
Chapter 9
Shocks as Burn-in

As described in the previous chapters, in conventional burn-in, the main parameter
of the burn-in procedure is its duration. However, in order to shorten the length of
this procedure, burn-in is most often performed in an accelerated environment.
This indicates that high environmental stress can be more effective in eliminating
weak items from a population. In this case, obviously, the larger values of stress
should correspond to the shorter duration of burn-in. By letting the stress to
increase, we can end up (as some limit) with very short (negligible) durations, in
other words, shocks. In practice, the most common types of shocks as a method of
burn-in are ‘‘thermal shock’’ and ‘‘physical drop’’. In these cases, the item is
subjected to a very rapid cold-to-hot, or hot-to-cold, instantaneous thermal change
or the item is dropped by a ‘‘drop tester’’ which is specifically designed to drop it
without any rotational motion, to ensure the most rigorous impact. In this case, the
stress level (to be called shock’s severity) can be a controllable parameter for the
corresponding optimization, which in a loose sense is an analogue of the burn-in
duration in accelerated burn-in (see e.g., [1, 9].

This general reasoning suggests that ‘electrical’ (e.g., the increased voltage for
a short period of time for some electronic items), thermal and mechanical shocks
can be used for burn-in in heterogeneous populations of items. If the initial pop-
ulation is not ‘sufficiently reliable’, then the items that have survived a shock
might be more suitable for field usage, as their predicted reliability characteristics
could be better. Therefore, in this chapter, we consider shocks as a method of burn-
in and develop the corresponding optimization model. It should be noted that
several approaches (such as Environmental Stress Screening to be considered in
the next chapter) that exhibit a similar initial reasoning were already implemented
in industry as a practical tool (see, for example, [13, 16, 17].

As in the previous chapters, we will also assume that the population is the
mixture of stochastically ordered subpopulations. As before, we will consider both
discrete and continuous mixture models. Under this and some other natural
assumptions, we consider the problem of determining the optimal severity level of
a stress. Furthermore, we develop approaches that minimize the risks of selecting
items with large levels of individual failure rates for missions of high importance,
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where failures can result, e.g., in substantial economic losses. We consider some
new measures for describing the corresponding optimal burn-in, which boils up in
obtaining the optimal severity of shocks. For instance, the losses that are mono-
tonically increasing with the value of the failure rate of items after burn-in are
introduced. Furthermore, focusing on the quality of relatively poor (with large
failure rates) items in the mixed population, some conservative measures for the
population quality are defined and the corresponding optimal burn-in with respect
to these measures is also investigated.

We will also consider burn-in for items that will operate (after burn-in) in the
environment with shocks. We assume that there are two competing risk causes of
failure—the ‘usual’ one (in accordance with aging processes in a system) and
environmental shocks. A new type of burn-in via the controlled (laboratory) test
shocks is considered and the problem of obtaining the optimal level (severity) of
these shocks is investigated.

9.1 Discrete Mixtures

9.1.1 General Setting

We assume in this section that a population is a mixture of two ordered
subpopulations—the strong subpopulation and the weak subpopulation. Let the
lifetime of a component from the strong subpopulation be denoted by XS and its
absolutely continuous cumulative distribution function (Cdf), probability density
function (pdf) and the failure rate function be F1ðtÞ; f1ðtÞ and k1ðtÞ; respectively.
Similarly, the lifetime, the Cdf, pdf, and the failure rate function of a weak com-
ponent are denoted by XW ; F2ðtÞ; f2ðtÞ and k2ðtÞ; respectively. Let the lifetimes in
these subpopulations be ordered either in the sense of the failure rate ordering:

k1ðtÞ� k2ðtÞ; for all t� 0

or in the sense of the usual stochastic ordering

F1ðtÞ�F2ðtÞ; for all t� 0;

where FiðtÞ ¼ 1� FiðtÞ; i ¼ 1; 2: Assume that the mixing proportion (distribu-
tion) is given by

pðzÞ ¼ p; z ¼ z1

1� p; z ¼ z2
;

�

where z1 and z2; z1\z2; are variables that represent the strong and the weak
subpopulations, respectively. Therefore, Z ¼ ðz1; z2Þ can be considered as the
discrete frailty in this case. Then the corresponding mixture distribution and the
density functions are defined as in the previous chapters:
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FmðtÞ ¼ pF1ðtÞ þ ð1� pÞF2ðtÞ;
fmðtÞ ¼ pf1ðtÞ þ ð1� pÞf2ðtÞ;

respectively, and the mixture failure rate is

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
¼ pðz1jtÞk1ðtÞ þ pðz2jtÞk2ðtÞ;

where the time-dependent probabilities are

pðz1jtÞ ¼
p�F1ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
;

pðz2jtÞ ¼ 1� pðz1jtÞ ¼
ð1� pÞ�F2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
:

Assume that at time t ¼ 0 an instantaneous shock has occurred and with
complementary probabilities it either ‘kills’ an item (i.e., a failure occurs), or
‘leaves it unchanged’. The following is the basic assumption in our reasoning:

Basic Assumption
The more frail (e.g., with the larger failure rate) the items are, the more susceptible
they are to be ‘killed’ by a shock.

Let psðzÞ denote the frailty distribution after a shock and let Ts and kmsðtÞ be the
corresponding lifetime and the mixture (observed) failure rate, respectively.
Denote the probabilities of failures caused by each shock for two subpopulations
as:

pðzÞ ¼ p1; z ¼ z1;
p2; z ¼ z2:

�
ð9:1Þ

Here, in accordance with our Basic Assumption, p1� p2: It is easy to show that

psðzÞ ¼
ð1�p1Þp

ð1�p1Þpþð1�p2Þð1�pÞ � ps; z ¼ z1;
ð1�p2Þð1�pÞ

ð1�p1Þpþð1�p2Þð1�pÞ � 1� ps; z ¼ z2:

(

and

kmsðtÞ ¼
psf1ðtÞ þ ð1� psÞf2ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
¼ psðz1jtÞk1ðtÞ þ psðz2jtÞk2ðtÞ; ð9:2Þ

where

psðz1jtÞ ¼
ps �F1ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
;

psðz2jtÞ ¼ 1� psðz1jtÞ ¼
ð1� psÞ�F2ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
:
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The corresponding survival function is given by

FmsðtÞ ¼ psF1ðtÞ þ ð1� psÞF2ðtÞ:

The following initial result justifies the fact that a shock can be considered as the
burn-in procedure.

Theorem 9.1 Let p1� p2.

(i) If k1ðtÞ� k2ðtÞ; for all t� 0; then kmsðtÞ� kmðtÞ; 8t 2 ½0;1Þ.
(ii) If F1ðtÞ�F2ðtÞ; for all t� 0; then FmsðtÞ�FmðtÞ; 8t 2 ½0;1Þ.

Proof Observe that kmðtÞ and kmsðtÞ are weighted averages of k1ðtÞ and k2ðtÞ:
Then it is sufficient to show that psðz1jtÞ� pðz1jtÞ: Note that

pðz1jtÞ ¼
p�F1ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
¼

�F1ðtÞ
�F1ðtÞ þ ð1=p� 1Þ�F2ðtÞ

is increasing in p; and

ps � p ¼ ð1� p1Þp
ð1� p1Þpþ ð1� p2Þð1� pÞ � p ¼ pð1� pÞðp2 � p1Þ

ð1� p1Þpþ ð1� p2Þð1� pÞ � 0:

Therefore, psðz1jtÞ� pðz1jtÞ and we can conclude that kmsðtÞ� kmðtÞ; 8t 2 ½0;1Þ.
On the other hand, FmðtÞ and FmsðtÞ are also weighted averages of F1ðtÞ and

F2ðtÞ: Then the second result is obvious from the fact that ps� p. h

Remark 9.1 The above result implies that reliability characteristics of a population
of items that have survived a shock have improved. This justifies the described
burn-in procedure as a measure of improving the ‘quality’ of a heterogeneous
population. Depending on assumptions, Theorem 9.1 states that the population
lifetime random variable after a shock is larger than that before the shock either in
the sense of the failure rate ordering, or in the sense of the usual stochastic
ordering. Note that individual characteristics of an item that has survived a shock,
due to our assumption, are same as before.

9.1.2 Optimal Severity for Population Quality Measures

The optimal burn-in time is the main characteristic of interest in conventional
burn-in procedures. In our model, the ‘severity’ of a shock in a way corresponds to
this burn-in time. Therefore, we will suggest now an approach for determining an
optimal magnitude of a shock that maximizes the ‘quality’ of our population after
burn-in.
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Denote the magnitude of a shock by s 2 ½0;1�: Assume that the ‘strength’ of
the component in a strong subpopulation is a continuous random variable, which is
denoted by U: By ‘strength’ we understand here the corresponding measure of
resistance to a single shock, i.e., if s [ U; then the failure occurs. Let the Cdf, the
survival function, and the failure rate function of U are denoted by GðsÞ; GðsÞ; and
rðsÞ; respectively. Similarly, let the strength of the component in a weak sub-
population be denoted by Uw: Then, in accordance with our Basic Assumption, let

U� stUw:

It is easy to see that this inequality is equivalent to

GwðsÞ ¼ GðqðsÞÞ; for all s� 0; ð9:3Þ

where GwðsÞ is the Cdf of Uw; qðsÞ is an increasing function, qðsÞ� s for all s� 0;
and qð0Þ ¼ 0: It follows from (9.1) that the probabilities of failure for this case are
given by

pðz; sÞ ¼ p1 ¼ GðsÞ; z ¼ z1;
p2 ¼ GðqðsÞÞ; z ¼ z2:

�
ð9:4Þ

Then p1� p2 holds for all s 2 ½0;1Þ: Under the above setting, kmsðtÞ is also a
function of s and therefore will be denoted as kmsðt; sÞ:

kmsðt; sÞ ¼ ps �F1ðtÞ
ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ

� k1ðtÞ þ
ð1� psÞ�F2ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
� k2ðtÞ;

where

ps ¼
ð1� GðsÞÞp

ð1� GðsÞÞpþ ð1� GðqðsÞÞÞð1� pÞ ;

1� ps ¼
ð1� GðqðsÞÞÞð1� pÞ

ð1� GðsÞÞpþ ð1� GðqðsÞÞÞð1� pÞ :

Denote the expected lifetime (as a function of s) of an item that has survived a
shock by mðsÞ and, by Pðs; sÞ; the probability of success (survival probability) for
a mission time s: We are interested in ‘pure’ maximization of these functions
without considering any costs or gains. Thus we want to maximize (with respect to
s) the following functions:

mðsÞ ¼
Z1

0

exp �
Z t

0

kmsðu; sÞdu

8<
:

9=
;dt; ð9:5Þ

Pðs; sÞ ¼ exp �
Zs

0

kmsðu; sÞdu

8<
:

9=
;: ð9:6Þ
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Intuitively, the first guess would be: the larger is the level of severity s; the larger
are the functions of interest, which means that formally s� ¼ 1 and we understand
this notation here and in the rest of the chapter only in the described sense.
However, as the strength of the item is given by distributions in (9.3), there can be
the other non-intuitively evident possibility.

In order to investigate the maximizations of (9.5) and (9.6), consider a more
general problem—the uniform minimization of kmsðt; sÞ; for all fixed t� 0; with
respect to s 2 ½0;1�: That is, find s� which satisfies

s� ¼ arg inf
s2 ½0;1�

kmsðt; sÞ; for all fixed t� 0:

Denote by RðsÞ �
R s

0 rðuÞdu the cumulative failure rate that corresponds to the Cdf
GðsÞ: Then the following result describes the optimal severity s�.

Theorem 9.2 Let k1ðtÞ� k2ðtÞ; for all t� 0: Then the optimal s� is the value
which maximizes RðqðsÞÞ � RðsÞ: In particular,

(i) If rðsÞ is increasing and q0ðsÞ[ 1; then s� ¼ 1.

(ii) If q0ðsÞrðqðsÞÞ
rðsÞ [ 1; for s\s0; and q0ðsÞrðqðsÞÞ

rðsÞ \1; for s [ s0; then s� ¼ s0.

