type HTTP header: content in pool content
servers and images in pool image servers . This provides for greater optimization of
the Web/application based on the usage pattern and the content type. In a distributed
environment, architects leverage say cloud-based storage for static content while
maintaining dynamic content (and its associated data stores) on premise. This
hybrid strategy is regarded to have successful acceptance across the cloud
community.

14.2.1.4 Horizontal Partitioning

 Through partitioning, persistence-based load balancing is accomplished, as well as
the handling of object caching. This also describes the way in which you might
direct requests received from specifi c users to designated instances that are specifi -
cally designed to handle their unique needs or requirements, for example, separa-
tion of privilege users from free users based on some partitioning key, which is
cookie information.

 Fig. 14.1 Grouping instances into task-specifi c pools [16]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

310

14.2.1.5 Relaxing Data Constraints

 Techniques and trade-offs with regard to the immediacy of processing/storing/
access to data fall in this strategy. This requires intelligent handling of data storage
and access based on varying properties like usage and prioritization of the content.
If one relaxes the constraints around access times for certain types of data, it is
possible to achieve a higher-effi ciency use of storage by subjugating some content
to secondary and tertiary storage tiers which may not have the same performance
attributes as your primary storage tier.

 Architecting a solution that separates data reads from writes implies eventual
consistency, as data updated/written to one database must necessarily be replicated
to the databases from which reads are, well, read, but that’s part of relaxing a data
constraint.

14.2.1.6 Parallelization

 This refers to working on the same task in parallel on multiple processing units
employing tools and methods like MapReduce and SPDY. If the actual task can be
performed by multiple processing units, then an application delivery controller
could certainly be confi gured to recognize that a specifi c URL should be essentially
sent to some other proxy/solution that performs the actual distribution. We can
observe that the processing model here deviates sharply from the popular request -
reply paradigm.

14.2.1.7 Going Stateless

 Application state maintenance can often hinder any scalability efforts, which
normally involves persistence, and persistence means storing your data in some
central location, and central data store is diffi cult to scale. Adopting RESTful nature
(without being limited to HTTP) is a viable choice.

14.2.2 Elasticity

 Dynamic resource utilization is a central concept in cloud computing. Application
design must allow resources to be reserved and freed as needed. The aspects that
drive the need to automate elasticity are as follows: (1) applications have to monitor
themselves or have to be monitored externally, (2) application resources have to be
provisioned based on this information, and (3) applications have to cope with addi-
tion and removal of resources. In order to fully benefi t from the dynamicity of an
elastic infrastructure, the management process to scale out an application has to be
automated [17]. This way, the number of used resources can be aligned to changing

A.K. Muppalla et al.

311

workload quickly. If pay-per-use pricing models are available, the resource number
directly affects the running cost of the application. Manual resource scaling would
not respect this.

 Requests received by an application are a good measure of workload and there-
fore shall be used as a basis for scaling decisions. An elastic load balancer automati-
cally determines the amount of required resources based on numbers of requests
and provisions the needed resources accordingly using the elastic infrastructure’s
API. Number of requests in unit time is observed from the components, and required
number of resources (this is crucial design element) is computed by the load
balancer and provisioned on the elastic infrastructure using its API. It signifi cantly
affects the effectiveness of the scaling decisions. It should be carefully selected
during the design of the application using capacity planning techniques. Also, such
behavior needs to be real time.

 If the application can handle asynchronous requests, another layer of optimiza-
tion can be implemented since there is a possibility of fl uctuation in resource costs
or cloud elasticity. The tasks can be delayed based on the availability of the
resources. Some non-business-critical or time-critical workload, such as report gen-
eration, can be moved to times when resources of the private cloud are less utilized.
An elastic queue is used to distribute requests among application components.
Based on the number and type of messages it contains, the elastic queue determines
the number of computing nodes to be provisioned. The elastic queue can contain
different message types that are handled by different components. To speed this
process up, individual images for application components are stored in the image
database of the elastic infrastructure. Additionally, the elastic queue can respect
environmental information, such as the overall infrastructure or resource price. This
is used to delay less critical messages by reducing the number of handling compute
nodes and to prioritize the business-critical functionality if the overall infrastructure
utilization is high.

