
283Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_13, © Springer-Verlag London 2013

 Abstract Development of cloud applications must consider many aspects inherent
in the distributed nature of clouds, mainly those related to elasticity, high access
level to computational resources, multi-tenant behavior, transparency, pay-per-use
model, and resource scalability. In addition, portability is a key feature that must
be present in any development framework to allow extensions and simplify resource
sharing by standardized interfaces. Open source approaches can be used, but
the model must be composed of independent parts to optimize the availability of
active components in the infrastructure. Hybrid cloud models are interesting because
widely acceptable solutions can be developed without “reinventing the wheel.”
Private clouds are more suitable for keeping restricted data or supporting services of
small enterprises or institutions. However, their infrastructure must offer alterna-
tives to provide services outside their own domain. In this context, a private cloud
can use frameworks of public clouds and aggregate services to support the develop-
ment of new applications. This generally occurs in PaaS models, where the platform
offers pre-confi gured tools to interact with services of other domains. Security
issues must also be considered at all stages of development, as most of the commu-
nication takes place among services located in different domains, linked by Internet
connections. Solutions such as OpenID guarantee that public cloud services are
used for the purpose of authentication, but additional security features in the source
domain must be assured. In this chapter, a development framework is presented to
guide the development of widely acceptable cloud applications, following standard-
ized open source solutions. This framework, originally developed for a robotic envi-
ronment, can be extended to support other cloud environments. The study presents

 Chapter 13
 Development of Cloud Applications in Hybrid
Clouds with Support for Multi-scheduling

 Lucio Agostinho Rocha

 L. A. Rocha (*)
 Department of Computer Engineering and Industrial Automation (DCA)
at the School of Electrical and Computer Engineering (FEEC),
State University of Campinas , São Paulo , Brazil
 e-mail: l089278@dac.unicamp.br

284

aspects related to multi-scheduling of virtual machines and suggests how virtualized
applications can be developed with different methodologies, such as dynamic IP ,
Web service with SOAP communication, MapReduce approach, and OCCI - based
infrastructure.

 Keywords Cloud computing • Hybrid cloud • OCCI • OpenID • Cloud framework •
 MapReduce • Virtualization

13.1 Introduction

 The development of distributed cloud architectures deals with issues of scalability,
elasticity over demand, broad network access, usage measurement, security aspects
such as authorization and authentication, and many other concepts related to multi-
tenant services in order to serve a high number of concurrent users over the Internet.
The nature of a distributed cloud has implications about how the offered services are
organized over different administrative domains. In order to extend the Service-
Level Agreement (SLA) to thousands of users, the support architecture must have
interfaces compatible with other cloud providers.

 This work presents a cloud framework directed to the requirements of portability,
respecting the Open Grid Forum (OGF) and Open Cloud Computing Interface
(OCCI) patterns [1]. The framework has kernel components that guide the extension
of the whole system. Also contemplated are the methodology, architecture, and
wrapper of open source APIs , such as OpenID [2], to allow aggregation of other
cloud services to the system. We discuss how other cloud technologies model their
own structures. Our goal is to illustrate mechanisms to integrate private and public
clouds in a hybrid model.

 The above-mentioned concepts have been used to develop a real cloud laboratory
offering different Linux operating systems as services. Unlike Amazon EC2 [3] or
Windows Azure [4] cloud environments, in this cloud architecture, Linux systems
can be used to interact with robotic resources accessible only inside the laboratory.
In addition, this architecture allows the inclusion by the user of compatible virtual
machines into the system. This system is unique in that it deals with network issues
only during the period reserved for robotic experiments. The framework also
supports multiple scheduling approaches, that is, multi-scheduling.

 This framework was designed according to the Layered Design Pattern, a well-
defi ned standard where lower levels provide services to higher ones. Each level is
defi ned in such a way as to allow development independently from the others,
according to interfaces compatible with open patterns such as OCCI .

 SSL and X.509 digital certifi cates guarantee the security of Internet access from
outside the institution. The main goal of this security infrastructure is to reduce the
effort required to keep the system reliable in different physical infrastructures.
Scientifi c applications can benefi t from this approach: For example, grid computing
middleware such as Globus Toolkit [5] can be virtualized in VMs of the infrastructure,

L.A. Rocha

285

reducing the complexity of developing secure intensive computational facilities for
massive amounts of data. In robotics, virtualization in cloud is an alternative to keep
collaborations between students and to promote robust integration of geographically
distant robotic resources.

13.2 Framework for Distributed Cloud Applications

 Distributed frameworks must offer sensible SLA and provide high-quality services
to concurrent users. In this section, we describe an approach in robotics to develop
frameworks associated with scheduling techniques of virtual resources in the design
of cloud infrastructures. Extended versions of this work were reported in [6] and [7].

 Networked robotics is a trend that favors the distribution of robotic applications
across a set of processors located inside and outside robots. The motivation for net-
worked robotics is the availability of network technologies allowing robots to take
part in comprehensive networking environments aggregating processors, environ-
mental sensors, mobile and stationary robots, and wireless gadgets, among other
networked devices. Many software platforms have been proposed to simplify the
development of networked robotic applications, offering a set of services to the
applications such as access control, federated authentication, and resource protec-
tion. REALcloud is one such cloud platform for networked robotics. Its architecture
has four main software packages, as shown in Fig. 13.1 .

