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  Abstract     As cloud computing continues to burgeon throughout the technology 
sphere, it becomes essential to understand the signifi cance of this emerging technol-
ogy. By its nature, it offers an organization a great deal of agility and cost savings. 
Cloud technologies are being applied and leveraged in different applications fueling 
growth in the number of Infrastructure-as-a-Service  (IaaS) and Platform-as-a- 
Service   (PaaS) vendors. The business delivery models of cloud computing have 
raised interests across the IT industry as the resources are offered as utilities and on 
demand. From a developer perspective, it is important to grasp the nuances of cloud- 
based application development to improve the development process. This chapter 
discusses best practices in relation to some of the celebrated cloud features. 
Furthermore, most common and well-known features of cloud frameworks are pre-
sented to aid the developer’s choice. Lastly, comparative cloud-based architectural 
discussion on developing and deploying a Web application using industry popular 
frameworks is presented. Although, cloud computing as a service/development 
paradigm addresses several well-known issues like scalability and availability, there 
are several concerns with respect to security and privacy of data which has opened 
doors for research opportunities. Some plausible research directions are also 
identifi ed.  
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14.1         Introduction 

 Prior to 2007, there was a need for any large technology corporation to maintain 
infrastructure to fulfi ll the needs of the company and its clients [ 1 ]. With the emer-
gence of cloud computing, the situation has changed. There seems to be wide 
acceptance in the prospect of buying infrastructure usage rather than the hardware 
itself with immediate cost benefi ts. The on-demand delivery of hardware, software, 
and storage as a service is termed as  cloud computing  . The union of data center 
hardware, software, and storage is what we will call a  cloud . An application based 
on such clouds is taken as a  cloud application . This paradigm has revolutionized the 
service industry with increasing support from Microsoft [ 2 ], Google [ 3 ], and IBM [ 4 ]. 
Three striking aspects of cloud computing are [ 5 ]:

•    The impression of infi nite cloud resources available on demand, thereby dismiss-
ing the need for users to plan far ahead for provisioning.  

•   The on-demand commitment of resources by cloud, thereby allowing companies 
to start small and request resources as and when the need arises.  

•   The pay-per-use model has encouraged ability to pay for use of computing 
resources on a short-term basis as needed and release them as needed.    

 Efforts to conceptualize cloud computing dates back to, at least, 1998 [ 6 ]. 
However, the adoption and promotion of cloud computing has been slow until 
2007 [ 1 ]. The background of early industrial adoptions of cloud computing coin-
cides with that of service computing [ 7 ]. Service computing [ 8 ] received worldwide 
support from leading companies like IBM and Microsoft [ 9 ]. The widespread 
adoption of cloud computing is driven by stable and mature development of tech-
nologies and computing resources. Success stories of Web services have comple-
mented the popularity service computing, although a Web service is one such 
technology to fulfi ll the need for service orientation [ 7 ]. Many distributed computing 
techniques for cloud computing have been mature [ 10 – 12 ]. Decoupling the parts 
of the application environment allows for scalability on different levels; these parts 
are further provided to the developers as services. Based on the type of the service 
provided, cloud computing can be classifi ed as Infrastructure as a Service (IaaS), 
Platform as a Service (PaaS), and Software as a Service  (SaaS) [ 13 ]. 

 Developers reap several benefi ts developing their application on a cloud-based 
programming environment provided through a PaaS provider, such as automatic 
scaling and load balancing, as well as integration with other services (email and 
authentication). Such provisions alleviate much of the overhead of developing cloud 
applications. Furthermore, integration of their applications with other services on- 
demand increases the likelihood of usage of these applications, thereby driving the 
need to develop cloud-based applications. This in turn makes the cloud application 
development a less complicated task, accelerates the deployment time, and mini-
mizes the logic faults in the application, for example, deployment of a distributed 
computing environment such as Hadoop [ 14 ,  26 ] on the cloud which provides its 
application developers with a programming environment, that is, MapReduce 
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framework for the cloud. As such, cloud software environments facilitate the pro-
cess of cloud application development. 

 Cloud computing brings this whole new way of thinking about architecture and 
design, since we don’t control the infrastructure directly hence one step less in the 
design process. The application is supported to scale horizontally, be very cost 
effective in operation as you can scale up and scale down and obtain granular con-
trol over CPU expense. As several platforms such as Force.com are rich and provide 
the boilerplate code, developing applications on it becomes a much higher-level 
activity. The gap between domain experts who conceptualize the product and devel-
opers who code it signifi cantly narrows down. The adoption of cloud computing has 
improved the development process of several applications and services. 