Proof Note again that in accordance with (9.2), kmsðt; sÞ is the weighted average
of k1ðtÞ and k2ðtÞ with the corresponding weights psðz1jtÞ and psðz2jtÞ ¼
1� psðz1jtÞ; respectively, and

psðz1jtÞ ¼
ps �F1ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
¼

�F1ðtÞ
�F1ðtÞ þ ð1=ps � 1Þ�F2ðtÞ

is increasing in ps: Thus, for each fixed t� 0; as k1ðtÞ� k2ðtÞ; the minimum of
kmsðt; sÞ is obtained by maximizing

ps ¼
ð1� GðsÞÞp

ð1� GðsÞÞpþ ð1� GðqðsÞÞÞð1� pÞ : ð9:7Þ

This problem is equivalent to minimizing

1� GðqðsÞÞ
1� GðsÞ ¼ expf�½RðqðsÞÞ � RðsÞ�g:

Therefore, the minimum can now be attained by maximizing RðqðsÞÞ � RðsÞ:

(i) Denote /ðsÞ � RðqðsÞÞ � RðsÞ: Then /0ðsÞ � q0ðsÞrðqðsÞÞ � rðsÞ: As q0ðsÞ[ 1
and rðxÞ is increasing,

/0ðsÞ ¼ q0ðsÞrðqðsÞÞ � rðsÞ[ rðqðsÞÞ � rðsÞ� 0;

where assumption qðsÞ� s is used. Thus, in this case, s� ¼ 1:
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(ii) Assume now that q0ðsÞrðqðsÞÞ
rðsÞ [ 1; for s\s0; and q0ðsÞrðqðsÞÞ

rðsÞ \1; for s [ s0: Then

/0ðsÞ[ 0; for s\s0; and /0ðsÞ\0; for s [ s0; which implies s� ¼ s0.

h

Example 9.1 Let rðsÞ ¼ e�s þ 1; s� 0; and qðsÞ ¼ ffiffi
s
p
; 0� s� 1=2; qðsÞ ¼ sþ

1=
ffiffiffi
2
p
� 1=2;

� �
s� 1=2: The graph for gðsÞ � q0ðsÞrðqðsÞÞ=rðsÞ is given in

Fig. 9.1. Then it can be seen that there exists some 0\s0\1 which satisfies

q0ðsÞrðqðsÞÞ
rðsÞ [ 1; for s\s0 and

q0ðsÞrðqðsÞÞ
rðsÞ \1; for s [ s0:

Thus, obtaining this value numerically: s� ¼ s0 ¼ 0:204.

Remark 9.2 In practice, obviously, there exists a maximum level of stress sa\1
that can be applied to items without destroying the whole population or without the
non-negligible damage in the survived items. In this case, the first part of Theorem
9.2 is modified to s� ¼ sa; whereas, for the second part of Theorem 9.2, if s0� sa

then s� ¼ s0; otherwise s� ¼ sa.

Let s� be the optimal severity level which satisfies

s� ¼ arg sup
s2 ½0;1�

Fmsðt; sÞ; for all fixed t� 0:

Corollary 9.1 Suppose that F1ðtÞ�F2ðtÞ; for all t� 0: Then the optimal s� is the
same as the value which minimizes kmsðt; sÞ; for all fixed t� 0.

Proof Observe that Fmsðt; sÞ is the weighted average of F1ðtÞ and F2ðtÞ:

Fmsðt; sÞ ¼ psF1ðtÞ þ ð1� psÞF2ðtÞ:

Fig. 9.1 Graph for gðsÞ
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As F1ðtÞ�F2ðtÞ and s�; in accordance with Theorem 9.2, maximizes ps; the result
follows immediately. h

Note that maximizations of mðsÞ and Pðs; sÞ; which can be expressed as [see
Eqs. (9.5) and (9.6)]

mðsÞ ¼
Z1

0

Fmsðt; sÞdt;

Pðs; sÞ ¼ Fmsðs; sÞ;

is equivalent to uniform maximization of Fmsðt; sÞ: Therefore, optimal s� is the
same as given in Corollary 9.1.

In the framework of our burn-in model, consider now the corresponding gains
and penalties defined for four mutually exclusive events. Denote:

• g1: gain due to the survival of a strong component
• c1: penalty incurred by the elimination of a strong component
• g2: gain due to the elimination of a weak component
• c2: penalty incurred by the survival of a weak component.

In accordance with this notation and relationship (9.4), the expected gain
resulting from the burn-in procedure performed by a shock is given by the fol-
lowing function of severity s:

uðsÞ ¼ g1pGðsÞ þ g2ð1� pÞGðqðsÞÞ � c1pGðsÞ � c2ð1� pÞGðqðsÞÞ
¼ �ðpg1 þ pc1ÞGðsÞ þ ðð1� pÞg2 þ ð1� pÞc2ÞGðqðsÞÞ þ g1p� c2ð1� pÞ:

ð9:8Þ

It is clear that maximization of uðsÞ is equivalent to minimization of

pðg1 þ c1ÞGðsÞ þ ð1� pÞðg2 þ c2Þð1� GðqðsÞÞÞ

or to minimization of

wðsÞ � w1GðsÞ þ w2ð1� GðqðsÞÞÞ; ð9:9Þ

where the weights w1 and w2 are

w1 ¼
pðg1 þ c1Þ

pðg1 þ c1Þ þ ð1� pÞðg2 þ c2Þ
; w2 ¼ 1� w1:

Note that the probability of failure of a strong component GðsÞ can be interpreted
as the risk that the strong component will be eliminated by a shock. On the other
hand, ð1� GðqðsÞÞ can be regarded as the risk that a weak component will survive
a shock. Expressions (9.8) and (9.9) imply that maximization of expected gain is
equivalent to minimization of the weighted risk. Observe that when s ¼ 0; wð0Þ ¼
w2 and when s!1; wð1Þ ¼ w1:
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The optimal severity s� should be obtained numerically, however, we can define
an upper bound for s� under some additional conditions.

Theorem 9.3 Let w1 [ w2; q0ðsÞ\w1=w2; for all s [ s0; and rðsÞ is decreasing
for s [ s1: Then the upper bound for optimal severity level s� is given by
maxfs0; s1g; that is, s� �maxfs0; s1g.

Proof Observe that

w0ðsÞ � w1rðsÞ expf�RðsÞg � w2q
0ðsÞrðqðsÞÞ expf�RðqðsÞÞg;

where RðsÞ �
R s

0 rðuÞdu: If q0ðsÞ\w1=w2; for all s [ s0; and rðsÞ is decreasing for
s [ s1; then w0ðsÞ[ 0; for all s [ maxfs0; s1g: This implies that wðsÞ is strictly
increasing for s [ maxfs0; s1g: Thus the upper bound for s� is given by
maxfs0; s1g. h

Example 9.2 Suppose that w1 ¼ 0:6;w2 ¼ 0:4; rðsÞ ¼ 1; 0� s\2; rðsÞ ¼
es�2; s� 2; and qðsÞ ¼ 5s; 0� s\1; qðsÞ ¼ sþ 4; s� 1: Then, in this case, s0 ¼
1:0 and s1 ¼ 2:0: Therefore, s� �maxfs0; s1g ¼ 2:0: The graph for wðsÞ is given in
Fig. 9.2.

It can be obtained numerically that s� ¼ 0:302.

9.1.3 Optimal Severity for Minimizing Expected Costs

In this section, we consider two models of determining the optimal severity
minimizing the expected cost function, which takes into account burn-in and field
operation.

Fig. 9.2 Graph for wðsÞ
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9.1.3.1 Model 1: Minimization Without Replacement During
Field Operation

An item is chosen at random from our heterogeneous population and is exposed to
a shock. If it survives, then it is considered to be ready for usage, otherwise the
failed item is discarded and the new one is chosen from the population, etc. This
procedure is repeated until the first survived item is obtained.

Let csr be the shop replacement cost and cs be the cost for conducting a single
shock. Let c1ðsÞ; as a function of s; be the expected cost for eventually obtaining a
component which has survived a shock. Conditioning on the event that the com-
ponent survives (or fails) a shock, the following equation can be obtained:

c1ðsÞ ¼ ð1� PÞcs þ ððcs þ csrÞ þ c1ðsÞÞP; ð9:10Þ

where P ¼ GðsÞpþ GðqðsÞÞð1� pÞ is the probability that an item from the mix-
ture population does not survive the shock. Then, from Eq. (9.10):

c1ðsÞ ¼
cs þ csrP

1� P
¼ �csr þ

cs þ csr

1� P
: ð9:11Þ

Let:

The cost cm is incurred by the event fTs� sg (Failure of the Mission);
The gain gm results from the event fTs [ sg (Success of the Mission).

Then the expected costs during field operation, c2ðsÞ; is given by

c2ðsÞ ¼ �gm psF1ðsÞ þ ð1� psÞF2ðsÞ
� �

þ cm psF1ðsÞ þ ð1� psÞF2ðsÞð Þ;

where ps is defined by Eq. (9.7). Then the total expected cost cðsÞ is

cðsÞ ¼ c1ðsÞ þ c2ðsÞ ¼ �csr þ
cs þ csr

GðsÞpþ GðqðsÞÞð1� pÞ

� ðgm þ cmÞ
GðsÞp

GðsÞpþ GðqðsÞÞð1� pÞ
F1ðsÞ þ

GðqðsÞÞð1� pÞ
GðsÞpþ GðqðsÞÞð1� pÞ

F2ðsÞ
� �

þ cm:

Let s� be the optimal severity level that satisfies

s� ¼ arg inf
s2½0;1�

cðsÞ:

The following theorem defines properties of optimal s�:

Theorem 9.4 Let F1ðtÞ�F2ðtÞ; for all t� 0: If RðqðsÞÞ � RðsÞ strictly decreases
for s [ s0; then s� � s0: In particular,

(i) If q0ðsÞ[ 1 and rðxÞ is increasing, then s�\1.

(ii) If q0ðsÞrðqðsÞÞ
rðsÞ \1; for s [ s0; then s� � s0:

322 9 Shocks as Burn-in



Proof Note that c1ðsÞ strictly increases from c1ð0Þ ¼ cs to c1ð1Þ ¼ 1: Also
observe that c2ðsÞ ¼ �ðgm þ cmÞFmsðs; sÞ þ cm; where Fmsðt; sÞ is the weighted
average of F1ðtÞ and F2ðtÞ with the corresponding weights ps and 1� ps;
respectively. If RðqðsÞÞ � RðsÞ strictly decreases for s [ s0; then, by similar
arguments as those described in the proof of Theorem 9.2, c2ðsÞ strictly increases
for s [ s0: This imply that cðsÞ strictly increases for s [ s0 and thus we can
conclude that optimal s� � s0:

(i) From the proof of Theorem 9.2, it can be seen that if q0ðsÞ[ 1 and rðxÞ is
increasing, then c2ðsÞ strictly decreases for s [ 0: But cð1Þ ¼ 1 and thus
s�\1.

(ii) If q0ðsÞrðqðsÞÞ=rðsÞ\1; for s [ s0 then, from the proof of Theorem 9.2, it is
easy to see that c2ðsÞ strictly increases for s [ s0; and thus s� � s0. h

Assume now that the expected gain during field operation is proportional to the
mean lifetime. Then the expected cost (i.e., the negative gain) during field oper-
ation is

c2ðsÞ ¼ �k ps

Z1

0

F1ðtÞdt þ ð1� psÞ
Z1

0

F2ðtÞdt

0
@

1
A;

and the total expected cost is given by

cðsÞ ¼ � csr þ
cs þ csr

GðsÞpþ GðqðsÞÞð1� pÞ

� k
GðsÞp

GðsÞpþ GðqðsÞÞð1� pÞ

Z1

0

F1ðtÞdt þ GðqðsÞÞð1� pÞ
GðsÞpþ GðqðsÞÞð1� pÞ

Z1

0

F2ðtÞdt

0
@

1
A;

ð9:12Þ

where k is a constant of proportionality. Then the following corollary holds:

Corollary 9.2 Let F1ðtÞ�F2ðtÞ; for all t� 0: Then the properties of optimal s�

for the total expected cost function (9.12) are the same as those described in
Theorem 9.4.

The proof is similar to that of Theorem 9.4. h

9.1.3.2 Model 2: Minimization with Replacement During
Field Operation

Assume that if an item fails during field operation, it is replaced by another item
which has survived a shock at a cost cf [ csr: The time intervals between two
consecutive replacements constitute a renewal process. Therefore, in accordance
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with FmsðtÞ ¼ psF1ðtÞ þ ð1� psÞF2ðtÞ and Eq. (9.7), the mean time between two
consecutive replacements is equal to

GðsÞp
GðsÞpþ GðqðsÞÞð1� pÞ

Z1

0

F1ðtÞdt þ GðqðsÞÞð1� pÞ
GðsÞpþ GðqðsÞÞð1� pÞ

Z1

0

F2ðtÞdt:

ð9:13Þ

Then, by the renewal reward theory argument, the expected cost rate ~cðsÞ is given
by

~cðsÞ ¼ 1

GðsÞp
GðsÞpþGðqðsÞÞð1�pÞ

R1
0

F1ðtÞdt þ GðqðsÞÞð1�pÞ
GðsÞpþGðqðsÞÞð1�pÞ

R1
0

F2ðtÞdt

	 cs þ csr

GðsÞpþ GðqðsÞÞð1� pÞ
þ ðcf � csrÞ

� �
;

ð9:14Þ

where the denominator is just an expected duration of a renewal cycle given by
Eq. (9.13) and the numerator defines the expected cost incurred during this cycle
(taking into account that the expected cost during burn-in is given by (9.11) and
the replacement cost during field operation is given by cf ).

