
3Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_1, © Springer-Verlag London 2013

Abstract Tim Berners-Lee’s vision of the Semantic Web or Web 3.0 is to trans-
form the World Wide Web into an intelligent Web system of structured, linked data
which can be queried and inferred as a whole by the computers themselves. This
grand vision of the Web is materializing many innovative uses of the Web. New
business models like interoperable applications hosted on the Web as services are
getting implemented. These Web services are designed to be automatically discov-
ered by software agents and exchange data among themselves. Another business
model is the cloud computing platform, where hardware, software, tools, and appli-
cations will be leased out as services to tenants across the globe over the Internet.
There are many advantages of this business model, like no capital expenditure,
speed of application deployment, shorter time to market, lower cost of operation,
and easier maintenance of resources, for the tenants. Because of these advantages,
cloud computing may be the prevalent computing platform of the future. To realize
all the advantages of these new business models of distributed, shared, and self-
provisioning environment of Web services and cloud computing resources, the tradi-
tional way of software engineering has to change as well. This chapter analyzes how
cloud computing, on the background of Semantic Web, is going to impact on the
software engineering processes to develop quality software. The need for changes in
the software development and deployment framework activities is also analyzed to
facilitate adoption of cloud computing platform.

Keywords  Software engineering • Semantic Web • Cloud computing platform 
• Agile process model • Extreme Cloud Programming

Chapter 1
Impact of Semantic Web and Cloud Computing
Platform on Software Engineering

Radha Guha

R. Guha (*)
ECE Department, PESIT, Feet Ring Road, BSK III Stage, 
560085, Bangalore, India
e-mail: radhaguha@pes.edu

4

1.1 Introduction

Since the inception of the World Wide Web (WWW) in 1990 by Tim Berners-Lee,
there has been a large warehouse of documents on the WWW, and the number of
documents is growing very rapidly. But, unless the information from these docu-
ments can be aggregated and inferred quickly, they do not have much use. Human
readers cannot read and make decisions quickly from large number of mostly irrel-
evant documents retrieved by the old search engines based on keyword searches.
Thus, Tim Berners-Lee’s vision is to transform this World Wide Web into an intel-
ligent Web system or Semantic Web [1–8] which will allow concept searches rather
than keyword searches. First, Semantic Web or Web 3.0 technologies will transform 
disconnected text documents on the Web into a global database of structured, linked
data. These large volumes of linked data in global databases will no longer be only
for human consumption but for quick machine processing. Just like a relational
database system can answer a query by filtering out unnecessary data, Semantic
Web technologies will similarly filter out information from the global database.
This capability requires assigning globally accepted explicitly defined semantics to
the data in the Web for linking. Then these linked data in the global database will
collectively produce intelligent information by software agents on behalf of the
human users, and the full potential of the Web can be realized.

Anticipating this transition of the Web where data integration, inference, and
data exchange between heterogeneous applications will be possible, new business
models of application deployment and delivery over the Internet have been concep-
tualized. Applications can be hosted on the Web and accessed via the Internet by
geographically dispersed clients. These XML (eXtensible Markup Language)-
based, interoperable applications are called Web services which can publish their
location, functions, messages containing the parameter list to execute the functions,
and communication protocols for accessing the service using it correctly by all. As
the same service will be catered to multiple clients, they can even be customized
according to clients’ likes. Application architecture and delivery architecture will be
two separate layers for these Web applications for providing this flexibility. XML-
based Web 2.0 and Web 3.0 protocols like Service-Oriented Architecture (SOA),
Simple  Object  Access  Protocol  (SOAP),  Web  Service  Description  Language 
(WSDL), and Universal Description, Discovery and Integration (UDDI) registry are 
designed to discover Web services on the fly and to integrate applications developed
on heterogeneous computing platforms, operating systems, and with varieties of
programming languages. Applications like Hadoop and Mashup [9, 10] can com-
bine data and functionalities from multiple external sources hosted as Web services
and are producing valuable aggregate new information and creating new Web
services. Hadoop and Mashup can support high-performance computing involving
distributed file system with petabytes of data and parallel processing on more than
hundreds to thousands of computers.

In another business model, the application development infrastructure like
processors, storage, memory, operating system, and application development tools

R. Guha

5

and software can all be delivered as utility to the clients over the Internet. This is
what is dubbed as cloud computing where a huge pool of physical resources hosted
on the Web will be shared by multiple clients as and when required. Because of
the many benefits of this business model like no capital expenditure, speed of
application deployment, shorter time to market, lower cost of operation, and easier
maintenance of resources for the clients, cloud computing may be the prevalent
computing platform of the future.

On the other hand, economies of all developed countries depend on quality software,
and software cost is more than hardware cost. Moreover, because of the involvement
of many parties, software development is inherently a complex process, and most of
the software projects fail because of lack of communication and coordination
between all the parties involved. Knowledge management in software engineering 
has always been an issue which affects better software development and its mainte-
nance. There is always some gap in understanding about what the business partners
and stakeholders want, how software designers and managers design the modules,
and how software developers implement the design. As the time passes, this gap in
understanding increases due to the increased complexity of the involvement of
many parties and continuously changing requirements of the software. This is more
so at the later stage when the software has to be maintained and no one has the
comprehensive knowledge about the whole system.