 The differences between cloud-based application and traditional application 
are presented in Table  14.1 . There is no signifi cant change in the development 
process of a cloud application; since the division of the application development 
environment into infrastructure, platform, and software has signifi cantly helped 
in overcoming some common challenges of traditional software development, 

   Table 14.1    Comparison between traditional and cloud-based application   

 Traditional applications   Cloud-based applications  

 Each application is deployed and maintained 
as a bundle in a common environment 

 With diverse environment capabilities of 
the cloud, the application is deployed 
and maintained as modules, scattered 
across environments 

 Run-time infrastructure is structured and controlled, 
giving rise to maintenance overhead 

 Run-time infrastructure is unstructured 
and managed by cloud fabric, with 
computing capabilities changing 

 Business functionality is realized by using 
“controller” components that calls methods 
(functions) of business components 

 Service orchestration is used to realize 
business functionality—invoke one or 
many business services 

 Support for multi-tenancy is typically not required  Multi-tenancy support is assumed 
 User base is assumed at design time, and scalability 

is addressed at run-time by procuring necessary 
hardware 

 User base need not be known, potential 
to scale up and down rapidly 

 Enhancements and upgrades require downtime  No downtime required for enhancements 
and upgrades 

 Components interact with non-SOA contracts like 
RMI and CORBA 

 Standard SOA service-based interaction 
between components is assumed like 
SOAP and REST 

 Deployment requires traditional tools 
(application server admin console, ANT, etc.) 

 Along with traditional tools, requires 
knowledge and utilization of 
vendor-specifi c cloud APIs 

 Application is tested in controlled environment 
(Unit/integration/system) 

 Application (integration) is tested 
on the cloud to ensure seamless 
orchestration between services 
on one or many clouds 

 Security is enforced by application architecture 
(LDAP lookup based authentication/authorization) 

 Security is built into the service contracts 
(WS-Security, SAML, etc.) 
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it has led to accelerated development and deployment, ensuring shorter release 
cycles. The cloud application development enforces an agile form of development. 
Some advantages are:

•     Short release cycles means processes used for developing these applications are 
agile/scrum based.  

•   Heavy stress on acceptance as well as unit tests.  
•   Traditional task management practices and timesheet processes are not 

applicable.  
•   No formal workfl ow processes for reviews.     

14.2     Design Patterns for Key Issues of Cloud Application 
Development 

14.2.1     Scalability  

 This is defi ned as the ability of the system to handle growing amount of work in a 
reliable manner [ 15 ]. Scalability in cloud perspective can be addressed by considering 
the following: 

14.2.1.1     Load Sharing  

 It is the logical spreading of requests across similar components for handling those 
requests, from a cloud development point of view, and distribution of requests, 
which are mainly HTTP but can be any application protocol, across all the instances 
using an effi cient confi gured load-balancing algorithm. This is a scaling-out 
approach. Several load-balancing facilities are provided across development 
platforms; the task of the developer would be to tie the application to these APIs.  

14.2.1.2     Partitioning  

 Intelligent load distribution across many components by routing an individual 
request to a data-specifi c component, effi ciency, and performance is dramatically 
increased in an application’s delivery architecture while enabling this facility. 
Instead of having identical instances, each instance or pool of instances, as shown 
in Fig.  14.1 , is marked as the  owner . This enables the developers to confi gure the 
development environment to handle type-specifi c request. The concept of  applica-
tion switching  and  load balancing  achieve individual importance as the former is 
used to route a particular request which can be then load balanced across a pool of 
resources. It’s a subtle distinction but an important one when architecting not only 
effi cient and fast but resilient and reliable delivery networks.
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14.2.1.3        Vertical Partitioning 

 It is a partitioning using different processing units while routing application requests 
that we separate by function that is associated with a URI. Content wise, partition-
ing is the most common implementation strategy. Consider an example of creating 
resource pools based on the Content-Type HTTP header: content in pool  content 
servers  and images in pool  image servers . This provides for greater optimization of 
the Web/application based on the usage pattern and the content type. In a distributed 
environment, architects leverage say cloud-based storage for static content while 
maintaining dynamic content (and its associated data stores) on premise. This 
hybrid strategy is regarded to have successful acceptance across the cloud 
community.  

14.2.1.4     Horizontal Partitioning 

 Through partitioning, persistence-based load balancing is accomplished, as well as 
the handling of object caching. This also describes the way in which you might 
direct requests received from specifi c users to designated instances that are specifi -
cally designed to handle their unique needs or requirements, for example, separa-
tion of  privilege  users from  free  users based on some partitioning key, which is 
cookie information.  