Let s� denote the optimal severity which satisfies

s� ¼ arg inf
s2½0;1�

~cðsÞ:

Then, similar to Theorem 9.4, the following result is also true:

Theorem 9.5 Let F1ðtÞ�F2ðtÞ; for all t� 0: If RðqðsÞÞ � RðsÞ strictly decreases
for s [ s0; then optimal s� � s0: In particular,

(i) If q0ðsÞ[ 1 and rðsÞ is increasing, then s�\1.

(ii) If q0ðsÞrðqðsÞÞ
rðsÞ \1; for s [ s0; then the optimal s� � s0:

Proof Rearranging terms in (9.14):

~cðsÞ ¼ cs þ csr

GðsÞp
R1

0 F1ðtÞdt þ GðqðsÞÞð1� pÞ
R1

0 F2ðtÞdt

þ cf � csr

GðsÞp
GðsÞpþGðqðsÞÞð1�pÞ

R1
0 F1ðtÞdt þ GðqðsÞÞð1�pÞ

GðsÞpþGðqðsÞÞð1�pÞ

R1
0 F2ðtÞdt

:

The first term in the right-hand side strictly increases for s [ 0: Note that the
denominator of the second term is the weighted average of

R1
0 F1ðtÞdt andR1

0 F2ðtÞdt
R1

0 F1ðtÞdt�
R1

0 F2ðtÞdt
� �

with the corresponding weights ps and
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1� ps; respectively. Then, following the procedures described in the proof of
Theorem 9.4, we can obtain the desired result. h

Remark 9.3 In ‘ordinary’ burn-in, as discussed in the previous chapters, when the
lifetimes of items are described by the distributions with the bathtub-shaped failure
rate, the following property holds: the optimal burn-in time should be smaller than
the first change point (see, e.g., [5, 12]). In our reasoning, optimal stress levels, in
accordance with Theorems 9.2, 9.4, and 9.5, in a similar way also depend on the
properties of the distribution of strength.

Remark 9.4 In practice, the cost parameters cs; csr; cf ; cm; gm

� �
might not be

estimated precisely, which could make the optimization procedure difficult. In this
case, the Receiver Operating Characteristic (ROC) analysis can be adopted and
effectively used to determine the optimal burn-in time which minimizes the cor-
responding cost functions. A reference for this approach can be found in Wu and
Xie [15], where the application of ROC analysis is used to remove the weak
subpopulation in burn-in problems.

9.2 Continuous Mixtures

9.2.1 The Impact of Shocks on Mixed Populations

Consider a population of identically distributed items with lifetimes
Ti; i ¼ 1; 2; . . .. Each item ‘is affected’ by a non-observable univariate frailty
parameter Zi and the lifetimes Ti are conditionally independent given the values of
parameters Zi ¼ zi: Assume that these parameters are i.i.d with a common pdf pðzÞ
and with support in ½0;1Þ: (The general support a½ ; bÞ; 0� a\b�1 can be
considered as well.) Then, obviously Ti; i ¼ 1; 2; . . . are also i.i.d. For conve-
nience, the sub index ‘‘i’’ will be omitted and, therefore, the lifetimes and frailties
for all items will be denoted by T and Z; respectively. Thus, obviously, T is
described by the mixture Cdf and pdf

FmðtÞ ¼
Z1

0

Fðt; zÞpðzÞdz;

fmðtÞ ¼
Z1

0

f ðt; zÞpðzÞdz;

respectively, where Fðt; zÞ � FðtjzÞ ¼ Pr½T � tjZ ¼ z�; f ðt; zÞ ¼ F0ðt; zÞ are the
corresponding conditional characteristics for realization Z ¼ z.
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Then the mixture (observed) failure rate kmðtÞ; similar to (5.11, 5.12) is

kmðtÞ ¼
fmðtÞ
FmðtÞ

¼

R1
0

f ðt; zÞpðzÞdz

R1
0

�Fðt; zÞpðzÞdz
¼
Z1

0

kðt; zÞpðzjtÞdz;

ð9:15Þ

where

pðzjtÞ � pðzÞ
�Fðt; zÞR1

0
�Fðt; zÞpðzÞdz

: ð9:16Þ

In the framework of the model described above, we will consider mixed popula-
tions of stochastically ordered subpopulations.

Remark 9.5 The foregoing definitions and properties describe a standard statistical
mixture (or frailty) model for an item and for the collection of items (population)
as well. However, the following interpretation can be also useful, as frailty models
were initially developed in demographic and actuarial studies as a method of
describing heterogeneity in large populations (see, e.g., [3, 11, 14]; and references
therein). Thus, we assume that heterogeneity, described by the unobserved frailty,
is a property of an infinite population. It usually means that, due to different
environments, conditions, different manufacturers, etc., the population consists of
subpopulations of items with different statistical properties. Pooling at random
items from this population results in the described mixture model.

Assume that an item is put into operation for the mission time s with the
required survival probability PrðsÞ: If

exp �
Zs

0

kmðuÞdu

8<
:

9=
;�PrðsÞ; ð9:17Þ

then everything is fine and we do not need to improve the performance of our
items. On the contrary, if this inequality does not hold, the burn-in procedure can
be performed. There are different types of these procedures and we will consider
here the burn-in that is performed via shocks that can eliminate the weak items.

Throughout this section, the impact of a shock is described by the following
general assumption:

Assumption An instantaneous shock either ‘kills’ an item with a given proba-
bility or does not change its stochastic properties with the complementary prob-
ability. The more ‘frail’ (e.g., with larger failure rate or with smaller survival
function) an item is, the larger is the probability that a shock will ‘kill’ it.
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The following burn-in procedure is employed:

• Burn-in procedure by means of shocks. An item is exposed to a shock. If it
survives, it is considered to be ready for usage, otherwise the failed item is
discarded and a new one is exposed to a shock, etc.

This setting can be defined probabilistically in the following way: Let psðzÞ
denote the pdf of the frailty Zs (with support in 0½ ;1Þ) after a shock and let kmsðtÞ
be the corresponding mixture failure rate. In accordance with (9.15):

kmsðtÞ ¼
Z1

0

kðt; zÞpsðzjtÞdz;

where, similar to (9.16), psðzjtÞ is defined by the right-hand side of (9.16) with pðzÞ
substituted by psðzÞ.

First, assume formally that population frailties before and after a shock are
ordered in the sense of the likelihood ratio (see Sect. 2.8):

Z� LR Zs; ð9:18Þ

which in our terms is defined as

psðzÞ ¼
gðzÞpðzÞR1

0 gðzÞpðzÞdz
; ð9:19Þ

where gðzÞ is a decreasing function and therefore psðzÞ=pðzÞ is decreasing. As it
will be discussed in the next subsection, the function gðzÞ can be interpreted as the
survival probability of an item with frailty z after the shock. Therefore, the
assumption that gðzÞ is a decreasing function of z corresponds to our general
‘‘Assumption’’. Note that the ‘likelihood ratio ordering’ for mixing (frailty) dis-
tributions was used by Block et al. [4] for ordering optimal burn-in times in
‘ordinary’ burn-in settings (without shocks): the larger frailty corresponds to the
larger optimal burn-in time for some specified cost functions. It seems that this
ordering is natural for stochastic modeling in heterogeneous populations. The
following important theorem shows that depending on assumptions, the likelihood
ratio ordering of frailties leads either to the failure rate or to the usual stochastic
ordering of population lifetimes.

Theorem 9.6 Let relationship (9.19), defining the mixing density after a shock,
where gðzÞ is a decreasing function, hold.

(i) Assume that

kðt; z1Þ� kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0: ð9:20Þ

Then

kmsðtÞ� kmðtÞ; 8t� 0: ð9:21Þ
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(ii) Assume that

Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0: ð9:22Þ

Then

FmsðtÞ�FmðtÞ; 8t� 0; ð9:23Þ

where kmsðtÞ; �FmsðtÞ are the population (mixture) failure rate and the survival
function after a shock, respectively.

Proof Note that, inequalities (9.20) and (9.22) define two types of stochastic
orderings for subpopulations, i.e., the failure rate ordering and the usual stochastic
ordering, respectively.

(i) It can be shown [10: p. 164] that:

sign½kmsðtÞ�kmðtÞ�

¼ sign

Z1

0
u[s

Z1

0

�Fðt;uÞ�Fðt;sÞðkðt;uÞ�kðt;sÞÞðpsðuÞpðsÞ�psðsÞpðuÞÞduds; ð9:24Þ

which is negative due to definition (9.19) and assumptions of this theorem.
(ii) As gðzÞ is a decreasing function, and the survival function �Fðt; zÞ is also

decreasing in z; it can be easily shown using the mean value theorem that

FmsðtÞ � FmðtÞ ¼
R1

0 Fðt; zÞgðzÞpðzÞdzR1
0 gðzÞpðzÞdu

�
Z1

0

Fðt; zÞpðzÞdz� 0: ð9:25Þ

Indeed

Z1

0

gðzÞpðzÞdz ¼ gðz�Þ

and

Z1

0

Fðt; zÞgðzÞpðzÞdz ¼ gðz��Þ
Z1

0

Fðt; zÞpðzÞdz;

where gðz�Þ and gðz��Þ are the corresponding mean values. As �Fðt; zÞ is decreasing
in z; z�� � z�: Therefore, taking into account that gðzÞ is a decreasing function,
(9.25) follows. Note that the usage of the mean value theorem relies on the
continuity of gðzÞ: Alternatively, the general case (without this assumption) can be
proved similar to the proof in (i) (see also Theorem 9.7). h
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Remark 9.6 Inequality (9.20) is a natural ordering in the family of failure rates
kðt; zÞ; z 2 0½ ;1Þ and trivially holds, e.g., for the specific multiplicative model:

kðt; zÞ ¼ zkðtÞ: ð9:26Þ

Remark 9.7 Theorem 9.6 means that the population quality (in terms of the failure
rate or the survival function) has improved after a shock. Thus, in accordance with
our statistical ‘frequentistic’ interpretation (see Remark 9.5) when ‘the whole
population’ is exposed to a shock, the items that have passed this test form a new
population with better stochastic characteristics. On the other hand, following our
formal initial setting, it turns out that the benefit of a non-destructive shock is of
‘informational’ type, i.e., surviving a shock has the ‘Bayesian’ effect of modifying
the posterior distribution of Z; which is Zs in our notation.

Remark 9.8 In accordance with (9.21) and (9.23), inequality (9.17) can be already
achieved after one shock, otherwise new shocks should be applied or the
‘‘severity’’ of a single shock (see later) should be increased. It is also worth noting
that the replacement of condition (9.18) by the usual stochastic ordering: Z� st Zs

will not guarantee orderings (9.21) and (9.23) for all t.

9.2.2 The Impact of Shocks on an Item

Now we must consider a more specific mechanism of a shock’s impact on an item.
Let each item fail with probability pðzÞ and survive (as good as new) with prob-
ability qðzÞ ¼ 1� pðzÞ: Here, the condition that corresponds to the general
‘‘Assumption’’ in Sect. 9.2.1 is that pðzÞ is an increasing function of
z 0� pðzÞ� 1ð Þ: This assumption makes sense as, in accordance with (9.20), larger
values of frailty correspond to larger values of the failure rate. Therefore, items
with larger values of frailty are more susceptible to failures. Equation (9.19) reads
now

psðzÞ ¼
qðzÞpðzÞR1

0 qðzÞpðzÞdz
; ð9:27Þ

where psðzÞ is the pdf of Zs (predictive, or posterior pdf, as it has been called in
Bayesian terminology). As qðzÞ is decreasing with z; it follows from Theorem 9.6
that the failure rate ordering (9.21) and the usual stochastic ordering (9.23) hold.

If we are not concerned about the costs (e.g., when the mission is very
important) and inequality

exp �
Zs

0

kmsðuÞdu

8<
:

9=
;�PrðsÞ ð9:28Þ
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holds, then the burn-in is over and the item that has survived a shock can be put
into field operation. Otherwise, a shock with the higher level of severity or several
shocks should be performed for each item in order to achieve this inequality.