 The embedded package consists of HTTP microservers capable of running on
robots’ onboard processors with limited processing power. Microservers have an
HTTP (Hypertext Transfer Protocol) interface aggregating basic robot operations
(move, turn, sense, etc.). The Protocol Handler package intercepts all HTTP requests
targeted to the robots and performs functions such as security checks, HTTP proxy-
ing, and network address translations. The front-end package offers APIs
(Application Programming Interfaces) and Web components for manipulating the
robots. APIs are supplied in several programming languages, such as C++, Java,
Python, C#, Matlab, and LabView. The management package offers a wide range of
services related to users, resources, domains, and federations. An important service
is the access service where authenticated users start an access session for the
resources they previously reserved.

 Fig. 13.1 Main packages of the REALcloud platform

13 Development of Cloud Applications in Hybrid Clouds with Support…

286

 REALcloud is entirely based on Web technologies. As such, management
services and robots are accessed via HTTP . The REALcloud platform has been
used primarily in Web labs over the public Internet. In such environments the user
develops robotic applications in his/her own computer to control robots over the
network. Security is provided by the management and Protocol Handler packages.
Although the platform performs adequately for applications requiring small data
transferring and processing rates (e.g., sonar-based autonomous navigation), bottle-
necks may degrade applications requiring effi cient communication and high
processing power. Slow Internet connections and HTTP inspections introduce a
delay in the control that impairs performance of distributed robotic applications.
The processing power of the user’s computer also causes delays in control, mainly
when control actions are computed via CPU intensive algorithms such as those
based on computer vision and computational intelligence techniques.

 In order to avoid the delays introduced by slow Internet connections and by
limitations of the user’s computer, an environment has been developed where user’s
applications run on servers directly connected to the resources manipulated by the
application. The servers can provide resource sharing with much more computer
power than the user’s processor. Virtualization is the key technology for achieving
the desired performance. In addition, applications can take advantage of specialized
hardware installed on the servers such as GPUs (Graphics Processing Units) and
FPGA (Field-Programmable Gate Array) specialized boards (e.g., for stereo vision
processing).

 In the case of the networked robotic platform, virtualization helps bringing appli-
cations closer to the robots they operate, avoiding long network delays and provid-
ing the processing power required by applications. A user can own his/her own VMs
with the proper operating system plus the network robotic software necessary for
developing and running the applications. This software includes the client side of
REALcloud platform, robotic frameworks, APIs , and simulators. Isolation assures
that applications running on different VMs do not interfere with each other. This
solution requires one or more servers installed in the robotics lab, an inexpensive
resource nowadays.

 In order to take advantage of virtualization, an architecture must be designed to
offer a virtualized environment where the distributed robotic applications will run.
In this architecture, resource protection issues must be addressed in order to prevent
unauthorized access to robots and other devices by the applications running on
VMs. Processor allocation and VM networking sharing are important to assure an
adequate distribution of processing power to applications. REALcloud offers the
cloud platform as a service in a private (and small) cloud computing infrastructure.
Both the client and server sides of the platform are deployed inside VMs. At the
server side (management and Protocol Handler packages of Fig. 13.1), virtualiza-
tion favors software distribution to the members of a federation as all the platform
software comes installed and confi gured in a VM image compatible with a chosen
virtualization solution. Each federated domain must deploy instances of this VM to
manage and protect the robotic resources.

L.A. Rocha

287

 At the client side, user’s applications running inside VMs access the robotic
resources with low communication latency and appropriate computing power. The
processors where the VMs run and the robotic resources are connected to the same
network or to networks a few hops apart. In order to speed up the interaction with
robotic resources, applications running inside VMs access the robotic resources
without HTTP inspection by the Protocol Handler package.

 The REALcloud environment is built around two Web services (Fig. 13.2): VM
 management service that allows users and administrators to manage VMs and
 session validation service that allows applications running on VMs to access the
robotic resources.

 The VM management service controls the VM’s life cycle. It allows confi guring,
initiating, reconfi guring, stopping, and destroying VMs. This service relies on com-
mand line interfaces supported by the chosen virtualization solution. Once a VM is
created, the service confi gures the VM host’s fi rewall in order to allow access to the
VM from outside networks. Access is provided by the NAT (network address trans-
lation) and the port forwarding network functions. The session validation service is
responsible for assigning privileges to the VMs belonging to users holding valid
access sessions. It gives the same protection as provided by the Protocol Handler
package (still necessary for accessing resources from the outside networks).

Cloud
Front-end

Session
Validation

Firewall

Virtualizer

Multi-
Scheduler

REALcloud core package

Robotic core environment

VM
Management

Protocol
Handler

Embedded

Management

Front-end

 Fig. 13.2 Architecture of the REALcloud framework

13 Development of Cloud Applications in Hybrid Clouds with Support…

288

 As soon as a user initiates a valid access session, the system creates a session
identifi er on a Web interface provided by the session validation service. The session
validation service queries the cloud access service running in the domain in order to
check whether the session ID is a valid one. When the access session terminates, the
session validation service reclaims the extra resources allocated to the VM and
blocks its access to the resources. Differently from the Protocol Handler package
that operates at the application layer, fi rewalls operate at the network (IP) layer,
bringing two important advantages: (1) The decision whether to block or allow the
traffi c to pass is much faster as it is performed at the packet forwarding level, and
(2) any protocol, and not only HTTP /HTTPS , is allowed to pass, as the forwarding
decision requires no inspection on the application-level protocol.