  Fig. 14.1    Grouping instances into task-specifi c pools [ 16 ]       
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14.2.1.5     Relaxing Data Constraints 

 Techniques and trade-offs with regard to the immediacy of processing/storing/
access to data fall in this strategy. This requires intelligent handling of data storage 
and access based on varying properties like usage and prioritization of the content. 
If one relaxes the constraints around access times for certain types of data, it is 
possible to achieve a higher-effi ciency use of storage by subjugating some content 
to secondary and tertiary storage tiers which may not have the same performance 
attributes as your primary storage tier. 

 Architecting a solution that separates data reads from writes implies eventual 
consistency, as data updated/written to one database must necessarily be replicated 
to the databases from which reads are, well, read, but that’s part of relaxing a data 
constraint.  

14.2.1.6     Parallelization  

 This refers to working on the same task in parallel on multiple processing units 
employing tools and methods like MapReduce and SPDY. If the actual task can be 
performed by multiple processing units, then an application delivery controller 
could certainly be confi gured to recognize that a specifi c URL should be essentially 
sent to some other proxy/solution that performs the actual distribution. We can 
observe that the processing model here deviates sharply from the popular  request - 
reply     paradigm.  

14.2.1.7     Going Stateless  

 Application state maintenance can often hinder any scalability efforts, which 
normally involves persistence, and persistence means storing your data in some 
central location, and central data store is diffi cult to scale. Adopting RESTful nature 
(without being limited to HTTP) is a viable choice.   

14.2.2     Elasticity  

 Dynamic resource utilization is a central concept in cloud computing. Application 
design must allow resources to be reserved and freed as needed. The aspects that 
drive the need to automate elasticity are as follows: (1) applications have to monitor 
themselves or have to be monitored externally, (2) application resources have to be 
provisioned based on this information, and (3) applications have to cope with addi-
tion and removal of resources. In order to fully benefi t from the dynamicity of an 
elastic infrastructure, the management process to scale out an application has to be 
automated [ 17 ]. This way, the number of used resources can be aligned to changing 
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workload quickly. If pay-per-use pricing models are available, the resource number 
directly affects the running cost of the application. Manual resource scaling would 
not respect this. 

 Requests received by an application are a good measure of workload and there-
fore shall be used as a basis for scaling decisions. An elastic load balancer automati-
cally determines the amount of required resources based on numbers of requests 
and provisions the needed resources accordingly using the elastic infrastructure’s 
API. Number of requests in unit time is observed from the components, and required 
number of resources (this is crucial design element) is computed by the load 
balancer and provisioned on the elastic infrastructure using its API. It signifi cantly 
affects the effectiveness of the scaling decisions. It should be carefully selected 
during the design of the application using capacity planning techniques. Also, such 
behavior needs to be real time. 

 If the application can handle asynchronous requests, another layer of optimiza-
tion can be implemented since there is a possibility of fl uctuation in resource costs 
or cloud elasticity. The tasks can be delayed based on the availability of the 
resources. Some non-business-critical or time-critical workload, such as report gen-
eration, can be moved to times when resources of the private cloud are less utilized. 
An  elastic queue   is used to distribute requests among application components. 
Based on the number and type of messages it contains, the elastic queue determines 
the number of computing nodes to be provisioned. The elastic queue can contain 
different message types that are handled by different components. To speed this 
process up, individual images for application components are stored in the image 
database of the elastic infrastructure. Additionally, the elastic queue can respect 
environmental information, such as the overall infrastructure or resource price. This 
is used to delay less critical messages by reducing the number of handling compute 
nodes and to prioritize the business-critical functionality if the overall infrastructure 
utilization is high.  

14.2.3     Availability 

 The use of commodity hardware to build the cloud has an advantage to reduce costs 
but also reduces the availability of resources . Therefore, cloud applications have to 
be designed to cope with failing resources to guarantee the required availability. 
Sometimes, (high) availability is only expressed regarding the possibility to start 
new compute nodes. To guarantee high availability under such conditions, the appli-
cation architecture needs to be adjusted to enable redundancy and fault-tolerant 
structures. The application architecture is altered to include redundant compute 
nodes performing the same functionality. High available communication between 
these nodes is assured, for example, by a messaging system. Additionally, compute 
nodes are monitored and replaced in case of failure. 