On the other hand, in most practical situations the costs are involved. In order to
consider the corresponding optimization, we must define the costs and probabili-
ties of interest. A convenient and useful model for pðzÞ (although oversimplified
for practical usage) is the step function:

pðzÞ ¼ 0; 0� z� zb

1; z [ zb

�
: ð9:29Þ

It means that all ‘weak’ items with z [ zb will be eliminated and only ‘strong’
items will remain in the population. In accordance with (9.29), the probability of
not surviving the shock in this case is

Pzb � �PðzbÞ ¼
Z1

zb

pðzÞdz; ð9:30Þ

where PðzÞ is the Cdf that corresponds to the pdf pðzÞ: Obviously, for a general
form of pðzÞ; this probability is defined by the following mixture

P ¼
Z1

0

pðzÞpðzÞdz: ð9:31Þ

9.2.3 Shock’s Severity

It is clear that the parameter zb in the specific model (9.29) can be considered as a
parameter of severity: the larger values of zb correspond to a smaller severity. Now
we can deal with the issue of severity in a more general context, that is, when pðzÞ
is not a simple step function but a continuous function of z.

For this discussion, define the functions pðzÞ and qðzÞ as functions of the frailty
variable z and the severity parameter s 2 ½0;1Þ; pðz; sÞ and qðz; sÞ: Assume that
qðz; sÞ is decreasing in z for each fixed s and is decreasing in s for each z. The
assumption that qðz; sÞ is decreasing in z for each fixed s is just what was assumed
in our general ‘‘Assumption’’ in Sect. 9.2.1. The assumption that qðz; sÞ is
decreasing in s for each fixed z is also quite natural and implies that items char-
acterized by the same value of frailty have larger failure probabilities under larger
severity levels.

Denote the corresponding failure rate and the survival function by kmsðt; sÞ and
Fmsðt; sÞ; respectively. Similar to (9.19) and (9.16):

330 9 Shocks as Burn-in



psðz; sÞ ¼
qðz; sÞpðzÞR1

0 qðu; sÞpðuÞdu
; psðz; sjtÞ � psðz; sÞ

�Fðt; zÞR1
0

�Fðt; uÞpsðu; sÞdu
:

In order to compare two severity levels, we need the following definition.

Definition 9.1
(i) The severity (stress) level s is said to be dominated under the failure rate

criterion if there exists another level s0 such that

kmsðt; sÞ� kmsðt; s0Þ; for all t� 0:

(ii) The severity (stress) level s is said to be dominated under the survival prob-
ability criterion if there exists another level s0 such that

Fmsðt; s0Þ �Fmsðt; sÞ; for all t� 0:

Otherwise, the severity (stress) level s is called non-dominated.

Theorem 9.7 Assume that qðz; sÞ is decreasing in z for each fixed s and is
decreasing in s for each z: Consider two stress levels s and s0: Let

qðu; s0Þqðv; sÞ � qðv; s0Þqðu; sÞ� 0; for all u [ v; ð9:32Þ

which means that qðz; s0Þ=qðz; sÞ is decreasing in z:

(i) If kðt; z1Þ� kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0;
then the severity level s is dominated under the failure rate criterion.

(ii) If Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0;
then the severity level s is dominated under the survival probability criterion.

Proof
(i) Similar to (9.24):

sign½kmsðt; s0Þ � kmsðt; sÞ�

¼ sign

Z1

0
u [ v

Z1

0

�Fðt; uÞ�Fðt; vÞðkðt; uÞ � kðt; vÞÞðpsðu; s0Þpsðv; sÞ � psðv; s0Þpsðu; sÞÞdudv:

Thus, if (9.32) holds, then

psðu; s0Þpsðv; sÞ � psðv; s0Þpsðu; sÞ� 0;

which implies the result in (i).
(ii)

Fmsðt; s0Þ � Fmsðt; sÞ ¼
R1

0 Fðt; zÞqðz; s0ÞpðzÞdzR1
0 qðu; s0ÞpðuÞdu

�
R1

0 Fðt; zÞqðz; sÞpðzÞdzR1
0 qðu; sÞpðuÞdu

;
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and the corresponding numerator can be transformed to

Z1

0
u[v

Z1

0

pðuÞpðvÞðFðt; uÞ � Fðt; vÞÞðqðu; s0Þqðv; sÞ � qðv; s0Þqðu; sÞÞdudv:

Therefore, if (9.32) holds, then

Fmsðt; s0Þ � Fmsðt; sÞ� 0; for all t� 0:

h

Remark 9.9 Note that although the assumption that qðz; sÞ is decreasing in z for
each fixed s and is decreasing in s for each z is not used formally in the foregoing
proof, it represents some basic ‘physical properties’ of the model and should be
checked in applications.

Remark 9.10 In accordance with Remark 9.7, Theorem 9.7 means that the pop-
ulation quality (in terms of the failure rate or the survival function) is better after
the shock with severity s0 than after the shock with severity s.

Example 9.3 Consider the following illustrative discrete example. Suppose that
there are only three stress levels: s1; s2; and s3 s1\s2\s3ð Þ: Let qðz; s1Þ ¼
0:2e�z þ 0:6; qðz; s2Þ ¼ 0:6e�z þ 0:2; and qðz; s3Þ ¼ 0:2e�z þ 0:2: Then qðz; siÞ is
decreasing in z; for each i ¼ 1; 2; 3: Furthermore, for each fixed z;
qðz; s1Þ� qðz; s2Þ� qðz; s3Þ and in this way the condition for ordering the stress
levels s1\s2\s3ð Þ is justified. Observe that

qðz; s2Þ
qðz; s1Þ

and
qðz; s2Þ
qðz; s3Þ

strictly decrease in z: Therefore, as follows from Theorem 9.7, the stress levels s1

and s3 are dominated and, in this case, the stress level s2 minimizes the failure rate
and maximizes the survival function after a shock. Thus s2 is the optimal level.

Remark 9.11 Intuitively, it can be believed that a higher level of severity results in
a ‘better population’ but it is not always true as shown in this example. A similar
observation is true for the conventional burn-in in homogeneous populations when
the larger time of burn-in does not necessarily lead to a ‘better population’. In this
case, the shape of the failure rate (e.g., bathtub) plays a crucial role in the cor-
responding analysis.

Consider again the specific case (9.29). For convenience, and in accordance
with our reasoning, let us change the notation in the following way:

qðz; sÞ ¼ 1; 0� z� zs

0; z [ zs

�
; ð9:33Þ
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where zs [ zs0 if s0[ s; s; s0 2 ½0;1Þ: Then we have the following corollary.

Corollary 9.3 Let the model (9.33) hold and fix s0[ 0.

(i) If kðt; z1Þ� kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0; then the severity level s
for 8s� s0 is dominated under the failure rate criterion. That is,

kmsðt; sÞ� kmsðt; s0Þ; for all t� 0; for all s� s0:

(ii) If Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0; then the severity level s
for 8s� s0 is dominated under the survival probability criterion. That is,

Fmsðt; s0Þ �Fmsðt; sÞ; for all t� 0; for all s� s0:

Proof It is easy to check that condition

qðu; s0Þqðv; sÞ � qðv; s0Þqðu; sÞ� 0; for all u [ v;

is always satisfied for qðz; sÞ given by Relationship (9.33) for all s0[ s. h

It follows from this corollary that the better population quality (see Remark 9.7)
can be obtained by increasing s (formally, s!1; but the level of severity is
always bounded in practice).

Remark 9.12 In Theorem 9.7, considering general form of qðz; sÞ; it was assumed
that qðz; s0Þ=qðz; sÞ decreases in z for some fixed s0 and s: If we now assume that this
quotient decreases in z for all s0[ s; then, similar to the specific case of Corollary
9.3, the better population quality can be obtained by increasing s s!1ð Þ.

Remark 9.13 It should be noted that there is a certain analogy between describing
the usual burn-in for heterogeneous populations during a given time period and the
burn-in via shocks. It was shown in Finkelstein [10] that, if two different frailty
distributions are ordered in the sense of the likelihood ratio and inequality (9.20)
holds, then the smaller frailty implies the smaller mixture failure rate (the better
population quality after burn-in). In the case under consideration, Inequality (9.32)
can be also interpreted as the corresponding likelihood ordering of frailties after
the shocks with two stress levels s and s0; respectively.

9.2.4 The Cost of Burn-in and Optimal Problem

In field operation, items are frequently required to survive a pre-specified time
period, which is called the mission time, s: In this subsection, optimal severity of a
shock, which minimizes the average cost incurred during the burn-in and the
operation phase will be considered.
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As previously, a new component randomly selected from the heterogeneous
population is burned-in by means of a shock. If the first one did not survive then
we take another one from infinite heterogeneous population and burn-in again.
This procedure is repeated until we obtain the first component which survives
burn-in. Then this component is put into the field operation. Assume, first, for
simplicity, that the cost of conducting a single shock cs ¼ 0: Denote by c1 the
expected cost of the burn-in until obtaining the first item that has survived shocks.
It is clear that

c1 ¼ 0	 ð1� PÞ þ csrPð1� PÞ þ 2csrP
2ð1� PÞ þ 3csrP

3ð1� PÞ þ � � �

¼ csrPð1� PÞð1þ 2Pþ 3P2 þ � � �Þ ¼ csrP

1� P
;

ð9:34Þ

where csr is the shop replacement cost. Similarly, when cs 6¼ 0

c1 ¼
csrPþ cs

1� P
: ð9:35Þ

Obviously, this function increases when P increases in 0½ ; 1Þ: Note that P is now a
function of the stress level s; that is, PðsÞ [see definition (9.31), where pðzÞ should
be substituted by pðz; sÞ] and thus, in the following, c1 in (9.34) and (9.35) should
be also understood as a function of s; c1ðsÞ.

Let:

The cost cm is incurred by the event Ts� sf g (Failure of the Mission);
The gain gm results from the event Ts [ sf g (Success of the Mission).

Obviously, the expected cost during field operation is:

c2ðsÞ ¼ �gmFmsðs; sÞ þ cmð1� Fmsðs; sÞÞ
¼ �ðgm þ cmÞFmsðs; sÞ þ cm:

Therefore, the total expected cost function (as a function of the stress level s) for
the burn-in and the field operation phases is given by

cðsÞ ¼ c1ðsÞ þ c2ðsÞ; ð9:36Þ

where c1ðsÞ is defined in (9.35). The values csr; cs; gm; cm are assumed to be
known. Thus the corresponding optimization problem can be formalized as

s� ¼ arg min cðsÞ: ð9:37Þ

It is worth noting that condition (9.28) can also be imposed as an additional
requirement for obtaining minimum of the total costs function.

Theorem 9.8 Suppose that

Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0:
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(i) If, for any s2 [ s1; qðu; s2Þqðv; s1Þ � qðv; s2Þqðu; s1Þ� 0; for all u [ v; i.e.,
qðz; s2Þ=qðz; s1Þ decreases in z for all s2 [ s1; then there exists the finite
optimal level s�\1 for the optimization problem (9.37).

(ii) If there exists s0\1 such that for all levels s [ s0; the level s is dominated by
s0 under the survival probability criterion, then s�\s0.

Proof
(i) Observe that c1ðsÞ strictly increases in s with c1ð0Þ ¼ cs to c1ð1Þ ¼ 1 and

c2ðsÞ can be minimized by maximizing Fmsðs; sÞ: If qðz; s2Þ=qðz; s1Þ decreases
in z for all s2 [ s1; then c2ðsÞ strictly decreases for s [ 0 since Fmsðs; sÞ:
strictly increases for s [ 0 by Theorem 9.7. But cð1Þ ¼ 1 and thus, s�\1.

(ii) If there exists s0\1 such that for all stress levels s [ s0; the level s is
dominated by s0 then it is obvious that cðs0Þ� cðsÞ; for all s [ s0: Therefore,
s�\s0. h

Assume now that the expected gain during field operation is proportional to the
mean lifetime of an item, which is also a reasonable assumption that is often used
in practice. Then the expected cost during the field operation, c2ðsÞ; is given by

c2ðsÞ ¼ �k

Z1

0

Fmsðt; sÞdt ¼ �k

R1
0

R1
0 Fðt; zÞdt

� 	
qðz; sÞpðzÞdzR1

0 qðu; sÞpðuÞdu
;

where k is the proportionality constant. It is obvious that if

Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0;

then

Z1

0

Fðt; z1Þdt�
Z1

0

Fðt; z2Þdt; z1\z2; 8z1; z2 2 ½0;1�

and, as in Theorem 9.8, the same result for optimal severity level s� can be
obtained (See also the proof of Theorem 9.7-(ii)).