13.3 Developing Distributed Applications in the Framework

 The next steps show how distributed cloud applications can be developed inside the
infrastructure according to the features of cloud environments:

 Dynamic IP : The VM management component provides dynamic IPs offered
by the infrastructure using network bridges. IP table rules are used by the cloud
application to establish communication. For instance, the URL “ https://staticIP:
clientVMPort/ ,” with the same static IP, can be shared by many VMs through
network bridges between the server host and the users’ VMs. As shown in Fig. 13.3 ,
the following script illustrates how the server host can be confi gured for this
purpose.

 Web Services : They are an effi cient approach to the development of cloud ser-
vices. The VM management component can be used to register the Web services
provided by the cloud. Services are linked in a REST (Representational State
Transfer) approach; that is, each cloud service has a URL accessible by the Internet.
Web service methods are available by WSDL interfaces. Remote clients can have
access to the Web service functionalities by querying the offered methods in this
Web interface. Composition of services can be achieved by the combination of Web
services. The communication channel can use SOAP (Simple Object Access
Protocol) and can be encrypted by the Axis 2 toolkit [8]. As shown in Fig. 13.4 , the
following code fragment illustrates how a cloud application can be deployed in the
cloud using Axis 2 Web services:

 MapReduce Approach : Cloud applications can also be developed according to a
MapReduce approach, using pre-confi gured VMs of the SaaS model. Ready-to-go
jobs are another approach to develop distributed cloud applications. Web services
can be combined when users’ applications are submitted by querying the methods
declared in the WSDL interface of the required service.

 MapReduce is a programming model geared to the parallel processing of large
amounts of data, splitting jobs into a set of independent tasks [9 , 10]. It is widely
used in searching mechanisms such as Google, Yahoo!, Facebook, Amazon AWS,
and Last.fm. The model is noted for its simplicity. A cluster approach is used to
distribute and perform the parallel processing of data in multiple cluster nodes,

L.A. Rocha

https://staticIP:clientVMPort/
https://staticIP:clientVMPort/

289

known as worker nodes. The master nodes split the entry data into a set of indepen-
dent parts (chunks) and distribute them to the worker nodes. A worker node per-
forms a further split, if necessary, in a tree model. Each worker node processes a
slice of the main job and forwards its result to the master node. Reduction tasks join
the results of one or more worker nodes.

 Frameworks to process customized data simplify the development of distributed
cloud applications. Hadoop [10] is an example of a framework following the
MapReduce model. Hadoop is devoted to homogeneous clusters, and the master
node manages the slave nodes with similar confi gurations. The entry fi le must be
stored in the Hadoop File System (HDFS). This fi le is split in parts of 64 MB
(chunks) by default but can be replicated to reduce fault tolerance. Each chunk is
processed by a mapping task that generates a list of <key-value> pairs. The lists are
grouped in buckets based on the keys. When each task is processed, reduction tasks
are applied to the lists according to the keys. Figure 13.5 is based on [11] and illus-
trates this model where master and slave nodes can run on cloud VMs.

 Fig. 13.3 Script for establishment of network bridges

13 Development of Cloud Applications in Hybrid Clouds with Support…

290

 Fig. 13.4 Example of function for Axis 2 Web service

 Fig. 13.5 MapReduce for cloud applications in the SaaS model

L.A. Rocha

291

 Open Cloud Computing Interface (OCCI)- Based Infrastructure : OCCI is a set of
specifi cations maintained by the Open Grid Forum (OGF) to defi ne interfaces to
deliver cloud resources. OCCI is a RESTful protocol and API for management tasks
acting as a service front-end to a provider’s internal management framework. The
standards are described in three documents: OCCI Core [12] describes the formal
defi nition of the OCCI Core Model; extensions in this API will be discoverable and
visible to an OCCI client at run-time. OCCI Infrastructure [13] defi nes the model to
extend the IaaS and describes resource types, their attributes, and actions over them.
OCCI HTTP Rendering [14] defi nes the mechanism to access the OCCI Core Model
in a RESTful approach using the HTTP protocol.

 As an example, the REALcloud infrastructure offers a set of Web services for the
development of new cloud applications and HTTP syntax for the dynamic discovery
of the available users’ virtual machines. “ https://cloudStaticIP:cloudPort/Realcloud/
resources.jsp?action=<VNC|START|STOP|DETAILS>&resourceName=VM _ID ”
is the URL to interact with the set of actions of the user virtual machine. HTTP
queries are used to start a VNC session between the client Web browser and the
cloud environment. The other actions are to start, stop, and query details about each
virtual machine of the authenticated user. Figure 13.6 shows the Web client inter-
face; a RESTful approach with HTTP queries is also available. This option is impor-
tant to acquire management information about all virtual machines in the cloud
environment. As shown in Fig. 13.7 , the URL “ https://cloudStaticIP:cloudPort/
CloudInterface?id=VM_ID ” returns the OCCI -based XML data.