 In a setting where high available compute nodes are used, the decoupling of 
components can also increase the performance and enable elasticity. As in every 
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setup where messaging is used, the compute nodes need to consider the delivery 
assurances made by the messaging systems. Business-critical components of an 
application should be available at all times even during update. During an update, 
the elasticity of cloud aids in provision of additional compute nodes that contain 
the new application or middleware versions additionally to the old versions, conse-
quently the shutdown of old compute nodes. One such method is providing images 
for compute nodes with the new software version that is created and tested. Hence, 
a graceful transition from the old to new application versions is executed. If differ-
ent versions must not be handling requests at the same time, the transition is 
imminent. This is handled by instantiating both application versions independently. 
The switch can then be made by reconfi guring the access component, such as a load 
balancer. However, in some cases this can result in a minimal downtime during the 
transition [ 17 ].  

14.2.4     Multi-tenancy 

 Any party that uses an application is termed a  tenant . Sometimes a tenant can be a 
single user of an entire organization. Many of the cloud properties, such as elasticity 
and pay-per-use pricing models, can only be achieved by leveraging economies of 
scale. Cloud providers therefore have to target large markets and share resources 
between customers to utilize resources effectively. Hardware virtualization has been 
the fi rst to foray into resource sharing through  Infrastructure - as - a - Service  delivery 
model. There is need for additional architectural modifi cations to support sharing of 
higher-level application components. When application is provided to multiple 
customers (multi-tenacity), deployment of componentized applications can be 
optimized by sharing individual component instances whenever possible. This is 
especially feasible for application components that are confi gured equally for all 
tenants, for example, currency converters. If tenants can share common resources, 
then underlying resources can be utilized in more effi cient ways. This requires the 
confi guring for multi-tenacity. The tenant’s individual application instances access 
the same application component (pool). Therefore, the run-time cost per tenant can 
be reduced, because the utilization of the underlying infrastructure is increased and 
the shared component can be scaled for all tenants. If the confi guration is equivalent 
for all tenants, a  single instance   can be used. Sometimes, tenants are not allowed 
to share critical components with other users. In this case, a  multiple instance 
component   must be used. 

 Additional use case wherein an application is instantiated to support multi- 
tenacity but some of its components cannot be shared may be due to laws prohibiting 
the same. So, tenants may require integration of individually developed application 
components into the provided application. Deploy individual component imple-
mentations and confi gurations for each tenant. This arrangement allows tenants to 
adjust components very freely. Portions of an application, on which tenants have a 
versatile behavior, can be realized in such a fashion. However, the application of this 
pattern hinders resource sharing between tenants.  
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14.2.5     High Performance 

 A load-balancing algorithm coupled with the MapReduce programming paradigm 
serves the purpose of processing large volumes of data. MapReduce is a parallel 
programming model that is supported by some capacity-on-demand type of clouds 
such as Google’s BigTable , Hadoop , and Sector [ 18 ]. Load balancing is helpful in 
spreading the load equally across the free nodes when a node is loaded above its 
threshold level. Though load balancing is not so signifi cant in execution of a 
MapReduce  algorithm, it becomes essential when handling large fi les for processing 
and when availability of hardware resources is critical. Hadoop MapReduce has 
wide industry acceptance also being the top programming model implemented. 

 An effi cient load-balancing technique can sometimes make all the difference in 
obtaining maximum throughput. The arrangement is considered balanced if for each 
data node, the ratio of used space at the node to the total capacity of node (known as 
the  utilization of the node ) differs from the ratio of used space at the cluster to the 
total capacity of the cluster ( utilization of the cluster ) by no more than the threshold 
value [ 17 ]. In view of hyper-utilization the module moves blocks from the data nodes 
that are being utilized a lot to the poorly used ones in an iterative fashion. In this 
implementation, nodes are classifi ed as  high ,  average , and  low  depending upon the 
utilization rating of each node. In a cloud environment, the MapReduce structure 
increases the effi ciency of throughput for large data sets. In contrast, you wouldn’t 
necessarily see such an increase in throughput in a non-cloud system. Therefore, 
consider a combination of MapReduce-style parallel processing and load balancing 
when planning to process a large amount of data on your cloud system.  

14.2.6     Handling Failure  

 Unlike the traditional applications which are entirely dependent on the availability 
of the underlying infrastructure, cloud applications can be designed to withstand 
even big infrastructure outages. With the goal that each application has minimal or 
no common points of failure, the components must be deployed across redundant 
cloud components. These components must make no assumptions about the under-
lying infrastructure; that is, it must be able to adapt to changes in the infrastructure 
without downtime. 