Now, with the inclusion of the Free/Libre/Open Source Software (FLOSS) [11]
pieces, Web services, and cloud computing platform, software development com-
plexity is going to increase manifold because of the synchronization needs with
third-party software and the increased communication and coordination complexity
with the cloud providers. The main thesis of this chapter is that the prevalent soft-
ware process models should involve the cloud providers in every step of decision-
making of software development life cycle to make the software project a success.
Also, the software developers need to change their software artifacts from plain text
documents to machine-readable structured linked data, to make them Semantic Web
ready. With this semantic transformation knowledge, management in software engi-
neering will be much easier, and compliance checking of various requirements
during project planning, design, development, testing, and verification can be
automated. Semantic artifacts will also give their product a competitive edge for auto-
matic discovery and integration with other applications and efficient maintenance
of their artifacts.

This chapter explores how Semantic Web can reduce software development
work with automatic discovery of distributed open source software components.
Also, Semantic Web techniques are explored that need to be incorporated in soft-
ware development artifacts to make them Semantic Web ready. Then, to realize the
many advantages of the cloud computing business model, how the well-established
software engineering process models have to adapt is analyzed. As the cloud pro-
vider is an external entity or third party, how difficult will be the interactions with
them? How to separate the roles of software engineers and cloud providers? As a
whole, cloud computing paradigm on Semantic Web background makes software
development project more complex.

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

6

In Sect. 1.2, background literatures on transformation to Semantic Web, cloud
computing platform, and software engineering are surveyed. In Sect. 1.3, first
emphasis is given on the need for producing software artifacts for the Semantic
Web. Secondly, how the software developers are coping with the changing trend of
application development on cloud platform with Web 2.0 and Web 3.0 protocols
and application deployment over the Web is reported. Thirdly, challenges of cloud
computing platform for software engineering are analyzed. In Sect. 1.4, an agile
process model which incorporates interaction with cloud provider is proposed and
analyzed. Section 1.5 concludes the chapter.

1.2 Literature Survey

1.2.1 Transformation to Semantic Web

World Wide Web was invented in 1990 by Tim Barners-Lee. Since then, the trans-
formation of the Web has been marked with Web 1.0, Web 2.0, and Web 3.0 tech-
nologies. In Web 1.0, the HTML (hypertext markup language) tags were added to
plain text documents for displaying the documents in a specific way on Web brows-
ers. Each document on  the Web  is  a  source of  knowledge or  a  resource.  In  the 
World  Wide  Web,  with  the  hypertext  transport  protocol  (HTTP),  if  the  URL 
(Universal  Resource  Locator)  of  any  Web  site  (document)  is  known,  then  that 
resource  can  be  accessed  or  browsed  over  the  Internet.  Domain  name  service 
(DNS) registry was developed to discover a machine on the Internet which hosts a 
Web page URL. This capability of Web 1.0 published  information pages which 
were static and read only. HTML’s <href> tag (a form of metadata) links two docu-
ments for human readers to navigate to related topics. In Web 1.0, for quick search
and retrieval, metadata (data about data) that describes the contents of electronic
documents or resources are added in the document itself, which has the same pur-
pose as indexes in a book or catalogues in a library. Search engines like Google and
Yahoo create metadata databases out of those metadata in Web documents to find
the documents quickly. In Web 1.0, the contents of the Web pages are static and the
meanings of the Web pages are deciphered by the people who read them. Web
contents are developed by HTML and user input is captured in Web forms in the
client machine and sent to remote server via a common gateway interface (CGI) for 
further processing.

In Web 2.0, XML (eXtensible Markup Language) was designed to give hierar-
chical structure to the document content, to transform it into data, and to transport
the document as data. Where HTML tags prescribe how to display the Web content
in client computer, the XML tags add another layer of metadata to query the
Web document for specific data. XML documents can be read and processed by
computers (by a parser) automatically and can be exchanged between applications
developed on heterogeneous computing platforms, operating systems, and varieties

R. Guha

7

of programming languages once they all know the XML tags used in the documents.
As for example, in order to use text generated by a Word Processor and data from 
spreadsheets and relational databases together, they all need to be transformed into
a common XML format first. This collaboration of applications is possible in a
closed community when all the applications are aware of the common XML tags.
Web 2.0 technologies also enabled pervasive or ubiquitous Web browsing involving
personal computers, mobile phones, and PDA (Personal Digital Assistant) running 
different operating systems like Windows, Macintosh, or Linux, connected to the
Internet via wired or wireless connections. Web 2.0 technologies like XML, DHTML, 
and AJAX (Asynchronous Java Script and XML) allowed two-way communica-
tions with dynamic Web contents and created social communities  like Facebook, 
MySpace, and Twitter. Web 2.0 has also seen the revolution of using the Web as the
practical medium for conducting businesses. An increasing number of Web-enabled
e-commerce applications like e-Bay and Amazon have emerged in this trend to buy
and sell products online.

But, for collaboration in the open, ever-expanding World Wide Web by all,
everybody on the Web has to agree on the meaning of the Web contents. XML alone
does not add semantics to the Web content. Thus, in Web 3.0, Resource Description 
Framework  (RDF)  protocol  is  designed  to  add  another  layer  of  metadata  to  add 
meaning or semantics to the data (text, images, audio, or video) inside the document
with  RDF  vocabularies  understood  by  machines.  As  computer  memory  is  not 
expensive anymore, this metadata can be verbose even for human understanding
instead of being only for machine understanding. Authors, publishers, and users all
can add metadata about a Web resource in a standardized format. This self- describing
data inside the document can be individually addressed by HTTP URI (Universal 
Resource Identifier) mechanism, processed and linked to other data from other doc-
uments, and inferred by machine automatically. URI is an expansion on the concept 
of Universal Resource Locator or URL and can both be a name and location. Search 
engines or crawlers will navigate the links and generate query response over the
aggregated linked data. This linked data will encourage reuse of information, reduce
redundancy, and produce more powerful aggregate information.