 Fig. 13.6 Web client application based on OCCI specifi cations

13 Development of Cloud Applications in Hybrid Clouds with Support…

https://cloudStaticIP:cloudPort/Realcloud/resources.jsp?action=<VNC|START|STOP|DETAILS>&resourceName=VMVM_ID
https://cloudStaticIP:cloudPort/Realcloud/resources.jsp?action=<VNC|START|STOP|DETAILS>&resourceName=VMVM_ID
https://cloudStaticIP:cloudPort/CloudInterface?id=VM_ID
https://cloudStaticIP:cloudPort/CloudInterface?id=VM_ID

292

 Multi - scheduler Infrastructure : The multi-scheduling approach employs different
scheduling algorithms to distribute cloud resources according to resource features
such as CPU availability, RAM usage, and storage capacity. Many cloud solutions
use multi-scheduling approaches to optimize usage of their shared resources [15].

 Eucalyptus [16] employs an allocation resource process dispatched by the cloud
provider, which ends when the requested VM is instantiated in a network node.
When an allocation request is placed, the CLC (cloud controller) component deter-
mines which CC (Cluster Controller) component will be able to instantiate the VM.
This is done by querying for cloud resources and selecting the fi rst CC component
that has available resources.

 Nimbus [17] manages its resources by means of the Workspace Resource
Manager component. It gives the cloud developer control over manageable node
groups using the libvirt library [18], jointly with the Workspace Pilot component,
which receives user jobs and performs scheduling with additional schedulers, such
as Condor [19].

 REALcloud uses a multi-scheduling approach similar to OpenNebula [20],
as shown in Fig. 13.8 : an embedded default scheduler with a rank algorithm to
distribute its VMs according to VM requirements and the servers’ performance.
The pseudo-code below shows the algorithm for resource allocation. The parameters
used for entry requests are host, CPU and RAM availability, and type of hypervisor.

 Fig. 13.7 OCCI -based document obtained in the RESTful HTTP query

L.A. Rocha

293

The rank function sorts hosts according to their availability and the users’ require-
ments to instantiate VMs. New scheduling algorithms can be implemented based on
this policy.

 Identity Management with OpenID : Public cloud services of authentication and
authorization can be aggregated into private clouds in a model known as hybrid
cloud, a combination of public and private cloud models.

 This approach is useful to avoid keeping large databases in the internal infra-
structure; that is, valid users in trusted domains can be authenticated in the private
cloud. However, authorization must be managed by the internal private infrastruc-
ture. This approach can be used in the cloud front-end package. Figure 13.9 shows
the basic authentication mechanism with OpenID . OpenID is a passive protocol that
uses HTTP forwarding between users’ applications and the identity provider.
Requests to access the authentication service are based on HTTP protocol. Users
must fi rst register themselves in an identity provider with OpenID support, which in
turn uses the user account to generate a unique URL in the Web. The URL is used
by the client’s application as an argument to discover the authentication service;
that is, authentication is a service provided by the identity provider. This URL is
used by the client application to query the identity provider that keeps the user’s
account. In the following step, users not previously authenticated must provide their
credentials (typically, user ID and password) to the authentication service of the
identity provider, identifi ed by URL. OpenID also has mechanisms to delegate rules
between peers of the same circle of trust.

 At step 1, a user with a registered identity in an OpenID provider (Google
account, for instance), but not previously registered in this domain, wants to access
resources in a cloud Web site having an OpenID authentication service. In step 2,
the user enters the OpenID URL that he/she received from the identity provider. In
step 3, the OpenID service of the cloud Web site redirects the user’s browser to the
authentication service of its identity provider. In step 4, two options are available: If
the user has been previously authenticated in the identity provider, the browser is
redirected to the validation service of the cloud Web site. If the user has not been
previously authenticated, the identity provider queries about credentials (user ID
and password) to proceed with browser redirecting. In step 5, the identity provider

 Fig. 13.8 Algorithm for resource allocation in REALcloud

13 Development of Cloud Applications in Hybrid Clouds with Support…

294

Web site uses a verifi cation service to validate the URL address that queries about
authentication with OpenID. This step is necessary for security reasons to avoid
phishing attacks (untrusted URL address). Another reason is that many sites want to
have additional information about newer users, such as user name, alternative
e-mail, and telephone number. In step 6, the identity provider redirects the user to
the cloud resource URL.

13.4 Overview of Cloud Distributed Environments

 The complete hybrid cloud environment was developed to support many concurrent
users by simplifying the usage of virtual machines inside and outside the infrastruc-
ture while keeping the requirements of availability, reliability, network performance,
and security of the whole system. This section describes the architecture, APIs , and
methodology to develop distributed applications in this environment.

 Figure 13.10 shows the main components of a generic cloud computing environ-
ment. According to this model, more specific environments can be implanted
by specializing each component. There is no clear rule requiring the use of all com-
ponents, but more complete environments should recognize their main parts in this
model. A description of each one follows.