 Designing for failure also comes with fair share or challenges such as large data 
processing which requires frequent movement of large volumes of data causing 
inertia. By building simple services composed of a single host, rather than multiple 
dependent hosts, one can create replicated service instances that can survive host 
failures. For example, if we had an application that consisted of business logic com-
ponent 1, 2, 3, each of which had to be live on a separate host, we could compose 
service group (1, 2, 3), (1, 2, 3)… or we could create component pools (1, 1, …), 
(2, 2, …), (3, 4, …). While the composition (1, 2, 3), a single machine failure would 
result in the loss of a whole system group. By decomposing resources into 
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independent pools, a single host failure only results in the loss of a single host’s 
worth of functionality. 

 Another practice is to ensure short response time ensured by noting if the request 
returns a transient error or doesn’t return within a small time, a retry is triggered to 
another instance of the service. If you don’t fail fast and retry, distributed systems, 
especially those that are process or thread-based, can lock up as resources are con-
sumed waiting on slow or dead services. 

 Thus, separating business logic into small stateless services that can be organized 
in simple homogeneous pools is much more effi cient. The pool of stateless record-
ing services allows upstream services to retry failed requests on other instances of 
the recording service. In addition, the size of the recording server pool can easily be 
scaled up and down in real time based on load.   

14.3     Analysis of Storage as a New Form of Service 

 As technology continues to mature, several previously coupled components have 
broken out to exist independently. One such component is storage, still part of the 
infrastructure in principle, which has open doors for targeting specifi c business 
areas. To understand the application of storage as a service on its own, several 
delivery metrics need to be discussed along with established best practices [ 27 ], 
with support of the general architecture in Fig.  14.2 .

14.3.1       Access 

 One problem with Web service APIs is that they require integration with an applica-
tion to take advantage of the cloud storage. Most providers implement multiple 
access methods, but Web service APIs are common. Many of the APIs are imple-
mented based on REST principles, which imply an object-based scheme developed 
on top of HTTP (using HTTP as a transport). REST APIs are stateless and therefore 
simple and effi cient to provide. Therefore, common access methods are also used 
with cloud storage to provide immediate integration. For example, fi le-based proto-
cols such as NFS/Common Internet File System  (CIFS) or FTP (File Transfer 
Protocol) are used, as are block-based protocols such as iSCSI (Internet Small 
Computer System Interface).  

14.3.2     Performance 

 Performance issues of storage systems range from small transactional accuracy to 
large data movement, but the ability to move data between a user and a remote cloud 
storage provider represents the largest challenge from a cloud storage perspective. 
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The problem is TCP, as it controls the fl ow of data based on packet acknowledg-
ments from the peer endpoint. Packet loss and late arrival enable congestion control 
as a useful feature but also limits performance as these are more network-intensive 
tasks. TCP is ideal for moving small amounts of data through the global Internet but 
is less suitable for larger data movement, with increasing RTT (round-trip time). 
This problem is solved by removing TCP from the equation. A new protocol called 
the  Fast and Secure Protocol   (FASP) was developed to accelerate bulk data move-
ment in the face of large RTT and severe packet loss. The key is the use of the UDP, 
which is the partner transport protocol to TCP. UDP permits the host to manage 
congestion, pushing this aspect into the application layer protocol of FASP, as 
shown in Fig.  14.3 .

14.3.3        Availability 

 Once a cloud storage provider has a user’s data, he/she must be able to provide that 
data back to the user upon request. Given the network outages, user errors, and other 
circumstances, reliability and availability can prove to be a major hurdle. There are 
some interesting and novel schemes to address availability, such as information dis-
persal (Information Dispersal Algorithm (IDA)),  to enable greater availability of 
data in the face of physical failures and network outages. IDA is an algorithm that 
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allows data to be sliced with Reed-Solomon codes for purposes of data reconstruction 
in the face of missing data. Furthermore, IDA allows you to confi gure the number 
of data slices, such that a given data object could be carved into four slices with one 
tolerated failure or 20 slices with eight tolerated failures. Similar to RAID, IDA 
permits the reconstruction of data from a subset of the original data, with some 
amount of overhead for error codes (dependent on the number of tolerated failures). 
The downside of IDA is that it is processing intensive without hardware accelera-
tion. Replication is another useful technique and is implemented by a variety of 
cloud storage providers. Although replication introduces a large amount of over-
head (100 %), contrast to very low overhead by IDA, it is simple and efficient 
to provide.  