To this end, we need a standardized knowledge representation system [12, 13].
Modeling a knowledge domain using standard, shared vocabularies will facilitate
interoperability between different applications. Ontology is a formal representation
of knowledge as a set of concepts in a domain. Ontology components are classes,
their attributes, relations, restrictions, rules, and axioms. DublinCore, GFO (General 
Formal Ontology), OpenCyc/SUMO (Suggested Upper Merged Ontology), DOLCE 
(Descriptive Ontology for Linguistic and Cognitive Engineering), WordNet, FOAF 
(Friend of a Friend), SIOC (Semantically Interlinked Online Communities), SKOS 
(Simple  Knowledge  Organization  System),  DOAP  (Description  of  a  Project), 
vCard, etc., are the much used well-known ontology libraries of RDF vocabularies. 
For example,  implementation of DublinCore makes use of XML and a Resource 
Description Framework (RDF).

RDF  triples  describe  any  data  in  the  form  of  subject,  predicate,  and  object. 
Subject, predicate, and object all are URIs which can be individually addressed in 

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

8

the Web by the HTTP URI mechanism. Subject and object can be URIs from the 
same document or from two separate documents or independent data sources linked
by the predicate URI. Object can also be just a string literal or a value. RDF creates 
a graph-based data model spanning the entire Web which can be navigated or
crawled following the links by software agents. RDF schema (RDFS), Web ontology 
language (OWL), and Simple Knowledge Organization System (SKOS) are devel-
oped to write rules and express hierarchical relations, inference between Web
resources. They vary in their expressiveness, logical thinking, and hierarchical
knowledge  organization  from  being  more  limited  to  more  powerful  in  RDFS  to 
SKOS. For querying the RDF data written in RDFS, OWL, or SKOS, RDF query 
language named SPARQL has been developed.

RDF tags can be added automatically or semiautomatically by tools like RDFizers 
[7], D2R (Database to RDF), JPEG → RDF, and Email → RDF. Linked data browsers 
like  Disco,  Tabulator,  and  Marbles  are  getting  designed  to  browse  linked  data 
Semantic Web. Linked data search engines like Falcon and SWSE (Semantic Web 
search engine) are getting designed for human navigation, and Swoogle and Sindice
are getting designed for applications.

Figure 1.1 shows the Semantic Web protocol stacks (Wedding Cake) proposed 
by Tim Barners-Lee in 2000. The bottom of the Wedding Cake shows standards that 
are well defined and widely accepted, whereas the other protocols are yet to be
implemented in most of the Web sites. Unicode is a 16-bit code word which is large 
enough (216)  for  representing any characters  in any  languages  in  the world. URI 
(Universal Resource Identifier) is the W3C’s codification for addressing any objects
over  the  Web.  XML  is  for  structuring  the  documents  into  data,  and  RDF  is  the 
mechanism for describing data which can be understood by machines. Ontologies
are vocabularies from specific knowledge domain. Logic refers to making logical
inferences from associated linked data. Proof is keeping track of the steps of logical 
inferences. Trust refers to the origin and quality of the data sources. This entire
protocol stack will transform the Web into a Semantic Web global database of
linked data for realizing the full potential of the Web.

Fig. 1.1 Semantic Web
Wedding Cake [8]

R. Guha

9

1.2.2 Cloud Computing Platform

Cloud computing [14–16] is the most anticipated future trend of computing. Cloud 
computing is the idea of renting out server, storage, network, software technologies,
tools, and applications as utility or service over the Internet as and when required in
contrast to owning them permanently. Depending on what resources are shared 
and delivered to the customers, there are four types of cloud computing. In cloud
computing terminology, when hardware such as processors, storage, and network
are delivered as a service, it is called infrastructure as a service (IaaS). Examples of 
IaaS are Amazon’s Elastic Cloud (EC2) and Simple Storage Service (S3). When 
programming platforms and tools  like Java, Python,  .Net, MySQL, and APIs are 
delivered as a service, it is called platform as a service (PaaS). When applications 
are delivered as a service, it is called software as a service (SaaS).

Depending on the amount of self-governance or control on resources by the 
tenant, there are three types of cloud like internal or private cloud, external or public
cloud,  and  hybrid  cloud  (Fig.  1.2). In private cloud, an enterprise owns all the
resources on-site and shares them between multiple applications. In public cloud,
the enterprise will rent the resources from an off-site cloud provider, and these
resources will be shared between multiple tenants. Hybrid cloud is in the middle
where an enterprise owns some resources and rents some other resources from a
third party.

Cloud computing is based on Service-Oriented Architecture (SOA) of Web 2.0 
and Web 3.0 and virtualization [16–18] of hardware and software resources
(Fig. 1.3). Because of the virtualization technique, physical resources can be linked
dynamically to different applications running on different operating systems.
Because of the virtualization technique, physical resources can be shared among all
users, and there is efficient resource management which can provide higher resource
utilization and on-demand scalability. Increased resource utilization brings down

Fig. 1.2  Cloud computing platform

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

10

the cost of floor  space, power,  and cooling. Power  savings  is  the most  attractive 
feature of cloud computing and is the renewed initiative of environment-friendly green
computing or green IT movement of today. Cloud computing not only reduces cost 
of usage of resources but also reduces maintenance cost of resources for the user.