 Fig. 13.9 Basic authentication with OpenID

L.A. Rocha

295

13.4.1 Service Provider

 This component contains the main elements that make this environment functional.
The versatility of the service provider component is supported by many open source
solutions, mainly to increase the possibility of linkage with other cloud interfaces,
extending and developing other compliant components without commercial restric-
tions, and reducing the usage of closed patterns. The bottom level of this core model
defi nes the hardware / fi rmware component. Distinct environments are highly depen-
dent on the base infrastructure. Server architecture (e.g., x86 or x64) and the avail-
ability of virtualization in hardware (e.g., CPUs with registers to support
virtualization) can have a direct impact on the performance of the whole cloud sys-
tem. The hardware includes physical servers, routers, switches, storage devices,
backup drivers, and fi rewalls. Each communication device in this base network is
offered by the datacenter provider.

 Selecting the operating system is important because the type of virtualization
will depend on it. Proprietary operating systems are regulated by commercial
licenses, increasing implantation costs in future security updates and/or software
expansion. Open source solutions bring the advantage of cost reduction, but the type
of management service must use APIs compatible with the type of virtualization
solution. Finally, the provider must consider the need of dedicated servers. For
example, cloud solutions such as Xen XCP [22] use dedicated hosts to offer their
services.

 The hypervisor is the software layer between the hardware and the operating
system and is responsible for offering shared resources to large numbers of concurrent
virtual machines (VM). The hypervisor runs in supervisor mode and manages the
scheduling of resources (CPU cycles, memory slices, disk storage, network linkage,

 Fig. 13.10 Overview of the main components of cloud computing environments (Based on [21])

13 Development of Cloud Applications in Hybrid Clouds with Support…

296

and so on) offered by the base infrastructure. Hypervisors intercept requests from
VMs and emulate privileged instructions. Hypervisors running directly over the
hardware are known as type 1 (e.g., Xen), and those running above the operating
system are known as type 2 (e.g., VirtualBox [23]).

 The hypervisor is also responsible for emulating virtual resources such as I/O
devices, CD/DVD drives, mouse, keyboard, and network interfaces. This component
must look after several security issues. Vulnerabilities in memory access security
rules in the hypervisor can lead to unauthorized access to the virtual machine, com-
promising data reliability. Cloud solutions such as Abiquo [24] and OpenNebula
support many hypervisors, each kept in a different server host. In this case a comple-
mentary management of these cloud nodes is necessary. These virtual resources are
provided by the management component. The management component also offers
other resources such as storage, complementary features to computing (e.g., more
cycles/cores of CPU, RAM), network bandwidth, and Network File System (NFS).

 Much of the success of cloud computing is related to the rapid development of
virtualization techniques, accomplished by technical advancements and cost reduc-
tion in computational hardware. Virtual machines (VMs) are an example of the
success of this theme. Many VMs can be instantiated in the same server host, help-
ing reduce the number of physical servers by means of a more effi cient usage of
resources, a technique known as server consolidation. A complete operating system
can be installed inside a VM , which in turn can be distributed or migrate to another
server host. Migration is possible if the destination server host has a compatible
virtualization interface. The format of different VMs can be converted to other
formats if the virtualization toolkit provides this feature, contributing to distribute
“ready-to-use” systems to distinct cloud providers. In addition, many cloud provid-
ers, such as Amazon EC3 and GoGrid [25], and cloud solutions, such as Eucalyptus,
OpenNebula, and Abiquo, provide templates of pre-confi gured VMs for their
environments.

 Cloud applications are inherently distributed applications with interfaces to inter-
act with the services provided by the cloud. The main consideration in their design is
that these applications have to be supplied by the cloud environment, whether using
virtualized services or any other technology with Internet access such as HTTP or
SOAP . Distributed cloud applications are different from conventional applications
with remote access, mainly because the environment has the features of [26]:

 Elasticity : Shared resources should be provided to cloud applications on demand,
that is, as soon as the cloud applications need them, but only for the period of
usage. The cloud management system should reallocate non-used resources
when the applications no longer need them.

 High access level to computational resources : Cloud applications should be acces-
sible by a gamut of different remote devices: laptops and desktops, mobile
phones, smart phones, tablets, and so on.

 Multi - tenant behavior : The same cloud application can be used by multiple users
(tenants). This model is valuable because multiple client applications can share
the same remote application. A single instance of the software runs on the server,
providing services to many concurrent client applications.

L.A. Rocha

297

 Transparency : Cloud applications are offered independently from their physical
location, and although users need not care about where their applications run
inside the cloud, this information should be given by the cloud provider. Legal
restrictions in some countries do not allow some particular contents to be
 provided in their geographical location and/or jurisdiction.

 Pay - per - use model : Billing is proportional to the usage of computational resources,
similarly to traditional bills of electricity, water, and natural gas.

 Scalability : Consumption of shared computational resources or the increase of
cloud applications and users should not degrade the performance of other con-
current cloud applications in the same domain. This issue is a consequence of the
elasticity model.

 Different models to provide service are described in the literature:

 PaaS (Platform as a Service): Users can develop their own applications with tool-
kits provided by the cloud platform. Communication services are also available,
for example, Web services, storage, and programming languages. Examples are
Ning [27] and Microsoft Windows Azure Platform [4].