14.2.3 Availability

 The use of commodity hardware to build the cloud has an advantage to reduce costs
but also reduces the availability of resources . Therefore, cloud applications have to
be designed to cope with failing resources to guarantee the required availability.
Sometimes, (high) availability is only expressed regarding the possibility to start
new compute nodes. To guarantee high availability under such conditions, the appli-
cation architecture needs to be adjusted to enable redundancy and fault-tolerant
structures. The application architecture is altered to include redundant compute
nodes performing the same functionality. High available communication between
these nodes is assured, for example, by a messaging system. Additionally, compute
nodes are monitored and replaced in case of failure.

 In a setting where high available compute nodes are used, the decoupling of
components can also increase the performance and enable elasticity. As in every

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

312

setup where messaging is used, the compute nodes need to consider the delivery
assurances made by the messaging systems. Business-critical components of an
application should be available at all times even during update. During an update,
the elasticity of cloud aids in provision of additional compute nodes that contain
the new application or middleware versions additionally to the old versions, conse-
quently the shutdown of old compute nodes. One such method is providing images
for compute nodes with the new software version that is created and tested. Hence,
a graceful transition from the old to new application versions is executed. If differ-
ent versions must not be handling requests at the same time, the transition is
imminent. This is handled by instantiating both application versions independently.
The switch can then be made by reconfi guring the access component, such as a load
balancer. However, in some cases this can result in a minimal downtime during the
transition [17].

14.2.4 Multi-tenancy

 Any party that uses an application is termed a tenant . Sometimes a tenant can be a
single user of an entire organization. Many of the cloud properties, such as elasticity
and pay-per-use pricing models, can only be achieved by leveraging economies of
scale. Cloud providers therefore have to target large markets and share resources
between customers to utilize resources effectively. Hardware virtualization has been
the fi rst to foray into resource sharing through Infrastructure - as - a - Service delivery
model. There is need for additional architectural modifi cations to support sharing of
higher-level application components. When application is provided to multiple
customers (multi-tenacity), deployment of componentized applications can be
optimized by sharing individual component instances whenever possible. This is
especially feasible for application components that are confi gured equally for all
tenants, for example, currency converters. If tenants can share common resources,
then underlying resources can be utilized in more effi cient ways. This requires the
confi guring for multi-tenacity. The tenant’s individual application instances access
the same application component (pool). Therefore, the run-time cost per tenant can
be reduced, because the utilization of the underlying infrastructure is increased and
the shared component can be scaled for all tenants. If the confi guration is equivalent
for all tenants, a single instance can be used. Sometimes, tenants are not allowed
to share critical components with other users. In this case, a multiple instance
component must be used.

 Additional use case wherein an application is instantiated to support multi-
tenacity but some of its components cannot be shared may be due to laws prohibiting
the same. So, tenants may require integration of individually developed application
components into the provided application. Deploy individual component imple-
mentations and confi gurations for each tenant. This arrangement allows tenants to
adjust components very freely. Portions of an application, on which tenants have a
versatile behavior, can be realized in such a fashion. However, the application of this
pattern hinders resource sharing between tenants.

A.K. Muppalla et al.

313

14.2.5 High Performance

 A load-balancing algorithm coupled with the MapReduce programming paradigm
serves the purpose of processing large volumes of data. MapReduce is a parallel
programming model that is supported by some capacity-on-demand type of clouds
such as Google’s BigTable , Hadoop , and Sector [18]. Load balancing is helpful in
spreading the load equally across the free nodes when a node is loaded above its
threshold level. Though load balancing is not so signifi cant in execution of a
MapReduce algorithm, it becomes essential when handling large fi les for processing
and when availability of hardware resources is critical. Hadoop MapReduce has
wide industry acceptance also being the top programming model implemented.

 An effi cient load-balancing technique can sometimes make all the difference in
obtaining maximum throughput. The arrangement is considered balanced if for each
data node, the ratio of used space at the node to the total capacity of node (known as
the utilization of the node) differs from the ratio of used space at the cluster to the
total capacity of the cluster (utilization of the cluster) by no more than the threshold
value [17]. In view of hyper-utilization the module moves blocks from the data nodes
that are being utilized a lot to the poorly used ones in an iterative fashion. In this
implementation, nodes are classifi ed as high , average , and low depending upon the
utilization rating of each node. In a cloud environment, the MapReduce structure
increases the effi ciency of throughput for large data sets. In contrast, you wouldn’t
necessarily see such an increase in throughput in a non-cloud system. Therefore,
consider a combination of MapReduce-style parallel processing and load balancing
when planning to process a large amount of data on your cloud system.