Cloud computing can support on-demand scalability. An application with occa-
sional demand for higher resources will pay for the higher resources only the time
it is used instead of leasing all the resources from the very beginning in anticipation
of future need. This fine-grained (hourly) pay-by-use model of cloud computing
is going to be very attractive to the customers. There are many other benefits of
cloud computing. Cloud infrastructure can support multiple protocols and change 
in business model for applications more rapidly. It can also handle increased perfor-
mance requirements like service scaling, response time, and availability of the
application, as the cloud infrastructure is a huge pool of resources like servers,
storage, and network and provides elasticity of growth to the end users.

With this business model of catering multiple clients with shared resources,
world’s  leading IT companies  like Microsoft, Google,  IBM, SalesForce, HP, and 
Amazon are deploying clouds (Fig. 1.2). Web services and applications like Hadoop
and Mashup can run on these clouds. Though there are many advantages of cloud
computing platform, there are few challenges regarding safety and privacy of
tenant’s information in cloud platform which can threaten the adoption of cloud
computing platform by the masses. If these few challenges can be overcome,
because of many of its advantages, this cloud computing model may be the prevalent
computing model of the future.

1.2.2.1 Safety and Privacy Issues in Cloud Computing Platform

All the resources of the cloud computing platform are shared by multiple tenants
(Fig. 1.4) over the Internet across the globe. In this shared environment, having trust
of data safety and privacy is of utmost importance to customers. Safety of data
means no loss of data pertaining to the owner of the data, and privacy of data means

Fig. 1.3 Virtual infrastructure [13]

R. Guha

11

no unauthorized use of the sensitive data by others. As cloud provider has greater
resource pool, they can easily keep copies of data and ensure safety of user data.
Privacy of data is of more concern in public cloud than in private cloud. In public 
cloud environment as data is stored in off-premise machines, users have less control
over the use of their data, and this mistrust can threaten the adoption of cloud
computing platform by the masses. Technology and law enforcement both should
protect privacy concerns of cloud customers [19, 20]. Software engineer must
build their applications as Web services which can guarantee to lessen this risk of
exposure of sensitive data of cloud customers.

Next, we look into the preexisting software development methodologies to develop
quality software products in traditional environment not involving Web services
and cloud computing platform.

1.2.3 Traditional Software Engineering Process

Here, we delve into preexisting software development methodologies first to
develop quality software products in traditional environment not involving Web
services and cloud computing platform. Over the last half-century, rapid advances

Fig. 1.4 Shared resources in cloud computing

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

12

of hardware technology such as computers, memory, storage, communication networks,
mobile devices, and embedded systems are pushing the need for larger and
more complex software. Software development not only involves many different
hardware technologies, it also involves many different parties like customers, stake-
holders, end users, and software developers. That is why software development is
an inherently complex procedure. Since 1968, software developers had to adopt
the engineering disciplines, i.e., systematic, disciplined, and quantifiable approach
to make software development more manageable to produce quality software
products. The success or quality of a software project is measured by whether it is
developed within time and budget and by its efficiency, usability, dependability, and
maintainability [21, 22].

Software engineering starts with an explicit process model having framework of
activities which are synchronized in a defined way. This process model describes or
prescribes how to build software with intermediate visible work products (documents)
and the final finished product, i.e., the operating software. The whole development
process of software from its conceptualization to operation and retirement is called
the software development life cycle (SDLC). SDLC goes through several framework 
activities like requirements gathering, planning, design, coding, testing, deployment,
maintenance, and retirement. Software requirements are categorized as functional,
contractual, safety, procedural, business, and technical specification. Accuracy of
requirements gathering is very important as errors in requirements gathering will
propagate through all other subsequent activities. Requirements arising from differ-
ent sectors need to be well documented, verified to be in compliance with each
other, optimized, linked, and traced. All software engineering process activities are
synchronized in accordance to the process model adopted for a particular software
development. There are many process models to choose from like water fall model,
rapid application development (RAD) model, and spiral model depending on  the 
size of the project, delivery time requirement, and type of the project. As an example,
development of an avionic embedded system will adopt a different process model
than development of a Web application. Another criterion for choosing a suitable
process model is its ability to arrest errors in requirements gathering.

Even though software engineering takes engineering approach, success of soft-
ware product is more difficult than products from other engineering domain like
mechanical engineering or civil engineering. This is because software is intangible
during its development. Software project managers use a number of umbrella activi-
ties to monitor software framework activities in a more visible way. These umbrella
activities are software project tracking and control, risk management, quality assurance,
measurements, configuration management, work-product or documents generation,
review, and reusability management. CMMI (Capability Maturity Model Integration) 
is a software process improvement model for software development companies by
comparing their process maturity with the best practices in the industry to deliver
quality software products.

Even after  taking all  these measures  for sticking  to  the plan and giving much 
importance to document generation for project tracking and control, many software
projects failed. Oftentimes volume of paper documents is too large for aggregating
information by humans. More than 50 % of software projects fail due to various

R. Guha

13

reasons like schedule and budget slippage, non-user-friendly interface of the
software, and non-flexibility for maintenance and change of the software. And the
reasons for all these problems are lack of communication and coordination between
all the parties involved.

Requirement changes of a software are the major cause of increased complexity,
schedule,  and  budget  slippage.  Incorporating  changes  at  a  later  stage  of  SDLC 
increases the cost of the project exponentially (Fig. 1.5). Adding more number
of programmers at a later stage does not solve the schedule problem as increased
coordination requirement slows down the project further. It is very important that
requirements gathering, planning, and design of the software are done involving all
the parties from the beginning.