14.3.4     Control 

 A customer’s ability to control and manage how his or her data is stored has always 
motivated several storage providers. Although replication is a common method to 
ensure redundancy and hence availability, it also requires more than idea storage 
space. Reduced Redundancy Storage  (RRS) is one such method that ensures to 
provide users with a means of minimizing overall storage costs. Data is replicated 
within the vendor’s infrastructure, but with RRS, the data is replicated fewer times 
with the possibility for data loss. This is ideal for data that can be recreated or that 
has copies that exist elsewhere.  
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Sockets Sockets

TCP UDP

IP IP

NIC NIC

  Fig. 14.3    Communication 
stack       
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14.3.5     Effi ciency 

 Storage effi ciency is an important characteristic of cloud storage infrastructures, 
particularly with respect overall cost. This characteristic speaks more to the effi cient 
use of the available resources over their cost. To make a storage system more 
effi cient, more data must be stored. A common solution is data reduction, whereby 
the source data is reduced to require less physical space. Two means to achieve 
this include  compression  —the reduction of data through encoding the data using a 
different representation—and  de - duplication  , the removal of any identical copies of 
data that may exist. Although both methods are useful, compression involves pro-
cessing (re-encoding the data into and out of the infrastructure), where de- duplication 
involves calculating signatures of data to search for duplicates.   

14.4     Frameworks 

 Developers can use the cloud to deploy and run applications and to store data. 
On-premises applications can still use cloud-based resources. For example, an 
application located on an on-premises server, a rich client that runs on a desktop 
computer, or one that runs on a mobile device can use storage that is located on the 
cloud. Cloud application development is aided signifi cantly with the provision of 
frameworks and development environments which the developers can leverage to 
produce applications guided by useful abstractions. These frameworks have proven 
to reduce the development time, therefore receiving wide acceptance. The period 
from 2007 to 2011 has witnessed exponential growth in adoption of cloud frame-
works with Amazon kicking off this trend and recently several others perfecting it. 
This section provides important features of three such frameworks from industry 
leaders like Amazon, Google, and Microsoft. 

14.4.1     Windows Azure 

 The Windows Azure  platform by Microsoft Corporation provides hardware abstrac-
tion through virtualization. Every application that is deployed to Windows Azure 
runs on one or more virtual machines (VMs) [ 19 ]. The applications behave as 
though they were on a dedicated computer, although they might share physical 
resources such as disk space, network I/O, or CPU cores with other VMs on the 
same physical host; this is the abstraction that is possible with decoupling infra-
structure from the application. A key benefi t of an abstraction layer above the physi-
cal hardware is portability and scalability. Virtualization of a service  allows it to be 
moved to any number of physical hosts in the data center. By combining virtualiza-
tion technologies, commodity hardware, multi-tenancy, and aggregation of demand, 
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Azure has become one of the most coveted platforms. These generate higher data 
center utilization (i.e., more useful work-per-dollar hardware cost) and, subse-
quently, savings that are passed along to you. Figure  14.4  presents the high-level 
architecture of Azure, which encapsulates the above-discussed features.

14.4.1.1       Salient Features of Azure 

 Here are some salient features of Windows Azure:

•    Supports all major .NET technologies and provides wide language support across 
Java, PHP, and Python [ 24 ,  25 ]  

•   Windows Azure Compute:

 –    Computing instances run Windows OS and applications (CPU + RAM + HDD)  
 –   Web role: Internet information services machine for hosting Web applications 

and WCF services  
 –   Worker role: long-running computations     

•   Azure data storage services:

 –    Azure table storage: distributed highly scalable cloud database (stress entries 
with properties)  

 –   Azure queue storage: message queue service  
 –   Azure blobs/drives: blob/fi le storage, NTFS volumes     

•   SQL Azure : SQL server in the cloud with highly available and scalable relational 
database  

•   Azure Business Analytics: create reports with tables, charts, maps, etc.  
•   Azure Caching: distributed, in-memory, application cache      

  Fig. 14.4    Azure architecture [ 20 ]       
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14.4.2     Google App Engine 

 Google App Engine  is a Platform-as-a-Service (PaaS) cloud-computing delivery 
model for developing and hosting Web applications in Google-managed data cen-
ters. Applications are sandboxed and run across multiple servers [ 21 ]. App Engine 
offers automatic scaling for Web applications—as the number of requests increases 
for an application, App Engine automatically allocates more resources for the Web 
application to handle the additional demand [ 22 ]. Figure  14.5  represents the high- 
level architecture of Google App Engine outlining the structure to aid application 
development.