14.2.6 Handling Failure

 Unlike the traditional applications which are entirely dependent on the availability
of the underlying infrastructure, cloud applications can be designed to withstand
even big infrastructure outages. With the goal that each application has minimal or
no common points of failure, the components must be deployed across redundant
cloud components. These components must make no assumptions about the under-
lying infrastructure; that is, it must be able to adapt to changes in the infrastructure
without downtime.

 Designing for failure also comes with fair share or challenges such as large data
processing which requires frequent movement of large volumes of data causing
inertia. By building simple services composed of a single host, rather than multiple
dependent hosts, one can create replicated service instances that can survive host
failures. For example, if we had an application that consisted of business logic com-
ponent 1, 2, 3, each of which had to be live on a separate host, we could compose
service group (1, 2, 3), (1, 2, 3)… or we could create component pools (1, 1, …),
(2, 2, …), (3, 4, …). While the composition (1, 2, 3), a single machine failure would
result in the loss of a whole system group. By decomposing resources into

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

314

independent pools, a single host failure only results in the loss of a single host’s
worth of functionality.

 Another practice is to ensure short response time ensured by noting if the request
returns a transient error or doesn’t return within a small time, a retry is triggered to
another instance of the service. If you don’t fail fast and retry, distributed systems,
especially those that are process or thread-based, can lock up as resources are con-
sumed waiting on slow or dead services.

 Thus, separating business logic into small stateless services that can be organized
in simple homogeneous pools is much more effi cient. The pool of stateless record-
ing services allows upstream services to retry failed requests on other instances of
the recording service. In addition, the size of the recording server pool can easily be
scaled up and down in real time based on load.

14.3 Analysis of Storage as a New Form of Service

 As technology continues to mature, several previously coupled components have
broken out to exist independently. One such component is storage, still part of the
infrastructure in principle, which has open doors for targeting specifi c business
areas. To understand the application of storage as a service on its own, several
delivery metrics need to be discussed along with established best practices [27],
with support of the general architecture in Fig. 14.2 .

14.3.1 Access

 One problem with Web service APIs is that they require integration with an applica-
tion to take advantage of the cloud storage. Most providers implement multiple
access methods, but Web service APIs are common. Many of the APIs are imple-
mented based on REST principles, which imply an object-based scheme developed
on top of HTTP (using HTTP as a transport). REST APIs are stateless and therefore
simple and effi cient to provide. Therefore, common access methods are also used
with cloud storage to provide immediate integration. For example, fi le-based proto-
cols such as NFS/Common Internet File System (CIFS) or FTP (File Transfer
Protocol) are used, as are block-based protocols such as iSCSI (Internet Small
Computer System Interface).

14.3.2 Performance

 Performance issues of storage systems range from small transactional accuracy to
large data movement, but the ability to move data between a user and a remote cloud
storage provider represents the largest challenge from a cloud storage perspective.

A.K. Muppalla et al.

315

The problem is TCP, as it controls the fl ow of data based on packet acknowledg-
ments from the peer endpoint. Packet loss and late arrival enable congestion control
as a useful feature but also limits performance as these are more network-intensive
tasks. TCP is ideal for moving small amounts of data through the global Internet but
is less suitable for larger data movement, with increasing RTT (round-trip time).
This problem is solved by removing TCP from the equation. A new protocol called
the Fast and Secure Protocol (FASP) was developed to accelerate bulk data move-
ment in the face of large RTT and severe packet loss. The key is the use of the UDP,
which is the partner transport protocol to TCP. UDP permits the host to manage
congestion, pushing this aspect into the application layer protocol of FASP, as
shown in Fig. 14.3 .