That is the reason why several agile process models like Extreme Programming 
(XP) (Fig. 1.6), Scrum, Crystal, and Adaptive have been introduced in mid-1990s to 
accommodate continuous changes in requirements during the development of the
software. These agile process models have shorter development cycles where small
pieces of work are “time-boxed,” developed, and released for customer feedback,
verification, and validation iteratively. One time-box takes a few weeks to maximum
a month of time. Agile process model is communication intensive as customer
satisfaction is given the utmost importance. Agile software development is possible
only when the software developers are talented, motivated, and self-organized.
Agile process model eliminates the exponential increase of cost to incorporate
changes as in the waterfall model by keeping the customer involved throughout and
validating small pieces of work by them iteratively. These agile process models
work better for most of the software projects as changes are inevitable, and responding
to the changes is the key to the success of a project.

Fig. 1.5  Economics of software development

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

14

Figure 1.6 depicts the steps of agile process model named Extreme Programming 
(XP) for a traditional software development where the customer owns the develop-
ing platform or software developers develop in-house and deploy the software to the
customer after it is built. XP has many characteristics like user story card and CRC 
(class, responsibility, collaboration) card narrated during the requirements gather-
ing stage jointly by the customer and the software engineers. Customer decides the 
priority of each story card, and the highest priority card is only considered or “time-
boxed” for the current iteration of software development. Construction of code is 
performed by two engineers sitting at the same machine so that there is less scope
of errors  in  the code. This  is  called pair programming. Code  is  continuously  re-
factored or improved to make it more efficient.

In the following sections, analysis for the need for producing software develop-
ment artifacts for the Semantic Web and the challenges of the current business
model of application development and deployment involving Web 2.0 and Web 3.0
technologies and cloud computing platform are reported. Finally, methodologies to 
develop quality software that will push forward the advances of the cloud computing
platform have been suggested.

1.3 Need for Modification of Software Engineering: Analysis

1.3.1 Need for Semantic Web-Enabled Software Artifacts

Semantic Web effort has just started and not all are aware of it, even the IT profes-
sionals. The linked data initiative [7] that was taken in 2007 by a small group of
academic researchers from universities now has participants of few large companies
like BBC, Thompson Reuters, and Library of Congress who have transformed their 

Fig. 1.6  Extreme Programming process model

R. Guha

15

data for the Semantic Web. DBpedia is another community effort to transform the 
Wikipedia documents for Semantic Web. Sophisticated queries can be run on
DBpedia data and link to other Semantic Web data. Friend of a Friend (FOAF) is 
another project to link social Web sites and their people and describe what they
create or do. Federal and State governments are also  taking initiatives  to publish 
public data online. US Census data is one such semantic data source which can be 
queried and linked with other semantic data sources. Unless all government public 
data can be transformed for the Semantic Web, they will not be suitable for interop-
erable Web applications.

Figure 1.7 shows the current size of the linked data Web as of March 2009. Today
there are 4.7 billion RDF triples which are interlinked by 142 million RDF links. 
Anybody can transform their data in linked data standards and can link to the existing
linked data Web. In Fig. 1.7, the circles are nodes of independent data sources or
Web sites, and the arcs are their relationship with other data sources. The thicker
links specify more connections between the two data sources, and bidirectional
links mean both data sources are linked to each other.

Once the software engineers grasp the Semantic Web technologies and understand
their capabilities and their many advantages like interoperability, adaptability,
integration ability of open and distributed software components with other applications,
they will make their software artifacts Semantic Web ready. Once the software
artifacts are transformed into semantic artifacts software, maintainability will be

Fig. 1.7 Linking open data cloud diagram giving an overview of published data sets and their
interlinkage relationships [7]

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

16

much more efficient and cheaper. All requirements can be optimized, linked, and
traced. Aggregating of information from requirements document will be easy, and
impact analysis before actual changes are made can be done more accurately.
Increased maintainability of software will also increase reliability of the software.
Semantic Web services will be easy to discover on the Web, and that will give
a competitive edge to their products. Semantic Web services which can be linked
with other Web services will create new and more powerful software applications,
encourage reuse, and reduce redundancy.

1.3.2 Creating a Web Service

Benefits of Web services [23–26] are code reuse and speedy development of software
projects. But in order to use Web services from the Web, the application must create
a Web client which can interface with the Web services and request for services and
receive  services.  In  Fig.  1.8, the Service-Oriented Architecture (SOA) that has
emerged to deliver software as a service (SaaS) business model is illustrated.

An application programming interface (API) of Web service is first created as 
WSDL document using XML tags, for advertising to the world over the Internet. WSDL 
documents have five major parts. It describes data types, messages, port, operation
(class and methods), binding (SOAP message), and location (URL). WSDL documents 
need not be manually created. There are automatic tools like Apache Axis [25],
which will create the API from a Java programming code. Apache Axis is an open 
source, XML-based Web service framework.

Fig. 1.8 Service-Oriented Architecture for interoperability of services

R. Guha

17

After creating the WSDL document, a Web client to consume the Web service is 
needed. Web client  is created using SOAP to communicate request and response 
messages between  the  two applications. SOAP is an XML messaging format  for 
exchanging structured data (XML documents) over HTTP transport protocol and 
can be used for remote procedure call (RPC). SOAP structure has three parts: 
(1) envelop, (2) header, and (3) body. Body defines the message and how to process it.

Software engineers have to master XML language and other Web technologies
like WSDL and SOAP in addition to knowing a programming language like Java or 
C++ in order to use or create a Web service.