If our goal is only to achieve minimum of cðsÞ and a shock can be made as
severe as we wish, then no further shocks are needed. However, if the shock’s
severity beyond certain level (that is usually defined by the physical processes in
the item subject to a shock) results in a non-negligible damage in the ‘survived’
item, then we cannot go above this level of severity and should consider an option
of performing additional shocks. Note that additional shocks in the framework of
the specific model (9.29) do not improve the quality of a population. This can be
easily seen by deriving Pð2Þzb

- the probability of not surviving the second shock with
the same level of zb: Using (9.27) and (9.30),
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Pð2Þzb
¼
Z1

zb

psðzÞdz ¼
R1

zb
qðzÞpðzÞdzR1

0 qðzÞpðzÞdz
¼ 0:

On the other hand, the general model (9.31) gives a positive probability of not
surviving the second shock (with the same level of severity pðz; sÞ) after an item
had survived the first shock:

P 2ð ÞðsÞ ¼
Z1

0

pðz; sÞpsðzÞdz ¼
R1

0 pðz; sÞqðz; sÞpðzÞdzR1
0 qðz; sÞpðzÞdz

[ 0:

Therefore, when the high level of stress can negatively affect even those items that
had formally passed it (did not fail), we can perform a more ‘friendly’ burn-in with
a lower level of stress by increasing the number of shocks as opposed to the option
of one shock.

Denote the posterior density after the nth shock by pðnÞs ðzÞ; where pð1Þs ðzÞ ¼
psðzÞ: Then, (9.27) is generalized to:

pðnÞs ðzÞ ¼
qnðz; sÞpðzÞR1

0 qnðz; sÞpðzÞdz
; ð9:38Þ

meaning that for the given qðz; sÞ; this density tends (in the sense of generalized
functions) to the ‘one-sided’ d-function (in the positive neighborhood of 0).
Therefore, if we assume that there is no penalty (cost) for additional shocks, then
obviously, we can reach the desired level of severity (the same as with one
‘unfriendly’ shock) with a finite number of shocks. This ‘multi-shock reasoning’
can be generalized to an extended model considering the relevant costs and the
corresponding optimal problem. In essence, as all shocks are applied in a relatively
short period of time, we are treating the sequence of shocks as one ‘aggregated’
shock.

In this case, the number of shocks can be considered as a measure of severity.
Let si denote the level of severity with i shocks, i ¼ 1; 2; . . .; that is, for example,
at level s1 only one shock with severity level s is applied; at level s2 two con-
secutive shocks with severity level s are applied, and so on. Let
~qðz; siÞ ~qðz; s1Þ � qðz; sÞð Þ be the item’s survival probability for this ‘multi-shock
structure’. Obviously, from (9.38), we have ~qðz; siÞ ¼ qiðz; sÞ: As

~qðz; siþ1Þ
~qðz; siÞ

¼ qðz; sÞ

is decreasing in z; by Remark 9.12, we can conclude that the better quality of a
population can be obtained by monotonically increasing the number of shocks.
Using this property, similar results as in Theorem 9.8 can be obtained when the
corresponding cost structure is considered.
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Example 9.4 Consider the multiplicative model (9.26) with the constant baseline
failure rate kðt; zÞ ¼ zk: This is a real-life example as, e.g., many electronic
components have a constant failure rate which is varying from component
to component due to production instability, etc. Note that ‘traditional’ burn-in
(i.e., for the specified time) for these heterogeneous populations was usually
executed by the manufacturers especially when the items had to meet high reli-
ability requirements (e.g., for military field usage).

Assume for simplicity that Z is also exponentially distributed (it can easily be
generalized to the gamma distribution): PrðZ� zÞ ¼ 1� expf�a zg: It is well
known that the mixture failure rate in this case is

kmðtÞ ¼
R1

0 zk expf�zktgpðzÞdzR1
0 expf�zktgpðzÞdz

¼ k
kt þ a

: ð9:39Þ

Consider a single shock defined by the specific pðzÞ given by Eq. (9.29) [it is just
more convenient for this particular example to use this parameterization rather
than the equivalent parameterization (9.33)]. In accordance with (9.27):

psðzÞ ¼
qðzÞpðzÞR1

0 qðzÞpðzÞdz
¼ 1R zb

0 pðzÞdz

pðzÞ; 0� z� zb

0; z [ zb

�

¼ 1
PðzbÞ

pðzÞ; 0� zb

0; z [ zb

�
:

Therefore, simple integration results in

kmsðt; zbÞ ¼
R zb

0 zk expf�zktgpðzÞdzR zb

0 expf�zktgpðzÞdz

¼ k
kt þ a

1� zbðkt þ aÞ
expfzbðkt þ aÞg � 1

� �
:

ð9:40Þ

It can be easily seen that 1� zbðkt þ aÞ=ðexpfzbðkt þ aÞg � 1Þ is increasing in zb

from 0 at zb ¼ 0 to 1 at zb ¼ 1; for all fixed t [ 0: Note that the value at zb ¼ 0
should be considered only like a limit (which obviously does not belong to
admissible failure rates). Thus, when zb !1; (9.40) tends to the value defined by
Eq. (9.39). It is also clear that the general inequality (9.21) holds in this specific
case. It follows from (9.30) that the probability of not surviving a shock in this
specific case is:

PðzbÞ ¼
Z1

zb

pðzÞdz ¼ expf�a zbg:

In accordance with (9.36), the corresponding total expected cost function is

cðzbÞ ¼ c1ðzbÞ þ c2ðzbÞ;
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where

c1ðzbÞ ¼
csr expf�a zbg þ cs

1� expf�a zbg
;

and

c2ðzbÞ ¼ �ðgm þ cmÞ exp �
Zs

0

k
kuþ a

1� zbðkuþ aÞ
expfzbðkuþ aÞg � 1

� �
du

8<
:

9=
;þ cm:

It is obvious that c1ðzbÞ is decreasing in zb and its limits are1 and cs at zb ¼ 0 and
zb ¼ 1; respectively. On the other hand, as 1� zbðkt þ aÞ=ðexpfzbðkt þ aÞg � 1Þ
is increasing in zb from 0 at zb ¼ 0 to 1 at zb ¼ 1 (for all fixed t [ 0), c2ðzbÞ is
increasing in zb and its limits are �gm and �ðgm þ cmÞ exp �

R s
0 k=ðkuþ aÞdu

� 	
þ

cm; at zb ¼ 0 and zb ¼ 1; respectively.
Thus, in this case, cðzbÞ has its limit

cs � ðgm þ cmÞ exp �
Zs

0

k=ðkuþ aÞdu

8<
:

9=
;þ cm:

Consider the following illustrative numerical values: k ¼ 1:0; a ¼ 0:1; csr ¼
1:0; cs ¼ 1:0; gm ¼ 300; cm ¼ 200; and s ¼ 5:0: The corresponding graph is given
in Fig. 9.3.

It follows from Theorem 9.8 that there exists a finite optimal stress level
s�\1; which implies that in our example there exists a positive optimal zb

�[ 0:
For the chosen numerical values, we have: zb

� ¼ 0:165 and cðzb
�Þ 
 �19:63: This

result shows that for the given values of parameters the optimal stress level is
relatively large (zb

�is small).

9.3 Burn-in for Minimizing Risks

9.3.1 Discrete Mixtures

In the previous sections, it was shown that under reasonable assumptions, shocks
will eliminate weaker items with larger probabilities than strong items, and in this
way the burn-in can be performed. The optimal severity of shocks for some
population quality measures was also studied. In this section, we will apply this
methodology to the shock burn-in that minimizes the risks of selecting items (from
heterogeneous populations) with poor reliability characteristics for important
missions or missions, where failures can result, e.g., in a substantial economic loss.
This type of burn-in can be beneficial when the ‘ordinary’ time burn-in does not
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make sense (e.g., when the population failure rate is increasing), which will be
illustrated by relevant examples (see also [8]). In what follows, we implicitly
assume that shocks randomly occurring during ‘normal’ operation constitute one
of the main causes of failure. Therefore, a single shock of a larger magnitude under
the assumptions to be discussed can act as a method of burn-in.

Consider now the case of n ¼ 2 subpopulations. For convenience, we repeat the
initial setting of Sect. 9.1. First, we describe the composition of our population.
Denote the lifetime of a component from the ‘strong subpopulation’ by Ts and its
absolutely continuous Cdf, pdf, and the failure rate function by F1ðtÞ; f1ðtÞ and
k1ðtÞ; respectively. Similarly, the lifetime, the Cdf, pdf, and the failure rate
function of a ‘weak’ component are TW ;F2ðtÞ; f2ðtÞ and k2ðtÞ; accordingly. We
define strong and weak subpopulations in the sense of the following failure rate
ordering:

k2ðtÞ� k1ðtÞ; t� 0: ð9:41Þ

The initial t ¼ 0ð Þ composition of our mixed population is as follows: the pro-
portion of the strong items is p; whereas the proportion of the weak items is 1� p;
which means that the distribution of the discrete frailty Z with realizations z1 and
z2 in this case is

pðzÞ ¼ p; z ¼ z1

1� p; z ¼ z2

�

and z1; z2 z1\z2ð Þ; correspond to the strong and the weak subpopulations,
respectively. The mixture (population) survival function is

FmðtÞ ¼ pF1ðtÞ þ ð1� pÞF2ðtÞ:

Then the mixture (the observed or the population) failure rate is

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

¼ p1ðtÞk1ðtÞ þ p2ðtÞk2ðtÞ; ð9:42Þ

Fig. 9.3 The function cðzbÞ
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where the time-dependent probabilities are

p1ðtÞ ¼
p�F1ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
; p2ðtÞ ¼

ð1� pÞ�F2ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

: ð9:43Þ

We adopt the same assumption as in Sect. 9.1:

Basic Assumption 1 The more frail (e.g., with the larger failure rate during
‘normal’ operation) the items are, the more susceptible they are to be ‘killed’ by a
single shock of a larger magnitude (burn-in).

Burn-in is applied in the following way:

• Burn-in procedure by means of shocks. An item from our heterogeneous pop-
ulation is exposed to a shock. If it survives, it is considered to be ready for
usage, otherwise the failed item is discarded and a new one is exposed to a
shock, etc.

Let psðzÞ denote the frailty distribution after the (burn-in) shock and let kmsðtÞ
be the corresponding mixture (observed) failure rate. Denote the probabilities of
failures caused by each shock for two subpopulations as:

pðzÞ ¼ p1; z ¼ z1;
p2; z ¼ z2:

�
ð9:44Þ

Then psðzÞ; kmsðtÞ and FmsðtÞ are defined as in Sect. 9.1 [see, e.g., Eq. (9.2)].
Consider now a simple motivating example, where the shock burn-in can be

effective, whereas the ordinary time burn-in will only decrease reliability char-
acteristics of items.

Example 9.5 Let k1ðtÞ ¼ 0:3t þ 1; k2ðtÞ ¼ 0:6t þ 2 and p ¼ 0:60: Then, obvi-
ously, k2ðtÞ� k1ðtÞ; t� 0; and the mixture failure rate kmðtÞ given in Fig. 9.4 is
strictly increasing. Therefore, the time burn-in should not be applied for this
heterogeneous population.

Let p1 ¼ 0:1 and p2 ¼ 0:8 [see Eq. (9.44)]. Then the mixture failure rate
functions before and after (lower) the shock burn-in are given in Fig. 9.5.

Therefore, the shock burn-in improves the quality (reliability) characteristics of
this population.

In the following, we consider the problem of determining the optimal severity
of the shock burn-in for suitable measures of risk in operation. Denote the mag-
nitude of a shock by s 2 ½0;1�: Assume that the ‘strength’ of the component in a
strong subpopulation is a continuous random variable, which is denoted by U: By
‘strength’ we understand here the corresponding measure of resistance to a single
shock, i.e., if s [ U; then the failure occurs. Let the Cdf, the survival function, and
the failure rate function of U are denoted by GðsÞ;GðsÞ; and rðsÞ; respectively.
Similarly, let the strength of the component in a weak subpopulation be denoted by
UW : Then, in accordance with our Basic Assumption 1, let
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U� stUW : ð9:45Þ

Then Eqs. (9.3) and (9.4) and the corresponding reasoning employed while
deriving these equations hold.

Let an item from our population be operable at time t [ 0 (in field operation).
Then, if this is a weak item, the ‘risk of instantaneous failure’ is larger than that for
a strong one. Therefore, a larger penalty (loss) should be imposed to the item with
a larger risk. This allows us to define the following ‘‘point loss’’ at time t for the
subpopulation i:

LiðtÞ ¼ gððkiðtÞÞ; i ¼ 1; 2; ð9:46Þ

where gð�Þ is a strictly increasing function of its argument.