14.3.3 Availability

 Once a cloud storage provider has a user’s data, he/she must be able to provide that
data back to the user upon request. Given the network outages, user errors, and other
circumstances, reliability and availability can prove to be a major hurdle. There are
some interesting and novel schemes to address availability, such as information dis-
persal (Information Dispersal Algorithm (IDA)), to enable greater availability of
data in the face of physical failures and network outages. IDA is an algorithm that

Many users

Network/Internet

Front end

M
an

ag
ea

bi
lit

y

• Access protocol
• Performance
• Public/private/hybrid

• Multi-tenancy
• Scalability
• Availability

• Control
• Reliability
• Security

• Storage efficiency
• Cost

Storage logic

Back-end storage

 Fig. 14.2 General
architecture of storage
service [17]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

316

allows data to be sliced with Reed-Solomon codes for purposes of data reconstruction
in the face of missing data. Furthermore, IDA allows you to confi gure the number
of data slices, such that a given data object could be carved into four slices with one
tolerated failure or 20 slices with eight tolerated failures. Similar to RAID, IDA
permits the reconstruction of data from a subset of the original data, with some
amount of overhead for error codes (dependent on the number of tolerated failures).
The downside of IDA is that it is processing intensive without hardware accelera-
tion. Replication is another useful technique and is implemented by a variety of
cloud storage providers. Although replication introduces a large amount of over-
head (100 %), contrast to very low overhead by IDA, it is simple and efficient
to provide.

14.3.4 Control

 A customer’s ability to control and manage how his or her data is stored has always
motivated several storage providers. Although replication is a common method to
ensure redundancy and hence availability, it also requires more than idea storage
space. Reduced Redundancy Storage (RRS) is one such method that ensures to
provide users with a means of minimizing overall storage costs. Data is replicated
within the vendor’s infrastructure, but with RRS, the data is replicated fewer times
with the possibility for data loss. This is ideal for data that can be recreated or that
has copies that exist elsewhere.

Client Client

REST

HTTP

FASP

Sockets Sockets

TCP UDP

IP IP

NIC NIC

 Fig. 14.3 Communication
stack

A.K. Muppalla et al.

317

14.3.5 Effi ciency

 Storage effi ciency is an important characteristic of cloud storage infrastructures,
particularly with respect overall cost. This characteristic speaks more to the effi cient
use of the available resources over their cost. To make a storage system more
effi cient, more data must be stored. A common solution is data reduction, whereby
the source data is reduced to require less physical space. Two means to achieve
this include compression —the reduction of data through encoding the data using a
different representation—and de - duplication , the removal of any identical copies of
data that may exist. Although both methods are useful, compression involves pro-
cessing (re-encoding the data into and out of the infrastructure), where de- duplication
involves calculating signatures of data to search for duplicates.

14.4 Frameworks

 Developers can use the cloud to deploy and run applications and to store data.
On-premises applications can still use cloud-based resources. For example, an
application located on an on-premises server, a rich client that runs on a desktop
computer, or one that runs on a mobile device can use storage that is located on the
cloud. Cloud application development is aided signifi cantly with the provision of
frameworks and development environments which the developers can leverage to
produce applications guided by useful abstractions. These frameworks have proven
to reduce the development time, therefore receiving wide acceptance. The period
from 2007 to 2011 has witnessed exponential growth in adoption of cloud frame-
works with Amazon kicking off this trend and recently several others perfecting it.
This section provides important features of three such frameworks from industry
leaders like Amazon, Google, and Microsoft.

14.4.1 Windows Azure

 The Windows Azure platform by Microsoft Corporation provides hardware abstrac-
tion through virtualization. Every application that is deployed to Windows Azure
runs on one or more virtual machines (VMs) [19]. The applications behave as
though they were on a dedicated computer, although they might share physical
resources such as disk space, network I/O, or CPU cores with other VMs on the
same physical host; this is the abstraction that is possible with decoupling infra-
structure from the application. A key benefi t of an abstraction layer above the physi-
cal hardware is portability and scalability. Virtualization of a service allows it to be
moved to any number of physical hosts in the data center. By combining virtualiza-
tion technologies, commodity hardware, multi-tenancy, and aggregation of demand,

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

318

Azure has become one of the most coveted platforms. These generate higher data
center utilization (i.e., more useful work-per-dollar hardware cost) and, subse-
quently, savings that are passed along to you. Figure 14.4 presents the high-level
architecture of Azure, which encapsulates the above-discussed features.