1.3.3 How SW Engineers Are Coping in Cloud Platform

This section surveys how software development industry is trying to survive in the
era of Web 2.0 and Web 3.0 with Web services and cloud computing. In reference
[27], the authors present framework activities for designing applications based on
discovery of Semantic Web service using software engineering methodologies.
They propose generating semiautomatic semantic description of applications
exploiting the existing methodologies and tools of Web engineering. This increases
design efficiency and reduces manual effort of semantically annotating the new
application composed from Web services of multiple enterprises.

In Reference [28], Salesforce.com finds that agile process model works better on
cloud computing platform. Before cloud computing, release of the software to the
user took time and getting feedback from the customer took more time which
thwarted the very concept of agile development. Whereas now, new releases of the
software can be uploaded on the server and used by the users immediately. Basically
in this chapter, what they have described is the benefits of software as a service
hosted on the Internet and how it complements agile computing methodology. They
have not considered the challenges of cloud computing in developing new business
software.

Cloud computing being  the newest hype of  the  IT  industry,  the challenges of 
software engineering on cloud computing platform have not been studied yet, and
no software development process model for cloud computing platform has been
suggested yet. We analyze the challenges of the cloud computing platform on
software development process and suggest extending the existing agile process
model, named Extreme Programming, to mitigate all the challenges in Sect. 1.3.4.

1.3.4 Impact of Cloud Computing on Software Engineering

In the rapidly changing computing environment with Web services and cloud
platform, software development is going to be very challenging. Software develop-
ment process will involve heterogeneous platforms, distributed Web services, and

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

18

multiple enterprises geographically dispersed all over the world. Existing software 
process models and framework activities are not going to be adequate unless inter-
action with cloud providers is included.

Requirements gathering phase so far included customers, users, and software
engineers. Now it has to include the cloud providers as well, as they will be supplying
the computing infrastructure and maintain them too. As the cloud providers only
will know the size, architectural details, virtualization strategy, and resource utilization
percentage of the infrastructure, planning and design phases of software development
also have to include the cloud providers. The cloud providers can help in answering
these questions about (1) how many developers are needed, (2) component reuse,
(3) cost estimation, (4) schedule estimation, (5) risk management, (6) configuration
management, (7) change management, and (8) quality assurance.

Because of the component reuse of Web services, the size of the software in
number of kilo lines of code (KLOC) or number of function points (FP) to be newly 
developed by the software engineer will reduce, but complexity of the project will
increase manyfold because of lack of documentations of implementation details
of Web services and their integration requirements. Only description that will be
available online is the metadata information of the Web services to be processed by
the computers automatically.

Only coding and testing phases can be done independently by the software
engineers. Coding and testing can be done on the cloud platform which is a huge 
benefit as everybody will have easy access to the software being built. This will
reduce the cost and time for testing and validation.

However, software developers need to use the Web services and open source
software freely available from the cloud instead of procuring them. Software
developers should have more expertise in building software from readily available
components than writing it all and building a monolithic application. Refactoring of
existing application is required to best utilize the cloud infrastructure architecture in
a cost-effective way. In the latest hardware technology, the computers are multi-core
and networked, and the software engineers should train themselves in parallel and
distributed computing to complement these advances of hardware and network
technology. Software engineers should train themselves in Internet protocols, XML,
Web service standards and layered separation of concerns of SOA architecture
of Internet, and Semantic Web technologies to leverage all the benefits of Web
2.0. Cloud providers will insist that software should be as modular as possible for 
occasional migration from one server to another for load balancing as required by
the cloud provider [16].

Maintenance phase should also include the cloud providers. There is a complete
shift of responsibility of maintenance of the infrastructure from software developers
to cloud providers. Now because of the involvement of the cloud provider, the
customer has to sign a contract with them as well so that the “Software Engineering 
code of ethics” is not violated by the cloud provider. In addition, protection and
security of the data is of utmost importance which is under the jurisdiction of the
cloud provider now.

Also, occasional demand of higher resource usage of CPU time or network from 
applications may thwart the pay-by-use model of cloud computing into jeopardy

R. Guha

19

as multiple applications may need higher resource usage all at the same time not
anticipated by the cloud provider in the beginning. Especially when applications are 
deployed as “software as a service” or “SaaS” model, they may have occasional
workload surge not anticipated in advance.

Cloud provider uses virtualization of resource technique to cater many customers 
on demand in an efficient way. For higher resource utilization, occasional migration 
of application from one server to another or from one storage to another may be
required by the cloud provider. This may be a conflict of interest with the customer
as they want dedicated resources with high availability and reliability of their
applications. To avoid this conflict, cloud providers need to introduce quality of
service provisions for higher-priority tenants.

Now we analyze how difficult will be the interaction between cloud providers
and the software engineers. The amount of interactions between software engineers
and cloud providers will depend on the type of cloud like public, private, or hybrid
cloud involvements. In private cloud, there is more control or self-governance by
the  customer  than  in  public  cloud.  Customer  should  also  consider  using  private 
cloud instead of using public cloud to assure availability and reliability of their
high-priority applications. Benefits of private cloud will be less interaction with
cloud provider, self-governance, high security, reliability, and availability of data
(Fig. 1.9). But cheaper computing on public cloud will always outweigh the benefits
of less complexity of SW development on private cloud platform and is going to
be more attractive.

1.4 Proposed SW Process Model for Cloud Platform

Innovative software engineering is required to leverage all the benefits of cloud
computing and mitigate its challenges strategically to push forward its advances.
Here an extended version of Extreme Programming (XP), an agile process model 
for cloud computing platform named Extreme Cloud Programming (Fig. 1.10), is
proposed. All the phases like requirements gathering, planning, design, construction,
testing, and deployment need interaction with the representatives from cloud provider.