 SaaS (Software as a Service): The cloud provider enables usage of exclusive user
applications and/or applications provided by the cloud environment, such as
enterprise e-mails, discussion groups, Web site toolkits, and workfl ow applica-
tions. Examples are Salesforce [28] and Google Apps [29].

 IaaS (Infrastructure as a Service): Computational resources such as storage, high-
performance computing (HPC), high network bandwidth, logical servers, and a
set of other resources and devices are provided by the infrastructure. Examples
are Amazon AWS and FlexiScale [30].

 * aaS (Everything as a Service): Any services and/or application available in a cloud
model such as a combination of the previously cited models.

13.4.2 Security

 The main issues about security can be grouped according to their importance to the
software-level (cloud applications) and to the hardware-level infrastructure. These
issues should be addressed by each element in the service provider component.

 Software - level security deals with the role of the communication protocol in the
privacy, integrity, and authentication in interactions with cloud applications [31].

 Privacy exists when only sender and receiver are able to understand the com-
munication. If someone eavesdrops on the communication channel, its contents
should not be understood by the third party.

 Integrity is guaranteed when the receiver can be sure that he/she acquired the
message exactly as sent by the other party.

 Authentication is relevant because it increases the security access level to cloud
services. Over the Internet, the HTTPS protocol, session cookies, and X.509 certifi -
cates are options to guarantee the end-to-end privacy between cloud services and
their users.

13 Development of Cloud Applications in Hybrid Clouds with Support…

298

 Communication with SSL uses a secure channel to forward data between the
server and the client application. An authenticated channel can be built using digital
signatures and a public key infrastructure. In addition, the cloud management
system should be able to provide tools to manage the authentication of its users to
ensure confi dentiality, as well as authorization techniques (e.g., role-based access
control – RBAC) to differentiate the access to services [32 , 33]. If the software is
provided by or developed in the cloud, the platform needs to keep policies to ensure
that no harmful software, such as worms, trojans, or viruses, can propagate in the
system.

 Security for infrastructure deals with the guarantee that access to cloud resources
is protected against external malicious users. Generally this can be achieved by
fi rewall rules between the public link access and the private cloud network (e.g.,
using IP table rules). Resource availability should be managed with techniques of
fail tolerance, load balance, patch management, monitoring, backup redundancy,
and others. However, this whole set of techniques will only be effective if clear rules
are kept to control personal access to physical hosts.

13.4.3 Service Consumer

 Cloud users have access to cloud services by interfaces compatible with the cloud
environment. Role - based interfaces allow different interactions with the cloud ser-
vices according to the role that each specifi c user plays in the environment. For
example, authenticated users must be able to log into the system, instantiate/stop
VMs, perform status queries, and so on, but administrative functions such as creat-
ing and removing VMs should be restricted to them. This same issue is seen in
collaborative applications such as Google Docs [34] and Picasa [35], where the
RBAC roles are applied to users.

 Service - Level Agreements (SLAs) should be regulated by the law of the country.
In scenarios where agility to accommodate unpredictable consumption is important,
SLAs are critical to defi ne the relationship between the cloud service provider and
its consumers. A more detailed report of this issue can be found in [36].

 Application Programming Interfaces (APIs) on the side of the service consumer
must also abide by the rules when interacting with remote services. APIs simplify
the development of new services, but the cloud provider must keep its APIs up to
date to avoid security risks.

13.4.4 Management

 Billing follows the pay-per-use model, in which the price charged is proportional to
resource consumption. OpenQRM [37] is an open source example of architecture
that allows billing in the private cloud and supports EC2 standards for APIs . It also

L.A. Rocha

299

supports virtualization techniques such as KVM [38] and Xen, as well as management
of hosts, virtual machines, and deployments. Virtualized images of Ubuntu, Debian,
and CentOS are supplied as templates. However, in many other private cloud solu-
tions, the billing component is not necessary.

 Load balance deals with how the infrastructure supports requests and how its
resources are maintained to achieve high performance and better utilization.

 The measurement component establishes metrics to perform several manage-
ment tasks.

 Provisioning deals with policies to offer resources to many concurrent users.
Again, policies must take into account availability, scalability when more resources
need to be provided by other domains, and resource scheduling. It is common for
each cloud solution to implement its own solutions to monitoring, but this task can
be carried out with open source middlewares, such as Nagios [39], an open source
tool allowing extensions by plug-ins. For instance, the NRPE (Nagios Remote
Plugin Executor) monitors the number of users logged in the system, CPU con-
sumption, memory used by each virtual machine, and number of active processes in
the server hosts [40].

13.4.5 Service Developer

 Publishing describes how services are provided and how they can be accessed,
either internally or over the Internet. For example, access to virtual machines can be
provided by a specifi c URL and/or via VNC protocol. In addition, applications can
show their methods in WSDL language, and communication can be done via the
HTTP or SOAP protocols. Many providers offer their own sets of APIs (e.g., Google
App Engine) to interact with their public services according to the PaaS model. Also
provided are exclusive frameworks , for example, Microsoft Azure with .NET frame-
work, and other development tools , for example, datasheets, corporate e-mail,
workfl ows, and other tools in Salesforce.com.