14.4.1.1 Salient Features of Azure

 Here are some salient features of Windows Azure:

• Supports all major .NET technologies and provides wide language support across
Java, PHP, and Python [24 , 25]

• Windows Azure Compute:

 – Computing instances run Windows OS and applications (CPU + RAM + HDD)
 – Web role: Internet information services machine for hosting Web applications

and WCF services
 – Worker role: long-running computations

• Azure data storage services:

 – Azure table storage: distributed highly scalable cloud database (stress entries
with properties)

 – Azure queue storage: message queue service
 – Azure blobs/drives: blob/fi le storage, NTFS volumes

• SQL Azure : SQL server in the cloud with highly available and scalable relational
database

• Azure Business Analytics: create reports with tables, charts, maps, etc.
• Azure Caching: distributed, in-memory, application cache

 Fig. 14.4 Azure architecture [20]

A.K. Muppalla et al.

319

14.4.2 Google App Engine

 Google App Engine is a Platform-as-a-Service (PaaS) cloud-computing delivery
model for developing and hosting Web applications in Google-managed data cen-
ters. Applications are sandboxed and run across multiple servers [21]. App Engine
offers automatic scaling for Web applications—as the number of requests increases
for an application, App Engine automatically allocates more resources for the Web
application to handle the additional demand [22]. Figure 14.5 represents the high-
level architecture of Google App Engine outlining the structure to aid application
development.

14.4.2.1 Salient Features of App Engine

• Leading Java and Python public cloud service
• App Engine instances:

 – Hosting the applications
 – Fully managed sandboxes (not VMs)
 – Provide CPU + RAM + storage + language run-time

• App Engine Backend:

 – Higher computing resources
 – Used for background processing

• App Engine data stores:

 – NoSQL schema less object database
 – Support transacts and a query engine (GQL)

 Fig. 14.5 Google App Engine architecture [20]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

320

• Cloud SQL: managed MySQL in App Engine
• Cloud Storage: store fi les as blobs and fi les with REST API
• MapReduce API: highly scalable parallel computing API for heavy computing

tasks (based on Hadoop)
• Channel API: push notifi cation for JavaScript applications
• Task Queues: execution of background services
• Memchache : distributed in-memory data cache

14.4.3 Amazon Web Services (AWS)

 This is a collection of remote computing services (also called Web services) which
constitute the cloud-computing platform provided by Amazon. Figure 14.6 repre-
sents the aggregation of wide range of features that support cloud application devel-
opment on Amazon framework.

14.4.3.1 Salient Features of AWS

• Amazon Elastic Compute Cloud (Amazon EC2):

 – Virtual machines on-demand running Windows/Linux/other OS
 – Geographically distributed
 – Elastic IP addresses: a user can programmatically map an Elastic IP address

to any virtual machine instance without a network administrator’s help and
without having to wait for DNS to propagate the new binding

• Amazon Elastic Block Store (Amazon EBS):

 – Virtual HDD volumes
 – Used with EC2 to keep the OS fi le system

 Fig. 14.6 AWS architecture [20]

A.K. Muppalla et al.

321

• Amazon Simple Storage Service (Amazon S3):

 – Host binary data (images, videos, fi les, etc.)
 – REST API for access via Web

• Amazon DynamoDB /SimpleDB:

 – Managed NoSql cloud database
 – Highly scalable and fault tolerant

• Amazon Relational Database Service (RDS):

 – Managed MySQL and Oracle databases
 – Scalability, automated backup, replication

• Other services:

 – SQS: message queue
 – CloudFront : content delivery network
 – ElastiCache: caching
 – Route 53: Cloud DNS
 – SES: email

14.5 Comparison of AWS and Windows Azure:
Applications Development

 While deploying an initial Web application on the cloud, care is taken to leverage
the niche technologies provided by the environment. This section performs a com-
parative analysis of the above-mentioned features in building a Web application on
Amazon Web Services against Windows Azure.

14.5.1 Local Application Development Setup

 Apache is an application server with development in PHP and storage in MySQL
database. Figure 14.7 depicts the primary setup.

14.5.2 Migrating to the Cloud

 AWS : In AWS, this means an Amazon EC2 Instance, an Elastic IP, and backups to
the Amazon S3 storage service.

 Windows Azure : In Windows Azure, the counterpart to EC2 is Windows
Azure Compute. Specify a role (hosting container) and number of VM instances.