14.4.2.1       Salient Features of App Engine 

•     Leading Java and Python public cloud service  
•   App Engine instances:

 –    Hosting the applications  
 –   Fully managed sandboxes (not VMs)  
 –   Provide CPU + RAM + storage + language run-time     

•   App Engine Backend:

 –    Higher computing resources  
 –   Used for background processing     

•   App Engine data stores:

 –    NoSQL schema less object database  
 –   Support transacts and a query engine (GQL)     

  Fig. 14.5    Google App Engine architecture [ 20 ]       
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•   Cloud SQL: managed MySQL in App Engine  
•   Cloud Storage: store fi les as blobs and fi les with REST API  
•   MapReduce API: highly scalable parallel computing API for heavy computing 

tasks (based on Hadoop)  
•   Channel API: push notifi cation for JavaScript applications  
•   Task Queues: execution of background services  
•   Memchache : distributed in-memory data cache      

14.4.3     Amazon Web Services (AWS) 

 This is a collection of remote computing services (also called Web services) which 
constitute the cloud-computing platform provided by Amazon. Figure  14.6  repre-
sents the aggregation of wide range of features that support cloud application devel-
opment on Amazon framework.

14.4.3.1       Salient Features of AWS 

•     Amazon Elastic Compute Cloud  (Amazon EC2):

 –    Virtual machines on-demand running Windows/Linux/other OS  
 –   Geographically distributed  
 –   Elastic IP addresses: a user can programmatically map an Elastic IP address 

to any virtual machine instance without a network administrator’s help and 
without having to wait for DNS to propagate the new binding     

•   Amazon Elastic Block Store  (Amazon EBS):

 –    Virtual HDD volumes  
 –   Used with EC2 to keep the OS fi le system     

  Fig. 14.6    AWS architecture [ 20 ]       
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•   Amazon Simple Storage Service  (Amazon S3):

 –    Host binary data (images, videos, fi les, etc.)  
 –   REST API for access via Web     

•   Amazon DynamoDB /SimpleDB:

 –    Managed NoSql cloud database  
 –   Highly scalable and fault tolerant     

•   Amazon Relational Database Service  (RDS):

 –    Managed MySQL and Oracle databases  
 –   Scalability, automated backup, replication     

•   Other services:

 –    SQS: message queue  
 –   CloudFront : content delivery network  
 –   ElastiCache: caching  
 –   Route 53: Cloud DNS  
 –   SES: email          

14.5     Comparison of AWS and Windows Azure: 
Applications Development 

 While deploying an initial Web application on the cloud, care is taken to leverage 
the niche technologies provided by the environment. This section performs a com-
parative analysis of the above-mentioned features in building a Web application on 
Amazon Web Services against Windows Azure. 

14.5.1     Local Application Development Setup 

 Apache is an application server with development in PHP and storage in MySQL 
database. Figure  14.7  depicts the primary setup.

14.5.2        Migrating to the Cloud 

  AWS : In AWS, this means an Amazon EC2 Instance, an Elastic IP, and backups to 
the Amazon S3 storage service. 

  Windows Azure : In Windows Azure, the counterpart to EC2 is Windows 
Azure Compute. Specify a role (hosting container) and number of VM instances. 
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Choose a worker role (the right container for running Apache) and one VM instance. 
Upload metadata and an application package, from which Windows Azure Compute, 
Windows Server VM instance is created. An input endpoint is defi ned which 
provides accessibility to the Web site. Backups are made to the Windows Azure 
Storage service in the form of blobs or data tables.  

14.5.3     Design for Failure 

 Keep application logs and static data outside of the VM server by using a cloud 
storage service. Make use of database snapshots, which can be mapped to look like 
drive volumes as in Figs.  14.8  and  14.9 .

     AWS : The logs and static data are kept in the Amazon S3 storage service. Root 
and data snapshot drive volumes are made available to the VM server using the 
Amazon Elastic Block Service (EBS). 

  Windows Azure : Logs and static data are written to the Windows Azure Storage 
service in the form of blobs or tables. For snapshots, a blob can be mapped as a drive 
volume using the Windows Azure Drive service. As for the root volume of the VM, 
this is created from the Windows Azure Compute deployment just as in the previous 
confi guration.  

  Fig. 14.7    Local application 
setup [ 23 ]       
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14.5.4     Content Caching 

 Take advantage of edge caching of static content. Use content distribution network 
to serve up content such as images and video based on user location as in Fig.  14.10 .

    AWS : Amazon CloudFront is the content distribution network. 
  Windows Azure : The Windows Azure Content Delivery Network (CDN) can 

serve up blob content using a network of 24+ edge servers around the world.  

  Fig. 14.8    Application deployment in AWS and Azure [ 23 ]       

  Fig. 14.9    Updated fi gure—design for failure [ 23 ]       
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14.5.5     Scaling Database 

 In preparing to scale, the setup must move beyond a self-hosted database on a single 
VM server instance. By using a database service outside of the compute VM, use 
multiple compute VMs without regard for data loss as in Fig.  14.11 .