13.5 Final Considerations

 It is important that the development of cloud applications be guided by frameworks
to avoid a mix of unrelated structures. The main features of cloud domains need to
be considered jointly with the needs of the institution. Furthermore, open standards
contribute to simplifying the integration with other domains and extending the por-
tability of applications.

 Related issues in the development of cloud applications are about collaborative
applications such as Google Docs, storage in cloud with Dropbox, and Google
Drive. Such applications are highly dependent on network performance between the
client user and the service provider. In addition, cache routines in the client applica-
tion guarantee data integrity.

13 Development of Cloud Applications in Hybrid Clouds with Support…

300

 Many other security features aim to increase the reliability of data exchange.
Synchronization protocols are an example – the timestamp needs to be valid in both
sides. Network data encryption with AES 256 bit and SSL connection are extra
protection offered by some providers.

 Portability is another issue to be considered. Customizing the cloud service
according to the client device features is another challenge, for example, for Web
connection with mobile devices.

 Much research has been done on how to provide inter-cloud communication and
establish federations [41]. Cloud computing is emerging as a new paradigm to offer
services in the Web, one that can lead to new business opportunities, but the diffi cult
issue of security remains open. This is because in a cloud numerous applications are
available as services, many of which have their own access control systems.
Furthermore, applications that support service compositions across distinct domains
require authentication mechanisms that take into account this collaborative nature.

 Acknowledgments The author thanks Marcos Favero Florence de Barros for his language editing
services.

 References

 1. Open Cloud Computing Interface (OCCI): Available at: http://occi-wg.org/about (2012)
 2. OpenID Foundation Website: Available at: http://opened.net (2012)
 3. Amazon AWS. Amazon Elastic Compute Cloud (Amazon EC2): Available at: http://aws.ama-

zon.com/ec2 (2012)
 4. Windows Azure: Microsoft’s Cloud Platform: Available at: http://www.microsoft.com/

windowsazure (2012)
 5. Globus Toolkit: Welcome to the Globus Toolkit Homepage. Available at: http://www.globus.

org/toolkit (2012)
 6. Rocha, L.A., Olivi, L., Feliciano, G., Paolieri, F., Rodrigues, D., Cardozo, E., Guimarães, E.:

A cloud computing environment for supporting networked robotics applications, DASC. In:
IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, pp.
1110–1116. Sydney, Australia (2011)

 7. Rocha, L.A., Feliciano, G., Olivi, L., Cardozo, E., Guimarães, E.: A bio-inspired approach to
provisioning of virtual resources in federated clouds, DASC. In: IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, pp. 598–604, Sydney,
Australia (2011)

 8. Apache Axis2: Available at: http://axis.apache.org/axis2 (2012)
 9. Shankar, R., Narendra, G.: MapReduce programming with Apache Hadoop – process massive

data sets in parallel on large clusters. Javaworld. Available online at: http://www.javaworld.
com/javaworld/jw-09-2008/jw-09-hadoop.html (2008)

 10. Yahoo! Developer Network: MapReduce: Available at: http://developer.yahoo.com/hadoop/
tutorial/ (2012)

 11. Dean, J., Ghemawat, S.: Mapreduce: simplifi ed data processing on large clusters. Commun.
ACM 51 , 107–113 (2008)

 12. GFD.183 – OCCI Core (v1.1): Available at: http://www.ogf.org/documents/GFD-183.pdf
(2011)

 13. GFD.184 – OCCI Infrastructure (v1.1): Available at: http://www.ogf.org/documents/GFD-
184.pdf (2011)

L.A. Rocha

http://occi-wg.org/about
http://opened.net/
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://www.microsoft.com/windowsazure
http://www.microsoft.com/windowsazure
http://www.globus.org/toolkit
http://www.globus.org/toolkit
http://axis.apache.org/axis2
http://www.javaworld.com/javaworld/jw-09-2008/jw-09-hadoop.html
http://www.javaworld.com/javaworld/jw-09-2008/jw-09-hadoop.html
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://www.ogf.org/documents/GFD-183.pdf
http://www.ogf.org/documents/GFD-184.pdf
http://www.ogf.org/documents/GFD-184.pdf

301

 14. GFD.185 – OCCI HTTP Rendering (v1.1): Available at: http://ogf.org/documents/GFD-185.
pdf (2011)

 15. Gonçalves, G.E., Endo, P.T., Cordeiro, T.D., Palhares, A.V.A., Sadok, D., Kelner, J., Melander,
B., Mangs, J.: Resource allocation in clouds: concepts, tools and research challenges. In: Mini-
curso– SBRC. Campo Grande, MS, Brazil (2011)

 16. Johnson, D., Murari, K., Raju, M., Suseendran, R.B., Girikumar, Y.: Eucalyptus Beginner’s
Guide – UEC Edition – Ubuntu Server 10.04 – Lucid Lynx. CSS Corp. Available online at:
 http://cssoss.fi les.wordpress.com/2010/06/book_eucalyptus_beginners_guide_uec_edition1.
pdf (2010)