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

322

Choose a worker role (the right container for running Apache) and one VM instance.
Upload metadata and an application package, from which Windows Azure Compute,
Windows Server VM instance is created. An input endpoint is defi ned which
provides accessibility to the Web site. Backups are made to the Windows Azure
Storage service in the form of blobs or data tables.

14.5.3 Design for Failure

 Keep application logs and static data outside of the VM server by using a cloud
storage service. Make use of database snapshots, which can be mapped to look like
drive volumes as in Figs. 14.8 and 14.9 .

 AWS : The logs and static data are kept in the Amazon S3 storage service. Root
and data snapshot drive volumes are made available to the VM server using the
Amazon Elastic Block Service (EBS).

 Windows Azure : Logs and static data are written to the Windows Azure Storage
service in the form of blobs or tables. For snapshots, a blob can be mapped as a drive
volume using the Windows Azure Drive service. As for the root volume of the VM,
this is created from the Windows Azure Compute deployment just as in the previous
confi guration.

 Fig. 14.7 Local application
setup [23]

A.K. Muppalla et al.

323

14.5.4 Content Caching

 Take advantage of edge caching of static content. Use content distribution network
to serve up content such as images and video based on user location as in Fig. 14.10 .

 AWS : Amazon CloudFront is the content distribution network.
 Windows Azure : The Windows Azure Content Delivery Network (CDN) can

serve up blob content using a network of 24+ edge servers around the world.

 Fig. 14.8 Application deployment in AWS and Azure [23]

 Fig. 14.9 Updated fi gure—design for failure [23]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

324

14.5.5 Scaling Database

 In preparing to scale, the setup must move beyond a self-hosted database on a single
VM server instance. By using a database service outside of the compute VM, use
multiple compute VMs without regard for data loss as in Fig. 14.11 .

 AWS : The Amazon Relational Database Service (RDS) provides a managed data-
base. Andy can continue to use MySQL.

 Windows Azure : Switch over to SQL Azure, Microsoft’s managed database
service. Data is automatically replicated such that there are three copies of the
database.

14.5.6 Scaling Compute

 With a scalable data, scale the compute tier, which is accomplished by running
multiple instances as in Fig. 14.12 .

 AWS : Multiple instances of EC2 through the use of an Auto-Scaling Group.
Load-balancing Web traffi c to the instances by adding an Elastic Load Balancer
(ELB).

 Windows Azure : The input endpoint comes with a load balancer. The worker role
is a scale group—its instances can be expanded or reduced, interactively or program-
matically. The only change that needs to be made is to increase the worker roles
instance count; a change can be made in the Windows Azure management portal.

 Fig. 14.10 Updated fi gure—caching static content [23]

A.K. Muppalla et al.

325

14.5.7 Failover

 To keep the service up and running in the face of failures, one must take advantage
of failover infrastructure as in Fig. 14.13 .

 AWS : The primary Amazon RDS database domain has a standby slave domain.
The solution can survive the failure of either domain.

 Fig. 14.11 Updated fi gure—database service [23]

 Fig. 14.12 Updated deployment—compute elasticity [23]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

326

 Windows Azure : The Windows Azure infrastructure has been providing fault
domains all along. Storage, database, and compute are spread across the data center
to prevent any single failure from taking out all of an application’s resources. At the
storage and database level, replication, failover, and synchronization are automatic.
Since the compute was only one instance, this could be a possible hurdle, which can
be addressed by running at least two instances in every role.

14.6 Future Research

 The future of cloud computing continues to show promise and gain popularity. One
should be able to plug in an application to the cloud in order to receive the power it
needs to run, just like a utility. As an architect, you will manage abstract compute,
storage, and network resources instead of physical servers. Scalability, security,
high availability, fault tolerance, testability, and elasticity will be confi gurable prop-
erties of the application architecture and will be an automated and intrinsic part of
the platform on which they are built.

 However, we are not there yet. Today, you can build applications in the cloud
with some of these qualities by implementing the best practices highlighted in this
chapter. Best practices in cloud-computing architectures will continue to evolve,
and as researchers, we should focus not only on enhancing the cloud but also on
building tools, technologies, and processes that will make it easier for developers
and architects to plug in applications to the cloud easily.

 Fig. 14.13 Updated deployment—fault tolerant [23]

A.K. Muppalla et al.