    AWS : The Amazon Relational Database Service (RDS) provides a managed data-
base. Andy can continue to use MySQL. 

  Windows Azure : Switch over to SQL Azure, Microsoft’s managed database 
service. Data is automatically replicated such that there are three copies of the 
database.  

14.5.6     Scaling Compute 

 With a scalable data, scale the compute tier, which is accomplished by running 
multiple instances as in Fig.  14.12 .

    AWS : Multiple instances of EC2 through the use of an Auto-Scaling Group. 
Load-balancing Web traffi c to the instances by adding an Elastic Load Balancer 
(ELB). 

  Windows Azure : The input endpoint comes with a load balancer. The worker role 
is a scale group—its instances can be expanded or reduced, interactively or program-
matically. The only change that needs to be made is to increase the worker roles 
instance count; a change can be made in the Windows Azure management portal.  

  Fig. 14.10    Updated fi gure—caching static content [ 23 ]       
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14.5.7     Failover 

 To keep the service up and running in the face of failures, one must take advantage 
of failover infrastructure as in Fig.  14.13 .

    AWS : The primary Amazon RDS database domain has a standby slave domain. 
The solution can survive the failure of either domain. 

  Fig. 14.11    Updated fi gure—database service [ 23 ]       

  Fig. 14.12    Updated deployment—compute elasticity [ 23 ]       
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  Windows Azure : The Windows Azure infrastructure has been providing  fault 
domains   all along. Storage, database, and compute are spread across the data center 
to prevent any single failure from taking out all of an application’s resources. At the 
storage and database level, replication, failover, and synchronization are automatic. 
Since the compute was only one instance, this could be a possible hurdle, which can 
be addressed by running at least two instances in every role.   

14.6     Future Research 

 The future of cloud computing continues to show promise and gain popularity. One 
should be able to  plug in  an application to the cloud in order to receive the power it 
needs to run, just like a utility. As an architect, you will manage abstract compute, 
storage, and network resources instead of physical servers. Scalability, security, 
high availability, fault tolerance, testability, and elasticity will be confi gurable prop-
erties of the application architecture and will be an automated and intrinsic part of 
the platform on which they are built. 

 However, we are not there yet. Today, you can build applications in the cloud 
with some of these qualities by implementing the best practices highlighted in this 
chapter. Best practices in cloud-computing architectures will continue to evolve, 
and as researchers, we should focus not only on enhancing the cloud but also on 
building tools, technologies, and processes that will make it easier for developers 
and architects to plug in applications to the cloud easily. 

  Fig. 14.13    Updated deployment—fault tolerant [ 23 ]       
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 The challenge of transitioning from your local development environment seems 
to bother every developer; it is diffi cult to transition from doing stuff locally and 
trying it out to working in the cloud. The maturity of IDEs that can handle cloud 
environment is still a work in progress as well. The more seamless the transition 
from the local test environments to cloud-based environments, the more productive 
the development cycles will be. Another challenge is data security; as the applica-
tion will be hosted on third-party infrastructure, the safety of the data is always at 
risk. There is a greater need to address this necessity both at the application level 
and infrastructure level.  

14.7     Conclusion 

 Cloud-based application development process has its share of advantages and dis-
advantages, but many of the inherent issues are alleviated by following the basic 
design patterns and frameworks described in this chapter. 

 We can enumerate the reasons to choose either of the frameworks mentioned, 
clearly because the type of application that needs to be developed requires that right 
kind of environment. Reasons to use GAE (Google App Engine) are:

•    You don’t need to pay until you see a visible need to scale.  
•   Google services like Gmail and Calendar plug in are very easy.  
•   Good choice if Python or Java is used as a language.  
•   Locally tested app runs as is on GAE.  
•   Allows running multiple versions of on the same data store.    

 Reasons to use Azure are:

•    Better suited for SOA (Service-Oriented Architecture)-based applications  
•   Application staging feature helps during deployment  
•   Two storage solutions—SQL Azure (relational) and Azure Storage 

(non-relational)  
•   Best suitable for .NET-based applications    

 Reasons to use Amazon Web Services are:

•    Have footprint across several Linux distributions and also Windows support, 
while Azure allows Windows only  

•   Have support for myriad language platforms like C#, PHP, ASP.NET, Python, 
and Ruby  

•   Provide off-the-shelf load balancing, varying storage sizes to instances, and 
install custom software    

 While making the choice of a platform, several reasons, as listed above, need to 
be considered to aid in the effi cient cloud application development.     
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