 17. Nimbus Project: Available at: http://www.nimbusproject.org/ (2012)
 18. Libvirt – virtualization API: Available at: http://www.libvirt.org (2012)
 19. Condor High Throughput Computing: Available at: http://research.cs.wisc.edu/condor/ (2012)
 20. OpenNebula Project Leads: Opennebula. Available at: http://opennebula.org (2012)
 21. Amrhein, D., et al.: Cloud Computing Use Cases White Paper Version 4.0. Technical Report

(2010)
 22. XenServer: Available at: http://www.citrix.com (2012)
 23. VirtualBox: Available at: http://www.virtualbox.org (2012)
 24. Abiquo: Architecture Overview: Available at: http://community.abiquo.com (2012)
 25. GoGrid: Available at: http://www.gogrid.com (2012)
 26. Martins, A.: Fundamentos de Computação Nuvem para Governos – Amãpytuna – Computaç

ão em Nuvem: serviços livres para a sociedade do conhecimento, chapter 2, pp. 47–65. ISBN:
978-85-7631-241-3. Alexandre de Gusmão Foundation (2010)

 27. Ning: Available at: http://www.ning.com (2010)
 28. Salesforce: Available at: http://salesforce.com (2012)
 29. Google Apps for Business: Available at: http://www.google.com/a/ (2012)
 30. FlexiScale public cloud: Available at: http://www.fl exiant.com/products/fl exiscale (2012)
 31. The Globus Toolkit 4 Programmer’s Tutorial: Fundamental Security Concepts. The three pil-

lars of the secure communication. Available at: http://gdp.globus.org/gt4-tutorial/singlehtml/
progtutorial_0.2.1.html (2005)

 32. Ramachandran, M.: Component-Based Development for Cloud Computing Architectures.
Cloud Computing for Enterprises Architectures, Computer Communications and Networks.
Springer, London (2011)

 33. Ahmed, K.E.U., Alexandrov, V.: Identity and Access Management in Cloud Computing.
Cloud Computing for Enterprises Architectures, Computer Communications and Networks.
Springer, London (2011)

 34. Google docs: Available at: http://docs.google.com (2012)
 35. Picasa Web Albums: free photo sharing from Google: Available at: http://picasaweb.google.

com (2012)
 36. Buck, K., Hanf, D.: Cloud SLA Considerations for the Government Consumer. Systems

Engineering at MITRE. Cloud Computing Series. The MITRE Corporation. Available online
at: http://www.mitre.org/work/tech_papers/2010/10_2902/cloud_sla_considerations_government.
pdf (2012)

 37. OpenQRM: Available at: http://www.openqrm-enterprise.com/ (2012)
 38. Kernel-based Virtual Machine: Available at: http://www.linuxkvm.org/page/Main_Page

(2012)
 39. Nagios – The Industry Standard in IT Infrastructure Monitoring: Available at: http://www.

nagios.org (2012)
 40. Chaves, S.A., Uriarte, R.B., Westphall, C.B.: Implantando e Monitorando uma Nuvem Privada.

In: VIII WCGA, Brazilian Symposium on Computer Networks and Distributed Systems,
SBRC. Gramado, RS, Brazil (2010)

 41. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable cloud computing
environments and the CloudSim toolkit: challenges and opportunities, high performance com-
puting & simulation. In: HPCS ’09. International Conference, Leipzig (2009)

13 Development of Cloud Applications in Hybrid Clouds with Support…

http://ogf.org/documents/GFD-185.pdf
http://ogf.org/documents/GFD-185.pdf
http://cssoss.files.wordpress.com/2010/06/book_eucalyptus_beginners_guide_uec_edition1.pdf
http://cssoss.files.wordpress.com/2010/06/book_eucalyptus_beginners_guide_uec_edition1.pdf
http://www.nimbusproject.org/
http://www.libvirt.org/
http://research.cs.wisc.edu/condor/
http://opennebula.org/
http://www.citrix.com/
http://www.virtualbox.org/
http://community.abiquo.com/
http://www.gogrid.com/
http://www.ning.com/
http://salesforce.com/
http://www.google.com/a/
http://www.flexiant.com/products/flexiscale
http://gdp.globus.org/gt4-tutorial/singlehtml/progtutorial_0.2.1.html
http://gdp.globus.org/gt4-tutorial/singlehtml/progtutorial_0.2.1.html
http://docs.google.com/
http://picasaweb.google.com/
http://picasaweb.google.com/
http://www.mitre.org/work/tech_papers/2010/10_2902/cloud_sla_considerations_government.pdf
http://www.mitre.org/work/tech_papers/2010/10_2902/cloud_sla_considerations_government.pdf
http://www.openqrm-enterprise.com/
http://www.linuxkvm.org/page/Main_Page
http://www.nagios.org/
http://www.nagios.org/

	Chapter 13: Development of Cloud Applications in Hybrid Clouds with Support for Multi-scheduling
	13.1 Introduction
	13.2 Framework for Distributed Cloud Applications
	13.3 Developing Distributed Applications in the Framework
	13.4 Overview of Cloud Distributed Environments
	13.4.1 Service Provider
	13.4.2 Security
	13.4.3 Service Consumer
	13.4.4 Management
	13.4.5 Service Developer

	13.5 Final Considerations
	References