327

 The challenge of transitioning from your local development environment seems
to bother every developer; it is diffi cult to transition from doing stuff locally and
trying it out to working in the cloud. The maturity of IDEs that can handle cloud
environment is still a work in progress as well. The more seamless the transition
from the local test environments to cloud-based environments, the more productive
the development cycles will be. Another challenge is data security; as the applica-
tion will be hosted on third-party infrastructure, the safety of the data is always at
risk. There is a greater need to address this necessity both at the application level
and infrastructure level.

14.7 Conclusion

 Cloud-based application development process has its share of advantages and dis-
advantages, but many of the inherent issues are alleviated by following the basic
design patterns and frameworks described in this chapter.

 We can enumerate the reasons to choose either of the frameworks mentioned,
clearly because the type of application that needs to be developed requires that right
kind of environment. Reasons to use GAE (Google App Engine) are:

• You don’t need to pay until you see a visible need to scale.
• Google services like Gmail and Calendar plug in are very easy.
• Good choice if Python or Java is used as a language.
• Locally tested app runs as is on GAE.
• Allows running multiple versions of on the same data store.

 Reasons to use Azure are:

• Better suited for SOA (Service-Oriented Architecture)-based applications
• Application staging feature helps during deployment
• Two storage solutions—SQL Azure (relational) and Azure Storage

(non-relational)
• Best suitable for .NET-based applications

 Reasons to use Amazon Web Services are:

• Have footprint across several Linux distributions and also Windows support,
while Azure allows Windows only

• Have support for myriad language platforms like C#, PHP, ASP.NET, Python,
and Ruby

• Provide off-the-shelf load balancing, varying storage sizes to instances, and
install custom software

 While making the choice of a platform, several reasons, as listed above, need to
be considered to aid in the effi cient cloud application development.

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

328

 References

 1. Cloud computing: http://en.wikipedia.org/wiki/Cloud_computing (2008)
 2. Nytimes: Software via the Internet: Microsoft in ‘cloud’ computing Microsoft Corporation.

 http://www.nytimes.com/2007/09/03/technology/03cloud.html (2007)
 3. Baker, S.: Google and the wisdom of clouds. http://www.businessweek.com/magazine/

content/07_52/b4064048925836.htm (2007)
 4. Big blue goes for the big win: http://www.businessweek.com/magazine/content/08_10/

b4074063309405.htm (2009)
 5. Armbrust, M., Fox, A., Griffi th, R.: A view of cloud computing. Commun. ACM 53 (4), 50–58

(2010)
 6. Chellappa, R.: Cloud computing: emerging paradigm for computing. In: INFORMS 1997,

Dallas, TX (1997)
 7. Benatallah, B., Dijkman, R.M., Dumas, M., Maamer, Z.: Service-composition: concepts, tech-

niques, tools and trends. In: Z. Stojanovic, A. Dahanayake (eds) Service-Oriented Software
System Engineering: Challenges and Practices, pp. 48–66. Idea Group, Hershey (2005)

 8. Stevens, M.: Service-oriented architecture introduction. http://www.developer.com/services/
article.php/1010451 (2009)

 9. Service orientation and its role in your connected systems strategy. Microsoft Corporation.
 http://msdn.microsoft.com/en-us/library/ms954826.aspx (2004)

 10. Buyya, R.: Economic-based distributed resource management and scheduling for grid
computing. Ph.D. thesis, Chapter 2. Monash University, Melbourne (2002)

 11. Dell cloud computing solutions: http://www.dell.com/cloudcomputing (2008)
 12. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual orga-

nization. Int. J. High Perform. Comput. Appl. 15 (3), 200–222 (2001)
 13. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable cloud computing

environments and the Cloudsim toolkit: challenges and opportunities in high performance
computing\& simulation. In: HPCS’09. International Conference (2009)

 14. Hadoop: http://hadoop.apache.org/ (2007)
 15. Bondi, A.B.: Characteristics of scalability and their impact on performance. In: Proceedings of

the 2nd International Workshop on Software and Performance, Ottawa, ON, Canada, ISBN
1-58113-195-X, pp. 195–203 (2000)

 16. Lu, W., Jackson, J., Barga, R.: Azureblast: a case study of developing science applications on
the cloud. In: Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing. ACM, New York (2010)