The following criterion of optimization of shock’s severity level stems from
definition (9.46):

Criterion 1 Find s� which minimizes

LðtjsÞ ¼
X2

i¼1

LðkiðtÞ; 0Þpsðzij0Þ ¼
X2

i¼1

gðkiðtÞÞpsðzij0Þ; for all t� 0: ð9:47Þ

Fig. 9.4 Mixture failure rate

Fig. 9.5 The mixture failure
rate functions before and after
Shock Burn-in
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Observe that LðtjsÞ in (9.47) corresponds to the mean loss at time t of an item
which has experienced the shock burn-in with the corresponding magnitude s:
Suppose that the subpopulations are ordered as in (9.41). Then, it is easy to see that
maximization of the proportion of the strong components, psðz1j0Þ � ps minimizes
(9.47) for all t� 0: Therefore, as follows from (9.45), the problem is the same as
maximizing

ps ¼
ð1� GðsÞÞp

ð1� GðsÞÞpþ ð1� GðqðsÞÞÞð1� pÞ ;

which is the same as finding s� that satisfies

s� ¼ arg inf
s2½0;1�

kmsðt; sÞ; for all fixed t� 0:

The corresponding result can be found in Cha and Finkelstein [6]:

Theorem 9.9 [6] Let k1ðtÞ� k2ðtÞ; for all t� 0: Then the optimal s� is the value
which maximizes RðqðsÞÞ � RðsÞ; where RðsÞ �

R s
0 rðuÞdu: In particular,

(i) If rðsÞ is increasing and q0ðsÞ[ 1; then s� ¼ 1.

(ii) If q0ðsÞrðqðsÞÞ
rðsÞ [ 1; for s\s0; and q0ðsÞrðqðsÞÞ

rðsÞ \1; for s [ s0; then s� ¼ s0.

Consider now the second criterion. Let s be the usage (mission) time for our
components. Then, as the point loss varies during mission time, it should be
averaged, i.e., it should be integrated for the mission interval (and then divided by
the length of the interval) to measure the ‘overall risk’ during the mission. Thus, the
average loss during the operational interval for subpopulation i can be defined as

R s
0 LiðtÞdt

s
¼
R s

0 gðkiðtÞÞdt

s
; i ¼ 1; 2:

As the selection of a component from a heterogeneous population is made just after
the shock burn-in and the corresponding proportions after the burn-in are given by
psðzij0Þ; i ¼ 1; 2; the mean loss for our mixture population (after burn-in) is

WðsÞ ¼
X2

i¼1

R s
0 LðkiðtÞ; 0Þdt

s
� psðzij0Þ ¼

X2

i¼1

R s
0 gðkiðtÞÞdt

s
� psðzij0Þ: ð9:48Þ

Criterion 2 Find s� which minimizes WðsÞ.

Similar to the optimization based on Criterion 1, as the subpopulations are
ordered in the sense of failure rate ordering, Theorem 9.9 could be also applied,
which is illustrated by the following example.

Example 9 Let k1ðtÞ ¼ 1:2� expf�1:2tg þ 0:01t; k2ðtÞ ¼ 1:4 expf�0:08tg þ
1:2þ 0:01t; with p ¼ p1ð0Þ ¼ 0:80: Then k2ðtÞ� k1ðtÞ; t� 0 and the
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corresponding strictly increasing mixture failure rate kmðtÞ is given in Fig. 9.6. Let
the failure rate of GðsÞ be rðsÞ ¼ expf�sg þ 1; qðsÞ ¼ ffiffi

s
p
; 0� s� 1=2; qðsÞ ¼

sþ ð1=
ffiffiffi
2
p
� 1=2Þ expð0:5� sÞ; s� 1=2: and s ¼ 3: Then for gðxÞ ¼ x2; WðsÞ is

given in Fig. 9.7. It can be numerically shown that there exists s0 such that
q0ðsÞrðqðsÞÞ

rðsÞ [ 1; for s\s0; and q0ðsÞrðqðsÞÞ
rðsÞ \1; for s [ s0; and, as illustrated by

Fig. 9.7, there exists the finite optimal severity level s� 
 0:20ð Þ: Note that, as the
failure rates are ordered, minimization of WðsÞ in (9.48) is equivalent to maxi-
mization of the proportion of the strong components, psðz1j0Þ � ps: Therefore, the
optimal severity in this case does not depend on the value of s and this is also the
optimal severity level for Criterion 1.

Note that the proportion of the strong subpopulation after the shock burn-in is
ps 
 0:86: (compare with 0.80 before burn-in). In addition, it can be shown
graphically that the mixture failure rate in this case has also been decreased for all
t� 0; as in Fig. 9.5.

Fig. 9.6 Mixture failure rate

Fig. 9.7 WðsÞ
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9.3.2 Continuous Mixtures

As in the previous parts of this chapter, consider now the case of the ‘continuous’
mixing model for a heterogeneous population, i.e.,

FmðtÞ ¼
Z1

0

Fðt; zÞpðzÞdz; fmðtÞ ¼
Z1

0

f ðt; zÞpðzÞdz; ð9:49Þ

where Fðt; zÞ � FðtjzÞ; f ðt; zÞ � f ðtjzÞ are the Cdf and the pdf of subpopulations
indexed (conditioned) by the frailty parameter Z and pðzÞ is the pdf of Z with
support in 0½ ;1Þ Then the mixture failure rate kmðtÞ is defined as in (9.15), (9.16).

As in the discrete case, let our subpopulations be ordered in the sense of the
failure (hazard) rate ordering:

kðt; z1Þ� kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1Þ; t� 0: ð9:50Þ

We choose an item from a heterogeneous population at random (or alterna-
tively, our item is described by the unobserved frailty parameter Z). Thus, the
mixture (population) failure rate of this item is kmðtÞ: Throughout this subsection,
similar to the Basic Assumption 1, the impact of a shock is described by the
following general assumption [6].

Basic Assumption 2 A shock either ‘kills’ an item with a given probability or
does not change its stochastic properties with the complementary probability. The
more ‘frail’ (e.g., with the larger failure rate during normal operation) an item is,
the larger is the probability that a single burn-in shock will ‘kill’ it.

As we implicitly assume that shocks during normal operation constitute one of
the main causes of failure, the above assumption can be justified. Note that,
clearly, the burn-in procedure is the same as in the discrete case. The described
setting can be defined probabilistically in the following way: Let psðzÞ denote the
pdf of the frailty Zs (with support in 0½ ;1Þ) after a shock and let kmsðtÞ be the
corresponding mixture failure rate. In accordance with (9.49):

kmsðtÞ ¼
Z1

0

kðt; zÞpsðzjtÞdz; ð9:51Þ

where, similar to (9.50), psðzjtÞ is defined by the right-hand side of (9.50) with pðzÞ
substituted by psðzÞ.

Let qðzÞ be ‘‘the survival probability’’ of an item with frailty z after the shock.
Then psðzÞ is [10]:

psðzÞ ¼
qðzÞpðzÞR1

0 qðzÞpðzÞdz
; ð9:52Þ
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where, in accordance with Basic Assumption 2, qðzÞ is a decreasing function of z
and therefore, psðzÞ=pðzÞ is decreasing [the denominator of (9.52) is just a nor-
malizing constant for the density]. That is, population frailties before pðzÞð Þ and
after psðzÞð Þ a shock are ordered in the sense of the likelihood ratio (Sect. 2.8)

Z� LRZs:

Define the functions pðzÞ and qðzÞ as functions of the frailty variable z and the
severity parameter s 2 ½0;1Þ; pðz; sÞ, and qðz; sÞ: Assume that qðz; sÞ is decreasing
in z for each fixed s and is decreasing in s for each z: Denote the corresponding
failure rate and survival functions by kmsðt; sÞ; and Fmsðt; sÞ; respectively. Similar
to (9.52) and (9.50):

psðz; sÞ ¼
qðz; sÞpðzÞR1

0 qðu; sÞpðuÞdu
; psðz; sjtÞ � psðz; sÞ

�Fðt; zÞR1
0

�Fðt; uÞpsðu; sÞdu
: ð9:53Þ

For this continuous mixture case, the criteria defined for the discrete case can
obviously be generalized as follows:

Criterion 1C Find s� which minimizes

LðtjsÞ ¼
Z1

0

gðkðt; zÞÞpsðz; sÞdz; for all t� 0:

Criterion 2C Find s� which minimizes

WðsÞ ¼
Z1

0

R s
0 gðkðt; zÞÞdt

s
� psðz; sÞdz:

The following example illustrates the application of Criterion 2C.

Example 9.7 Suppose that kðt; zÞ ¼ 0:1z expf0:1tg þ 0:02t þ 1; and let Z be
exponentially distributed with parameter h ¼ 0:5: For brevity, we omit the graph
showing that the mixture failure rate is strictly increasing in this case. Let
qðz; sÞ ¼ 0:95e�zs þ 0:05; s ¼ 3:0, and gðxÞ ¼ x2: Then WðsÞ is given in Fig. 9.8.

Thus the optimal shock severity is s� 
 2:03: As in Example 9.6, the shock
burn-in in this case has decreased the mixture failure rate (we omit the corre-
sponding figure for brevity), which obviously cannot be attained by the ordinary
time burn-in, as the mixture failure rate of our population is increasing. The frailty
distributions before and after burn-in are given in Fig. 9.9.

It can be seen that the frailty density before the shock is much flatter allowing
larger proportions of items with higher failure rates (weaker).
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9.3.3 Optimal Shock Burn-in Based on Conservative
Measures

Sometimes, failures of items may result in catastrophic or disastrous events. For
example, failures in jet engines of aircrafts or those in gas safety valves may cause
fatal consequences. Similarly, failures during important missions can cause huge
economic loss. In these cases, we need to define some ‘marginal quality’ of the
population that describes in some sense the ‘‘worst scenario’’. That is, if this worst
scenario quality is still acceptable then the quality of our population as a whole is
considered to be satisfactory. Thus, the marginal quality can be used as a con-
servative (safe) measure (or bound) for the quality of a population in such cases.

In this subsection, we consider the optimal burn-in procedure which optimizes
the conservative measures and modify the approach that was developed in Cha and
Finkelstein [7] (see also Sect. 8.3) for the time burn-in with respect to the shock
burn-in. Obviously, this refers only to the continuous mixtures case.

Denote by Psðz; sÞ; the conditional distribution function which corresponds to
psðz; sÞ; defined in (9.53). Define the following measure:

Fig. 9.9 Frailty densities
before and after Burn-in

Fig. 9.8 WðsÞ
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kaðtjsÞ ¼ kðt; zðajsÞÞ; t� 0; ð9:54Þ

where zðajsÞ � inffz : Psðz; sÞ� ag and a is usually close to 1 (e.g., 0.9 or 0.95).
Thus, kaðtjsÞ is the (residual) failure rate of an item after a shock with magnitude s;
which corresponds to the ath percentile zðajsÞ of the conditional distribution of
frailty Psðz; sÞ. When a is close to 1, this operation describes the ath worst sce-
nario, which is the ‘ath worst subpopulation’ in the defined way. Based on the
above setting, we can define the ath worst mean remaining lifetime (MRL) of the
population after the shock burn-in with severity s:

MaðsÞ �
Z1

0

expf�
Z t

0

kaðujsÞdugdt:

Therefore, the following criterion can be applied:

Criterion 3 Determine the optimal severity s� as the minimal severity s such that
MaðsÞ�mr; where mr is the MRL that corresponds to the ath worst scenario.

Implementation of this approach can be clearly seen while considering the
following meaningful example.

Example 9.8 Let the conditional failure rate and the mixing distribution be
kðt; zÞ ¼ z and pðzÞ ¼ h expf�hzg; respectively. It is well known (see e.g., [2] that
the mixture failure rate strictly decreases in this case. Let qðz; sÞ ¼ e�zaðsÞ; where
aðsÞ is nonnegative strictly increasing function with að0Þ ¼ 0 and lims!1 aðsÞ ¼
1: In accordance with (9.53):

Psðz; sÞ ¼ 1� expf�ðhþ aðsÞÞzg:

Then

zðajsÞ ¼ � lnð1� aÞ
hþ aðsÞ ;

and [see (9.54)]:

kaðtjsÞ ¼ �
lnð1� aÞ
hþ aðsÞ ; t� 0:

The criterion for the shock burn-in is as follows: Find the minimum shock
severity such that, after burn-in, the mean (residual) lifetime of the lower ð1�
aÞ% quality of items is, at least, m. As the lifetimes are exponential (for the fixed
frailty), this MRL is, obviously,

MaðsÞ ¼ 1=zðajsÞ ¼ �ðhþ aðsÞÞ= lnð1� aÞ:
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Let a ¼ 9; h ¼ 1:0 and aðsÞ ¼ s: Then the corresponding linear function is given in
Fig. 9.10.