The roles or activities by the cloud provider and SW developers are separated and
listed in Table 1.1. Resource accounting on cloud platform will be done by the cloud

Fig. 1.9  Economics vs. 
complexity of software

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

20

provider in the requirements gathering phase. Software architecture, software
architecture to hardware architecture mapping, interface design, data types design,
cost estimation, and schedule estimation of the project all should be done in collabo-
ration with the cloud provider. During the construction phase of the application, if 
Web services are integrated where many different enterprises are involved, then error
should be mitigated with the mediation of the cloud provider. Maintenance contract
with cloud provider will be according to the Quality of Service agreement.

A software metric is required for effort estimation of SW development using the
new  Extreme  Cloud  Programming  process  model.  This  metric  is  required  as 
American  consultant  Tom  DeMarco  aptly  stated  in  1997  in  his  book  [30] about

Fig. 1.10  Extreme Cloud Programming development on cloud computing [29]

Table 1.1 Software engineering-role separation [29]

Activity

Roles

Software developer Cloud provider

Requirements gathering Elicitation Resource accounting
Virtual machine

Analysis SW modules SW/HW architecture
Design Interface design Component reuse

Data types
Cost estimation
Schedule estimation

Construction Coding Implementation details
Integration of Web services

Testing Unit test Integration test
Integration test

Deployment Operation and maintenance

R. Guha

21

managing risk in software projects that “You cannot control what you cannot mea-
sure.” Constructive cost estimation model (COCOMO) is mostly used model for 
cost  estimation  of  various  software  development  projects.  In  COCOMO  model 
(Table 1.2), three classes of software projects have been considered so far. These
software projects are classified as  (1) Organic,  (2) Semidetached,  (3) Embedded 
according to the software team size, their experiences, and development (HW, SW,
and operations) constraints. We extend [29] this cost estimation model with a new
class of software project for cloud computing platform. In basic COCOMO model 
effort (man month), development time (months) and number of people required
are given by the following equations.

Effort Applied KLOC man months

Development Time Effort A

= −[]
=

a

c

b()

ppplied months

No of People Effort Applied Development Tim

() []
=

d

. / ee no.[]
The typical values of the coefficients a, b, c, d for different classes of software

projects are listed in Table 1.2. In anticipation of additional interaction complexity
with the cloud providers, coefficient a is increased to 4 for cloud computing
platform. Coefficients a, b for cloud computing are determined so that the effort
curve is steeper than the other three classes but is linear like the other three classes.
Similarly, coefficients c, d for cloud computing are determined so that the develop-
ment time curve is less steeper than the other three classes but is linear like the other
three classes. The coefficients a, b, c, d in cloud computing are readjusted to new
values of 4, 1.2, 2.5, and .3.

Because of component reuse, software development with cloud computing will
reduce  KLOC  (kilo  lines  of  code)  significantly.  We  deduce  new  KLOC = i * C + 
(KLOC) * C, where C is the % of component reuse and i is the coefficient adjustment
for new interface design effort.

Figure 1.11 plots software effort estimation for project size varying from 10 to
50 KLOC for all four classes of projects. We assumed 30 % component reuse in 
cloud computing case. If more percentage of component reuse is possible, it will
mitigate the higher interaction complexity in coefficient a and will be beneficial
for  cloud  computing  platform.  Figure  1.12 plots the corresponding software
development time estimation for all four classes of software projects. With 30 %
component reuse possibility, software development on cloud computing platform
will take least amount of time.

Table 1.2  COCOMO [29]

Software proj. a b c d

Organic 2.4 1.05 2.5 .38
Semidetached 3.0 1.12 2.5 .35
Embedded 3.6 1.2 2.5 .32
Cloud comp. 4 1.2 2.5 .3

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

22

1.5 Conclusion

The development of Semantic Web or Web 3.0 can transform the World Wide Web
into an intelligent Web system of structured, linked data which can be queried and
inferred as a whole by the computers themselves. This Semantic Web capability is
materializing many innovative use of the Web such as hosting Web services and
cloud computing platform. Web services and cloud computing are paradigm shifts
over traditional way of developing and deploying of software. This will make software
engineering more difficult as software engineers have to master the Semantic Web

Fig. 1.11  Extended COCOMO for SW effort estimation [29]

Fig. 1.12  Extended COCOMO for SW dev. time [29]

R. Guha

23

skills for using open source software on distributed computing platform and
they have to interact with a third party called the “cloud provider” in all stages of
software processes. Automatic discovery and integration with Web services will
reduce the amount of work in terms of line of code (LOC) or function points (FP) 
required for developing software on cloud platform but there will be added semantic
skill requirements and communication and coordination requirements with the
cloud providers which makes software development project more complex.

First, the Semantic Web techniques are explored on what the software developers 
need to incorporate in their artifacts in order to be discovered easily on the Web to
give their product a competitive edge and for efficient software integration and
maintenance purposes. Then, the need for changes in the prevalent software process
models is analyzed to suggest that they should incorporate the new dimension of
interactions with the cloud providers and separate roles of software engineers and
cloud providers. A new agile process model is proposed in this chapter which
includes the anticipated interactions requirement with the cloud provider which
will mitigate all the challenges of software development on cloud computing
platform and make it more advantageous to develop and deploy software on the
cloud computing platform.

Cloud computing being  the anticipated future computing platform, more soft-
ware engineering process models need to be researched which can mitigate all
its challenges and reap all its benefits. Also, safety and privacy issues of data in
cloud computing platform need to be considered seriously so that cloud computing
is truly accepted by all.