 17. Fehling, C., Leymann, F., Mietzner, R., Schupeck, W.: A Collection of Patterns for Cloud
Types, Cloud Service Models, and Cloud-Based Application Architectures in Institute
Architecture of Application Systems (IAAS) Report, Daimler A G (2011)

 18. Load balancing and MapReduce: http://www.ibm.com/developerworks/cloud/library/
cl- mapreduce (2011)

 19. Chappell, D., Windows Azure and ISVs, Technical report, Microsoft: http://www.microsoft.
com/windowsazure/whitepapers (2009)

 20. Svetin Nakov: Cloud for Developers Azure vs Google App Engine vs Amazon vs Appharbor,
slideshare.com (2012)

 21. Google: Python Runtime Environment, Google App Engine, Google Code, code.google.com
(2011)

 22. Sanderson, D.: Programming Google App Engine: Build and Run Scalable Web Apps on
Google’s Infrastructure. O’Reilly Media, Sebastopol (2009). ISBN 978-0-596-52272-8

 23. David: Comparative study of AWS and Azure. http://davidpallmann.blogspot.in/2011_03_01_
archive.html (2011). Accessed 23 Aug 2012

 24. Microsoft Documentation: http://msdn.microsoft.com
 25. User Blogs, Microsoft Documentation: http://blogs.msdn.com

A.K. Muppalla et al.

http://en.wikipedia.org/wiki/Cloud_computing
http://www.nytimes.com/2007/09/03/technology/03cloud.html
http://www.businessweek.com/magazine/content/07_52/b4064048925836.htm
http://www.businessweek.com/magazine/content/07_52/b4064048925836.htm
http://www.businessweek.com/magazine/content/08_10/b4074063309405.htm
http://www.businessweek.com/magazine/content/08_10/b4074063309405.htm
http://www.developer.com/services/article.php/1010451
http://www.developer.com/services/article.php/1010451
http://msdn.microsoft.com/en-us/library/ms954826.aspx
http://www.dell.com/cloudcomputing
http://hadoop.apache.org/
http://www.ibm.com/developerworks/cloud/library/cl-mapreduce
http://www.ibm.com/developerworks/cloud/library/cl-mapreduce
http://www.microsoft.com/windowsazure/whitepapers
http://www.microsoft.com/windowsazure/whitepapers
http://davidpallmann.blogspot.in/2011_03_01_archive.html
http://davidpallmann.blogspot.in/2011_03_01_archive.html
http://msdn.microsoft.com/
http://blogs.msdn.com/

329

 26. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign
language for data processing. In: SIGMOD’08: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM, New York (2008)

 27. Talasila, S., Pavan, K.I.: A generalized cloud storage architecture with backup technology for
any cloud providers. Int. J. Comput. Appl. 2 (2), 256–263 (2012)

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

	Chapter 14: Efficient Practices and Frameworks for Cloud-Based Application Development
	14.1 Introduction
	14.2 Design Patterns for Key Issues of Cloud Application Development
	14.2.1 Scalability
	14.2.1.1 Load Sharing
	14.2.1.2 Partitioning
	14.2.1.3 Vertical Partitioning
	14.2.1.4 Horizontal Partitioning
	14.2.1.5 Relaxing Data Constraints
	14.2.1.6 Parallelization
	14.2.1.7 Going Stateless

	14.2.2 Elasticity
	14.2.3 Availability
	14.2.4 Multi-tenancy
	14.2.5 High Performance
	14.2.6 Handling Failure

	14.3 Analysis of Storage as a New Form of Service
	14.3.1 Access
	14.3.2 Performance
	14.3.3 Availability
	14.3.4 Control
	14.3.5 Efficiency

	14.4 Frameworks
	14.4.1 Windows Azure
	14.4.1.1 Salient Features of Azure

	14.4.2 Google App Engine
	14.4.2.1 Salient Features of App Engine

	14.4.3 Amazon Web Services (AWS)
	14.4.3.1 Salient Features of AWS

	14.5 Comparison of AWS and Windows Azure: Applications Development
	14.5.1 Local Application Development Setup
	14.5.2 Migrating to the Cloud
	14.5.3 Design for Failure
	14.5.4 Content Caching
	14.5.5 Scaling Database
	14.5.6 Scaling Compute
	14.5.7 Failover

	14.6 Future Research
	14.7 Conclusion
	References