If, for instance, m ¼ 1:25; then the corresponding minimum shock severity:
s� 
 1:88.

The conservative measure (9.54) can be modified (generalized) to account for
the average of the lower ð1� aÞ% quality of items in the survived population after
the shock with severity s: Then, after the shock with severity s; the initial con-
ditional frailty distribution [which corresponds to pðzÞ in (9.50)] for the items
whose quality is lower than ð1� aÞ% is given by

psðz; sÞ
1� a

; zðajsÞ� z�1;

where, as previously, zðajsÞ � inffz :
Q

sðz; sÞ� ag: Thus the conditional density
after time t (in usage), which corresponds to pðzjtÞ in (9.51) is

paðz; sjtÞ �
psðz; sÞ
1� a

�Fðt; zÞR1
zðajsÞ

�Fðt; zÞ psðz;sÞ
1�a dz

; zðajsÞ� z�1:

Therefore, the mixture failure rate for the items in the survived population whose
quality is lower than ð1� aÞ% after the shock with severity s is obtained by

kmðtjs; aÞ ¼
Z1

zðajsÞ

kðt; zÞpaðz; sjtÞdz:

Example 9.9 (Example 9.8 Continued) As zðajsÞ ¼ � lnð1� aÞ=ðhþ aðsÞÞ and

Z1

zðajsÞ

�Fðt; zÞ psðz; sÞ
1� a

dz ¼ 1
ð1� aÞ �

hþ aðsÞ
hþ aðsÞ þ t

� ð1� aÞ
hþaðsÞþt
hþaðsÞ ;

Fig. 9.10 MaðsÞ for a ¼ 9;
h ¼ 1:0; aðsÞ ¼ s
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we have,

paðz; sjtÞ �
psðz; sÞ
1� a

�Fðt; zÞR1
zðajsÞ

�Fðt; zÞ psðz;sÞ
1�a dz

¼ ðhþ aðsÞ þ tÞ � ð1� aÞ�
hþaðsÞþt
hþaðsÞ � expf�ðhþ aðsÞ þ tÞzg:

Thus

kmðtjs; aÞ ¼
Z1

zðajsÞ

kðt; zÞpaðz; sjtÞdz ¼ � lnð1� aÞ
hþ aðsÞ þ

1
hþ aðsÞ þ t

; t� 0:

The criterion for the shock burn-in is as follows: Find the minimum shock
severity such that, after burn-in, the mean (residual) lifetime of the items whose
quality is lower than ð1� aÞ% is at least m: Then we have to obtain the MRL of
the items whose quality is lower than ð1� aÞ% after the shock burn-in at each
severity level s; which is given by

Z1

0

exp �
Zx

0

kmðtjs; aÞdt

8<
:

9=
;dx;

Let a ¼ 9; h ¼ 1:0 and aðsÞ ¼ s and m ¼ 1:25: Then it can be easily found
numerically that the optimal shock severity is s� 
 2:47.

9.4 Burn-in for Systems in Environment with Shocks

Burn-in procedures are usually applied to items with large initial failure rate which
operate under static operational environment. Similar to previous sections, we
consider shocks as a method of burn-in, but in this section we assume that there are
two competing risks causes of failure—the ‘usual’ one (in accordance with aging
processes in a system) and environmental shocks. We also suggest a new type of
burn-in via the controlled (laboratory) test shocks and consider the problem of
obtaining the optimal level (severity) of these shocks that minimizes the overall
expected cost (burn-in ? field use). Furthermore, also to minimize these costs, we
combine the conventional burn-in procedure with burn-in via shocks in one unified
model. We start with the general description of the basic stress-strength model. In
Sect. 4.7 and Sect. 4.10.3 we have already used some specific cases of this model
for discussing the operation of thinning of point processes and processes with
delay and cure.
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9.4.1 Strength–Stress Shock Model

In this subsection, we consider a rather general stress-strength shock model, which
will be used as an important supplementary result for considering burn-in prob-
lems of the subsequent subsections.

As in Chap. 4, consider a system subject to the nonhomogeneous Poisson
process (NHPP) of shocks NðtÞ; t� 0; with rate kðtÞ and arrival (waiting) times
Ti; i ¼ 1; 2; . . .. Let Si denote the magnitude (stress) of the ith shock. Assume that
Si; i ¼ 1; 2; . . . are i.i.d. random variables with the common Cdf Mf ðsÞ ¼
PrðSi� sÞ Mf ðsÞ � 1�Mf ðsÞ

� �
and the corresponding pdf mf ðsÞ: Let U be a

random strength of the system with the corresponding Cdf, Sf, pdf, and FR
GUðuÞ; GUðuÞ; gUðuÞ and rUðuÞ; respectively. For each i ¼ 1; 2; . . .; the operable
system survives if Si�U and fails if Si [ U; ‘independently of everything else’.

Let T be the lifetime of the system described above and rðtÞ be the corre-
sponding failure rate function, which will be derived in the rest of this subsection.
Then the following theorem presents the formal and a more detailed proof of
Eq. (4.50):

Theorem 9.10 The failure rate function of the system lifetime rðtÞ is given by

rðtÞ ¼ pðtÞkðtÞ; ð9:55Þ

where

pðtÞ �
R1

0

R v
0 exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
� gUðrÞdr mf ðvÞdvR1

0 exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

gUðrÞdr
:

Proof Observe that

PðT [ tjNðsÞ; 0� s� t; S1; S2; . . .; SNðtÞÞ
¼ PðU [ maxfS1; S2; . . .; SNðtÞgÞ

¼
Z1

0

Mf ðrÞ
� �NðtÞ

gUðrÞdr:

Thus,

PðT [ tÞ ¼
Z1

0

X1
n¼0

Mf ðrÞ
� �n KðtÞð Þn

n!
expf�KðtÞg

 !
gUðrÞdr

¼
Z1

0

expf�ð1�Mf ðrÞÞKðtÞggUðrÞdr

¼
Z1

0

expf�Mf ðrÞKðtÞggUðrÞdr;

350 9 Shocks as Burn-in

http://dx.doi.org/10.1007/978-1-4471-5028-2_4
http://dx.doi.org/10.1007/978-1-4471-5028-2_4
http://dx.doi.org/10.1007/978-1-4471-5028-2_4


where KðtÞ �
R t

0 kðuÞdu: The corresponding failure rate is

rðtÞ ¼ � d
dt

ln PðT [ tÞ

¼
R1

0 Mf ðrÞ exp �Mf ðrÞKðtÞ
� 	

gUðrÞdr � kðtÞR1
0 exp �Mf ðrÞKðtÞ

� 	
gUðrÞdr

¼
R1

0

R1
r mf ðvÞdv expf�Mf ðrÞKðtÞggUðrÞdr � kðtÞR1

0 exp �Mf ðrÞKðtÞ
� 	

gUðrÞdr

¼
R1

0

R v
0 exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
� gUðrÞdr mf ðvÞdv

R1
0 exp �Mf ðrÞ

Rt
0

kðxÞdx

� 

gUðrÞdr

kðtÞ:

h

The expression for pðtÞ is formally rather cumbersome, but it has a simple and
meaningful probabilistic meaning, which is shown in the following remark.

Remark 9.14 Observe that

PðT [ tjNðtÞ ¼ n;U ¼ uÞ ¼ Pðu�maxfS1; S2; . . .; SngÞ ¼ ðMf ðuÞÞn:

Thus,

PðT [ t;U [ uÞ ¼
Z1

u

X1
n¼0

ðMf ðrÞÞn
R t

0 kðxÞdx
� �n

n!
exp �

Z t

0

kðxÞdx

8<
:

9=
; � gUðrÞdr

¼
Z1

u

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
; � gUðrÞdr;

and

PðU [ ujT [ tÞ ¼
R1

u exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

� gUðrÞdrR1
0 exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
gUðrÞdr

:
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Therefore, it can be seen that

pðtÞ ¼
Z1

0

PðU\vjT [ tÞmf ðvÞdv: ð9:56Þ

As U is a random strength of our system and mf ðvÞ is the pdf of the magnitude
of any shock, pðtÞ can be interpreted as the probability of a failure under a shock
that had occurred at time t given that it did not occur before. The important feature
of (9.56) is conditioning on the event T [ t; which obviously has the Bayesian
interpretation via the updating of the distribution of the system’s strength. That is,
even though random strength does not actually change, its distribution (on the
condition that T [ t) is updated as t increases, which eventually yields a time-
dependent pðtÞ: This conditioning was overlooked in Cha and Finkelstein [7],
which resulted in p ¼

R1
0 PðU\vÞmf ðvÞdv: Relationship (9.56) will be very useful

for our further discussion.

9.4.2 Optimal Level of Shock’s Severity

We consider a system (a component, an item) that operates in an environment with
shocks. Assume that in the absence of shocks, it can fail in accordance with the
baseline distribution F0ðtÞ with the corresponding failure rate function r0ðtÞ: In
addition to this type of the ‘baseline’ failure, the environmental shocks can also
cause system’s failure. Assume that each shock, with probability pðtÞ results in
immediate system’s failure and with probability qðtÞ ¼ 1� pðtÞ it does not cause
any change in the system. We use the same notation, as in (9.56), because pðtÞ in
(9.56) as an ‘overall characteristic’ can be also obviously interpreted in this way. If
the shocks follow the NHPP with intensity kðtÞ; then it is well known that the
survival function of the system for this setting is given by

PðT [ tÞ ¼ exp �
Z t

0

r0ðuÞdu

0
@

1
A exp �

Z t

0

pðuÞkðuÞdu

0
@

1
A

¼ exp �
Z t

0

r0ðuÞ þ pðuÞkðuÞdu

0
@

1
A; t� 0;

and thus the resulting failure rate is

rðtÞ ¼ r0ðtÞ þ pðtÞkðtÞ: ð9:57Þ
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Coming back to the burn-in setting, as in Sect. 9.4.1, we now further assume
that the magnitude (stress) of the ith shock Si; i ¼ 1; 2; . . . are i.i.d. random vari-
ables with the common Cdf Mf ðsÞ ¼ PrðSi� sÞ Mf ðsÞ � 1�Mf ðsÞ

� �
and the

corresponding pdf mf ðsÞ: For each i ¼ 1; 2; . . .; the operable system survives if
Si�U and fails if Si [ U; independently of everything else, where U is the random
strength of the system. When we apply the shock of the controlled magnitude s
during burn-in, this means that the strength of the component that had passed it is
larger than s; and the distribution of the remaining strength Us (given that the
strength is larger than s) is

GUðujsÞ � Pr½U� ujU [ s� ¼ 1� GðuÞ=GðsÞ; u [ s:

Let Ts be the lifetime of the system that has survived the shock burn-in with the
controlled magnitude s: Then, in accordance with the discussion in Sect. 9.4.1 and
the result given by (9.55), the failure rate in (9.57) should now be modified to

rðt; sÞ ¼ r0ðtÞ þ pðs; tÞkðtÞ; ð9:58Þ

where

pðs; tÞ ¼
R1

0

R v
0 exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
� gUðrjsÞdr mf ðvÞdvR1

0 exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

gUðrjsÞdr

¼

R1
s

R v
s expf�Mf ðrÞ

Rt
0

kðxÞdxg � gUðrÞdr mf ðvÞdv

R1
s exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
gUðrÞdr

;

ð9:59Þ

and gUðujsÞ is the corresponding pdf of GUðujsÞ; which is given by

gUðujsÞ ¼
0; if u� s

gUðuÞ
GUðsÞ

; if u [ s

(
:

Therefore, similar to (9.56), Eq. (9.59) can be written in a compact and a mean-
ingful way (via the corresponding mixture) as

pðs; tÞ ¼
Z1

0

Iðv 2 ½s;1ÞÞPðUs\vjT [ tÞmf ðvÞdv; ð9:60Þ

where

PðUs\vjT [ tÞ ¼
R v

s exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

� gUðrÞdrR1
s exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
gUðrÞdr

:

and the indicator Iðv 2 ½s;1ÞÞ accounts for the fact that after the shock burn-in
with magnitude s; the system’s strength with probability 1 is larger than s:
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In order to justify the shock burn-in, we must show that pðs; tÞ in (9.59) is
decreasing in s for each fixed t: Thus, by increasing the magnitude of the burn-in
shock, we decrease the corresponding failure rate in (9.58). This property, which is
important for our reasoning, is proved by the following simple theorem:

Theorem 9.11 The function pðs; tÞ is strictly decreasing in s for each fixed t.