References

  1. Barners-Lee, T.: Future of the web. http://dig.csail.mit.edu/2007/03/01 (2007)
  2. Guha, R.: Toward the intelligent web systems. In: Proceedings of IEEE CS, First International 

Conference on Computational Intelligence, Communication Systems and Network, pp. 459–463. 
IEEE, Los Alamitos (2009)

  3. Handler, J., Shadbolt, N., Hall, W., Berners-Lee, T., Weitzner, D.: Web science: an interdisci-
plinary approach to understanding the web. Commun. ACM 51(7), 60–69 (2008)

  4. Chong,  F.,  Carraro,  G.:  Architecture  Strategies  for  Catching  the  Long  Tail.  Microsoft 
Corporation, Redmond (2006)

 5. Banerjee, J., Aziz, S.: SOA: the missing link between enterprise architecture and solution
architecture. SETLabs Brief. 5(2), 69–80 (2007)

 6. Barners-Lee, T.: Linked data. http://www.w3.org/DesignIssues/LinkedData.html (2012)
  7. Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. Special issue on linked 

data. Int. J. Semant. Web Inf. Syst. (IJSWIS). http://tomheath.com/papers/bizer-heath-berners- 
lee-ijswis-linked-data.pdf (2012)

 8. Niemann, B., et al.: Introducing Semantic Technologies and the Vision of the Semantic Web,
SICoP White Paper (2005)

  9. HADOOP: http://en.wikipedia.org/wiki/Hadoop (2010)
 10. Taft, D.: IBM’s M2 Project Taps Hadoop for Massive Mashups. www.eweek.com (2010)
 11. Wikipedia: Free and open source software. http://en.wikipedia.org/wiki/Free_and_open- source_

software. Accessed July 2012

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

http://dig.csail.mit.edu/2007/03/01
http://www.w3.org/DesignIssues/LinkedData.html
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://en.wikipedia.org/wiki/Hadoop
http://www.eweek.com/
http://en.wikipedia.org/wiki/Free_and_open-source_software
http://en.wikipedia.org/wiki/Free_and_open-source_software

24

 12. Wikipedia: Web Ontology Language. http://en.wikipedia.org/wiki/Web_Ontology_Language.
Accessed July 2012

 13. Code{4}lib: Library Ontology. http://wiki.code4lib.org/index.php/Library_Ontology Accessed
July 2012

 14. Sun Microsystem: Introduction to Cloud Computing Architecture, White Paper, 1st edn. (2009)
 15. Sun Microsystem: Open Source & Cloud Computing: On-Demand, Innovative IT on a Massive 

Scale (2012)
 16. Singh, A., Korupolu, M., Mahapatra, D.: Server-storage virtualization:  integration and  load 

balancing  in  data  centers.  In:  IEEE/ACM  Supercomputing  (SC)  Conference.  IEEE  Press, 
Piscataway (2008)

 17. VMWARE: Virtualization overview. www.vmware.com (2012)
 18. Reservoir  Consortium:  Resources  and  Services  Virtualization  Without  Barriers.  Scientific 

Report (2009)
 19. Pearson, S.: Taking Account of Privacy when Designing Cloud Computing Services. HP Labs, 

Bristol (2009)
 20. Jansen, W.A.: Cloud Hooks: Security and Privacy Issues in Cloud Computing. NIST
 21. Pressman, R.: Software Engineering: A Practitioner’s Approach, 7th edn. McGraw-Hill Higher

Education, New York (2009)
 22. Sommerville, I.: Software Engineering, 8th edn. Pearson Education, Harlow (2006)
 23. Cavanaugh, E.: Web services: benefits, challenges, and a unique, visual development solution. 

www.altova.com (2006)
 24. Nickull, D., et al.: Service Oriented Architecture (SOA) and Specialized Messaging Patterns (2007)
 25. Web services-Axis: axis.apache.org/axis (2012)
 26. W3C: Web services Description Language (WSDL) Version 2.0 (2012)
 27. Brambilla,  M.  et  al.:  A  Software  Engineering  Approach  to  Design  and  Development  of 

Semantic Web Service Applications (2006)
 28. Salesforce.com:  Agile  Development  Meets  Cloud  Computing  for  Extraordinary  Results. 

www.salesforce.com (2009)
 29. Guha, R., Al-Dabass, D.: Impact of Web 2.0 and cloud computing platform on software engineer-

ing. In: Proceedings of 1st International Symposium on Electronic System Design (ISED) (2010)
 30. DeMarco, T., Lister, T.: Waltzing with Bears: Managing Risk on Software Projects. Dorset 

House Publishing Company, Incorporated, New York (2003)

R. Guha

http://en.wikipedia.org/wiki/Web_Ontology_Language
http://wiki.code4lib.org/index.php/Library_Ontology
http://www.vmware.com/
http://www.altova.com/
http://axis.apache.org/axis
http://www.salesforce.com/

	Chapter 1: Impact of Semantic Web and Cloud Computing Platform on Software Engineering
	1.1 Introduction
	1.2 Literature Survey
	1.2.1 Transformation to Semantic Web
	1.2.2 Cloud Computing Platform
	1.2.2.1 Safety and Privacy Issues in Cloud Computing Platform

	1.2.3 Traditional Software Engineering Process

	1.3 Need for Modification of Software Engineering: Analysis
	1.3.1 Need for Semantic Web -Enabled Software Artifacts
	1.3.2 Creating a Web Service
	1.3.3 How SW Engineers Are Coping in Cloud Platform
	1.3.4 Impact of Cloud Computing on Software Engineering

	1.4 Proposed SW Process Model for Cloud Platform
	1.5 Conclusion
	References