Proof Observe that

o

os
PðUs\vjT [ tÞ ¼ 1R1

s exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

gUðrÞdr
� �2

	 � exp �Mf ðsÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðsÞ �

2
4 Z1

s

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

þ exp �Mf ðsÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðsÞ �

Zv

s

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

3
5\0:

This implies that PðUs\vjT [ tÞ is strictly decreasing in s for all fixed v and t:
Observe that the indicator in (9.60) is also strictly decreasing in s for all fixed v:
Therefore, it can be concluded that pðs; tÞ is strictly decreasing in s for each fixed t.h

Based on the new results obtained above, we now reconsider some of the
previous burn-in models.

An item is chosen at random from our population and is exposed to a shock of
magnitude s. If it survives, it is considered to be ready for usage, otherwise the
failed item is discarded and the new one is chosen from the population, etc. This
procedure is repeated until the first survived item is obtained. Let csr be the shop
replacement cost and cs be the cost for conducting a single shock. Let c1ðsÞ; as a
function of s; be the expected cost for eventually obtaining a component which has
survived a shock. Then

c1ðsÞ ¼
cs þ csrGðsÞ

GðsÞ
¼ �csr þ

cs þ csr

GðsÞ
; ð9:61Þ

where 1=GðsÞ is the total number of trials until the first ‘success’.

Let K be the gain for the unit of time during the mission time. Then the
expected gain during field operation (until failure) is given by

c2ðsÞ ¼ �K

Z1

0

exp �
Z t

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;dt

0
@

1
A

and the total expected cost cðsÞ is
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cðsÞ ¼ c1ðsÞ þ c2ðsÞ

¼ �csr þ
cs þ csr

GðsÞ
� K

Z1

0

exp �
Z t

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;dt

0
@

1
A;
ð9:62Þ

where pðs; uÞ is given by (9.59). The function c1ðsÞ is strictly increasing to infinity
and c2ðsÞ is strictly decreasing (Theorem 9.11) to �Kl0; where l0 is the mean
time to failure, which corresponds to the distribution with the failure rate r0ðtÞ:
Therefore, there should be a finite optimal severity. Then, based on (9.62), the
optimal severity level s� that satisfies

s� ¼ arg min
s2 ½0;1�

cðsÞ

can be obtained.
In the following example, the strength of a system is described by the Weibull

distribution.

Example 9.10 Assume that GUðuÞ ¼ expf�u2g; u� 0;Mf ðsÞ ¼ expf�6sg;
s� 0; kðtÞ ¼ 1; t� 0; and r0ðtÞ ¼ 0:06t þ 0:2; t� 0: Let csr ¼ 0:1; cs ¼ 0:01; and
K ¼ 8:0:

Optimal severity in this case is given by s� ¼ 0:86 and the corresponding
minimum cost is cðs�Þ ¼ �23:46 (Fig. 9.11).

Similar reasoning holds when our gain is defined by the success of the mission
during the fixed interval of time s. Let:

• The cost cm is incurred by the event Ts� sf g (Failure of the Mission);
• The gain gm results from the event Ts [ sf g (Success of the Mission).

Then the burn-in costs are the same as in (9.61), whereas the expected cost
during field operation, c2ðsÞ; is given by

Fig. 9.11 Graph for cðsÞ
(Weibull GðsÞ)
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c2ðsÞ ¼ �gm exp �
Zs

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;

0
@

1
Aþ cm 1� exp �

Zs

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;

0
@

1
A

¼ �ðgm þ cmÞ exp �
Zs

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;

0
@

1
Aþ cm:

It is clear that c2ðsÞ is strictly decreasing to

�ðgm þ cmÞ exp �
Zs

0

r0ðuÞdu

8<
:

9=
;

0
@

1
Aþ cm;

and all further considerations are similar to those when the gain is proportional to
the mean time to failure.

9.4.3 Burn-in Procedure Combining Shock
and Conventional Burn-in

In this subsection, we will deal with the combined burn-in procedures considered
in Cha and Finkelstein [7] using the results of the previous subsections. We have
two possibilities: Bðb; sÞ; the strategy when the systems are burned-in for time b
(we will call it the ‘time burn-in’) and then the shock burn-in with severity s is
applied to the systems, which survived the burn-in time b; whereas the strategy
Bðs; bÞ applies shock first and then the survived systems are burned-in for time b.
Unless otherwise specified, we assume that, during the time burn-in, the system is
also subject to environmental shocks (as in field usage). In Cha and Finkelstein [7],
the simple case of the homogeneous Poisson process of environmental shocks with
intensity k was considered, whereas in the current setting we are able to deal with
the general NHPP case. In fact, the shock intensity during time burn-in and that
during the field operation can be different. Let kbðtÞ be the shock intensity at time t
from the starting point of the burn-in and kf tð Þ be the shock intensity at time t from
the starting point of the field operation. Then the overall intensity function is

kðtÞ ¼ kbðtÞ; if t� b
kf ðt � bÞ; if t [ b;

�

where b is the burn-in time.
Let the assumptions and notation for the burn-in strategies under consideration

be the same as before. As for the conventional burn-in procedure, assume addi-
tionally that the burn-in cost is proportional to the total burn-in time with pro-
portionality constant c0.
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Consider first, the strategy Bðs; bÞ: Let h1ðs; bÞ be the expected burn-in cost for
Bðs; bÞ and Ts be the lifetime of the system that has survived the shock burn-in. As
our shock is of the fixed magnitude s; the corresponding survival function after the
shock, in accordance with (9.58), is

FsðtÞ ¼ exp �
Z t

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

0
@

1
A;

where pðs; tÞ is defined in (9.59). Then, by similar arguments as those described in
Cha and Finkelstein [7], we have:

h1ðs; bÞ ¼ c0

R b
0 FsðtÞdt

FsðbÞ
þ cs þ csr

FsðbÞGðsÞ
� csr: ð9:63Þ

On the other hand, when our system is not exposed to environmental shocks during
the time burn-in, (9.63) changes to

h1ðs; bÞ ¼ c0

R b
0 F0ðtÞdt

F0ðbÞ
þ cs þ csr

F0ðbÞGðsÞ
� csr;

where F0ðtÞ ¼ exp �
R t

0 r0ðuÞ du
� �

.
Consider a gain proportional to the mean time to failure in field usage, as in

(9.62). Then the total expected cost c1ðs; bÞ is

c1ðs; bÞ ¼ c0

R b
0 FsðtÞdt

FsðbÞ
þ cs þ csr

FsðbÞGðsÞ
� csr

� K

Z1

0

exp �
Z t

0

ðr0ðbþ uÞ þ pðs; bþ uÞkðbþ uÞÞdu

8<
:

9=
;dt

0
@

1
A;
ð9:64Þ

whereas the substitution of FsðtÞ by F0ðtÞ and assuming that kbðtÞ ¼ 0 corresponds
to the case when there are no environmental shocks during the time burn-in.

As Cha and Finkelstein [7] did not take into account the existing dependence of
the distribution of strength on time, the failure rate that corresponds to (9.58) was
erroneously obtained as rðt; sÞ ¼ r0ðtÞ þ pðsÞk for kðtÞ ¼ k: In accordance with
this equation it was stated that ‘‘the failures due to shocks during the time burn-in
do not contribute to improvement of reliability characteristics in field use, but
increase only the cost of burn-in’’ as time burn-in does not decrease the second
term ‘‘pðsÞk’’. However, the following theorem shows that shocks during time
burn-in do contribute to improvement of reliability characteristics in field use.
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Theorem 9.12 The function pðs; tÞ is strictly decreasing in t for each fixed s.

Proof Observe that
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The numerator of the above equation becomes
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as Mf ðrÞ is strictly decreasing in r: Therefore, PðUs\vjT [ tÞ is decreasing in
tand, due to the fact that

pðs; tÞ ¼
Z1

0

Iðv 2 ½s;1ÞÞPðUs\vjT [ tÞmf ðvÞdv;

pðs; tÞ is strictly decreasing in t for each fixed s. h
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Therefore, the second term of the failure rate in (9.58), pðs; tÞkðtÞ is decreasing
in t for each fixed s when kðtÞ is nonincreasing. Or, even if kðtÞ is increasing,
pðs; tÞkðtÞ can be decreasing in t (for each fixed s) in some cases. Therefore, in this
sense, shocks during time burn-in do contribute to improvement of reliability
characteristics in field use.

Similar considerations can be used for describing the strategy Bðb; sÞ: Let
h2ðs; bÞ be the expected burn-in cost. Then by similar arguments as those described
in Cha and Finkelstein [7]:

h2ðs; bÞ ¼
1

GðsÞ
ðc0

R b
0 FðtÞdt

FðbÞ
Þ þ cs

1

GðsÞ
þ csr

1

FðbÞGðsÞ
� csr; ð9:65Þ

where

FðtÞ ¼ exp �
Z t

0

ðr0ðuÞ þ pð0; uÞkðuÞÞdu

0
@

1
A:

Note that just after time burn-in (before performing the shock burn-in), as follows
from Remark 9.14, the initial distribution of U is

GUðu; bÞ ¼ PðU [ ujT [ bÞ ¼

R1
u exp �Mf ðrÞ

R b
0 kðxÞdx

n o
� gUðrÞdr

R1
0 exp �Mf ðrÞ

R b
0 kðxÞdx

n o
gUðrÞdr

;

and, if we further perform the shock burn-in with the magnitude s; then the
resulting pdf for U is

0; if u� s
gUðu;bÞ
GUðs;bÞ

; if u [ s

(
;

where gUðu; bÞ is the pdf which corresponds to GUðu; bÞ:

gUðu; bÞ ¼
exp �Mf ðuÞ

R b
0 kðxÞdx

n o
� gUðuÞR1

0 exp �Mf ðrÞ
R b

0 kðxÞdx
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R b
0 kbðxÞdx
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0
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R b

0 kbðxÞdx
n o

gUðrÞdr
:

In accordance with (9.59), the failure probability at the ‘field use age’ t is
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pðb; s; tÞ ¼
R1

s

R v
s exp �Mf ðrÞ

R t
0 kf ðxÞdx

� 	
� gUðr; bÞdr mf ðvÞdvR1

s exp �Mf ðrÞ
R t

0 kf ðxÞdx
� 	

gUðr; bÞdr
: ð9:66Þ

Finally, from (9.65) and (9.66), the total expected cost c2ðs; bÞ is

c2ðs; bÞ ¼
1

GðsÞ
c0

R b
0 FðtÞdt

FðbÞ

 !
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1

GðsÞ
þ csr
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8<
:

9=
;dt

0
@

1
A:

Note that, pðb; s; uÞ (not pðs; bþ uÞ) should be used in c2ðs; bÞ above. From
Theorems 9.11 and 9.12, it is clear that pðb; s; tÞ is strictly decreasing in both s and
t for each fixed b; respectively. By similar procedure as before (Theorem 9.12), it
can also be shown that the function pðb; s; tÞ is strictly decreasing in b for each
fixed s and t.

In Cha and Finkelstein [7], two stage optimization procedures for minimizing
the cost functions are discussed. Similar approach can be applied to the modified
results of the current paper. For example, for obtaining optimal ðs�1; b�1Þ which
minimizes, c1ðs; bÞ defined by equation (9.64), we can follow the following
procedure:

1. Fix b� 0; then find optimal s�ðbÞ which satisfies

c1ðs�ðbÞ; bÞ ¼ min
0� s\1

c1ðs; bÞ; for fixed b� 0:

Note that, as cðs; bÞ is eventually increasing in s to infinity for each fixed b; such
s�ðbÞ exists for all b.

2. Find optimal b� which satisfies

c1ðs�ðb�Þ; b�Þ ¼ min
0� b\1

c1ðs�ðbÞ; bÞ:

Then, finally, such ðs�ðb�Þ; b�Þ is the optimal solution of the problem. However,
in this modified model, even if we assume that r0ðtÞ is the bathtub-shaped failure
rate with two change points t1 and t2; t1 is not necessarily the uniform upper bound
for the optimal burn-in time. However, if we assume additionally that r0ðtÞ is
increasing to infinity after t2; there obviously should be the uniform upper bound
for the optimal burn-in time and the standard numerical procedures can be used for
obtaining optimal solutions in this case.
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